Normalizers inside Amalgamated Free Product von Neumann Algebras

by

Stefaan VAES

Abstract

Recently, Adrian Ioana proved that all crossed products $L^{\infty}(X) \rtimes (\Gamma_1 * \Gamma_2)$ by free ergodic probability measure preserving actions of a nontrivial free product group $\Gamma_1 * \Gamma_2$ have a unique Cartan subalgebra up to unitary conjugacy. Ioana deduced this result from a more general dichotomy theorem on the normalizer $\mathcal{N}_M(A)''$ of an amenable subalgebra A of an amalgamated free product von Neumann algebra $M = M_1 *_{B} M_2$. We improve this dichotomy theorem by removing the spectral gap assumptions and obtain in particular a simpler proof for the uniqueness of the Cartan subalgebra in $L^{\infty}(X) \rtimes (\Gamma_1 * \Gamma_2)$.

2010 Mathematics Subject Classification: Primary 46L36; Secondary 46L54, 37A40. Keywords: amalgamated free products, Cartan subalgebras, deformation/rigidity theory, nonsingular group actions.

§1. Introduction and main results

Each free ergodic nonsingular group action $\Gamma \curvearrowright (X, \mu)$ on a standard probability space gives rise to a crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$, in which $L^{\infty}(X)$ is a *Cartan subalgebra*. More generally, Cartan subalgebras arise as $L^{\infty}(X) \subset L(\mathcal{R})$ where $\mathcal R$ is a countable nonsingular Borel equivalence relation on (X, μ) . One of the main questions in the classification of these von Neumann algebras $L^{\infty}(X) \rtimes \Gamma$ and $L(\mathcal{R})$ is whether or not $L^{\infty}(X)$ is their unique Cartan subalgebra up to unitary conjugacy. Indeed, if uniqueness holds, the classification problem is reduced to classifying the underlying (orbit) equivalence relations.

Within Popa's deformation/rigidity theory, there has been a lot of recent progress on the uniqueness of Cartan subalgebras in II_1 factors, starting with [\[OP07\]](#page-26-1) where it was shown that all crossed products $L^{\infty}(X) \rtimes \mathbb{F}_n$ by free ergodic probability measure preserving (pmp) *profinite* actions of the free groups \mathbb{F}_n have

Communicated by N. Ozawa. Received October 3, 2013.

S. Vaes: Department of Mathematics, KU Leuven, Leuven, Belgium;

e-mail: stefaan.vaes@wis.kuleuven.be

c 2014 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

a unique Cartan subalgebra. Note that this provided the first uniqueness theorem for Cartan subalgebras up to unitary conjugacy. The result of [\[OP07\]](#page-26-1) was gradually extended to profinite actions of larger classes of groups Γ in [\[OP08,](#page-26-2) [CS11,](#page-25-0) [CSU11\]](#page-25-1), but all relied on profiniteness of the action and weak amenability of the group Γ. At the same time, it was conjectured that crossed products $L^{\infty}(X) \rtimes \mathbb{F}_n$ by actions of the free groups could have a unique Cartan subalgebra without any profiniteness assumptions on $\mathbb{F}_n \curvearrowright (X, \mu)$.

In a joint work with Popa [\[PV11,](#page-26-3) [PV12\]](#page-26-4), we solved this conjecture and proved that the free groups $\Gamma = \mathbb{F}_n$ and all nonelementary hyperbolic groups Γ are C-rigid (Cartan-rigid), i.e. for every free ergodic pmp action $\Gamma \curvearrowright (X, \mu)$, the II₁ factor $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy. We obtained this result as a consequence of a general dichotomy theorem about normalizers of amenable subalgebras in crossed product von Neumann algebras $N \rtimes \Gamma$, arising from trace preserving actions of such groups Γ on arbitrary tracial (N, τ) .

Then in [\[Io12\]](#page-25-2), the general dichotomy result of [\[PV11\]](#page-26-3) was exploited to establish C-rigidity for arbitrary nontrivial free products $\Gamma = \Gamma_1 * \Gamma_2$ and large classes of amalgamated free products $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$. This provided in particular the first non-weakly amenable C -rigid groups. The main idea of $[Io12]$ is to use the free malleable deformation from [\[IPP05\]](#page-25-3) of a crossed product $B \rtimes (\Gamma_1 * \Gamma_2)$, providing a 1-parameter family of embeddings $\theta_t : B \rtimes (\Gamma_1 * \Gamma_2) \to N \rtimes \mathbb{F}_2$ into some crossed product by the free group \mathbb{F}_2 . Then the main result of $[PV11]$ is applied to this crossed product $N \rtimes \mathbb{F}_2$ and a very careful and delicate analysis is needed to "come back" and deduce results about the original crossed product $B \rtimes (\Gamma_1 * \Gamma_2)$.

The purpose of this article is to give a simpler approach to this "come back" procedure and, at the same time, prove a more general result removing the spectral gap assumptions of $[Io12]$. As a result, we obtain a simpler proof of the C-rigidity of amalgamated free product groups.

Our method allows us to prove a more generic theorem about the normalizer of a subalgebra inside an amalgamated free product of von Neumann algebras see Theorem [A](#page-2-0) below. This theorem has the advantage of immediately implying a similar result for HNN extensions of von Neumann algebras (see Theorem [4.1\)](#page-15-0). Thus we obtain, without extra effort, C -rigidity for a large class of HNN extensions $\Gamma = \text{HNN}(\Gamma_1, \Sigma, \theta)$, established before in [\[DI12\]](#page-25-4) using more involved methods.

As we explain below, following the strategy of $[HV12]$, we also prove a uniqueness theorem for Cartan subalgebras in type III factors. This then allows us to give first examples of type III actions $\Gamma \curvearrowright (X, \mu)$ that are W^{*}-superrigid, i.e. such that the group Γ and its action $\Gamma \curvearrowright (X, \mu)$ can be recovered from $L^{\infty}(X) \rtimes \Gamma$, up to induction of actions.

To state the main result of the article, we first recall Popa's theory of inter-twining-by-bimodules from [\[Po01,](#page-26-5) [Po03\]](#page-26-6). When (M, τ) is a tracial von Neumann algebra and $A \subset pMp$ and $B \subset M$ are von Neumann subalgebras, we say that $A \prec_M B$ (A embeds into B inside M) if $L^2(pM)$ admits a nonzero A-Bsubbimodule that is finitely generated as a right Hilbert B-module. This is "almost" equivalent to the existence of a partial isometry $v \in B$ such that $vAv^* \subset B$. By [\[Po03,](#page-26-6) Theorem 2.1 and Corollary 2.3], the negation $A \nprec_M B$ is equivalent to the existence of a net $(a_i)_{i\in I}$ of unitaries in $\mathcal{U}(A)$ satisfying $\lim_i ||E_B(xu_iy)||_2 = 0$ for all $x, y \in M$.

Also recall from [\[OP07,](#page-26-1) Definition 2.2] that A is said to be amenable relative to B inside M if there exists an A-central state Ω on Jones' basic construction von Neumann algebra $p\langle M, e_B \rangle p$ satisfying $\Omega(x) = \tau(x)$ for all $x \in pMp$. When B is amenable, this is equivalent to A being amenable. When $M = D \rtimes \Gamma$ and $\Lambda, \Sigma < \Gamma$ are subgroups, then the relative amenability of $D \rtimes \Lambda$ with respect to $D \rtimes \Sigma$ is equivalent to the relative amenability of Λ with respect to Σ inside Γ, i.e. to the existence of a Λ -invariant mean on Γ/Σ .

The following is the main result of the article. The same result was proven in [\[Io12,](#page-25-2) Theorem 1.6] under the extra assumption that the normalizer $\mathcal{N}_{pMp}(A)$ = ${u \in \mathcal{U}(pMp) \mid uAu^* = A}$ of A inside pMp has spectral gap.

Theorem A. Let (M_i, τ_i) be tracial von Neumann algebras with a common von Neumann subalgebra $B \subset M_i$ satisfying $\tau_{1|B} = \tau_{2|B}$. Denote by $M = M_1 *_B M_2$ the amalgamated free product with respect to the unique trace preserving conditional expectations. Let $p \in M$ be a nonzero projection and $A \subset pMp$ a von Neumann subalgebra that is amenable relative to one of the M_i inside M . Then at least one of the following statements holds:

- $A \prec_M B$.
- There is an $i \in \{1,2\}$ such that $\mathcal{N}_{pMp}(A)^{''} \prec_M M_i$.
- $\mathcal{N}_{pMp}(A)''$ is amenable relative to B inside M.

As in [\[Io12\]](#page-25-2), several uniqueness theorems for Cartan subalgebras can be de-duced from Theorem [A.](#page-2-0) This is in particular the case for II_1 factors $M = L(\mathcal{R})$ that arise from a countable pmp equivalence relation R that can be decomposed as a free product $\mathcal{R} = \mathcal{R}_1 * \mathcal{R}_2$ of subequivalence relations $\mathcal{R}_i \subset \mathcal{R}$. Since we now no longer need to prove the spectral gap assumption, we can directly deduce from Theorem [A](#page-2-0) the following improvement of [\[Io12,](#page-25-2) Corollary 1.4] and [\[BHR12,](#page-25-6) Theorem 6.3].

Corollary B. Let \mathcal{R} be a countable ergodic pmp equivalence relation on the standard probability space (X, μ) . Assume that $\mathcal{R} = \mathcal{R}_1 * \mathcal{R}_2$ for two subequivalence

relations $\mathcal{R}_i \subset \mathcal{R}$. Assume that $|\mathcal{R}_1 \cdot x| \geq 3$ and $|\mathcal{R}_2 \cdot x| \geq 2$ for a.e. $x \in X$. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L(\mathcal{R})$ up to unitary conjugacy.

A tracial von Neumann algebra (M, τ) is called *strongly solid* if for every diffuse amenable von Neumann subalgebra $A \subset M$, the normalizer $\mathcal{N}_M(A)''$ is still amenable. For completeness, we also show how to deduce from Theorem [A](#page-2-0) the following stability result for strong solidity under amalgamated free products, slightly improving on [\[Io12,](#page-25-2) Theorem 1.8].

For the formulation of the result, recall from [\[Po03,](#page-26-6) Section 3] that an inclusion $B \subset (M_1, \tau)$ of tracial von Neumann algebras is called *mixing* if for every sequence $b_n \in B$ with $||b_n|| \leq 1$ for all n and $b_n \to 0$ weakly, we have $\lim_{n} ||E_B(xb_ny)||_2 = 0$ for all $x, y \in M_1 \ominus B$. Typical examples of mixing inclusions arise as $L(\Sigma) \subset L(\Gamma)$ when $\Sigma < \Gamma$ is a subgroup such that $g\Sigma g^{-1} \cap \Sigma$ is finite for all $g \in \Gamma - \Sigma$, or as $L(\Sigma) \subset B \rtimes \Sigma$ whenever Σ acts in a mixing and trace preserving way on (B, τ) .

Corollary C. Let (M_i, τ_i) be strongly solid von Neumann algebras with a common amenable von Neumann subalgebra $B \subset M_i$ satisfying $\tau_{1|B} = \tau_{2|B}$. Assume that the inclusion $B \subset M_1$ is mixing. Denote by $M = M_1 *_B M_2$ the amalgamated free product with respect to the unique trace preserving conditional expectations. Then M is strongly solid.

On the level of tracial von Neumann algebras, by [\[Ue07\]](#page-26-7), amalgamated free products and HNN extensions are one and the same thing, up to amplifications. Therefore, Theorem [A](#page-2-0) has an immediate counterpart for HNN extensions that we formulate as Theorem [4.1](#page-15-0) below.

As a consequence, we can reprove [\[Io12,](#page-25-2) Theorem 1.1] and [\[DI12,](#page-25-4) Corollary 1.7], showing C-rigidity for amalgamated free product groups, HNN extensions and their direct products. We refer to Theorem [5.1](#page-16-0) for a precise statement.

Finally in Section [8,](#page-18-0) we use the methods of [\[HV12\]](#page-25-5) to deduce from Theorem [A](#page-2-0) a uniqueness theorem for Cartan subalgebras in type III factors $L^{\infty}(X) \rtimes \Gamma$ arising from nonsingular free ergodic actions of amalgamated free product groups (see Theorem [8.1\)](#page-18-1), generalizing [\[BHR12,](#page-25-6) Theorem D]. As a consequence, we can provide the following first nonsingular actions of type III that are W[∗]-superrigid.

Proposition D. Consider the linear action of $SL(5, \mathbb{Z})$ on \mathbb{R}^5 and define the subgroup $\Sigma < SL(5, \mathbb{Z})$ of matrices A satisfying $Ae_i = e_i$ for $i = 1, 2$. Put $\Gamma = SL(5, \mathbb{Z}) *_{\Sigma} (\Sigma \times \mathbb{Z})$ and denote by $\pi : \Gamma \to SL(5, \mathbb{Z})$ the natural quotient homomorphism. The diagonal action $\Gamma \cap \mathbb{R}^5/\mathbb{R}_+ \times [0,1]^\Gamma$ given by

$$
g \cdot (x, y) = (\pi(g) \cdot x, g \cdot y),
$$

where $g \cdot y$ is given by the Bernoulli shift, is a nonsingular free ergodic action of type III_1 that is W^* -superrigid.

This means that for any nonsingular free action $\Gamma' \sim (X', \mu')$, the following two statements are equivalent:

- $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(X') \rtimes \Gamma'$.
- There exists an embedding of Γ into Γ' such that $\Gamma' \sim X'$ is conjugate to the induction of $\Gamma \curvearrowright X$ to a Γ' -action.

To clarify the statement of Proposition [D,](#page-3-0) one should make the following observations. In contrast to the case of probability measure preserving actions, it is not relevant to consider stable isomorphisms, since the type III factor $M =$ $L^{\infty}(X) \rtimes \Gamma$ is isomorphic to $B(H) \overline{\otimes} M$ for every separable Hilbert space H. For the same reason, it is unavoidable that $\Gamma' \cap (X',\mu')$ can be any induction of $\Gamma \cap (X, \mu)$ and need not be conjugate to $\Gamma \cap (X, \mu)$ itself.

It is also possible to prove that for $0 < \lambda < 1$, the analogous action of Γ on $\mathbb{R}^5/\lambda^{\mathbb{Z}} \times [0,1]^\Gamma$ is of type III_{λ} and W^{*}-superrigid in the appropriate sense. The correct formulation is necessarily more intricate because the action is by construction orbit equivalent to the action of $\Gamma \times \mathbb{Z}$ on $\mathbb{R}^5 \times [0,1]^\Gamma$. More generally for a type III_{$lambda$} free ergodic action $\Gamma \sim (X, \mu)$, there is always a canonically orbit equivalent action $\Gamma \times \mathbb{Z} \curvearrowright (X', \mu')$ where the Γ-action preserves the infinite measure μ' and the Z-action scales μ' by powers of λ .

§2. Preliminaries

In the proof of our main technical result (Theorem [3.4\)](#page-8-0), we make use of the fol-lowing criterion for relative amenability due to [\[OP07\]](#page-26-1) (see also [\[PV11,](#page-26-3) Section 2.5]). We copy the formulation of [\[Io12,](#page-25-2) Lemma 2.3].

Lemma 2.1 ([\[OP07,](#page-26-1) Corollary 2.3]). Let (M, τ) be a tracial von Neumann algebra and $p \in M$ a nonzero projection. Let $A \subset pMp$ and $B \subset M$ be von Neumann subalgebras. Let $\mathcal L$ be any B-M-bimodule. Assume that there exists a net $(\xi_i)_{i\in I}$ of vectors in $pL^2(M) \otimes_B \mathcal{L}$ with the following properties:

- $\limsup_{i \in I} ||x \xi_i||_2 \leq ||x||_2$ for every $x \in pMp$.
- $\limsup_{i \in I} ||\xi_i||_2 > 0.$
- $\lim_{i \in I} \|a\xi_i \xi_i a\|_2 = 0$ for every $a \in \mathcal{U}(A)$.

Then there exists a nonzero projection q in the center of $A' \cap pMp$ such that Aq is amenable relative to B inside M.

§3. Key technical theorem

Throughout this section, we fix tracial von Neumann algebras (M_i, τ_i) with a common von Neumann subalgebra $B \subset M_i$ satisfying $\tau_{1|B} = \tau_{2|B}$. We denote by $M = M_1 *_B M_2$ the amalgamated free product with respect to the unique trace preserving conditional expectations and denote its canonical trace by τ .

§3.1. The malleable deformation of an amalgamated free product

We recall from [\[IPP05,](#page-25-3) Section 2.2] the construction of Popa's malleable deformation of M. We denote $G = \mathbb{F}_2$, with free generators $a, b \in G$. Write $G_1 = a^{\mathbb{Z}}$ and $G_2 = b^{\mathbb{Z}}$. We define $\widetilde{M} = M *_{B} (B \ \overline{\otimes} L(G))$. Writing $\widetilde{M}_i = M_i *_{B} (B \ \overline{\otimes} L(G_i)),$ we can also view $\widetilde{M} = \widetilde{M}_1 *_{\widetilde{B}} \widetilde{M}_2$. Define the self-adjoint elements $h_i \in L(G_i)$ with spectrum $[-\pi, \pi]$ such that $u_a = \exp(i h_1)$ and $u_b = \exp(i h_2)$. Consider the 1-parameter groups $(u_{i,t})_{t\in\mathbb{R}}$ of unitaries in $L(G_i)$ given by $u_{i,t} = \exp(ith_i)$. Finally define the 1-parameter group $(\theta_t)_{t \in \mathbb{R}}$ of automorphisms of M by

$$
\theta_t(x) = u_{j,t} x u_{j,t}^* \quad \text{ for all } x \in \widetilde{M}_j.
$$

Note that θ_t is well defined because $u_{j,t}bu_{j,t}^* = b$ for all $b \in B$ and $j \in \{1,2\}$.

We define S as the set of all finite alternating sequences of 1's and 2's, including the empty sequence \emptyset . So the elements of S are the finite sequences of the form $(1, 2, 1, 2, ...)$ or $(2, 1, 2, 1, ...)$. The length of an alternating sequence $\mathcal{I} \in \mathcal{S}$ is denoted by |*Z*|. For every $(i_1, \ldots, i_n) \in S$, we define $\mathcal{H}_{(i_1,\ldots,i_n)} \subset L^2(M)$ as the closed linear span of $(M_{i_1} \ominus B) \cdots (M_{i_n} \ominus B)$. By convention, we put $\mathcal{H}_{\emptyset} = L^2(B)$. So we have the orthogonal decomposition

$$
L^2(M) = \bigoplus_{\mathcal{I} \in \mathcal{S}} \mathcal{H}_{\mathcal{I}}.
$$

We denote by $P_{\mathcal{I}}$ the orthogonal projection of $L^2(M)$ onto $\mathcal{H}_{\mathcal{I}}$.

Denote $\rho_t = |\sin(\pi t)/\pi t|^2$. A direct computation shows that for all $x \in L^2(M)$ and all $t \in \mathbb{R}$.

(3.1)
\n
$$
||E_M(\theta_t(x))||_2^2 = \sum_{\mathcal{I}\in\mathcal{S}} \rho_t^{2|\mathcal{I}|} ||P_{\mathcal{I}}(x)||_2^2,
$$
\n
$$
||x - \theta_t(x)||_2^2 = \sum_{\mathcal{I}\in\mathcal{S}} 2(1 - \rho_t^{|\mathcal{I}|}) ||P_{\mathcal{I}}(x)||_2^2,
$$
\n
$$
||\theta_t(x) - E_M(\theta_t(x))||_2^2 = \sum_{\mathcal{I}\in\mathcal{S}} (1 - \rho_t^{2|\mathcal{I}|}) ||P_{\mathcal{I}}(x)||_2^2.
$$

The last two equalities imply the following transversality property in the sense of [\[Po06,](#page-26-8) Lemma 2.1]:

$$
(3.2) \t ||x - \theta_t(x)||_2 \le \sqrt{2} \|\theta_t(x) - E_M(\theta_t(x))\|_2 \t for all $x \in L^2(M)$, $t \in \mathbb{R}$.
$$

The following is the main technical result of [\[IPP05\]](#page-25-3). For a proof of the version we state here, we refer to [\[Ho07,](#page-25-7) Section 5] and [\[PV09,](#page-26-9) Theorem 5.4].

Theorem 3.1 ([\[IPP05,](#page-25-3) Theorem 3.1]). Let $p \in M$ be a nonzero projection and $A \subset pMp$ a von Neumann subalgebra. Assume that there exists an $\varepsilon > 0$ and a $t > 0$ such that $||E_M(\theta_t(a))||_2 \geq \varepsilon$ for all $a \in \mathcal{U}(A)$. Then at least one of the following statements holds:

- $A \prec_M B$.
- • There exists an $i \in \{1,2\}$ such that $\mathcal{N}_{pMp}(A)^{''} \prec_M M_i$.

§3.2. The algebra \widetilde{M} as a crossed product with \mathbb{F}_2 and random walks on \mathbb{F}_2

We recall here the fundamental idea of [\[Io12\]](#page-25-2) to consider \widetilde{M} as a crossed product with the free group \mathbb{F}_2 and to exploit the spectral gap of random walks on the nonamenable group $G = \mathbb{F}_2$. As in [\[Io06,](#page-25-8) Remark 4.5] and [\[Io12,](#page-25-2) Section 3], we decompose $M = N \rtimes G$, where N is defined as the von Neumann subalgebra of M generated by ${u_g M u_g^* \mid g \in G}$ and normalized by the unitaries $(u_g)_{g \in G}$. Note that N is the infinite amalgamated free product of the subalgebras $u_g M u_g^*$, $g \in G$, over the common subalgebra B . From this point of view, the action of G on N is the free Bernoulli action.

For every $i \in \{1,2\}$ and $t \in (0,1)$, we define the maps $\beta_{i,t} : G_i \to \mathbb{R}$ by

$$
\beta_{i,t}(g) = \tau(u_{i,t}u_g^*) \quad \text{ for all } g \in G_i.
$$

We then denote by $\gamma_{i,t}$ and $\mu_{i,t}$ the probability measures on G given by

$$
\gamma_{i,t}(g) = \begin{cases} |\beta_{i,t}(g)|^2 & \text{if } g \in G_i, \\ 0 & \text{if } g \notin G_i, \end{cases} \quad \mu_{i,t} = \gamma_{i,t} * \gamma_{i,t},
$$

where we have used the usual convolution product between probability measures on G:

$$
(\gamma * \gamma')(g) = \sum_{h,k \in G,\, hk = g} \gamma(h) \gamma'(k).
$$

For $\mathcal{I} \in \mathcal{S}$, we finally denote by $\mu_{\mathcal{I},t}$ the probability measure on G given by

$$
\mu_{\emptyset,t}(g) = \delta_{g,e}
$$
 and $\mu_{(i_1,...,i_n),t} = \mu_{i_1,t} * \mu_{i_2,t} * \cdots * \mu_{i_n,t}.$

The probability measures $\mu_{\mathcal{I},t}$ give rise to the Markov operators $T_{\mathcal{I},t}$ on $\ell^2(G)$ given by

$$
T_{\mathcal{I},t} = \sum_{g \in G} \mu_{\mathcal{I},t}(g) \lambda_g.
$$

The support of the probability measures $\gamma_{i,t}$ and $\mu_{i,t}$ equals G_i . So the support S of the probability measure $\mu_{(1,2),t}$ equals G_1G_2 . Since SS^{-1} generates the group \mathbb{F}_2 and since \mathbb{F}_2 is nonamenable, it follows from Kesten's criterion (see e.g. [\[Pi84,](#page-26-10) Corollary 18.5]) that $||T_{(1,2),t}|| < 1$ for all $t \in (0,1)$. Writing $c_t = ||T_{(1,2),t}||^{1/2}$, we have found numbers $0 < c_t < 1$ such that

$$
||T_{\mathcal{I},t}|| \leq c_t^{|\mathcal{I}|-1}
$$
 for all $\mathcal{I} \in \mathcal{S}$ and all $0 < t < 1$.

For every $x \in \overline{M}$ and $h \in G$, we define $(x)_h = E_N(xu_h^*)$. So with $\|\cdot\|_2$ convergence, we have $x = \sum_{h \in G}(x)_h u_h$. We recall the following result of [\[Io12\]](#page-25-2).

Lemma 3.2 ([\[Io12,](#page-25-2) formula (3.5)]). For all $t \in (0,1)$, $h \in G$ and $x, y \in L^2(M)$,

$$
\langle (\theta_t(x))_h, (\theta_t(y))_h \rangle = \sum_{\mathcal{I} \in \mathcal{S}} \langle P_{\mathcal{I}}(x), y \rangle \mu_{\mathcal{I},t}(h).
$$

Also recall from [\[Io12\]](#page-25-2) that Lemma [3.2](#page-7-0) yields the following result.

Theorem 3.3 ([\[Io12,](#page-25-2) Theorem 3.2]). Let $p \in M$ be a nonzero projection and A ⊂ pMp a von Neumann subalgebra. Assume that $\theta_t(A) \prec_{\widetilde{M}} N$ for some $t \in (0,1)$. Then at least one of the following statements holds:

- $A \prec_M B$.
- There exists an $i \in \{1,2\}$ such that $\mathcal{N}_{pMp}(A)^{''} \prec_M M_i$.

Proof. Assume that the conclusion fails. By Theorem [3.1,](#page-6-0) we find a net $(a_i)_{i\in I}$ of unitaries in $\mathcal{U}(A)$ such that $\lim_{i\in I} ||E_M(\theta_s(a_i))||_2 = 0$ for all $s \in (0,1)$. We will prove that $\theta_t(A) \nless \widetilde{\pi} N$ for all $t \in (0,1)$. So fix $t \in (0,1)$. It suffices to prove that $\lim_{i\in I} ||(\theta_t(a_i))_h||_2 = 0$ for all $h \in G$.

Fix $h \in G$ and fix $\varepsilon > 0$. Take a large enough integer n_0 such that $c_t^{n_0-1} < \varepsilon$. So, for all $\mathcal{I} \in \mathcal{S}$ with $|\mathcal{I}| \geq n_0$, we have $||T_{\mathcal{I},t}|| < \varepsilon$ and, in particular,

$$
\mu_{\mathcal{I},t}(h) = \langle T_{\mathcal{I},t} \delta_e, \delta_h \rangle < \varepsilon.
$$

Denote by

$$
P_0 = \sum_{\mathcal{I} \in \mathcal{S}, \, |\mathcal{I}| < n_0} P_{\mathcal{I}}
$$

the projection onto the closed linear span of "all words of length $\langle n_0$ ". Using Lemma [3.2,](#page-7-0) we see that for all $i \in I$,

$$
\|(\theta_t(a_i))_h\|_2^2 \le \|P_0(a_i)\|_2^2 + \varepsilon.
$$

By [\(3.1\)](#page-5-0), we can take $s > 0$ small enough such that $||P_0(a_i)||_2 \leq 2||E_M(\theta_s(a_i))||_2$ for all $i \in I$. Since $\lim_{i \in I} ||E_M(\theta_s(a_i))||_2 = 0$, it follows that

$$
\limsup_{i \in I} \|(\theta_t(a_i))_h\|_2^2 \le \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, it indeed follows that $\lim_{i \in I} ||(\theta_t(a_i))_h||_2 = 0$ for all $h \in G$. \Box

§3.3. Relative amenability and the malleable deformation

The following is our main technical result. The same statement was proven in [\[Io12,](#page-25-2) Theorem 5.1 under the additional assumption that $A' \cap (pMp)^{\omega} = \mathbb{C}1$ for some free ultrafilter ω , i.e. under the assumption that there are no nontrivial bounded sequences in pMp that asymptotically commute with A.

Theorem 3.4. Let $p \in M$ be a nonzero projection and $A \subset pMp$ a von Neumann subalgebra. Assume that for all $t \in (0,1)$, $\theta_t(A)$ is amenable relative to N inside M. Then at least one of the following statements holds:

- There exists $i \in \{1,2\}$ such that $A \prec_M M_i$.
- A is amenable relative to B inside M.

Proof. Assume that $A \nless M_1$ and $A \nless M_2$. Denote by z the maximal projection in the center of $A' \cap pMp$ such that Az is amenable relative to B inside M. If $z = p$, then the theorem is proven. If $z < p$, we replace p by $p - z$ and we replace A by $A(p-z)$. So, $A \npreceq_M M_i$ for all $i \in \{1,2\}$, and Aq is amenable relative to B for no nonzero projection $q \in \mathcal{Z}(A' \cap pMp)$. We refer to this last property by saying that "no corner of A is amenable relative to B inside M ." We will derive a contradiction.

Exactly as in the proof of $[Io12, Theorem 5.1]$, we define the index set I to consist of all quadruplets $i = (X, Y, \delta, t)$ where $X \subset M$ and $Y \subset U(A)$ are finite subsets, $\delta \in (0,1)$ and $t \in (0,1)$. We turn I into a directed set by putting $(X, Y, \delta, t) \le (X', Y', \delta', t')$ if and only if $X \subset X', Y \subset Y', \delta' \le \delta$ and $t' \le t$. Since $\theta_t(A)$ is amenable relative to N inside \widetilde{M} for all $t \in (0,1)$, we can choose, for every $i = (X, Y, \delta, t)$ in I, a vector $\xi_i \in L^2(\langle \tilde{M}, e_N \rangle)$ such that $\|\xi_i\|_2 \leq 1$ and

$$
|\langle x\xi_i, \xi_i \rangle - \tau(x)| \le \delta \quad \text{ whenever } x \in X \text{ or}
$$

\n
$$
x = (\theta_t(y) - y)^*(\theta_t(y) - y) \text{ with } y \in Y,
$$

\n
$$
\|\theta_t(y)\xi_i - \xi_i \theta_t(y)\|_2 \le \delta \quad \text{ whenever } y \in Y.
$$

It follows that $\lim_{i \in I} \langle x \xi_i, \xi_i \rangle = \tau(x)$ for all $x \in M$. Since $\lim_{t \to 0} ||\theta_t(y) - y||_2 = 0$ for all $y \in \mathcal{U}(A)$, it follows that $\lim_{i \in I} ||y \xi_i - \xi_i y||_2 = 0$ for all $y \in \mathcal{U}(A)$.

Denote by K the closed linear span of $\{xu_g e_N u_g^* \mid x \in M, g \in G\}$ inside $L^2(\langle M, e_N \rangle)$. Since $u_g^* M u_g \subset N$, we see that $u_g e_N u_g^*$ commutes with M for all $g \in G$. Therefore, K is an M-M-bimodule. Denote by e the orthogonal projection onto K. The net of vectors $\xi'_i = p(1-e)(\xi_i)$ satisfies $\limsup_{i \in I} ||x \xi'_i||_2 \le ||x||_2$ for all $x \in pMp$ and $\lim_{i \in I} ||a \xi'_i - \xi'_i a||_2 = 0$ for all $a \in A$. By [\[Io12,](#page-25-2) Lemma 4.2], the

M-M-bimodule $L^2(\langle \overline{M}, e_N \rangle) \ominus \mathcal{K}$ is isomorphic to $L^2(M) \otimes_B \mathcal{L}$ for some $B\text{-}M$ bimodule \mathcal{L} . Since no corner of A is amenable relative to B inside M , it follows from Lemma [2.1](#page-4-0) that $\lim_{i \in I} ||\xi'_i||_2 = 0$. So,

$$
\lim_{i \in I} \|p\xi_i - e(p\xi_i)\|_2 = 0.
$$

Define the isometry

$$
U: L^{2}(M)\otimes \ell^{2}(G)\to L^{2}(\langle \widetilde{M}, e_{N} \rangle): U(x\otimes \delta_{g})=x u_{g}e_{N}u_{g}^{*}.
$$

Note that $UU^* = e$ and

$$
U((x \otimes 1)\eta(y \otimes 1)) = xU(\eta)y \quad \text{ for all } x, y \in M, \eta \in L^{2}(M) \otimes \ell^{2}(G).
$$

We define the net $(\zeta_i)_{i \in I}$ of vectors in $pL^2(M) \otimes \ell^2(G)$ by $\zeta_i = U^*(p\xi_i)$. Note that $\|\zeta_i\|_2 \leq 1$. The properties of $(\xi_i)_{i\in I}$ imply that

$$
\lim_{i \in I} ||p\xi_i - U(\zeta_i)||_2 = 0,
$$

\n
$$
\lim_{i \in I} \langle (x \otimes 1)\zeta_i, \zeta_i \rangle = \tau(pxp) \quad \text{for all } x \in M,
$$

\n
$$
\lim_{i \in I} ||(a \otimes 1)\zeta_i - \zeta_i(a \otimes 1)||_2 = 0 \quad \text{for all } a \in \mathcal{U}(A).
$$

We view $pL^2(M) \otimes \ell^2(G)$ as a closed subspace of $L^2(M) \otimes \ell^2(G)$. Hence, the following claim makes sense.

Claim. For every $\varepsilon > 0$, there exists an $s_0 \in (0,1)$ and an $i_0 \in I$ such that

$$
\|\zeta_i - (\theta_s \otimes id)(\zeta_i)\|_2 < \varepsilon \quad \text{for all } s \in [0, s_0] \text{ and all } i \geq i_0.
$$

Proof of the claim. Assume the contrary. Using (3.2) , we then find an $\varepsilon > 0$ such that for every $s \in (0,1)$, we have

$$
\limsup_{i\in I} ||(\theta_s \otimes id)(\zeta_i) - (E_M \circ \theta_s \otimes id)(\zeta_i)||_2 \ge \varepsilon.
$$

Since $\lim_{s\to 0} \|\theta_s(a) - a\|_2 = 0$ for every $a \in \mathcal{U}(A)$, we can choose a subnet (μ_k) of the net of vectors

$$
((p \otimes 1)((id - E_M) \circ \theta_s \otimes id)(\zeta_i))_{(i,s) \in I \times (0,1)}
$$

with the properties that

$$
\limsup_{k} ||(x \otimes 1)\mu_k||_2 \le ||x||_2 \quad \text{ for all } x \in pMp,
$$

$$
\liminf_{k} ||\mu_k||_2 \ge \varepsilon,
$$

$$
\lim_{k} ||(a \otimes 1)\mu_k - \mu_k(a \otimes 1)||_2 = 0 \quad \text{ for all } a \in \mathcal{U}(A).
$$

The M-M-bimodule $L^2(M \ominus M) \otimes \ell^2(G)$ is isomorphic to $L^2(M) \otimes_B \mathcal{L}$ for some $B-M$ -bimodule \mathcal{L} . By Lemma [2.1,](#page-4-0) we have reached a contradiction with the assumption that no corner of A is amenable relative to B inside M . This proves the claim.

Put $\varepsilon = \frac{\tau(p)}{14}$. Fix $i_0 \in I$ and $s_0 \in (0,1)$ such that for all $i \geq i_0$ and all $s \in [0, s_0]$, we have

$$
\|p\xi_i - U(\zeta_i)\|_2 < \varepsilon \quad \text{and} \quad \|\zeta_i - (\theta_s \otimes \mathrm{id})(\zeta_i)\|_2 < \varepsilon.
$$

Write $i_0 = (X_0, Y_0, \delta_0, t_0)$. Enlarging i_0 if necessary, we may assume that $p \in X_0$, $p \in Y_0$ (note that p is the unit element of $\mathcal{U}(A)$), $\delta_0 < \varepsilon^2/2$, $t_0 \leq s_0$ and $\|\theta_{t_0}(p) - p\|_2 < \varepsilon/2.$

Denote by J the index set consisting of all triplets $j = (X, Y, \delta)$, where $X \subset$ pMp and $Y \subset \mathcal{U}(A)$ are finite subsets and $\delta \in (0, \delta_0)$. We turn J into a directed set in a similar way to I above. For every $j = (X, Y, \delta)$, we put

$$
\eta_j = \zeta_{(X_0 \cup X, Y_0 \cup Y, \delta, t_0)}.
$$

Note that we use here the fixed index t_0 . In particular, $(\eta_j)_{j\in J}$ is not a subnet of $(\zeta_i)_{i\in I}$. Also note that $\|\eta_j\|_2 \leq 1$. We claim that the net $(\eta_j)_{j\in J}$ of vectors in $pL^2(M) \otimes \ell^2(G)$ has the following properties:

(3.3)
$$
\limsup_{j \in J} ||(x \otimes 1)\eta_j||_2 \le ||x||_2 \quad \text{for all } x \in M,
$$

(3.4)
$$
\liminf_{j\in J} |\langle \theta_{t_0}(a) U(\eta_j), U(\eta_j) \theta_{t_0}(a) \rangle| \ge \tau(p) - 6\varepsilon \quad \text{for all } a \in \mathcal{U}(A),
$$

$$
(3.5) \t ||\eta_j - (\theta_s \otimes id)(\eta_j)||_2 \leq \varepsilon \t for all $s \in [0, t_0], j \in J$.
$$

To prove [\(3.3\)](#page-10-0), fix $x \in M$ and fix $j = (X, Y, \delta)$ with $px^*xp \in X$. It suffices to prove that

(3.6)
$$
\|(x \otimes 1)\eta_j\|_2^2 \le \|x\|_2^2 + \delta.
$$

Put $i = (X_0 \cup X, Y_0 \cup Y, \delta, t_0)$. We get

$$
||(x \otimes 1)\eta_j||_2 = ||(x \otimes 1)\zeta_i||_2 = ||x U(\zeta_i)||_2 = ||xe(p\xi_i)||_2 = ||e(x p\xi_i)||_2 \le ||x p\xi_i||_2.
$$

But also

$$
||xp\xi_i||_2^2 = \langle px^*xp\xi_i, \xi_i \rangle \le \tau(px^*xp) + \delta \le ||x||_2^2 + \delta
$$

because $px^*xp \in X \subset X_0 \cup X$. So [\(3.6\)](#page-10-1) follows and [\(3.3\)](#page-10-0) is proven.

To prove [\(3.4\)](#page-10-2), fix $a \in \mathcal{U}(A)$ and fix $j = (X, Y, \delta)$ with $a \in Y$. It suffices to prove that

(3.7)
$$
|\langle \theta_{t_0}(a) U(\eta_j), U(\eta_j) \theta_{t_0}(a) \rangle| \ge \tau(p) - 6\varepsilon - 2\delta.
$$

Put $i = (X_0 \cup X, Y_0 \cup Y, \delta, t_0)$. Since $p \in Y_0 \subset Y_0 \cup Y$, we have

$$
\|\theta_{t_0}(p)\xi_i - p\xi_i\|_2^2 \le \|\theta_{t_0}(p) - p\|_2^2 + \delta \le \varepsilon^2/2 + \delta_0 \le \varepsilon^2.
$$

So $\|\theta_{t_0}(p)\xi_i - p\xi_i\|_2 \leq \varepsilon$. Since $\|p\xi_i - U(\zeta_i)\|_2 \leq \varepsilon$, we get

 $\|\theta_{t_0}(p)\xi_i-U(\eta_j)\|_2\leq 2\varepsilon.$

Since $p \in Y_0 \subset Y_0 \cup Y$, we also have $\|\theta_{t_0}(p)\xi_i - \xi_i\theta_{t_0}(p)\|_2 \le \delta \le \delta_0 \le \varepsilon$. In combination with the previous inequality, this gives

$$
\|\xi_i \theta_{t_0}(p) - U(\eta_j)\|_2 \le 3\varepsilon.
$$

In the following computation, we write $y \approx_{\varepsilon} z$ when $y, z \in \mathbb{C}$ with $|y - z| \leq \varepsilon$. We also use throughout that $\|\zeta_i\|_2 \leq 1$ and $\|\eta_j\|_2 \leq 1$ for all $i \in I$ and $j \in J$. So,

$$
\langle \theta_{t_0}(a)U(\eta_j), U(\eta_j) \theta_{t_0}(a) \rangle
$$

\n
$$
\approx_{2\varepsilon} \langle \theta_{t_0}(a)\xi_i, U(\eta_j) \theta_{t_0}(a) \rangle
$$
 because $||U(\eta_j) - \theta_{t_0}(p)\xi_i||_2 \le 2\varepsilon$,
\n
$$
\approx_{3\varepsilon} \langle \theta_{t_0}(a)\xi_i, \xi_i \theta_{t_0}(a) \rangle
$$
 because $||U(\eta_j) - \xi_i \theta_{t_0}(p)||_2 \le 3\varepsilon$,
\n
$$
\approx_{\delta} \langle \theta_{t_0}(a)\xi_i, \theta_{t_0}(a)\xi_i \rangle
$$
 because $||\xi_i \theta_{t_0}(a) - \theta_{t_0}(a)\xi_i||_2 \le \delta$ since $a \in Y$,
\n
$$
= \langle \theta_{t_0}(p)\xi_i, \xi_i \rangle
$$
 because $||\theta_{t_0}(p)\xi_i - p\xi_i||_2 \le \varepsilon$,
\n
$$
\approx_{\delta} \tau(p)
$$
 because $p \in X_0 \subset X_0 \cup X$.

From this computation, (3.7) follows immediately. So also (3.4) is proven.

Finally [\(3.5\)](#page-10-4) follows because $\|\zeta_i - (\theta_s \otimes id)(\zeta_i)\|_2 \leq \varepsilon$ for all $s \in [0, t_0]$ and all $i \geq i_0$.

Denote $\eta_j = \sum_{g \in G} \eta_{j,g} \otimes \delta_g$, where $\eta_{j,g} \in L^2(M)$ and where $(\delta_g)_{g \in G}$ is the canonical orthonormal basis of $\ell^2(G)$. Recall that for every $x \in L^2(M)$ and $h \in G$, we denote $(x)_h = E_N(xu_h^*)$.

For every $a \in \mathcal{U}(A)$, we have

$$
\sum_{g,h\in G} \|(\theta_{t_0}(a\eta_{j,g}))_h\|_2^2 = \sum_{g\in G} \|\theta_{t_0}(a\eta_{j,g})\|_2^2 = \sum_{g\in G} \|a\eta_{j,g}\|_2^2 = \|(a\otimes 1)\eta_j\|_2^2 \le 1.
$$

Because the subspaces $(L^2(N)u_{hg}e_N u_g^*)_{h,g\in G}$ of $L^2(\langle \overline{M}, e_N \rangle)$ are orthogonal, the formula

$$
\xi(a,j) = \sum_{g,h \in G} (\theta_{t_0}(a\eta_{j,g}))_h u_{hg} e_N u_g^*
$$

provides a well defined vector in $L^2(\langle \tilde{M}, e_N \rangle)$ with $\|\xi(a, j)\|_2 \leq 1$. We claim that for every $a \in \mathcal{U}(A)$ and all $j \in J$, we have

(3.8)
$$
\|\theta_{t_0}(a)U(\eta_j) - \xi(a,j)\|_2 \leq \varepsilon.
$$

To prove [\(3.8\)](#page-11-0), first note that

$$
\theta_{t_0}(a)U(\eta_j) = \sum_{g \in G} \theta_{t_0}(a)\eta_{j,g} u_g e_N u_g^* = \sum_{g,h \in G} (\theta_{t_0}(a)\eta_{j,g})_{h} u_{hg} e_N u_g^*.
$$

It then follows that

$$
\|\theta_{t_0}(a)U(\eta_j) - \xi(a,j)\|_2^2 = \sum_{g,h \in G} \|(\theta_{t_0}(a)\eta_{j,g})_h - (\theta_{t_0}(a\eta_{j,g}))_h\|_2^2
$$

$$
= \sum_{g \in G} \|\theta_{t_0}(a)\eta_{j,g} - \theta_{t_0}(a\eta_{j,g})\|_2^2 = \sum_{g \in G} \|\eta_{j,g} - \theta_{t_0}(\eta_{j,g})\|_2^2
$$

$$
= \|\eta_j - (\theta_{t_0} \otimes id)(\eta_j)\|_2^2 \le \varepsilon^2.
$$

So (3.8) is proven.

We similarly define the vectors $\xi'(a, j) \in L^2(\langle \overline{M}, e_N \rangle)$ by the formula

$$
\xi'(a,j) = \sum_{g,h \in G} (\theta_{t_0}(\eta_{j,g}a))_h u_g e_N u_g^* u_h = \sum_{g,h \in G} (\theta_{t_0}(\eta_{j,hg}a))_h u_{hg} e_N u_g^*
$$

and deduce that $\|\xi'(a, j)\|_2 \leq 1$ and

(3.9)
$$
||U(\eta_j)\theta_{t_0}(a) - \xi'(a,j)||_2 \leq \varepsilon
$$

for all $a \in \mathcal{U}(A)$ and all $j \in J$.

Combining [\(3.7\)](#page-10-3)–[\(3.9\)](#page-12-0), we find that for all $a \in \mathcal{U}(A)$,

$$
\limsup_{j\in J} |\langle \xi(a,j),\xi'(a,j)\rangle| \ge \tau(p) - 8\varepsilon.
$$

We now apply Lemma [3.2](#page-7-0) and the notation introduced before its formulation. For every $a \in \mathcal{U}(A)$ and $j \in J$, we have

$$
\langle \xi(a,j), \xi'(a,j) \rangle = \sum_{g,h \in G} \langle (\theta_{t_0}(a\eta_{j,g}))_h, (\theta_{t_0}(\eta_{j,hg}a))_h \rangle
$$

=
$$
\sum_{g,h \in G} \sum_{\mathcal{I} \in S} \langle P_{\mathcal{I}}(a\eta_{j,g}), \eta_{j,hg}a \rangle \mu_{\mathcal{I},t_0}(h)
$$

=
$$
\langle Q_{t_0}((a \otimes 1)\eta_j), \eta_j(a \otimes 1) \rangle,
$$

where $Q_{t_0} \in B(L^2(M) \otimes \ell^2(G))$ is defined by

$$
Q_{t_0} = \sum_{\mathcal{I} \in \mathcal{S}} P_{\mathcal{I}} \otimes T_{\mathcal{I},t_0}.
$$

So for all $a \in \mathcal{U}(A)$,

(3.10)
$$
\limsup_{j\in J} |\langle Q_{t_0}((a\otimes 1)\eta_j), \eta_j(a\otimes 1)\rangle| \ge \tau(p) - 8\varepsilon.
$$

Fix a large enough integer n_0 such that $c_{t_0}^{n_0-1} \leq \varepsilon$. So, $||T_{\mathcal{I},t_0}|| \leq \varepsilon$ whenever $|\mathcal{I}| \geq n_0$. Denote by

$$
P_0 = \sum_{\mathcal{I} \in \mathcal{S}, \, |\mathcal{I}| < n_0} P_{\mathcal{I}}
$$

the projection onto the closed linear span of "all words of length $\langle n_0$ ".

We claim that there exists a unitary $a \in \mathcal{U}(A)$ such that

(3.11)
$$
\limsup_{j\in J} \|(P_0\otimes 1)((a\otimes 1)\eta_j)\|_2\leq 4\varepsilon.
$$

To prove this claim, we first use [\(3.1\)](#page-5-0) to fix $0 < s \le t_0$ close enough to zero such that

$$
||(P_0 \otimes 1)(\eta)||_2 \le 2 ||(E_M \otimes \mathrm{id})((\theta_s \otimes \mathrm{id})(\eta))||_2 \quad \text{ for all } \eta \in L^2(M) \otimes \ell^2(G).
$$

Since $A \nless M_1$ and $A \nless M_2$, it follows from Theorem [3.1](#page-6-0) that we can choose $a \in \mathcal{U}(A)$ such that $||E_M(\theta_s(a))||_2 \leq \varepsilon$. We will prove that this unitary $a \in \mathcal{U}(A)$ satisfies (3.11) .

From [\(3.5\)](#page-10-4), we know that $\|\eta_j - (\theta_s \otimes id)(\eta_j)\|_2 \leq \varepsilon$ for all $j \in J$. It follows that

$$
\|(\theta_s \otimes id)((a \otimes 1)\eta_j) - (\theta_s(a) \otimes 1)\eta_j\|_2 \leq \varepsilon \quad \text{ for all } j \in J.
$$

So for all $j \in J$, we get

$$
||(P_0 \otimes 1)((a \otimes 1)\eta_j)||_2 \le 2||(E_M \otimes id)((\theta_s \otimes id)((a \otimes 1)\eta_j))||_2
$$

\n
$$
\le 2||(E_M \otimes id)((\theta_s(a) \otimes 1)\eta_j)||_2 + 2\varepsilon
$$

\n
$$
= 2||(E_M(\theta_s(a)) \otimes 1)\eta_j||_2 + 2\varepsilon.
$$

Using (3.3) , we get

$$
\limsup_{j\in J}||(P_0\otimes 1)((a\otimes 1)\eta_j)||_2\leq 2||E_M(\theta_s(a))||_2+2\varepsilon\leq 4\varepsilon.
$$

So the claim in [\(3.11\)](#page-13-0) is proven and we fix the unitary $a \in \mathcal{U}(A)$ satisfying (3.11). We will now deduce that

(3.12)
$$
\limsup_{j\in J} ||Q_{t_0}((a\otimes 1)\eta_j)||_2 \leq 5\varepsilon.
$$

Indeed, since $||T_{\mathcal{I},t_0}|| \leq 1$ for all $\mathcal{I} \in \mathcal{S}$ and $||T_{\mathcal{I},t_0}|| \leq \varepsilon$ for all $\mathcal{I} \in \mathcal{S}$ with $|\mathcal{I}| \geq n_0$, we get

$$
||Q_{t_0}((a \otimes 1)\eta_j)||_2^2 = \sum_{\mathcal{I} \in \mathcal{S}}||(P_{\mathcal{I}} \otimes T_{\mathcal{I},t_0})((a \otimes 1)\eta_j)||_2^2
$$

\n
$$
\leq \sum_{\mathcal{I} \in \mathcal{S}, |\mathcal{I}| < n_0}||(P_{\mathcal{I}} \otimes 1)((a \otimes 1)\eta_j)||_2^2 + \varepsilon^2 \sum_{\mathcal{I} \in \mathcal{S}, |\mathcal{I}| \ge n_0}||(P_{\mathcal{I}} \otimes 1)((a \otimes 1)\eta_j)||_2^2
$$

\n
$$
\leq ||(P_0 \otimes 1)((a \otimes 1)\eta_j)||_2^2 + \varepsilon^2 ||(a \otimes 1)\eta_j||_2^2.
$$

Taking the lim sup over $j \in J$ and using (3.11) and (3.3) , we arrive at

$$
\limsup_{j\in J} ||Q_{t_0}((a\otimes 1)\eta_j)||_2^2 \le 17\varepsilon^2,
$$

and (3.12) follows. But (3.12) implies that

$$
\limsup_{j\in J} |\langle Q_{t_0}((a\otimes 1)\eta_j),\eta_j(a\otimes 1)\rangle| \leq 5\varepsilon.
$$

Since $\varepsilon = \tau(p)/14$, we have $5\varepsilon < \tau(p)-8\varepsilon$ and so we have obtained a contradiction with [\(3.10\)](#page-12-1). \Box

§4. Proof of Theorem [A](#page-2-0) and a version for HNN extensions

Proof of Theorem [A.](#page-2-0) We use the malleable deformation θ_t of $M \subset \widetilde{M}$ as explained in Section [3.1.](#page-5-2) Write $G = \mathbb{F}_2$ and $\widetilde{M} = N \rtimes G$ as in Section [3.2.](#page-6-1) By assumption, A is amenable relative to one of the M_i inside M. A fortiori, A is amenable relative to M_i inside M . Fix $t \in (0,1)$. Applying θ_t , we see that $\theta_t(A)$ is amenable relative to $\theta_t(M_i)$ inside M. Since $\theta_t(M_i)$ is unitarily conjugate to M_i and $M_i \subset N$, it follows that $\theta_t(A)$ is amenable relative to N inside M.

Put $P := \mathcal{N}_{pMp}(A)''$. We apply [\[PV11,](#page-26-3) Theorem 1.6 and Remark 6.3] to the crossed product $\widetilde{M} = N \rtimes G$ and the subalgebra $\theta_t(A)$ of this crossed product. We conclude that at least one of the following statements holds: $\theta_t(A) \prec_{\widetilde{M}} N$ or $\theta_t(P)$ is amenable relative to N inside \widetilde{M} . Since this holds for every $t \in (0,1)$, we see that at least one of the following is true:

- There exists a $t \in (0,1)$ such that $\theta_t(A) \prec_{\widetilde{M}} N$.
- $\theta_t(P)$ is amenable relative to N inside \widetilde{M} for every $t \in (0,1)$.

In the first case, Theorem [3.3](#page-7-1) implies that $A \prec_M B$ or $P \prec_M M_i$ for some $i \in$ ${1, 2}$. In the latter case, Theorem [3.4](#page-8-0) implies that $P \prec_M M_i$ for some $i \in \{1, 2\}$, or that P is amenable relative to B inside M . \Box

By [\[Ue07\]](#page-26-7), HNN extensions can be viewed as corners of amalgamated free products. Since Theorem [A](#page-2-0) has no particular assumptions on the inclusions $B \subset M_i$, we can immediately deduce the following result.

Theorem 4.1. Let $M = \text{HNN}(M_0, B, \theta)$ be the HNN extension of the tracial von Neumann algebra (M_0, τ) with von Neumann subalgebra $B \subset M_0$ and trace preserving embedding $\theta : B \to M_0$. Let $p \in M$ be a nonzero projection and $A \subset$ pMp a von Neumann subalgebra that is amenable relative to M_0 inside M. Then at least one of the following statements holds:

- $A \prec_M B$.
- $\mathcal{N}_{pMp}(A)'' \prec_M M_0$.
- $\mathcal{N}_{pMp}(A)''$ is amenable relative to B inside M.

Proof. By [\[Ue07,](#page-26-7) Proposition 3.1], we can view $M = \text{HNN}(M_0, B, \theta)$ as a corner of an amalgamated free product. More precisely, we put $M_1 = M_2(\mathbb{C}) \otimes M_0$ and $M_2 = M_2(\mathbb{C}) \otimes B$. We consider $B_0 = B \oplus B$ as a subalgebra of both M_1 and M_2 , where the embedding $B_0 \hookrightarrow M_2$ is diagonal and the embedding $B_0 \hookrightarrow M_1$ is given by $b \oplus d \mapsto b \oplus \theta(d)$. We denote by e_{ij} the matrix units in M_1 and by f_{ij} the matrix units in M_2 . The HNN extension M is generated by M_0 and the stable unitary u. There is a unique surjective ∗-isomorphism

$$
\Psi: \text{HNN}(M_0, B, \theta) \to e_{11}(M_1 *_{B_0} M_2)e_{11} : \begin{cases} \Psi(x) = e_{11}x & \text{for all } x \in M_0, \\ \Psi(u) = e_{12}f_{21}. \end{cases}
$$

Note that in the amalgamated free product, $e_{11} = f_{11}$ and $e_{22} = f_{22}$. Therefore $e_{12}f_{21}$ is really a unitary.

Denote $\mathcal{M} := M_1 *_{B_0} M_2$. Whenever $Q \subset pMp$ is a von Neumann subalgebra, one checks that:

- $Q \prec_M B$ iff $\Psi(Q) \prec_M B_0$ iff $\Psi(Q) \prec_M M_2$.
- $Q \prec_M M_0$ iff $\Psi(Q) \prec_M M_1$.
- Q is amenable relative to B inside M iff $\Psi(Q)$ is amenable relative to B_0 inside M.

So Theorem [4.1](#page-15-0) is a direct consequence of Theorem [A.](#page-2-0)

 \Box

§5. Cartan-rigidity for amalgamated free product groups and HNN extensions

Recall from [\[PV11\]](#page-26-3) that a countable group Γ is called *C-rigid* if for every free ergodic pmp action $\Gamma \cap (X, \mu)$, $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ up to unitary conjugacy. By [\[Po01,](#page-26-5) Theorem A.1], C-rigidity is an immediate consequence of the following stronger property (∗):

(*) For every trace preserving action $\Gamma \cap (B, \tau)$, projection $p \in M = B \rtimes \Gamma$ and amenable von Neumann subalgebra $A \subset pMp$ with $\mathcal{N}_{pMp}(A)^{\prime\prime} = pMp$, we have $A \prec B$.

As was shown in the proof of [\[PV12,](#page-26-4) Theorem 1.1], a direct product $\Gamma_1 \times \cdots \times \Gamma_n$ of finitely many groups Γ_i with property (*) is C-rigid.

Property (*) was shown to hold, among other groups, for all weakly amenable Γ with $\beta_1^{(2)}(\Gamma) > 0$ in [\[PV11,](#page-26-3) Theorem 7.1] and for all nonelementary hyperbolic Γ in [\[PV12,](#page-26-4) Theorem 1.4]. In [\[Io12,](#page-25-2) Theorem 7.1], property (∗) was proven for a large class of amalgamated free products, and in [\[DI12,](#page-25-4) Proof of Theorem 8.1] for a large class of HNN extensions. For completeness, we show how to deduce these last two results from Theorem [A,](#page-2-0) resp. Theorem [4.1.](#page-15-0)

Theorem 5.1. The following groups have property $(*)$ and, in particular, are C-rigid:

- 1. ([\[Io12,](#page-25-2) Theorem 7.1]) Amalgamated free products $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ such that $[\Gamma_1 : \Sigma] \geq 3, [\Gamma_2 : \Sigma] \geq 2$ and there are $g_1, \ldots, g_n \in \Gamma$ with $\left| \bigcap_{k=1}^n g_k \Sigma g_k^{-1} \right| < \infty$.
- 2. ([\[DI12,](#page-25-4) Proof of Theorem 8.1]) HNN extensions $\Gamma = \text{HNN}(\Gamma_1, \Sigma, \theta)$, given by a subgroup $\Sigma < \Gamma_1$ and an injective group homomorphism $\theta : \Sigma \to \Gamma_1$, such that $\Sigma \neq \Gamma_1 \neq \theta(\Sigma)$ and there are $g_1, \ldots, g_n \in \Gamma$ with $|\bigcap_{k=1}^n g_k \Sigma g_k^{-1}| < \infty$.

Proof. Let $\Gamma \cap (B, \tau)$ be a trace preserving action and put $M = B \rtimes \Gamma$. Let $p \in M$ be a projection and $A \subset pMp$ an amenable von Neumann subalgebra with $\mathcal{N}_{pMp}(A)'' = pMp$. In the first case, M is the amalgamated free product of $B \rtimes \Gamma_1$ and $B \rtimes \Gamma_2$ over $B \rtimes \Sigma$. In the second case, M is the HNN extension of $B \rtimes \Gamma_1$ over $B \rtimes \Sigma$. In both cases, $\Gamma_i < \Gamma$ has infinite index and $\Sigma < \Gamma$ is not co-amenable (see e.g. the final paragraphs of the proof of [\[Io12,](#page-25-2) Theorem 7.1] and [\[DI12,](#page-25-4) Lemma 7.2]). So it follows from Theorem [A](#page-2-0) and Theorem [4.1](#page-15-0) that $A \prec B \rtimes \Sigma$.

Define the projection $z(\Sigma) \in M \cap (B \rtimes \Sigma)'$ as in [\[HPV10,](#page-25-9) Section 4]. Since $A \prec B \rtimes \Sigma$, we see that $z(\Sigma) \neq 0$. From [\[HPV10,](#page-25-9) Proposition 8], we know that z(Σ) belongs to the center of M. Take $g_1, \ldots, g_n \in \Gamma$ such that $\Sigma_0 = \bigcap_{k=1}^n g_k \Sigma g_k^{-1}$ is a finite group. We have $z(g_k \Sigma g_k^{-1}) = u_{g_k} z(\Sigma) u_{g_k}^* = z(\Sigma)$, because $z(\Sigma)$ belongs to the center of M . It then follows from [\[HPV10,](#page-25-9) Proposition 6] that

$$
z(\Sigma_0) = z(g_1 \Sigma g_1^{-1}) \cdots z(g_n \Sigma g_n^{-1}) = z(\Sigma) \neq 0.
$$

So $A \prec B \rtimes \Sigma_0$. Since Σ_0 is finite, we conclude that $A \prec B$.

 \Box

§6. Proof of Corollary [B](#page-2-1)

Write $M_i = L(\mathcal{R}_i)$ and $B = L^{\infty}(X)$ $B = L^{\infty}(X)$. Note that $L(\mathcal{R}) = M_1 *_{B} M_2$. Corollary B is a direct consequence of Theorem [A,](#page-2-0) provided that we prove the following two statements:

- 1. $M \nprec_M M_i$.
- 2. M is not amenable relative to B , i.e. M is not amenable itself.

Since $|\mathcal{R}_1 \cdot x| \geq 3$ for a.e. $x \in X$ and using e.g. [\[IKT08,](#page-25-10) Lemma 2.6], we can take unitaries $u, v \in \mathcal{U}(M_1)$ such that $E_B(u) = E_B(v) = E_B(u^*v) = 0$. We similarly find a unitary $w \in \mathcal{U}(M_2)$ with $E_B(w) = 0$.

Proof of 1. Define $w_n \in \mathcal{U}(M)$ by $w_n = (uw)^n$. Denote by $X_m \subset M$ the linear span of all products of at most m elements from $M_1 \oplus B$ and $M_2 \oplus B$. Whenever $2n > 2m+1$ and $x, y \in X_m$, a direct computation shows that $E_{M_i}(x w_n y) = 0$. So it follows that $\lim_{n} ||E_{M_i}(x w_n y)||_2 = 0$ for all $x, y \in M$, and statement 1 follows.

Proof of 2. Assume that M is amenable and take an M-central state Ω on $B(L^2(M))$. Define K_1 as the closed linear span of B and all products of the form $x_1x_2 \cdots x_n$ with $x_1 \in M_1 \ominus B$, $x_2 \in M_2 \ominus B$, $x_3 \in M_1 \ominus B$, etc. Define K_2 as the closed linear span of all products of the form $y_1y_2 \cdots y_n$ with $y_1 \in M_2 \ominus B$, $y_2 \in M_1 \oplus B$, $y_3 \in M_2 \oplus B$, etc. By construction, $L^2(M) = K_1 \oplus K_2$. Denote by e_i the orthogonal projection of $L^2(M)$ onto K_i . It follows that ue_2u^* and ve_2v^* are orthogonal and lie under e_1 . Hence, $2\Omega(e_2) = \Omega(ue_2u^*) + \Omega(ve_2v^*) \leq \Omega(e_1)$. On the other hand, $we_1w^* \le e_2$, implying that $\Omega(e_1) = \Omega(we_1w^*) \le \Omega(e_2)$. Altogether it follows that $\Omega(e_1) = \Omega(e_2) = 0$. Since $1 = e_1 + e_2$ and $\Omega(1) = 1$, we have reached a contradiction. \Box

§7. Proof of Corollary [C](#page-3-1)

Let $A \subset M$ be a diffuse amenable von Neumann subalgebra. Denote $P = \mathcal{N}_M(A)^n$ and assume that P is not amenable. Take a nonzero central projection $z \in \mathcal{Z}(P)$ such that Pz has no amenable direct summand. Since $Pz \subset \mathcal{N}_{zMz}(Az)''$, it follows from Theorem [A](#page-2-0) that one of the following statements holds:

- 1. $Az \prec_M B$.
- 2. $Pz \prec_M M_i$ for some $i \in \{1,2\}$.
- 3. Pz is amenable relative to B inside M .

It suffices to prove that each of the three statements is false.

1. Observe that the inclusion $M_2 \subset M$ is mixing. To prove this, fix a sequence b_n in the unit ball of M_2 such that $b_n \to 0$ weakly. We must show that

 $\lim_{n} ||E_{M_2}(x^*b_ny)||_2 = 0$ for all $x, y \in M \ominus M_2$. It suffices to prove this when $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_m$ with $n, m \ge 2, x_1, y_1 \in M_2, x_2, y_2 \in M_1 \ominus B$, $x_3, y_3 \in M_2 \ominus B$, etc. But then

$$
E_{M_2}(x^*b_ny)=E_{M_2}(x_n^*\cdots x_3^*E_B(x_2^*E_B(x_1^*b_ny_1)y_2)y_3\cdots y_n),
$$

and the conclusion follows because $E_B(x_1^*b_ny_1) \rightarrow 0$ weakly and the inclusion $B \subset M_1$ is mixing.

Assume that statement 1 holds. Then certainly $Az \prec_M M_2$. Since the inclusion $M_2 \subset M$ is mixing, it follows from [\[Io12,](#page-25-2) Lemma 9.4] that $Pz \prec_M M_2$. So statement 2 holds and we proceed to the next point.

2. Assume that statement 2 holds. We then find a nonzero projection $p \in$ $M_n(\mathbb{C}) \otimes M_i$ and a normal unital *-homomorphism $\varphi : Pz \to p(M_n(\mathbb{C}) \otimes M_i)p$. Then $\varphi(Az)$ is a diffuse von Neumann subalgebra of $p(M_n(\mathbb{C}) \otimes M_i)p$ whose normalizer contains $\varphi(Pz)$. Since Pz has no amenable direct summand, $\varphi(Pz)$ is nonamenable. Hence $p(M_n(\mathbb{C}) \otimes M_i)p$ is not strongly solid. Since M_i is strongly solid, this contradicts the stability of strong solidity under amplifications as proven in [\[Ho09,](#page-25-11) Proposition 5.2].

3. Since B is amenable, statement 3 implies that $P\overline{z}$ is amenable, contradicting our assumptions. \Box

§8. W*-superrigid actions of type III

In the same way as $[HV12, Theorem A]$ was deduced from the results in $[PV12]$, we can deduce from Theorem [A](#page-2-0) the following type III uniqueness statement for Cartan subalgebras. Our theorem is a generalization of [\[BHR12,](#page-25-6) Theorem D], where the same result was proven under the assumption that Σ is a finite group.

Rather than looking for the most general statement possible, we provide a more ad hoc formulation that suffices to prove the W[∗] -superrigidity of the type III_1 actions in Proposition [D](#page-3-0) (see also Remark [8.3](#page-24-0) below). Recall that a nonsingular action $\Lambda \cap (X, \mu)$ is said to be *recurrent* if there is no Borel subset $\mathcal{U} \subset X$ such that $\mu(\mathcal{U}) > 0$ and $\mu(g \cdot \mathcal{U} \cap \mathcal{U}) = 0$ for all $g \in \Lambda - \{e\}.$

Theorem 8.1. Let $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ be an amalgamated free product group and assume that there exist $g_1, \ldots, g_n \in \Gamma$ such that $\bigcap_{k=1}^n g_k \Sigma g_k^{-1}$ is finite. Let $\Gamma \cap \Gamma$ (X, μ) be any nonsingular free ergodic action. Assume that each Γ_i admits a subgroup Λ_i such that the restricted action $\Lambda_i \cap (X, \mu)$ is recurrent and $\Lambda_i \cap \Sigma$ is finite. Then $L^{\infty}(X)$ is the unique Cartan subalgebra of $L^{\infty}(X) \rtimes \Gamma$ up to unitary conjugacy.

For Theorem [8.1](#page-18-1) to hold, it is essential to impose some recurrence of $\Gamma_i \cap \Gamma_j$ (X, μ) relative to Σ . Indeed, otherwise the action $\Gamma \curvearrowright (X, \mu)$ could simply be the induction of an action $\Gamma_i \curvearrowright (Z, \eta)$ so that $L^{\infty}(X) \rtimes \Gamma \cong B(H) \overline{\otimes} (L^{\infty}(Z) \rtimes \Gamma_i)$ and we cannot expect uniqueness of the Cartan subalgebra.

Before proving Theorem [8.1,](#page-18-1) we provide a semifinite variant of the machinery developed in [\[HPV10,](#page-25-9) Sections 4 and 5]. We start from the following elementary lemma, leaving the proof to the reader.

Lemma 8.2. Let (N, Tr) be a von Neumann algebra equipped with a normal semifinite faithful trace. Let H be a right Hilbert N-module and $p \in N$ a projection. We consider dimensions using the trace Tr and its restrictions to subalgebras of N and pNp .

- (i) dim_{pNp} $(Hp) \leq \dim_N(H)$.
- (ii) dim_N(closure(KN)) = dim_{pNp}(K) for all closed pNp-submodules $K \subset Hp$.
- (iii) Let $P \subset N$ be a von Neumann subalgebra such that $\text{Tr}_{|P}$ is semifinite. Let $K \subset H$ be a closed P-submodule. Then $\dim_N(\text{closure}(KN)) \leq \dim_P(K)$.

Assume that Γ is a countable group and $\Gamma \curvearrowright (B, \text{Tr})$ a trace preserving action on a von Neumann algebra B equipped with a normal semifinite faithful trace Tr. Denote $\mathcal{M} = B \rtimes \Gamma$ and use the canonical trace Tr on M. Let $p \in \mathcal{M}$ be a projection with $\text{Tr}(p) < \infty$ and $A \subset p \mathcal{M} p$ a von Neumann subalgebra with $\mathcal{N}_{p\mathcal{M}p}(A)^{\prime\prime} = p\mathcal{M}p.$ Whenever $\Lambda < \Gamma$ is a subgroup, we consider

 $\mathcal{E}_{\Lambda} = \{H \mid H \text{ is an } A \cdot (B \rtimes \Lambda)\text{-subbimodule of } L^2(p\mathcal{M}) \text{ with } \dim_{B \rtimes \Lambda}(H) < \infty\}.$

If $H \in \mathcal{E}_{\Lambda}$, $u \in \mathcal{N}_{pMp}(A)$ and $v \in \mathcal{U}(B \times \Lambda)$, then uHv again belongs to \mathcal{E}_{Λ} . So the closed linear span of all $H \in \mathcal{E}_{\Lambda}$ is of the form $L^2(p\mathcal{M}z(\Lambda))$, where $z(\Lambda)$ is a projection in $M \cap (B \rtimes \Lambda)'$. We make $z(\Lambda)$ uniquely determined by requiring that $z(\Lambda)$ is smaller than or equal to the central support of p in M.

If $\Lambda < \Lambda' < \Gamma$ are subgroups, we have $z(\Lambda) \leq z(\Lambda')$. Indeed, whenever $H \subset L^2(p\mathcal{M})$ is an A- $(B \rtimes \Lambda)$ -subbimodule with $\dim_{B \rtimes \Lambda}(H) < \infty$, we define K as the closed linear span of $H(B \times \Lambda')$. By Lemma [8.2,](#page-19-0) we see that $\dim_{B\rtimes\Lambda'}(K)<\infty$. Since $H\subset K$ and since this works for all choices of H, we conclude that $z(\Lambda) \leq z(\Lambda')$.

The basic construction $\langle M, e_{B\lambda\Lambda} \rangle$ carries a natural semifinite trace Tr satisfying $\text{Tr}(xe_{B\rtimes\Lambda}x^*) = \text{Tr}(xx^*)$ for all $x \in \mathcal{M}$. The projections $e \in A' \cap p\langle \mathcal{M}, e_{B\rtimes\Lambda} \rangle p$ are precisely the orthogonal projections onto the $A-(B \rtimes \Lambda)$ -subbimodules $H \subset$ $L^2(p\mathcal{M})$. Moreover under this correspondence, we have $\text{Tr}(e) = \dim_{B \rtimes \Lambda}(H)$. We also have the canonical operator valued weight \mathcal{T}_Λ from $\langle \mathcal{M}, e_{B \times \Lambda} \rangle^+$ to the extended positive part of M such that Tr = Tr $\circ \mathcal{T}_\Lambda$. Using the anti-unitary involution

$$
J: L^{2}(\mathcal{M}) \to L^{2}(\mathcal{M}): J(x) = x^{*},
$$
 we can therefore alternatively define $z(\Lambda)$ as

$$
pJz(\Lambda)J = \bigvee \{e \mid e \in A' \cap p\langle \mathcal{M}, e_{B \rtimes \Lambda} \rangle p \text{ is a projection with } ||\mathcal{T}_{\Lambda}(e)|| < \infty \}
$$

$$
= \bigvee \{ \text{supp}(a) \mid a \in A' \cap p\langle \mathcal{M}, e_{B \rtimes \Lambda} \rangle^{+} p \text{ and } ||\mathcal{T}_{\Lambda}(a)|| < \infty \}.
$$

If now $\Lambda < \Gamma$ and $\Lambda' < \Gamma$ are subgroups, we can repeat the proof of [\[HPV10,](#page-25-9) Proposition 6 verbatim to conclude that $z(\Lambda)$ and $z(\Lambda')$ commute, with

(8.1)
$$
z(\Lambda \cap \Lambda') = z(\Lambda)z(\Lambda').
$$

We are now ready to prove Theorem [8.1.](#page-18-1)

Proof of Theorem [8.1.](#page-18-1) Denote by $\omega : \Gamma \times X \to \mathbb{R}$ the logarithm of the Radon– Nikodym cocycle. Put $Y = X \times \mathbb{R}$ and equip Y with the measure m given by $dm = d\mu \times \exp(t)dt$, so that the action $\Gamma \sim Y$ given by $g \cdot (x, t) = (g \cdot x, \omega(g, x) + t)$ is measure preserving (see [\[Ma63\]](#page-26-11)). The restricted actions $\Lambda_i \sim (Y, m)$ are still recurrent.

Put $B = L^{\infty}(Y)$ and denote by Tr the canonical semifinite trace on $\mathcal{M} =$ $B \rtimes \Gamma$, given by the infinite invariant measure m. Choose a projection $p \in B$ with $0 < Tr(p) < \infty$. Put $\Sigma_i = \Lambda_i \cap \Sigma$. Since Σ_i is a finite group, the von Neumann algebra $p(B \rtimes \Sigma_i)p$ is of type I. Since the action $\Lambda_i \sim (Y, m)$ is recurrent, the von Neumann algebra $p(B \rtimes \Lambda_i)p$ is of type II₁. In particular, the inclusion $p(B \rtimes \Sigma_i)p \subset$ $p(B \rtimes \Lambda_i)p$ has no trivial corner in the sense of [\[HV12,](#page-25-5) Definition 5.1] and it follows from [\[HV12,](#page-25-5) Lemma 5.4] that there exists a unitary $u_i \in p(B \rtimes \Lambda_i)p$ such that $E_{p(B\rtimes\Sigma_i)p}(u_i^n)=0$ for all $n\in\mathbb{Z}-\{0\}$. Since $\Lambda_i\cap\Sigma=\Sigma_i$, we have $E_{p(B\rtimes\Sigma)p}(x)=0$ $E_{p(B\rtimes\Sigma_i)p}(x)$ for all $x\in p(B\rtimes\Lambda_i)p$. So, we deduce that $E_{p(B\rtimes\Sigma)p}(u_i^n)=0$ for all $n \in \mathbb{Z} - \{0\}$. We put $v_i = u_i^*$ and have thus found unitaries $u_i, v_i \in p(B \rtimes \Gamma_i)p$ satisfying

(8.2)
$$
E_{p(B \rtimes \Sigma)p}(u_i) = E_{p(B \rtimes \Sigma)p}(v_i) = E_{p(B \rtimes \Sigma)p}(u_i^* v_i) = 0.
$$

Define the normal trace preserving ∗-homomorphism

 $\Delta : \mathcal{M} \to \mathcal{M} \overline{\otimes} L(\Gamma) : \Delta(bu_q) = bu_q \otimes u_q$ for all $b \in B, q \in \Gamma$.

We use the unitaries u_i satisfying (8.2) to prove the following two easy statements.

Statement 1. For $i = 1, 2$, we have $\Delta(p \mathcal{M}p) \nless \rho_{\mathcal{M}p\mathcal{A}}(F) p \mathcal{M}p \mathcal{A}(\Gamma_i)$.

Statement 2. The von Neumann subalgebra $\Delta(p\mathcal{M}p) \subset p\mathcal{M}p \overline{\otimes} L(\Gamma)$ is not amenable relative to $p\mathcal{M}p\overline{\otimes} L(\Sigma)$.

Proof of Statement 1. Denote by |g| the length of an element $g \in \Gamma$, i.e. the minimal number of factors that are needed to write g as a product of elements in Γ_1 , Γ_2 , with

the convention that $|g| = 0$ if and only if $g \in \Sigma$. Denote by Q_m the orthogonal projection of $L^2(p\mathcal{M}p)$ onto the closed linear span of $\{pbu_gp \mid b \in B, g \in \Gamma,$ $|g| \leq m$. Denote by P_m the orthogonal projection of $\ell^2(\Gamma)$ onto the closed linear span of $\{u_g \mid g \in \Gamma, |g| \leq m\}$. A direct computation yields

$$
(1 \otimes P_m)(\Delta(x)) = \Delta(Q_m(x)) \quad \text{ for all } x \in p\mathcal{M}p.
$$

Define the unitary $w_n = (u_1 u_2)^n$. Since $Q_m(w_n) = 0$ whenever $n > m/2$, we have $(1 \otimes P_m)(\Delta(w_n)) = 0$ for all $n > m/2$. It follows in particular that for all $q, h \in \Gamma$,

 $E_{p\mathcal{M}p\overline{\otimes}L(\Gamma_i)}((1\otimes u_g)\Delta(w_n)(1\otimes u_h))=0$ whenever $n>(|g|+|h|+1)/2$.

So, for every $x, y \in p\mathcal{M}p\overline{\otimes}L(\Gamma)$, we get $\lim_{n}||E_{p\mathcal{M}p\overline{\otimes}L(\Gamma_i)}(x\Delta(w_n)y)||_2 = 0$. Hence, $\Delta(p\mathcal{M}p)\nprec p\mathcal{M}p\mathcal{R}L(\Gamma_i)$ and Statement 1 is proven.

Proof of Statement 2. Assume that the subalgebra $\Delta(p\mathcal{M}p)$ is amenable relative $p\mathcal{M}p\overline{\otimes} L(\Sigma)$. So we find a positive $\Delta(p\mathcal{M}p)$ -central functional Ω on the basic construction $\langle p\mathcal{M}p\ \overline{\otimes}\ L(\Gamma), e_{p\mathcal{M}p\overline{\otimes} L(\Sigma)}\rangle$ such that $\Omega(x) = (\text{Tr} \otimes \tau)(x)$ for all x in $p\mathcal{M}p\overline{\otimes} L(\Gamma)$. Note that we can identify

$$
\langle p\mathcal{M}p\overline{\otimes} L(\Gamma), e_{p\mathcal{M}p\overline{\otimes} L(\Sigma)}\rangle = p\mathcal{M}p\overline{\otimes} \langle L(\Gamma), e_{L(\Sigma)}\rangle
$$

=
$$
(p\otimes 1)\langle \mathcal{M}\overline{\otimes} L(\Gamma), \mathcal{M}\overline{\otimes} L(\Sigma)\rangle (p\otimes 1).
$$

Since $E_{\mathcal{M}\overline{\otimes}L(\Sigma)} \circ \Delta = \Delta \circ E_{B\rtimes\Sigma}$ and the closed linear span of $\Delta(\mathcal{M})L^2(\mathcal{M}\overline{\otimes}L(\Sigma))$ equals $L^2(\mathcal{M} \,\overline{\otimes}\, L(\Gamma))$, there is a unique normal unital *-homomorphism satisfying

$$
\Psi: \langle \mathcal{M}, e_{B\rtimes\Sigma} \rangle \to \langle \mathcal{M} \overline{\otimes} L(\Gamma), e_{\mathcal{M} \overline{\otimes} L(\Sigma)} \rangle : \Psi(xe_{B\rtimes\Sigma}y) = \Delta(x)e_{\mathcal{M} \overline{\otimes} L(\Sigma)}\Delta(y)
$$

for all $x, y \in \mathcal{M}$. The composition of Ω and Ψ yields a p $\mathcal{M}p$ -central positive functional Ω_0 on $p\langle M, e_{B\rtimes\Sigma} \rangle p$ satisfying $\Omega_0(p) = \text{Tr}(p)$. Note that we can view $p\langle\mathcal{M}, e_{B\rtimes\Sigma}\rangle p$ as the commutant of the right action of $B\rtimes\Sigma$ on $pL^2(\mathcal{M})$.

Denote by $H_i \subset pL^2(\mathcal{M})$ the closed linear span of all pbu_g with $b \in B$ and $g \in \Gamma$ such that a reduced expression of Γ as an alternating product of elements in $\Gamma_1 - \Sigma$ and $\Gamma_2 - \Sigma$ starts with a factor in $\Gamma_i - \Sigma$. Denote $H_0 = pL^2(B)$. So we have the orthogonal decomposition $pL^2(\mathcal{M}) = H_0 \oplus H_1 \oplus H_2$. Denote by e_i : $pL^2(\mathcal{M}) \to H_i$ the orthogonal projection. Note that e_i is a projection in $p(\mathcal{M}, e_{B \rtimes \Sigma})p$. By [\(8.2\)](#page-20-0), the projections $u_2(e_0 + e_1)u_2^*$ and $v_2(e_0 + e_1)v_2^*$ are orthogonal and lie under e_2 . Since Ω_0 is $p\mathcal{M}p$ -central, it follows that

$$
2\Omega_0(e_0 + e_1) \le \Omega_0(e_2).
$$

It similarly follows that $2\Omega_0(e_2) \leq \Omega_0(e_1)$. Together, it follows that $\Omega_0(e_0 + e_1)$ $\Omega_0(e_2) = 0$. Since $e_0 + e_1 + e_2 = p$, we obtain the contradiction that $\Omega_0(p) = 0$. So also Statement 2 is proven.

Assume now that $L^{\infty}(X) \rtimes \Gamma$ admits a Cartan subalgebra that is not unitarily conjugate to $L^{\infty}(X)$. The first paragraphs of the proof of [\[HV12,](#page-25-5) Theorem A] are entirely general and yield an abelian von Neumann subalgebra $A \subset p\mathcal{M}p$ such that $\mathcal{N}_{p\mathcal{M}p}(A)^{''}=p\mathcal{M}p$ and $A\not\prec Bq$ whenever $q\in B$ is a projection with $\text{Tr}(q)<\infty$. So to prove the theorem, we fix an abelian von Neumann subalgebra $A \subset p\mathcal{M}p$ with $\mathcal{N}_{p\mathcal{M}p}(A)^{\prime\prime} = p\mathcal{M}p$. We have to find a projection $q \in B$ with $\text{Tr}(q) < \infty$ and $A \prec Bq$.

Note that $\Delta(A) \subset p\mathcal{M}p \overline{\otimes} L(\Gamma)$ is an abelian, hence amenable, von Neumann subalgebra whose normalizer contains $\Delta(p\mathcal{M}p)$. We view $p\mathcal{M}p\overline{\otimes} L(\Gamma)$ as the amalgamated free product of $p\mathcal{M}p\overline{\otimes} L(\Gamma_1)$ and $p\mathcal{M}p\overline{\otimes} L(\Gamma_2)$ over their common von Neumann subalgebra $p\mathcal{M}p\overline{\otimes} L(\Sigma)$. [A](#page-2-0) combination of Theorem A and Statements 1 and 2 above implies that $\Delta(A) \prec p\mathcal{M}p \overline{\otimes} L(\Sigma)$. So there is no sequence of unitaries (a_n) in $\mathcal{U}(A)$ satisfying $\lim_n ||E_{p\mathcal{M}_p\overline{\otimes}L(\Sigma)}(x\Delta(a_n)y)||_2 = 0$ for all $x, y \in p\mathcal{M}p \overline{\otimes} L(\Gamma)$. This means that we can find $\varepsilon > 0$ and $h_1, \ldots, h_m \in \Gamma$ such that

(8.3)
$$
\sum_{i,j=1}^m \|E_{p\mathcal{M}p\overline{\otimes}L(\Sigma)}((1\otimes u_{h_i}^*)\Delta(a)(1\otimes u_{h_j}))\|_2^2 \geq \varepsilon \quad \text{for all } a \in \mathcal{U}(A).
$$

Consider the positive element $T = \sum_{i=1}^{m} pu_{h_i} e_{B\rtimes\Sigma} u_{h_i}^* p$ in $p\langle\mathcal{M}, e_{B\rtimes\Sigma}\rangle p$. The left hand side of [\(8.3\)](#page-22-0) equals $Tr(TaTa^*)$. Denote by S the element of smallest $\|\cdot\|_{2,\text{Tr}}$ norm in the weakly closed convex hull of $\{aTa^* \mid a \in \mathcal{U}(A)\}$. Then S is a nonzero element of $A' \cap p \langle M, e_{B \times \Sigma} \rangle p$ and $\text{Tr}(S) < \infty$. In the notation introduced before this proof, this means that $z(\Sigma) \neq 0$.

Since the action $\Gamma \cap Y$ is free, we have $\mathcal{M} \cap B' = B$. So the projections $z(\Sigma)$ and $z(\Gamma_i)$ belong to B and are, respectively, Σ - and Γ_i -invariant. We prove below that $z(\Sigma)$ is a Γ-invariant projection in B. We prove this by showing that $z(\Gamma_1) = z(\Sigma) = z(\Gamma_2).$

Since $\Sigma < \Gamma_i$, we have $z(\Sigma) \leq z(\Gamma_i)$ for every $i = 1, 2$. We claim that equality holds. Assume that $z(\Sigma) < z(\Gamma_1)$. Note that both projections belong to B. Choose a nonzero projection $q \in B$ with $\text{Tr}(q) < \infty$ and $q \leq z(\Gamma_1)-z(\Sigma)$. Choose $H \in \mathcal{E}_{\Gamma_1}$ such that $Hq \neq \{0\}$. By Lemma [8.2,](#page-19-0) we have

$$
\dim_{q(B\rtimes\Gamma_1)q}(Hq)\leq \dim_{B\rtimes\Gamma_1}(H)<\infty.
$$

We conclude that $L^2(p\mathcal{M}q)$ admits a nonzero $A-q(B \rtimes \Gamma_1)q$ -subbimodule K that is finitely generated as a right Hilbert module. Since $q \perp z(\Sigma)$, we also know that $L^2(p\mathcal{M}q)$ does not admit an $A-q(B \rtimes \Sigma)q$ -subbimodule that is finitely generated as a right Hilbert module. We then encode K as an integer n, a projection $q_1 \in$ $M_n(\mathbb{C}) \otimes q(B \rtimes \Gamma_1)q$, a nonzero partial isometry $V \in p(M_{1,n}(\mathbb{C}) \otimes M)q_1$ and a normal unital *-homomorphism $\varphi: A \to q_1(M_n(\mathbb{C}) \otimes (B \rtimes \Gamma_1))q_1$ such that

(8.4)
$$
aV = V\varphi(a)
$$
 for all $a \in A$ and $\varphi(A) \nless_{M_n(\mathbb{C}) \otimes q(B \rtimes \Gamma_1)q} q(B \rtimes \Sigma)q$.

Let $u \in \mathcal{N}_{pMp}(A)$ and write $uau^* = \alpha(a)$ for all $a \in A$. Then V^*uV is an element of $q_1(M_n(\mathbb{C}) \otimes M)q_1$ satisfying

$$
V^*uV\varphi(a) = \varphi(\alpha(a))V^*uV \quad \text{ for all } a \in A.
$$

By [\(8.4\)](#page-23-0) and [\[CH08,](#page-25-12) Theorem 2.4], it follows that $V^*uV \in q_1(M_n(\mathbb{C}) \otimes (B \rtimes \Gamma_1))q_1$. This holds for all $u \in \mathcal{N}_{p\mathcal{M}_p}(A)$. Since the linear span of $\mathcal{N}_{p\mathcal{M}_p}(A)$ is strongly dense in $p\mathcal{M}p$, and writing $q_2 = V^*V$, we have found a nonzero projection $q_2 \in$ $M_n(\mathbb{C}) \otimes (B \rtimes \Gamma_1)$ with the property that

$$
q_2(M_n(\mathbb{C}) \otimes M)q_2 = q_2(M_n(\mathbb{C}) \otimes (B \rtimes \Gamma_1))q_2.
$$

In the von Neumann algebra $M_n(\mathbb{C}) \otimes (B \rtimes \Gamma_1)$, the projection q_2 is equivalent to a projection in $D_n(\mathbb{C}) \otimes B$, where $D_n(\mathbb{C}) \subset M_n(\mathbb{C})$ is the diagonal subalgebra. So, we find a nonzero projection $q_3 \in B$ satisfying $q_3 \mathcal{M} q_3 = q_3 (B \rtimes \Gamma_1) q_3$. As in [\(8.2\)](#page-20-0), there however exists a unitary $v \in q_3(B \rtimes \Gamma_2)q_3$ with the property that $E_{q_3(B \rtimes \Sigma)q_3}(v) = 0$. It follows that v belongs to $q_3\mathcal{M}q_3$, but is orthogonal to $q_3(B \rtimes \Gamma_1)q_3$. We have reached a contradiction and conclude that $z(\Sigma) = z(\Gamma_1)$. By symmetry, we also have $z(\Sigma) = z(\Gamma_2)$.

Since $z(\Gamma_i)$ is a Γ_i -invariant projection in B, we conclude that $z(\Sigma)$ is a nonzero Γ-invariant projection in B. Take now $g_1, \ldots, g_n \in \Gamma$ such that $\Sigma_0 =$ $\bigcap_{k=1}^n g_k \Sigma g_k^{-1}$ is finite. By definition, we have $z(g_k \Sigma g_k^{-1}) = \sigma_{g_k}(z(\Sigma))$. Since $z(\Sigma)$ is Γ-invariant, it follows that $z(g_k \Sigma g_k^{-1}) = z(\Sigma)$ for every k. Using [\(8.1\)](#page-20-1), we conclude that $z(\Sigma) = z(\Sigma_0)$. In particular, $z(\Sigma_0) \neq 0$. So we find a nonzero $A-(B \rtimes \Sigma_0)$ subbimodule H of $L^2(p\mathcal{M})$ with $\dim_{B \rtimes \Sigma_0}(H) < \infty$. A fortiori, H is an A-Bbimodule. Since Σ_0 is finite, also dim $_B(H) < \infty$. Taking a projection $q \in B$ with $Tr(q) < \infty$ and $H(q) \neq \{0\}$, it follows from Lemma [8.2](#page-19-0) that we have found a nonzero A-Bq-subbimodule of $L^2(p\mathcal{M}q)$ having finite right dimension. This precisely means that $A \prec Bq$, and hence ends the proof of the theorem. \Box

We can now deduce Proposition [D.](#page-3-0)

Proof of Proposition [D.](#page-3-0) Write $X = \mathbb{R}^5 / \mathbb{R}_+ \times [0,1]^\Gamma$ and $Y = \mathbb{R}^5 \times [0,1]^\Gamma$. Put $G = \Gamma \times \mathbb{R}_+$ and consider the action $G \cap Y$ given by

$$
(g, \alpha) \cdot (x, y) = (\alpha \pi(g) \cdot x, g \cdot y)
$$
 for all $g \in \Gamma$, $\alpha \in \mathbb{R}_+$, $x \in \mathbb{R}^5$, $y \in [0, 1]^\Gamma$.

Note that the restricted action $\Gamma \curvearrowright Y$ is infinite measure preserving and can be identified with the Maharam extension of $\Gamma \curvearrowright X$. Since the Bernoulli action $\Gamma \sim [0, 1]^{\Gamma}$ is mixing, we use throughout the proof the fact that the restriction of $\Gamma \curvearrowright Y$ to a subgroup $\Lambda < \Gamma$ is ergodic whenever $\pi(\Lambda)$ acts ergodically on \mathbb{R}^5 (see e.g. [\[Sc82,](#page-26-12) Proposition 2.3]). Using [\[PV08,](#page-26-13) Lemma 5.6], we find in particular that $\Gamma \cap Y$ is ergodic, meaning that $\Gamma \cap X$ is of type III₁.

Let G be a Polish group in Popa's class \mathcal{U}_{fin} , i.e. a closed subgroup of the unitary group of a II_1 factor, e.g. any countable group. We claim that every measurable 1-cocycle $\omega : G \times Y \to G$ is cohomologous to a continuous group homomorphism $G \rightarrow \mathcal{G}$. As explained in detail in [\[KS12,](#page-26-14) Step 1 of the proof of Theorem 21], it follows from [\[PV08,](#page-26-13) Theorem 5.3] that up to cohomology, we may assume that the restriction of ω to SL(5, \mathbb{Z}) is a group homomorphism. By [\[PV08,](#page-26-13) Lemma 5.6], the diagonal action $SL(3, \mathbb{Z}) \curvearrowright \mathbb{R}^3 \times \mathbb{R}^3$ is ergodic. It follows that the diagonal action $\Sigma \curvearrowright \mathbb{R}^5 \times \mathbb{R}^5$ is ergodic as well. But then also the diagonal action $\Sigma \curvearrowright Y \times Y$ is ergodic. Since the restriction of ω to Σ is a homomorphism and since Σ commutes with the natural copies of \mathbb{Z} and \mathbb{R}_+ inside G, it now follows from [\[PV08,](#page-26-13) Lemma 5.5] that ω is also a homomorphism on $\mathbb Z$ and on $\mathbb R_+$. Because SL(5, $\mathbb Z$), $\mathbb Z$ and $\mathbb R_+$ together generate G, we have proven the claim that ω is cohomologous to a group homomorphism.

We next prove that \mathbb{R}_+ is the only open normal subgroup of G that acts properly on Y. Indeed, if G_0 is such a subgroup, we first see that $\mathbb{R}_+ \subset G_0$ because \mathbb{R}_+ is connected. So $G_0 = \Gamma_0 \times \mathbb{R}_+$ where Γ_0 is a normal subgroup of Γ that acts properly on Y. Then $\pi(\Gamma_0)$ is a normal subgroup of $SL(5, \mathbb{Z})$. So either $\pi(\Gamma_0) = \{1\}$ or $\pi(\Gamma_0)$ has finite index in $SL(5, \mathbb{Z})$. In the latter case, Γ_0 acts ergodically on Y, rather than properly. In the former case, Γ_0 only acts by the Bernoulli shift and the properness forces Γ_0 to be finite. But Γ is an icc group, so that $\Gamma_0 = \{e\}.$

The cocycle superrigidity of $G \sim Y$, together with the previous paragraph and [\[PV08,](#page-26-13) Lemma 5.10], now implies that the only actions that are stably orbit equivalent to $\Gamma \curvearrowright X$ are the induced Γ' -actions, given an embedding of Γ into Γ' .

So to conclude the proof, it remains to show that $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra up to unitary conjugacy. This follows from Theorem [8.1,](#page-18-1) using the subgroups $SL(2, \mathbb{Z}) < SL(5, \mathbb{Z})$ (embedded in the upper left corner) and $\mathbb{Z} <$ $\Sigma \times \mathbb{Z}$ that act recurrently on X and intersect Σ trivially. \Box

Remark 8.3. In the formulation of Theorem [8.1,](#page-18-1) we required the existence of subgroups $\Lambda_i < \Gamma_i$ that intersect Σ finitely and that act in a recurrent way on (X, μ) . It is actually sufficient to impose the following more ergodic-theoretic condition. Denote by $\Gamma \curvearrowright (Y, m)$ the (infinite measure preserving) Maharam extension of $\Gamma \cap (X, \mu)$. Consider the orbit equivalence relations $\mathcal{R}(\Gamma_i \cap Y)$ and $\mathcal{R}(\Sigma \cap Y)$, as well as their restrictions to nonnegligible subsets of Y. It is then sufficient to assume that for every Borel set $\mathcal{U} \subset Y$ with $0 < m(\mathcal{U}) < \infty$, almost

every $\mathcal{R}(\Gamma_i \cap Y)_{|\mathcal{U}}$ -equivalence class consists of infinitely many $\mathcal{R}(\Sigma \cap Y)_{|\mathcal{U}}$ equivalence classes. Indeed, writing $B = L^{\infty}(Y)$, it then follows from [\[IKT08,](#page-25-10) Lemma 2.6] that for every projection $p \in B$ with $0 < Tr(B) < \infty$, there exist unitaries $u_i, v_i \in p(B \rtimes \Gamma_i)p$ satisfying [\(8.2\)](#page-20-0). So the proof of Theorem [8.1](#page-18-1) goes through.

Acknowledgments

The main part of this work was done at the *Institut Henri Poincaré* in Paris and I would like to thank the institute for their hospitality.

This research was supported by ERC Starting Grant VNALG-200749, Research Programme G.0639.11 of the Research Foundation—Flanders (FWO) and KU Leuven BOF research grant OT/08/032.

References

- [BHR12] R. Boutonnet, C. Houdayer and S. Raum, Amalgamated free product type III factors with at most one Cartan subalgebra, Compos. Math. 150 (2014), 143–174. [Zbl 06333814](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06333814&format=complete) [MR 3164361](http://www.ams.org/mathscinet-getitem?mr=3164361)
- [CH08] I. Chifan and C. Houdayer, Bass–Serre rigidity results in von Neumann algebras, Duke Math. J. 153 (2010), 23–54. [Zbl 1201.46057](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1201.46057&format=complete) [MR 2641939](http://www.ams.org/mathscinet-getitem?mr=2641939)
- [CS11] I. Chifan and T. Sinclair, On the structural theory of II¹ factors of negatively curved groups, Ann. Sci. École Norm. Sup. 46 (2013), 1–33. [Zbl 1290.46053](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1290.46053&format=complete) [MR 3087388](http://www.ams.org/mathscinet-getitem?mr=3087388)
- $[CSU11]$ I. Chifan, T. Sinclair and B. Udrea, On the structural theory of $II₁$ factors of negatively curved groups, II, Adv. Math. 245 (2013), 208–236. [Zbl 1288.46037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.46037&format=complete) [MR 3084428](http://www.ams.org/mathscinet-getitem?mr=3084428)
- [DI12] I. Dabrowski and A. Ioana, Unbounded derivations, free dilations and indecomposability results for II_1 factors, Trans. Amer. Math. Soc., to appear; [arXiv:1212.6425](http://arxiv.org/abs/1212.6425) (2012).
- [Ho07] C. Houdayer, Construction of type II¹ factors with prescribed countable fundamental group, J. Reine Angew. Math. 634 (2009), 169–207. [Zbl 1209.46038](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1209.46038&format=complete) [MR 2560409](http://www.ams.org/mathscinet-getitem?mr=2560409)
- [Ho09] $\qquad \qquad$, Strongly solid group factors which are not interpolated free group factors, Math. Ann. 346 (2010), 969–989. [Zbl 1201.46058](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1201.46058&format=complete) [MR 2587099](http://www.ams.org/mathscinet-getitem?mr=2587099)
- [HPV10] C. Houdayer, S. Popa and S. Vaes, A class of groups for which every action is W^{*}superrigid, Groups Geom. Dynam. 7 (2013), 577–590. [Zbl 06220439](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06220439&format=complete) [MR 3095710](http://www.ams.org/mathscinet-getitem?mr=3095710)
- [HV12] C. Houdayer and S. Vaes, Type III factors with a unique Cartan decomposition, J. Math. Pures Appl. 100 (2013), 564–590. [Zbl 1291.46052](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1291.46052&format=complete) [MR 3102166](http://www.ams.org/mathscinet-getitem?mr=3102166)
- [Io06] A. Ioana, Rigidity results for wreath product II₁ factors, J. Funct. Anal. 252 (2007), 763–791. [Zbl 1134.46041](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1134.46041&format=complete) [MR 2360936](http://www.ams.org/mathscinet-getitem?mr=2360936)
- [Io12] , Cartan subalgebras of amalgamated free product II₁ factors, [arXiv:1207.0054](http://arxiv.org/abs/1207.0054) (2012).
- [IKT08] A. Ioana, A. S. Kechris and T. Tsankov, Subequivalence relations and positive-definite functions, Groups Geom. Dynam. 3 (2009), 579–625. [Zbl 1186.37011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1186.37011&format=complete) [MR 2529949](http://www.ams.org/mathscinet-getitem?mr=2529949)
- [IPP05] A. Ioana, J. Peterson and S. Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85–153. [Zbl 1149.46047](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1149.46047&format=complete) [MR 2386109](http://www.ams.org/mathscinet-getitem?mr=2386109)

- [KS12] J. Keersmaekers and A. Speelman, II₁ factors and equivalence relations with distinct fundamental groups, Int. J. Math. 24 (2013), art. 1350016, 24 pp. [Zbl 1280.46042](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1280.46042&format=complete) [MR 3048005](http://www.ams.org/mathscinet-getitem?mr=3048005)
- [Ma63] D. Maharam, Incompressible transformations, Fund. Math. 56 (1964), 35–50. [Zbl 0133.00304](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0133.00304&format=complete) [MR 0169988](http://www.ams.org/mathscinet-getitem?mr=0169988)
- [OP07] N. Ozawa and S. Popa, On a class of II₁ factors with at most one Cartan subalgebra, Ann. of Math. 172 (2010), 713–749. [Zbl 1201.46054](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1201.46054&format=complete) [MR 2680430](http://www.ams.org/mathscinet-getitem?mr=2680430)
- [OP08] , On a class of II₁ factors with at most one Cartan subalgebra, II, Amer. J. Math. 132 (2010), 841–866. [Zbl 1213.46053](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1213.46053&format=complete) [MR 2666909](http://www.ams.org/mathscinet-getitem?mr=2666909)
- [Pi84] J.-P. Pier, Amenable locally compact groups, Wiley, New York, 1984. [Zbl 0621.43001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0621.43001&format=complete) [MR 0767264](http://www.ams.org/mathscinet-getitem?mr=0767264)
- [Po01] S. Popa, On a class of type II₁ factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809–899. [Zbl 1120.46045](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1120.46045&format=complete) [MR 2215135](http://www.ams.org/mathscinet-getitem?mr=2215135)
- $[Po03] \quad \underline{\hspace{1cm}}$, Strong rigidity of II_1 factors arising from malleable actions of w-rigid groups, I, Invent. Math. 165 (2006), 369–408. [Zbl 1120.46043](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1120.46043&format=complete) [MR 2231961](http://www.ams.org/mathscinet-getitem?mr=2231961)
- [Po06] , On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981–1000. [Zbl 1222.46048](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1222.46048&format=complete) [MR 2425177](http://www.ams.org/mathscinet-getitem?mr=2425177)
- [PV08] S. Popa and S. Vaes, Cocycle and orbit superrigidity for lattices in $SL(n, \mathbb{R})$ acting on homogeneous spaces, in *Geometry, rigidity and group actions*, B. Farb and D. Fisher (eds.), Univ. Chicago Press, 2011, 419–451. [Zbl 1291.37006](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1291.37006&format=complete) [MR 2807839](http://www.ams.org/mathscinet-getitem?mr=2807839)
- [PV09] , Group measure space decomposition of II₁ factors and W[∗]-superrigidity, Invent. Math. 182 (2010), 371–417. [Zbl 1238.46052](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1238.46052&format=complete) [MR 2729271](http://www.ams.org/mathscinet-getitem?mr=2729271)
- [PV11] $\qquad \qquad$, Unique Cartan decomposition for II₁ factors arising from arbitrary actions of free groups, Acta Math. 212 (2014), 141–198. [Zbl 06305187](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06305187&format=complete) [MR 3179609](http://www.ams.org/mathscinet-getitem?mr=3179609)
- [PV12] , Unique Cartan decomposition for II₁ factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math. 694 (2014), 215–239.
- [Sc82] K. Schmidt, Asymptotic properties of unitary representations and mixing, Proc. London Math. Soc. 48 (1984), 445–460. [Zbl 0539.28010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0539.28010&format=complete) [MR 0735224](http://www.ams.org/mathscinet-getitem?mr=0735224)
- [Ue07] Y. Ueda, Remarks on HNN extensions in operator algebras, Illinois J. Math. 52 (2008), 705–725. [Zbl 1183.46057](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.46057&format=complete) [MR 2546003](http://www.ams.org/mathscinet-getitem?mr=2546003)