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Abstract

We discuss variations of mixed Hodge structure for cohomology with compact support of
quasi-projective simple normal crossing pairs. We show that they are graded polarizable
admissible variations of mixed Hodge structure. Then we prove a generalization of the
Fujita–Kawamata semipositivity theorem.
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§1. Introduction

Let X be a simple normal crossing divisor on a smooth projective variety M and

let B be a simple normal crossing divisor on M such that X + B is simple nor-

mal crossing on M and that X and B have no common irreducible components.

Then the pair (X,D), where D = B|X , is a typical example of simple normal

crossing pairs. In this situation, a stratum of (X,D) is an irreducible component

of Ti1 ∩ · · · ∩ Tik ⊂ X for some {i1, . . . , ik} ⊂ I, where X + B =
∑
i∈I Ti is the

irreducible decomposition of X + B. For the precise definition of simple normal

crossing pairs, see Definition 2.1 below. We note that simple normal crossing pairs

frequently appear in the study of the log minimal model program for higher di-

mensional algebraic varieties with bad singularities. The first author has already

investigated the mixed Hodge structures for H•c (X\D,Q) in [F7, Chapter 2] to ob-

tain various vanishing theorems (see also [F17]). In this paper, we show that their

variations are graded polarizable admissible variations of mixed Hodge structure.

Then we prove a generalization of the Fujita–Kawamata semipositivity theorem.

Our formulation of the theorem is different from Kawamata’s original one. How-

ever, it is more suited for our studies of simple normal crossing pairs.

The following theorem is a corollary of Theorems 7.1 and 7.3, which are our

main results in this paper (cf. [Kw1, Theorem 5], [Ko2, Theorem 2.6], [N1, Theo-

rem 1], [F4, Theorems 3.4 and 3.9], [Kw3, Theorem 1.1], and so on).

Theorem 1.1 (Semipositivity theorem; cf. Theorems 7.1 and 7.3). Let (X,D) be

a simple normal crossing pair such that D is reduced and let f : X → Y be

a projective surjective morphism onto a smooth complete algebraic variety Y .

Assume that every stratum of (X,D) is dominant onto Y . Let Σ be a simple

normal crossing divisor on Y such that every stratum of (X,D) is smooth over

Y ∗ = Y \ Σ. Then Rpf∗ωX/Y (D) is locally free for every p. Set X∗ = f−1(Y ∗),

D∗ = D|X∗ , and d = dimX − dimY . Further assume that all the local mon-

odromies on Rd−i(f |X∗\D∗)!QX∗\D∗ around Σ are unipotent. Then Rif∗ωX/Y (D)

is a semipositive locally free sheaf on Y .

We note the following definition.

Definition 1.2 (Semipositivity in the sense of Fujita–Kawamata). A locally free

sheaf E of finite rank on a complete algebraic variety X is said to be semipositive

(in the sense of Fujita–Kawamata) if OPX(E)(1) is nef on PX(E).

In [Kw3], Kawamata obtained a weaker result similar to Theorem 1.1 (see

[Kw3, Theorem 1.1]). It is not surprising because both [Kw3] and this paper grew

out from the same question raised by Valery Alexeev and Christopher Hacon. For
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details on Kawamata’s approach, we recommend [FFS], where we use the theory

of mixed Hodge modules to give an alternative proof of Theorem 1.1. Note that

[FFS] was written after this paper was circulated.

The semipositivity of Rif∗ωX/Y (D) in Theorem 1.1 follows from a purely

Hodge-theoretic semipositivity theorem (Theorem 5.21). In the proof of Theo-

rem 1.1, we use the semipositivity of (GraFV)∗ in Theorem 1.3, where (GraFV)∗ =

HomOY (GraFV,OY ). We do not need the semipositivity of F bV in Theorem 1.3

for Theorem 1.1. For more details, see the discussion in 1.6 below.

Theorem 1.3 (Hodge-theoretic semipositivity theorem; cf. Theorem 5.21). Let X

be a smooth complete complex algebraic variety, D a simple normal crossing di-

visor on X, and V a locally free OX-module of finite rank equipped with a finite

increasing filtration W and a finite decreasing filtration F . Assume the following:

(1) F aV = V and F b+1V = 0 for some a < b.

(2) GrpFGrWm V is a locally free OX-module of finite rank for all m, p.

(3) For all m, GrWm V admits an integrable logarithmic connection ∇m with nilpo-

tent residue morphisms which satisfies the conditions

∇m(F pGrWm V) ⊂ Ω1
X(logD)⊗ F p−1GrWm V for all p.

(4) The triple (GrWm V, FGrWm V,∇m)|X\D underlies a polarizable variation of

R-Hodge structure of weight m for every integer m.

Then (GraFV)∗ and F bV are semipositive.

In this paper, we concentrate on the Hodge-theoretic aspect of the Fujita–

Kawamata semipositivity theorem (cf. [Z], [Kw1], [Ko2], [N1], [F4], and [FFS]). On

the other hand, there are many results related to that theorem from the analytic

viewpoint (cf. [Ft], [Be], [BeP], [MT], and so on). Note that Griffiths’s pioneering

work on the variation of Hodge structure (cf. [G]) is a starting point of the Fujita–

Kawamata semipositivity theorem. For a related topic, see [Moc]. Mochizuki’s

approach is completely different from ours and has a more arithmetic-geometrical

flavor.

As a special case of Theorem 1.1, we obtain the following (Theorem 7.7).

Theorem 1.4 (cf. [Kw1, Theorem 5], [Ko2, Theorem 2.6], and [N1, Theorem 1]).

Let f : X → Y be a projective morphism between smooth complete algebraic vari-

eties which satisfies the following conditions:

(i) There is a Zariski open subset Y ∗ of Y such that Σ = Y \ Y ∗ is a simple

normal crossing divisor on Y .
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(ii) Set X∗ = f−1(Y ∗). Then f |X∗ is smooth.

(iii) All local monodromies of Rd+i(f |X∗)∗CX∗ around Σ are unipotent, where

d = dimX − dimY .

Then Rif∗ωX/Y is a semipositive locally free sheaf on Y .

We note that Theorem 1.4 was first proved by Kawamata (cf. [Kw1, The-

orem 5]) under the extra assumptions that i = 0 and that f has connected

fibers. The above statement follows from [Ko2, Theorem 2.6] or [N1, Theorem 1]

(see also [F5, Theorem 5.4]). We also note that, by Poincaré–Verdier duality,

Rd+i(f |X∗)∗CX∗ is the dual local system of Rd−i(f |X∗)∗CX∗ in Theorem 1.4. In

[Ko2] and [N1], variations of Hodge structure on Rd+i(f |X∗)∗CX∗ are investigated

for the proof of Theorem 1.4. On the other hand, in this paper, we concentrate on

variations of Hodge structure on Rd−i(f |X∗)∗CX∗ for Theorem 1.4.

The following example shows that the assumption (2) in Theorem 1.3 is in-

dispensable. For related examples, see [SZ, (3.15) and (3.16)]. In the proof of The-

orem 1.1, the admissibility of the graded polarizable variation of Q-mixed Hodge

structure on Rd−i(f |X∗\D∗)!QX∗\D∗ , which is proved in Theorem 4.15, ensures

the existence of the extension of the Hodge filtration satisfying (2). Note that the

notion of admissibility is due to Steenbrink–Zucker [SZ] and Kashiwara [Ks].

Example 1.5. Let V be a 2-dimensional Q-vector space with basis {e1, e2}. We

define an increasing filtration W on V by W−1V = 0, W0V = W1V = Qe1, and

W2V = V. The constant sheaf on P1 whose fibers are V is again denoted by V.

An increasing filtration W on V is given as above. We consider V = OP1 ⊗ V =

Oe1 ⊕Oe2 on P1. We define a decreasing filtration F on V|C∗ by

F 0(V|C∗) = V|C∗ , F 1(V|C∗) = OC∗(t
−1e1 + e2), F 2(V|C∗) = 0,

where t is the coordinate function of C ⊂ P1. We can easily check that

((V,W )|C∗ , (V|C∗ , F ))

is a graded polarizable variation of Q-mixed Hodge structure on C∗. In this case, we

cannot extend the Hodge filtration F on V|C∗ to the filtration F on V satisfying

assumption (2) of Theorem 1.3. In particular, the above variation of Q-mixed

Hodge structure is not admissible.

We note that we can extend the Hodge filtration F on V|C∗ to a filtration F

on V such that F 2V = 0, F 1V ' OP1(−1), and F 0V = V with Gr0
FV ' OP1(1). In

this case, F 1V and (Gr0
FV)∗ are not semipositive. This means that a naive gen-

eralization of the Fujita–Kawamata semipositivity theorem to graded polarizable

variations of Q-mixed Hodge structure is false.
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As an application of Theorem 1.1, the first author proved a semipositivity

theorem for families of singular varieties in [F16]. It is a generalization of [Ko4,

4.12. Theorem] and implies that the moduli functor of stable varieties is semipos-

itive in the sense of Kollár (see [Ko4, 2.4. Definition]). Therefore, it will play a

crucial role for the projectivity of the moduli spaces of higher-dimensional stable

varieties. For details, see [Ko4], [F15], and [F16].

We give a sketch of the proof of Theorem 1.1 for the reader’s convenience.

1.6 (Sketch of the proof of Theorem 1.1). In Theorem 1.1, we see that the lo-

cal system Rd−i(f |X∗\D∗)!QX∗\D∗ underlies an admissible variation of Q-mixed

Hodge structure by Theorem 4.15. Let V be the canonical extension of the locally

free sheaf (Rd−i(f |X∗\D∗)!QX∗\D∗)⊗OY ∗ . Then we can prove Rd−if∗OX(−D) '
Gr0

FV where F is the canonical extension of the Hodge filtration. Note that the

admissibility ensures the existence of the canonical extensions of the Hodge bun-

dles (cf. Proposition 3.12 and Remark 7.4). We also note that we use an explicit

description of the canonical extension of the Hodge filtration in order to prove

Rd−if∗OX(−D) ' Gr0
FV when Y is a curve. By Grothendieck duality, we ob-

tain Rif∗ωX/Y (D) ' (Gr0
FV)∗. Therefore, Rif∗ωX/Y (D) is semipositive by The-

orem 1.3. It is important to note that the local system Rd−i(f |X∗\D∗)!QX∗\D∗ is

not necessarily the dual local system of Rd+i(f |X∗\D∗)∗QX∗\D∗ because X is not a

smooth variety but a simple normal crossing variety. In the proof of Theorem 1.1,

we use the recent developments of the theory of partial resolution of singularities

for reducible varieties (see [BiM] and [BiP]) to reduce the problem to simpler cases.

We quickly explain the reason why we use mixed Hodge structures for coho-

mology with compact support.

1.7 (Mixed Hodge structure for cohomology with compact support). Let X be a

smooth projective variety and let D be a simple normal crossing divisor on X.

After Iitaka introduced the notion of logarithmic Kodaira dimension, OX(KX+D)

plays an important role in birational geometry, where KX is the canonical divisor

of X. In the traditional birational geometry, OX(KX + D) is recognized to be

ΩdimX
X (logD). Therefore, the Hodge to de Rham spectral sequence

Ep,q1 = Hq(X,ΩpX(logD))⇒ Hp+q(X \D,C)

arising from the mixed Hodge structures on H•(X\D,C) is useful. The first author

sees OX(KX +D) as
HomOX (OX(−D),OX(KX))

or

RHomOX (OX(−D), ω•X)[−dimX]
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where ω•X = OX(KX)[dimX] is the dualizing complex of X. Furthermore,

OX(−D) can be interpreted as the 0-th term of the complex

Ω•X(logD)⊗OX(−D).

By this observation, we can use the Hodge to de Rham spectral sequence

Ep,q1 = Hq(X,ΩpX(logD)⊗OX(−D))⇒ Hp+q
c (X \D,C)

arising from the mixed Hodge structures on the cohomology groups H•c (X \D,C)

of X \D with compact support and obtain various powerful vanishing theorems.

For details and many applications, see [F7, Chapter 2], [F8], [F10], [F11, Section 5],

[F12], [F15], and [F17]. Therefore, it is natural to consider variations of such mixed

Hodge structures.

We summarize the contents of this paper. Section 2 is a preliminary section.

Section 3 collects some generalities on variations of mixed Hodge structure. In Sec-

tion 4, we discuss variations of mixed Hodge structure for simple normal crossing

pairs. We show that they are graded polarizable and admissible. Theorem 4.15 is

the main result of Section 4. In Section 5, we discuss a purely Hodge-theoretic

aspect of the Fujita–Kawamata semipositivity theorem. Our formulation is differ-

ent from Kawamata’s but is well suited for our results in Section 7. In Section 6,

we discuss some generalizations of vanishing and torsion-free theorems for quasi-

projective simple normal crossing pairs. They are necessary for the arguments in

Section 7. Section 7 is the main part of this paper. Here, we characterize higher di-

rect images of log canonical divisors by using canonical extensions of Hodge bundles

(Theorems 7.1 and 7.3). This is a generalization of the results by Yujiro Kawamata,

Noboru Nakayama, János Kollár, Morihiko Saito, and Osamu Fujino. In Section 8,

we treat some examples which help us understand the Fujita–Kawamata semipos-

itivity theorem, Viehweg’s weak positivity theorem, etc.

Let us recall basic definitions and notation.

Notation. For a proper morphism f : X → Y , the exceptional locus, denoted by

Exc(f), is the locus where f is not an isomorphism.

1.8 (Divisors, Q-divisors, and R-divisors). For an R-Weil divisor D =
∑r
j=1 djDj

such that Di is a prime divisor for every i and Di 6= Dj for i 6= j, we define

the round-up dDe =
∑r
j=1ddjeDj (resp. the round-down bDc =

∑r
j=1bdjcDj),

where for any real number x, dxe (resp. bxc) is the integer defined by x ≤ dxe <
x + 1 (resp. x − 1 < bxc ≤ x). The fractional part {D} of D is D − bDc. We

call D a boundary (resp. subboundary) R-divisor if 0 ≤ dj ≤ 1 (resp. dj ≤ 1)

for every j. Q-linear equivalence (resp. R-linear equivalence) of two Q-divisors

(resp. R-divisors) B1 and B2 is denoted by B1 ∼Q B2 (resp. B1 ∼R B2).
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1.9 (Singularities of pairs). Let X be a normal variety and let ∆ be an effective

R-divisor on X such that KX + ∆ is R-Cartier. Let f : X → Y be a resolution

such that Exc(f) ∪ f−1
∗ ∆ has a simple normal crossing support, where f−1

∗ ∆ is

the strict transform of ∆ on Y . We can write

KY = f∗(KX + ∆) +
∑
i

aiEi.

We say that (X,∆) is log canonical (lc for short) if ai ≥ −1 for every i. We usually

write ai = a(Ei, X,∆) and call it the discrepancy coefficient of E with respect

to (X,∆).

If (X,∆) is log canonical and there exist a resolution f : Y → X and a

divisor E on Y such that a(E,X,∆) = −1, then f(E) is called a log canonical

center (lc center for short) with respect to (X,∆).

It is important to understand the following example.

1.10 (A basic example). Let X be a smooth variety and let ∆ be a reduced simple

normal crossing divisor on X. Then the pair (X,∆) is log canonical. Let ∆ =∑
i∈I ∆i be the irreducible decomposition of ∆. Then a subvariety W of X is

a log canonical center with respect to (X,∆) if and only if W is an irreducible

component of ∆i1 ∩ · · · ∩∆ik for some {i1, . . . , ik} ⊂ I.

Throughout we will work over the field C of complex numbers.

§2. Preliminaries

Let us recall the definition of simple normal crossing pairs.

Definition 2.1 (Simple normal crossing pairs). We say that the pair (X,D) is

simple normal crossing at a point a ∈ X if a has a Zariski open neighborhood

U in X that can be embedded in a smooth variety Y with a regular system of

parameters (x1, . . . , xp, y1, . . . , yr) at a = 0 in which U is defined by a monomial

equation

x1 · · ·xp = 0

and

D =

r∑
i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is simple normal crossing

at every point of X. When D is the zero divisor for a simple normal crossing

pair (X,D), X is called a simple normal crossing variety. If (X,D) is a simple

normal crossing pair, then X has only Gorenstein singularities. Thus, it has an
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invertible dualizing sheaf ωX . Therefore, we can define the canonical divisor KX

such that ωX ' OX(KX). It is a Cartier divisor on X and is well-defined up to

linear equivalence.

We say that a simple normal crossing pair (X,D) is embedded if there exists a

closed embedding ι : X ↪→M , where M is a smooth variety of dimension dimX+1.

Let X be a simple normal crossing variety and let D be a Cartier divisor

on X. If (X,D) is a simple normal crossing pair and D is reduced, then D is called

a simple normal crossing divisor on X.

We note that a simple normal crossing pair is called a semi-snc pair in [Ko6,

Definition 1.10].

Definition 2.2 (Strata and permissibility). Let X be a simple normal crossing

variety and let X =
⋃
i∈I Xi be the irreducible decomposition of X. A stratum of

X is an irreducible component of Xi1∩· · ·∩Xik for some {i1, . . . , ik} ⊂ I. A Cartier

divisor B on X is permissible if B contains no strata of X in its support. A finite

Q-linear (resp. R-linear) combination of permissible Cartier divisors is called a

permissible Q-divisor (resp. R-divisor) on X.

Let (X,D) be a simple normal crossing pair such that D is a boundary

R-divisor on X. Let ν : Xν → X be the normalization. We define Θ by the

formula
KXν + Θ = ν∗(KX +D).

Then a stratum of (X,D) is an irreducible component of X or the ν-image of a log

canonical center of (Xν ,Θ). We note that (Xν ,Θ) is log canonical (cf. 1.10). When

D = 0, this definition is compatible with the aforementioned case. A Cartier divisor

B on X is permissible with respect to (X,D) if B contains no strata of (X,D) in

its support. A finite Q-linear (resp. R-linear) combination of permissible Cartier

divisors with respect to (X,D) is called a permissible Q-divisor (resp. R-divisor)

with respect to (X,D).

The notion of globally embedded simple normal crossing pairs is very useful

for the proof of vanishing and torsion-free theorems (cf. [F7, Chapter 2]).

Definition 2.3 (Globally embedded simple normal crossing pairs). Let X be a

simple normal crossing divisor on a smooth variety M and let B be an R-divisor

on M such that Supp(B + X) is a simple normal crossing divisor, and B and X

have no common irreducible components. We set D = B|X and call (X,D) a glob-

ally embedded simple normal crossing pair. In this case, it is obvious that (X,D)

is an embedded simple normal crossing pair.
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In Section 6, we will discuss some vanishing and torsion-free theorems for

quasi-projective simple normal crossing pairs, which will play a crucial role in

Section 7. See also [F14], [F15], and [F17].

Finally, let us recall the definition of semidivisorial log terminal pairs in the

sense of Kollár (see [Ko6, Definition 5.19] and [F14, Definition 4.1]).

Definition 2.4 (Semidivisorial log terminal pairs). Let X be an equidimensional

variety which satisfies Serre’s S2 condition and is normal crossing in codimension

one. Let ∆ be a boundary R-divisor on X whose support does not contain any

irreducible components of the conductor of X. Assume that KX + ∆ is R-Cartier.

The pair (X,∆) is semidivisorial log terminal if a(E,X,∆) > −1 for every excep-

tional divisor E over X such that (X,∆) is not a simple normal crossing pair at

the generic point of cX(E), where cX(E) is the center of E on X.

Remark 2.5. The definition of semidivisorial log terminal pairs in [F1, Definition

1.1] is different from Definition 2.4.

For the details of semidivisorial log terminal pairs, see [Ko6, Section 5.4] and

[F14, Section 4].

§3. Generalities on variation of mixed Hodge structure

3.1. Let X be a complex analytic variety. For a point x ∈ X, C(x) (' C) denotes

the residue field at x. For a morphism ϕ : F → G of OX -modules and x ∈ X the

morphism

ϕ⊗ id : F ⊗ C(x)→ G ⊗ C(x)

is denoted by ϕ(x).

Remark 3.2. For a complex K equipped with a finite decreasing filtration F and

for an integer q, the following four conditions are equivalent:

(3.2.1) d : Kq → Kq+1 is strictly compatible with the filtration F ,

(3.2.2) the canonical morphism Hq+1(F pK)→ Hq+1(K) is injective for all p,

(3.2.3) the canonical morphism Hq+1(F p+1K)→ Hq+1(F pK) is injective for all p,

(3.2.4) the canonical morphism Hq(F pK)→ Hq(GrpFK) is surjective for all p.

Therefore the strict compatibility in (3.2.1) makes sense in the filtered derived

category.

On a complex variety X, a complex of OX -modules K is called perfect if,

locally on X, it is isomorphic in the derived category to a bounded complex con-

sisting of free OX -modules of finite rank (see e.g. [FGAE, 8.3.6.3]). The following

definition is an analogue of the notion of perfect complex.
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Definition 3.3. Let X be a complex variety. A complex of OX -modules K

equipped with a finite decreasing filtration F is called filtered perfect if GrpFK

is a perfect complex for all p.

Lemma 3.4. Let X be a complex manifold.

(i) For a perfect complex K on X, the function X 3 x 7→ dimHq(K ⊗ C(x))

is upper semicontinuous for all q.

(ii) Let K be a perfect complex on X. If there exists an integer q0 such that

Hq(K) is locally free of finite rank for all q ≥ q0, then the canonical morphism

Hq(K)⊗F → Hq(K ⊗L F)

is an isomorphism for any OX-module F and for all q ≥ q0.

(iii) Fix an integer q. For a perfect complex K on X, the following two con-

ditions are equivalent:

(3.4.1) The function X 3 x 7→ dimHq(K ⊗L C(x)) is locally constant.

(3.4.2) The sheaf Hq(K) is locally free of finite rank and the canonical morphism

Hq(K)⊗F → Hq(K ⊗L F) is an isomorphism for any OX-module F .

Moreover, if these equivalent conditions are satisfied, then the canonical morphism

Hq−1(K)⊗F → Hq−1(K ⊗L F)

is an isomorphism for any OX-module F .

(iv) Let (K,F ) be a filtered perfect complex on X. Assume that the function

X 3 x 7→ dimHq(K ⊗L C(x)) is locally constant. If the morphisms

d(x) : (K ⊗L C(x))q−1 → (K ⊗L C(x))q,

d(x) : (K ⊗L C(x))q → (K ⊗L C(x))q+1

are strictly compatible with the filtration F (K ⊗L C(x)) for every x ∈ X, then

Hq(GrpFK) is locally free of finite rank, the canonical morphism

(3.4.3) Hq(GrpFK)⊗ C(x) ' Hq(GrpF (K ⊗L C(x)))

is an isomorphism for all p and x ∈ X, and d : Kq → Kq+1 is strictly compatible

with the filtration F .

Proof. We can easily obtain (i)–(iii) by the arguments in [Mu, Chapter 5].

The strict compatibility conditions in (iv) imply the exactness of the sequence

0→ Hq(F p+1(K ⊗L C(x)))→ Hq(F p(K ⊗L C(x)))

→ Hq(GrpFK ⊗
L C(x))→ 0
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for all p and x ∈ X. Thus∑
p

dimHq(GrpFK ⊗
L C(x)) = dimHq(K ⊗L C(x))

for every x, which implies that dimHq(GrpFK ⊗L C(x)) is locally constant with

respect to x ∈ X. Applying (iii), Hq(GrpFK) is locally free and (3.4.3) is an

isomorphism for all p and x ∈ X. By using the isomorphisms (3.4.3) for all p,

we can easily deduce the surjectivity of the canonical morphism

Hq(F pK)⊗ C(x)→ Hq(GrpFK)⊗ C(x)

for any x ∈ X, and then the canonical morphism

Hq(F pK)→ Hq(GrpFK)

is surjective for every p. Thus the morphism d : Kq → Kq+1 is strictly compatible

with the filtration F by Remark 3.2.

Definition 3.5. Let X be a complex manifold. A pre-variation of Q-Hodge struc-

ture of weight m on X is a triple V = (V, (V, F ), α) such that

• V is a local system of finite-dimensional Q-vector spaces on X,

• V is an OX -module and F is a finite decreasing filtration on V,

• α : V→ V is a morphism of Q-sheaves,

satisfying the conditions:

(3.5.1) α induces an isomorphism OX ⊗ V ' V of OX -modules,

(3.5.2) GrpFV is a locally free OX -module of finite rank for every p,

(3.5.3) (Vx, F (V(x))) is a Hodge structure of weight m for every x ∈ X, where we

identify Vx ⊗ C with V(x) by the isomorphism α(x).

We denote (Vx, F (V(x))) by V (x) for x ∈ X.

We identify OX⊗V with V by the isomorphism in (3.5.1) if there is no danger

of confusion. Under this identification, we write V = (V, F ) for a pre-variation of

Q-Hodge structure.

We define the notion of a morphism of pre-variations in the trivial way.

Remark 3.6. A variation of Q-Hodge structure of weight m on X is nothing

but a pre-variation V = (V, F ) of Q-Hodge structure of weight m such that the

canonical integrable connection ∇ on V = OX ⊗V satisfies Griffiths transversality

(3.6.1) ∇(F p) ⊂ Ω1
X ⊗ F p−1

for every p. A morphism of variations of Q-Hodge structure is a morphism of

underlying pre-variations of Q-Hodge structure.
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Remark 3.7. (i) Let V1 = (V1, F ) and V2 = (V2, F ) be pre-variations of Q-Hodge

structure of weight m1 and m2 respectively. Then the local systems V1 ⊗ V2 and

Hom(V1,V2) underlie pre-variations of Q-Hodge structure of weight m1 +m2 and

m2 −m1 respectively, denoted by V1 ⊗ V2 and Hom(V1, V2).

(ii) For an integer n, QX(n) denotes as usual the pre-variation of Q-Hodge

structure of Tate. This is, in fact, a variation of Q-Hodge structure of weight −2n

on X. For a pre-variation V of Q-Hodge structure of weight m, V (n) = V ⊗QX(n)

is a pre-variation of Q-Hodge structure of weight m− 2n, which is called the Tate

twist of V as usual.

Definition 3.8. Let X be a complex manifold and V = (V, F ) a pre-variation

of Q-Hodge structure of weight m on X. A polarization on V is a morphism of

pre-variations of Q-Hodge structure

V ⊗ V → QX(−m)

which induces a polarization on V (x) for every point x ∈ X. A pre-variation of Q-

Hodge structure of weight m is said to be polarizable if there exists a polarization

on it. A morphism of polarizable pre-variations ofQ-Hodge structure is a morphism

of the underlying pre-variations of Q-Hodge structure.

Definition 3.9. Let X be a complex manifold.

(i) A pre-variation of Q-mixed Hodge structure on X is a triple

V = ((V,W ), (V,W, F ), α)

consisting of

• a local system V of finite-dimensional Q-vector spaces, equipped with a finite

increasing filtration W by local subsystems,

• an OX -module V equipped with a finite increasing filtration W and a finite

decreasing filtration F ,

• a morphism α : V→ V of Q-sheaves preserving the filtration W

such that the triple GrWm V = (GrWmV, (GrWm V, F ),GrWm α) is a pre-variation of

Q-Hodge structure of weight m for every m.

We identify (OX ⊗ V,W ) and (V,W ) by the isomorphism induced by α as

before, if there is no danger of confusion. Under this identification, we use the

notation V = (V,W, F ) for a pre-variation of Q-mixed Hodge structure.
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(ii) A pre-variation V = (V,W, F ) of Q-mixed Hodge structure on X is called

graded polarizable if GrWm V is a polarizable pre-variation of Q-Hodge structure for

every m.

(iii) We define a morphism of pre-variations of Q-mixed Hodge structure in the

trivial way. A morphism of polarizable pre-variations of Q-mixed Hodge structure

is a morphism of the underlying pre-variations.

Now, let us recall the definition of graded polarizable variation of Q-mixed

Hodge structure (GPVMHS for short). See, for example, [SZ, §3], [SSU, Part I,

Section 1], [BZ, Section 7], [PS, Definitions 14.44 and 14.45], etc.

Definition 3.10 (GPVMHS). Let X be a complex manifold.

(i) A pre-variation V = (V,W, F ) of Q-mixed Hodge structure on X is said to

be a variation of Q-mixed Hodge structure if the canonical integrable connection ∇
on V ' OX ⊗ V satisfies Griffiths transversality (3.6.1).

(ii) A variation of Q-mixed Hodge structure is called graded polarizable if the

underlying pre-variation is graded polarizable.

(iii) A morphism of (graded polarizable) variations of Q-mixed Hodge struc-

ture is a morphism of the underlying pre-variations.

The following definition of admissibility was given by Steenbrink–Zucker [SZ,

(3.13) Properties] in the one-dimensional case and by Kashiwara [Ks, 1.8, 1.9] in

the general case. See also [PS, Definition 14.49].

Definition 3.11 (Admissibility, cf. [Ks, 1.8, 1.9]). (i) A variation of Q-mixed

Hodge structure V = (V,W, F ) over ∆∗ = ∆ \ {0}, where ∆ = {t ∈ C | |t| < 1}, is

said to be pre-admissible if it satisfies:

(3.11.1) The monodromy around the origin is quasi-unipotent.

(3.11.2) Let Ṽ and WkṼ be the upper canonical extensions of V = O∆∗ ⊗ V and

of O∆∗ ⊗WkV in the sense of Deligne [D1, Remarques 5.5(i)] (see also

[Ko2, Section 2] and Remark 7.4). Then the filtration F on V extends to

the filtration F on Ṽ such that GrpFGrWk Ṽ is a locally free O∆-module of

finite rank for all k, p.

(3.11.3) The logarithm of the unipotent part of the monodromy admits a weight

filtration relative to W .

(ii) Let X be a complex variety and U a nonsingular Zariski open subset of X.

A variation of Q-mixed Hodge structure V on U is said to be admissible (with

respect to X) if for every morphism i : ∆→ X with i(∆∗) ⊂ U , the variation i∗V

on ∆∗ is pre-admissible.
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We can analogously define an R-mixed Hodge structure, a variation of R-

mixed Hodge structure, etc.

In Section 5 we frequently use the following lemma which is a special case of

[Ks, Proposition 1.11.3] (see also Remark 7.4 below).

Proposition 3.12 (cf. [Ks]). Let X be a complex manifold, U the complement of

a normal crossing divisor on X, and V = (V,W, F ) a variation of R-mixed Hodge

structure on U . The upper canonical extensions of V = OU⊗V and of WkV = OU⊗
WkV are denoted by Ṽ and WkṼ respectively. If V is admissible on U with respect

to X, then the filtration F on V extends to a finite filtration F on Ṽ by subbundles

such that GrpFGrWk Ṽ is a locally free OX-module of finite rank for all k, p.

We give an elementary but useful remark on the quasi-unipotency of mon-

odromy.

Remark 3.13 (Quasi-unipotency). If the local system V has a Z-structure, that

is, there is a local system VZ on X of Z-modules of finite rank such that V =

VZ⊗Q, in Definition 3.11, then quasi-unipotency automatically follows from Borel’s

theorem (cf. [Sc, (4.5) Lemma (Borel)]).

The following lemma states the fundamental results on pre-variations of

Q-Hodge structure.

Lemma 3.14. Let X be a complex manifold.

(i) The category of the pre-variations of Q-Hodge structure of weight m on X

is an abelian category for every m.

(ii) Let V1 and V2 be pre-variations of Q-Hodge structure of weight m1 and

m2 respectively, and ϕ : V1 → V2 a morphism of pre-variations. If m1 > m2, then

ϕ = 0.

(iii) Let ϕ : V1 → V2 be a morphism of pre-variations V1 = (V1, F ) and

V2 = (V2, F ) of Q-Hodge structure of weight m on X. Then the induced morphism

ϕ⊗ id : V1 ⊗OX → V2 ⊗OX is strictly compatible with the filtration F .

(iv) The functor from the category of pre-variations of Q-Hodge structure of

weight m to the category of Q-Hodge structures of weight m which sends V to V (x)

is an exact functor for every x ∈ X.

(v) The category of polarizable variations of Q-Hodge structure of weight m

on X is an abelian category for every m.

Proof. Statements (i), (iii) and (iv) are easy consequences of Lemma 3.4(iv), and

(ii) is easily deduced from the corresponding result for Q-Hodge structures. So we

prove (v) now.
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Let V1 = (V1, F ) and V2 = (V2, F ) be polarizable pre-variations of Q-Hodge

structure of weight m on X, and ϕ : V1 → V2 a morphism. We fix polarizations

on V1 and V2 respectively. Taking (i) into the account, it is sufficient to prove that

Ker(ϕ) and Coker(ϕ) are polarizable. The case of Ker(ϕ) is trivial, so we discuss

the case of Coker(ϕ).

The morphism ϕ induces a morphism

ϕ∗ : Hom(V2,QX(−m))→ Hom(V1,QX(−m)),

which is clearly a morphism of pre-variations of Q-Hodge structure of weight m.

On the other hand, the polarizations on V1 and V2 induce identifications

V1 ' Hom(V1,QX(−m)), V2 ' Hom(V2,QX(−m)),

which are isomorphisms of pre-variations of Q-Hodge structure. By these iden-

tifications the morphism ϕ∗ above can be considered as a morphism of pre-

variations V2 → V1, denoted again by ϕ∗ by abuse of notation. Then the inclusion

Ker(ϕ∗) ↪→ V2 induces an isomorphism Ker(ϕ∗) ' Coker(ϕ) of pre-variations.

Thus we obtain the expected polarization.

Here we make a brief remark on the dual of a variation of Q-mixed Hodge

structure.

Remark 3.15. Let V = ((V,W ), (V,W, F ), α) be a pre-variation of Q-mixed

Hodge structure on a complex manifold X. On the dual local system V∗ =

HomQ(V,Q),

WmV∗ = (V/W−m−1)∗ ⊂ V∗

defines an increasing filtration W . Similarly, on V∗ = HomOX (V,OX),

WmV∗ = (V/W−m−1)∗, F pV∗ = (V/F 1−p)∗

define increasing and decreasing filtrations. We have

GrpFGrWm V∗ ' (Gr−pF GrW−mV)∗

for all m, p by definition. In view of the isomorphism OX ⊗ V∗ ' V∗, it turns out

that ((V∗,W ), (V∗,W, F )) is a pre-variation of Q-mixed Hodge structure on X. It

is denoted by V ∗ for short and called the dual of V . It is easy to see that V ∗ is

graded polarizable or a variation of Q-mixed Hodge structure if V is so. If X is a

Zariski open subset of another variety, then V ∗ is admissible if V is so.

We close this section with a lemma concerning the relative monodromy weight

filtration for a filteredQ-mixed Hodge complex. For the definition, see, for example,

[E2, 6.1.4 Définition].
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Remark 3.16. We set

W [m]k = Wk−m

as in [D2], [E2]. Our notation is different from the one in [CKS].

Lemma 3.17. Let ((AQ,W
f ,W ), (AC,W

f ,W, F ), α) be a filtered Q-mixed Hodge

complex such that the spectral sequence Ep,qr (AC,W
f ) degenerates at E2-terms,

and ν : AC → AC a morphism of complexes preserving the filtration W f and

satisfying the condition ν(WmAC) ⊂ Wm−2AC for every m. If the filtration

W [−m] on Hn(GrW
f

m AC) is the monodromy weight filtration of the endomorphism

Hn(GrW
f

m ν) for all m,n, then the filtration W on Hn(AC) is the relative weight

monodromy filtration of the endomorphism Hn(ν) with respect to the filtration W f

for all n.

Proof. The assumption implies that the morphism Hp+q(GrW
f

−p ν)k induces an iso-

morphism

Gr
W [p+q]
q+k Ep,q1 (AC,W

f )→ Gr
W [p+q]
q−k Ep,q1 (AC,W

f )

for all p, q and k ≥ 0, by the isomorphism Ep,q1 (AC,W
f ) ' Hp+q(GrW

f

−p AC). On

the other hand, the E2-degeneracy for the filtration W f gives the isomorphism

Ep,q2 (AC,W
f ) ' GrW

f

−p H
p+q(AC)

for all p, q, under which the filtration Wrec on the left hand side coincides with the

filtration W on the right hand side by [E2, 6.1.8 Théorème]. Since the morphism d1

of E1-terms induces a morphism of mixed Hodge structures

d1 : (Ep,q1 (AC,W
f ),W [p+ q], F )→ (Ep+1,q

1 (AC,W
f ),W [p+ q + 1], F )

for all p, q by [E2, 6.1.8 Théorème] again, the morphism (Hp+q(ν))k induces an

isomorphism

Gr
W [p+q]
q+k GrW

f

−p H
p+q(AC)→ Gr

W [p+q]
q−k GrW

f

−p H
p+q(AC)

for all p, q and k ≥ 0. Now we can easily check the conclusion.

§4. Variations of mixed Hodge structure of geometric origin

In this section, we discuss variations of mixed Hodge structure arising from mixed

Hodge structures on cohomology with compact support for simple normal crossing

pairs. We will check that those variations are graded polarizable and admissible (see

Theorem 4.15). These properties will play a crucial role in the subsequent sections.
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4.1. For a morphism f : X → Y of topological spaces, we always use the Gode-

ment resolution to compute the higher direct image Rf∗ of abelian sheaves on X.

This means that Rf∗F is the genuine complex f∗C•GdmF for an abelian sheaf F
on X, where C•Gdm stands for the Godement resolution as in Peters–Steenbrink

[PS, B.2.1]. If F carries a filtration F , Rf∗F is the genuine filtered complex. For a

morphism ϕ : F → G of sheaves on X, the morphism

Rf∗(ϕ) : Rf∗F → Rf∗G

is the genuine morphism of complexes defined by using the Godement resolution.

We use the same notation for complexes of abelian sheaves, Q-sheaves, C-sheaves,

OX -modules etc.

4.2. Let f : X• → Y be an augmented semisimplicial topological space. The

morphism Xp → Y induced by f is denoted by fp for every p. For an abelian

sheaf F• on X•.
Rf•∗F• = {Rfp∗Fp}p≥0

defines a co-semisimplicial complex on Y by what we mentioned in 4.1. Then we

define
Rf∗F• = sRf•∗F•

as in [D3, (5.2.6.1)]. More precisely, Rf∗F• is the single complex associated to the

double complex
...

...y y
· · · −−−−→ (Rfp∗Fp)q

δ−−−−→ (Rfp+1∗Fp+1)q −−−−→ · · ·

(−1)pd

y y(−1)p+1d

· · · −−−−→ (Rfp∗Fp)q+1 δ−−−−→ (Rfp+1∗Fp+1)q+1 −−−−→ · · ·y y
...

...

where δ in the horizontal lines denotes the Čech type morphism and d in the

vertical lines denotes the differential of the complexes Rfp∗Fp for every p. The

increasing filtration L on Rf∗F• is defined by

(4.2.1) Lm(Rf∗F•)n =
⊕
p≥−m

(Rfp∗Fp)n−p

for all m,n (cf. Deligne [D3, (5.1.9.3)]). Thus we have

(4.2.2) GrLmRf∗F• = Rf−m∗F−m[m]
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for every m. Whenever F• admits an increasing filtration W , we set

Wm(Rf∗F•)n =
⊕
p

Wm(Rfp∗Fp)n−p,(4.2.3)

δ(W,L)m(Rf∗F•)n =
⊕
p

Wm+p(Rfp∗Fp)n−p(4.2.4)

for all n, p. Then we have

Grδ(W,L)
m Rf∗F =

⊕
p

GrWm+pRfp∗Fp[−p]

for every m. The case of a decreasing filtration F on F is transformed to the case

of an increasing filtration by setting WmF = F−mF . We use the same convention

for complexes of abelian sheaves, Q-sheaves etc.

4.3. Let X and Y be complex manifolds and f : X → Y a smooth projective

morphism. The de Rham complexes of X and Y are denoted by ΩX and ΩY re-

spectively, and the relative de Rham complex for f is denoted by ΩX/Y . Moreover,

F denotes the stupid filtration on ΩX and ΩX/Y . The inclusion QX → OX induces

a morphism of complexes QX → ΩX/Y . Then we obtain a morphism

Rif∗QX → Rif∗ΩX/Y

for every i, denoted by αX/Y . Then

(Rif∗QX , (Rif∗ΩX/Y , F ), αX/Y )

is a polarizable variation of Q-Hodge structure of weight i on Y . Here we recall

the proof of Griffiths transversality following [KO].

A finite decreasing filtration G on ΩX is defined by

(4.3.1) GpΩX = Im(f−1ΩpY ⊗f−1OY ΩX [−p]→ ΩX)

for all p. Then we have isomorphisms

GrpGΩX ' f−1ΩpY ⊗f−1OY ΩX/Y [−p]

for all p, which induce isomorphisms

Ep,q1 (Rf∗ΩX , G) ' ΩpY ⊗R
qf∗ΩX/Y

for all p, q. Thus the morphisms of the E1-terms give us

∇ : ΩpY ⊗R
qf∗ΩX/Y → Ωp+1

Y ⊗Rqf∗ΩX/Y
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for all p, q. It is easy to see that

∇ : Rqf∗ΩX/Y → Ω1
Y ⊗Rqf∗ΩX/Y

satisfies Griffiths transversality.

On the other hand, we consider the complexes ΩY and f−1ΩY . The stupid

filtration on ΩY is denoted by G for a while. We have

GrpGf
−1ΩY ' f−1ΩpY [−p] = f−1ΩpY ⊗Q QX [−p]

= f−1ΩpY ⊗f−1OY f
−1OY [−p]

for every p. Therefore the E1-terms of the associated spectral sequence is identified

with

Ep,q1 (Rf∗f
−1ΩY , G) = ΩpY ⊗Q R

qf∗QX
under which the morphisms of E1-terms are identified with

d⊗ id : ΩpY ⊗Q R
qf∗QX → Ωp+1

Y ⊗Q R
qf∗QX

for all p, q. On the other hand, the canonical morphism

f−1ΩY → ΩX

is a filtered quasi-isomorphism by the relative Poincaré lemma. Thus we obtain a

commutative diagram

OY ⊗Q R
qf∗QX

'−−−−→ Rqf∗ΩX/Y

d⊗id

y y∇
Ω1
Y ⊗Q R

qf∗QX
'−−−−→ Ω1

Y ⊗Rqf∗ΩX/Y

which shows that d⊗ id on OY ⊗Q R
if∗QX satisfies Griffiths transversality.

Notation 4.4. A semisimplicial variety X• is said to be strict if there exists a

non-negative integer p0 such that Xp = ∅ for all p ≥ p0.

For an augmented semisimplicial variety f : X• → Y , we say f is smooth,

projective etc. if fp : Xp → Y is smooth, projective etc. for all p.

Lemma 4.5. Let f : X• → Y be a smooth projective augmented strict semisim-

plicial variety. Moreover, assume that Y is smooth. Then Rif∗QX• underlies a

graded polarizable variation of Q-mixed Hodge structure on Y for all i.

Proof. The morphism

Rif∗(αX•/Y ) : Rif∗QX• → Rif∗ΩX•/Y
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is induced by the canonical morphism αX•/Y : QX• → ΩX•/Y . We can easily see

that Rif∗(αX•/Y ) induces an isomorphism

(4.5.1) Rif∗QX•/Y ⊗OY → Rif∗ΩX•/Y

by the relative Poincaré lemma.

The filtration L on Rif∗QX• and Rif∗ΩX•/Y is defined by (4.2.1). Moreover,

the stupid filtration F on ΩX•/Y induces the filtration F on Rif∗ΩX•/Y in the

same way as in (4.2.3). It is sufficient to prove that

((Rif∗QX• , L[i]), (Rif∗ΩX•/Y , L[i], F ), Rif∗(αX•/Y ))

is a graded polarizable variation of Q-mixed Hodge structure on Y .

To this end, we consider the data

K = ((Rf∗QX• , L), (Rf∗ΩX•/Y , L, F ), Rf∗(αX•/Y ))

and the spectral sequence associated to the filtration L. By (4.2.2), we have

Ep,q1 (K,L) = (Rqfp∗QXp , (Rqfp∗ΩXp/Y , F ), Rqfp∗(αXp/Y )),

which is a polarizable variation of Q-Hodge structure of weight q for every p, q.

Moreover, the morphism

d1 : Ep,q1 (K,L)→ Ep+1,q
1 (K,L)

is a morphism of variations of Q-Hodge structure. Therefore Ep,q2 (K,L) is a polar-

izable variation of Q-Hodge structure of weight q for all p, q, and Frec = Fd = Fd∗

on Ep,q2 (K,L) by the lemma on two filtrations [D3]. Then the morphism

d2 : Ep,q2 (K,L)→ Ep+2,q−1
2 (K,L)

between E2-terms is a morphism of variations of Q-Hodge structure of weight q

and of weight q − 1 respectively, which implies that d2 = 0 (see Lemma 3.14(ii)).

Therefore the spectral sequence Ep,qr (K,L) degenerates at E2-terms and F =

Frec = Fd = Fd∗ on Ep,q∞ (K,L) = GrL−pH
p+q(K) by the lemma on two filtrations

again. Thus it turns out that

GrL[i]
m Hi(K) = (GrL[i]

m Rif∗QX• , (GrL[i]
m Rif∗ΩX•/Y , F ),GrL[i]

m Rif∗(αX•/Y ))

is a polarizable pre-variation of Q-Hodge structure of weight m on Y for every i,m.

It remains to prove that the morphism

(4.5.2) d⊗ id : OY ⊗Rif∗QX• → Ω1
Y ⊗Rif∗QX•

satisfies Griffiths transversality under the identification (4.5.1).
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Now we consider Rf∗f
−1
• ΩY and Rf∗ΩX• , where f−1

• ΩY denotes the complex

{f−1
p ΩY }p≥0 on X•. The filtration G on ΩY and ΩX• induces a filtration G on

Rf∗f
−1
• ΩY and Rf∗ΩX• . Moreover, the filtration F on ΩX• induces a filtration F

on Rf∗ΩX• . The canonical morphism

γ : f−1
• ΩY → ΩX• ,

which is a filtered quasi-isomorphism with respect to the filtration G by the relative

Poincaré lemma, induces the filtered quasi-isomorphism

Rf∗(γ) : Rf∗f
−1
• ΩY → Rf∗ΩX•

with respect to G. Now we consider the spectral sequences associated to G, and

the morphism of spectral sequences induced by Rf∗(γ).

We have

(4.5.3) GrpGRf∗f
−1
• ΩY ' Rf∗f−1

• ΩpY [−p] ' ΩpY ⊗Rf∗QX• [−p]

and

(4.5.4) GrpGRf∗ΩX• ' Rf∗(f
−1
• ΩpY ⊗ ΩX•/Y [−p])

' ΩpY ⊗Rf∗ΩX•/Y [−p]

for every p, so that the diagram

(4.5.5)

GrpGRf∗f
−1
• ΩY

'−−−−→ ΩpY ⊗Rf∗QX• [−p]

GrpGRf∗(γ)

y yid⊗Rf∗(αX•/Y )[−p]

GrpGRf∗ΩX•
'−−−−→ ΩpY ⊗Rf∗ΩX•/Y [−p]

is commutative.

The morphism

(4.5.6) ∇ : Rif∗ΩX•/Y → Ω1
Y ⊗Rif∗ΩX•/Y

is induced by the morphism of E1-terms

d1 : E0,i
1 (Rf∗ΩX• , G)→ E1,i

1 (Rf∗ΩX• , G)

via the identification (4.5.4). On the other hand, the morphism of E1-terms

d1 : E0,i
1 (Rf∗f

−1
• ΩY , G)→ E1,i

1 (Rf∗f
−1
• ΩY , G)

is identified with

d⊗ id : OY ⊗Rif∗QX• → Ω1
Y ⊗Rif∗QX•
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by the isomorphism (4.5.3). By the commutativity of the diagram (4.5.5), the

morphisms ∇ and d⊗ id are identified under the isomorphism (4.5.1). Because ∇
satisfies Griffiths transversality, so does d⊗ id.

Remark 4.6. The spectral sequence Ep,qr (Rf∗ΩX•/Y , F ) degenerates at E1-terms

by the lemma on two filtrations [D3, Proposition (7.2.8)].

Remark 4.7. The construction above is functorial and compatible with the pull-

back by the morphism Y ′ → Y .

Lemma 4.8. Let f : X• → Y and g : Z• → Y be smooth projective augmented

strict semisimplicial varieties and ϕ : Z• → X• a morphism of semisimplicial

varieties compatible with the augmentations X• → Y and Z• → Y . The morphism

ϕ induces a morphism of complexes

ϕ−1 : Rf∗QX• → Rg∗QZ•

by using the Godement resolutions, as mentioned in 4.1. The cone of the mor-

phism ϕ−1 is denoted by C(ϕ−1). Then Hi(C(ϕ−1)) underlies a graded polarizable

variation of Q-mixed Hodge structure for every i.

Proof. A filtration L on C(ϕ−1) is defined by

LmC(ϕ−1)n = Lm−1(Rf∗QX•)n+1 ⊕ Lm(Rg∗QZ•)n

where L on the right hand side denotes the filtrations defined in the proof of

Lemma 4.5.

The morphism ϕ : Z• → X• induces another morphism of complexes

ϕ∗ : Rf∗ΩX•/Y → Rg∗ΩZ•/Y

which makes the diagram of complexes

(4.8.1)

Rf∗QX•
ϕ−1

−−−−→ Rg∗QZ•
Rf∗(αX•/Y )

y yRg∗(αZ•/Y )

Rf∗ΩX•/Y
ϕ∗−−−−→ Rg∗ΩZ•/Y

commute, where αX•/Y and αZ•/Y are the canonical morphisms as in the proof

of Lemma 4.5. Now we consider the mixed cone of the morphism ϕ∗ (see e.g.

[PS, 3.4]), that is, the cone C(ϕ∗) equipped with the filtrations

LmC(ϕ∗)n = Lm−1(Rf∗ΩX•/Y )n+1 ⊕ Lm(Rg∗ΩZ•/Y )n,

F pC(ϕ∗)n = F p(Rf∗ΩX•/Y )n+1 ⊕ F p(Rg∗ΩZ•/Y )n,
(4.8.2)



VMHS and Semipositivity 611

where L and F on the right hand sides denote the filtrations defined in the proof

of Lemma 4.5. Then the commutative diagram (4.8.1) induces a morphism of

filtered complexes α : (C(ϕ−1), L) → (C(ϕ∗), L) which induces a filtered quasi-

isomorphism (C(ϕ−1), L)⊗OY → (C(ϕ∗), L). Then we have

GrLmC(ϕ−1) = GrLm−1Rf∗QX• [1]⊕GrLmRg∗QZ•
= R(f−m+1)∗QX−m [m]⊕R(g−m)∗QZ−m [m]

and

(GrLmC(ϕ∗), F ) = (GrLm−1Rf∗ΩX•/Y [1], F )⊕ (GrLmRg∗ΩZ•/Y , F )

= (R(f−m+1)∗ΩX−m+1/Y [m], F )⊕ (R(g−m)∗ΩZ−m/Y [m], F )

for every m. Therefore the data

(Ep,q1 (C(ϕ−1), L), (Ep,q1 (C(ϕ∗), L), Frec), Ep,q1 (α))

is a polarizable variation of Q-Hodge structure of weight q. Now the same argument

in the proof of Lemma 4.5 implies that the spectral sequences Ep,qr (C(ϕ−1), L)

and Ep,qr (C(ϕ∗), L) degenerate at E2-terms, the spectral sequence Ep,qr (C(ϕ∗), F )

degenerates at E1-terms, and the data

((Hi(C(ϕ−1)), L[i]), (Hi(C(ϕ∗)), L[i], F ), Hi(α))

is a graded polarizable pre-variation of Q-mixed Hodge structure on Y for every i.

It remains to prove Griffiths transversality. We consider the complexes ΩX• ,

ΩZ• , g
−1
• ΩY and f−1

• ΩY with the decreasing filtration G as in the proof of Lemma

4.5. We have the commutative diagram

Rf∗f
−1
• ΩY −−−−→ Rg∗g

−1
• ΩYy y

Rf∗ΩX• −−−−→ Rg∗ΩZ•

where the vertical arrows are filtered quasi-isomorphisms with respect to the fil-

tration G. The top horizontal arrow is denoted by ψ−1 and the bottom by ψ∗ for

a while. Considering the cones C(ψ−1) and C(ψ∗) with the filtration G defined

just as F in (4.8.2), we obtain a commutative diagram of quasi-isomorphisms

C(ϕ−1)[−p]⊗ ΩpY −−−−→ GrpGC(ψ−1)

α⊗id

y y
C(ϕ∗)[−p]⊗ ΩpY −−−−→ GrpGC(ψ∗)

for every p. Then we can check Griffiths transversality as in the proof of Lemma 4.5.



612 O. Fujino and T. Fujisawa

4.9. Now we review Steenbrink’s results [St1], [St2] and fix some notation.

Let X be a smooth complex variety and f : X → ∆ a projective surjective

morphism. We set X∗ = f−1(∆∗) and E = f−1(0). The coordinate function on

∆ is denoted by t. We assume that Ered is a simple normal crossing divisor on X

and f : X∗ → ∆∗ is a smooth morphism. Moreover, we assume that Rif∗QX∗ are

of unipotent monodromy for all i for simplicity.

A finite decreasing filtration G on ΩX(logE) is defined by

G0ΩX(logE) = ΩX(logE),

G1ΩX(logE) = Im(f−1Ω1
∆(log 0)⊗ ΩX(logE)[−1]→ ΩX(logE)),

G2ΩX(logE) = 0,

as in (4.3.1). Then the morphism

∇ : Rif∗ΩX/∆(logE)→ Ω1
∆(log 0)⊗Rif∗ΩX/∆(logE)

is obtained as the morphism of E1-terms of the spectral sequence

Ep,qr (Rf∗ΩX/∆(logE), G).

The restriction ∇|∆∗ is identified with d ⊗ id on O∆∗ ⊗ Rif∗QX∗ via the isomor-

phisms

Rif∗ΩX/∆(logE)|∆∗ ' Rif∗ΩX∗/∆∗ ' O∆∗ ⊗Rif∗QX∗
by definition.

Steenbrink proved that Rif∗ΩX/∆(logE) is a locally free coherent O∆-module

and Res0(∇) is nilpotent. Therefore Rif∗ΩX/∆(logE) is the canonical extension of

O∆∗ ⊗Rif∗QX∗ for every i. Once we know the local freeness of Rif∗ΩX/∆(logE),

the canonical morphism

(4.9.1) Rif∗ΩX/∆(logE)⊗ C(0)
'→ Hi(E,ΩX/∆(logE)⊗OE)

is an isomorphism for every i.

The filtration G on ΩX(logE) induces a filtration on ΩX(logE)⊗OE , denoted

by G again. Then

(4.9.2) Gr1
GΩX(logE)⊗OE ' (ΩX/∆(logE)⊗OE)[−1]

because we have the identification

G1ΩX(logE) = d log t ∧ ΩX(logE)[−1] ' ΩX/∆(logE)[−1]

where d log t = dt/t. Therefore

E0,i
1 (RΓ(E,ΩX(logE)⊗OE), G) ' Hi(E,ΩX/∆(logE)⊗OE),

E1,i
1 (RΓ(E,ΩX(logE)⊗OE), G) ' Hi(E,ΩX/∆(logE)⊗OE),



VMHS and Semipositivity 613

for every i. Then the morphism of E1-terms

Hi(E,ΩX/∆(logE)⊗OE)→ Hi(E,ΩX/∆(logE)⊗OE)

coincides with Res0(∇) under the identification (4.9.1).

In [St1], Steenbrink constructed a cohomological Q-mixed Hodge complex,

denoted by

AX/∆ = ((AQ
X/∆,W ), (AC

X/∆,W, F ), αX/∆),

which admits a filtered quasi-isomorphism

(4.9.3) θX/∆ : (ΩX/∆(logE)⊗OEred
, F )→ (AC

X/∆, F )

where the F on the left hand side denotes the filtration induced by the stupid

filtration on ΩX/∆(logE). Because the canonical morphism

Hi(E,ΩX/∆(logE)⊗OE)→ Hi(Ered,ΩX/∆(logE)⊗OEred
)

is an isomorphism for every i by the unipotent monodromy condition, we have the

isomorphisms

(4.9.4) Rif∗ΩX/∆(logE)⊗ C(0)
'→ Hi(E,ΩX/∆(logE)⊗OE)

'→ Hi(Ered,ΩX/∆(logE)⊗OEred
)

'→ Hi(Ered, A
C
X/∆)

for every i.

Here we just recall the definition of AC
X/∆ from [St1]. WX(E) denotes the

increasing filtration on ΩX(logE) defined by the order of poles along E as

usual. The complex AC
X/∆ is the single complex associated to the double com-

plex ((AC
X/∆)p,q, d′, d′′) given by

(AC
X/∆)p,q = Ωp+q+1

X (logE)/WX(E)q

with the differentials

d′ = −d : (AC
X/∆)p,q → (AC

X/∆)p+1,q,

d′′ = −d log t∧ : (AC
X/∆)p,q → (AC

X/∆)p,q+1,

where d is the morphism induced from the differential of ΩX(logE), and d log t∧
denotes the morphism given by the wedge product with d log t = dt/t. For the

definitions of W and F on AC
X/∆, see [St1, 4.17]. The morphism given by

ΩpX(logE) 3 ω 7→ d log t ∧ ω ∈ (AC
X/∆)p,0
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induces the morphism (4.9.3)

θX/∆ : ΩX/∆(logE)⊗OEred
→ AC

X/∆

which turns out to be a filtered quasi-isomorphism with respect to the filtrations F

on both sides (see [St1, Lemma (4.15)]). The composite

ΩX(logE)⊗OE → ΩX(logE)⊗OEred

θX/∆−−−→ AC
X/∆

is also denoted by θX/∆ by abuse of notation.

On the other hand, the projection

ΩpX(logE)→ ΩpX(logE)/WX(E)0 = (AC
X/∆)p−1,0 ⊂ (AC

X/∆[−1])p

induces a morphism

πX/∆ : ΩpX(logE)⊗OE → (AC
X/∆[−1])p

for every p. Moreover, the projection

(AC
X/∆)p,q = Ωp+q+1

X (logD)/WX(E)q

→ Ωp+q+1
X (logE)/WX(E)q+1 = (AC

X/∆)p−1,q+1

induces a morphism of bifiltered complexes

(AC
X/∆,W, F )→ (AC

X/∆,W [−2], F [−1])

denoted by νX/∆ (see [St1, (4.22), Proposition (4.23)]). Then we have

(4.9.5) dπX/∆ = πX/∆d+ νX/∆θX/∆ : ΩpX(logE)⊗OE → (AC
X/∆)p

for every p, where d on the left hand side is the differential of AC
X/∆[−1].

We set

NX/∆ = Hi(νX/∆) : Hi(Ered, A
C
X/∆)→ Hi(Ered, A

C
X/∆)

for every i. It is known that the morphism

(4.9.6) Nk
X/∆ : GrWk H

i(Ered, A
C
X/∆)→ GrW−kH

i(Ered, A
C
X/∆)

is an isomorphism for every k ≥ 0 (see Steenbrink [St1], El Zein [E1], Saito [Sa],

Guillen–Navarro Aznar [GN], Usui [U]).

The complex BX/∆ is defined by

BpX/∆ = (AC
X/∆)p−1 ⊕ (AC

X/∆)p
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with the differential

d(x, y) = (−dx− νX/∆(y), dy)

for x ∈ (AC
X/∆)p−1 and y ∈ (AC

X/∆)p, where d denotes the differential of the

complex AC
X/∆. We define a filtration G on BX/∆ by

G0BX/∆ = BX/∆, G1BX/∆ = AC
X/∆[−1], G2BX/∆ = 0,

where AC
X/∆[−1] is regarded as a subcomplex of BX/∆ by the inclusion (AC

X/∆)p−1

→ BpX/∆ for every p.

A morphism

ΩpX(logE)⊗OE 3 ω 7→ (πX/∆(ω), θX/∆(ω)) ∈ (AC
X/∆)p−1 ⊕ (AC

X/∆)p

defines a morphism of complexes

(4.9.7) ηX/∆ : ΩX(logE)⊗OE → BX/∆

by (4.9.5). It is easy to check that the morphism ηX/∆ preserves the filtration G

on both sides. Note that the diagrams

Gr0
GΩX(logE)⊗OE

Gr0
GηX/∆−−−−−−→ Gr0

GBX/∆∥∥∥ ∥∥∥
ΩX/∆(logE)⊗OE

θX/∆−−−−→ AC
X/∆

and

Gr1
GΩX(logE)⊗OE

Gr1
GηX/∆−−−−−−→ Gr1

GBX/∆∥∥∥ ∥∥∥
ΩX/∆(logE)⊗OE [−1]

θX/∆[−1]
−−−−−−→ AC

X/∆[−1]

are commutative. Considering the morphisms between E1-terms induced by ηX/∆,

we have Res0(∇) = −NX/∆ on Hi(Ered, A
C
X/∆) under the isomorphism (4.9.4).

We remark that the construction above is functorial. For the rational structure

AQ
X/∆, we can use the construction by Steenbrink–Zucker [SZ].

In [St2], the local freeness of Rif∗Ω
p
X/∆(logE) is proved.

Lemma 4.10. Let f : X• → Y be a projective surjective augmented strict semi-

simplicial variety to a smooth algebraic variety Y . Moreover, assume that Xp is

smooth for every p. Then there exists a Zariski open dense subset Y ∗ of Y such

that (Rif∗QX•)|Y ∗ underlies an admissible graded polarizable variation of Q-mixed

Hodge structure for every i.
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Proof. There exists a non-empty Zariski open subset Y ∗ of Y such that the mor-

phism f : X• → Y is smooth over Y ∗. We set X∗• = f−1(Y ∗) and denote the

induced morphisms X∗• → Y ∗ again by f . Then (Rif∗QX•)|Y ∗ underlies a graded

polarizable variation of Q-mixed Hodge structure by Lemma 4.5.

It is sufficient to prove that the graded polarizable variation of Q-mixed Hodge

structure above is admissible. Because the graded polarizable variation of Q-mixed

Hodge structure constructed in Lemma 4.5 commutes with the base change as in

Remark 4.7, we may assume Y = ∆ and Y ∗ = ∆∗.

Our variation of graded polarizable Q-mixed Hodge structure has a Z-struc-

ture. Therefore, the quasi-unipotency of the monodromy around the origin is ob-

vious by Remark 3.13. Thus we have the property (3.11.1). Once we know the

quasi-unipotency of the monodromy, Lemma 1.9.1 in [Ks] allows us to assume

that f : X• → ∆ is of unipotent monodromy. Moreover we may assume that

f−1(0)red is a simple normal crossing divisor on the smooth semisimplicial com-

plex variety X•. We set E• = f−1
• (0). Note that E• and E•red = {(Ep)red}p≥0 are

strict semisimplicial subvarieties of X•.

Consider the bifiltered complex

(Rf∗ΩX•/∆(logE•), L, F )

where L is defined in (4.2.1) and F as in (4.2.3). We trivially have

(Rf∗ΩX•/∆(logE•), L, F )|∆∗ = (Rf∗ΩX∗•/∆∗ , L, F )

by definition.

Step 1. In this first step, we prove the local freeness of several coherent

O∆-modules.

Consider the spectral sequence

(Ep,qr (Rf∗ΩX•/∆(logE•), L), Frec)

associated to the filtration L on the complex Rf∗ΩX•/∆(logE•).

By (4.2.2), we have

(4.10.1) Ep,q1 (Rf∗ΩX•/∆(logE•), L) ' Rqfp∗ΩXp/∆(logEp),

which is the canonical extension of

Ep,q1 (Rf∗ΩX∗•/∆∗ , L) ' Rqfp∗ΩX∗p/∆∗

' O∆∗ ⊗Rqfp∗QX∗p ' O∆∗ ⊗ Ep,q1 (Rf∗QX∗• , L)
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by [St1]. Because taking the canonical extension is an exact functor by [D1, Propo-

sition 5.2(d)], Ep,q2 (Rf∗ΩX•/∆(logE•), L) is the canonical extension of

Ep,q2 (Rf∗ΩX∗•/∆∗ , L) ' O∆∗ ⊗Q E
p,q
2 (Rf∗QX∗• , L).

Therefore Ep,q2 (Rf∗ΩX•/∆(logE•), L) is a locally free coherent O∆-module. Once

we know the local freeness of E2-terms, the spectral sequence

Ep,qr (Rf∗ΩX•/∆(logE•), L)

degenerates at E2-terms because its restriction on ∆∗ degenerates at E2-terms.

Thus we see that

Ep,q2 (Rf∗ΩX•/∆(logE•), L) ' Ep,q∞ (Rf∗ΩX•/∆(logE•), L)

' GrL−pR
p+qf∗ΩX•/∆(logE•)

is locally free for all p, q. In particular, Rif∗ΩX•/∆(logE•) is a locally free coherent

O∆-module with

Rif∗ΩX•/∆(logE•)|∆∗ ' Rif∗ΩX∗•/∆ ' O∆∗ ⊗Rif∗QX∗•

for every i.

The morphism of E1-terms

(4.10.2) d1 : Rqfp∗ΩXp/∆(logEp)→ Rqfp+1∗ΩXp+1/∆(logEp+1)

preserves the filtration F as Frec = Fd = Fd∗ on the E1-terms in general and Frec

on Ep,q1 (Rf∗ΩX•/∆(logE•), L) coincides with F on Rqfp∗ΩXp/∆(logEp) under the

isomorphism (4.10.1). On the other hand, the filtration F on Rqfp∗ΩXp/∆(logEp)

coincides with the filtration obtained by the nilpotent orbit theorem of [Sc] because

GrrFR
qfp∗ΩXp/∆(logEp) ' Rq−rfp∗ΩrXp/∆(logEp)

is locally free for every r (see Corollary 5.2 below). By the SL2-orbit theorem [Sc],

(Rqfp∗ΩXp/∆(logEp)⊗ C(0),W, F )

underlies a Q-mixed Hodge structure for all p, q, where W denotes the monodromy

weight filtration. On the other hand, the morphism

d1(0) : Rqfp∗ΩXp/∆(logEp)⊗ C(0)→ Rqfp+1∗ΩXp+1/∆(logEp+1)⊗ C(0)

induced by the morphism d1 in (4.10.2) underlies a morphism of Q-mixed Hodge

structures because the restriction of d1 on ∆∗ preserves the Q-structures Rqfp∗QX∗p
and Rqfp+1∗QX∗p+1

. Therefore d1(0) is strictly compatible with the filtrations F
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on Rqfp∗ΩXp/∆(logEp) ⊗ C(0) and Rqfp+1∗ΩXp+1/∆(logEp+1) ⊗ C(0). In other

words, the morphism

d1(0) : Ep,q1 (Rf∗ΩX•/∆(logE•), L)⊗ C(0)

→ Ep+1,q
1 (Rf∗ΩX•/∆(logE•), L)⊗ C(0)

is strictly compatible with the filtrations Frec on both sides.

Applying Lemma 3.4(iv) to the complex

(E•,q1 (Rf∗ΩX•/∆(logE•), L), Frec)

we conclude that

GrrFrec
Ep,q2 (Rf∗ΩX•/∆(logE•), L)

is a locally free coherent O∆-module for every p, q, r, and Frec = Fd = Fd∗ on

Ep,q2 (Rf∗ΩX•/∆(logE•), L). Therefore

GrrFrec
Ep,q2 (Rf∗ΩX•/∆(logE•), L) ' GrrFGrL−pR

p+qf∗ΩX•/∆(logE•)

is locally free for all p, q, r. Moreover, the spectral sequence

Ep,qr (Rf∗ΩX•/∆(logE•), F )

degenerates at E1-terms by the lemma on two filtrations as before.

Step 2. The canonical morphism

ΩX•/∆(logE•)→ ΩX•/∆(logE•)⊗OE•

induces a morphism of complexes

(4.10.3) Rf∗ΩX•/∆(logE•)⊗ C(0)→ RΓ(E•,ΩX•/∆(logE•)⊗OE•)

preserving the filtration L on both sides. Then the morphism of spectral sequences

induces a morphism

(4.10.4) Ep,qr (Rf∗ΩX•/∆(logE•), L)⊗ C(0)

→ Ep,qr (RΓ(E•,ΩX•/∆(logE•)⊗OE•), L)

for all p, q, r. For r = 1, the morphism above coincides with the canonical morphism

Rqfp∗ΩXp/∆(logEp)⊗ C(0)→ Hq(Ep,ΩXp/∆(logEp)⊗OEp),

which is an isomorphism for all p, q as mentioned in 4.9. Therefore the morphism

Hp(E•,q1 (Rf∗ΩX•/∆(logE•), L)⊗ C(0))

→ Ep,q2 (RΓ(E•,ΩX•/∆(logE•)⊗OE•), L)
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is an isomorphism for all p, q. Moreover, the canonical morphism

Ep,q2 (Rf∗ΩX•/∆(logE•), L)⊗ C(0)

→ Hp(E•,q1 (Rf∗ΩX•/∆(logE•), L)⊗ C(0))

is an isomorphism for all p, q, because Ep,q2 (Rf∗ΩX•/∆(logE•), L) is locally free

for all p, q as proved in Step 1. Thus we know that the morphism (4.10.4)

is an isomorphism for all p, q and r = 2. Therefore the E2-degeneracy of

Ep,qr (Rf∗ΩX•/∆(logE•), L) implies the E2-degeneracy of

Ep,qr (RΓ(E•,ΩX•/∆(logE•)⊗OE•), L).

Moreover, we have the canonical isomorphism

GrLmR
if∗ΩX•/∆(logE•)⊗ C(0)→ GrLmH

i(E•,ΩX•/∆(logE•)⊗OE•)

for all i,m. In particular, the canonical morphism

(4.10.5) Rif∗ΩX•/∆(logE•)⊗ C(0)→ Hi(E•,ΩX•/∆(logE•)⊗OE•)

is an isomorphism for every i.

Step 3. Considering the filtered complex (Rf∗ΩX•(logE•), G) we obtain the in-

tegrable logarithmic connection

∇ : Rif∗ΩX•/∆(logE•)→ Ω1
∆(log 0)⊗Rif∗ΩX•/∆(logE•)

as the morphism of E1-terms of the spectral sequence. It is clear that∇|∆∗ coincides

with the connection (4.5.6).

On the other hand, we consider

(RΓ(E•,ΩX•(logE•)⊗OE•), G)

with the identification

G1ΩX•(logE•)⊗OE• ' (ΩX•/∆(logE•)⊗OE•)[−1]

as in (4.9.2). The same procedure as in 4.9 shows the fact that the morphism of

E1-terms

(4.10.6) Hi(E•,ΩX•/∆(logE•)⊗OE•)→ Hi(E•,ΩX•/∆(logE•)⊗OE•)

coincides with Res0(∇) via the isomorphism (4.10.5).
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Step 4. The data AX•/∆ gives us an object on the semisimplicial variety E•red

because Steenbrink’s construction in 4.9 is functorial, as mentioned there. Then

the data

(4.10.7) (RΓ(E•red, AX•/∆), L, δ(W,L), F )

is obtained. We set

AC = RΓ(E•red, A
C
X•/∆

)

for simplicity. The morphism

θX•/∆ : ΩX•/∆(logE•)⊗OE• → AC
X•/∆

induces a morphism

(4.10.8) θ : RΓ(E•,ΩX•/∆(logE•)⊗OE•)→ AC

which preserves the filtrations L and F . Because

Hi(GrLmθ) : Hi(GrLmRΓ(E•,ΩX•/∆(logE•)⊗OE•))→ Hi(GrLmAC)

coincides with the isomorphism

Hi(E−m,ΩX−m/∆(logE−m)⊗OE−m))→ Hi((E−m)red, A
C
X−m/∆

)

in (4.9.4) for all i,m, the morphism θ is a filtered quasi-isomorphism with respect

to L. In particular, θ is a quasi-isomorphism, that is,

(4.10.9) Hi(θ) : Hi(E•,ΩX•/∆(logE•)⊗OE•)→ Hi(AC)

is an isomorphism for every i.

Moreover, the morphism

νX•/∆ : (AC
X•/∆

,W, F )→ (AC
X•/∆

,W [−2], F [−1])

induces a morphism

(4.10.10) (AC, L, δ(W,L), F )→ (AC, L, δ(W,L)[−2], F [−1])

which we simply denote by ν. Since

ν(δ(W,L)mAC) ⊂ δ(W,L)m−2AC,

ν is a nilpotent endomorphism. We set

N = Hi(ν) : Hi(AC)→ Hi(AC)

for every i.
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On the other hand, we obtain (RΓ(E•red, BX•/∆), G) from BX•/∆ with the

filtration G. By definition, we have

RΓ(E•red, BX•/∆)n = An−1
C ⊕AnC

and

d(x, y) = (−dx− ν(y), dy)

for x ∈ An−1
C and y ∈ AnC, where d is the differential of the complex AC. Moreover,

the filtration G on RΓ(E•red, BX•/∆) satisfies

G1RΓ(E•red, BX•/∆) = AC[−1]

as in 4.9. The morphism

(4.10.11) ηX•/∆ : ΩX•(logE•)⊗OE• → BX•/∆

induced by (4.9.7) gives a morphism

η : RΓ(E•,ΩX•(logE•)⊗OE•)→ RΓ(E•red, BX•/∆)

preserving the filtration G. Note that the diagrams

Gr0
GRΓ(E•,ΩX•(logE•)⊗OE•)

Gr0
Gη−−−−→ Gr0

GBX•/∆∥∥∥ ∥∥∥
RΓ(E•,ΩX•/∆(logE•)⊗OE•)

θ−−−−→ AC

and

Gr1
GRΓ(E•,ΩX•(logE•)⊗OE•)

Gr1
Gη−−−−→ Gr1

GBX•/∆∥∥∥ ∥∥∥
RΓ(E•,ΩX•/∆(logE•)⊗OE•)[−1]

θ[−1]−−−−→ AC[−1]

are commutative by definition. Thus the morphism of E1-terms (4.10.6) coincides

with −N under the isomorphism (4.10.9). Therefore Res0(∇) is identified with −N
via the isomorphisms (4.10.5) and (4.10.9). Because ν is nilpotent, the morphism

N is nilpotent, and hence so is Res0(∇). Thus we conclude that Rif∗ΩX•/∆(logE•)

is the canonical extension of Rif∗ΩX∗•/∆∗ ' O∆∗ ⊗Rif∗QX∗• .

Step 5. We can easily see that the data (4.10.7) is a Q-mixed Hodge complex

filtered by L (for the definition of filtered Q-mixed Hodge complex, see e.g. [E2,

6.1.4 Définition]). Moreover, the spectral sequence associated to the filtration L

degenerates at E2-terms because θ in (4.10.8) is a filtered quasi-isomorphism and
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because the spectral sequence for (RΓ(E•,ΩX•/∆(logE•) ⊗OE•), L) degenerates

at E2-terms. The filtration induced by δ(W,L) on

GrLmAC ' RΓ((E−m)red, A
C
X−m/∆

)

coincides with W [m] and the morphism GrLmν coincides with νX−m/∆ for every m.

Hence the filtration δ(W,L)[−m] on Hi(GrLmAC) is the monodromy weight filtra-

tion by the isomorphism (4.9.6). Therefore δ(W,L) on Hi(AC) is the monodromy

weight filtration of N = Hi(ν) relative to the filtration L by Lemma 3.17.

Thus the condition (3.11.2) is obtained by the local freeness in Step 1 and

by the fact that Rif•∗ΩX•/∆(logE•) is the canonical extension of Rif•∗ΩX∗•/∆∗ '
O∆∗ ⊗Rif•∗QX∗• for every i in Step 3. Moreover, the condition (3.11.3) is deduced

from the existence of the monodromy weight filtration of N relative to L in Step 5

and from the fact that N coincides with −Res0(∇) in Step 3.

Remark 4.11. Let (V,W ) be a finite-dimensional Q-vector space equipped with

a finite increasing filtration W , and N a nilpotent endomorphism of V preserving

the filtration W . On the C-vector space VC = C ⊗ V , the filtration W and the

nilpotent endomorphism NC = id ⊗ N are induced in the trivial way. Then the

existence of the monodromy weight filtration of N relative to W on V is equivalent

to the existence of the monodromy weight filtration of NC relative to W on VC.

We can check this equivalence by using Theorem (2.20) of [SZ].

Lemma 4.12 (GPVMHS for relative cohomology). Let f : X• → Y and g :

Z• → Y be projective augmented strict semisimplicial varieties and ϕ : Z• → X• a

morphism of semisimplicial varieties compatible with the augmentations X• → Y

and Z• → Y . The cone of the canonical morphism ϕ−1 : Rf∗QX• → Rg∗QZ• is de-

noted by C(ϕ−1) as in Lemma 4.8. Take an open subset Y ∗ such that f : X• → Y

and g : Z• → Y are smooth over Y ∗. Then Hi(C(ϕ−1))|Y ∗ underlies an admissible

graded polarizable variation of Q-mixed Hodge structure for every i.

Proof. By Lemma 4.8, Hi(C(ϕ−1))|Y ∗ is a graded polarizable variation of Q-mixed

Hodge structure. We will prove its admissibility.

As in Lemma 4.10, we may assume the following:

• Y = ∆, Y ∗ = ∆∗.

• fp : Xp → ∆ and gq : Zq → ∆ are of unipotent monodromy for all p, q.

• f−1(0)red and g−1(0)red are simple normal crossing divisors on X• and Z• re-

spectively.
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We set E• = f−1(0) and F• = g−1(0). The morphism ϕ : Z• → X• induces a

morphism of complexes

ϕ∗ : Rf∗ΩX•/∆(logE•)→ Rg∗ΩZ•/∆(logF•)

as in the proof of Lemma 4.8. Then we consider C(ϕ∗) equipped with filtrations

L and F defined as in (4.8.2) from the filtrations L and F on the complexes

Rf∗ΩX•/∆(logE•) and Rg∗ΩZ•/∆(logF•). Then C(ϕ∗)|∆∗ induces a mixed Hodge

structure on Hi(C(ϕ−1)) as in the proof of Lemma 4.8.

Because

(Ep,q1 (C(ϕ∗), L), F )

= (Rq(fp+1)∗ΩXp+1/∆(logEp), F )⊕ (Rq(gp)∗ΩZp/∆(logFp), F )

as in the proof of Lemma 4.8, the same argument as in Step 1 of the proof of

Lemma 4.10 shows that the spectral sequence Ep,qr (C(ϕ∗), L) degenerates at E2-

terms, and

GrrFrec
Ep,q2 (C(ϕ∗), L) ' GrrFGrL−pH

p+q(C(ϕ∗))

are locally free coherent O∆-modules for all p, q, r. Moreover, the spectral sequence

Ep,qr (C(ϕ∗), F ) degenerates at E1-terms by the lemma on two filtrations as usual.

Let AC
X•/∆

and AC
Z•/∆

be the complexes defined in Step 4 of the proof of

Lemma 4.10. The morphism ϕ induces a morphism of trifiltered complexes

(RΓ(E•red, A
C
X•/∆

), L, δ(W,L), F )→ (RΓ(F•red, A
C
Z•/∆

), L, δ(W,L), F )

by using the Godement resolution as in 4.1. This morphism of complexes is denoted

by ψ for a while. On the complex C(ψ), the filtrations L and F are defined in the

same way as in (4.8.2), and the filtration δ(W,L) in the same way as L. We

can easily check that (C(ψ), L, δ(W,L), F ) underlies a filtered Q-mixed Hodge

complex. The composites of the morphisms (4.10.3) and (4.10.8) for X• and Z• fit

in the commutative diagram

Rf∗ΩX•/∆(logE•)⊗ C(0) −−−−→ RΓ(E•red, A
C
X•/∆

)

ϕ∗⊗id

y yψ
Rg∗ΩZ•/∆(logF•)⊗ C(0) −−−−→ RΓ(F•red, A

C
Z•/∆

)

from which a morphism of complexes C(ϕ∗)⊗C(0)→ C(ψ) preserving the filtra-

tions L and F is obtained. This morphism induces an isomorphism

Ep,q1 (C(ϕ∗), L)⊗ C(0)→ Ep,q1 (C(ψ), L)
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because the morphism between E1-terms coincides with the direct sum of the

isomorphisms (4.10.5) for X• and Z•. Then the canonical morphism

Ep,q2 (C(ϕ∗), L)⊗ C(0)→ Ep,q2 (C(ψ), L)

is an isomorphism because the local freeness of Ep,q2 (C(ϕ∗), L) implies that the

canonical morphism

Ep,q2 (C(ϕ∗), L)⊗ C(0)→ Hp(E•,q1 (C(ϕ∗), L)⊗ C(0))

is an isomorphism. Therefore the spectral sequence Ep,qr (C(ψ), L) degenerates at

E2-terms and the canonical morphism

Hi(C(ϕ∗))⊗ C(0)→ Hi(C(ψ))

is an isomorphism for every i, under which the filtration L on both sides coincides.

The morphisms (4.10.10) for X• and Z• induce a morphism of complexes

(C(ψ), L, δ(W,L), F )→ (C(ψ), L, δ(W,L)[−2], F [−1]),

denoted by ν again.

By using the mapping cone of the canonical morphism

(Rf∗ΩX•(logE•), G)→ (Rg∗ΩZ•(logF•), G)

with the decreasing filtrations G defined in the same way as F in (4.8.2), we

obtain the integrable logarithmic connection ∇ on Hi(C(ϕ∗)) for every i in the

same way as in the proof of Lemma 4.8. By definition, the restriction of this ∇
onto ∆∗ coincides with the original ∇ on Hi(C(ϕ∗))|∆∗ . Similarly, the morphism

ϕ : Z• → X• induces a morphism of filtered complexes (BX•/∆, G)→ (BZ•/∆, G)

such that the diagram

ΩX•(logE•) −−−−→ ΩZ•(logF•)y y
BX•/∆ −−−−→ BZ•/∆

is commutative. By considering the cone of the morphism

RΓ(E•red, BX•/∆)→ RΓ(F•red, BZ•/∆)

with the decreasing filtration G, the residue Res0(∇) on Hi(C(ϕ∗))⊗C(0) is iden-

tified with −Hi(ν) for every i. Because the morphism ν is trivially nilpotent, we

conclude that Res0(∇) is nilpotent. ThereforeHi(C(ϕ∗)) is the canonical extension

of Hi(C(ϕ∗))|∆∗ . Thus the condition (3.11.2) is satisfied by Hi(C(ϕ∗)) for every i.

Moreover, we can easily see that the filtration δ(W,L)[−m] on Hi(GrLmC(ψ)) is
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the monodromy weight filtration of GrLmH
i(ν) for every i,m. Therefore Lemma

3.17 implies that the filtration δ(W,L) is the monodromy weight filtration of Hi(ν)

relative to L on Hi(C(ψ)) ' Hi(C(ϕ∗))⊗ C(0).

Theorem 4.13 (GPVMHS for cohomology with compact support). Let f :X→Y

be a projective surjective morphism from a complex variety X onto a smooth com-

plex variety Y , and Z a closed subset of X. Then there exists a Zariski open dense

subset Y ∗ of Y such that (Ri(f |X\Z)!QX\Z)|Y ∗ underlies an admissible graded

polarizable variation of Q-mixed Hodge structure for every i.

Proof. The open immersion X \ Z → X and the closed immersion Z → X are

denoted by ι and j respectively. We set g = fj : Z → Y . Take cubical hyperreso-

lutions εZ : Z• → Z and εX : X• → X which fit in the commutative diagram

Z•
ϕ−−−−→ X•

εZ

y yεX
Z

j−−−−→ X

for some morphism ϕ : Z• → X• of cubical varieties. The cone of the canonical

morphism ϕ−1 : R(fεX)∗QX• → R(gεZ)∗QZ• is denoted by C(ϕ−1) as in Lemma

4.12. Then the composite of the canonical morphisms

R(f |X\Z)!QX\Z ' Rf∗ι!QX\Z → Rf∗QX → R(fεX)∗QX•

induces a quasi-isomorphismR(f |X\Z)!QX\Z → C(ϕ−1)[−1] from which we obtain

the conclusion by considering the filtration L[−1] on C(ϕ−1)[−1].

4.14. Let (X,D) be a simple normal crossing pair with D reduced. The irreducible

decompositions of X and D are given by

X =
⋃
i∈I

Xi, D =
⋃
λ∈Λ

Dλ

respectively. Fixing orders < on Λ and I, we set

Dk ∩Xl =
∐

λ0<λ1<···<λk
i0<i1<···<il

Dλ0
∩Dλ1

∩ · · · ∩Dλk ∩Xi0 ∩Xi1 ∩ · · · ∩Xil

for k, l ≥ 0. Here we use the convention

Dk = Dk ∩X−1 =
∐

λ0<λ1<···<λk

Dλ0
∩Dλ1

∩ · · · ∩Dλk ,

Xl = D−1 ∩Xl =
∐

i0<i1<···<il

Xi0 ∩Xi1 ∩ · · · ∩Xil ,
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for k, l ≥ 0. Moreover, we set

(D ∩X)n =
∐

k+l+1=n

Dk ∩Xl

for n ≥ 0. Thus we obtain projective augmented strict semisimplicial varieties

εX : (D ∩ X)• → X, εD : D• → D and a morphism of semisimplicial varieties

ϕ : D• → (D ∩ X)• compatible with the augmentations εX and εD. We remark

that Dk ∩ Xl are smooth for all k, l by the definition of simple normal crossing

pair. Therefore εD : D• → D is a hyperresolution of D. Now we will see that

εX : (D ∩ X)• → X is also a hyperresolution of X. It is sufficient to prove that

εX is of cohomological descent. The cone of the canonical morphism

QX → (εX)∗Q(D∩X)• = R(εX)∗Q(D∩X)•

is the single complex associated to the double complex

0 0 0y y y
0 −−−−→ QX −−−−→ QX0 −−−−→ QX1 −−−−→ · · ·y y y
0 −−−−→ QD0

−−−−→ QD0∩X0
−−−−→ QD0∩X1

−−−−→ · · ·y y y
0 −−−−→ QD1 −−−−→ QD1∩X0 −−−−→ QD1∩X1 −−−−→ · · ·y y y

...
...

...

shifted by 1. All the lines of the diagram above are exact because they are the

Mayer–Vietoris exact sequences for X and for Dk. Then the single complex asso-

ciated to the double complex above is acyclic. Thus we conclude that the canonical

morphism QX → (εX)∗Q(D∩X)• is a quasi-isomorphism.

Theorem 4.15 (GPVMHS for a snc pair). Let (X,D) be a simple normal cross-

ing pair with D reduced and f : X → Y a projective surjective morphism to a

smooth algebraic variety Y . Let Y ∗ be a non-empty Zariski open subset of Y such

that all the strata of (X,D) are smooth over Y ∗. Then (Ri(f |X\D)!QX\D)|Y ∗ un-

derlies an admissible graded polarizable variation of Q-mixed Hodge structure for

every i.
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Proof. As mentioned in 4.14, we have the commutative diagram

D•
ϕ−−−−→ (D ∩X)•

εD

y yεX
D −−−−→ X

such that εD and εX are hyperresolutions. Then we obtain the conclusion in the

same way as in the proof of Theorem 4.13 from Lemma 4.12.

Remark 4.16. In the situation above, the inverse images of the open subset Y ∗

are indicated by the superscript ∗, such as X∗ = f−1(Y ∗). From the proof of

Lemma 4.8, we can check that GrpF (OY ∗ ⊗ (Ri(f |X\D)!QX\D)|Y ∗) coincides with

the (i− p)-th direct image of the single complex associated to the double complex

0 0 0y y y
0 −−−−→ ΩpX∗0 /Y ∗

−−−−→ ΩpX∗1 /Y ∗
−−−−→ ΩpX∗2 /Y ∗

−−−−→ · · ·y y y
0 −−−−→ ΩpD∗0∩X∗0 /Y ∗

−−−−→ ΩpD∗0∩X∗1 /Y ∗
−−−−→ ΩpD∗0∩X∗2 /Y ∗

−−−−→ · · ·y y y
0 −−−−→ ΩpD∗1∩X∗0 /Y ∗

−−−−→ ΩpD∗1∩X∗1 /Y ∗
−−−−→ ΩpD∗1∩X∗2 /Y ∗

−−−−→ · · ·y y y
...

...
...

by f . Therefore we have the canonical isomorphism

Rif∗OX(−D) ' Gr0
F (OY ∗ ⊗ (Ri(f |X\D)!QX\D)|Y ∗) for every i.

§5. Semipositivity theorem

In this section, we discuss a purely Hodge-theoretic aspect of the Fujita–Kawamata

semipositivity theorem (cf. [Z] and [Kw1, §4 Semi-positivity]). Our formulation

is different from Kawamata’s but is indispensable for our main theorem, Theo-

rem 7.1(4). For related topics, see [Mor, Section 5], [F5, Section 5], [F4, 3.2. Semi-

positivity theorem], and [Ko5, 8.10]. We use the theory of integrable logarithmic

connections. For the basic properties and results on integrable logarithmic connec-

tions, see [D1], [Kt], and [Bo, IV. Regular connections, after Deligne] by Bernard

Malgrange. For a different approach, see [FFS, Section 4].
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We start with easy observations.

Lemma 5.1. Let X be a complex manifold, U a dense open subset of X, and V a

locally free OX-module of finite rank. Assume that two OX-submodules F and G
satisfy the following conditions:

(5.1.1) G and V/G are locally free OX-modules of finite rank.

(5.1.2) F|U = G|U .

Then F ⊂ G on X.

Corollary 5.2. Let X, U and V be as above. Suppose that two finite decreasing

filtrations F and G on V satisfy the following conditions:

• GrpGV is a locally free OX-module of finite rank for every p.

• F pV|U = GpV|U for every p.

Then F pV ⊂ GpV on X for every p. In particular, F pV = GpV for every p if, in

addition, GrpFV is locally free of finite rank for every p.

5.3. Let X be a complex manifold and D =
∑
i∈I Di a simple normal crossing

divisor on X, where Di is a smooth irreducible divisor on X for every i ∈ I. We

set

D(J) =
⋂
i∈J

Di, DJ =
∑
i∈J

Di

for any subset J . Note that D(∅) = X and D∅ = 0 by definition. Moreover we set

D(J)∗ = D(J) \D(J) ∩DI\J for J ⊂ I. For J = ∅, we set X∗ = D(∅)∗ = X \D.

Let V be a locally free OX -module of finite rank and

∇ : V → Ω1
X(logD)⊗ V

an integrable logarithmic connection on V. The residue of ∇ along Di is denoted

by

ResDi(∇) : ODi ⊗ V → ODi ⊗ V.

We assume the following condition throughout this section:

(5.3.1) ResDi(∇) : ODi ⊗ V → ODi ⊗ V is nilpotent for every i ∈ I.

This is equivalent to the local system Ker(∇)|X∗ being of unipotent local mon-

odromy.

5.4. In the situation above, the morphism

id⊗ ResDi(∇) : OD(J) ⊗ V → OD(J) ⊗ V
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for a subset J of I and for i ∈ J is denoted by Ni,D(J). We simply write Ni if there

is no danger of confusion. We have

Ni,D(J)Nj,D(J) = Nj,D(J)Ni,D(J)

for all i, j ∈ J . For two subsets J,K of I with K ⊂ J , we set NK,D(J) =∑
i∈K Ni,D(J), which is nilpotent by the assumption above. Once a subset J is

fixed, we use the symbols NK for short. We have the monodromy weight filtration

W (K) on OD(J) ⊗ V which is characterized by the condition that Nq
K induces an

isomorphism

GrW (K)
q (OD(J) ⊗ V)

'→ Gr
W (K)
−q (OD(J) ⊗ V)

for all q ≥ 0. For K = ∅, W (∅) is trivial, that is, W (∅)−1OD(J) ⊗ V = 0 and

W (∅)0OD(J) ⊗ V = OD(J) ⊗ V.

For J = K, we set

Pk(J) = Ker
(
Nk+1
J : Gr

W (J)
k (OD(J) ⊗ V)→ Gr

W (J)
−k−2(OD(J) ⊗ V)

)
for every non-negative integer k, which is called the primitive part of

Gr
W (J)
k (OD(J) ⊗ V) with respect to NJ . Then we have the primitive decompo-

sition

Gr
W (J)
k (OD(J) ⊗ V) =

⊕
l≥max(0,−k)

N l
J(Pk+2l(J))

for every k, and N l
J induces an isomorphism

Pk+2l(J)→ N l
J(Pk+2l(J))

for all k, l with l ≥ max(0,−k).

Lemma 5.5. In the situation above, Gr
W (K)
k (OD(J) ⊗V) is a locally free OD(J)-

module of finite rank for every k and for any subsets J,K of I with K ⊂ J .

Proof. Easy by the local description of an integrable logarithmic connection (see

e.g. Deligne [D1], Katz [Kt]).

Corollary 5.6. In the situation above, fix a subset J of I. For any subset K of

J we have

W (K) = W (NK(x))

on V(x) = V ⊗ C(x) for every x ∈ D(J), where the left hand side denotes the

filtration on V(x) induced by W (K).

Remark 5.7. Let (V1,∇1) and (V2,∇2) be pairs of locally free sheaves of OX -

modules of finite rank and integrable logarithmic connections on them. We assume
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that they satisfy the condition in 5.3. If a morphism ϕ : V1 → V2 of OX -modules

is compatible with the connections ∇1 and ∇2, then the diagram

OD(J) ⊗ V1
id⊗ϕ−−−−→ OD(J) ⊗ V2

Ni,D(J)

y yNi,D(J)

OD(J) ⊗ V1
id⊗ϕ−−−−→ OD(J) ⊗ V2

is commutative for every subset J of I and for every i ∈ J . Therefore id ⊗ ϕ

preserves the filtration W (K) for every K ⊂ J .

5.8. Let m be an integer. For a finite decreasing filtration F on V, we consider

the following condition:

(mMH) The triple

(V(x),W (J)[m], F )

underlies an R-mixed Hodge structure for any subset J of I and for any

point x ∈ D(J)∗.

Here we remark that we do not assume the local freeness of GrpFV at the beginning.

The following lemma is a counterpart of Schmid’s results [Sc].

Lemma 5.9. Let U be an open subset of X \ D such that X \ U is a nowhere

dense analytic subspace of X. Moreover, we are given a finite decreasing filtration

F on V|U . If (V, F,∇)|U underlies a polarizable variation of R-Hodge structure of

weight m on U , then there exists a finite decreasing filtration F̃ on V satisfying:

(i) F̃ pV|U = F pV|U for every p.

(ii) Grp
F̃
V is a locally free OX-module of finite rank for every p.

(iii) F̃ satisfies the condition (mMH) of 5.8.

Proof. See [Sc].

Lemma 5.10. Let U be as above, and F a finite decreasing filtration on V in the

situation 5.3. Assume that (V, F,∇)|U underlies a polarizable variation of R-Hodge

structure of weight m on U . Then GrpFV is locally free of finite rank for every p if

and only if F satisfies the condition (mMH) of 5.8.

Proof. By the lemma above, there exists a finite decreasing filtration F̃ on V
satisfying (i)–(iii). By Corollary 5.2, the local freeness of GrpFV for every p is

equivalent to the equality F pV = F̃ pV for every p. If F = F̃ on V, then F satisfies

the condition (mMH) by the lemma above. Thus it suffices to prove the equality
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F = F̃ on V under the assumption that F satisfies (mMH). By Corollary 5.2

again, we have F pV ⊂ F̃ pV for every p. On the other hand, (V(x),W (J)[m], F )

and (V(x),W (J)[m], F̃ ) are R-mixed Hodge structures for every x ∈ D(J)∗, if F

satisfies (mMH). Therefore F (V(x)) = F̃ (V(x)) for every x ∈ X, which implies

F = F̃ on V.

5.11. In addition to the situation 5.3, we assume that we are given a finite de-

creasing filtration F on V satisfying the following three conditions:

• Griffiths transversality holds, that is, ∇(F p) ⊂ Ω1
X(logE)⊗ F p−1 for every p.

• (V, F,∇)|X∗ underlies a polarizable variation of R-Hodge structure of weight m.

• GrpFV is locally free of finite rank for every p, or equivalently F satisfies the

condition (mMH).

For a subset J of I, Griffiths transversality implies that

Ni(F
p(OD(J) ⊗ V)) ⊂ F p−1(OD(J) ⊗ V)

for all p and i ∈ J .

Lemma 5.12. In the situation above, we have

(1) Ni(W (K)k) ⊂W (K)k−1 for all i ∈ K and k,

(2) W (J) is the monodromy weight filtration of NK relative to the filtration

W (J \K)

on OD(J) ⊗ V for any two subsets J,K of I with K ⊂ J .

Proof. See Cattani–Kaplan [CK, (3.3) Theorem, (3,4)] and Steenbrink–Zucker [SZ,

(3.12) Theorem].

Corollary 5.13. In the situation 5.3 and 5.11, the induced filtration F on

Gr
W (J)
k (OD(J) ⊗ V)

satisfies ((m+ k)MH) for any subset J of I.

Proof. Take a subset K of I \ J . For any point x ∈ D(J ∪K)∗, the triple

(V(x),W (J ∪K)[m], F )

underlies an R-mixed Hodge structure because F satisfies (mMH) by assumption.

Moreover, (2π
√
−1)−1NJ(x) is a morphism of R-mixed Hodge structures of type

(−1,−1) by condition (2) in the lemma above and by Griffiths transversality.

Therefore

(Gr
W (J)
k V(x),W (J ∪K)[m], F )
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is an R-mixed Hodge structure. On the other hand, we have

W (J ∪K)(Gr
W (J)
k V(x)) = W (K)(Gr

W (J)
k V(x))[k],

by (2) in the lemma above. Thus

(Gr
W (J)
k V(x),W (K)[m+ k], F )

underlies an R-mixed Hodge structure.

5.14. In the situation 5.3 and 5.11 we fix a subset J of I. We have an exact

sequence

0→ Ω1
D(J)(logD(J) ∩DI\J)→ Ω1

X(logD)⊗OD(J) → O
⊕|J|
D(J) → 0,

where |J | denotes the cardinality of J . On the other hand, the integrable logarith-

mic connection ∇ induces a commutative diagram

V ∇−−−−→ Ω1
X(logD)⊗ Vy y

OD(J) ⊗ V −−−−→ O⊕|J|D(J) ⊗ V

where the bottom horizontal arrow coincides with
⊕

i∈J Ni,D(J) under the identi-

fication O⊕|J|D(J) ⊗ V ' (OD(J) ⊗ V)|J|. Because ∇ preserves the filtration W (J) on

OD(J) ⊗ V by the local description in [D1], [Kt] and because Ni,D(J)(W (J)k) ⊂
W (J)k−1 for every k by Lemma 5.12(1), we obtain a morphism

Gr
W (J)
k (OD(J) ⊗ V)→ Ω1

D(J)(logD(J) ∩DI\J)⊗Gr
W (J)
k (OD(J) ⊗ V)

for every k. It is denoted by ∇k(J), or simply ∇(J). It is easy to see that ∇(J) is

an integrable logarithmic connection on Gr
W (J)
k (OD(J)⊗V) satisfying ∇(J)(F p) ⊂

F p−1 for every p for the induced filtration F on Gr
W (J)
k (OD(J)⊗V). We can easily

see that the residue of∇(J) along D(J)∩Di coincides with Ni,D(J∪{i}) for i ∈ I\J .

Thus ∇(J) satisfies the condition in 5.3.

5.15. Let (V, F,∇) be as in 5.3 and 5.11. Then (V, F,∇)|X∗ is a polarizable vari-

ation of R-Hodge structure of weight m. An integrable logarithmic connection on

V⊗V is defined by ∇⊗ id+id⊗∇ as usual. Assume that we are given a morphism

S : V ⊗ V → OX
satisfying the following:

• S is (−1)m-symmetric.

• S is compatible with the connections, where OX is equipped with the trivial

connection d.
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• S(F pV ⊗ F qV) = 0 if p+ q > m.

• S|X∗ underlies a polarization of the variation of R-Hodge structure (V, F,∇)|X∗ .

Now we fix a subset J of I. Then S induces a morphism

OD(J) ⊗ V ⊗ V ' (OD(J) ⊗ V)⊗ (OD(J) ⊗ V)→ OD(J),

denoted by SJ .

Lemma 5.16. In the situation above, we have

SJ(W (K)a ⊗W (K)b) = 0

for every K ⊂ J and all a, b with a+ b < 0.

Proof. We fix a subset K of J . It is sufficient to prove that

SJ(W (K)a ⊗W (K)−a−1) = 0

for every non-negative integer a.

Since S is compatible with the connections, we have

SJ · (Ni ⊗ id + id⊗Ni) = 0

for every i ∈ J , which yields

SJ · (NK ⊗ id + id⊗NK) = 0.

Then we have

SJ(W (K)a ⊗W (K)−a−1) = (SJ · id⊗Na+1
K )(W (K)a ⊗W (K)a+1)

= (−1)a+1(SJ ·Na+1
K ⊗ id)(W (K)a ⊗W (K)a+1)

= (−1)a+1SJ(W (K)−a−2 ⊗W (K)a+1)

= (−1)a+1+mSJ(W (K)a+1 ⊗W (K)−a−2)

by using the equality W (K)−k = Nk(W (K)k) for k ≥ 0 (see e.g. [SZ, (2.2) Corol-

lary]). Thus we obtain the conclusion by descending induction on a.

Corollary 5.17. In the situation above, SJ induces a morphism

Gr
W (J)
k (OD(J) ⊗ V)⊗Gr

W (J)
−k (OD(J) ⊗ V)→ OD(J)

for every non-negative integer k.

5.18. In the situation above, we define a morphism

Sk(J) : Pk(J)⊗ Pk(J)→ OD(J)

by Sk(J) = SJ · (id⊗Nk
J ) for every J ⊂ I and every non-negative integer k.



634 O. Fujino and T. Fujisawa

By using the direct sum decomposition

Gr
W (J)
k (OD(J) ⊗ V) =

⊕
l≥0

N l(Pk+2l(J))

for every non-negative integer k, we obtain a morphism

Sk(J) : Gr
W (J)
k (OD(J) ⊗ V)⊗Gr

W (J)
k (OD(J) ⊗ V)→ OD(J)

which is characterized by the following properties:

• For non-negative integers a 6= b we have

Sk(J)(Na(Pk+2a(J))⊗N b(Pk+2b(J))) = 0.

• The diagram

Pk+2l(J)⊗ Pk+2l(J)
Sk+2l(J)−−−−−−→ OD(J)

N l⊗N l
y ∥∥∥

N l(Pk+2l(J))⊗N l(Pk+2l(J))
Sk(J)−−−−→ OD(J)

is commutative for every non-negative integer l.

For a positive integer k, the morphism

S−k(J) : Gr
W (J)
−k (OD(J) ⊗ V)⊗Gr

W (J)
−k (OD(J) ⊗ V)→ OD(J)

is defined by identifying Gr
W (J)
−k (OD(J) ⊗ V) with Gr

W (J)
k (OD(J) ⊗ V) via the

morphism N(J)k. More precisely, S−k(J) is the unique morphism such that the

diagram

Gr
W (J)
k (OD(J) ⊗ V)⊗Gr

W (J)
k (OD(J) ⊗ V)

Sk(J)−−−−→ OD(J)

N(J)k⊗N(J)k
y ∥∥∥

Gr
W (J)
−k (OD(J) ⊗ V)⊗Gr

W (J)
−k (OD(J) ⊗ V)

S−k(J)−−−−−→ OD(J)

is commutative.

The following proposition plays an essential role in the inductive argument

for the proof of the semipositivity theorem.

Proposition 5.19. In the situation 5.3, 5.11 and 5.15, the data

(Gr
W (J)
k (OD(J) ⊗ V), F,∇(J), Sk(J))

satisfies the conditions in 5.3, 5.11 and 5.15 again.
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Proof. By Lemma 5.5 and 5.14, the pair (Gr
W (J)
k (OD(J) ⊗ V),∇(J)) satisfies the

condition of 5.3. As remarked in 5.14, we have∇(J)(F p) ⊂ F p−1 for every p. More-

over, the filtration F on Gr
W (J)
k (OD(J) ⊗ V) satisfies the condition ((m+ k)MH)

by Corollary 5.13.

By definition, the morphism

SJ : Gr
W (J)
k (OD(J) ⊗ V)⊗Gr

W (J)
−k (OD(J) ⊗ V)→ OD(J)

is compatible with the connections on both sides. Therefore Sk(J) is compatible

with the connections because

NJ : Gr
W (J)
k (OD(J) ⊗ V)→ Gr

W (J)
k−2 (OD(J) ⊗ V)

is compatible with the connection ∇(J) on both sides. Thus Sk(J) is compatible

with the connection. Moreover we can check the equality

Sk(J)(F p ⊗ F q) = 0

for p+ q > m+ k by using Nk
J (F q) ⊂ F q−k.

There exists an open subset U of D(J)∗ such that GrpFGr
W (J)
k (OD(J) ⊗V) is

a locally free OD(J)-module of finite rank for every p, and D(J) \ U is a nowhere

dense closed analytic subspace of D(J).

By the local description as in Deligne [D1], Katz [Kt] and by the property (1)

in Lemma 5.12, we can easily check that Ker(∇k(J))|D(J)∗ admits an R-structure,

that is, there exists a local system Vk(J) of finite-dimensional R-vector spaces with

C⊗ Vk(J) ' Ker(∇k(J))|D(J)∗ . Then the data

(Vk(J), (Gr
W (J)
k (OD(J) ⊗ V), F ),∇(J), Sk(J))|U

is a polarized variation of R-Hodge structure of weight m+ k, by Schmid [Sc]. By

Lemma 5.10, GrpFGr
W (J)
k (OD(J) ⊗ V) turns out to be locally free for all k, p and

then

(Gr
W (J)
k (OD(J) ⊗ V), F,∇(J), Sk(J))|D(J)∗

underlies a polarized variation of R-Hodge structure of weight m + k as desired.

By continuity, Sk(J) is (−1)m+k-symmetric.

Let us recall the definition of semipositive vector bundles in the sense of

Fujita–Kawamata. Example 8.2 below helps us understand the Fujita–Kawamata

semipositivity.

Definition 5.20 (Semipositivity). A locally free sheaf (or a vector bundle) E of

finite rank on a complete algebraic variety X is said to be semipositive if for every
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smooth curve C, for every morphism ϕ : C → X, and for every quotient invertible

sheaf (or line bundle) Q of ϕ∗E , we have degC Q ≥ 0.

It is easy to see that E is semipositive if and only if OPX(E)(1) is nef where

OPX(E)(1) is the tautological line bundle on PX(E).

The following theorem is the main result of this section (cf. [Kw1, Theorem 5]).

It is a completely Hodge-theoretic result.

Theorem 5.21 (Semipositivity theorem). Let X be a smooth complete complex

variety, D a simple normal crossing divisor on X, and V a locally free OX-module

of finite rank equipped with a finite increasing filtration W and a finite decreasing

filtration F . Assume that:

(1) F aV = V and F b+1V = 0 for some a < b.

(2) GrpFGrWm V is a locally free OX-module of finite rank for all m, p.

(3) For all m, GrWm V admits an integrable logarithmic connection ∇m with nilpo-

tent residue morphisms which satisfies

∇m(F pGrWm V) ⊂ Ω1
X(logD)⊗ F p−1GrWm V for all p.

(4) The triple (GrWm V, FGrWm V,∇m)|X\D underlies a polarizable variation of

R-Hodge structure of weight m for every integer m.

Then (GraFV)∗ and F bV are semipositive.

Proof. Since a vector bundle which is an extension of two semipositive vector

bundles is also semipositive, we may assume without loss of generality that V
is pure of weight m, that is, WmV = V,Wm−1V = 0 for some integer m. Then

V carries an integrable logarithmic connection ∇ whose residue morphisms are

nilpotent. Thus the data (V, F,∇) satisfies the conditions in 5.3 and 5.11. Note

that V is the canonical extension of V|X\D because the residue morphisms of ∇
are nilpotent.

By the assumption (4) above, V|X\D carries a polarization which extends to

a morphism

S : V ⊗ V → OX
by functoriality of the canonical extensions. We can easily see that the data

(V, F,∇) and S satisfies the conditions in 5.3, 5.11 and 5.15.

For dimX = 1, we obtain the conclusion by Zucker [Z] (see also Kawamata

[Kw1] and the proof of [Ko3, Theorem 5.20]).

Next, we study the case of dimX > 1. Let ϕ : C → X be a morphism

from a smooth projective curve. The irreducible decomposition of D is denoted by

D =
∑
i∈I Di as in 5.3. We set J = {i ∈ I : ϕ(C) ⊂ Di} ⊂ I. Then ϕ(C) ⊂ D(J),
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ϕ(C) ∩D(J)∗ 6= ∅ and ϕ∗DI\J is an effective divisor on C. By Proposition 5.19,

the locally free sheaf OD(J) ⊗ V with the finite increasing filtration W (J) and

the finite decreasing filtration F satisfies assumptions (1)–(4) for D(J) with the

simple normal crossing divisor D(J)∩DI\J . Therefore ϕ∗V = ϕ∗(OD(J)⊗V) with

the induced filtrations W and F satisfies (1)–(4) for C with the effective divisor

ϕ∗DI\J . Now we deduce the desired semipositivity from the case of dimX = 1.

Remark 5.22. In Theorem 5.21, if X is not complete, then the following holds.

Let V be a complete subvariety of X. Then (GraFV)∗|V and (F bV)|V are semipos-

itive locally free sheaves on V . This is obvious by the proof of Theorem 5.21.

Corollary 5.23. Let X and D be as in Theorem 5.21. Assume that we are

given an admissible graded polarizable variation of R-mixed Hodge structure

V = ((V,W ), F ) on X \D of unipotent monodromy. Assume that F aV = V and

F b+1V = 0. Denote by Ṽ and WkṼ the canonical extensions of V = OX\D⊗V and

of WkV = OX\D⊗Wk for all k. As stated in Proposition 3.12, the Hodge filtration

F extends to Ṽ such that GrpFGrWk Ṽ is locally free of finite rank for all k, p. Then

(GraF Ṽ)∗ and F bṼ are semipositive.

We learned the following from Hacon.

Remark 5.24. The proof of the semipositivity theorem in [Ko5, Theorem 8.10.12]

contains some ambiguities. In the notation there, if D is a simple normal cross-

ing divisor but is not a smooth divisor, then it is not clear how to express

Rmf∗ωX/Y (D) as an extension of Rmf∗ωDJ/Y ’s. The case when D = F is a smooth

divisor is treated in the proof of [Ko5, Theorem 8.10.12]. The same argument does

not seem to be sufficient for the general case.

Fortunately, [F4, Theorem 3.9] is sufficient for all applications in [Ko5] (see

also [FG2]). For some related topics, see [FFS].

§6. Vanishing and torsion-free theorems

In this section, we discuss some generalizations of torsion-free and vanishing the-

orems for quasi-projective simple normal crossing pairs.

First, let us recall the following very useful lemma. For a proof, see, for ex-

ample, [F14, Lemma 3.3].

Lemma 6.1 (Relative vanishing lemma). Let f : Y → X be a proper morphism

from a simple normal crossing pair (Y,∆) to an algebraic variety X such that ∆

is a boundary R-divisor on Y . Assume that f is an isomorphism at the generic

point of any stratum of the pair (Y,∆). Let L be a Cartier divisor on Y such that

L ∼R KY + ∆. Then Rqf∗OY (L) = 0 for every q > 0.



638 O. Fujino and T. Fujisawa

As an application of Lemma 6.1, we obtain Lemma 6.2 below. We will use it

several times in Section 7.

Lemma 6.2 (cf. [F13, Lemma 2.7]). Let (V1, D1) and (V2, D2) be simple normal

crossing pairs such that D1 and D2 are reduced. Let f : V1 → V2 be a proper mor-

phism. Assume that there is a Zariski open subset U1 (resp. U2) of V1 (resp. V2)

such that U1 (resp. U2) contains the generic point of any stratum of (V1, D1)

(resp. (V2, D2)) and that f induces an isomorphism between U1 and U2. Then

Rif∗ωV1
(D1) = 0 for every i > 0 and f∗ωV1

(D1) ' ωV2
(D2). By Grothendieck du-

ality, we obtain Rif∗OV1(−D1) = 0 for every i > 0 and f∗OV1(−D1) ' OV2(−D2).

Proof. We can write

KV1 +D1 = f∗(KV2 +D2) + E

so that E is f -exceptional. We consider the commutative diagram

V ν1
fν−−−−→ V ν2

ν1

y yν2

V1
f−−−−→ V2

where ν1 : V ν1 → V1 and ν2 : V ν2 → V2 are the normalizations. We can write

KV ν1
+ Θ1 = ν∗1 (KV1

+ D1) and KV ν2
+ Θ2 = ν∗2 (KV2

+ D2). By pulling back

KV1
+D1 = f∗(KV2

+D2) + E to V ν1 by ν1, we have

KV ν1
+ Θ1 = (fν)∗(KV ν2

+ Θ2) + ν∗1E.

Note that V ν2 is smooth and Θ2 is a reduced simple normal crossing divisor on

V ν2 . By assumption, fν is an isomorphism over the generic point of any lc cen-

ter of the pair (V ν2 ,Θ2) (cf. 1.10). Therefore, ν∗1E is effective since KV ν2
+ Θ2 is

Cartier. Thus, E is effective. Since V2 satisfies Serre’s S2 condition, we can check

that OV2
' f∗OV1

and f∗OV1
(KV1

+ D1) ' OV2
(KV2

+ D2). On the other hand,

we obtain Rif∗OV1
(KV1

+ D1) = 0 for every i > 0 by Lemma 6.1. Therefore,

Rf∗OV1(KV1 +D1) ' OV2(KV2 +D2) in the derived category of coherent sheaves

on V2. Since V1 and V2 are Gorenstein, we have

Rf∗OV1
(−D1) ' RHom(Rf∗ω

•
V1

(D1), ω•V2
) ' RHom(Rf∗ωV1

(D1), ωV2
)

' RHom(ωV2(D2), ωV2) ' OV2(−D2)

in the derived category of coherent sheaves on V2 by Grothendieck duality. There-

fore, Rif∗OV1
(−D1) = 0 for every i > 0 and f∗OV1

(−D1) ' OV2
(−D2).
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Next, we prove the following theorem, which was proved for embedded simple

normal crossing pairs in [F7, Theorem 2.39] and [F7, Theorem 2.47]. We note that

here we do not assume the existence of ambient spaces. However, we need the

assumption that X is quasi-projective.

Theorem 6.3 (cf. [F7, Theorems 2.39 and 2.47]). Let (X,B) be a quasi-projec-

tive simple normal crossing pair such that B is a boundary R-divisor on X. Let

f : X → Y be a proper morphism between algebraic varieties and let L be a Cartier

divisor on X. Let q be an arbitrary integer.

(i) Assume that L− (KX +B) is f -semiample, that is, L− (KX +B) =
∑
i aiDi

where Di is an f -semiample Cartier divisor on X and ai is a positive real

number for every i. Then every associated prime of Rqf∗OX(L) is the generic

point of the f -image of some stratum of (X,B).

(ii) Let π : Y → Z be a proper morphism. Assume that L − (KX + B) ∼R f∗A

for some R-Cartier R-divisor A on Y such that A is nef and log big over Z

with respect to f : (X,B) → Y (see [F7, Definition 2.46]). Then Rqf∗OX(L)

is π∗-acyclic, that is, Rpπ∗R
qf∗OX(L) = 0 for every p > 0.

Proof. Since X is quasi-projective, we can embed X into a smooth projective

variety V . By Lemma 6.5 below, we can replace (X,B) and L with (Xk, Bk) and

σ∗L and assume that there exists an R-divisor D on V such that B = D|X . Then,

by using Bertini’s theorem, we can take a general complete intersection W ⊂ V

such that dimW = dimX + 1, X ⊂ W , and W is smooth at the generic point

of every stratum of (X,B) (cf. the proof of [Ko6, Proposition 10.59]). We take a

suitable resolution ψ : M →W with the following properties:

(A) The strict transform X ′ of X is a simple normal crossing divisor on M .

(B) We can write

KX′ +B′ = ϕ∗(KX +B) + E

so that ϕ = ψ|X′ , (X ′, B′−E) is a globally embedded simple normal crossing

pair (cf. Definition 2.3), B′ is a boundary R-divisor on X ′, dEe is effective

and ϕ-exceptional, and the ϕ-image of every stratum of (X ′, B′) is a stratum

of (X,B).

(C) ϕ is an isomorphism over the generic point of every stratum of (X,B).

(D) ϕ is an isomorphism at the generic point of every stratum of (X ′, B′).

Then

KX′ +B′ + {−E} = ϕ∗(KX +B) + dEe,
ϕ∗OX′(ϕ∗L+ dEe) ' OX(L),

and
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Rqϕ∗OX′(ϕ∗L+ dEe) = 0

for every q > 0 by Lemma 6.1. We note that

ϕ∗L+ dEe − (KX′ +B′ + {−E}) = ϕ∗(L− (KX +B))

and ϕ is an isomorphism at the generic point of every stratum of (X ′, B′+{−E}).
Therefore, by replacing (X,B) and L with (X ′, B′ + {−E}) and ϕ∗L+ dEe,

we may assume that (X,B) is a quasi-projective globally embedded simple nor-

mal crossing pair (cf. Definition 2.3). In this case, the claims have already been

established in [F7, Theorems 2.39 and 2.47].

For some generalizations of Theorem 6.3 to semi log canonical pairs, see [F15].

Remark 6.4. Theorem 6.3(i) is contained in [F14, Theorem 1.1(i)]. In [F14, The-

orem 1.1], X is not assumed to be quasi-projective. On the other hand, we do not

know how to remove the quasi-projectivity assumption from Theorem 6.3(ii).

By direct calculations, we can obtain the following elementary lemma. It was

used in the proof of Theorem 6.3.

Lemma 6.5 (cf. [F7, Lemma 3.60]). Let (X,B) be a simple normal crossing pair

such that B is a boundary R-divisor. Let V be a smooth variety such that X ⊂ V .

Then we can construct a sequence of blow-ups

Vk → Vk−1 → · · · → V0 = V

such that:

(1) σi+1 : Vi+1 → Vi is the blow-up along a smooth irreducible component of

SuppBi for every i ≥ 0.

(2) Set X0 = X, B0 = B, and Xi+1 is the strict transform of Xi for every i ≥ 0.

(3) Set KXi+1
+Bi+1 = σ∗i+1(KXi +Bi) for every i ≥ 0.

(4) There exists an R-divisor D on Vk such that D|Xk = Bk and Bk is a boundary

R-divisor on Xk.

(5) σ∗OXk ' OX and Rqσ∗OXk = 0 for every q > 0, where σ : Vk → Vk−1 →
· · · → V0 = V .

Proof. All we have to do is to check property (5). We note that

σi+1∗OVi+1(KVi+1) ' OVi+1(KVi+1)

and Rqσi+1∗OVi+1
(KVi+1

) = 0 for every q and for each step σi+1 : Vi+1 → Vi
by Lemma 6.2. Therefore we obtain Rqσ∗OXk(KXk) = 0 for every q > 0 and

σ∗OXk(KXk) ' OX(KX). Thus by Grothendieck duality, Rqσ∗OXk = 0 for every

q > 0 and σ∗OXk ' OX as in the proof of Lemma 6.2.
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As a special case of Theorem 6.3(i), we have:

Corollary 6.6 (Torsion-freeness). Let (X,D) be a quasi-projective simple normal

crossing pair such that D is reduced and let f : X → Y be a projective surjective

morphism onto a smooth algebraic variety Y . Assume that every stratum of (X,D)

is dominant onto Y . Then Rif∗ωX/Y (D) is torsion-free for every i.

Proof. It is sufficient to prove that Rif∗OX(KX + D) is torsion-free for ev-

ery i since OY (KY ) is locally free. By Theorem 6.3(i), every associated prime of

Rif∗OX(KX+D) is the generic point of Y for every i. This meansRif∗OX(KX+D)

is torsion-free for every i.

We will use this corollary in Section 7.

§7. Higher direct images of log canonical divisors

This section is the main part of this paper. The following theorem is our main

result (cf. [Kw1, Theorem 5], [Ko2, Theorem 2.6], [N1, Theorem 1], [F4, Theorems

3.4 and 3.9], and [Kw3, Theorem 1.1]), which is a natural generalization of the

Fujita–Kawamata semipositivity theorem to simple normal crossing pairs.

Theorem 7.1. Let (X,D) be a simple normal crossing pair such that D is reduced

and let f : X → Y be a projective surjective morphism onto a smooth algebraic

variety Y . Assume that every stratum of (X,D) is dominant onto Y . Let Σ be a

simple normal crossing divisor on Y such that every stratum of (X,D) is smooth

over Y ∗ = Y \ Σ. Set X∗ = f−1(Y ∗), D∗ = D|X∗ , and d = dimX − dimY . Let

ι : X∗ \D∗ → X∗ be the natural open immersion. Then:

(1) Rk(f |X∗)∗ι!QX∗\D∗ ' Rk(f |X∗\D∗)!QX∗\D∗ underlies a graded polarizable

variation of Q-mixed Hodge structure on Y ∗ for every k. Moreover, it is ad-

missible.

Set VkY ∗ = Rk(f |X∗)∗ι!QX∗\D∗ ⊗OY ∗ for every k. Let

· · · ⊂ F p+1(VkY ∗) ⊂ F p(VkY ∗) ⊂ F p−1(VkY ∗) ⊂ · · ·

be the Hodge filtration. Assume that all the local monodromies on the local system

Rd−i(f |X∗)∗ι!QX∗\D∗ around Σ are unipotent. Then

(2) Rd−if∗OX(−D) is isomorphic to the canonical extension of

Gr0
F (Vd−iY ∗ ) = F 0(Vd−iY ∗ )/F 1(Vd−iY ∗ ),

denoted by Gr0
F (Vd−iY ). In particular, Rd−if∗OX(−D) is locally free.
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By Grothendieck duality, we obtain:

(3) Rif∗ωX/Y (D) is isomorphic to the canonical extension of

(Gr0
F (Vd−iY ∗ ))∗ = HomOY ∗ (Gr0

F (Vd−iY ∗ ),OY ∗).

Thus, Rif∗ωX/Y (D) ' (Gr0
F (Vd−iY ))∗. In particular, Rif∗ωX/Y (D) is locally

free.

(4) Assume further that Y is complete. Then Rif∗ωX/Y (D) is semipositive.

Even the following very special case of Theorem 7.1 has never been checked

before. It does not follow from [Kw3, Theorem 1.1].

Corollary 7.2. Let f : X → Y be a projective morphism from a simple normal

crossing variety X to a smooth complete algebraic variety Y . Assume that every

stratum of X is smooth over Y . Then Rif∗ωX/Y is a semipositive locally free sheaf

for every i.

It is natural to prove Theorem 7.3 below, which is a slight generalization of (2)

and (3) in Theorem 7.1, simultaneously with Theorem 7.1.

Theorem 7.3 (cf. [Ko2, Theorem 2.6]). Under the notation and assumptions of

Theorem 7.1, if we do not assume that the local monodromies on the local system

Rd−i(f |X∗)∗ι!QX∗\D∗ around Σ are unipotent, then:

(a) Rd−if∗OX(−D) is isomorphic to the lower canonical extension of

Gr0
F (Vd−iY ∗ ) = F 0(Vd−iY ∗ )/F 1(Vd−iY ∗ ).

In particular, Rd−if∗OX(−D) is locally free.

By Grothendieck duality, we obtain

(b) Rif∗ωX/Y (D) is isomorphic to the upper canonical extension of

(Gr0
F (Vd−iY ∗ ))∗ = HomOY ∗ (Gr0

F (Vd−iY ∗ ),OY ∗).

In particular, Rif∗ωX/Y (D) is locally free.

Before we start the proof of Theorems 7.1 and 7.3, we make a remark on

canonical extensions.

Remark 7.4 (Upper and lower canonical extensions of Hodge bundles). Let lVkY ∗
(resp. uVkY ∗) be the Deligne extension of VkY ∗ on Y such that the eigenvalues of the

residue of the connection are contained in [0, 1) (resp. (−1, 0]). We call it the lower
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canonical extension (resp. upper canonical extension) of VkY ∗ following [Ko2, Defini-

tion 2.3]. If the local monodromies on Rk(f |X∗)∗ι!QX∗\D∗ ' Rk(f |X∗\D∗)!QX∗\D∗
around Σ are unipotent, then

lVkY ∗ = uVkY ∗ .

In this case, we set

VkY = lVkY ∗ = uVkY ∗
and call it the canonical extension of VkY ∗ . Let j : Y ∗ → Y be the natural open

immersion. We set
lF p(VkY ∗) = j∗F

p(VkY ∗) ∩ lVkY ∗
and call it the lower canonical extension of F p(VkY ∗) on Y . We can define the

upper canonical extension uF p(VkY ∗) of F p(VkY ∗) on Y similarly. As above, when

the local monodromies on Rk(f |X∗)∗ι!QX∗\D∗ around Σ are unipotent, we write

F p(VkY ) for lF p(VkY ∗) = uF p(VkY ∗) and call it the canonical extension of F p(VkY ∗).
Theorem 7.3(a) means that the short exact sequence

0→ F 1(Vd−iY ∗ )→ F 0(Vd−iY ∗ )→ Gr0
F (Vd−iY ∗ )→ 0(7.4.1)

extends to a short exact sequence

0→ lF 1(Vd−iY ∗ )→ lF 0(Vd−iY ∗ )→ Rd−if∗OX(−D)→ 0.(7.4.2)

Let us consider the dual variation of mixed Hodge structure (cf. Remark 3.15). The

dual local system of Rk(f |X∗)∗ι!QX∗\D∗ underlies (VkY ∗)∗. The locally free sheaf

(VkY ∗)∗ carries the Hodge filtration F defined in Remark 3.15. Theorem 7.3(b)

means that the short exact sequence

0→ F 1((Vd−iY ∗ )∗)→ F 0((Vd−iY ∗ )∗)→ Gr0
F ((Vd−iY ∗ )∗)→ 0(7.4.3)

extends to a short exact sequence

0→ uF 1((Vd−iY ∗ )∗)→ uF 0((Vd−iY ∗ )∗)→ Rif∗ωX/Y (D)→ 0.(7.4.4)

We note that

Gr−pF ((Vd−iY ∗ )∗) ' (GrpF (Vd−iY ∗ ))∗

for every p as in Remark 3.15. We also note that all the terms in (7.4.2) and

(7.4.4) are locally free sheaves by [Ks, Proposition 1.11.3] since Rk(f |X∗)∗ι!QX∗\D∗
underlies an admissible graded polarized variation of Q-mixed Hodge structure

on Y ∗ for every k by Theorem 7.1(1). See also Proposition 3.12. Let us see the

relationship between (7.4.2) and (7.4.4) in detail for the reader’s convenience. By

definition, it is easy to see that

(lVkY ∗)∗ = u((VkY ∗)∗)
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for every k. We can check that

0→ uF p((VkY ∗)∗)→ (lVkY ∗)∗ → (lF 1−p(VkY ∗))∗ → 0

is exact for all p and k (cf. Lemma 5.1). Then we have the following big commu-

tative diagram:
0

��
0

��

Rif∗ωX/Y (D)

��
0 // uF 1((Vd−iY ∗ )∗)

��

// (lVd−iY ∗ )∗ // (lF 0(Vd−iY ∗ ))∗ //

��

0

0 // uF 0((Vd−iY ∗ )∗)

��

// (lVd−iY ∗ )∗ // (lF 1(Vd−iY ∗ ))∗

��

// 0

Rif∗ωX/Y (D)

��

0

0

The first vertical line is nothing but (7.4.4) and the third vertical line is the dual

of (7.4.2).

Theorem 7.1(2) (resp. (3)) is a special case of Theorem 7.3(a) (resp. (b)).

Let us start the proof of Theorems 7.1 and 7.3.

Proof of Theorems 7.1 and 7.3. Statement (1) in Theorem 7.1 follows from The-

orem 4.15. We also note that (4) in Theorem 7.1 follows from Theorem 5.21 and

Corollary 5.23 by (3) in Theorem 7.1.

Without loss of generality, by [BiP, Theorem 1.4] and Lemma 6.2, we may

assume that Supp(f∗Σ ∪D) is a simple normal crossing divisor on X.

In Steps 1 and 2, we prove (2) and (3) of Theorem 7.1 for every i under the

assumption that all the local monodromies on Rkf∗CS∗ , where S is a stratum of

(X,D), S∗ = S|X∗ , and k is any integer, around Σ are unipotent. In Steps 3 and 4,

we prove Theorem 7.3, which contains (2) and (3) of Theorem 7.1.

From now on, we assume that all the local monodromies on Rkf∗CS∗ , where

S is a stratum of (X,D), S∗ = S|X∗ , and k is any integer, around Σ are unipotent.
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Step 1 (dimY = 1). By shrinking Y , we may assume that Y is the unit disc ∆

in C and Σ = {0} in ∆. We set E = f−1(0). By considering Ω(D∩X)•/Y (logE•)

as in the proof of Lemma 4.10, we find that Rd−if∗OX(−D) is isomorphic to the

canonical extension of Gr0
F (Vd−iY ∗ ) for every i (see also Remark 4.16). Therefore,

Rif∗ωX/Y (D) ' (Gr0
F (Vd−iY ))∗ for every i by Grothendieck duality.

Step 2 (l := dimY ≥ 2). We shall prove statement (3) by induction on l for ev-

ery i.

By Step 1, there is an open subset Y1 of Y such that codim(Y \ Y1) ≥ 2 and

Rif∗ωX/Y (D)|Y1
' (Gr0

F (Vd−iY ))∗|Y1
.

Since (Gr0
F (Vd−iY ))∗ is locally free (see Remark 7.4), we obtain a homomorphism

ϕiY : Rif∗ωX/Y (D)→ (Gr0
F (Vd−iY ))∗.

We will prove that ϕiY is an isomorphism. Without loss of generality, we may

assume that X and Y are quasi-projective by shrinking Y . By Corollary 6.6,

Rif∗ωX/Y (D) is torsion-free. Therefore, KerϕiY = 0. We put GiY := CokerϕiY .

Taking a general hyperplane cut, we see that SuppGiY is a finite set by the induc-

tion hypothesis. Assume that GiY 6= 0. We may also assume that SuppGiY = {P}
by shrinking Y . Let µ : W → Y be the blowing up at P and set E = µ−1(P ).

Then E ' Pl−1. By [BiM, Theorem 1.5] and [BiP, Theorem 1.4], we can take a

projective birational morphism π : X ′ → X from a simple normal crossing variety

X ′ with the following properties:

(i) The composition X ′ → X → Y 99KW is a morphism.

(ii) π is an isomorphism over X∗.

(iii) Exc(π) ∪D′ is a simple normal crossing divisor on X ′, where D′ is the strict

transform of D.

We obtain Rqf∗ωX/Y (D) ' Rq(f ◦ π)∗ωX′/Y (D′) for every q as Rπ∗ωX′(D
′) '

ωX(D) in the derived category of coherent sheaves on X by Lemma 6.2. We note

that every stratum of (X ′, D′) is dominant onto Y . We also note the following

commutative diagram:

X ′
π−−−−→ X

g

y yf
W

µ−−−−→ Y

By replacing (X,D) with (X ′, D′), we may assume that there is a morphism g :

X → W such that f = µ ◦ g. Since g : X → W is in the same situation as f , we
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obtain the exact sequence

0→ Rig∗ωX/W (D)→ (Gr0
F (Vd−iW ))∗ → GiW → 0.

Tensoring OW (νE) for 0 ≤ ν ≤ l − 1 and applying Rjµ∗ for j ≥ 0 to each ν, we

have an exact sequence

0→ µ∗(R
ig∗ωX/W (D)⊗OW (νE))→ µ∗((Gr0

F (Vd−iW ))∗ ⊗OW (νE))

→ µ∗(G
i
W ⊗OW (νE))→ R1µ∗(R

ig∗ωX/W (D)⊗OW (νE))

→ R1µ∗((Gr0
F (Vd−iW ))∗ ⊗OW (νE))→ 0

and Rqµ∗(R
ig∗ωX/W (D)⊗OW (νE)) ' Rqµ∗((Gr0

F (Vd−iW ))∗⊗OW (νE)) for q ≥ 2.

By [Kw2, Proposition 1] and Remark 7.4, we obtain

(Gr0
F (Vd−iW ))∗ ' µ∗(Gr0

F (Vd−iY ))∗.

We have

µ∗((Gr0
F (Vd−iW ))∗ ⊗OW (νE)) ' (Gr0

F (Vd−iY ))∗

and

Rqµ∗((Gr0
F (Vd−iW ))∗ ⊗OW (νE)) = 0

for q ≥ 1. Therefore, Rqµ∗(R
ig∗ωX/W (D)⊗OW (νE)) = 0 for q ≥ 2 and

0→ µ∗(R
ig∗ωX/W (D)⊗OW (νE))→ µ∗((Gr0

F (Vd−iW ))∗ ⊗OW (νE))

→ µ∗(G
i
W ⊗OW (νE))→ R1µ∗(R

ig∗ωX/W (D)⊗OW (νE))→ 0

is exact. Since ωW = µ∗ωY ⊗OW ((l − 1)E), we have a spectral sequence

Ep,q2 = Rpµ∗(R
qg∗ωX/W (D)⊗OW ((l − 1)E))⇒ Rp+qf∗ωX/Y (D).

However, Ep,q2 = 0 for p ≥ 2 by the above argument. Thus

0→ R1µ∗R
i−1g∗ωX/Y (D)→ Rif∗ωX/Y (D)

→ µ∗(R
ig∗ωX/W (D)⊗OW ((l − 1)E))→ 0.

By Corollary 6.6, Rif∗ωX/Y (D) is torsion-free. So, we obtain

R1µ∗R
i−1g∗ωX/Y (D) = 0.

Therefore, for q ≥ 1 and for every i, we obtain

(A) Rif∗ωX/Y (D) ' µ∗(Rig∗ωX/W (D)⊗OW ((l − 1)E)) and

(B) Rqµ∗(R
ig∗ωX/W (D)⊗OW ((l − 1)E)) = 0.
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Next, we shall consider the commutative diagram

0 0

↓ ↓
Rig∗ωX/W (D)⊗OW ((l − 2)E)→Rig∗ωX/W (D)⊗OW ((l − 1)E)

↓ ↓
(Gr0

F (Vd−iW ))∗ ⊗OW ((l − 2)E) → (Gr0
F (Vd−iW ))∗ ⊗OW ((l − 1)E)

↓ ↓
GiW ⊗OW ((l − 2)E) → GiW ⊗OW ((l − 1)E)

↓ ↓
0 0

By applying µ∗, we obtain the commutative diagram

0 0

↓ ↓
µ∗(R

ig∗ωX/W (D)⊗OW ((l − 2)E))→ µ∗(R
ig∗ωX/W (D)⊗OW ((l − 1)E))

↓ ↓
(Gr0

F (Vd−iY ))∗ ' (Gr0
F (Vd−iY ))∗

↓ ↓
µ∗(G

i
W ⊗OW ((l − 2)E)) → µ∗(G

i
W ⊗OW ((l − 1)E))

↓
0

By (A) and (B), GiY ' µ∗(GiW ⊗OW ((l − 1)E)) and

µ∗(G
i
W ⊗OW ((l − 2)E))→ µ∗(G

i
W ⊗OW ((l − 1)E))

is surjective. Since dim SuppGiW = 0 and E ∩ SuppGiW 6= ∅, it follows that

GiW = 0 by Nakayama’s lemma. Therefore, GiY = 0. This implies Rif∗ωX/Y (D) '
(Gr0

F (Vd−iY ))∗. By Grothendieck duality, Rd−if∗OX(−D) ' Gr0
F (Vd−iY ).

From now on, we treat the general case, that is, we do not assume that local

monodromies are unipotent.

Step 3. In this step, we prove the local freeness of Rif∗ωX/Y (D) for every i. We

use the unipotent reduction with respect to all the local systems after shrinking

Y suitably. This means that, shrinking Y , we have the commutative diagram

X
α←−−−− X ′

β←−−−− X̃

f

y f ′
y yf̃

Y
τ←−−−− Y ′ Y ′
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with the following properties:

(i) τ : Y ′ → Y is a finite Kummer covering from a non-singular variety Y ′ and

τ ramifies only along Σ.

(ii) f ′ : X ′ → Y ′ is the base change of f : X → Y by τ over Y \ Σ.

(iii) (X ′, α∗D) is a semidivisorial log terminal pair in the sense of Kollár (see Def-

inition 2.4). Let Xj be any irreducible component of X. Then X ′j = α−1(Xj)

is the normalization of the base change of Xj → Y by τ : Y ′ → Y and

X ′ =
⋃
j X
′
j . We note that X ′j is a V -manifold for every j. More precisely, X ′j

is toroidal for every j.

(iv) β is a projective birational morphism from a simple normal crossing variety

X̃ and D̃ ∪ Exc(β) is a simple normal crossing divisor on X̃, where D̃ is the

strict transform of α∗D (cf. [BiM, Theorem 1.5] and [BiP, Theorem 1.4]). We

may further assume that β is an isomorphism over the largest Zariski open

set U of X ′ such that (X ′, α∗D)|U is a simple normal crossing pair.

(v) f̃ : X̃ → Y ′, D̃, and τ−1Σ satisfy the conditions and assumptions in Theo-

rem 7.1 and all the local monodromies on all the local systems around τ−1Σ

are unipotent.

Therefore, Rif̃∗ωX̃(D̃) is locally free by Steps 1 and 2. On the other hand, we can

prove

Rpf̃∗ωX̃(D̃) ' Rpf ′∗ωX′(α∗D)

for every p ≥ 0. We note that

KX̃ + D̃ = β∗(KX′ + α∗D) + F

where F is β-exceptional, F is permissible on X̃, SuppF is a simple normal crossing

divisor on X̃, and dF e is effective. Hence β∗ωX̃(D̃) ' ωX′(α∗D) and Rqβ∗ωX̃(D̃) =

0 for every q > 0 by Lemma 6.1. Thus, Rif ′∗ωX′(α
∗D) is locally free for every i.

Since Rif∗ωX(D) is a direct summand of

τ∗R
if ′∗ωX′(α

∗D) ' Rif∗(α∗ωX′(α∗D)),

we deduce that Rif∗ωX(D) is locally free, equivalently, Rif∗ωX/Y (D) is locally

free for every i. We note that, by Grothendieck duality, Rd−if∗OX(−D) is also

locally free for every i.

Step 4. In this last step, we prove that Rd−if∗OX(−D) is the lower canonical

extension for every i. By Grothendieck duality and Step 3, Rd−if̃∗OX̃(−D̃) is

locally free. By Step 3, we obtain Rβ∗ωX̃(D̃) ' ωX′(α∗D) in the derived category
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of coherent sheaves on X ′. Therefore, we obtain

Rβ∗OX̃(−D̃) ' RHom(Rβ∗ω
•
X̃

(D̃), ω•X′)

' RHom(ω•X′(α
∗D), ω•X′) ' OX′(−α∗D)

in the derived category of coherent sheaves onX ′. Note thatX ′ is Cohen–Macaulay

(cf. [F14, Theorem 4.2]) and that ω•X′ ' ωX′ [dimX ′]. Thus, we have

Rpf̃∗OX̃(−D̃) ' Rpf ′∗OX′(−α∗D)

for every p. Let G be the Galois group of τ : Y ′ → Y . Then we have

(τ∗R
pf ′∗OX′(−α∗D))G ' Rpf∗(α∗OX′(−α∗D))G ' Rpf∗OX(−D).

Thus, Rd−if∗OX(−D) is the lower canonical extension for every i (cf. [Ko2, No-

tation 2.5(iii)]). By Grothendieck duality, Rif∗ωX/Y (D) is the upper canonical

extension for every i.

We have finished the proof of Theorems 7.1 and 7.3.

The following theorem is a generalization of [Ko1, Proposition 7.6].

Theorem 7.5. Let f : X → Y be a projective surjective morphism from a simple

normal crossing variety to a smooth algebraic variety Y with connected fibers.

Assume that every stratum of X is dominant onto Y . Then Rdf∗ωX ' ωY where

d = dimX − dimY .

Proof. By [BiM, Theorem 1.5] and [BiP, Theorem 1.4], we can construct a com-

mutative diagram

V
π−−−−→ X

g

y yf
W

p−−−−→ Y

with the following properties:

(i) p : W → Y is a projective birational morphism from a smooth quasi-projective

variety W .

(ii) V is a simple normal crossing variety.

(iii) π is projective birational and π induces an isomorphism π0 = π|V 0 : V 0 → X0

where X0 (resp. V 0) is a Zariski open set of X (resp. V ) which contains the

generic point of any stratum of X (resp. V ).

(iv) g is projective.
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(v) There is a simple normal crossing divisor Σ on W such that every stratum of

V is smooth over W \ Σ.

We note that Rjg∗ωV is locally free for every j by Theorem 7.3. By Grothendieck

duality,

Rg∗OV ' RHomOW (Rg∗ω
•
V , ω

•
W ).

Therefore,

OW ' HomOW (Rdg∗ωV , ωW ).

Note that, by Zariski’s main theorem, f∗OX ' OY since every stratum of X is

dominant onto Y . Therefore, g∗OV ' OW . Thus, Rdg∗ωV ' ωW . By applying p∗,

we have p∗R
dg∗ωV ' p∗ωW ' ωY . We note that p∗R

dg∗ωV ' Rd(p ◦ g)∗ωV since

Rip∗R
dg∗ωV = 0 for every i > 0 (cf. Theorem 6.3(ii)). On the other hand,

Rd(p ◦ g)∗ωV ' Rd(f ◦ π)∗ωV ' Rdf∗ωX

since Riπ∗ωV = 0 for every i > 0 by Lemma 6.1 and π∗ωV ' ωX (cf. Lemma 6.2).

Therefore, Rdf∗ωX ' ωY .

In geometric applications, we sometimes have a projective surjective mor-

phism f : X → Y from a simple normal crossing variety to a smooth variety Y

with connected fibers such that every stratum of X is mapped onto Y . The example

below shows that in general there is no stratum S of X such that general fibers of

S → Y are connected. Therefore, Kawamata’s result [Kw3, Theorem 1.1] is very

restrictive. He assumes that S → Y has connected fibers for every stratum S of X.

Example 7.6. We consider W = P1×P1×P1. Let pi : P1×P1×P1 → P1 be the

i-th projection for i = 1, 2, 3. We take general members X1 ∈ |p∗1OP1(1)⊗p∗2OP1(2)|
and X2 ∈ |p∗1OP1(1)⊗ p∗3OP1(2)|. We define X = X1 ∪X2, Y = P1, and f = p1|X :

X → Y . Then f is a projective morphism from a simple normal crossing variety

X to a smooth projective curve Y . We can directly check that

H1(W,OW (−X1)) = H1(W,OW (−X2)) = 0,

H1(W,OW (−X1 −X2)) = H2(W,OW (−X1 −X2)) = 0.

Therefore, by using

0→ OW (−X1 −X2)→ OW (−X2)→ OX1
(−X2)→ 0,

we obtain H1(X1,OX1(−X2)) = 0. By using

0→ OX1(−X2)→ OX1 → OX1∩X2 → 0,
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we obtain H0(X1 ∩ X2,OX1∩X2
) = C since H0(X1,OX1

) = C. This means that

C = X1 ∩ X2 is a smooth connected curve. Therefore, every stratum of X is

mapped onto Y by f . We note that general fibers of f : X1 → Y , f : X2 → Y ,

and f : C → Y are disconnected.

As a special case of Theorem 7.1, we obtain the following theorem.

Theorem 7.7 (cf. [Kw1, Theorem 5], [Ko2, Theorem 2.6], and [N1, Theorem 1]).

Let f : X → Y be a projective morphism between smooth complete algebraic vari-

eties which satisfies the following conditions:

(i) There is a Zariski open subset Y ∗ of Y such that Σ = Y \ Y ∗ is a simple

normal crossing divisor on Y .

(ii) Set X∗ = f−1(Y ∗). Then f |X∗ is smooth.

(iii) The local monodromies of Rd+i(f |X∗)∗CX∗ around Σ are unipotent, where

d = dimX − dimY .

Then Rif∗ωX/Y is a semipositive locally free sheaf on Y .

Proof. By Poincaré–Verdier duality (see, for example, [PS, Theorem 13.9]), the

local system Rd−i(f |X∗)∗CX∗ is the dual local system of Rd+i(f |X∗)∗CX∗ . There-

fore, the local monodromies of Rd−i(f |X∗)∗CX∗ around Σ are unipotent. Thus,

by Theorem 7.1, Rif∗ωX/Y ' (Rd−if∗OX)∗ is a semipositive locally free sheaf

on Y .

Similarly, the semipositivity theorem of [F4, Theorem 3.9] can be recovered

from Theorem 7.1. We note that [Kw3, Theorem 1.1] does not cover [F4, Theo-

rem 3.9]. This is because Kawamata’s theorem requires S → Y to have connected

fibers for every stratum S of (X,D) (cf. Example 7.6).

Remark 7.8. Let f : X → Y be a projective morphism between smooth pro-

jective varieties. Assume that there exists a simple normal crossing divisor Σ on

Y such that f is smooth over Y \ Σ. Then Rif∗ωX/Y is locally free for every i

(cf. Theorem 7.3 and [Ko2, Theorem 2.6]). We note that Rif∗ωX/Y is not always

semipositive if we assume nothing on monodromies around Σ.

We close this section with an easy example.

Example 7.9 (Double cover). We consider π : Y = PP1(OP1 ⊕ OP1(2)) → P1.

Let E and G be the sections of π such that E2 = −2 and G2 = 2. We note that

E+2F ∼ G where F is a fiber of π. We put L = OY (E+F ). Then E+G ∈ |L⊗2|.
Let f : X → Y be the double cover constructed by E+G ∈ |L⊗2|. Then f : X → Y
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is étale outside Σ = E +G and

f∗ωX/Y ' OY ⊕ L.
In this case, f∗ωX/Y is not semipositive since L · E = −1. We note that the local

monodromies on (f |X∗)∗CX∗ around Σ are not unipotent, where Y ∗ = Y \Σ and

X∗ = f−1(Y ∗).

In Example 7.9, f : X → Y is finite and the general fibers of f are dis-

connected. In Section 8, we discuss an example f : X → Y whose general fibers

are elliptic curves such that f∗ωX/Y is not semipositive (cf. Corollary 8.10 and

Example 8.16).

§8. Examples

In this final section, we give supplementary examples for the Fujita–Kawamata

semipositivity theorem (cf. [Kw1, Theorem 5]), Viehweg’s weak positivity theorem,

and the Fujino–Mori canonical bundle formula (cf. [FM]). For details of the original

Fujita–Kawamata semipositivity theorem, see, for example, [Mor, §5] and [F5,

Section 5].

8.1 (Semipositivity in the sense of Fujita–Kawamata). The following example is

due to Takeshi Abe. It is a small remark on Definition 5.20.

Example 8.2. Let C be an elliptic curve and let E be a stable vector bundle on

C such that the degree of E is −1 and the rank of E is two. Let fm : C → C

be multiplication by m where m is a positive integer. In this case, every quotient

line bundle L of E has non-negative degree. However, OP(E)(1) is not nef, because

we can find a quotient line bundle M of f∗mE whose degree is negative for some

positive integer m.

8.3 (Canonical bundle formula). We give sample computations of our canonical

bundle formula obtained in [FM]. We will freely use the notation in [FM]. For de-

tails of our canonical bundle formula, see [FM], [F2, §3], and [F3, §3, §4, §5, and §6].

8.4 (Kummer manifolds). Let E be an elliptic curve and let En be the n-fold

direct product of E. Let G be the cyclic group of order two of analytic automor-

phisms of En generated by the automorphism

τ : En → En : (z1, . . . , zn) 7→ (−z1, . . . ,−zn).

The automorphism τ has 22n fixed points. Each singular point is terminal for n ≥ 3

and is canonical for n ≥ 2.

8.5 (Kummer surfaces). First, we consider q : E2/G → E/G ' P1, which is

induced by the first projection, and g = q ◦ µ : Y → P1, where µ : Y → E2/G is
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the minimal resolution of sixteen A1-singularities. It is easy to see that Y is a K3

surface. In this case, it is obvious that

g∗OY (mKY/P1) ' OP1(2m)

for every m ≥ 1. Thus, we can put LY/P1 = D for any degree two Weil divisor

D on P1. For the definition of LY/P1 , see [FM, Definition 2.3]. We obtain KY =

g∗(KP1 + LY/P1). Let Qi be the branch point of E → E/G ' P1 for 1 ≤ i ≤ 4.

Then

Lss
Y/P1 = D −

4∑
i=1

(
1− 1

2

)
Qi = D −

4∑
i=1

1

2
Qi

by the definition of the semistable part Lss
Y/P1 (see [FM, Proposition 2.8, Definition

4.3, and Proposition 4.7]). Therefore,

KY = g∗
(
KP1 + Lss

Y/P1 +

4∑
i=1

1

2
Qi

)
.

Thus,

Lss
Y/P1 = D −

4∑
i=1

1

2
Qi � 0

but

2Lss
Y/P1 = 2D −

4∑
i=1

Qi ∼ 0.

Note that Lss
Y/P1 is not a Weil divisor but a Q-Weil divisor on P1.

8.6 (Elliptic fibrations). Next, we consider E3/G and E2/G. We consider the mor-

phism p : E3/G → E2/G induced by the projection E3 → E2 : (z1, z2, z3) 7→
(z1, z2). Let ν : X ′ → E3/G be the weighted blow-up of E3/G at sixty-four
1
2 (1, 1, 1)-singularities. Thus

KX′ = ν∗KE3/G +

64∑
j=1

1

2
Ej ,

where Ej ' P2 is the exceptional divisor for every j. Let Pi be an A1-singularity

of E2/G for 1 ≤ i ≤ 16. Let ψ : X → X ′ be the blow-up of X ′ along the strict

transform of p−1(Pi), which is isomorphic to P1, for every i. Then we obtain the

commutative diagram

E3/G
φ:=ν◦ψ←−−−−− X

p

y yf
E2/G

µ←−−−− Y
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Note that

KX = φ∗KE3/G +

64∑
j=1

1

2
Ej +

16∑
k=1

Fk,

where Ej is the strict transform of Ej on X and Fk is the ψ-exceptional prime

divisor for every k. We can check that X is a smooth projective threefold. We put

Ci = µ−1(Pi) for every i. It can be checked that Ci is a (−2)-curve for every i.

It is easily checked that f is smooth outside
∑16
i=1 Ci and that the degeneration

of f is of type I∗0 along Ci for every i. We renumber {Ej}64
j=1 as {Eji }, where

f(Eji ) = Ci for every 1 ≤ i ≤ 16 and 1 ≤ j ≤ 4. We note that f is flat since f is

equidimensional.

Let us recall the following theorem (cf. [Kw2, Theorem 20] and [N2, Corollary

3.2.1 and Theorem 3.2.3]).

Theorem 8.7 (. . . , Kawamata, Nakayama, . . . ). We have

(f∗ωX/Y )⊗12 ' OY
( 16∑
i=1

6Ci

)
,

where ωX/Y ' OX(KX/Y ) = OX(KX − f∗KY ).

The proof of Theorem 8.7 depends on the investigation of the upper canonical

extension of the Hodge filtration and the period map. It is obvious that

2KX = f∗
(

2KY +

16∑
i=1

Ci

)
and

2mKX = f∗
(

2mKY +m

16∑
i=1

Ci

)
for allm ≥ 1 since f∗Ci = 2Fi+

∑4
j=1E

j
i for every i. Therefore, 2LX/Y ∼

∑16
i=1 Ci.

On the other hand, f∗ωX/Y ' OY (bLX/Y c). Note that Y is a smooth surface and

f is flat. Since

OY (12bLX/Y c) ' (f∗ωX/Y )⊗12 ' OY
( 16∑
i=1

6Ci

)
,

we have

12LX/Y ∼ 6

16∑
i=1

Ci ∼ 12bLX/Y c.

Thus, LX/Y is a Weil divisor on Y , because the fractional part {LX/Y } is effective

and linearly equivalent to zero. So, LX/Y is numerically equivalent to 1
2

∑16
i=1 Ci.
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We have g∗Qi = 2Gi +
∑4
j=1 C

j
i for every i. Here, we renumbered {Cj}16

j=1 as

{Cji }4i,j=1 so that g(Cji ) = Qi for every i and j. More precisely, we set 2Gi =

g∗Qi −
∑4
j=1 C

j
i for every i. We note that we used notations in 8.5. We consider

A := g∗D −
∑4
i=1Gi. Then A is a Weil divisor and 2A ∼

∑16
i=1 Ci. Thus, A is

numerically equivalent to 1
2

∑16
i=1 Ci. Since H1(Y,OY ) = 0, we can set LX/Y = A.

So, we have

Lss
X/Y = g∗D −

4∑
i=1

Gi −
16∑
j=1

1

2
Cj .

We obtain the following canonical bundle formula.

Theorem 8.8. We have

KX = f∗
(
KY + Lss

X/Y +

16∑
j=1

1

2
Cj

)
,

where Lss
X/Y = g∗D −

∑4
i=1Gi −

∑16
j=1

1
2Cj.

We note that 2Lss
X/Y ∼ 0 but Lss

X/Y � 0. The semistable part Lss
X/Y is not a

Weil divisor but a Q-divisor on Y .

The next lemma is obvious since the index of KE3/G is two. We give a direct

proof here.

Lemma 8.9. H0(Y,LX/Y ) = 0.

Proof. Suppose that there exists an effective Weil divisor B on Y such that

LX/Y ∼ B. Since B ·Ci = −1, we have B ≥ 1
2Ci for all i. Thus B ≥

∑16
i=1

1
2Ci. This

implies that B −
∑16
i=1

1
2Ci is an effective Q-divisor and is numerically equivalent

to zero. Thus B =
∑16
i=1

1
2Ci, a contradiction.

We can easily check the following corollary.

Corollary 8.10. We have

f∗ω
⊗m
X/Y '

{
OY (

∑16
i=1 nCi) if m = 2n,

OY (LX/Y +
∑16
i=1 nCi) if m = 2n+ 1.

In particular, f∗ω
⊗m
X/Y is not nef for any m ≥ 1. We can also check that

H0(Y, f∗ω
⊗m
X/Y ) '

{
C if m is even,

0 if m is odd.

Corollary 8.10 shows that [T, Theorem 1.9(1)] is sharp.
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8.11 (Weak positivity). Let us recall the definition of Viehweg’s weak positivity

(cf. [V1, Definition 1.2] and [V3, Definition 2.11]). The reader can find some in-

teresting applications of a generalization of Viehweg’s weak positivity theorem in

[FG1].

Definition 8.12 (Weak positivity). Let W be a smooth quasi-projective variety

and let F be a locally free sheaf on W . Let U be an open subvariety of W . Then F
is weakly positive over U if for every ample invertible sheaf H and every positive

integer α there exists some positive integer β such that Sα·β(F)⊗Hβ is generated

by global sections over U where Sk denotes the k-th symmetric product for every

positive integer k. This means that the natural map

H0(W,Sα·β(F)⊗Hβ)⊗OW → Sα·β(F)⊗Hβ

is surjective over U .

Remark 8.13 (cf. [V1, (1.3) Remark. iii)]). In Definition 8.12, it is enough to

check the condition for one invertible sheaf H, not necessarily ample, and all

α > 0. For details, see [V3, Lemma 2.14 a)].

Remark 8.14. In [V2, Definition 3.1], Sα·β(F) ⊗ H⊗β is only required to be

generically generated. See also [Mor, (5.1) Definition].

We explicitly check the weak positivity for the elliptic fibration constructed

in 8.6 (cf. [V1, Theorem 4.1 and Theorem III] and [V3, Theorem 2.41 and Corol-

lary 2.45]).

Proposition 8.15. Let m be a positive integer. Let f : X → Y be the elliptic

fibration constructed in 8.6. Then f∗ω
⊗m
X/Y is weakly positive over Y0 = Y \

∑16
i=1 Ci.

Let U be a Zariski open set such that U 6⊂ Y0. Then f∗ω
⊗m
X/Y is not weakly positive

over U .

Proof. Let H be a very ample Cartier divisor on Y such that LX/Y + H is very

ample. Set H = OY (H). Let α be an arbitrary positive integer. Then

Sα(f∗ω
⊗m
X/Y )⊗H ' OY

(
α

16∑
i=1

nCi +H
)

if m = 2n. When m = 2n+ 1, we have

Sα(f∗ω
⊗m
X/Y )⊗H '


OY
(
α

16∑
i=1

nCi +H + LX/Y +

⌊
α

2

⌋ 16∑
i=1

Ci

)
if α is odd,

OY
(
α

16∑
i=1

nCi +H +
α

2

16∑
i=1

Ci

)
if α is even.
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Thus, Sα(f∗ω
⊗m
X/Y ) ⊗ H is generated by global sections over Y0 for every α > 0.

Therefore, f∗ω
⊗m
X/Y is weakly positive over Y0.

Let A be an ample invertible sheaf on Y . We put k = max
j

(Cj · A). Let α be

a positive integer with α > k/2. We note that

S2α·β(f∗ω
⊗m
X/Y )⊗A⊗β '

(
OY
(
α

16∑
i=1

mCi

)
⊗A

)⊗β
.

If H0(Y, S2α·β(f∗ω
⊗m
X/Y )⊗A⊗β) 6= 0, then we can take

G ∈
∣∣∣(OY (α 16∑

i=1

mCi

)
⊗A

)⊗β∣∣∣.
In this case, G · Ci < 0 for every i because α > k/2. Therefore, G ≥

∑16
i=1 Ci.

Thus, S2α·β(f∗ω
⊗m
X/Y ) ⊗ A⊗β is not generated by global sections over U for any

β ≥ 1. This means that f∗ω
⊗m
X/Y is not weakly positive over U .

Proposition 8.15 implies that [V3, Corollary 2.45] is the best possible result.

Example 8.16. Let f : X → Y be the elliptic fibration constructed in 8.6. Let

Z := C × X, where C is a smooth projective curve with genus g(C) = r ≥ 2.

Let π1 : Z → C (resp. π2 : Z → X) be the first (resp. second) projection. Set

h := f ◦ π2 : Z → Y . In this case, KZ = π∗1KC ⊗ π∗2KX . Therefore,

h∗ω
⊗m
Z/Y = f∗π2∗(π

∗
1ω
⊗m
C ⊗ π∗2ω⊗mX )⊗ ω⊗−mY = (f∗ω

⊗m
X/Y )⊕l,

where l = dimH0(C,OC(mKC)). Thus, l = (2m−1)r−2m+1 if m ≥ 2 and l = r

if m = 1. So, h∗ωZ/Y is a rank r ≥ 2 vector bundle on Y such that h∗ωZ/Y is not

semipositive. We note that h is smooth over Y0 = Y \
∑16
i=1 Ci. Moreover, h∗ω

⊗m
Z/Y

is weakly positive over Y0 for every m ≥ 1 by [V3, Theorem 2.41 and Corollary

2.45].

Example 8.16 shows that the assumption on the local monodromies around∑16
i=1 Ci is indispensable for the semipositivity theorem.

We close this section with a comment on [FM].

8.17 (Comment). We give a remark on [FM, Section 4]. In [FM, 4.4], g : Y → X is

a log resolution of (X,∆). However, it is better to assume that g is a log resolution

of (X,∆− (1/b)B∆) for the proof of [FM, Theorem 4.8].
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Math. J. 61 (1990), 133–155. Zbl 0722.14002 MR 1068383

[GNPP] F. Guillén, V. Navarro Aznar, P. Pascual Gainza, and F. Puerta, Hyperrésolutions
cubiques et descente cohomologique, Lecture Notes in Math. 1335, Springer, Berlin,
1988. Zbl 0638.00011 MR 0972983

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1084.14035&format=complete
http://www.ams.org/mathscinet-getitem?mr=2019522
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.14040&format=complete
http://www.ams.org/mathscinet-getitem?mr=2019523
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.14019&format=complete
http://www.ams.org/mathscinet-getitem?mr=2106473
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1103.14018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2226625
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1286.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2359341
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1189.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2561896
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1200.14033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2666656
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1213.14030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2779477
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1234.14013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2832805
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1248.14018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2928144
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1260.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2906532
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06290390&format=complete
http://www.ams.org/mathscinet-getitem?mr=3238112
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06282923&format=complete
http://www.ams.org/mathscinet-getitem?mr=3167580
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1032.14014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1863025
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0393.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0513085
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0212.53503&format=complete
http://www.ams.org/mathscinet-getitem?mr=0282990
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0722.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1068383
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0638.00011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0972983


660 O. Fujino and T. Fujisawa

[Ks] M. Kashiwara, A study of variation of mixed Hodge structure, Publ. RIMS Kyoto Univ.
22 (1986), 991–1024. Zbl 0621.14007 MR 0866665

[Kt] N. Katz, An overview of Deligne’s work on Hilbert’s twenty-first problem, in Mathemat-
ical developments arising from Hilbert problems, Proc. Sympos. Pure Math. 28, Amer.
Math. Soc., 1976, 537–557. Zbl 0347.14010 MR 0432640

[KO] N. Katz and T. Oda, On the differentiation of de Rham cohomology classes with respect
to parameters, J. Math. Kyoto Univ. 8 (1968), 199–213. Zbl 0165.54802 MR 0237510

[Kw1] Y. Kawamata, Characterization of abelian varieties, Compos. Math. 43 (1981), 253–276.
Zbl 0471.14022 MR 0622451

[Kw2] , Kodaira dimension of certain algebraic fiber spaces, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 30 (1983), 1–24. Zbl 0516.14026 MR 0700593

[Kw3] , Semipositivity theorem for reducible algebraic fiber spaces, Pure Appl. Math.
Quart. 7 (2011), 1427–1447. Zbl 06107783 MR 2918168

[Ko1] J. Kollár, Higher direct images of dualizing sheaves, I. Ann. of Math. 123 (1986), 11–42.
Zbl 0598.14015 MR 0825838

[Ko2] , Higher direct images of dualizing sheaves, II. Ann. of Math. 124 (1986), 171–
202. Zbl 0605.14014 MR 0847955

[Ko3] , Subadditivity of the Kodaira dimension: fibers of general type, in Algebraic
geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987,
361–398. Zbl 0659.14024 MR 0847955

[Ko4] , Projectivity of complete moduli, J. Differential Geom. 32 (1990), 235–268.
Zbl 0684.14002 MR 1064874

[Ko5] , Kodaira’s canonical bundle formula and adjunction, in Flips for 3-folds and
4-folds, Oxford Lecture Ser. Math. Appl. 35, Oxford Univ. Press, Oxford, 2007, 134–162.
Zbl 1286.14027 MR 2359346

[Ko6] , Singularities of the minimal model program, Cambridge Tracts in Math. 200,
Cambridge Univ. Press, Cambridge, 2013. Zbl 1282.14028 MR 3057950

[Moc] S. Mochizuki, On semi-positivity and filtered Frobenius crystals, Publ. RIMS Kyoto
Univ. 31 (1995), 81–94. Zbl 0841.14016 MR 1317524

[Mor] S. Mori, Classification of higher-dimensional varieties, in Algebraic geometry, Bowdoin,
1985 (Brunswick, ME, 1985), Proc. Sympos. Pure Math. 46, Part 1, Amer. Math. Soc.,
Providence, RI, 1987, 269–331. Zbl 0656.14022 MR 0927961

[MT] C. Mourougane and S. Takayama, Extension of twisted Hodge metrics for Kähler mor-
phisms, J. Differential Geom. 83 (2009), 131–161. Zbl 1183.32013 MR 2545032

[Mu] D. Mumford, Abelian varieties, Oxford Univ. Press, 1970. Zbl 0223.14022
MR 0282985

[N1] N. Nakayama, Hodge filtrations and the higher direct images of canonical sheaves,
Invent. Math. 85 (1986), 217–221. Zbl 0592.14006 MR 0842055

[N2] , Local structure of an elliptic fibration, in Higher dimensional birational geome-
try (Kyoto, 1997), Adv. Stud. Pure Math. 35, Math. Soc. Japan, Tokyo, 2002, 185–295.
Zbl 1059.14015 MR 1929795

[NA] V. Navarro Aznar, Sur la théorie de Hodge–Deligne, Invent. Math. 90 (1987), 11–76.
Zbl 0639.14002 MR 0906579

[PS] C. Peters and J. Steenbrink, Mixed Hodge structures, Ergeb. Math. Grenzgeb. 52,
Springer, Berlin, 2008. Zbl 1138.14002 MR 2393625

[Sa] M. Saito, Modules de Hodge polarisables, Publ. RIMS Kyoto Univ. 24 (1988), 849–995.
Zbl 0691.14007 MR 1000123

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0621.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0866665
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0347.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0432640
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0165.54802&format=complete
http://www.ams.org/mathscinet-getitem?mr=0237510
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0471.14022&format=complete
http://www.ams.org/mathscinet-getitem?mr=0622451
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0516.14026&format=complete
http://www.ams.org/mathscinet-getitem?mr=0700593
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06107783&format=complete
http://www.ams.org/mathscinet-getitem?mr=2918168
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0598.14015&format=complete
http://www.ams.org/mathscinet-getitem?mr=0825838
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0605.14014&format=complete
http://www.ams.org/mathscinet-getitem?mr=0847955
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0659.14024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0847955
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0684.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1064874
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1286.14027&format=complete
http://www.ams.org/mathscinet-getitem?mr=2359346
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1282.14028&format=complete
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1317524
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0656.14022&format=complete
http://www.ams.org/mathscinet-getitem?mr=0927961
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2545032
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0223.14022&format=complete
http://www.ams.org/mathscinet-getitem?mr=0282985
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0592.14006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0842055
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1059.14015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1929795
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0639.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0906579
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1138.14002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2393625
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.14007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1000123


VMHS and Semipositivity 661

[SSU] M.-H. Saito, Y. Shimizu, and S. Usui, Variation of mixed Hodge structure and the
Torelli problem, in Algebraic geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North-
Holland, Amsterdam, 1987, 649–693. Zbl 0643.14005 MR 0946252

[Sc] W. Schmid, Variation of Hodge structure: the singularities of the period mapping, In-
vent. Math. 22 (1973), 211–319. Zbl 0278.14003 MR 0382272

[St1] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), 229–257.
Zbl 0303.14002 MR 0429885

[St2] , Mixed Hodge structure on the vanishing cohomology, in Real and complex
singularities (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 525–563.
Zbl 0373.14007 MR 0485870

[SZ] J. Steenbrink and S. Zucker, Variation of mixed Hodge structure, I. Invent. Math. 80
(1985), 489–542. Zbl 0626.14007 MR 0791673

[T] H. Tsuji, Global generation of the direct images of relative pluricanonical systems,
preprint (2010).

[U] S. Usui, Mixed Torelli problem for Todorov surfaces, Osaka J. Math. 28 (1991), 697–735
Zbl 0774.14005 MR 1144481

[V1] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain
fibre spaces, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure
Math. 1, North-Holland, Amsterdam, 1983, 329–353. Zbl 0513.14019 MR 0715656

[V2] , Weak positivity and the additivity of the Kodaira dimension. II. The lo-
cal Torelli map, in Classification of algebraic and analytic manifolds (Katata, 1982),
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