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Convergences and Projection Markov Property of
Markov Processes on Ultrametric Spaces

by

Kohei Suzuki

Abstract

Let (S, ρ) be an ultrametric space satisfying certain conditions and Sk be the quotient
space of S with respect to the partition by balls with a fixed radius φ(k). We prove that,
for a Hunt process X on S associated with a Dirichlet form (E ,F), a Hunt process Xk

on Sk associated with the averaged Dirichlet form (Ek,Fk) is Mosco convergent to X,
and under certain additional conditions, Xk converges weakly to X. Moreover, we give
a sufficient condition for the Markov property of X to be preserved under the canonical
projection πk to Sk. In this case, we see that the projected process πk ◦X is identical in
law to Xk and converges almost surely to X.
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§1. Introduction

A metric space (S, ρ) is said to be ultrametric if the metric ρ satisfies the inequality

ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)} (∀x, y, z ∈ S),(1.1)

which is obviously stronger than the usual triangle inequality. In this paper, we

always assume the following conditions:

(U.1) (S, ρ) is a locally compact complete ultrametric space.

(U.2) Any closed ball in S is compact.
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(U.3) There exist an integer valued function r : S × S → Z ∪ {∞} and a strictly

decreasing function φ : Z ∪ {∞} → R with φ(∞) = 0 such that

ρ(x, y) = φ(r(x, y)) (∀x, y ∈ S).

(U.4) There exist a Radon measure µ on S assigning strictly positive finite values

to all closed balls of positive radius.

Note that separability of S follows from the above conditions. We denote Bkx :=

{y ∈ S : ρ(x, y) ≤ φ(k)}.
Ultrametric spaces have many important examples in various fields of mathe-

matics. One of the best known examples is the field Qp of p-adic numbers equipped

with the metric ρ(x, y) = ‖x − y‖p where ‖ · ‖p is the p-adic norm. The field Qp
originated in number theory and is now investigated in various fields. A lot of in-

teresting studies of Markov processes on Qp (or more generally, on local fields) are

due to Albeverio, Kaneko, Karwowski, Kochubei, Yasuda, Zhao and others (see

[1, 3, 4, 5, 16, 20, 25, 26] and references therein). Recently Karwowski–Yasuda

[17] studied an application of Markov processes on Qp to spin glasses, which is an

important subject in physics. The study of Markov processes on Qp is important

both from the mathematical and the physical viewpoint. In the above studies, not

only the ultrametric structure of Qp was essentially used, but also algebraic struc-

tures, such as rings or topological groups. However, recently several authors studied

Markov processes on more general ultrametric spaces without any algebraic struc-

tures, such as the endpoints of locally-finite trees (called leaves of multibranching

trees in Albeverio–Karwowski [2], and non-compact Cantor sets in Kigami [19]). For

more details, see Albeverio–Karwowski [2], Kigami [18, 19], Bendikov–Grigor’yan–

Pittet [6], Woess [24] and Bendikov–Grigor’yan–Pittet–Woess [7] and references

therein. In this paper, we do not assume any algebraic structures.

Ultrametric spaces have a remarkable geometrical property, which is quite

different from the usual Euclidean spaces: any two balls with the some radius are

either disjoint or identical. From this fact and the conditions (U.1)–(U.3), it follows

that the family of balls with radius φ(k) forms a countable partition of the whole

space S. Let Sk denote the quotient space with respect to this partition. For later

arguments, we embed Sk in S via a fixed map Ik satisfying Ik([x]) ∈ Bkx where

[x] denotes the equivalence class containing x. Note that later arguments do not

depend on a particular choice of Ik. Then the following question arises:

(Q1) Can we approximate a Markov process on S by Markov chains on Sk?

Since ultrametric spaces are totally disconnected, we can only consider pure jump

processes on S. Let us consider the following bilinear form (E ,F) on L2(S;µ):
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E(u, v) =
1

2

∫
S×S\d

(u(x)− u(y))(v(x)− v(y))J(x, y)µ(dx)µ(dy),

with domain F = D0
E1

and a non-negative Borel measurable function J(x, y) on

S × S \ d. Here D0 stands for the set of finite linear combinations of indicator

functions of closed balls and d denotes the diagonal of S × S. We assume that J

satisfies the following conditions:

(A.1) For all k ∈ Z and i ∈ Sk,
∫
Bk

i ×(Bk
i )c

J(x, y)µ(dx)µ(dy) <∞.
(A.2) For all (x, y) ∈ S × S \ d, J(x, y) = J(y, x).

In the above setting, (E ,F) is a regular Dirichlet form (see Section 2). There exists

a Hunt process (Mt, Xt,Px) on S associated with (E ,F) (see, e.g., [12, Theorem

7.21]). We write (Ek,Fk) for the following bilinear form:

Ek(u, v) =
1

2

∑
i,j∈Sk

(u(i)− u(j))(v(i)− v(j))Jk(i, j)µk(i)µk(j),

with domain Fk = Ck0
Ek1
, where Ck0 denotes the set of functions on Sk with finite

support, µk(i) := µ(Bki ) for i ∈ Sk, and

Jk(i, j) :=


1

µk(i)µk(j)

∫
Bk

i ×Bk
j

J(x, y)µ(dx)µ(dy) (i 6= j),

0 (i = j).

We call (Ek,Fk) the averaged Dirichlet form (of level k). The averaged Dirichlet

form (Ek,Fk) is also a regular Dirichlet form; let (Xk
t ,Pki ) be a Hunt process on Sk

associated with it. We obtain the following result:

Theorem 1.1. Suppose (A.1) and (A.2) hold. Then the averaged Dirichlet form

(Ek,Fk) is Mosco convergent in the generalized sense to (E ,F) as k →∞.

The definition of Mosco convergence in the generalized sense will be given in

Section 3 following Chen–Kim–Kumagai [9, Definition 8.1]. Theorem 1.1 is quite a

general result applicable to very wide classes of symmetric Markov processes on S.

For example, (A.1) and (A.2) are satisfied by the class constructed by Albeverio–

Karwowski [2], the more general class constructed in Kigami [19] and a new class

constructed in this paper (called the mixed class). See Section 6.2 for details.

We want to know when Xk converges weakly to X. We consider the following

condition for tightness of {Xk}k∈Z:
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(A.3) For any k1 ∈ Z,

sup
k≥k1

sup
x∈S

1

µ(Bkx)

∫
Bk

x×(B
k1
x )c

J(y, z)µ(dy)µ(dz) <∞.

To ensure conservativeness of (E ,F), we introduce the following condition:

(A.4) sup
x∈S

∫
{y: ρ(x,y)≥1}

J(x, y)µ(dy) <∞.

Note that since the ultrametric inequality does not allow processes to exit from a

unit ball only by jumps whose sizes are smaller than one, we do not need other

assumptions for small jumps and volume growth conditions for conservativeness.

See Theorem 4.1.

Let 0 < T < ∞ and let DS [0, T ] denote the set of right-continuous paths

[0, T ]→ S having left limits, which is equipped with the Skorokhod topology (see

e.g. [11]). Let C+
0 (S) denote the family of non-negative real-valued continuous

functions on S with compact support. For each ψ ∈ C+
0 (S), define the function

ψk on Sk as ψk(i) := 1
µk(i)

∫
Bk

i
ψ(x)µ(dx). Define

Pψ(·) =
1

µ(ψ)

∫
S

Px(·)ψ(x)µ(dx) and Pkψk(·) =
1

µk(ψk)

∑
i∈Sk

Pki (·)ψk(i)µk(i),

where µ(ψ) =
∫
S
ψ(x)µ(dx) and µk(ψk) =

∑
i∈Sk ψk(i)µk(i). Then (X,Pψ) and

(Xk,Pkψk) are called Hunt processes with initial distributions ψµ and ψkµk, respec-

tively. Now we obtain the following main theorem:

Theorem 1.2. Suppose (A.1)–(A.4). Let ψ ∈ C+
0 (S) and 0 < T < ∞. Then, as

k → ∞, the Markov chain (Xk,Pkψk) converges in law on DS [0, T ] to the Hunt

process (X,Pψ).

The initial distributions are restricted to be absolutely continuous with respect

to the reference measure µ because we use the Lyons–Zheng decomposition in the

proof of tightness, following Chen–Kim–Kumagai [9].

Remark 1.1. There are some related works:

(i) The result of Theorem 1.2 and its proof are very similar to [9, Theorem 6.1].

The formulations, however, are so different that we cannot reduce Theorem

1.2 to [9, Theorem 6.1]. In [9], the authors studied a metric measure space

(E, ρ,m) under several conditions where approximation graphs {(Vk,Θk)}k∈Z
can be constructed. They proved that Markov chains Xk on (Vk,Θk) con-

verge weakly to a Markov process X on (E, ρ,m), provided that Xk’s satisfy

several conditions. In particular they assumed that the jump density of Xk
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is controlled by the graph metric of (Vk,Θk). In our setting, however, the

approximation set Sk does not need any graph structures and actually we

essentially use only topological properties in the proof of Theorem 1.2.

(ii) Mart́ınez–Remenik–Mart́ın [21] investigated convergence of Markov processes

on a compact ultrametric space. Let T be a locally-finite rooted tree and cut

this tree at each finite level k (we write T k for the cut tree). They considered

some random walk W on T and W k on T k. They showed that W and W k

induce Markov processes X and Xk on their Martin boundaries S and Sk,

which are compact ultrametric spaces. Then, they showed that Xk converges

weakly to X as k → ∞. In our setting, the state space S is not necessarily

compact, and thus tightness of {Xk}k is not obvious. Moreover, our Markov

processes need not be induced by random walks on trees.

(iii) In Yasuda [26], a different type of convergence theorem of Lévy processes on

local fields K was proved. Let Xt be a semi-stable process on K with an epoch

a < 1 and a span b. The author showed that if ξi is identically distributed

as X1, an = a−n, and bn = bn, then (1/bn)
∑[ant]
i=1 ξi as n → ∞ converges

weakly to X, where [ant] stands for the integral part of ant. This result uses

the algebraic structure of local fields. We do not know the relationship of our

result and theirs.

We introduce an interesting property of Markov processes on S. Let πk be the

canonical map from S to Sk. We call the following property the projection Markov

property of level k (we write (pMp)k for short):

(pMp)k There exists a transition probability p̃kt (x, y) such that

Px(πk ◦Xt+s = y |Ms) = p̃kt (πk ◦Xs, y)

for quasi-every x ∈ S and all y ∈ Sk; consequently, the projected process

πk ◦Xt under (Mt,Px) is also a Markov process for quasi-every x ∈ S.

This property cannot be expected in the usual Euclidean spaces. For example, let

X be the 2-dimensional Brownian motion and let us take a countable partition of

R2 by {[n, n + 1) × [m,m + 1)}n,m∈Z. Let R2/∼ denote the quotient space with

respect to this partition and let π1 be the canonical map from R2 to R2/∼. Then

we can see that π1 ◦X is not Markov.

We consider the following question:

(Q2) When do Markov processes have the projection Markov property of level k?

We introduce several additional conditions: For a fixed k,
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(BC)k (Ball-wise constance of level k) For each i, j ∈ Sk with i 6= j,

J |Bk
i ×Bk

j
≡ Ckij

for some constant Ckij depending only on i, j, k.

(BC)∞ The condition (BC)k is satisfied for all k ∈ Z.

Note that these conditions are natural for ultrametric spaces because there are

many locally constant functions on such spaces.

Let {P kt }t≥0 be the transition semigroup on L2(Sk;µk) associated with the

averaged Dirichlet form (Ek,Fk), and Ek be the extension operator defined in

(3.4).

Theorem 1.3. (1) Suppose (A.1) and (A.2) hold. The following two assertions

are equivalent:

(i) The Hunt process (Xt,Px) has the projection Markov property of level k.

(ii) PtE
kf = EkP kt f for all f ∈ L2(Sk;µk) and t ≥ 0.

If one (and hence each) of assertions (i) and (ii) holds, the projected process

(πk ◦X,Px) is equal in law to (Xk,Pki ).

(2) Suppose (A.1), (A.2) and (BC)k hold. Then assertions (i) and (ii) hold.

In Dynkin [10], Rogers–Pitman [22] and Glover [13], functions preserving the

Markov property were called Markov functions and those authors studied several

sufficient conditions of different types for a function to be a Markov function.

Theorem 1.3 asserts that the canonical projection πk is a Markov function un-

der (A.1), (A.2) and (BC)k. The key to the proof is to verify Dynkin’s sufficient

condition [10].

As a corollary of Theorem 1.3, under condition (BC)∞, we can show that Xk

converges to X almost surely for k →∞, which is a stronger result than Theorem

1.2:

Corollary 1.1. Suppose (A.1), (A.2) and (BC)∞ hold. Then (Xk,Pki ) is equal in

law to (πk ◦X,Px) for all k, and πk ◦Xt converges to Xt as k →∞ uniformly on

compact intervals in t, Px-almost everywhere for quasi-every x ∈ S.

This paper is organized as follows. In Section 2, we give preliminary facts

on ultrametric spaces and Dirichlet forms on ultrametric spaces. In Section 3, we

prove Theorem 1.1. First, we recall the definition of Mosco convergence in the

generalized sense given in Chen–Kim–Kumagai [9], and we introduce extension

and restriction operators in our setting. Second, we relate (E ,F) and the averaged
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Dirichlet form (Ek,Fk) by using the extension operator. Finally, we complete the

proof of Theorem 1.1. In Section 4, we prove Theorem 1.2. First, we give a suffi-

cient condition for conservativeness and obtain convergence of finite-dimensional

distributions. Second, we prove tightness of Xk, and we complete the proof of

Theorem 1.2. In Section 5, we prove Theorem 1.3. In Section 6, we introduce a

mixed class, a kind of generalization of the class constructed in [19].

Throughout this paper, we denote by Z,N and N0 the set of integers, positive

integers and non-negative integers, respectively. Sometimes we write
∑
iAi for⋃

iAi whenever {Ai}i∈N is disjoint. We write C0(S), Cb(S) and C∞(S) for the

class of real-valued continuous functions on S with compact support, bounded and

vanishing at infinity, respectively. Write Ck0 for the class of continuous functions

on Sk with finite support.

§2. Preliminary facts

We recall the following facts on ultrametric spaces:

Fact 2.1. (i) If Bka ∩Bkb 6= ∅, then Bka = Bkb .

(ii) The metric ρ is constant on Bka ×Bkb whenever Bka 6= Bkb .

(iii) Any closed ball is open.

(iv) The indicator function of every closed (or open) ball is continuous.

We shall utilize the following basic properties of ultrametric spaces under

conditions (U.1)–(U.3).

Proposition 2.1. Suppose (U.1)–(U.3) hold. Then:

(i) For any k ∈ Z and a ∈ S, there exists a finite subset {ai}i ⊂ Bka such that

{Bkai}i is disjoint and Bka =
∑
iB

k+1
ai . If, moreover, there exists another such

finite subset {bi}i, then Bkai = Bk+1
bi

for all i after suitable rearrangement.

(ii) For any k ∈ Z, there exists a countable subset {ai}i ⊂ E such that {Bkai}i
is disjoint and S =

∑
iB

k
ai . If, moreover, there exists another such countable

subset {bi}i, then Bkai = Bkbi for all i ∈ N after suitable rearrangement.

(iii) (S, ρ) is separable.

Proof. (i) Let a0 = a ∈ S. We take the open covering Bka =
⋃
x∈Bk

a
Bk+1
x . By

(U.2) and Fact 2.1(i), we can extract a finite subcover Bka =
∑
iB

k+1
ai . The last

assertion is obvious by Fact 2.1(i).

(ii) Let x ∈ S be fixed. By (i), there exists a finite subset {a1
i }i ⊂ B

k−1
i such

that Bk−1
x =

∑
iB

k
a1
i
. By using (i) again, there exists a finite subset {a2

i }i ⊂ Bk−2
x

such that Bk−2
x \ Bk−1

x =
∑
iB

k
a2
i
. Using this argument inductively, we see that
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S =
⋃∞
l=1B

k−l
x =

∑
i∈NB

k
ai . The last part of the statement can be shown by the

same argument as (i).

(iii) Let {aki }i∈N be a countable subset of S such that S =
∑
i∈NB

k
aki

. Define

Sk = {aki }i and S =
⋃
k∈Z S

k. Clearly, S is countable. For any x ∈ S, there exists

a unique sequence {i(k)}k∈Z such that · · · ⊃ Bkai(k)
⊃ Bk+1

ai(k+1)
⊃ · · · ⊃ {x}. This

means that ai(k) → x as k →∞, which completes the proof.

We prepare several classes of functions on S and Sk. Let 1ki denote the indi-

cator function of Bki . Define

Dk =
{∑
i∈Sk

ci1
k
i : ci 6= 0 for finitely many i’s only

}
for each k ∈ Z. It is obvious by Proposition 2.1(i) that Dk ⊂ Dk+1. We denote

D0 =
⋃
k∈Z

Dk.(2.1)

In other words, D0 is the set of finite linear combinations of indicator functions of

balls. Since Dk ⊂ Dk+1, for each u ∈ D0, we write

m(u) = inf{k : u ∈ Dk}.(2.2)

The class D0 is a dense subset both of C0(S) with respect to the uniform norm

and of L2(S;µ) with respect to the L2-norm.

Assume (A.1) and (A.2) hold. Then (E ,F) and (Ek,Fk) are symmetric regular

Dirichlet forms. We refer the readers to [12, Example 1.2.4], for example.

§3. Proof of Theorem 1.1

We adopt the generalized Mosco convergence following Chen–Kim–Kumagai [9,

Appendix]. For k ∈ Z, let (Hk, 〈·, ·〉k) and (H, 〈·, ·〉) be Hilbert spaces whose norms

are denoted by ‖ · ‖k and ‖ · ‖. Suppose that (ak,D[ak]) and (a,D[a]) are positive

densely defined closed symmetric contraction bilinear forms on Hk and H, respec-

tively. We extend the definition of ak(u, u) to all u ∈ Hk by setting ak(u, u) =∞
for u ∈ Hk \ D[ak]. Similar extension is done for a as well.

Let Ek : Hk → H and Πk : H → Hk be bounded linear operators. If the

following conditions are satisfied, we call Ek the extension operator and Πk the

restriction operator, respectively:

(ER.1) 〈Πku, v〉k = 〈u,Ekv〉 for u ∈ H and v ∈ Hk.
(ER.2) ΠkEku = u for u ∈ Hk.
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(ER.3) supk∈Z ‖Πk‖op <∞ , where ‖ · ‖op denotes the operator norm.

(ER.4) For every u ∈ H, limk→∞ ‖Πku‖k = ‖u‖.

It follows immediately that Ek is an isometry, i.e., 〈Eku,Ekv〉 = 〈u, v〉k for

every k ∈ Z and u, v ∈ Hk.

Now the generalized Mosco convergence is defined as follows:

Definition 3.1. In the above setting, we say that the closed bilinear form ak

is Mosco-convergent to a in the generalized sense if the following conditions are

satisfied :

(i) If uk ∈ Hk, u ∈ H and Ekuk → u weakly in H, then

(3.1) lim inf
k→∞

ak(uk, uk) ≥ a(u, u).

(ii) For every u ∈ H, there exists a sequence {uk} such that uk ∈ Hk for all k,

Ekuk → u strongly in H and

(3.2) lim sup
k→∞

ak(uk, uk) ≤ a(u, u).

Now we introduce extension and restriction operators in our setting. Set Hk =

L2(Sk;µk) and H = L2(S;µ) equipped with L2-inner products

〈u, v〉k :=
∑
i∈Sk

u(i)v(i)µk(i) and 〈u, v〉 :=

∫
S

u(x)v(x)µ(dx).

Define bounded linear operators Ek : L2(Sk;µk)→ L2(S;µ) and Πk : L2(S;µ)→
L2(Sk;µk) as follows:

Πku(i) =
1

µk(i)

∫
Bk

i

u(x)µ(dx),(3.3)

Ekv(x) = v([x]k) =
∑
i∈Sk

v(i)1Bk
i
(x),(3.4)

for u ∈ L2(S;µ) and v ∈ L2(Sk;µk). It is easy to check that Ek and Πk satisfy

(ER.1)–(ER.4) (see [9, Lemma 4.1]).

The following proposition relates the averaged Dirichlet form (Ek,Fk) to

(E ,F).

Proposition 3.1. Suppose (A.1) and (A.2) hold. Then:

(i) For all u ∈ Ck0 , Eku ∈ D0,

(ii) For all u ∈ Fk, Eku ∈ F ,

(iii) For all u ∈ Fk, Ek(u, u) = E(Eku,Eku).
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Proof. (i) is clear by definition.

(ii) and (iii): Let u ∈ Ck0 . Let dk denote the diagonal of Sk × Sk. Then

(3.5) Ek(u, u) =
1

2

∑
(i,j)∈Sk×Sk\dk

|u(i)− u(j)|2Jk(i, j)µk(i)µk(j)

=
1

2

∑
(i,j)∈Sk×Sk\dk

|u(i)− u(j)|2
∫
Bk

i ×Bk
j

J(x, y)µ(dx)µ(dy)

=
1

2

∑
(i,j)∈Sk×Sk\dk

∫
Bk

i ×Bk
j

|Eku(x)− Eku(y)|2J(x, y)µ(dx)µ(dy)

=
1

2

∫
S×S\d

|Eku(x)− Eku(y)|2J(x, y)µ(dx)µ(dy) = E(Eku,Eku).

Let now u ∈ Fk. Then we can take an Ek1 -Cauchy sequence {un}n∈N ⊂ Ck0 such

that un → u in L2(Sk;µk) and

lim
n→∞

Ek(un, un) = Ek(u, u).(3.6)

By (3.5), we see that {un}n∈N is a Cauchy sequence with respect to E(Ek·, Ek·).
From this fact and Ekun → Eku in L2(S;µ), we have

lim
n→∞

E(Ekun, E
kun) = E(Eku,Eku).(3.7)

Hence, Eku ∈ F . Furthermore, by (3.6)–(3.7), we have

Ek(u, u) = lim
n→∞

Ek(un, un) = lim
n→∞

E(Ekun, E
kun) = E(Eku,Eku),

completing the proof.

To prove the Mosco convergence of (Ek,Fk) to (E ,F), we need Fatou’s lemma

for (E ,F).

Lemma 3.1. If un ∈ F converges µ-almost everywhere to u ∈ L2(S;µ), then

E(u, u) ≤ lim infn E(un, un).

This is a direct application of Proposition 1 of Schmuland [23], so we omit

the proof.

Suppose that (i) of Definition 3.1 holds. Then the following lemma yields a

sufficient condition for (ii) of Definition 3.1 to hold (see [9, Lemma 8.2]):

Lemma 3.2. Suppose that (A.1) and (A.2) hold. Then:

(i) D0 is dense in F with respect to the E1-norm.

(ii) For every u ∈ D0, Πku ∈ Ck0 .

(iii) For every u ∈ D0, lim supk→∞ Ek(Πku,Πku) = E(u, u).
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Proof. (i) is clear by the definition of (E ,F), and (ii) is clear by the definition of

(Ek,Fk).

(iii) For k ≥ m(u), we have EkΠku = u. Hence, from Proposition 3.1,

lim sup
k→∞

Ek(Πku,Πku) = lim sup
k→∞

E(EkΠku,EkΠku) = E(u, u).

Now we show that (Ek,Fk) is Mosco convergent to (E ,F).

Proof of Theorem 1.1. By Lemma 3.2, we only have to show condition (i) of Def-

inition 3.1. It suffices to prove inequality (3.1) for sequences uk ∈ L2(Sk;µk) such

that Ekuk converges weakly to u ∈ L2(S;µ) and lim infk→∞ Ek(uk, uk) =: L <∞.

Taking a subsequence if necessary, we may assume that limk→∞ Ek(uk, uk) = L.

Since Ekuk converges to u weakly, {Ekuk}k∈Z is a bounded sequence in L2(S;µ).

By the Banach–Saks Theorem (see e.g. [8, Theorem A.4.1]), by taking a sub-

sequence if necessary, we may assume that vk := (1/k)
∑k
i=1E

iui converges to

some v∞ ∈ L2(S;µ). Since Ekuk converges weakly to u, we see that v∞ = u µ-a.e.

on S. Then, by the triangle inequality with respect to E(·, ·)1/2 and by Proposition

3.1, we have

E(vk, vk)1/2 ≤ 1

k

k∑
i=1

E(Eiui, E
iui)

1/2 =
1

k

k∑
i=1

E i(ui, ui)1/2 → L1/2 (k →∞).

In addition, from Lemma 3.1, we have E(u, u) ≤ lim infk→∞ E(vk, vk) ≤ L. This

completes the proof.

§4. Proof of Theorem 1.2

Now we give a sufficient condition for conservativeness:

Theorem 4.1. Suppose that (A.1), (A.2) and (A.4) hold. Then (E ,F) and

(Ek,Fk) are conservative.

Proof. Let J ′(x, y) = J(x, y)1ρ(x,y)≤1 and J ′′(x, y) = J(x, y)1ρ(x,y)≥1. Let (E ′,F ′)
and (E ′′,F ′′) be the Dirichlet forms corresponding to J ′ and J ′′, respectively.

Using (A.1), (A.2), (A.4) and the fact that D0 is a core for (E ,F), and by the

same argument as in [14, Theorem 2.2], we see that the conservativeness of (E ,F)

is equivalent to that of the truncated Dirichlet form (E ′,F ′).
Now it suffices to show that (E ′,F ′) is conservative. However, by the ultra-

metric inequality, the corresponding process cannot exit from a unit ball only by

small jumps (i.e., jumps whose sizes are smaller than 1). Since the jump den-

sity J ′ has only small jumps, (E ′,F ′) is conservative. Using Proposition 3.1, the

conservativeness of (Ek,Fk) can be shown by the same argument.
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Now we obtain convergence of finite-dimensional distributions by Theorems

1.1 and 4.1.

Corollary 4.1. Suppose that (A.1), (A.2) and (A.4) hold. Then, for any ψ ∈
C+

0 (S), finite-dimensional distributions of the Hunt process (Xk
t ,Pkψ) converge to

those of (Xt,Pψ) as k →∞.

Proof. By Theorem 4.1, (E ,F) is conservative. Thus, by Theorem 1.1, we can use

the same argument as Chen–Kim–Kumagai [9, Theorem 5.1].

To prove tightness, we adopt the same strategy as in [9]. The following lemma

plays a key role in proving tightness; it corresponds to [9, Lemma 3.3] and the

following proof is a modification of the one in [9].

Lemma 4.1. Suppose that (A.1)–(A.3) hold. Then, for any g ∈ D0, there exist

C > 0 and k0 ∈ Z such that, for any k ≥ k0 and any 0 ≤ t ≤ s <∞,∫ t

s

∑
j∈Sk

(g(Xk
u)− g(j))2Jk(Xk

u , j)µ
k(j) du ≤ C(t− s).

Proof. Let Cg := maxx,y∈supp(g) |g(x)− g(y)|. Take k0 = max{m(g), k1}, where k1

has been defined in (A.3), and m(g) has been defined in (2.2). Note that we have

|g(x)− g(y)| = 0 if r(x, y) ≥ k0, i.e., ρ(x, y) ≤ φ(k0). For any k ≥ k0,

sup
i∈Sk

∑
j∈Sk

(g(i)− g(j))2Jk(i, j)µk(j)

= sup
i∈Sk

( ∑
j: g(j)=0

g(i)2Jk(i, j)µk(j) +
∑

j: g(j)6=0

(g(i)− g(j))2Jk(i, j)µk(j)
)

≤ ‖g‖2∞ sup
i: g(i)6=0

∑
j: g(j)=0

Jk(i, j)µk(j) + C2
g sup
i: g(i)6=0

∑
j: g(j)6=0
r(i,j)≤k0

Jk(i, j)µk(j)

+ ‖g‖2∞ sup
i: g(i)=0

∑
j: g(j)6=0

Jk(i, j)µk(j)

≤ (2‖g‖2∞ ∨ C2
g ) sup

i: g(i) 6=0

∑
j∈Sk

r(i,j)≤k0

Jk(i, j)µk(j)

+ ‖g‖2∞ sup
i: g(i)=0

∑
j: g(j)6=0

Jk(i, j)µk(j)

=: (I)k + (II)k.
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By (A.3), (I)k is bounded in k because

sup
i: g(i) 6=0

∑
j∈Sk

r(i,j)≤k0

Jk(i, j)µk(j) = sup
i: g(i) 6=0

∑
j∈Sk

r(i,j)≤k0

1

µk(i)

∫
Bk

i ×Bk
j

J(x, y)µ(dx)µ(dy)

< sup
k≥k0

sup
i∈Sk

1

µk(i)

∫
Bk

i ×(B
k0
i )c

J(x, y)µ(dx)µ(dy) <∞.

By (A.3), (II)k is bounded in k because

sup
i: g(i)=0

∑
j: g(j)6=0

Jk(i, j)µk(j)

< sup
k≥k0

sup
i∈Sk

∑
j: g(j)6=0

1

µk(i)

∫
Bk

i ×(B
k0
i )c

J(x, y)µ(dx)µ(dy) <∞.

This completes the proof.

Lemma 4.1 enables us to follow the same argument as in [9, Proposition 3.4]

to obtain the following proposition:

Proposition 4.1. Suppose that (A.1)–(A.4) hold. Let ψ ∈ C+
0 (S) and 0<T <∞.

Then, for any finite subset {g1, . . . , gm} ⊂ D+
0 , the family of the laws of the pro-

cesses {(g1, . . . , gm) ◦Xk,Pkψk}k∈Z is tight in DRm [0, T ].

Now we prove Theorem 1.2.

Proof of Theorem 1.2. By Corollary 4.1 and Proposition 4.1, for any finite subset

{g1, . . . , gm} ⊂ D+
0 , we infer that ((g1, . . . , gm) ◦ Xk,Pkψk) converges as k → ∞

to ((g1, . . . , gm) ◦X,Pψ) in law on DRm [0, 1]. Since D+
0 strongly separates points

in S, we complete the proof by using [11, Corollary 3.9.2].

§5. Proof of Theorem 1.3

Let {Pt}t≥0 (resp. {P kt }t≥0) and {Gα}α≥0 (resp. {Gkα}α≥0) denote the semigroups

and resolvents corresponding to the Dirichlet form (E ,F) (resp. the averaged

Dirichlet form (Ek,Fk)). Define Eλ(u, v) = E(u, v) + λ〈u, v〉 for λ ≥ 0, u, v ∈ F ,

and Ekλ(u, v) = Ek(u, v) + λ〈u, v〉k for λ ≥ 0, u, v ∈ Fk. Recall that, in Section 3,

we have defined 〈u, v〉 =
∫
S
u(x)v(x)µ(dx) and 〈u, v〉k =

∑
i∈Sk u(i)v(i)µk(i).

We now prove Theorem 1.3.

Proof of Theorem 1.3. (1) (i)⇒(ii): Let P̃t denote the transition semigroup of

(πk ◦X,Px). By (pMp)k, we have

PtE
kf(x) = Exf(πk ◦Xt) = P̃ kt f(πkx) = EkP̃ kt f(x).(5.1)
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Let Ẽk(u) = limt↓0 (1/t)(u − P̃ kt u, u) for u ∈ Dk. Then, by the isometry of Ek,

(5.1) and Proposition 3.1, we have

Ẽk(u) = lim
t↓0

(Eku− EkP̃ kt u,Eku)

t
= lim

t↓0

(Eku− PtEku,Eku)

t
= E(Eku)

= Ek(u),

where E(Eku) and Ek(u) denote E(Eku,Eku) and Ek(u, u), respectively. This im-

plies that the generator matrices of πk ◦X and Xk are the same. Since both πk ◦X
and Xk are minimal processes (i.e., do not come back from the cemetery ∂ to Sk),

by the general theory of Markov chains, we have P̃ kt = P kt . Thus, by (5.1), we

obtain EkP kt f(x) = PtE
kf(x) for any f ∈ L2(Sk;µk). Thus, we have completed

the proof of (i)⇒(ii) and of the last assertion of (1).

(ii)⇒(i): Let Sk∂ and S∂ be the one-point compactification of Sk and S, re-

spectively. For any real-valued bounded B(Sk∂ )/B(R)-measurable function f on Sk∂
with f(∂) = 0, we have

Ex(f(πk ◦Xt+s) |Mt) = PsE
kf(Xt) = EkP ks f(Xt) = P ks f(πk ◦Xt).

Taking p̃kt (x, y) = P kt 1y(x), we have shown (pMp)k, proving (ii)⇒(i).

(2) We will show that (ii) holds under the assumptions of (2). By the stan-

dard argument of Laplace transform, it suffices to show that EkGkλ = GλE
k on

L2(Sk;µk) for any λ ≥ 0.

Note that, for g ∈ L2(S;µ), the image Gλg is a unique function h ∈ F such

that Eλ(h, v) = 〈g, v〉 for all v ∈ F . Since D0 is a core of F , to prove (i) it suffices

to show that, for f ∈ L2(Sk;µk), Eλ(EkGkλf, v) = 〈Ekf, v〉 for all v ∈ D0. To do

this, we first prove

Eλ(EkGkλf, v) = Eλ(EkGkλf,E
kΠkv).(5.2)

Since Πk is the adjoint of Ek, and Ek is isometric, we have

〈EkGkλf, v〉 = 〈Gkλf,Πkv〉k = 〈EkGkλf,EkΠkv〉.(5.3)

By (BC)k,

E(EkGkλf, v) =

∫
S×S\d

(EkGkλf(x)− EkGkλf(y))(v(x)− v(y))J(x, y)µ(dx)µ(dy)

=
∑
i,j∈Sk

i 6=j

(EkGkλf(i)− EkGkλf(j))J(i, j)

∫
Bk

i ×Bk
j

(v(x)− v(y))µ(dx)µ(dy)

=
∑
i 6=j

(EkGkλf(i)− EkGkλf(j))J(i, j)(Πkv(i)−Πkv(j))µk(i)µk(j)
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=
∑
i 6=j

(EkGkλf(i)− EkGkλf(j))J(i, j)

∫
Bk

i ×Bk
j

(EkΠkv(x)− EkΠkv(y))µ(dx)µ(dy)

=

∫
S×S\d

(EkGkλf(x)− EkGkλf(y))(EkΠkv(x)− EkΠkv(y))J(x, y)µ(dx)µ(dy)

= E(EkGkλf,E
kΠkv).

Thus, we obtain (5.2). Hence,

Eλ(EkGkλf, v) = Ekλ(Gkλf,Π
kv) = 〈f,Πkv〉k = 〈Ekf, v〉.

Here we have used Proposition 3.1(iii). This completes the proof of (2).

§6. Examples

§6.1. Examples of ultrametric spaces

We give several examples of ultrametric spaces included in our setting.

Example 6.1 (p-adic ring). Fix an integer p ≥ 2. Note that p need not be prime.

Define the p-adic ring Qp by

Qp = {(xi)i∈Z ∈ {0, 1, . . . , p− 1}Z : xi = 0 for all i ≤M for some M}.

From the algebraic viewpoint, Qp has a natural ring structure obtained by iden-

tifying (xi) ∈ Qp with the formal power series
∑∞
i=−∞ xip

i. However, we do not

use any algebraic structures of Qp in this paper. Let us equip Qp with the ultra-

metric ρp defined by

ρp(x, y) = p−r(x,y),

where r(x, y) := min{i ∈ Z : xi 6= yi}, min ∅ := ∞ and p−∞ := 0. Let µp be

the Haar measure on Qp normalized as µ(B0
0) = 1. The set (Qp, ρp, µp) satisfies

(U.1)–(U.4).

Example 6.2 (leaves of a multibranching tree). We introduce leaves of a multi-

branching tree, which is a generalization of p-adic rings. Define

S∞ = {x = (xi)i∈Z ∈ NZ
0 : xi = 0 for all i ≤M for some M}.

For a fixed k ∈ Z,

Sk = {x = (xi)i≤k : xi = 0 for all i ≤M for some M}.

Define a map {·}k : S∞ → Sk by

{x}k := (. . . , xk−1, xk) for x = (xi)i∈Z ∈ S.
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Let S :=
∐
k∈Z Sk. Let V be an arbitrary function from S to N. We define

SV = {(xi)i∈Z ∈ S∞ : 0 ≤ xi ≤ V ({x}i−1) for all i}.

The set SV is called the leaves of a multibranching tree. Let q > 1 be given. We

metrize SV as follows: for all x, y ∈ SV , we define

ρq(x, y) = q−r(x,y)

where r(x, y) := min{i ∈ Z : xi 6= yi}. If no confusion may occur, we drop the

subscript q on ρ. We define a Radon measure µV on SV such that

µV (B(0, 1)) = 1, µV (Bkx) = V ({x}k)µV (Bk+1
x ) (∀x ∈ SV ,∀k ∈ Z).(6.1)

In Proposition 6.1 below, we show that (SV , ρq, µV ) satisfies (U.1)–(U.4). This is a

generalization of (Qp, ρp, µp). Indeed, we can obtain (Qp, ρp, µp) from (SV , ρq, µV )

by setting q = p and V ≡ p− 1.

Now we show that (SV , ρq, µV ) satisfies (U.1)–(U.4).

Proposition 6.1. (SV , ρq, µV ) satisfies (U.1)–(U.4).

Proof. Conditions (U.3) and (U.4) clearly hold. To show (U.2), we note that, for

all x ∈ SV and k ∈ Z, there exists a finite sequence {ai}0≤i≤p−1 ⊂ Bkx such that

{Bk+1
ai }0≤i≤p−1 is disjoint and

Bkx =
∑

i: finite

Bk+1
ai(6.2)

(see Albeverio–Karwowski [2, Section 2]). We also note that (SV , ρq) is complete

(see [2, Proposition 2.8]). By completeness, it suffices to see that any closed ball

is totally bounded. For any ε > 0, let l ∈ Z be such that 0 < q−l < ε. By using

equality (6.2) inductively, we find that there exists a finite sequence {bi}i ⊂ Bkx
such that {Blbi}i is disjoint and Bkx =

∑
i: finiteB

l
bi
. Since Blbi is open by Fact

2.1(iii), we have checked (U.2).

Now we show (U.1). We have already seen above that (SV , ρq) is a complete

ultrametric space. Local compactness is clear by (U.2). Thus, (U.1) is satisfied.

§6.2. Mixed class

We introduce a new class of Hunt processes on SV . This class is a kind of gen-

eralization of the class constructed by Kigami [19]. We recall the class of Hunt

processes on SV constructed in [19]. We only consider the conservative case. Let

(S, ρ) = (SV , ρ) be as in Example 6.2. Let B = {{x}k ∈ Sk : x ∈ SV , k ∈ Z}.
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Let λ : B→ [0,∞] be a function such that

(6.3)

0∑
i=−∞

|λ({0}m+1)− λ({0}m)| <∞,

and, for all x, y ∈ SV with x 6= y, define

J(x, y) = Jλ,µ(x, y) :=

r(x,y)∑
m=−∞

λ({x}m)− λ({x}m−1)

µ(Bmx )
≥ 0.(6.4)

For a fixed x ∈ SV , we see that J(x, ·) depends only on r(x, ·). We sometimes write

Jkx = J(x, y) for y such that r(x, y) = k.

Let us define (E ,F) as the following symmetric bilinear form:

E(u, v) =
1

2

∫
SV ×SV \d

(u(x)− u(y))(v(x)− v(y))J(x, y)µ(dx)µ(dy),

F = {f ∈ L2(SV ;µ) : E(f, f) <∞}.

By [19, Section 3], (E ,F) is a regular Dirichlet form with core D0. Hence the

domain F is equal to the closure of D0 with respect to the E1-norm. The above

Dirichlet form is determined by the following pair (λ, µ):

ΘK,c = {(λ, µ) ∈ l+(B)×M(SV ) : (6.3) and (6.4) hold},

where M(SV ) stands for the set of Radon measures on (SV , ρ) and l+(B) stands

for the set of functions λ : B→ [0,∞]. Note that Dirichlet forms corresponding to

elements of ΘK,c are conservative and the subscript c indicates this.

Now we introduce the new class of Hunt processes. Take pairs

(λ1, µ), . . . , (λl, µ) ∈ ΘK,c.(6.5)

Define the jump densities as follows (see (6.4)):

J1 = Jλ1,µ, J2 = Jλ2,µ, . . . , Jl = Jλl,µ.

Let Nl(SV ) denote the set of functions f : SV ×SV \d→ {1, . . . , l}. Let Γl ∈ Nl(SV )

be such that, for each k ∈ Z and i, j ∈ SkV with i 6= j,

Γl|Bk
i ×Bk

j
= Nk

ij ,(6.6)

where Nk
ij ∈ {1, . . . , l} denotes a constant which depends only on k, i and j. Define
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the mixed jump density function as follows:

JΓl
(x, y) = JΓl(x,y)(x, y).

Let (EΓl
, D0) denote the following symmetric bilinear form:

EΓl
(u, v) =

1

2

∫
SV ×SV \d

(u(x)−u(y))(v(x)−v(y))JΓl
(x, y)µ(dx)µ(dy) (u, v ∈ D0).

Proposition 6.2. (EΓl
, D0) satisfies (A.1), (A.2) and (BC)∞.

Proof. Conditions (A.2) and (BC)∞ are obvious. We check (A.1). By definition,

JΓl
(x, y) ≤

l∑
i=1

Ji(x, y) for all (x, y) ∈ SV × SV \ d.

Note that the jump densities corresponding to ΘK,c satisfy (A.1) (see [19, Theorem

3.7]). Thus, for all k ∈ Z and i ∈ SkV , we have∫
Bk

i ×(Bk
i )c

JΓl
(x, y)µ(dx)µ(dy) ≤

l∑
i=1

∫
Bk

i ×(Bk
i )c

Ji(x, y)µ(dx)µ(dy) <∞,

proving (A.1).

It is easy to see that (EΓl
, D0

EΓl ) is a regular Dirichlet form. Note that it is

determined by µ, λ1, . . . , λl and Γl. Now we define a new class, a generalization

of ΘK,c:

Definition 6.1. The following class is called the mixed class:

ΘMix = {(µ, λ1, . . . , λl,Γl) ∈M(SV )× l+(B)× · · · × l+(B)×Nl(SV ) :

(6.5) and (6.6) hold}.

By Proposition 6.2 and Theorem 1.3, the class of Hunt processes associated

with the mixed class has the projection Markov property at any level. By Corol-

lary 1.1, Hunt processes associated with the mixed class can be approximated

almost surely by the projected processes, which are equal in law to Markov chains

associated with the averaged forms.
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