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Elliptic Ding—Iohara Algebra and
the Free Field Realization of
the Elliptic Macdonald Operator

by
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Abstract

The Ding—Iohara algebra is a quantum algebra arising from the free field realization of
the Macdonald operator. Starting from the elliptic kernel function introduced by Komori,
Noumi and Shiraishi, we define an elliptic analog of the Ding—Iohara algebra. The free
field realization of the elliptic Macdonald operator is also constructed.
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Notations. In this paper, we use the following symbols:

Q(q, t): the field of rational functions of ¢, ¢ over Q,

C[[z, 27 "]]: the set of formal power series of z, z~* over C,

The g¢-infinite product: (z;q)eo := H(l —zq") (lq] < 1),

R €O
(&5 @) = (@73 q)oo

The theta function: O, () := (p; P) o (T; P) o (DT~ D) o,
The double infinite product: (x; ¢, p)oo := H (1 —xzg™p"),

m,n>0
(qpz™5¢,p)o
(3¢,P)0

(n € Z)u

The elliptic gamma function: T'y ,(z) :=

For the theta function and the elliptic gamma function, the following relations
hold:

Op(r) = *z@p(xil)v Op(pz) = 7I71®p(x)a

Lyp(®), Typlpz) =

81. Introduction

The aims of this paper are to introduce an elliptic analog of the Ding—Iohara alge-
bra and to construct the free field realization of the elliptic Macdonald operator.
We accomplish this by starting from the elliptic kernel function defined below. Let
us explain some background and motivations.

Relations between quantum algebras and Macdonald symmetric functions
have been studied by several authors. One of the most remarkable results is the
construction of the ¢-Virasoro algebra and the ¢-Wy algebra by Awata, Odake,
Kubo, and Shiraishi [24], [3], [4]. It is known that singular vectors of the Virasoro
algebra and of the Wy algebra correspond to Jack symmetric functions [8]. On
the other hand, Macdonald symmetric functions are g-analogs of Jack symmetric
functions [2], [17]. Awata, Odake, Kubo, and Shiraishi constructed the ¢-Virasoro
algebra and the ¢-Wy algebra whose singular vectors correspond to Macdonald
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symmetric functions:

singular vectors

q-Virasoro algebra, g-Wy algebra Macdonald symmetric functions

1 g-deformation 1 g-deformation

singular vectors

Virasoro algebra, Wy algebra Jack symmetric functions

In the middle 2000’s, new material emerges from the free field realization of
the Macdonald operator. The Macdonald operator Hy(q,t) (N € Zsg) is defined
by

ZHM’_ Sy Ly f @1, an) = @102 2)

i=1 j#i

and its free field realization tells us that we can reproduce the operator from boson
operators. As we will see in Section 2, the free field realization of the Macdonald
operator is based on the kernel function

(g, 1)) o= [ 22 Do

ij (xz'yj; q)oo

It has been realized that from the free field realization of the Macdonald operator,
a certain quantum algebra arises, the Ding—Iohara algebra [10], [18], [11]. Recently
this algebra has been applied to several objects of mathematical physics, such as
the AGT conjecture [8], [9], [1], as well as the refined topological vertex which is
used to calculate amplitudes and partition functions in topological string theory [2].

On the other hand, on the elliptic theory side it is well-known that the Mac-
donald operator allows the elliptic analog defined in [20],

(11) q,t,p ZH @ tIZ/Ij q:clv

i=1 j#i x"/xj)

and the kernel function for this operator was introduced by Komori, Noumi, and
Shiraishi [15]:

Lop(ziy;))
Dy p(teiy;)

,J

(g, t,p)(z,y) :==

Since the free field realization of the Macdonald operator is available, it can be
expected that the above operator (1.1) can be derived from it. In [11], Feigin,
Hashizume, Hoshino, Shiraishi and Yanagida constructed the free field realization
of the elliptic Macdonald operator and an elliptic analog of the Ding—Iohara algebra
based on the idea of quasi-Hopf twist. The authors of [11] noticed the crucial fact
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that if one wants to treat the elliptic Macdonald operator in the context of the
free field realization, the Ding—Iohara algebra should become elliptic. However it is
not clear whether the objects treated in [11] have connections to the elliptic kernel
function. Hence the following problem remained open:

Construct the free field realization of the elliptic Macdonald operator
Hpy(q,t,p) and the elliptic Ding-Iohara algebra which have connections
to the elliptic kernel function I1(q,t, p)(z,y).

Our strategy to solve the above problem is the following. Since the free field
realization of the Macdonald operator is based on the form of the kernel function,
it is plausible that one can construct the free field realization of the elliptic Mac-
donald operator from the elliptic kernel function. It turns out that this leads to
another elliptic analog of the Ding—Tohara algebra (FFR below stands for the free
field realization):

Elliptic Macdonald operator FFR! Elliptic Ding—Iohara algebra
Hn(q,t,p) U(q,t, p)
elliptic deformation elliptic deformation!
FFR

Macdonald operator Hy(q,t) Ding—Tohara algebra U(q, t)

Our main results are as follows.
Definition 1.1 (Elliptic Ding-Iohara algebra U(q,t,p)). Set

_ 6u(qr)0,(t'2)O, (¢ ta)

=6, )0, 0y (gt 1a) < )

Here we use the notation of page 412, and assume |q|,|p| < 1. We define the
elliptic Ding—Iohara algebra U(q,t,p) to be the associative C-algebra generated by
{2F(p)Ynez, {¥E(p)}nez and C subject to the following relations: C' is a central,
invertible element and if we define z*(p;2) == 3, ;2 (p)2z™" and v*(p; 2) =

ZnEZ ’lprﬂl: (p)zin then
[~ (ps 2), %™ (p;w)] = 0,

() = 9C/0)

»E(p; 2)z T (pyw) = g, (Ci; z}) T (p;w)y* (p; 2),

Y~ (pyw)y ™ (p; 2),

¥ (p; 2)a (prw) = gp (cﬂ ) o (s ) (p: 2),

S
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+1
e ) =g (2) o et ez),

(27 (p; 2), 27 (p; w)]

. W{a(cj)wm V2w - 6(Olf)w<p; cl/%)},

where we define the delta function 6(z) to be ), ., 2"

The free field realization of the elliptic Ding—Iohara algebra U(q,t,p) is con-
structed as follows. First for the theta function ©,(x) one can check that

On the other hand, we can rewrite 1 — 2 and ©,(z) as follows:

n

1 -z = exp(log(1 — z)) = exp (_ - fl> (|| < 1),

n>0
Op(x) = (D3 P)oo (75 D)oo (P25 D)
= (p; ) exp(log(z; p)oc (P2 p) o)

= (p: D) _ ; — — < <1).
oo (- e (- ) bl <lel <)

n>0 n>0

From these expressions, one can derive a procedure of elliptic deformation:

1—x=exp(—zgjj)

n>0

pt xT™ 1 " O,(z)
- — _ — — | = .
elliptic eXp( Z 1-— pn n ) eXp< Z 1-— p" n > (pa p)oo

deformation n>0 n>0

We can also describe the above process as follows:

(1) Make the substitution

1xexp<za::> %exp(zl_lpn x:)

n>0 n>0

(2) Multiply the above by the negative power part
1 "
(=Y =)

n>0
pn x—n 1 37" @p(x)
— - - — | = .
exp< 17pn n )exp( Zl,pn ?’L) .

n>0
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As is shown in this paper, for boson operators the procedure of elliptic deforma-
tion similar to the above process is available (for example, see Proposition 3.1 or
Definition 5.1). Using two sets of boson generators, we can reproduce the theta
function and the elliptic gamma function from OPE (Operator Product Expan-
sion) of boson operators. Consequently, we have

Theorem 1.2 (Free field realization of the elliptic Ding—Iohara algebra). Define
an algebra B, of bosons to be generated by a = {an}nez\{0y, b = {bn}nez\ {0}
with the relations

1—glm
1—tml

1—plml 1 —glml ;
(qt=Tp)lml 1 — ¢lml " ®

[amzan] = m(l - plm‘) 6m+n,0a [bm7 bn] =m
[@m, bn] = 0.

We define the boson Fock space F to be the left B, p-module generated by the
vacuum vector |0) which satisfies a,|0) = b,|0) =0 (n > 0):

F =span{a_xb_,|0) : \,u € P},

where P denotes the set of partitions and a_y := a_x, ---a_x,,, (A € P). Set
v := (qt=1) "2 and define operators n(p; z), £(p; 2), o*(p; 2) : F — FRC[[z,27 1]
as follows:

11—t 2" 11— z n
. — _ Inly, <~ _ A= 2 T,
77(1772') T .eXp( Z 1_p‘n|p bn n>exp< Z 1_p|n|an n )'7
n#0 n#0

1=t o2 1—t" . 2

6(:2) 1= soxp((32 1,2 Y exp (3 )
n#0 p n#0 p

T (ps2) == mps v 22)E(ps v 22), @ (pr2) = m(piy 2 2)E(ps v 2)

Then the map defined by
Crry,  at(pz)=npiz), o (pi2) = Epiz), ¥ (piz) = ¢ (p; 2)
gives a representation of the elliptic Ding—Iohara algebra U(q,t,p).

Theorem 1.3 (Free field realization of the elliptic Macdonald operator). Let
d(p;2) : F = F @ Cl[z,271]] be an operator defined as

) = ex w =" ex ia =
o(pi2) p(g(l_qn)(l_pn)b—n n ) p(gu—qn)(l—pn) n>

Set o (p; x) = vazl é(p;xj) (N € Zso). Then the operator n(p; z) in Theorem
1.2 and the operator ¢(p; z) reproduce the elliptic Macdonald operator Hn(q,t,p):
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[(ps 2) =t (s 2)) - (0(ps 2~ ' 2)) )16 (93 2) 0)
Nt (1)

- ()
where (n(p; z))+ stand for the plus and minus parts of n(p; z) defined as

1 _ t—n n Zn 1 _ tn Z—n
s == 32 T T esa(( - 3 e ).

+n>0 +n>0

Hn(q,t,p)on (p;2)|0),

and [f(2)]1 denotes the constant term of f(z) in z.

Organization of the paper. This paper is organized as follows. In Section 2, we
give a review of the trigonometric case. In Section 3, we show how we can ob-
tain the elliptic Ding-Iohara algebra. First, we define the elliptic kernel function
introduced by Komori, Noumi and Shiraishi [15]. This function is important in
constructing an elliptic analog of Macdonald symmetric functions. Second, from
the elliptic kernel function, we define elliptic currents n(p; ), £(p; 2), and o (p; 2)
which satisfy elliptic deformed relations of the Ding—Iohara algebra. Consequently,
we can define the elliptic Ding-Iohara algebra U(q, t, p).

In Section 4, to clarify whether the elliptic Macdonald operator can be rep-
resented by n(p; z), we study relations between the elliptic current 7(p; z) and the
elliptic Macdonald operator. We derive the free field realization for the elliptic
Macdonald operator in the form of Theorem 1.3.

In Section 5, some observations and remarks are given, and Section 6 is an
appendix which contains the proofs of Wick’s theorem, Ramanujan’s summation
formula, and a partial fraction expansion involving the theta functions.

82. A review of the trigonometric case

In this section, before considering the elliptic case we review some background ma-
terial: Macdonald symmetric functions, the free field realization of the Macdonald
operator, and the Ding—Iohara algebra.

§2.1. Macdonald symmetric functions

First, we give some notations for symmetric polynomials and symmetric functions
[16], [17], [23]. Let ¢, t € C be parameters and assume |¢q| < 1. We denote the sym-
metric group of degree N by &y and write Ay(q,t) := Q(q,t)[z1,...,2n]®N for
the space of N-variable symmetric polynomials over Q(g,t). If A = (A1,...,An) €
(Z>0)N satisfies the condition \; > \iy1 (1 <i < N — 1), then X is called a parti-
tion. We denote the set of partitions by P. For a partition A, £(\) := #§{i : \; # 0}
is the length of A, and |A| := Zlf()‘l) A; is the size of A.

1=
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For a = (aq,...,an) € (Zso)V, we set 2% := 2" ---2}~. For a partition A,
we define the monomial symmetric polynomial my(z) as follows:
my(x) := Z x®.
«: «is a permutation of A

As is well-known, {mx(x)}rep is a basis of Ay (g,t). Let p,(z) := va:l 2l (n €

Z~0) be the power sum, and for a partition A, set py(z) := Hf(:)‘l) D, ().

Let p%“ :Anyi1(g,t) = An(g,t) be the homomorphism defined by

(PN (@1, yan) = flon,en,0) (F € Avia(a:t)).

We define the ring A(g,t) of symmetric functions as the projective limit with
respect to {pN T}y

A(g,t) := l<£nAN(q7 t).
It is known that {py(z)}rcp is a basis of A(q, t). Define ny(a) := §{i: \; = a} and

1—q>‘i

1—th

()
Zy = H a™@ny(a)!,  za(gt) =z H
i=1

a>1

Then we define an inner product (,)q in A(g,t) as follows:

(2.1) (PA (), pu(2)) g6 = Oxp22 (95 1)-

We define the kernel function (g, t)(x,y) by

(g, t)(e.y) =[] m

Then we have 1

————PA@)pay) = (g, 1) (, y).

é 2N (Q7 t)

Remark 2.1. Assume that uy(z), va(xz) (A € P) are homogeneous symmetric
functions of degree |A|, and suppose that {ux(z)}rep and {vr(x)}rep are two
bases of A(q,t). Then

{ur(x)}rep and {va(z)}rep are dual bases under the inner product (,)q.¢

= Z u/\(x)vk(y) = H(qa t)(xvy)'

AEP

Due to this fact, the inner product (, ), is determined by the kernel function
(g, t)(z,y).
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Macdonald symmetric functions are g-analogs of Schur symmetric functions
and Jack symmetric functions. The existence of Macdonald symmetric functions,
due to Macdonald, is stated below [16], [17], [23]. We define an order in P as
follows:

A>p e [N =|pland \y + -+ X > p1 + -+ p; for all 4.

Theorem 2.2 (Existence of Macdonald symmetric functions). For each parti-
tion A, there is a unique symmetric function Py(z) € A(q,t) satisfying

Py(z) = > unumu(z)  (ur € Qlg,1)),

159

AF = (Pa(e), Pu(2))q, = 0.

Remark 2.3. Set (A)g¢ := (Px(x), Px(z))q,¢. Then
1

sep Mas

This means that {Py(z)},cp is a basis of A(q,t).

Py(z)Px(y) = (g, t)(z,y)-

For the Macdonald symmetric function Py(x), we define the N-variable sym-
metric polynomial Py(z1,...,zN) by

Py(z1,...,zN) == Pa(z1,...,25,0,0,...)  (£(A) < N).
We call it the N-variable Macdonald polynomial. We define the g-shift operator by
Ty f(x1, . 2N) == f(21,..-,qTi, ..., TN)
and define the Macdonald operator Hy(q,t) : An(q,t) = An(g,t) as follows:

N
(22) HN(Qvt) = ZH i i Tqﬂ?i‘

=1 s T T
Proposition 2.4. (1) For each partition A with £(\) < N, the Macdonald poly-
nomial Py\(x1,...,xN) is an eigenfunction of the Macdonald operator:

N
Hy(q, )Pr(21, ..., 2n) = en(NPa(z1, .., an),  en(d) =Y g™tV
=1

(2) We have
HN(qa t)wn(Qa t)(xa y) = HN((], t)yH(Qa t)(l‘, y)a
where

N N
tr; —x; ty; — y;
HN(Qat)a: = ZH ﬁTQ,wu HN(Q7t)y = ZH %yj]Tq,yi-

i=1 j#i i=1 j#i Yi
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§2.2. Free field realization of the Macdonald operator

In this subsection, we give the free field realization of the Macdonald operator [23].
Let ¢, t € C be parameters and assume |g| < 1. First we define the algebra B of
bosons to be the algebra generated by {an}nez\ {0} With the relations

1 — g™

(2.3) [am,an] = Ml

6m+n,0-

We define the normal ordering : - : as

{aman (m <n),
WGt =

anm (M >n).

Let |0) be the vacuum vector which satisfies a,,|0) = 0 (n > 0). For a partition A, we
set a_x :=a_x, ---a_y,,, and define the boson Fock space F as a left B-module:

F :=span{a_,|0) : A € P}.

We introduce the dual vacuum vector (0| which satisfies (0|a,, = 0 (n < 0). Sim-
ilarly to the definition of F, we define the dual boson Fock space F* as a right
B-module:

F*i=span{(0lax : A € P} (ax:=ay, - ax,,,)-
Let us define a bilinear form (-|-) : F* x F — C by the conditions

0[0) =1, (0laxa—,|0) = dxu2x(q, 1)

Remark 2.5. It is clear that the bilinear form defined above corresponds to the
inner product (,)s+ in (2.1). Therefore the relation (2.3) is determined by the
inner product (,)q, or equivalently, by the kernel function II(g, t)(z,y).

To recover the Macdonald operator from a boson operator, let us define op-

erators 1(2), £(2) : F — F @ C[[z, 27 1]] as follows (7 := (gt~)~1/?):

e =~ (1= 0,5 s €)= e T(1 - e, )

n#0 n#0
We can check that n(z), £(z) satisfy the relations

_ A—w/2)(1— gt w/z) .
B (1—w/z)(1—q_1tw/z). (W)
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Define ¢(2) : F — F @ C[[z,27 Y]] and ¢*(2) : F* — F* @ C[[z, 271]] as follows:

n

(z) = eXp(Z i:;::a_nzn), o*(2) := eXp(Z i:;nanz>

n
n>0 n>0

Then we have the relations
1-w/z

W) = Lo n(t)o(=:00) = a2) )
Ee)0() = TR o) 602)0(210) = ola 20

They are shown in the following way. By Wick’s theorem we have

_ L0 g /)
e O M e R KL
- eXP(_ >oa- tm)(wZ)m)n(zW(w):
m>0
— o)
e(e160) =exp( 3 (0= " L igpotu
m>0
e o)
where we use log(1 —x) = = _,2"/n (Jz| < 1). The other equations follow

from simple calculations.
Here and in what follows, we denote the plus and minus parts of operators by
()4, (-)—, respectively. For example,

@ =en(- - =). o) =en(-T0-mn )

n
n>0 n<0

In the following, [f(2)]1 = § 52 f(2) denotes the constant term of f(2) in .

2miz

Set ¢ (z) :=]}_, ¢(x;) (N € Zs). Then we have the following.
Proposition 2.6. The constant terms of n(z), £(z) act on dn(x)|0) as follows:
(2.6) (2)én (2)0) = ¢~V {(t — 1) Hn (g, 1) + 1}on(2)]0),

(2.7) [()ion (@)|0) = tN{(t™" = DHx (g1, t7") + Ly (@)[0).
Proof. We show (2.6). From the relation of n(z) and ¢(z), we have

N
nonta) = [[ 1=l

i=1

n(z)én (x):.
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By partial fraction expansion,

ﬁ l—a/z  1—t N 1—t*Nt:vi/th:ci—xj
Srl—tzy/z 1—tN & 11—tz pox i —xj

Furthermore, we use the formal expression of the delta function 6(z):
~1

DI R

ne”Z

Then we obtain

N

1—x;/z -N( te; — a:] _N —z/z;
T Sa— 6 +1
Hlftz/z ZH T; — H —t— 12/351
i=1 i=1 j#i
Hence

n(=)én(@)]0) = V(¢ — 1) ZH”’ %( )q,x,i¢N<x>|o>

T; — X
i=1 j#i ¢ J

t—NH () (@),

—t~1z/x;

where we use the relation (n(tz))_¢(z) = ¢(gz) = Ty;,.¢(z). From this equation,
[n(2)]1¢n (2)[0)
N
SR 30 (e R (LR P

i=1 j#i
=t~ N{(t = 1)Hn(g,t) + 1}on(2)]0),
where we use the equation

{ﬁ )| 1

i=1 1

The proof of (2.7) is similar, so we omit it. O

Remark 2.7. (1) Set g3/ (x) := H;VZI ¢*(x;) (N € Zsg). Then the kernel function
II(g,t)(x,y) can be recovered from the operators ¢ (x), dn(y):

Ok @onw)0) = Mg, Dy = ] Voo

1<i <N (xz‘yj; Q)oo
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(2) Let us recall that the kernel function II(g,t)(x,y) determines relation
(2.3). Therefore the free field realization of the Macdonald operator is based on
the kernel function I(q,t)(z,y).

§2.3. Ding—Iohara algebra U(q,t)

As is seen in the previous subsection, we can represent the Macdonald operator
by using n(z), £(z). Applying Wick’s theorem, we can show the following.

Proposition 2.8 (Relations of 1(z), £(z) and ¢*(z2)). Set v = (qgt=")"*/? and
define operators o*(z) : F — F @ C[[z, 27 Y]] as

ot (2) = (Y PE( TR 0T () = (v P)E(y P 2)
Define the structure function g(x) € C[[z]] as

(1—qx)(1 —t12)(1 — ¢ ttx)
(1= ¢ o)1 — t2)(1 = gt-12)

(2.8) g(x) :=

Then the operators n(z), £(z) and p*(z) satisfy the following relations:

(2.9)
el =0 @) = L2 o))
) =g (72 )it e = (v dw)e)

o) =g 2 )rome), e@ew =o(2) et
e g = T2 5 (58 ) (2 = 5 (372 ) ()

Remark 2.9. (1) In Section 3, we will prove an elliptic version of Proposition
2.8. Therefore we omit the proof of the proposition.

(2) As [p*(2)]1 = 1, the above leads to [[7(2)]1, [¢(w)]1] = 0. This corresponds
to the commutativity of the Macdonald operators, [Hy(q,t), Hx(g7t,t71)] = 0.

It is important that relations (2.9) are similar to the relations in the Drinfeld
realization of Uq(gi\g) [22], [7]. From this fact, we can view (2.9) as a kind of
quantum group structure. In this way, we can define the Ding—Iohara algebra
U(g,t) as follows [11].

Definition 2.10 (Ding-Iohara algebra U(q,t)). Let g(z) be as defined in (2.8):

(1—gqz)(1 —tta)(1 — g ttx)

) = =0 = g ta)
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Let C be a central, invertible element and let 2%+ (2) := > _, xF 27" and ¢*(2) :=
>nez 27" satisfy the relations

(2.10)

@ =o(2) )
[z (2), 2 (w)] = “_fz(qltj_l) {5 (C’Z) P (CVPw) =5 (c—”:) b (C7w) }

Then we define the Ding—Iohara algebra U(q,t) to be the associative C-algebra
generated by {zX},cz, {¥;},.cz and C with the above relations.

Due to Proposition 2.8, the map
Cry, 2t (2)mn(a), o (2) = E(2),  ¥5(2) = 05 (2)
gives a representation of the Ding—Iohara algebra (the free field realization).
Remark 2.11. It is known that (q,t) has the coproduct
A:U(g t) = U(g, t) @U(q,t)
defined as follows [11]:

A(CH) =CH eCH,  AW*t(2) = vF(C) ") @ v (CF) %),

(211)  A*(2) =2t () © 1+ 907 (C}}2) @ 2 (Cy2),

Az~ (2) =27 (Cp2) @ v H(CY2) +1@ a7 (2).

Here we define C(1) :=C®1, Cp) =1 C.

83. Elliptic Ding—Iohara algebra

In this section, we are going to show that: 1) from the elliptic kernel function we
can construct elliptic currents, 2) from relations among the elliptic currents, an
elliptic analog of the Ding—Iohara algebra arises.

In the following, we use parameters ¢, t,p € C which satisfy |q|, |p| < 1.
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83.1. Kernel function introduced by Komori, Noumi and Shiraishi

First fix N € Z~q. The elliptic kernel function introduced by Komori, Noumi and
Shiraishi [15] is defined as

Ly p(iy;)

(g, t,p)(z,y) := :
1<i,j<N qup(txly])

Since I'yp(z) = (2;9)x! as p — 0, the elliptic kernel function degenerates to
II(g,t)(z,y) in the limit p — 0:

(triy;; 4)oo
(g, t.p)(z,y) —= (g, )(@.y) =[] ﬁ
g 1<igen Wil Qe

Remark 3.1. In [15], it is shown that II(q, ¢, p)(z,y) and the elliptic Macdonald
operator Hy(q,t,p) of (1.1) satisfy the relation

Hy(g,t,p)o11(g, L, p) (2, y) = Hn (g, t,p)y11(g, 1, p) (2, ).
We can check the following expression of Ty ,():

Ly p(2) = exp <— > u;qﬁ?m x:) eXp(Z WM i>

n>0 n>0

Then we can rewrite I1(q, t,p)(x, y) by using power sums:

(1—t")(gt™'p)" pn(Z)pn(7)
g(lfq”)(lfp") n )

. ex ]- - tn Pn (@Pn(y)
p<z<1—qn><1—pn> n >

n>0

(3.1) (g, t,p)(x,y) = eXp<

Here p,(T) := Zivzl xz;" (n € Zso) denotes the negative power sum, and for a
partition A, we set p(T) := px, (T) - - Pa,, (T). We also define

)

1 Y () R
q,tp _Z)\H 7)%7 CLtp _Z)\H qtl Al—t)‘i'
Then we can expand (g, t,p)(z,y) as follows:
(32)  H@tp)ey) =Y ——— @@ Y. ———— (@) ().
Zx(q,t,p) 2u(q: 1, p)

AEP ’ HEP



426 Y. SAITO

§3.2. Operator ¢(p; z) and elliptic currents 7(p; 2), £(p; z) and ¢*(p; 2)

In this subsection we define elliptic currents and study their properties. Keeping
the expression (3.2) of Il(q,¢,p)(z,y) in mind, we introduce an algebra B, of
bosons generated by {an }nez)\fo}; {bntnez oy With the relations

T g Omen0n b bl = e S T om0

[arman] =m(l - plm\)
[@m, bn] = 0.

As in the trigonometric case, let |0) be the vacuum vector which satisfies the
conditions a,|0) = b,]|0) =0 (n > 0) and define the boson Fock space F as a left
Bg p-module:

(3.3) F :=span{a_xb_,[0) : A\, n € P}.

The dual vacuum vector (0| is defined by the conditions (0|a,, = (0|b, =0 (n < 0)
and we define the dual boson Fock space F* as a right B, ;-module:

(3.4) F* :=span{(0laxb, : \,u € P}.
We define a bilinear form (:|-) : 7* x F — C by the conditions
(0j0) =1, <0‘a>\1b>\2a*lt1b*u2 10) = 0111 Onopa 2 (4,1, P) 22 (¢ T, ).
We also define the normal ordering : - : as usual:
aman (m <n), bmbn  (m < n),
A Ayt = by =
anay, (M >n), bpbm, (M >n).

Remark 3.2. The above defined algebra of bosons leads to consider the space
An(g,t,p) = Cl[z;,z; " : 1 <i < NJJ®~ of symmetric functions. But it is not clear
whether elliptic analogs of the Macdonald symmetric functions live in Ax(q, t,p).

Define ¢(p; 2) : F — F @ C[[z,27 Y]] and ¢*(p; 2) : F* — F* @ C[[z, 27 1]] by

¢(p; z) = exp (gow(())b Zﬂ”) exp (T;O(I—(j")(in—p”)a_"z:> |

Set on(psa) =TI, 6(pszy), o (psa) =TI, 6" (p25) (N € Zso). Then

(3.5) (0lon (p; ) o (p; 9)[0) = TL(q, t,p)(x1,. .., TN, Y1, - YN)-
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To check this, we first observe that

¢ (p; 2)(p; w)
1—t™) (gt~ p)™ (1 —t™) (gt~ lp)™ 1—p™ 1—q™ (zw)™™
:exp<z( )(at”'p)™ ( gt tp)™ 1-p q" (2w) )

(I—=gm)(A—pm) (1 —=g™)(1—pm) (gt p)m1—t™ m

—q" (Zw)m>

m>0

[t

1—tm™ m

1—tm 1_tm -
X exp<mz>:o(1_qm)(1 ) (1= qm™)(1— p™) -m(1—p™)

x 10" (p; 2)o(p; w):
ex (1 —t™) (gt~ p)™ (zw)™™ ox -t (zw)™
- p(za—qm)(l—pm) m ) p<z<1—qm><1—pm> m )

m>0 m>0

x 10" (p; 2)p(p; w):.

From this equation and the expression (3.1) of the kernel function, we obtain (3.5).
Next, let us construct an operator n(p; z) which satisfies the conditions

(1) :n(p;t2)9(p; 2):10) = B(p; ¢2)[0),

(3.6) 71
(2) (0]:0"(p; 2)n(p; 2~ ): = (0|9"(p; q2).

These conditions are satisfied by the following operator, which we would like to
call the elliptic current.

Proposition 3.3 (Elliptic current n(p; 2)). Let n(p;z) : F — F @ Cl[[z,271]] be
defined as follows:

=" o, 2" 1—¢n L n
n(p,z) = :EXP(_Z 1— pl |bnn> eXp(—lelnlann>:.

n#0

Then:
(i) n(p; z) satisfies (3.6).
(ii) We have

Op(w/2)8y (gt w/z)
Op(qu/z)Op(t" 1w /2) w0 (p; 2)n(ps w):

(Ipl < lqw/z| <1, Ipl < [t7'w/2| < 1).

(3.7)  np;2)n(p;w) =

Proof. (i) We first show that (1) of (3.6) is satisfied. We have

(s t2)d(p; 2):|0) = (n(p; t2))-d(p; 2)[0).
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Hence we have to show that (n(p;tz))—¢(p; z) = ¢(p; gz). The proof is straightfor-
ward: since

11—t z" 1—¢m z
(n(p; 2))- = exp(Z 1 _pnpnb"n> exp(Z 1—p ann)’

n>0 n>0

we have

(n(p; t2)) - ¢(p; 2)
= cxp(Z W{t"(l M) (gt + l}b_nzn”)

n>0
1—t" o mm ) o
Xexp(g(l—(ﬂ)(l—fﬂ){_t (1—¢")t" +1}a_p, n)
(S WRA )y E (S
= ¢(p; q2).

Next we show that n(p; z) satisfies (2) of (3.6). Due to the relation
(01:6" (p: 2)n(ps 2~ )z = (016" (B3 2) (P 2~1)) 4
we have to show that ¢*(p; 2)(n(p; 27 1)1 = ¢*(p; ¢2). Now,

1—t™ 2z 1—tn  on
.1 _ - v ooony 2 _ i
(n(p; = ))+—exp<— > T ? bn— >e><p< > 1_pnann>,

n>0 n>0

hence

& 2)(n(p: 2 ")s = exp(Z Ty T TR q">}bnz:>

= (1—q)(1—p")

1—¢n 2"
<o (X g - 0 )

n>0
= ¢"(p; q2)-
(ii) By Wick’s theorem,
n(p; 2)n(p; w)

1—t™ 1—tm 1—p™ 1—¢™ (z/w)™
eXp(Z 1— mp 1— mp nm t—l )m 1 —¢tm —
m>0 p p (q p m( m)

x eXp(Z L m(1—p™) . (w/z)m>=n(p; 2)n(p;w):

pl—pm 1—pm 1—tm m(—m)
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= exp (_ Z (1—q¢™)(1— tfm)(qtfl)*mpm (Z/w)m)

m>0 1_pm m
B e e CIE LAV
Xexp( MZ:O o - )-n(n )n(p; w):

_ (a7 tpz/w;p)oo (P2/wip)oo (w/2P)so(qt ™ w/2P) oo
(tpz/w; p)oo (7 1P2/W; D)oo (qW/2;P) 0o (™ W/ 23 D)o
O, (w/2)0, (gt w/z
@pgqu/;/l)@i%tlwfzg :n(p; 2)n(p; w):. O

Since (3.7) is an elliptic analog of the trigonometric case (2.4), we can view

n(p; 2)n(p; w):

n(p; z) as an elliptic analog of 7(z). In similar way, we can define an elliptic analog

E(p;2): F = FRCl[z,27 Y] of £(2).

Proposition 3.4 (Elliptic current £(p; 2)). Let &(p;2) : F — F @ Cl[z,271]] be
defined as follows:

1=t _m, 27 =t ., 27"
(p2) = =eXp(len,7 mlp! lbnn> exp(Z p\nﬂ‘ la n)

n#0 n#0

Then
(3.8) )(f(p,’YZ)) b(p;2) = d(p; ¢ '2),

¢*(p;2)E(pity ' 24 = 0" (50 ' 2),

(
O/ IO 1)) e
) ( 1’(1}/2’) (tw/z)‘g(p7 )§(p1 )'

(Ipl < g~ w/z <1, Ip| < |tw/z] < 1).

(3.9) §(p; 2)E(ps;w

p

Proof. Since the proof of (3.8) is quite similar to the proof of Proposition 3.3(i),
we omit it. (3.9) is shown as follows:

§(p; 2)€(p; w)
:exp(Z 1_t7:77mpm %vfmpm 1- f) 1—q™ (z/w)m>

= 1-p 1-p Mgt py 1= m(—m)
o (3 T e s e
_ (=gt (/)"
=ew( - 30 Ay )

1—g™) (1 —t=™)(gt71) ™™ (w/2)™
conp(~ 3 Lm0 (o)

1—pm m

):5<p;z>s<p; w):

m>0

_ 0,(w/2)8,(q tw/2)
6,(¢ /)8, (tw/2)

£ (p; 2)€(p; w):. O
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As in the trigonometric case, it is natural to find a commutation relation
between n(p; z) and &(p;z). For this, we need a lemma which gives a relation
between the theta function and the delta function.

Lemma 3.5. The theta function ©,(z) and the delta function é(x) satisfy

1 1 1
(3.10) 6@ o, - mpL )
(3.11) L S Sy T

Op(x)  Oppz)  (P3p)3
This leads to
1 1

(3.12) 6,1) &, 1)’

Proof. To prove (3.10), let us recall the formal expression

:Z?71

n_ 1
5(x):Zx = 1—x+71—x—1'

ne”Z

From this expression, we have
1 1 1 1

Op()  (P5P)oo(TiP)oe(PT™HP)oe (PiP)oo (1= 2) (P25 D)oo (P21 D) oo

1 x! 1
= (o) - 1 1
(P5P)oo =271 ) (p2;p)oc(pr™"1P)oo
1 x!
= 7(5 Xr)— ————.
ETESACR e
Relation (3.11) is shown in a similar way:
1 1 1 1

O,(p2)  (PP)oc(PZiP)so (7P (P5P)oc(PT3 D)oo (1 —271)(p271ip) o0

1 T 1 1 x
= Gt O~ 1) Gt~ o S
By the subtraction (3.10) — (3.11), we have 1/0,(pz) = 1/0,(z71). O

Remark 3.6. Relations (3.10), (3.11) should be understood in the context of the
Sato hyperfunction [19].

From this lemma, we can calculate [n(p; z), £(p; w))

Proposition 3.7 (Commutator [n(p; 2),&(p;w)]). Define p*(p;2) : F = F®
Cl[z,27Y] as follows:
(

ot (p;2) == ;22 ey 22):, @7 (py2) == (T 22)E(ps 7Y 2 2):x
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Then

(3.13)  [n(p; 2), £(p; w)]
6,90t w A 1/2) W =12
(p;p)gogp(qtq){5(vz>sﬂ+(pm ) 5<’y Z>s0 (P Y )}-
Proof. By Wick’s theorem,

n(p; 2)€(pyw) = eXp(Z 0= q:l)_(;,; ) g (Z/w)m)

m>0 m
X exp(E:o (1 — qln)_(lrz t_m),ym (w/nj>m>:n(p; Z)f(p; w):

_ Oplayw/2)8y (¢ 'y w/2) n(p: )€ (ps )+
“lw/z) o

O, (Yw/2)Op (v

and

§(psw)n(p; 2) = eXP(Z 4= qln)_(;,; tim)v”‘pm (w/z)m>

m>0 m

_ Op(qyz/w)Op(qg Iy zjw) N
T 0,(v2/w)0,(y 1z /w) n(p; 2)€(p; w):.

Hence
w)]
qvw/z q T w/z) Oy /w)O(a T e/ w)
{ Op(10/2)8p (17T w/z)  By(12/w)@y(y 2/w) }-”@a ol w):

1 (z/w)
= Oularw/20(a™ w/z’{@mw/z)@m1w/z>‘@p<vz/w>®p<v1z/w>}
x (p; 2)&(p; w):.
From Lemma 3.5,

1 x?
0,(12)0,(v 1) ©,(ya )0, (y Tz~ T)

- { ©p (17:5) i @:(;1?;1) } 9;»(711:6) - 9;(;13;:1) { 9p(711w) i 93(::1) }
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This leads to

Op(q77)0p(a~ v M) Op(gyz")Op(¢ )
Op(72)O, (v 1) Op(va=1)Op(y 1z~ 1)
G)P(q)@P(t_l)

T (1 p)20,(at )

From this relation and the definition of = (p; z), we have (3.13). O

{0(yx) = 6(v ")}

The commutation relation (3.13) is also an elliptic analog of the trigonometric
case in (2.9). Furthermore, we can show the following theorem by applying Wick’s
theorem.

Theorem 3.8 (Relations of 1(p; 2), &(p; z) and ¥ (p; 2)). Define the structure
function g,(x) € Cl[z,z7']] as

Op(q7)0y(t~12)Op (¢~ ')

(3.14) (1) = G (¢ T2)0, (12)0, (gt Tx)

Then 1(p; 2), £(p; 2) and T (p; 2) satisfy the relations

(o™ (p; 2), = (p;w)] = 0,

(3.15) (o Vo () = T2/ W)
o (p2)e (p3 )—gp(,y,lz/w)w

(3.16) o™ (p; 2)n(p;w) = gp
(3.17) ©* (p; 2)&(pyw) = gp

(3.19) £(p; 2)E(pyw) = gp

(o
(
(3.19) s toz) = 0
(

(320)  [n(p;2), £(ps w)]
N e

Proof. Relations (3.18) and (3.19) follow from (3.7), (3.9). By the definition of
+
= (p;2),
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11—t z"
+ (0. — _ "l — —2n n/2b ~
¢*(p;2) exp( Yo =)y nn)

n>0 p"
11—t B s
X exp ( Z T (1 _ 7271),)/ n/2ann>7
n>0
- 1—t™" _ _ N
v (piz) = exp(— Dol =)y "/2bn>
-p n
n<0
1—t" oy n/2 4
Xexp(zl—p—n(lv )'Y anT .
n<0
From these expressions, the relation [‘Pi(n Z)a‘Pi(Zﬁ w)] = 0 is trivial. Next we

show the second relation in (3.15). Here we can check that

ap() = eXp<_ g (== -y n)pnx_n>

n>0 17pn n
1—-q¢")(1—t™" 1—72" "

xexp(z< Il >>.
n>0 p n

We can also check that g,(z~!) = g,(2) . From these facts, we have

¢ (s 2)e” (p3w)
= exp <—mz>:0(1qm)(llfp:)(lVQm)pm(vm—vm)Ws)rv
X exp (%(1_qm)(1;t;:)(1_72m) (" ="") (w{;)m)w‘(p; w)p™ (p; 2)
= %w(p; w)p™ (p; 2)
- B e ) (e = ayle) ),
Next we show (3.16). By Wick’s theorem,
¢ (p2)n(p; 2)
— ep (,;0 (1- qm)(ll—t;:)(l =) 2 (z/?:)m)
X exp (— > L= qm)(ll__t;)(l - 72m)7”"”/2(w/év)m)n(p; w)e™ (p; 2)

m>0

=gy (7”22}) 7177(p; w)pt (p; 2) = g, (v”zjj) n(p;w)e™ (p; 2).
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Similarly,

n(p;w)e™ (p; 2)
_ eXP(Z (1—g™(A—-t"")(1 -~ m)pmvm/z(ftv/Z)m)

1—pm m

m>0

X exp (_ Z (1 — qm)(l — t_m)(l — 'YQm),y—m/2 (Z/w)m>(p—(p; Z)"?(p; w)

1—pm m

m>0

=gy (7‘1/22) _1<p‘(p; 2)n(p; w).

Consequently, * (p; 2)n(p;w) = g, (152 2)n(p; w)p* (p; 2).
Finally, we show (3.17). Similarly to the above calculations, we have

¢t (p;2)€(p; 2)
— exp ( Z (1—g™) (1 —t"™)(1— Vzm)pmvmﬂ(z/w)m)

m>0 1 —pm m
x exp(X:O(l - qm)(ll__t;:)(l —7 m)Wm/Q (w/nj)m)f(p; w)e™ (p; 2)

=0 (122 et i) =g (12 ) el i)
and

E(psw)e™ (p; 2)
_ eXP(‘Z (I-gm@—t7")(1 -~ m)pmvm/g(w/z)m>

1—pm m

m>0

> eXp(Z (1 B qm)(l — t_m)(l — 72m),ym/2 (Z/w)m>(p—(p; Z)f(p; w)

m>0 1- pm m
z _
=g (71/2w> ¢ (p; 2)&(pyw).

Therefore o (p; 2)&(p;w) = g, ('71%5)_15(]9; w)pT (p; z), completing the proof of

the theorem. O

§3.3. Elliptic Ding—Iohara algebra U(q,t,p)

Having Theorem 3.8, we can define the elliptic Ding—Iohara algebra.
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Definition 3.9 (Elliptic Ding-Iohara algebra U(q,t,p)). Let g,(z) be the struc-
ture function defined by (3.14):

(o) — E(a0)0(t71)0y (g 1)
I =8, (g 2)0, ()0, (gt )

Let C be a central, invertible element and let z%(p;z) := Y mez r(p)z~™ and

VE(p;2) =3,z ¥ (p)2z™™ be operators subject to the relations

(3.21)

p(Cz/w
W (pi2), = (rw)] =0, T (ps2)Y~ (pyw) = gf(éli'/zz))

)w+(p; w)® (p; 2),

U~ (pyw)y ™ (p; 2),

(27 (p; ), 2™ (p; w)]

_ W{a(cj)m; e - 5(0 L)oo .

Then we define the elliptic Ding—Iohara algebra U(q,t,p) to be the associative
C-algebra generated by {zX(p)}nez, {¥F (p)}nez and C with these relations.

Similarly to the trigonometric case, the map defined by

Cry,  at(p2) = npiz), o (piz) = Em2),  vEpiz) = o= (p;2)

gives a representation, or the free field realization, of the elliptic Ding—Iohara al-
gebra U(q, t,p) (Theorem 1.2).

Remark 3.10. (1) By the definition, in the trigonometric limit p — 0, the elliptic
Ding-Tohara algebra U(q, t, p) degenerates to the Ding—Iohara algebra U(q,t).

(2) Since relations (3.21) take the same forms as in the trigonometric case
(2.10), we can define the coproduct A : U(q,t,p) — U(q,t,p) @ U(qg,t,p) similarly
to the trigonometric case (see (2.11)):

ACH) =CH @O, AW (p2) = 0F (0 Clpy %) @ 0= (0 CF ) 22),
At (p2) = 2t (pr2) @ 1+ 0~ (i C{P2) @ 2 (05 C ) 2),

A~ (p52)) = 2~ (5 Czy2) @ H (1 C g 2) + 1@ 27 (p; 2).
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(3) In [11], another elliptic Ding-Iohara algebra is defined based on the idea
of quasi-Hopf deformation. Then the same structure function (3.14) arises.

84. Free field realization of the elliptic Macdonald operator

In this section, we study the relations between the elliptic currents n(p; z), £(p; 2)
and the elliptic Macdonald operators Hy(q,t,p), Hy(qg~,t~ 1, p).

84.1. Preparations
The elliptic Macdonald operator Hy(g,t,p) (N € Z~g) is defined by

Qut p ZH @ th//(fjj q,T;*

i=1 j#i
First, we need a lemma to calculate the constant term of a product of theta
functions.
Lemma 4.1. (1) We have the following partial fraction expansion:
N

O,(t 1wz O,(t Ng,2) p(txi/xj)
an 11 (9((x-z) - @p(iN)) Z H 0,( /

i=1 P\ i=1 On( (@i/5)

(2) From Ramanujan’s summation formula

(42) Z (a;p)n n _ (az;p)oo(p/az;p)oo(b/a;p)oo(p;p)oo (|a71b| < |Z| < 1)’

(b p)n (23P) oo (b/az; P) oo (p/@; P)oo (b3 P) oo

we have the expansion

Op(az)  Op(a) o )
0,(2)  (mp)i % 1—ap" (Ip] < |2 < 1).

neEZ

(4.3)

Proof. (1) From the partial fraction expansion (6.10) in Appendix B,

N@ t:z:zx]
[ -y e P,

(z;/z
i=1 O,( ki i/ ;)

by setting t; = ¢t~! and substituting z; — a:j_l, we obtain (4.1).
(2) From Ramanujan’s summation formula (4.2) (proved in Appendix B), by
setting b/a = p we have

n

(a;p)n z
LHS (4.2) = "= (1-
2 %(ap;p)nz ( a)él—ap"’
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 (azp)so(p(a2) 71 p) o (D 0) %
RHS (4.2) = (23P)00 (D% D)oo (PG ™13 D) 0o (PA; ) 0o
(
(

_ (1=a)(p;p)3, Op(az)
T 6,0) -

Remark 4.2. Using (6.10) and the relation between the theta function and the
delta function, we have

N 3 N B
@p(til‘» Z) (C) (l tCCz/il?] 1 @p(t ;Eq/z)
1171 = E , I I Oz, 2)+t P\ )
i=1 Op(ei2) = (:p) go Op(wi/x;) ) (N)ill Op(zi/2)
N N
@ (i) p(t; xl/xj vl 0,(ptiz; '2)
I I +t N)
] P;p)3, 50 jiis Op(zi/x;) H 0, (pz z)

where we have used the relation 1/0,(pz) = 1/0,(z~!). Taking the constant term
of the above relation in z, we obtain

N -1

Z@ H o, Oultjzi/z;) = (1=t (P )% [H (ML-

(@i/x;) i=1 i
§4.2. The case of using 7n(p;z)

Theorem 4.3 (Free field realization of the elliptic Macdonald operator (1)). Set
on(p;x) := HJ 10D ;) (N € Zso). Then the elliptic current n(p; z) reproduces
the elliptic Macdonald operator Hy(q,t,p) in the sense that

(p;z) — t™ N (n(p; )= (n(p; p™"2)) 4 )16 (p; 2)[0)

~N4+1 -1
_ WHN(%LPWN(?; x)[0).

Proof. First, we prove that

0,(w/2)
6, (tw/>)

This follows from by Wick’s theorem:

n(p; 2)d(p;w) = n(p; 2)o(p; w):.

n(p; 2)¢(p; w)
1—t=™  (1—t™) (gt~ p)™ 1—p™ 1—g™ (z/w)™
_exp<z m (1=t™)(qt""'p) p q" (2/w) >

1pm P =gy a—pm) " gt=1p)m I—t™ m-m

X eXp(—Z —_ - 'm(l—p’”)l_qm(w/z)m)=n(p;2)¢(p;w)=

=ol=pm (1=¢™)(1—p™) 1—=t™ m-m

m>0
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= exp (— > 11__tp_: p" (Z/:;)m)eXp (— > ﬂ@ﬁ)fﬂ) n(p; 2)d(p; w):
m>0 m>0

=7 t(_plz/:;;f);;w ((tz//j.%o; (p; 2)(p; w): = (S) : ((;)U//Z)) (p; 2)d(p; w):.

From this relation, we deduce that

Op(zi/2) .
T Ol t:rz/z

Using (3.10) and (4.1), we can check that

Op(zi/z)  t~ N“@ tml/xj (z/x;)
@ta:/z ZH@ ( > tNH@tlz/x

i=1 j#i

n(p; 2)on (p; x) ;2)oN (p; x):.

From these relations we have

=)o i) = 11 f// pi2)-ow : )]0)
t N+1@ tIz/Ij Ty
(n(p; tz:))—on (p; 2)]0)
S T () .
N

LN H @?P(z/xi)i(n(p; z))-én (p;2)[0)

K N+1@ ZH @ tzz/xj) §<t$;>Tq7m¢N(P§I)O>

oo i=1 j#£i

LN H M(n(p; 2))-¢n(p; 2)[0),

where we have used the relation (n(p;tz))—o(p; 2) = ¢(p; qz) = Ty .0(p; 2). Let us
recall the relation 1/0, (pm) =1/0,(x~1). This leads to

©,(z/x;) H = O, (pz;/2)

@ t Lz /x;) (ptz;/z)
Hence
[ Gty (103 2w 0:2)00) = (00 2)- 0 2) w3 2)0)
Flnally
[n(p; 2) — t N (n(p; 2)) - (n(p;p~"2)) 1 J1én (p; ) |0)

tNTe, (!
:M:gi)HN(q,t»p)aﬁN(p;x)IO) O
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Remark 4.4. Let us define

Cn(piz,y) := (0lox (p; 2)[(n(p; 2)) = (n(p; p~"2)) +]1dnv (p3; 2)10) /TL(g, £, p) (, ).

By Wick’s theorem, we have
LUZ (Z/yz)
vy {H@ (@28, (- 1z/yz>L'

By (4.3), the explicit form of Cy(p;z,y) is

Cn(piz,y)
tN“@p(t1)> p(tai/z;) (tyr/ye) (tpiy)™
_< (p;p)% I;le;[ Op(wi/x;) g@ (yk/ye) mXG:Z(l—t*Npm)?'
1<k<N

In the trigonometric limit, Cn (p; x, y) degenerates to 1: Cn(p;x,y) — 1 as p — 0.

84.3. The case of using £(p; z)

We can carry out similar calculations by using &(p; z) instead of n(p; z). Then we
obtain the following theorem.

Theorem 4.5 (Free field realization of the elliptic Macdonald operator (2)). The
elliptic current &(p; z) reproduces the elliptic Macdonald operator Hx (g, ¢, p)
in the sense that

[€(p; 2) — tN (E(ps 2)) = (€l p™ " 2)) 110 (05 2)[0)

N—-1
B t(p;l?)g;.@HN(ql’tlap)@ﬁN(p; z)|0).

The proof is similar to that of Theorem 4.3.
84.4. Other forms of Theorems 4.3 and 4.5

Let us introduce zero mode generators ag, @ satisfying

[ap, Q) =1, [an,a0] = [bn,a0] =0, [an,Q]=1[bn,Q] =0 (n e Z\{0}).

For a complex number «, we define |a) := e*?|0). Then ag|a) = ala).
By using the zero modes, we can reformulate the free field realization of the
elliptic Macdonald operator as follows.



440 Y. SAITO

Theorem 4.6. Set

i(pz) = ((p; 2)—((psp ™ 2))s,  Elps2) = (E(ps2))— (Epsp~'2)) 4

Define

(4.4) E(p;2) :==n(p;2) —n(p; 2)t™%,  F(p;2) :=&(ps; 2) — &(p; 2)1.

Then the elliptic Macdonald operators Hy(q,t,p), Hx(q~ 1,1, p) can be recovered
from the operators E(p; z), F(p;z) as follows:

thJrl @p(tfl)

(p;p)2,

tNre,(t)
(p;p)2,

[E(p; 2)l1on (p; )| N) = Hy(q,t,p)on(p; )|N),

[F(p; 2)1¢6n(p; )| N) = Hy(q 't p)on (p; o)|N).

85. Some observations and remarks

To end this paper, we indicate what remains unclear or should be clarified, and
give some comments.

85.1. The method of elliptic deformation

Looking at the construction of elliptic currents such as 7n(p; 2), £(p; z) again, we
can define a procedure of elliptic deformation as follows.

Definition 5.1 (The method of elliptic deformation). Suppose X (z) is an oper-
ator of the form

X(2) = exp(z X;anz_"> exp(Z X,J[anz_") (Xt e0),

n<0 n>0

where {a, }nez\ {0} are boson generators which satisfy the relations

1— g™
[am,an] = mm m+n,0-

Then the method of elliptic deformation is the following procedure:

Step 1. Change the boson generators to ones satisfying

1— g™l
1 — tlml

1—plm 1 —glml
(qt—lp)\ml 1 — tlml

— plml

[am,an] =m(1 —p™)

6m+n,07 [bma bn} =m 5m+n,0;

[@m, br] = 0.
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Step 2. Set X(p; z) := Xp(p; 2)Xa(p; z), where

plnl pl X+ .
X (p; = exp Z T \nl exp B X bn2" |,
p n>0 -bp

n<0
! —-n
Xa(p; Z) = eXp(Z |n\X anz ) eXp(Z 1— |n‘X;l_anZ )
n<o+ P n>0 p

§5.2. Commutator of E(p;z), F(p;z)

In Proposition 3.7, we showed that

[n(p; 2), £(p; w)]
_ m{%vf)w (p; 7" *w)— 6(7‘”2)90_(17;7‘”210)}-

Since [p™(p;2)]1 # [¢™ (p:2)]1, we have [[n(p; 2)l1, [§(p;w)]1] # 0. This can be
compared with the following statement for the operators E(p;z), F(p;z) defined

n (4.4).

Proposition 5.2. (1) We have

(5.1) E(p;2)E(p;w) = gp< )E(p;w)E(p;Z),

S

(5.2) Flp: 2)F(piw) = gp( ) Flpiw)F(p; 2).

gl

(2) The commutator of E(p;z), F(p;z) is

(5.3)  [E(p;2), F(p;w)]

= m%vf){w (p7"2w) = ¢ (i7" ?p ™ w)}.

)
1). First we observe that

Proof. (1) We will only show (5.
s i) = QAL i)
s i) = Gty S it § (2w
Sl
s ) = QAL i)
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From these we have
s 20510) = g (= )t ) 2).

1(p; 2)n(p; w) = gp ( )n(p; w)n(p; z),

Elu v g|w

s 20510) = g (2 )t ) 2.

Hence
E(p; 2)E(p;w) = (n(p; 2) — 0(p; 2)t~ ) (n(p; w) — 1(p; w)t—*°)
= n(p; 2)n(p; w)—n(p; 2)n(p; w)t ™ —=1(p; 2)n(p; w)t~ " +1(p; 2)1(p; w)t

=gp (Z) (n(p; w)n(p; 2)—n(p; w)n(p; 2)t~*°

—2(10

— 1(p; w)n(p; 2)t ™ +71(p; w)7j(p; 2)t %)
=9p <;>E(p; w)E(p; 2).

(2) Let us recall the relations shown in Proposition 3.7:

w/z Iy lw/z
s 2)e(pi) = LSS )¢ 1,

O,(gy2/w)0p(¢ 'y ' 2/w) L
@p('yz/w) (fy—lz/w) -U(p,Z)E(p,w)..

E(psw)n(p; 2) =

We define
_ Op(qy2)0,(g "y M)
Alw) = Op(y2)Op (v~ x) '

Then we have

E(p; 2)F(p;w) = (n(p; z) = 1i(p; 2)t ) (E(ps w) — E(p w)t™)

A(Z) i (p A(f)m(p; 2)€(py w)at®
~a(h ) s st + A( S5 it )i
A(f) n(p A( ) n(p; 2)€(p; w)t*

A<Z)) :77(p —%0 +A( ) £73(p; 2)€ (py w):
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F(p;w)E(p; z) = ((p;w) — §(p; w)t™) (n(p; 2) — n(p; 2)t~*°)

= (2 )ty st = 4 2 )t etom gt

A( i );T,(p;z)g(p;w)nt“0 +A<p_zlw>=ﬁ(p; 2)&(p; w):

p~lw

z

= A(;) m(p; 2)E(pyw): — A<w> (s 2)€ (py w)t ™
—A (f) in(p; 2)& (pi w):t® + A (f) 171(p; 2)& (pi w):.
Here we have used the relation A(px) = A(z~!). Hence

[EWMLFWWNz{A(w>—A(

SRS

z

)}cmpzﬁuxwr—wmnzﬁhxw»)

Let us recall that

ep(Q)ep(til)

Alw) =A@ = s o@D

{6(ya) = d(v ')}
Using this relation we obtain

[E(p; 2), F'(p; w)]

Then :(p; yw)é(p;w): = o™ (p;y?w), m(p;y~ w)é(p;w): = ¢~ (p;y~?w) and
also

71 (p; yw)&(p3 w): = (n(p;yw))— (€(ps w)) - (n(p; vp~ w)) 4 (E(p; p~'w)) &

= o (piy*p ),
(v~ w)E(psw): = (n(p;y ™ w)) = (E(p;w) = ((p; vy~ P w)) 4+ (E(ps p~ M)+
= ¢ (g7 w).

Therefore we have (5.3). O
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Remark 5.3. From formula (5.3), we have the commutativity of constant terms:
[[E(p; 2)]1, [F(p;w)]1] = 0. This corresponds to the commutativity of the elliptic
Macdonald operators:

[HN(qat7p)7 HN(qilatilap)] =0.

It seems that for the free field realization of the elliptic Macdonald operator, we
should use the operators F(p; z) and F(p; z).

85.3. Perspectives

In this paper, we have considered an elliptic analog of the Ding—Iohara algebra
and a possibility of the free field realization of the elliptic Macdonald operator. In
the following, we mention some ideas which can be cultivated in the future.

5.3.1. Elliptic ¢-Virasoro algebra, elliptic ¢-Wy algebra. As we have
shown, starting from the elliptic kernel function II(q, ¢, p)(z,y) we can construct
elliptic currents 7(p; 2), £(p; z) and ¢ (p; z) which satisfy the relations of the ellip-
tic Ding—Iohara algebra. Furthermore we obtain a procedure of producing elliptic
currents, namely the method of elliptic deformation. Actually, we can apply the
method of elliptic deformation to the free field realization of the ¢-Virasoro alge-
bra, which yields an elliptic analog of the g-Virasoro algebra. Similarly, we can
also construct a free field realization of an elliptic analog of the ¢-Wj algebra. In
the near future, we intend to report on this in a follow-up paper [21].

5.3.2. Elliptic Macdonald symmetric functions. To construct an elliptic
analog of Macdonald symmetric functions (in the following, we call them elliptic
Macdonald symmetric functions for short) is required for a good understanding of
some objects, for example the elliptic Ruijsenaars model [20], the superconformal
index [2], [25], [26], etc. To construct the elliptic Macdonald symmetric functions,
a possibility would be to find an elliptic analog of the integral representation of
Macdonald symmetric functions. That representation shows that Macdonald sym-
metric functions can be recovered from the kernel function II(q,t)(z,y) and the
weight function A(q,t)(z) defined by

Alg, t)(a) = [ /25D

iy (i[5 0o

and the “seed” of Macdonald symmetric functions [6], which is formed by monomi-
als. As is seen in the previous sections, we already have the elliptic kernel function
II(q,t,p)(z,y), and the elliptic weight function A(g, ¢, p)(x) is also known [14]:

Algt,p)(@) =[] m
i - PP
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But we do not know what is the seed of elliptic Macdonald symmetric functions,
i.e. the simplest and nontrivial eigenfunctions of the elliptic Macdonald operator
are not known. Therefore the construction of an elliptic analog of the integral
representation of Macdonald symmetric functions is not accomplished.

On the other hand, it is known that singular vectors of the g-Virasoro al-
gebra and of the ¢-Wy algebra correspond to Macdonald symmetric functions
[24], [3], [4]. Perhaps there would be a way to construct elliptic Macdonald sym-
metric functions from the elliptic analog of the ¢-Virasoro algebra. In [21], we
construct an elliptic analog of the screening currents of the ¢-Virasoro algebra,
and the correlation function of the product of the elliptic screening currents re-
produces the elliptic kernel function I(g,t,p)(x,y) as well as the elliptic weight
function A(q,t,p)(z). But as mentioned above, an elliptic analog of the integral
representation of Macdonald symmetric functions has not been obtained yet.

86. Appendix
8§6.1. Appendix A: Boson calculus

In this subsection we review some basic facts of boson calculus.

Proposition 6.1. Let A be an associative C-algebra. For A € A, define the ex-
ponential of A by
1
A ._ n
e” == exp(A) := HA .
Then for A,B € A,

eABe 4 = A B,

where ad(A)B := AB — BA.

Proof. Let us define F(t) := e Be~4 (t € C). Then we can check that

d’n

S=F(®)| =adA)"B (n>0).

t=0

By the Taylor expansion of F(t) around ¢ = 0, we have

tmod"
F(t):Zm%F(t)
n>0

= t—'ad(A)"B = et p,
n:
t=0 n>0

From this expression, we obtain F(1) = eABe=4 = 244 B, O

By this proposition, we have e“efe~4 = exp(e*d(4) B), which yields
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Corollary 6.2. For A,B € A, if [A,B] € C then

eteB = A BleBeA,

This corollary is essentially Wick’s theorem which we use frequently in this
paper.

Next we are going to prove Wick’s theorem. First we define B to be an asso-
ciative C-algebra generated by {a, }nez\ 0y With the relations

[@m, an] = A(M)Omino (A(m) € C).

|m|

We call such algebras bosons. For example, if we choose A(m) = mi‘tlw then
1 — g™
(61) [amnan]:7n1ij%gﬁém+nﬁa

which is one of boson algebras used in this paper. We define the normal ordering
: by
aman (M <n),
Myt =
anm (M >n).

For {X,}nez o1 (Xn € C), we define X(z) € B® C[[z,27']] to be the formal

power series

X(z):= ZXnanz_".
n#0
We define its plus part (X (z))+ and minus part (X(z))— by

(X(2)4 =) Xnanz ™", (X(2)— =) Xnanz "

n>0 n<0

In this notation,

texp(X (2)): = exp((X ())-) exp((X (2))):

Proposition 6.3 (Wick’s theorem). For boson operators X (z) € B ® Cl[[z,27}]
and Y (w) € B® Cllw,w™ ], if [(X(2))+, (Y(w))_] € C[[w/2]] exists, define

(X(2),Y(w)) = [(X(2))4, (Y(w))-].
Then
:exp(X (z)):exp(Y(w)): = exp((X(2), Y (w))):exp(X (z)) exp(Y (w)):.

As an example of the use of Wick’s theorem, we consider the boson algebra
with (6.1) and define

n(2) = rexp (- S - t")anz:):.

n#0
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Let us show that

(1—qu/z)(1—t"w/z)’

n(z)n(w):.

By Wick’s theorem, we have

) = exp(( 52 30 = )1 = e T ()

m>0n<0
|m| 2T My~
= €xp <m§>:0n§<:0 ]- tm ]- tn i (j‘ ‘ 5m+n me):n(z)n(w):
. . 1— qm 2 MM ‘ ‘
=exp (ngo(l —t"™)(1—t )ml i () ) (2)n(w):
—ew(= X - - e U o)
m>0

_ (—w/2)A—qt" w/z) :

= (= qu/2) (= i—Twyz) 1w
where we use log(1 —z) = =3 2" /n (|z| < 1).

86.2. Appendix B: Some formulas
In this subsection, we show some formulas which are used in this paper.

6.2.1. Ramanujan’s summation formula. We prove Ramanujan’s summation
formula which is used in Section 4. As a preparation, we show the g¢-binomial
theorem. In the following, we assume that the base ¢ € C satisfies |¢| < 1. Set

@0 = [[A—2¢", (@ = 20 (ez)

S0 (4"%; q)oo

Proposition 6.4 (¢-Binomial theorem). For a € C,

05000 _ g~ @Dn 0 ) <y,

(0)00 =5 (@ D)n

Proof. We expand (az;q)oo/(2; @)oo as

(az; q Z e o"

n>0

We have to show that ¢, = (a;¢)n/(¢; ¢)n- Since

(a2,9)oc _ 1—2 (a21¢)s
(@%@ 1—az (z@)s’
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we have

qc, —aq” ten_1 =cp —cn_1, thatis, ¢, =

By using this relation repeatedly, we obtain

l—ag" ' 1-a¢"? 1-a (a;q)n
C, = e Ch = Co.
n 1_qn l_qn_l l—q 0 0

Then ¢o = 1, hence ¢, = (a;9)n/(¢;q)n- O

Setting a = 0 in the g-binomial theorem gives

1 3 1

(z @)oo 5 (@ 0)n

Similarly to the proof of the ¢-binomial theorem, one can show Euler’s formula
n, n(n—1)/2

(62) (i = 3 ECT o

= (@

Before giving the proof of Ramanujan’s summation formula, we prove Jacobi’s
triple product formula by using Euler’s formula and the g-binomial theorem.

Proposition 6.5 (Jacobi’s triple product formula).

(6.3) (4 @) (21 D)oo (@27 @)oe = D _(=1)"2"g 172,
neZ

Proof. First, we rewrite (2;¢)co as

(21 @)o0 = Y

n, n(n—1)/2 n+1.
(71) q ( )/ = Z(_l)nqn(nfl)/2 (q aQ)OOZn

n20 W n>0 (q7q)oo
1 - . § )
- Goe SO ()DL ) s (2 (" ) = 0 for < 0),
I o nez

Furthermore, by applying Euler’s formula (6.2) to (¢"*!; ¢)ss we have

_1\r,r(r—1)/2
(0o = i LS gy 2D ()=

% 49) 2, = @aor
1 1
_ (_1)n+7'zn+7'q(n+r)(n+7'—1)/2 (qz—l)r
(4 ¢)oo n%:z (¢:9)r
r>0

1 1 — T n—+rnr. n+r n+r)(n+r—
_ ) Z( (L]Z 1) Z(_l) +r,nt q( +r)(n+ 1)/2.

(4 @)oo 5 (4:0)r =
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Then by the substitution n — n — r, we have

(z;q)ocz( ! Z( ! (g2~ 1) S (1) ngnn /2

Qoo 1= (4:9)r =

_ 1 Z(il)nznqn(nfl)/?

(¢ 0)o0(g27159)

© nez
Finally,
(@ D)oo (21 Qoo (@27 @)oo = D _(—1)" 2" 7172, 0
neZ

Jacobi’s triple product formula (6.3) means that
Op(2) = (D)oo (2 D)o (P2 P)oe = D _(—1)"2"p" ("7 1/2,
nez

Next let us prove Ramanujan’s summation formula. We define the bilateral
series 11/11(‘;;2) by

a (@ Dn _n
1¢1< §Z> = E ——2z".
b = (0:0)n
Then we can check that

(a;q)n = (1 —a)(1 —aq)-- (1 —ag"™),
1 qn(n-‘rl)/Q

@0 = T T (e )~ Crargfag,

Using these relations, the series 11 (‘Z;z) can be rewritten as follows:

2 Cr 2 Cr 2 (¢/a;q)n (GZ) ’

nez n>0 n>1

which converges in |a='b| < |z| < 1.

Proposition 6.6 (Ramanujan’s summation formula). For a,b € C,

1) 37 500 (050)0(0/05 e 0/ )0

— (Ja™ '] < |2] < 1).

= (:q)n (23 @)oo (b/ 025 @)oo (4/ a3 )0 (b3 @)

Proof. We follow the proof due to Gasper and Rahman [13]. We set
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We are going to show (6.4) by using a difference equation for f(b). First, we have

11/11<(b1; > aﬂ//l( ,QZ>

_ (@@ (@Dn w0 N (@ D0ty

- HGZ{ ) () } 7% (b;9)n

— _ (CI,; q)n+1 P _ —1 a q n+1 n +1
= (1=b/a) % (b/Q;Q)nH (1=b/q)z 7% (b/q; Qnt1

= (-t (52

FO) — (1= b/)=" (g™ D) = ¢( ,qz>

Making the substitution b — ¢b, we obtain

therefore

) = (=07 10) = v ( 502

Second, we have

alwl( 7(12)

(1-bg"—1
ab—lz (a;q)n q )Zn

qb q)
_ (1 —0bg™) _
“ab 12— caty (e
neEL qb q nez qb q
_ _ab—l(l _ b) Z (a Q)’ﬂ 2"+ ab™ lf(qb)

= —ab (1= b)f(b) +ab~* f(qgb).
Therefore
F(ab) = (1 =b)z7 f(b) = —ab™ (1 = b) f(b) + ab™" f(gb),

SO y
1-b/a
b =

/) (1-0)(1—-0b/az)

By using this relation repeatedly, we obtain

(b/a;q)oo

0).
i) blazign

Instead of f(0), we determine f(q):

f(qb).

fb) =
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= (@G a)n
g-binomial
_y (@ an T o ( L o< 0)
= (@ a)n (25 @)oo (@D

s (02 0)o0 (0/02: 0)oo (43 9)
~ az34)o0\q/ 025 q)o0\d; q) o
O = @i

o (020)00(a/a2; @)oo (6/03 4) 0 (¢ )
i Qn (2:@) 00 (b/a2; @)oo (5 4) 00 (¢/ 03 @)oo

—]—
TR
(=)
-
3
3

O
neEZ

6.2.2. Partial fraction expansion formula. We give a partial fraction expan-
sion formula for the theta function.

Proposition 6.7 (Partial fraction expansion [11]). Let [u] (u € C) be an entire
function which satisfies the following relations:

(1) 0dd function: [—u] = —[u],

(2) The Riemann relation:
(6.5)  [r+z][z—2lly+wlly—w]=[z+w][z—w][y+2][y—2] = [z+y][z—y][z+w][z—w].

For N € Z~o and parameters q;, ¢; (1 <i < N), set c(yy := Zfil c;. Then

N N
lu—gitel <~ lel [w—a+een)ypla—a+el
(09 11;[1 [u = qi] ; leccw)]  [u—qi] jl;[Z lgi —aqj]

Proof. The proposition follows from the Riemann relation by induction on N. In
the case N = 2, we are going to show

[u—q+c1] [u—q+c)

[u—qi] [ — go]
_lal v-atcplln—atel o M-aetce]lp-atal
)] [u—a a1 — 2] e [u—q] lo2 =]

By multiplying both sides by [c(2)][u — q1][u — ¢2][q1 — g2], this takes the form

(6.7) [ce)] a1 —a2)[u—q1+c1][u—ga+ca]
= [e1][u—q1+c(2))[u—qa][q1 —gat-ca] —[ea][u—ga+c2) | [u—a1][g2—q1+c1].
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Now we show RHS(6.7)) = LHS(6.7) by the Riemann relation. Define
'r’ y, Z? w by

rTty=ce, T-Y=q—q, Zztw=u—q-+tc, 2Z-wW=U-—§G+C

It is clear that LHS (6.7) = [z + y][x — y][z + w][z — w]. On the other hand,

@1 @t @2 q T
2 ) y 2 )
2u—q1 — g2t ¢ —q1+q2+c—co
5T 2 0T 2 ’

hence

RHS (6.7) = [z + wlly + ][z — y]lz — w] = [y — w][z + 2][z — 2][y + w]
= [z +2][z = 2]y + w]ly — w] = [z + w][z — w]ly + 2][y — 2]

Riemann
relation

= [r+ylle —yllz + wllz - w],
o (6.7) is satisfied.
Next we suppose that (6.6) holds for some N > 2. Then
N+1 N

H [u—qi+ec] [U—(JN+1+CN+1 H u_qz+cz

[U - Qi} B [U - QN+1 u - Q1

i=1 i=1

_ ['UJ_QN+1 +CN+1} iv: [Ci] [u_Qi+C(N)] H w
[

w—aval  FHlewl  lw-al oy L al
zN: { lens1] [u—ans1 + e laver — @ + el
— lean)] Uewvn] [u — qN41] [an+1 — qi]
i lccny] [w—ai+evinl (@ — a1 + el } H lai — q; + ¢;]
[e(v+)] [u— qi] [4: — an+41] V<iEN i 9 4]

_ lenya] [U_QN+1+C(N+1)]§: lci]

[an+1—qitemn] H [gi—q;+c;]
= leen)  lover—al 2y il

leven]  fu—ansa] 4
+Z [u— qi + c(n41)) H [qi —Qj+cj].
i=1 C(N“) i s e L]
From the induction hypothesis, we have
N N
5 [ei] lanv+1 — ai + e 11 lgi —q; + Cg 1] a1 — a5 +¢5]
el lave—al 2y li—al S lave — )
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Therefore
N+1 N
ﬁ [u—gqi +ci _ leng1] [v—any1 + el H qN+1 qj + ¢l
i1 [u— ] le(v+1)] [u— gn+1] i1 lan+1 — 5]
[u— g + cv+1)] lg: — g; + ¢j]
i |
c+)] W ageNtL e T
N1
_ Z lei] [u—gi + can)] I 9 — a5 +¢j]
o] lw—al N el
which proves (6.6) in the case of N + 1. O

Proposition 6.7 is written in additive variables. Let us rewrite it in multiplica-
tive variables. The theta function is defined by

Oy (@) = (D)oo (75 ) oo (P21 P) oo
Proposition 6.8 (The Riemann relation for the theta function ©,(x)). For the
theta function ©,(x), the Riemann relation is as follows:
(6.8) 0, (22)0,(x/2)0,(yw)O,(y/w) — Op(zw)O,(z/w)O,(y2)O,(y/2)
Y
= ;@p(xy)@p(x/y)@p(zw)@p(z/w).

Sketch of proof. For x € C, we let f(x) be the ratio of the right hand side and the
left hand side of (6.8):

(6.9)

f(z) = (y/z)®p(xy)@p(ac/y)@p(zw)@p(z/w)
 0,(22)0,(2/2)0p(yw)Op(y/w) — Op(xw)Op(z/w)O, (y2)Op(y/2)
Then we can check that f(pz) = f(z) using ©,(pr) = —2710,(z). Moreover f(x)

has no poles in the region |p| < || < 1. This shows that f(z) is bounded on C*.

By the Liouville theorem, f(z) is constant, i.e. the ratio (6.9) does not depend
on x. Hence f(z) = f(w) =1, so (6.8) holds. O

For a variable z € C, we define the additive variable u € C as z = 2™, and
we set
[u] == —271%20,(z).
Using this notation, the Riemann relation (6.8) takes the form (6.5). Consequently,
we have

Proposition 6.9. For1<j < N set

2miu . 27iq; R
7, tj =€

zi=eT xji=e Imicy

vy = =tita- -t
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where u, q;, ¢; (1 < j < N) are variable and parameters as in Proposition 6.7.
From (6.6), we have the partial fraction decomposition

N

Op( f(N)»”ﬂ t ffz/%)

i=1 P 2

The theta function ©,(x) satisfies ©,(x) — 1 —z as p — 0. From the trigono-
metric limit of (6.10), we have

-1

ll—vllft'flf_l i 17t1 1—t(N)1'l Zl—Il*t]IEZ/IEJ
T, _ —1 —
oy -z 2 -ty 11—z 2 ki 1—2;/x;
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