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Generalized Bousfield Lattices and a Generalized
Retract Conjecture

by

Ryo Kato, Katsumi Shimomura and Yutaro Tatehara

Abstract

In [1], Bousfield studied a lattice (Bousfield lattice) on the stable homotopy category of
spectra, and in [5], Hovey and Palmieri made the retract conjecture about that lattice.
In this paper we generalize the Bousfield lattice and the retract conjecture to ones on
a monoid. We also determine the structure of typical examples of generalized Bousfield
lattices which satisfy the generalized retract conjecture. In particular we give explicitly
the structure of the Bousfield lattice of the stable homotopy category of harmonic spectra.
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§1. Introduction

LetM be a closed symmetric monoidal category with zero object, and consider an

object M ofM. We call the full subcategory 〈M〉 ofM the Bousfield class of M if

it consists of all objects A ofM such that MA = 0 in the monoidal structure. Then

we have a partial order on Bousfield classes by 〈M〉 ≤ 〈N〉 if every object of 〈N〉
is an object of 〈M〉. The subcategories 〈S〉 and 〈O〉 of the unit S and the zero O

are respectively the greatest and the least in this order. We call the collection of

all Bousfield classes the Bousfield lattice ofM, and denote it by B(M). In the case
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where a Bousfield lattice is a set, the partial order introduces a lattice structure

in it, and we may investigate it algebraically.

In a sense, stable homotopy theory is analyzing stable homotopy categories

(cf. [6]). A stable homotopy category is a symmetric monoidal category, and so

we may consider its Bousfield lattice. In particular, T. Ohkawa [8] (cf. [2]) showed

that the Bousfield lattice B of the stable homotopy category of spectra is a set,

and then Iyengar and Krause [7] generalized this to a stable homotopy category.

In order to investigate a category, we sometimes classify special subcategories

of it. From this viewpoint, we study a Bousfield lattice by classifying its localizing

subcategories (see [6]). Indeed, every Bousfield class is a localizing subcategory.

In [5], Hovey and Palmieri studied the Bousfield lattice B deeply. Further-

more, they proposed many conjectures on the structure of B, including the retract

conjecture, which is one of our main topics. Dwyer and Palmieri [3] constructed

a stable homotopy category where the conjecture does not hold. It seems that so

far, no nontrivial category in which the conjecture holds has been known. In this

paper, we give some examples of such categories.

As stated above, the Bousfield lattice B(M) is a set in some cases. It is

then a monoid with multiplication compatible with its order. In Section 2 we

introduce the notion of monoidal posets and define a functor β from a subcategory

of commutative monoids to the category of monoidal posets. Then we define a

Bousfield lattice of a monoid to be an object in the image of β, which is an analogy

of Bousfield lattices of stable homotopy categories. In particular, B not only has

the structure of a monoidal poset, but also is a Bousfield lattice associated to B
itself. In Section 3, we show analogous properties on a Bousfield lattice to those

given by Hovey and Palmieri [5], including the following:

Conjecture 1.1 (Original retract conjecture [5, Conj. 3.12]). Let h be the Bous-

field class of the mod p Eilenberg–MacLane spectrum HZ/p in the Bousfield lat-

tice B. Then there is a lattice isomorphism r∗ : B/J(h) → DL. Here, J(h) is an

ideal related to h (see Notation 3.1).

We generalize it to generalized retract conjectures on a monoidally distribu-

tive poset (Conjectures 3.18 and 3.19) and show some related facts. Section 4 is

devoted to determining Bousfield lattices obtained from principal ideal domains,

and to show the conjecture is true for them. In Section 5, we study the Bousfield

lattices of stable homotopy categories of Bousfield localized spectra, and construct

isomorphisms between the Bousfield lattice and a Bousfield lattice given in Sec-

tion 4. In particular, we have the following:
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Theorem 1.2. The generalized retract conjecture holds on the stable homotopy

category of harmonic spectra.

One of our ultimate goals is to determine the lattice structure of B, which

seems rather difficult. In the last section, we propose problems on the functor β

whose solution may help us to understand the Bousfield lattice B. We expect that

these problems will give us hints to reach the above goal.

§2. Monoidal posets and Bousfield lattices

Let M be commutative monoid with unit 1. We call M a monoid with 0 if M admits

an element 0 ∈ M such that 0 · x = 0 = x · 0 for any x ∈ M . A typical example

is a commutative ring with addition ignored. We denote by M0 the category of

commutative monoids with 0 and monoid homomorphisms preserving zero.

For M ∈M0, β(M) denotes the set consisting of all subsets

〈x〉 = {y ∈M : xy = 0}

of M for x ∈M .

Lemma 2.1. β(M) for M ∈M0 is also a monoid with 0 with inherited multipli-

cation. Therefore, we have the canonical epimorphism M → β(M) in M0.

Proof. Define multiplication in β(M) by 〈x〉〈y〉 = 〈xy〉. We verify that it is well

defined: Assume that 〈x0〉 = 〈x1〉 and 〈y0〉 = 〈y1〉. Then

zx0y0 = 0 ⇔ zx1y0 = 0 (since 〈x0〉 = 〈x1〉)
⇔ zx1y1 = 0 (since 〈y0〉 = 〈y1〉),

and 〈x0y0〉 = 〈x1y1〉. The elements 〈1〉 and 〈0〉 are the unit and the zero elements

of β(M).

Remark 2.2. We notice that β(R) = Z/2 if R is a domain.

Lemma 2.3. Let M be a monoid with 0. Then β(M) admits a partial order ≤
defined by 〈x〉 ≤ 〈y〉 if 〈x〉 ⊃ 〈y〉. Moreover, 〈1〉 and 〈0〉 are respectively the greatest

and the least elements of β(M).

Proof. This is trivial since 〈1〉 = {0} and 〈0〉 = M .

By the lemma, the commutative monoid β(M) also has a poset structure. We

define the following notion by abstracting its crucial properties.
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Definition 2.4. A monoidal poset P = (P,≤, ·, 1, 0) is defined by the following

data:

(1) (P, ·, 1, 0) is a monoid with 0.

(2) (P,≤) is a poset.

(3) The following are equivalent:

(a) x ≤ y.

(b) cy = 0 for c ∈ P implies cx = 0.

A monoidal poset map f : P → P ′ is an order preserving monoid homomorphism

with f(0) = 0.

Lemma 2.3 implies the following.

Corollary 2.5. β(M) for M ∈M0 is a monoidal poset with 1 = 〈1〉 and 0 = 〈0〉.

Lemma 2.6. Let M be a monoidal poset. Then β(M) = M as monoidal posets.

Remark 2.7. A monoidal poset may seem to be a lattice, but unfortunately this

is not always the case. Consider M = {1, xi, yi, w, 0: i = 1, 2} with multiplication

1 x1 x2 y1 y2 w

x1 w w 0 w 0

x2 w w w 0 0

y1 0 w 0 0 0

y2 w 0 0 0 0

w 0 0 0 0 0

Then the join of y1 and y2 does not exist.

Let MP denote the category of monoidal posets and monoidal poset maps.

Then MP ⊂M0.

Lemma 2.8. Let M be a monoidal poset. If x ≤ y and z ≤ w, then xz ≤ yw. In

particular, if x ≤ y, then xz ≤ yz for any z.

Proposition 2.9. The category MP admits direct products.

Proof. Let {Mλ} be a family of monoidal posets. Then we have the direct product∏
λMλ of monoids. Define an order ≤ on

∏
λMλ by (xλ) ≤ (yλ) if (cλ)(yλ) = (0)

implies (cλ)(xλ) = (0). It is straightforward to verify that this is the desired direct

product.
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Lemma 2.10. Let {Mλ} be a family of monoidal posets and let 〈xλ〉, 〈yλ〉 ∈
β(Mλ) and 〈(xλ)〉, 〈(yλ)〉 ∈ β(

∏
λMλ). Then 〈xλ〉 ≤ 〈yλ〉 for all λ if and only

if 〈(xλ)〉 ≤ 〈(yλ)〉 in β(
∏
λMλ).

Proof. Assume that 〈xλ〉 ≤ 〈yλ〉 for any λ. Then

(cλ)(yλ) = 0 ⇒ cλyλ = 0 for any λ

⇒ cλxλ = 0 for any λ (since 〈xλ〉 ≤ 〈yλ〉)
⇒ (cλ)(xλ) = 0,

Conversely, suppose that 〈(xµ)〉 ≤ 〈(yµ)〉. Then, for any λ,

yλcλ = 0 ⇒ (yλ)(cλ)0 = 0

⇒ (xλ)(cλ)0 = 0 (since 〈(xµ)〉 ≤ 〈(yµ)〉)
⇒ xλcλ = 0

in Mλ, where (cλ)0 denotes the element (xµ) such that xλ = cλ and xµ = 0 for

µ 6= λ.

Corollary 2.11. Let {Mλ} be a family of monoidal posets. Define an order ≤′

on the set
∏
λMλ by (xλ) ≤′ (yλ) if xλ ≤ yλ for all λ. Then it is equivalent to the

order in the proof of Proposition 2.9.

Corollary 2.12. Let {Mλ} be a family of monoidal posets. Then
∨
µ(xµλ) =

(
∨
µ x

µ
λ) for any subset {(xµλ)}µ ⊂

∏
λMλ.

Proof. Since (xµλ) ≤ (
∨
µ x

µ
λ) for all µ,

∨
µ(xµλ) ≤ (

∨
µ x

µ
λ). If (xµλ) ≤ (zλ), then

xµλ ≤ zλ, and so
∨
µ x

µ
λ ≤ zλ, that is, (

∨
µ x

µ
λ) ≤ (zλ). Therefore,

∨
µ(xµλ) = (

∨
µ x

µ
λ)

by definition.

We call an epimorphism f : M → N of M0 strong if f(x) = 0 if and only if

x = 0.

We define a map β(f) : β(M)→ β(N) by sending 〈x〉 to 〈f(x)〉.

Lemma 2.13. For a strong epimorphism f : M → N , the map β(f) is not only

a monoidal poset map but also a strong epimorphism.

Proof. As f is a strong epimorphism, c ·f(x) = 0⇔ f(c′) ·f(x) = 0⇔ f(c′ ·x) = 0

⇔ c′ ·x = 0 for an element c′ such that f(c′) = c. This shows that 〈x〉 = 〈y〉 implies

〈f(x)〉 = 〈f(y)〉. It is easy to see that β(f) is a strong epimorphism.

We also consider the subcategoriesMepi
0 andMPepi ofM0 andMP, respec-

tively, obtained by taking as morphisms strong epimorphisms only.
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Corollary 2.14. The operation β above defines a functor β : Mepi
0 → MPepi

⊂Mepi
0 .

By the above argument, we redefine Bousfield lattices as follows. The defini-

tion is one of our main topics in this paper.

Definition 2.15. For a monoid M ∈Mepi
0 we call the monoidal poset β(M) the

Bousfield lattice associated to M .

In earlier papers, a Bousfield lattice comes from a closed symmetric monoidal

category with a zero object. However, its set-theoretic confusion complicates our

argument too much. Our new definition settles this problem, and the following

proposition says that this argument is consistent.

Proposition 2.16. The Bousfield lattice B of the stable homotopy category of

spectra is a Bousfield lattice in the sense of our definition.

Proof. By forgetting the ordering on B, we regard B as a monoid with 1 = 〈S〉
and 0 = 〈∗〉. Then it is clear that β(B) = B.

Proposition 2.17. The functor β satisfies the following:

(1) β(
∏
λMλ) =

∏
λ β(Mλ).

(2) ββ(M) = β(M).

Proof. (1) Let {pλ : β(
∏
λMλ)→ β(Mλ)} be a family of epimorphisms defined by

〈(xλ)〉 7→ 〈xλ〉, and {fλ : W → β(Mλ)} a family of poset maps. We notice that

pλ is well defined by Lemma 2.10. For an element w ∈ W , we take an element

wλ ∈Wλ so that fλ(w) = 〈wλ〉, and define g : W → β(
∏
λMλ) by g(w) = 〈(wλ)〉.

Then g is also a well defined poset map by Lemma 2.10 and

pλg(w) = pλ(〈(wλ)〉) = 〈wλ〉 = fλ(w).

Suppose that there is another poset map g′ : W → β(
∏
λMλ) satisfying pλg

′(w) =

fλ(w) for w ∈W , and g′ maps w to 〈(w′λ)〉. Then

pλg
′(w) = fλ(w) for any λ ⇔ 〈w′λ〉 = 〈wλ〉 for any λ

⇔ 〈(w′λ)〉 = 〈(wλ)〉 (by Lemma 2.10)

⇔ g′(w) = g(w).

Therefore, β(
∏
λMλ) is the product

∏
λ β(Mλ).

(2) follows from Lemma 2.6.
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§3. Retract conjecture

From now on, we assume that every monoidal poset considered is a complete

lattice.

Since a monoidal poset M is a sup-lattice with least element 0 = 〈0〉, M is a

bounded lattice.

Notation 3.1. For a monoidal poset M , we introduce the following notations:

aM (x) :=
∨
{y ∈M : xy = 0} for x ∈M,

DL(M) := {x ∈M : x2 = x},
rM (x) :=

∨
{w ∈ DL(M) : w ≤ x} for x ∈M,

JM (x) := {y ∈M : y ≤ x ∧ aM (x)} for x ∈M,

N(M) := {x ∈M : xn = 0 for some n ≥ 1},
A(M) := {x ∈M : rM (x) = 0}.

We will omit M from notations if M is clear from the context.

It is well known that the subposet DL(M) is also a complete lattice. Indeed,

the following holds.

Proposition 3.2. DL(M) is closed under arbitrary joins.

Proof. By Lemma 2.8, (
∨
λ∈Λ xλ)2 ≤

∨
λ∈Λ xλ. Suppose that xλ is in DL for λ ∈ Λ.

Then xλ = x2
λ ≤ (

∨
λ∈Λ xλ)2, and so

∨
λ∈Λ xλ ≤ (

∨
λ∈Λ xλ)2.

Lemma 3.3. In DL(M), the meet of x and y is xy.

Proof. Since x ∧ y ≤ x and x ∧ y ≤ y, if x ∧ y ∈ DL(M) then x ∧ y ≤ xy.

Remark 3.4. DL(M) is not always sublattice of M by Lemma 3.3.

In investigating the original Bousfield lattice B, the operations r and a play

important roles (see [5]). Here we give their properties on monoidal posets.

Proposition 3.5. Let M be a monoidal poset, and r = rM : M →M be the map

defined in Notation 3.1.

(1) r is order-preserving, i.e. x ≤ y implies r(x) ≤ r(y).

(2) r(x)2 = r(x) and r2(x) = r(x) for x ∈M .

(3) r(x) ≤ xn for any n ≥ 1.

(4) r(xy) = r(x)r(y) = r(x ∧ y) for x, y ∈M .

Proof. (1) is trivial, and (2) follows from Proposition 3.2. For (3), r(x) ≤ x by

definition, and we have r(x) = r(x)n ≤ xn.
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Since r(x)r(y) ≤ xy and r(x)r(y) ∈ DL(M), we have r(x)r(y) ≤ r(xy). We

also see r(x ∧ y) ≤ r(x)r(y), since r(x ∧ y) ≤ r(x) and r(x ∧ y) ≤ r(y). Therefore,

r(xy) ≤ r(x ∧ y) ≤ r(x)r(y) ≤ r(xy), and we obtain (4).

The behavior of the map r is the same as on B, but that of the operation a

not. Indeed, for any x ∈ M and {yλ}λ ⊂ M , the relation x(
∨
λ yλ) ≥

∨
λ(xyλ) is

not always an equality. To make the operator a have good properties, we introduce

the following notion.

Definition 3.6. A monoidal poset M is monoidally distributive if x(
∨
λ yλ) =∨

λ(xyλ) for any x ∈M and {yλ}λ ⊂M .

Remark 3.7. If M is a monoidally distributive poset, then DL(M) is a distribu-

tive lattice by Lemma 3.3.

In the same way as in [5], we have

Proposition 3.8. Let M be a monoidally distributive poset. Then

(1) a(−) is order-reversing.

(2) xy = 0 if and only if x ≤ a(y).

(3) aa(x) = x.

Lemma 3.9. Let M be a monoidally distributive poset. Let c ∈ M be such that

cn = 0 for a positive integer n. Then, for any x ∈ M , (x ∨ c)n ≤ x and r(x ∨ c)
= r(x).

Proof. Under the assumption, we compute

(x ∨ c)n = xn ∨ xn−1c ∨ · · · ∨ xcn−1 = x(xn−1 ∨ xn−2c ∨ · · · ∨ cn−1) ≤ x

for any x ∈M . So, if z ≤ x ∨ c for z ∈ DL(M), then z ≤ x. Thus, r(x ∨ c) = r(x)

by definition of r.

Proposition 3.10. Let M be a monoidally distributive poset. Then JM (x) ⊂
N(M) ⊂ A(M) for any x ∈M .

Proof. Since (x ∧ aM (x))(x ∧ aM (x)) ≤ xaM (x) = 0 by Proposition 3.8(2), we

have JM (x) ⊂ N(M). Suppose that xn = 0; then r(x) = r(x)n = r(xn) = r(0) = 0

by Proposition 3.5(4). So we have N(M) ⊂ A(M).

Proposition 3.11. Let Mλ be a monoidal poset for any λ ∈ Λ. Then

(1) r((xλ)) = (r(xλ)) for any (xλ) ∈
∏
λMλ.

(2) r preserves arbitrary joins on Mλ for any λ ∈ Λ if and only if r preserves

arbitrary joins on
∏
λMλ.
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Proof. (1) is stated in Corollary 2.12.

(2) Suppose that r preserves arbitrary joins on Mλ for any λ ∈ Λ. Then, for

{(xµλ)}µ ⊂
∏
λMλ,

r
(∨
µ

(xµλ

)
) = r

((∨
µ

xµλ

))
(by Corollary 2.12)

=
(
r
(∨
µ

xµλ

))
(by (1))

=
(∨
µ

r(xµλ)
)

=
∨
µ

(r(xµλ)) (by Corollary 2.12).

Therefore, r preserves arbitrary joins on
∏
λMλ.

Conversely, if r preserves arbitrary joins on
∏
λMλ, then(

r
(∨
µ

xµλ

))
= r
((∨

µ

xµλ

))
(by (1))

= r
(∨
µ

(xµλ)
)

(by Corollary 2.12)

=
∨
µ

(r(xµλ))

=
(∨
µ

r(xµλ)
)

(by Corollary 2.12).

It follows that r preserves arbitrary joins on Mλ for any λ ∈ Λ as desired.

Remark 3.12. We notice that Mλ is a monoidally distributive poset for any

λ ∈ Λ if and only if
∏
λ∈ΛMλ is a monoidally distributive poset. Indeed, if Mλ

is monoidally distributive for any λ ∈ Λ, then (cλ)(
∨
µ(xµλ)) = (cλ)(

∨
µ x

µ
λ) =

(cλ(
∨
µ x

µ
λ)) = (

∨
µ cλx

µ
λ) =

∨
µ(cλx

µ
λ) for (cλ) ∈

∏
λMλ and {(xµλ)}µ ⊂

∏
λMλ

by Corollary 2.12. Thus,
∏
λMλ is a monoidally distributive poset. Conversely,

if
∏
λMλ is a monoidally distributive poset, then (cλ(

∨
µ x

µ
λ)) = (cλ)(

∨
µ x

µ
λ) =

(cλ)(
∨
µ(xµλ)) =

∨
µ(cλx

µ
λ) = (

∨
µ cλx

µ
λ) by Corollary 2.12. Therefore, Mλ is a

monoidally distributive poset for any λ ∈ Λ by Lemma 2.10.

Recall that an ideal I of a poset is any subset of M such that:

(1) if x ∈ I, and y ≤ x, then y ∈ I, and

(2) for x, y ∈ I, there is an element z ∈ I such that x ≤ z and y ≤ z.

Suppose that a monoidal poset M is an ordinary lattice. Then any ideal of

M is also an ideal as a lattice, and for an ideal I, M/I is the lattice of equivalencr

classes under the equivalence relation defined by

(3.13) x ∼ y if and only if x ∨ c = y ∨ c for some c ∈ I,
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with order given by [x] ≤ [y]⇔ x ∨ c ≤ y ∨ c for some c ∈ I. We notice that M/I

is complete if M and I are complete. If M is monoidally distributive, then M/I

has multiplication [x][y] := [xy]. Indeed, if x ∨ i = x′ ∨ i and y ∨ j = y′ ∨ j for

x, x′, y, y′ ∈M and i, j ∈ I, then (x ∨ i)(y ∨ j) = (x′ ∨ i)(y′ ∨ j) turns into

xy ∨ (x ∨ i)j ∨ (y ∨ j)i= x′y′ ∨ (x′ ∨ i)j ∨ (y′ ∨ j)i
= x′y′ ∨ (x ∨ i)j ∨ (y ∨ j)i.

Since (x ∨ i)j ∨ (y ∨ j)i ∈ I, the multiplication is well defined.

Remark 3.14. M/I is not always a monoidal poset. Indeed, let M = {1, x, y, 0}
be a monoidal poset with multiplication x2 = x, xy = 0, y2 = 0. Then, for the ideal

I = {y, 0}, M/I = {1, x, 0} and β(M/I) = {1, 0}. Since M/I 6= β(M/I), M/I is

not a monoidal poset by Lemma 2.6.

Lemma 3.15. Let M be a monoidally distributive poset. Then N(M) is an ideal

of M , and JM (x) is a principal ideal of M for any x ∈M .

Proof. Suppose that xn = 0 and ym = 0. Then (x ∨ y)n+m =
∨
a+b=n+m x

ayb.

Since here a < n implies b ≥ m, it follows that (x ∨ y)n+m = 0. So N(M) is an

ideal of M . By definition, JM (x) is a principal ideal of M .

Now, consider the following correspondence:

r∗ : M/I → DL(M), [x] 7→ {r(y) : y ∈ [x]}.

We notice that if r∗ is a mapping (i.e. a single-valued mapping), then it is a

surjection.

Theorem 3.16. Let M be a monoidally distributive poset and I an ideal in M .

(1) If I is contained in N , then r∗ is a mapping.

(2) If r∗ is a mapping, then I ⊂ A.

(3) If r∗ is an injection, then I = A.

(4) If r∗ is an injection and I ⊂ N , then:

(a) For any x and y in M , we have r(x ∨ y) = r(x) ∨ r(y). In particular, if I

is a principal ideal, then r preserves arbitrary joins.

(b) For any x ∈M , there exists an integer n such that xn = r(x).

Proof. (1) If x ∨ c = y ∨ c for x, y ∈ M and c ∈ I ⊂ N , then r(x) = r(y) by

Lemma 3.9.

(2) For x ∈ I, [x] = 0 = [0] in M/I, and so r(x) = r∗([x]) = r∗([0]) = r(0) = 0.

Thus, x ∈ A.
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(3) For x ∈ A, r∗([x]) = r(x) = 0 = r∗([0]). It follows that [x] = [0], since r∗
is an injection, which implies x ∈ I. So we obtain A = I by (2).

(4) For x ∈ M , r∗([x]) = r(x) = r2(x) = r∗([r(x)]) and [x] = [r(x)], since r∗
is an injection. So we have an element cx ∈ N such that x ∨ cx = r(x) ∨ cx, and

then:

(a) Since x ∨ y ∨ cx ∨ cy = r(x) ∨ r(y) ∨ cx ∨ cy, r(x ∨ y) = r(x) ∨ r(y) by

Lemma 3.9. Suppose that I is a principal ideal and take a generator m of I.

Then (
∨
λ xλ) ∨ m = (

∨
λ r(xλ)) ∨ m for any subset {xλ}λ ⊂ M . Therefore

r(
∨
λ∈Λ xλ) =

∨
λ∈Λ r(xλ) by Lemma 3.9.

(b) Since there exists an integer n such that cnx = 0, we have

xn ≤ (x ∨ cx)n = (r(x) ∨ cx)n ≤ r(x)

by Lemma 3.9.

Hovey and Palmieri introduced a map r∗ : M/J(h) → DL, and proposed

Conjecture 1.1 of the introduction. Here, we generalize this map to our setting.

Lemma 3.17. For a monoidal poset M the map rM : M → M factors through

DL(M). Furthermore, it induces the map r∗ : M/JM (y)→ DL(M) for any y ∈M ,

sending the class [x] to rM (x).

Proof. The former statement follows from Proposition 3.5(2), and the latter from

Proposition 3.10 and Theorem 3.16(1).

By Theorem 3.16, we see that J(h) = A if Conjecture 1.1 holds. This makes

us conjecture the following:

Conjecture 3.18 (Generalized retract conjecture 1 (GRC1)). Let M be a mon-

oidal poset. If M is a complete lattice and is monoidally distributive, and if A =

A(M) is an ideal of M , then r∗ : M/A→ DL is a lattice isomorphism.

Conjecture 3.19 (Generalized retract conjecture 2 (GRC2)). Let M be a mon-

oidal poset. If M is a complete lattice and is monoidally distributive, then

r∗ : M/N → DL(M) is a lattice isomorphism.

By Theorem 3.16(3), we see the following:

Corollary 3.20. GRC2 implies GRC1.

Example 3.21. Consider the monoidal poset M = β(Z/2mZ). Then

M = {1, 2, 22, . . . , 2m−1, 2m = 0},
DL(M) = {1, 0},
N(M) = {2, 22, . . . , 2m−1, 0}.

Thus M/N(M) ∼= DL(M). That is, GRC2 holds on β(Z/2mZ).
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Theorem 3.22. For a monoidally distributive poset M , the following are equiva-

lent:

(1) r∗ : M/N → DL is an isomorphism.

(2) Any class [x] ∈M/N satisfies [x2] = [x].

Proof. The statement (1) implies (2), since r∗([x]) = r∗([x
2]).

For the converse, it suffices to show that r∗ is injective. If [x2] = [x], then

[x] = [xn] for any n > 0 by induction. So, we have an element cx ∈ N for each

x ∈M such that

(3.23) x ∨ cx = xn ∨ cx for any n > 0.

Since cx ∈ N , we have an integer L = L(x) > 0 such that cLx = 0. Then

xL ≤ (x ∨ cx)L = (xn ∨ cx)L ≤ xn

for any n > 0 by Lemma 3.9. In particular, xL = (xL)2 and so

(3.24) xL(x) = r(x).

by Proposition 3.5.

Now suppose that r∗([x]) = r∗([y]). Then r(x) = r(y), and xL(x) = yL(y) by

(3.24). By (3.23),

x ∨ cx ∨ cy = xL(x) ∨ cx ∨ cy = yL(y) ∨ cy ∨ cx = y ∨ cx ∨ cy

and [x] = [y] by the definition (3.13).

Furthermore, Proposition 3.11 leads us to the following.

Proposition 3.25. Let {Mλ}λ∈Λ be a family of monoidally distributive posets.

Then the following are equivalent:

(1) GRC holds on Mλ for any λ ∈ Λ.

(2) GRC holds on
∏
Mλ.

Here, GRC is GRC1 or GRC2.

As an application, we extend a result of Dwyer and Palmieri:

Theorem 3.26 (Dwyer–Palmieri [3]). There is a ring Λ such that the original

retract conjecture does not hold on the derived category D(Λ) of Λ.

In the proof of it, Dwyer and Palmieri define Λ to be a truncated polynomial

ring over a field k, and take 〈k〉 instead of h = 〈HZ/p〉. Here 〈k〉 denotes the
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Bousfield class of a complex {Xi} with X0 = k, and Xi = 0 if i 6= 0. By a

similar argument to that of Hovey and Palmieri in [5], if r∗ is an isomorphism from

B(D(Λ))/J(〈k〉) to DL, then any Bousfield class x ∈ B(D(Λ)) satisfies x2 = x3.

They show the theorem by constructing a Bousfield class y ∈ B(D(Λ)) such that

y > y2 > · · · > yn > · · · . By Theorem 3.16, the existence of y implies the following:

Theorem 3.27. The map r∗ : B(D(Λ))/N → DL is not isomorphic.

§4. A Bousfield lattice associated to a quotient of PID

We abbreviate ‘principal ideal domain’ to ‘PID’. Furthermore, we write x for 〈x〉 ∈
β(M), where no confusion arises.

Theorem 4.1. Let P be a PID and put q = pe00 · · · p
em−1

m−1 ∈ P for prime elements

pi and integers ei > 0. Let B denote the Bousfield lattice β(P/qP ). Then:

(1) B = {x ∈ P : x | q} as sets. In particular q is the zero element 0.

(2) x ≥ y if and only if x | y.

(3) DL = {ps00 · · · p
sm−1

m−1 : si = 0 or ei}.
(4) N = {x ∈ B : p0 · · · pm−1 |x in P}.
(5) B =

∏n−1
i=0 β(P/peii P ).

Proof. For an element x ∈ P , we consider an integer ei(x) and an element x(q)

defined by

ei(x) := max{e : e ≤ ei and pei |x} and x(q) :=
∏

0≤i<m p
ei(x)
i .

We see that

(4.2) x = x(q) ∈ β(P/qP ) for any x ∈ P.

Indeed, x(q) divides x, and so x ≤ x(q). If xy = 0 in P/qP , then xy is divisible

by q in P . Therefore, q |x(q)y(q) and so q |x(q)y. Hence x(q)y = 0 in P/qP and so

x(q) ≤ x.

The statements (1)–(4) follow immediately from (4.2), and (5) from (1).

Corollary 4.3. We have isomorphisms of monoidal posets

β(P/pe00 · · · p
en−1

n−1 P ) =

n−1∏
i=0

β(Z/2eiZ) and

DL(β(P/pe00 · · · p
en−1

n−1 P )) =

n−1∏
i=0

Z/2.
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Corollary 4.4. For any PID P and a non-zero element q ∈ P , the Bousfield

lattice β(P/qP ) is monoidally distributive.

Proof. Noticing the relation

(ps00 · · · p
sn−1

n−1 ) ∨ (pt00 · · · p
tn−1

n−1 ) = p`00 · · · p
`n−1

n−1 with `i = min{si, ti},

the proof is straightforward.

Theorem 4.5. If P is a PID and q ∈ P \ {0}, then GRC2 holds on β(P/qP ),

and hence so does GRC1.

Proof. The ideal N(β(P/qP )) has the greatest element g = p0 · · · pn−1. We com-

pute

(ps00 · · · p
sn−1

n−1 ) ∨ g = p
min{s0,1}
0 · · · pmin{sn−1,1}

n−1 = p
min{2s0,1}
0 · · · pmin{2sn−1,1}

n−1

= (p2s0
0 · · · p2sn−1

n−1 ) ∨ g = (ps00 · · · p
sn−1

n−1 )2 ∨ g.

So the theorem follows from Theorem 3.22.

Remark 4.6. Here is another proof: since β(P/qP ) =
∏n−1
i=0 β(Z/2eiZ) and

GRC2 holds on β(Z/2eiZ), GRC2 holds on β(P/qP ) by Proposition 3.25.

§5. Bousfield lattices of stable homotopy categories

Let LE for a spectrum E denote the stable homotopy category of E-local spectra,

and B(LE) the Bousfield lattice in the sense of Bousfield. Then we have the Bous-

field localization functor LE : S → LE . The monoidal structure of LE is given

by XY = LE(X ∧ Y ). We consider the Johnson–Wilson spectra E(n) and the

Morava K-theories K(n) for n ≥ 0. From the chromatic viewpoint, investigating

the categories Ln (= LE(n)) and LK(n) is one of main targets of stable homotopy

theory. We determine the Bousfield lattices of these categories.

We begin with a simple category. A spectrum F is called a field if it is a ring

spectrum and F ∧X =
∨

ΣaF for all spectra X.

Proposition 5.1. Let F be a field. Then B(LF ) = Z/2.

Proof. Since F is a ring spectrum, we have FX = F ∧ X. We easily see that

〈X〉 ≥ 〈FX〉. Suppose that (FX)C = 0. Then XC is F -acyclic and so XC = 0.

It follows that 〈X〉 = 〈FX〉 = 〈
∨

ΣiF 〉 = 0 or 〈F 〉, which shows the lemma.

By [4], the Eilenberg–MacLane spectrum HZ/p and the Morava K-theories

K(n) are fields.
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Corollary 5.2. B(LHZ/p) = Z/2 = B(LK(n)).

Theorem 5.3. Let p0, . . . , pn be n+ 1 distinguished prime numbers. Then B(Ln)

is isomorphic to β(Z/p0 · · · pn) =
∏n
i=0 Z/2 in MP.

Proof. The Bousfield lattice B(Ln) consists of 〈LnX〉 for all spectra X, which

equals, by Ravenel [9],

〈LnX〉 = 〈LnS0〉 · 〈X〉 = 〈E(n)〉 · 〈X〉

=
( ∨

0≤i≤n

〈K(i)〉
)
· 〈X〉 =

∨
0≤i≤n andK(i)∧X 6=0

〈K(i)〉

since Ln is smashing and K(n) is a field. Here 〈X〉 · 〈Y 〉 is the Bousfield class

of the smash product X ∧ Y . We define a map f : B(Ln) → β(Z/p0 · · · pn) by

f(
∨
i∈S 〈K(i)〉) =

∏
i 6∈S pi for S ⊂ {0, 1, . . . , n}. Then f preserves multiplication,

since (∨
i∈S
〈K(i)〉

)(∨
j∈T
〈K(j)〉

)
=

∨
i∈S∩T

〈K(i)〉,

(∏
i 6∈S

pi

)(∏
j 6∈T

pj

)
=

∏
i 6∈S or i 6∈T

pi =
∏

i 6∈S∩T

pi.

Moreover, for the order, we have∨
i∈S
〈K(i)〉 ≤

∨
i∈T
〈K(i)〉 ⇔ S ⊂ T ⇔ I(n)− S ⊃ I(n)− T

⇔
∏
i6∈S

pi ≤
∏
i 6∈T

pi,

and f is a monoidal poset map.

A similar argument shows the following

Theorem 5.4. Let E =
∨
i∈F K(i) be a spectrum for a finite subset F of Z≥0.

Then B(LE) is isomorphic to
∏
i∈F Z/2.

This together with Theorem 4.5 implies

Corollary 5.5. GRC2 holds on B(LE) for a spectrum E =
∨
i∈F K(i) on a finite

subset F of Z≥0.

The chromatic tower L0 ← L1 ← L2 ← · · · induces the inverse system

(5.6) B(L0)← B(L1)← B(L2)← · · · .

Moreover, we notice that B∞ := limn B(Ln) =
∏
n Z/2 inMP. We call a spectrum

harmonic if it is (
∨
i≥0K(i))-local.
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Theorem 5.7. Let H be the stable homotopy category of harmonic spectra. Then

B(H) is isomorphic to B∞ in MP.

Proof. Let f :
∏

Z/2→ B(H) be the poset map defined by (xn) 7→
∨
xn=1 〈K(n)〉

and let pn : B(H)→ B(Ln) be the poset map defined by 〈X〉 7→ 〈X〉 · 〈E(n)〉. Then

we have the following commutative diagram:

B(Li) B(Lj)

B(H)
∏

Z/2

�

6
pi

�
�
�
���pj 6

�
f

@
@
@

@@I

for any i and j with i ≤ j, since

pif((xn)) = pi

( ∨
xn=1

〈K(n)〉
)

=
∨
xn=1

〈K(n)〉 · 〈E(i)〉

=
∨

i≥n, xn=1

〈K(n)〉.

Therefore, B(H) is the inverse limit of the above system (5.6) by definition.

Proof of Theorem 1.2. This follows from Theorem 5.7 and Proposition 3.25.

In the same way, we obtain

Theorem 5.8. Let T be a set of field spectra, and put
∨
T =

∨
F∈T F . Then

B(L∨
T ) =

∏
Z/2.

§6. Problems

In this section we state some problems.

Problem 6.1. What condition on X
f−→ Y in Mepi

0 makes β(f) an isomorphism?

Suppose that the problem is settled and we find a map from B to a commu-

tative monoid Y such that β(f) is an isomorphism. Then we may study B = β(B)

by observing β(Y ) in virtue of Proposition 2.16, which may let us consider the

lattice from a different viewpoint.

Problem 6.2. Let M be a monoid with 0. Is there a ring R such that β(M) is

isomorphic to R as a monoid?
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Example 6.3. Let p0, . . . , pn be n+1 distinguished primes. Then β(Z/p0 . . . pn) =∏n
i=0 Z/2 as monoids by Theorem 5.3.

If this is possible, we may approach these from the ring-theoretic viewpoint.

Problem 6.4. Are B/J(h) and DL monoidal posets?
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