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Propagation of Singularities for Schrödinger
Equations with Modestly Long Range Type

Potentials

by

Kazuki Horie and Shu Nakamura

Abstract

In a previous paper by the second author [11], we discussed a characterization of the
microlocal singularities for solutions to Schrödinger equations with long range type per-
turbations, using solutions to a Hamilton–Jacobi equation. In this paper we show that
we may use Dollard type approximate solutions to the Hamilton–Jacobi equation if the
perturbation satisfies somewhat stronger conditions. As applications, we describe the
propagation of microlocal singularities for eitH0e−itH when the potential is asymptot-
ically homogeneous as |x| → ∞, where H is our Schrödinger operator, and H0 is the
free Schrödinger operator, i.e., H0 = − 1

2
∆. We show eitH0e−itH shifts the wave front

set if the potential V is asymptotically homogeneous of order 1, whereas eitHe−itH0 is
smoothing if V is asymptotically homogeneous of order β ∈ (1, 3/2).
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§1. Introduction

We consider a Schrödinger operator with variable coefficients on Rd, d ≥ 1:

H = −1

2

d∑
m,n=1

∂

∂xm
amn(x)

∂

∂xn
+ V (x) on L2(Rd).

We assume that the coefficients satisfy long range type conditions in the following

sense:
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Assumption A. amn, V ∈ C∞(Rd;R) and µ > 0. For any multi-index α ∈ Zd+,

there is Cα > 0 such that

|∂αx (amn(x)− δmn)| ≤ Cα〈x〉−µ−|α|, |∂αxV (x)| ≤ Cα〈x〉2−µ−|α|,

for x ∈ Rd, where ∂x = ∂/∂x and 〈x〉 = (1 + |x|2)1/2. Moreover (amn(x))dm,n=1 is

a positive symmetric matrix for each x ∈ Rd.

Then it is well-known that H is a self-adjoint operator with domain H2(Rd),
the Sobolev space of order 2. We consider solutions to the Schrödinger equation

i
∂

∂t
ψ(t) = Hψ(t), ψ(0) = ψ0 ∈ L2(Rd).

By the Stone theorem, the solution is given by ψ(t) = e−itHψ0 ∈ L2(Rd). It is also

well-known that the singularities of the solution propagate with infinite speed, and

hence the propagation of singularities theorem analogous to the one for solutions

to the wave equation cannot hold. In [11], it is proved that the wave front set of

e−itHψ0 can be described in terms of the wave front set of e−iΦ(t,Dx)ψ0, where

Φ(t, ξ) is a solution to the Hamilton–Jacobi equation

∂Φ

∂t
(t, ξ) = p

(
∂Φ

∂ξ
(t, ξ), ξ

)
, t ∈ R, ξ ∈ Rd,

and

p(x, ξ) =
1

2

d∑
m,n=1

amn(x)ξmξn + V (x), x, ξ ∈ Rd,

is the symbol of the Schrödinger operator H.

The purpose of this paper is to show that if µ > 1/2, we may employ a Dollard

type approximate solution, or a modifier,

ΦD(t, ξ) =

∫ t

0

p(sξ, ξ) ds,

to characterize the microlocal singularities of the solution. One advantage of using

the Dollard type modifier is that it is easy to compute, and hence we can describe

the propagation explicitly for several cases. In particular, if V (x) is asymptotically

homogeneous of order β ∈ [1, 3/2), we give an explicit characterization of the wave

front set of e−itHψ0 in terms of e−itH0ψ0.

Now we state our main result. Let exp(tHk) be the Hamilton flow generated

by k(x, ξ) = 1
2

∑d
m,n=1 amn(x)ξmξn, i.e.,

(x(t), ξ(t)) = exp(tHk)(x0, ξ0)
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if (x(t), ξ(t)) is the solution to the Hamilton equation

x′(t) =
∂k

∂ξ
(x(t), ξ(t)), ξ′(t) = −∂k

∂x
(x(t), ξ(t)), x(0) = x0, ξ(0) = ξ0.

Under Assumption A, it is well-known that exp(tHk) is a diffeomorphism in Rd for

any t ∈ R. We assume all the trajectories are nontrapping in the following sense:

Assumption B. Let (x(t), ξ(t)) = exp(tHk)(x0, ξ0) with ξ0 6= 0. Then |x(t)|→∞
as t→ ±∞.

Remark 1. We may assume this nontrapping condition only for (x0, ξ0) we are

looking at, but we assume the global nontrapping condition to simplify the nota-

tion.

As mentioned above, we suppose Assumption A holds with µ > 1/2. For later

applications, it is convenient to suppose V is decomposed into a long range part

and a short range part.

Assumption C. amn(x) and V (x) satisfy Assumption A with µ > 1/2. Moreover,

V (x) = V (L)(x) + V (S)(x), where V (L) satisfies Assumption A with µ > 1/2, and

V (S) satisfies ∣∣∂αxV (S)(x)
∣∣ ≤ Cα〈x〉2−ν−|α|, x ∈ Rd,

with ν > 1 and Cα > 0.

Under these conditions, we can show the existence of the classical (long range)

scattering. We set

p(L)(x, ξ) = k(x, ξ) + V (L)(x),(1.1)

Φ(t, ξ) =

∫ t

0

p(L)(sξ, ξ) ds, Ψ(t, ξ) =

∫ t

0

k(sξ, ξ) ds.(1.2)

Proposition 1. Let (x0, ξ0) ∈ Rd × (Rd \ {0}), and define (x(t), ξ(t)) =

exp(tHk)(x0, ξ0). Then

x± = lim
t→±∞

(x(t)−∇ξΨ(t, ξ)), ξ± = lim
t→±∞

ξ(t)

exist. If we write

W cl
± : (x±, ξ±) 7→ (x0, ξ0),

then W cl
± are diffeomorphisms in Rd × (Rd \ {0}).

We prove Proposition 1 in Section 2.

The next theorem is our main result. We denote the wave front set of u ∈
S′(Rd) by WF(u). We write Dx = −i∂/∂x, and F (Dx) denotes the Fourier multi-

plier with symbol F (ξ).
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Theorem 2. Suppose Assumptions B and C hold. Then for any u ∈ L2(Rd),

WF(eiΦ(t,Dx)e−itHu) = (W cl
± )−1(WF(u)) for ±t > 0.

By replacing u by eitHu, we obtain the following corollary:

Corollary 3. Under the same assumptions as in Theorem 2,

WF(e−itHu) = W cl
∓ (WF(e−iΦ(t,Dx)u)) for ±t > 0.

In other words, (x0, ξ0) ∈WF(e−itHu) if and only if (x∓, ξ∓) ∈WF
(
e−iΦ(t,Dx)u

)
when ±t > 0.

In the remainder of this Introduction, we consider the case where V (x) is

asymptotically homogeneous as |x| → ∞. Here we suppose amn(x) = δmn for the

sake of simplicity, though this is not really necessary. In this case, Ψ(t, ξ) = t
2 |ξ|

2,

Assumption B is satisfied, and the classical wave map W cl
± is the identity map:

(x±, ξ±) = (x, ξ).

We first suppose V (x) is homogeneous of order 1, i.e.,

(1.3) V (L)(x) = |x|V (L)(x̂) if |x| ≥ 1,

where x̂ = x/|x| ∈ Sd−1. This condition implies ∂xV
(L)(x) = ∂xV

(L)(x̂) if |x| ≥ 1,

i.e., ∂xV
(L)(x) depends only on the direction x̂ of x. We set

S±σ (x, ξ) = (x∓ σ∂xV (L)(±ξ̂), ξ), σ ∈ R, x, ξ ∈ Rd, ξ 6= 0.

Then S±σ is the Hamilton flow generated by V (L)(±ξ): S±σ = exp(±σHV (L)(±ξ)),

if |ξ| ≥ 1.

Theorem 4. Suppose Assumption C holds, aij(x) = δij, (1.3) holds, and let u ∈
L2(Rd). Then

WF(eitH0e−itHu) = S±(−t2/2)(WF(u)), ±t > 0,

and hence

WF(e−itHu) = S±t2/2
(
WF

(
e−itH0u

))
.

Theorem 4 implies that the wave front set of the solution shifts according to

the Hamilton flow generated by V (L)(ξ) if the metric is flat and the potential is

asymptotically homogeneous of order 1.

We now turn to the case when V (x) is asymptotically homogeneous of order

β ∈ (1, 3/2). In this case, the behavior of the singularities is quite different. Since

the quantization of exp(σHV (ξ)), e−iσV (Dx), has diffusive properties similar to the

free Schrödinger evolution group, we expect the vanishing of the singularities for

eitH0e−itHu if u decays rapidly as |x| → ∞. In fact, we can prove the following:
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Theorem 5. Suppose Assumptions B, C hold and

V (L)(x) = |x|βV (L)(x̂) for |x| ≥ 1,

with β ∈ (1, 3/2). Suppose moreover that ∇V (L)(x̂) 6= 0 for x̂ ∈ Sd−1. If e−itH0u ∈
L2,∞(Rd) := {f ∈ L2(Rd) | 〈x〉mf(x) ∈ L2(Rd) for any m}, then e−itHu ∈
C∞(Rd) whenever t 6= 0.

Thus we observe that the propagation of singularities for e−itH depends dras-

tically on the growth rate of the potential at infinity.

Singularities of solutions to Schrödinger equations have been studied by many

mathematicians, mostly the smoothing properties, with a view to applications to

nonlinear problems. An explicit characterization of the wave front set of solutions

was obtained relatively recently by Hassel and Wunsch [2], Nakamura [10], [11],

Ito and Nakamura [4] and Martinez, Nakamura and Sordoni [8], [9] under different

conditions. We note that closely related results had been obtained for perturbed

harmonic oscillators (with constant principal part; see Ōkaji [12], Doi [1] and the

references therein), which case does not require the scattering-theoretical frame-

work (see also Mao and Nakamura [6] for nonconstant principal part cases).

We call a Schrödinger operator satisfying Assumption A with µ > 1 of short

range type, though the potential V (x) may be unbounded as |x| → ∞, and not

necessarily short range in the sense of scattering theory. The previous works cited

above concern short range cases, except [11], [9]. We call a Schrödinger operator

satisfying Assumption A with µ ∈ (0, 1] of long range type. In order to describe the

microlocal singularities of solutions, we need to employ the framework of long range

scattering theory (for the classical flow). In [11], a solution to the Hamilton–Jacobi

equation at high energy is constructed for that purpose, but the construction is

rather long and not easily computed. In this paper we use a simpler Dollard type

modifier (see, e.g., [13, Section XI.9]) to characterize the microlocal singularities,

and we hope this construction clarifies the analysis of [11].

The result for the asymptotically homogeneous case, Theorem 4, is closely

related to the work of Doi [1], and Theorem 4 may be considered as a direct

analogue of his result in our setting.

We also remark that we can actually prove that eiΦ(t,Dx)e−itH is a Fourier

integral operator (in a slightly generalized sense) using the method of Ito and

Nakamura [5], which we do not discuss in this paper.

The paper is organized as follows: We discuss the scattering theory for the

classical mechanical flow in Section 2. We prove Theorem 2 in Section 3, mostly

following the argument of [11]. We prove properties of our main examples, i.e.,

Theorems 4 and 5, in Section 4.
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Throughout this paper, we use the following notation: We mainly work in

L2(Rd), and ‖ · ‖ denotes the L2-norm unless otherwise specified. We write 〈x〉 =

(1 + |x|2)1/2, which is standard in microlocal analysis. Z+ = {0, 1, 2, . . . } de-

notes the set of nonnegative integers, and Zd+ is the set of multi-indices. For

α = (α1, . . . , αd) ∈ Zd+, we denote |α| =
∑
j αj . S

m
1,0 denotes the standard pseu-

dodifferential operator symbol class, i.e., a ∈ Sm1,0 means a ∈ C∞(Rd × Rd) such

that for any α, β ∈ Zd+ and K b Rd,∣∣∂αx ∂βξ a(x, ξ)
∣∣ ≤ Cαβ〈ξ〉m−|β|, x ∈ K, ξ ∈ Rd

with some Cαβ > 0. S(Rd) denotes the set of Schwartz functions. We denote

various constants by C, which may change from line to line.

§2. Classical mechanics and high energy asymptotics

Here we consider the existence of the scattering theory and the high energy asymp-

totics for the classical mechanical flow. We denote

(x(t;x0, ξ0), ξ(t;x0, ξ0)) = exp(tHp)(x0, ξ0),

(y(t;x0, ξ0)), η(t;x0, ξ0)) = exp(tHk)(x0, ξ0).

We first prove Proposition 1. In the following, we always suppose Assumptions A, B

hold with 1/2 < µ < 1 without loss of generality.

Proof of Proposition 1. We fix (x0, ξ0) ∈ Rd × Rd, ξ0 6= 0. It is well-known that

(2.1) |y(t;x0, ξ0)| ≥ c|t| − C, t ∈ R,

with some c, C > 0 if (x0, ξ0) is nontrapping (see, e.g., [10, Lemma 2], [11, Propo-

sition 2.1]). By the Hamilton equation, we have

(2.2)

∣∣∣∣ ddtηj(t;x, x0)

∣∣∣∣ =

∣∣∣∣12
d∑

m,n=1

∂amn
∂xj

(y(t))ηm(t)ηn(t)

∣∣∣∣
≤ C〈t〉−1−µ, t ∈ R.

Here we have used the fact that |η(t)| is bounded uniformly in t by energy conser-

vation: k(x(t), ξ(t)) = k(x0, ξ0). This implies the existence of

ξ± = lim
t→±∞

η(t;x0, ξ0) = ξ0 +

∫ ±∞
0

dη

dt
(t;x0, ξ0) dt.

Moreover, (2.2) also implies

(2.3) |η(t)− ξ±| =
∣∣∣∣∫ ±∞
t

dη

dt
(t;x0, ξ0) dt

∣∣∣∣ ≤ C〈t〉−µ, ±t > 0.
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Similarly, we have∣∣∣∣ ddt (yj(t)− tηj(t))
∣∣∣∣ =

∣∣∣∣∑
m

(ajm(y(t))− δjm)ηm(t) +
t

2

∑
m,n

∂amn
∂xj

(y(t))ηm(t)ηn(t)

∣∣∣∣
≤ C〈t〉−µ, t ∈ R,

and hence

(2.4) |y(t)− tη(t)| ≤ C〈t〉1−µ, t ∈ R.

We compute d
dt (y(t)− ∂ξΨ(t, η(t))) as follows. We have

∂Ψ

∂ξj
(t, ξ) =

∫ t

0

(
s
∂k

∂xj
(sξ, ξ) +

∂k

∂ξj
(sξ, ξ)

)
ds

=

∫ t

0

(
s

2

∑
m,n

∂amn
∂xj

(sξ)ξmξn +
∑
m

ajm(sξ)ξm

)
ds,

and so

d

dt

(
∂Ψ

∂ξj
(t, η(t))

)
=
t

2

∑
m,n

∂amn
∂xj

(tη)ηmηn +
∑
m

ajm(tη)ηm

+
∑
i

∫ t

0

(
s2

2

∑
m,n

∂2amn
∂xj∂xi

(sη)ηmηn + s
∑
m

∂ami
∂xj

(sη)ηm

+ s
∑
m

∂ajm
∂xi

(sη)ηm + aji(sη)

)
ds× dηi

dt
.

We remark that the η in the integrand is η(t), not η(s). We also note that the last

term can be rewritten as∑
i

∫ t

0

aji(sη(t))
dηi
dt

(t) ds = t
dηj
dt

(t) +
∑
i

∫ t

0

(aji(sη)− δji) ds×
dηi
dt

(t)

= − t
2

∑
m,n

∂amn
∂xj

(y(t))ηm(t)ηn(t) +O(〈t〉−2µ)

by using (2.2). Combining these with Assumption A, we have

d

dt

(
yj(t)−

∂Ψ

∂ξj
(t, η(t))

)
= − t

2

∑
m,n

(
∂amn
∂xj

(y(t))− ∂amn
∂xj

(tη(t))

)
ηm(t)ηn(t)

+
∑
m

(
ajm(y(t))− ajm(tη(t))

)
ηm(t) +O(〈t〉−2µ).

Using Assumption A again with (2.4), we obtain∣∣∣∣ ddt
(
y(t)− ∂Ψ

∂ξ
(t, η(t))

)∣∣∣∣ ≤ C〈t〉−2µ, t ∈ R.
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Since 2µ > 1, this implies the existence of

x± = lim
t→±∞

(
y(t)− ∂Ψ

∂ξ
(t, η(t))

)
.

The assertion that W cl
± is a diffeomorphism can be proved by standard ODE

methods, once we have integrability.

In the proof of Theorem 2, we actually consider the high energy asymptotics

of (x(t), ξ(t)) for fixed t. If V = 0, i.e., for (y(t), η(t)), we have the scaling property

(y(t;x0, λξ0), η(t;x0, λξ0)) = (y(λt;x0, ξ0), λη(λt;x0, ξ0))

for any λ > 0. Hence we deduce that

lim
λ→∞

1

λ
η(t;x0, λξ0) = lim

λ→∞
η(λt;x0, ξ0) = ξ±

if ±t > 0. Since

Ψ(t, λξ) =

∫ t

0

k(sλξ, λξ) ds =

∫ λt

0

λ2k(σξ, ξ)
dσ

λ
= λΨ(λt, ξ),

we have
∂Ψ

∂ξ
(t, λξ) =

∂Ψ

∂ξ
(λt, ξ).

Using this, we also infer that

lim
λ→∞

(
y(t;x0, λξ0)− ∂Ψ

∂ξ
(t, η(t;x0, λξ0))

)
= lim
λ→∞

(
y(λt;x0, ξ0)− ∂Ψ

∂ξ
(λt, η(t;x0, ξ0))

)
= x±

if ±t > 0. We have similar high energy asymptotics for (x(t;x0, λξ0), ξ(t;x0, λξ0))

if we replace Ψ(t, ξ) by Φ(t, ξ):

Theorem 6. Let (x0, ξ0) ∈ Rd×Rd, ξ0 6= 0, and set (x(t;x0, λξ0), ξ(t;x0, λξ0)) =

exp(tHp)(x0, λξ0) as above. Then

x± = lim
λ→∞

(
x(t;x0, λξ0)− ∂Φ

∂ξ
(t, η(t;x0, λξ0))

)
,

ξ± = lim
λ→∞

1

λ
ξ(t;x0, λξ0)

if ±t > 0, where (x0, ξ0) = W cl
± (x±, ξ±). The convergence is locally uniform with

all derivatives.
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Proof. The proof is similar to that of Proposition 1, but slightly more involved.

We fix T > 0 and consider (x(t;x0, λξ0), ξ(t;x0, λξ0)) with |t| ≤ T .

For λ > 0, we set

xλ(t;x0, ξ0) = x

(
t

λ
;x0, λξ0

)
, ξλ(t;x0, ξ0) =

1

λ
ξ

(
t

λ
;x0, λξ0

)
.

Then it is easy to check

(xλ(t;x0, ξ0), ξλ(t;x0, ξ0)) = exp(tHpλ)(x0, ξ0),

where

pλ(x, ξ) =
1

λ2
p(x, λξ) =

1

2

d∑
m,n=1

amn(x)ξmξn +
1

λ2
V (x).

We can show, just like (2.1),

(2.5) |xλ(t;x0, ξ0)| ≥ c|t| − C, |t| ≤ λT,

uniformly for λ ≥ λ0 � 0 [11, Proposition 2.6]. The constants in the following

proof are independent of such large λ ≥ λ0 � 0. The proof of (2.5) relies on

the idea that λ−2V (x) has significantly smaller effect than the kinetic energy part

k(x, ξ) if λ is sufficiently large. We refer to [11] for the complete proof.

Then, just like (2.2), we have∣∣∣∣ ddtξλj (t)

∣∣∣∣ =

∣∣∣∣12 ∑
m,n

∂amn
∂xj

(xλ)ξλmξ
λ
n +

1

λ2

∂V

∂xj
(xλ)

∣∣∣∣
≤ C〈t〉−1−µ + Cλ−2〈t〉1−µ ≤ C〈t〉−1−µ

if |t| ≤ λT . On the other hand, by the continuity of solutions to linear ODEs with

respect to coefficients, we obtain

exp(tHpλ)(x0, ξ0)→ exp(tHk)(x0, ξ0) as λ→∞

for each fixed t ∈ R. The convergence also holds for derivatives. Then we can apply

the dominated convergence theorem to show

ξλ(λt) = ξ0 +

∫ λt

0

dξλ

dt
(s) ds→ ξ0 +

∫ ±∞
0

dη

dt
(s) ds = ξ±

as λ → ∞, where 0 < ±t ≤ T . This proves the second statement of the theorem.

We also have (just like (2.3)),

|ξλ(t)− ξ±| ≤ C〈t〉−µ, 0 < ±t ≤ λT.
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Then we compute∣∣∣∣ ddt
(
xλj (t)− tξλj (t)

)∣∣∣∣
=

∣∣∣∣∑
m

(
ajm(xλ)− δjm

)
ξλ +

t

2

∑
m,n

∂amn
∂xj

(xλ)ξλmξ
λ
n +

t

λ2

∂V

∂xj
(xλ)

∣∣∣∣
≤ C〈t〉−µ + Cλ−2〈t〉2−µ

≤ 〈t〉−µ if |t| ≤ λT,

and hence

(2.6) |xλ(t)− tξλ(t)| ≤ C〈t〉1−µ, |t| ≤ λT.

We set

Φλ(t, ξ) =

∫ t

0

(
k(sξ, ξ) +

1

λ2
V (L)(sξ)

)
ds

so that
∂Φλ

∂ξ
(λt, ξ) =

∂Φ

∂ξ
(t, λξ).

Then we have

∂Φλ

∂ξj
(t, ξ) =

∫ t

0

(
s

2

∑
m,n

∂amn
∂xj

(sξ)ξmξn +
s

λ2

∂V (L)

∂xj
(sξ) +

∑
m

ajm(sξ)ξm

)
ds,

and so

d

dt

(
∂Φλ

∂ξj
(t, ξλ(t))

)
=
t

2

∑
m,n

∂amn
∂xj

(tξλ)ξλmξ
λ
n +

t

λ2

∂V (L)

∂xj
(tξλ) +

∑
m

ajm(tξλ)ξλm

+
∑
i

∫ t

0

(
s2

2

∑
m,n

∂2amn
∂xi∂xj

(sξλ)ξλmξ
λ
n + s

∑
m

∂ami
∂xj

(sξλ)ξλm

+
s2

λ2

∂2V (L)

∂xi∂xj
(sξλ) + s

∑
m

∂ajm
∂xi

(sξλ)ξλm + aji(sξ
λ)

)
ds× dξλi

dt
.

We recall

dxλj
dt

(t) =
∑
m

ajm(xλ(t))ξλm(t),

dξλj
dt

(t) = −1

2

∑
m,n

∂amn
∂xj

(xλ(t))ξλm(t)ξλn(t)− 1

λ2

∂V (L)

∂xj
(xλ(t))− 1

λ2

∂V (S)

∂xj
(xλ(t)).



Propagation of Singularities for Schrödinger Equations 487

Combining these, we obtain, as in the proof of Proposition 1,

d

dt

(
xλj (t)− ∂Φλ

∂ξj
(t, ξλ(t))

)
= − t

2

∑
m,n

(
∂amn
∂xj

(xλ)− ∂amn
∂xj

(tξλ)

)
ξλmξ

λ
n −

t

λ2

(
∂V (L)

∂xj
(xλ)− ∂V (L)

∂xj
(tξλ)

)
+
∑
m

(
ajm(xλ)− ajm(tξλ)

)
ξλm +O

(
〈t〉−2µ + λ−2〈t〉2−2µ + λ−2〈t〉2−ν

)
.

We recall (2.6), and using Assumption C, we have∣∣∣∣ ddt
(
xλ(t)− ∂Φλ

∂ξ
(t, ξλ(t))

)∣∣∣∣ ≤ C〈t〉−2µ′

if |t| ≤ λT , where µ′ = min(µ, ν/2) > 1/2. Then, again observing

d

dt
xλ(t)→ d

dt
y(t),

d

dt

(
∂Φλ

∂ξ
(t, ξλ(t))

)
→ d

dt

(
∂Ψ

∂ξ
(t, η(t))

)
as λ→∞ for each t, and using the dominated convergence theorem, we conclude

that

xλ(λt)− ∂Φλ

∂ξ
(λt, ξλ(λt))→ x± as λ→∞,

if 0 < ±t ≤ T . The first statement of the theorem follows immediately from this.

The last claim can be proved using standard ODE methods.

Now we prepare several estimates for the next section.

Lemma 7. Let T > 0. Then for any α ∈ Zd+ there is Cα > 0 such that∣∣∂αξ (Φ(t, ξ)− 1
2 t|ξ|

2
)∣∣ ≤ Cα|t|〈ξ〉2−µ−|α|, ξ ∈ Rd, |t| ≤ T.

In particular,

|∂αξ (∂ξΦ(t, ξ)− tξ)| ≤ Cα|t|〈ξ〉1−µ−|α|, ξ ∈ Rd, |t| ≤ T.

Proof. We suppose t ≥ 0. By the definition, we have

Φ(t, ξ)− 1
2 t|ξ|

2 =
1

2

∫ t

0

d∑
m,n=1

(amn(sξ)− δmn)ξmξn ds+

∫ t

0

V (L)(sξ) ds,
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and hence∣∣∂αξ (Φ(t, ξ)− 1
2 t|ξ|

2
)∣∣

≤ 1

2

∫ t

0

∑
m,n

|∂αξ
{

(amn(sξ)− δmn)ξmξn
}
| ds+

∫ t

0

|∂αξ
(
V (L)(sξ)

)
| ds

≤ C
|α|∑
j=0

∫ t

0

sj〈sξ〉−µ−j |ξ|2−(|α|−j) ds+ C

∫ t

0

s|α|〈sξ〉2−µ−|α| ds

= C

|α|∑
j=0

∫ t|ξ|

0

σj〈σ〉−µ−j |ξ|1−|α| dσ + C

∫ t|ξ|

0

σ|α|〈σ〉2−µ−|α||ξ|−1−|α| dσ

≤ C
∫ t|ξ|

0

〈σ〉−µ dσ · |ξ|1−|α| + C

∫ t|ξ|

0

〈σ〉2−µ dσ · |ξ|−1−|α|

≤ C|tξ|〈t|ξ|〉−µ|ξ|1−|α| + C|tξ|〈t|ξ|〉2−µ|ξ|−1−|α|

≤ C|t|〈ξ〉2−µ−|α| if |t| ≤ T, |ξ| ≥ 1.

The case t < 0 is handled similarly.

We then set

z(t;x0, ξ0) = x(t;x0, ξ0)− ∂ξΦ(t; ξ(t;x0, ξ0)),

and consider the time evolution

t 7→ (z(t;x0, ξ0), ξ(t;x0, ξ0)), |t| ≤ T.

We recall

x± = lim
λ→∞

z(t;x0, λξ0) when 0 < ±t ≤ T,

and in particular {z(t;x0, λξ0) | |t| ≤ T, λ ≥ λ0} is bounded in Rd, provided λ0 is

sufficiently large. We set

`(t; z, ξ) = p(z + ∂ξΦ(t, ξ), ξ)− ∂Φ

∂t
(t, ξ).

Then we can show that (z(t), ξ(t)) is the Hamilton flow generated by the time-

dependent Hamiltonian `(t; z, ξ):

Lemma 8. (z(t), ξ(t)) = (z(t;x0, ξ0), ξ(t;x0, ξ0)) is the solution to

dz

dt
(t) =

∂`

∂ξ
(t; z(t), ξ(t)),

dξ

dt
= − ∂`

∂z
(t; z(t), ξ(t)),

with the initial condition z(0) = x0, ξ(0) = ξ0.
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Proof. The second equation and the initial conditions are easy to confirm. By the

definitions, we have

∂`

∂ξj
(t; z, ξ) =

∂p

∂ξj
(z + ∂ξΦ, ξ) +

d∑
m=1

∂2Φ

∂ξj∂ξm

∂p

∂xm
(z + ∂ξΦ, ξ)−

∂2Φ

∂ξj∂t
,

and

dzj
dt

(t) =
dxj
dt
− ∂2Φ

∂ξj∂t
−

d∑
m=1

∂2Φ

∂ξj∂ξm

dξm
dt

.

On the other hand, by the Hamilton equation for (x(t), ξ(t)), we have

dxj
dt

=
∂p

∂ξj
(z + ∂ξΦ, ξ),

dξm
dt

= − ∂p

∂xm
(z + ∂ξΦ, ξ),

and we deduce the first equation of the lemma by combining them.

By the definition, we easily see that

∂Φ

∂t
(t, ξ) = p(L)(tξ, ξ),

and hence we can write

`(t; z, ξ) = p(z + ∂ξΦ(t, ξ), ξ)− p(L)(tξ, ξ)

=
1

2

d∑
m,n=1

(
amn(z + ∂ξΦ(t, ξ))− amn(tξ)

)
ξmξn

+ (V (L)(z + ∂ξΦ(t, ξ))− V (L)(tξ)) + V (S)(z + ∂ξΦ(t, ξ)).

Combining this with Lemma 7, we obtain:

Lemma 9. Let K ⊂ Rd be a bounded domain, and α, β ∈ Zd+. Then there is

CKαβ > 0 such that

|∂αz ∂
β
ξ `(t; z, ξ)| ≤ CKαβ〈ξ〉

1−γ−|β|, z ∈ K, ξ ∈ Rd, |t| ≤ T,

where γ = min(2µ− 1, ν − 1) > 0.

§3. Proof of the main theorem

The proof of Theorem 2 is analogous to the proof of [11, Theorem 1.2], given the

estimates on the classical flow in Section 2. We sketch it for completeness, and

give a somewhat formal proof.

For a symbol a ∈ Sm1,0, we quantize it using the Weyl calculus [3, Section 18.5]:

aW(x,Dx)u(x) = (2π)−d
∫∫

ei(x−y)·ξa

(
x+ y

2
, ξ

)
u(y) dy dξ, u ∈ S(Rd).
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By direct computations, it is easy to see that

pW(x,Dx)

= −1

8

∑
m,n

(
∂2

∂xm∂xn
amn(x) + 2

∂

∂xm
amn(x)

∂

∂xn
+ amn(x)

∂2

∂xm∂xn

)
+ V (x)

= H − 1

8

∑
m,n

∂2amn
∂xm∂xn

(x),

where p(x, ξ) = 1
2

∑
amn(x)ξmξn + V (x). Hence, replacing V in p(x, ξ) by V +

1
8

∑ ∂2amn
∂xm∂xn

(x), we may consider H = pW(x,Dx).

We are interested in the behavior of

v(t) = eiΦ(t,Dx)e−itHu0, t ∈ R.

For u0 ∈ S(Rd), we can differentiate v(t) in t to get

d

dt
v(t) = ieiΦ(t,Dx)

(
∂Φ

∂t
(t,Dx)−H

)
e−itHu0 = −iL(t)v(t),

where

L(t) = eiΦ(t,Dx)He−iΦ(t,Dx) − ∂Φ

∂t
(t,Dx).

We note

eiΦ(t,Dx)xe−iΦ(t,Dx) = F∗[eiΦ(t,ξ)i∂ξe
−iΦ(t,ξ)]F

= F∗[i∂ξ + ∂ξΦ(t, ξ)]F = x+ ∂ξΦ(t,Dx),

where F is the Fourier transform. Hence, we expect

eiΦ(t,Dx)pW(x,Dx)e−iΦ(t,Dx) ∼ pW
(
x+ ∂ξΦ(t,Dx), Dx

)
in some sense. In fact, combining Lemma 7 with [11, Lemma 3.1], we obtain

Lemma 10. eiΦ(t,Dx)He−iΦ(t,Dx) is a pseudodifferential operator with symbol

in S2
1,0. Moreover, if we set p̃(t, x, ξ) = p(x+ ∂ξΦ(t, ξ), ξ), then

eiΦ(t,Dx)He−iΦ(t,Dx) − p̃W(t, x,Dx) = rW(t, x,Dx)

with r ∈ S0
1,0, i.e., for any α, β ∈ Zd+ and K b Rd, there is CαβK > 0 such that

|∂αx ∂
β
ξ r(t, x, ξ)| ≤ CαβK〈ξ〉

−|β|, x ∈ K, ξ ∈ Rd, |t| ≤ T.

Thus, by recalling the definition of `(t;x, ξ) in Section 2, we find that the

principal symbol of L(t) is given by `(t;x, ξ). This is consistent with the fact that
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eiΦ(t,Dx)e−itH is the quantization of the classical flow (x0, ξ0) 7→ (z(t), ξ(t)), of

which `(t;x, ξ) is the Hamiltonian.

In order to analyze microlocal singularities, we use the semiclassical character-

ization of the wave front set: Let (x0, ξ0) ∈ Rd×Rd, ξ0 6= 0, and u ∈ S′(Rd). Then

(x0, ξ0) /∈WF(u) if and only if there is a ∈ C∞0 (Rd × Rd) such that a(x0, ξ0) 6= 0

and

(3.1) ‖aW(x, λ−1Dx)u‖ ≤ CNλ−N , λ� 0,

with any N ∈ Z+ (see, e.g., [7, Section 2.9]).

Let (x0, ξ0) ∈ Rd × Rd, ξ0 6= 0, be fixed, and suppose a0 ∈ C∞0 (Rd × Rd) is

supported in a small neighborhood of (x0, ξ0), for example, Bδ(x0, ξ0) = {(x, ξ) |
|x− x0|2 + |ξ − ξ0|2 < δ2}. We set

A(t) = eiΦ(t,Dx)e−itHA0 e
itHe−iΦ(t,Dx), A(0) = A0 = aW0 (x, λ−1Dx),

and consider the time evolution of A(t). In the weak sense on S(Rd), we can

compute the derivative of A(t) in t, and obtain the Heisenberg equation

(3.2)
d

dt
A(t) = −i[L(t), A(t)], A(0) = aW0 (x, λ−1Dx).

We construct an asymptotic solution to this equation as λ → ∞, using a Egorov

type argument. The corresponding transport equation is given by

∂

∂t
a(t, x, ξ) = −{`, a}(t, x, ξ) = −

d∑
m=1

(
∂`

∂ξm

∂a

∂xm
− ∂`

∂xm

∂a

∂ξm

)
with initial condition a(0, x, ξ) = a0(x, λ−1ξ). We denote

Σt : (x0, ξ0) 7→ (z(t), ξ(t)), aλ0 (x, ξ) = a0(x, λ−1ξ).

Then the solution to the transport equation is given by

ã0(t;x, ξ) = (aλ0 ◦ Σ−1
t )(x, ξ),

and ã0(t, ·, ·) is supported in Σt(supp(aλ0 )). We note that aλ0 is bounded in S0
1,0,

uniformly in λ ∈ [1,∞). This also implies that ã0(t, ·, ·) is uniformly bounded

in S0
1,0, provided |t| ≤ T . Combining this observation with Lemma 9, we infer that

−i[L(t), A0(t)] + {`, ã0}W(x,Dx) = rW0 (t;x,Dx)

with r0 ∈ S−1
1,0 uniformly in λ. Moreover, by the asymptotic expansion, r0(t; ·, ·) is

supported in Σt(supp(aλ0 )) modulo O(λ−∞) terms.
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Following the standard Egorov type argument together with the scaling ar-

gument of Section 2, we can construct an asymptotic solution ã(t;x, ξ) with the

following properties (see [11, Proposition 3.2]):

(i) ã(0;x, ξ) = aλ0 (x, ξ) = a0(x, λ−1ξ).

(ii) ã(t; ·, ·) is supported in Σt(supp(aλ0 )).

(iii) For any α, β ∈ Zd+, there is Cαβ > 0 such that∣∣∂αx ∂βξ ã(t;x, ξ)
∣∣ ≤ Cαβλ−|β|, |t| ≤ T, x, ξ ∈ Rd, λ ≥ 1.

(iv) The principal symbol of ã(t;x, ξ) is given by aλ0 ◦ Σ−1
t , i.e.,∣∣∂αx ∂βξ (ã(t;x, ξ)− (aλ0 ◦ Σ−1

t )(x, ξ)
)∣∣ ≤ Cαβλ−1−|β|

for |t| ≤ T , x, ξ ∈ Rd, and λ ≥ 1.

(v) Ã(t) = ãW(t;x,Dx) satisfies the Heisenberg equation (3.2) asymptotically,

i.e., ∥∥∥∥ ddtÃ(t) + i[L(t), Ã(t)]

∥∥∥∥ ≤ CNλ−N , λ ≥ 1,

for any N ∈ Z+ with some CN > 0.

These properties imply∥∥∥∥ ddt(eitHe−iΦ(t,Dx)Ã(t)eiΦ(t,Dx)e−itH
)∥∥∥∥ ≤ CNλ−N , |t| ≤ T,

and hence

(3.3)
∥∥eitHe−iΦ(t,Dx)Ã(t)eiΦ(t,Dx)e−itH − aW0 (x, λ−1Dx)

∥∥ ≤ CNλ−N
if |t| ≤ T . This is equivalent to

(3.4)
∥∥Ã(t)− eiΦ(t,Dx)e−itHaW0 (x, λ−1Dx)eitHe−iΦ(t,Dx)

∥∥ ≤ CNλ−N .
On the other hand, if we write

Σλt (x, ξ) =
(
z(λ−1t;x, λξ), λ−1ξ(λ−1t;x, λξ)

)
=
(
xλ(t;x, ξ)− ∂ξΦλ(t, ξλ(t;x, ξ)), ξλ(t;x, ξ)

)
,

then

(aλ0 ◦ Σ−1
t )(x, λξ) =

(
a0 ◦ (Σλλt)

−1
)
(x, ξ).

We note that (Σλλt)
−1 converges to W cl

± as λ → ∞ when ±t > 0 locally

uniformly, with all derivatives (Theorem 6). Hence (aλ0 ◦ Σ−1
t )(x, λξ) converges

to (a0 ◦ W cl
± )(x, ξ) uniformly in (x, ξ) with all derivatives, and the support of

(aλ0 ◦ Σ−1
t )(x, λξ) also converges to the support of a0 ◦ W cl

± . This implies that
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(aλ0 ◦Σ−1
t )W(x,Dx) converges to (a0 ◦W cl

± )W(x, λ−1Dx) as λ→∞ including their

microlocal support properties.

If (x0, ξ0) /∈WF(u0), and a0 is supported in a small neighborhood of (x0, ξ0)

such that (3.1) holds, then (3.3) implies

‖Ã(t)eiΦ(t;Dx)e−itHu0‖ ≤ CNλ−N .

Since the principal symbol of Ã(t) is (aλ0 ◦ Σ−1
t )(x, ξ), which is very close to

(a0 ◦W cl
± )(x, λξ), this implies (W cl

± )−1(x0, ξ0) /∈WF(eiΦ(t;Dx)e−itHu0).

Similarly, if (W cl
± )−1(x0, ξ0) /∈ WF(eiΦ(t;Dx)e−itHu0), then we deduce that

(x0, ξ0) /∈WF(u0) using (3.4).

The above formal argument can be easily justified as in [11, Section 3.2], and

Theorem 2 is proved.

§4. Asymptotically homogeneous potentials

Here we consider the case of amn(x) = δmn, and V (x) asymptotically homogeneous

of order β ∈ [1, 3/2).

Proof of Theorem 4. Suppose V (L)(x) = |x|V (L)(x̂), x̂ = x/|x|, if |x| ≥ 1, and let

t > 0. Then if |ξ| ≥ t−1, we have∫ t

0

V (L)(sξ)ds =

∫ t

0

s|ξ|V (L)(ξ̂)ds+

∫ 1/|ξ|

0

(V (L)(sξ)− s|ξ|V (L)(ξ̂)) ds

=
t2

2
|ξ|V (L)(ξ̂) +R(t, ξ).

Here R(t, ξ) can be computed as

R(t, ξ) =

∫ 1

0

(V (L)(σξ̂)− σV (L)(ξ̂))|ξ|−1 dσ,

and hence for any α ∈ Zd+,∣∣∂αξ R(t, ξ)
∣∣ ≤ Cα|ξ|−1−|α|, |ξ| ≥ t−1.

Hence, if we set

F (t, ξ) =

∫ t

0

V (L)(sξ) ds− t2

2
V (L)(ξ),

then for any fixed t 6= 0, F (t, ξ) ∈ S−1
1,0 , i.e., for any α ∈ Zd+,∣∣∂αξ F (t, ξ)

∣∣ ≤ Cα〈ξ〉−1−|α|, ξ ∈ Rd.

This implies eiF (t,ξ) ∈ S0
1,0, and it is obviously elliptic. In particular,

WF(eiF (t,Dx)u) = WF(u), u ∈ L2(Rd).
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Now we note

Φ(t, ξ) =
t

2
|ξ|2 +

∫ t

0

V (L)(sξ) ds =
t

2
|ξ|2 +

t2

2
V (L)(ξ) + F (t, ξ).

Combining these with Theorem 2, we find that

WF(u) = WF(eiΦ(t,Dx)e−itHu) = WF(eiF (t,Dx)ei(t
2/2)V (L)(Dx)eitH0e−itHu)

= WF(ei(t
2/2)V (L)(Dx)eitH0e−itHu).

Since V (L)(ξ) is homogeneous of order 1, ei(t
2/2)V (L)(Dx) is a Fourier integral op-

erator with the associated canonical transform

S+
t2/2 : (x, ξ) 7→

(
x− t2

2
∂xV

(L)(ξ̂), ξ

)
and hence

(4.1) WF(ei(t
2/2)V (L)(Dx)v) = S+

t2/2(WF(v))

(see, e.g., [3, Chapter XXV], [14, Section VIII.5]). Thus we have

WF(u) = S+
t2/2(WF(eitH0e−itHu)),

which is equivalent to

WF(eitH0e−itHu) = S+
(−t2/2)(WF(u)).

If t < 0, then ∫ t

0

V (L)(sξ) ds = −
∫ |t|

0

V (L)(−sξ) ds,

and we replace V (L)(ξ̂) by V (L)(−ξ̂), and we change the direction of the shift to

obtain S−t2/2 in the statement.

Remark 2. The property (4.1) can also be proved using the propagation of sin-

gularities for hyperbolic equations. In fact, eiσV
(L)(Dx)u0 is the solution to the

hyperbolic evolution equation

∂

∂σ
u(σ) = iV (L)(Dx)u(σ), u(0) = u0,

and the claim (4.1) follows, for example, from the Egorov theorem (see, e.g., [14,

Section VIII.2]).

Proof of Theorem 5. We suppose t > 0, and V (L)(x) = |x|βV (L)(ξ̂) for |x| ≥ 1

with 1 < β < 3/2. By the same computation as in the proof of Theorem 4,∫ t

0

V (L)(sξ) ds =
t1+β

1 + β
|ξ|βV (L)(ξ̂) +R(t, ξ)
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with

|∂αξ R(t, ξ)| ≤ Cα|ξ|−1−|α|, |ξ| ≥ t−1,

for any α ∈ Zd+. Thus,

Φ(t, ξ) =
t

2
|ξ|2 +

t1+β

1 + β
V (L)(ξ) + F (t, ξ)

with F (t, ξ) ∈ S−1
1,0 , and hence

WF(u) = WF(eiσV
(L)(Dx)eitH0e−itHu)

where σ = t1+β

1+β . This implies

(4.2) WF(eitHu) = WF(eiσV
(L)(Dx)eitH0u).

Since V (ξ) is homogeneous of order β > 1, we can prove eiσV
(L)(Dx) has the

diffusivity property:

Lemma 11. Let N ∈ Z+ and let σ 6= 0. Then there is CN such that

(4.3) ‖〈x〉−NeiσV
(L)(Dx)u‖Hs ≤ CN‖〈x〉Nu‖, u ∈ L2,∞(Rd),

where s = (β − 1)N . In particular, eiσV
(L)(Dx)u ∈ C∞(Rd) if u ∈ L2,∞(Rd).

Proof. For simplicity, we write V (L)(ξ) = V (ξ) and Λ = V (Dx) in this proof. By

direct computation of the Fourier transform, we have

xje
iσΛu = −σ(∂ξjV )(Dx)eiσΛu+ eiσΛ(xju),

and this implies

〈x〉−1(∂ξjV )(Dx)eiσΛu = −σ−1{xj〈x〉−1eiσΛu− 〈x〉−1eiσΛ(xju)} ∈ L2(Rd).

By the assumption, we also have

d∑
j=1

|∂ξjV (ξ)| ≥ c|ξ|β−1, |ξ| ≥ 1,

with some c > 0, so that 〈x〉−1eiσΛu ∈ Hβ−1(Rd), and its norm is bounded by

‖〈x〉u‖. This proves (4.3) with N = 1. Similarly,

x2
je
iσΛu = σ2(∂ξjV (Dx))2eiσΛu+ 2σ(∂ξjV )(Dx)eiσΛ(xju) + eiσΛ(x2

ju).

This implies 〈x〉−2((∂ξjV )(Dx))2eiσΛu ∈ L2(Rd) since we already know that

〈x〉−1(∂ξjV )(Dx)eiσΛu ∈ L2(Rd). Summing up these estimates in j shows that

〈x〉−2eiσΛu ∈ H2(β−1)(Rd), and we obtain (4.3) for N = 2. Iterating this proce-

dure, we deduce (4.3) for any N .
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The conclusion of Theorem 5 for t < 0 now follows from (4.2) and Lemma 11.

The case t > 0 is proved similarly.
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