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Free Product von Neumann Algebras
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Abstract

Recently, Adrian Ioana proved that all crossed products L∞(X)o(Γ1∗Γ2) by free ergodic
probability measure preserving actions of a nontrivial free product group Γ1 ∗ Γ2 have a
unique Cartan subalgebra up to unitary conjugacy. Ioana deduced this result from a more
general dichotomy theorem on the normalizer NM (A)′′ of an amenable subalgebra A of
an amalgamated free product von Neumann algebra M = M1 ∗B M2. We improve this
dichotomy theorem by removing the spectral gap assumptions and obtain in particular
a simpler proof for the uniqueness of the Cartan subalgebra in L∞(X) o (Γ1 ∗ Γ2).
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§1. Introduction and main results

Each free ergodic nonsingular group action Γ y (X,µ) on a standard probabil-

ity space gives rise to a crossed product von Neumann algebra L∞(X) o Γ, in

which L∞(X) is a Cartan subalgebra. More generally, Cartan subalgebras arise as

L∞(X) ⊂ L(R) where R is a countable nonsingular Borel equivalence relation

on (X,µ). One of the main questions in the classification of these von Neumann

algebras L∞(X) o Γ and L(R) is whether or not L∞(X) is their unique Cartan

subalgebra up to unitary conjugacy. Indeed, if uniqueness holds, the classification

problem is reduced to classifying the underlying (orbit) equivalence relations.

Within Popa’s deformation/rigidity theory, there has been a lot of recent

progress on the uniqueness of Cartan subalgebras in II1 factors, starting with

[OP07] where it was shown that all crossed products L∞(X) oFn by free ergodic

probability measure preserving (pmp) profinite actions of the free groups Fn have
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a unique Cartan subalgebra. Note that this provided the first uniqueness theorem

for Cartan subalgebras up to unitary conjugacy. The result of [OP07] was gradually

extended to profinite actions of larger classes of groups Γ in [OP08, CS11, CSU11],

but all relied on profiniteness of the action and weak amenability of the group Γ.

At the same time, it was conjectured that crossed products L∞(X)oFn by actions

of the free groups could have a unique Cartan subalgebra without any profiniteness

assumptions on Fn y (X,µ).

In a joint work with Popa [PV11, PV12], we solved this conjecture and proved

that the free groups Γ = Fn and all nonelementary hyperbolic groups Γ are C-rigid

(Cartan-rigid), i.e. for every free ergodic pmp action Γ y (X,µ), the II1 factor

L∞(X)oΓ has a unique Cartan subalgebra up to unitary conjugacy. We obtained

this result as a consequence of a general dichotomy theorem about normalizers of

amenable subalgebras in crossed product von Neumann algebras N o Γ, arising

from trace preserving actions of such groups Γ on arbitrary tracial (N, τ).

Then in [Io12], the general dichotomy result of [PV11] was exploited to estab-

lish C-rigidity for arbitrary nontrivial free products Γ = Γ1 ∗ Γ2 and large classes

of amalgamated free products Γ = Γ1 ∗Σ Γ2. This provided in particular the first

non-weakly amenable C-rigid groups. The main idea of [Io12] is to use the free

malleable deformation from [IPP05] of a crossed product B o (Γ1 ∗ Γ2), providing

a 1-parameter family of embeddings θt : Bo (Γ1 ∗Γ2)→ N oF2 into some crossed

product by the free group F2. Then the main result of [PV11] is applied to this

crossed product NoF2 and a very careful and delicate analysis is needed to “come

back” and deduce results about the original crossed product B o (Γ1 ∗ Γ2).

The purpose of this article is to give a simpler approach to this “come back”

procedure and, at the same time, prove a more general result removing the spectral

gap assumptions of [Io12]. As a result, we obtain a simpler proof of the C-rigidity

of amalgamated free product groups.

Our method allows us to prove a more generic theorem about the normalizer

of a subalgebra inside an amalgamated free product of von Neumann algebras—

see Theorem A below. This theorem has the advantage of immediately implying

a similar result for HNN extensions of von Neumann algebras (see Theorem 4.1).

Thus we obtain, without extra effort, C-rigidity for a large class of HNN extensions

Γ = HNN(Γ1,Σ, θ), established before in [DI12] using more involved methods.

As we explain below, following the strategy of [HV12], we also prove a unique-

ness theorem for Cartan subalgebras in type III factors. This then allows us to give

first examples of type III actions Γ y (X,µ) that are W∗-superrigid, i.e. such that

the group Γ and its action Γ y (X,µ) can be recovered from L∞(X) o Γ, up to

induction of actions.
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To state the main result of the article, we first recall Popa’s theory of inter-

twining-by-bimodules from [Po01, Po03]. When (M, τ) is a tracial von Neumann

algebra and A ⊂ pMp and B ⊂ M are von Neumann subalgebras, we say

that A ≺M B (A embeds into B inside M) if L2(pM) admits a nonzero A-B-

subbimodule that is finitely generated as a right Hilbert B-module. This is “al-

most” equivalent to the existence of a partial isometry v ∈ B such that vAv∗ ⊂ B.

By [Po03, Theorem 2.1 and Corollary 2.3], the negation A 6≺M B is equivalent to

the existence of a net (ai)i∈I of unitaries in U(A) satisfying limi ‖EB(xuiy)‖2 = 0

for all x, y ∈M .

Also recall from [OP07, Definition 2.2] that A is said to be amenable relative

to B inside M if there exists an A-central state Ω on Jones’ basic construction

von Neumann algebra p〈M, eB〉p satisfying Ω(x) = τ(x) for all x ∈ pMp. When

B is amenable, this is equivalent to A being amenable. When M = D o Γ and

Λ,Σ < Γ are subgroups, then the relative amenability of D o Λ with respect to

D o Σ is equivalent to the relative amenability of Λ with respect to Σ inside Γ,

i.e. to the existence of a Λ-invariant mean on Γ/Σ.

The following is the main result of the article. The same result was proven in

[Io12, Theorem 1.6] under the extra assumption that the normalizer NpMp(A) =

{u ∈ U(pMp) | uAu∗ = A} of A inside pMp has spectral gap.

Theorem A. Let (Mi, τi) be tracial von Neumann algebras with a common von

Neumann subalgebra B ⊂Mi satisfying τ1|B = τ2|B. Denote by M = M1∗BM2 the

amalgamated free product with respect to the unique trace preserving conditional

expectations. Let p ∈ M be a nonzero projection and A ⊂ pMp a von Neumann

subalgebra that is amenable relative to one of the Mi inside M . Then at least one

of the following statements holds:

• A ≺M B.

• There is an i ∈ {1, 2} such that NpMp(A)′′ ≺M Mi.

• NpMp(A)′′ is amenable relative to B inside M .

As in [Io12], several uniqueness theorems for Cartan subalgebras can be de-

duced from Theorem A. This is in particular the case for II1 factors M = L(R)

that arise from a countable pmp equivalence relation R that can be decomposed

as a free product R = R1 ∗ R2 of subequivalence relations Ri ⊂ R. Since we

now no longer need to prove the spectral gap assumption, we can directly deduce

from Theorem A the following improvement of [Io12, Corollary 1.4] and [BHR12,

Theorem 6.3].

Corollary B. Let R be a countable ergodic pmp equivalence relation on the stan-

dard probability space (X,µ). Assume that R = R1 ∗ R2 for two subequivalence
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relations Ri ⊂ R. Assume that |R1 · x| ≥ 3 and |R2 · x| ≥ 2 for a.e. x ∈ X. Then

L∞(X) is the unique Cartan subalgebra of L(R) up to unitary conjugacy.

A tracial von Neumann algebra (M, τ) is called strongly solid if for every

diffuse amenable von Neumann subalgebra A ⊂ M , the normalizer NM (A)′′ is

still amenable. For completeness, we also show how to deduce from Theorem A

the following stability result for strong solidity under amalgamated free products,

slightly improving on [Io12, Theorem 1.8].

For the formulation of the result, recall from [Po03, Section 3] that an inclusion

B ⊂ (M1, τ) of tracial von Neumann algebras is called mixing if for every sequence

bn ∈ B with ‖bn‖ ≤ 1 for all n and bn → 0 weakly, we have limn ‖EB(xbny)‖2 = 0

for all x, y ∈M1	B. Typical examples of mixing inclusions arise as L(Σ) ⊂ L(Γ)

when Σ < Γ is a subgroup such that gΣg−1 ∩ Σ is finite for all g ∈ Γ − Σ, or as

L(Σ) ⊂ B o Σ whenever Σ acts in a mixing and trace preserving way on (B, τ).

Corollary C. Let (Mi, τi) be strongly solid von Neumann algebras with a common

amenable von Neumann subalgebra B ⊂ Mi satisfying τ1|B = τ2|B. Assume that

the inclusion B ⊂M1 is mixing. Denote by M = M1 ∗BM2 the amalgamated free

product with respect to the unique trace preserving conditional expectations. Then

M is strongly solid.

On the level of tracial von Neumann algebras, by [Ue07], amalgamated free

products and HNN extensions are one and the same thing, up to amplifications.

Therefore, Theorem A has an immediate counterpart for HNN extensions that we

formulate as Theorem 4.1 below.

As a consequence, we can reprove [Io12, Theorem 1.1] and [DI12, Corollary

1.7], showing C-rigidity for amalgamated free product groups, HNN extensions and

their direct products. We refer to Theorem 5.1 for a precise statement.

Finally in Section 8, we use the methods of [HV12] to deduce from Theorem A

a uniqueness theorem for Cartan subalgebras in type III factors L∞(X)oΓ arising

from nonsingular free ergodic actions of amalgamated free product groups (see

Theorem 8.1), generalizing [BHR12, Theorem D]. As a consequence, we can provide

the following first nonsingular actions of type III that are W∗-superrigid.

Proposition D. Consider the linear action of SL(5,Z) on R5 and define the

subgroup Σ < SL(5,Z) of matrices A satisfying Aei = ei for i = 1, 2. Put

Γ = SL(5,Z) ∗Σ (Σ × Z) and denote by π : Γ → SL(5,Z) the natural quotient

homomorphism. The diagonal action Γ y R5/R+ × [0, 1]Γ given by

g · (x, y) = (π(g) · x, g · y),
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where g · y is given by the Bernoulli shift, is a nonsingular free ergodic action of

type III1 that is W ∗-superrigid.

This means that for any nonsingular free action Γ′ y (X ′, µ′), the following

two statements are equivalent:

• L∞(X) o Γ ∼= L∞(X ′) o Γ′.

• There exists an embedding of Γ into Γ′ such that Γ′ y X ′ is conjugate to the

induction of Γ y X to a Γ′-action.

To clarify the statement of Proposition D, one should make the following

observations. In contrast to the case of probability measure preserving actions,

it is not relevant to consider stable isomorphisms, since the type III factor M =

L∞(X) o Γ is isomorphic to B(H)⊗M for every separable Hilbert space H. For

the same reason, it is unavoidable that Γ′ y (X ′, µ′) can be any induction of

Γ y (X,µ) and need not be conjugate to Γ y (X,µ) itself.

It is also possible to prove that for 0 < λ < 1, the analogous action of Γ

on R5/λZ × [0, 1]Γ is of type IIIλ and W∗-superrigid in the appropriate sense.

The correct formulation is necessarily more intricate because the action is by

construction orbit equivalent to the action of Γ×Z on R5× [0, 1]Γ. More generally

for a type IIIλ free ergodic action Γ y (X,µ), there is always a canonically orbit

equivalent action Γ×Z y (X ′, µ′) where the Γ-action preserves the infinite measure

µ′ and the Z-action scales µ′ by powers of λ.

§2. Preliminaries

In the proof of our main technical result (Theorem 3.4), we make use of the fol-

lowing criterion for relative amenability due to [OP07] (see also [PV11, Section

2.5]). We copy the formulation of [Io12, Lemma 2.3].

Lemma 2.1 ([OP07, Corollary 2.3]). Let (M, τ) be a tracial von Neumann al-

gebra and p ∈M a nonzero projection. Let A ⊂ pMp and B ⊂M be von Neumann

subalgebras. Let L be any B-M -bimodule. Assume that there exists a net (ξi)i∈I of

vectors in pL2(M)⊗B L with the following properties:

• lim supi∈I ‖xξi‖2 ≤ ‖x‖2 for every x ∈ pMp.

• lim supi∈I ‖ξi‖2 > 0.

• limi∈I ‖aξi − ξia‖2 = 0 for every a ∈ U(A).

Then there exists a nonzero projection q in the center of A′ ∩ pMp such that Aq

is amenable relative to B inside M .
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§3. Key technical theorem

Throughout this section, we fix tracial von Neumann algebras (Mi, τi) with a

common von Neumann subalgebra B ⊂ Mi satisfying τ1|B = τ2|B . We denote by

M = M1 ∗B M2 the amalgamated free product with respect to the unique trace

preserving conditional expectations and denote its canonical trace by τ .

§3.1. The malleable deformation of an amalgamated free product

We recall from [IPP05, Section 2.2] the construction of Popa’s malleable deforma-

tion of M . We denote G = F2, with free generators a, b ∈ G. Write G1 = aZ and

G2 = bZ. We define M̃ = M ∗B (B ⊗ L(G)). Writing M̃i = Mi ∗B (B ⊗ L(Gi)),

we can also view M̃ = M̃1 ∗B M̃2. Define the self-adjoint elements hj ∈ L(Gj)

with spectrum [−π, π] such that ua = exp(ih1) and ub = exp(ih2). Consider the

1-parameter groups (uj,t)t∈R of unitaries in L(Gj) given by uj,t = exp(ithj). Fi-

nally define the 1-parameter group (θt)t∈R of automorphisms of M̃ by

θt(x) = uj,txu
∗
j,t for all x ∈ M̃j .

Note that θt is well defined because uj,tbu
∗
j,t = b for all b ∈ B and j ∈ {1, 2}.

We define S as the set of all finite alternating sequences of 1’s and 2’s, in-

cluding the empty sequence ∅. So the elements of S are the finite sequences of the

form (1, 2, 1, 2, . . . ) or (2, 1, 2, 1, . . . ). The length of an alternating sequence I ∈ S
is denoted by |I|. For every (i1, . . . , in) ∈ S, we define H(i1,...,in) ⊂ L2(M) as the

closed linear span of (Mi1 	B) · · · (Min 	B). By convention, we put H∅ = L2(B).

So we have the orthogonal decomposition

L2(M) =
⊕
I∈S
HI .

We denote by PI the orthogonal projection of L2(M) onto HI .

Denote ρt = |sin(πt)/πt|2. A direct computation shows that for all x ∈ L2(M)

and all t ∈ R,

(3.1)

‖EM (θt(x))‖22 =
∑
I∈S

ρ
2|I|
t ‖PI(x)‖22,

‖x− θt(x)‖22 =
∑
I∈S

2(1− ρ|I|t )‖PI(x)‖22,

‖θt(x)− EM (θt(x))‖22 =
∑
I∈S

(1− ρ2|I|
t )‖PI(x)‖22.

The last two equalities imply the following transversality property in the sense of

[Po06, Lemma 2.1]:

(3.2) ‖x− θt(x)‖2 ≤
√

2‖θt(x)− EM (θt(x))‖2 for all x ∈ L2(M), t ∈ R.
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The following is the main technical result of [IPP05]. For a proof of the version

we state here, we refer to [Ho07, Section 5] and [PV09, Theorem 5.4].

Theorem 3.1 ([IPP05, Theorem 3.1]). Let p ∈ M be a nonzero projection and

A ⊂ pMp a von Neumann subalgebra. Assume that there exists an ε > 0 and a

t > 0 such that ‖EM (θt(a))‖2 ≥ ε for all a ∈ U(A). Then at least one of the

following statements holds:

• A ≺M B.

• There exists an i ∈ {1, 2} such that NpMp(A)′′ ≺M Mi.

§3.2. The algebra M̃ as a crossed product with F2

and random walks on F2

We recall here the fundamental idea of [Io12] to consider M̃ as a crossed product

with the free group F2 and to exploit the spectral gap of random walks on the

nonamenable group G = F2. As in [Io06, Remark 4.5] and [Io12, Section 3], we

decompose M = N o G, where N is defined as the von Neumann subalgebra of

M̃ generated by {ugMu∗g | g ∈ G} and normalized by the unitaries (ug)g∈G. Note

that N is the infinite amalgamated free product of the subalgebras ugMu∗g, g ∈ G,

over the common subalgebra B. From this point of view, the action of G on N is

the free Bernoulli action.

For every i ∈ {1, 2} and t ∈ (0, 1), we define the maps βi,t : Gi → R by

βi,t(g) = τ(ui,tu
∗
g) for all g ∈ Gi.

We then denote by γi,t and µi,t the probability measures on G given by

γi,t(g) =

{
|βi,t(g)|2 if g ∈ Gi,
0 if g 6∈ Gi,

µi,t = γi,t ∗ γi,t,

where we have used the usual convolution product between probability measures

on G:

(γ ∗ γ′)(g) =
∑

h,k∈G, hk=g

γ(h)γ′(k).

For I ∈ S, we finally denote by µI,t the probability measure on G given by

µ∅,t(g) = δg,e and µ(i1,...,in),t = µi1,t ∗ µi2,t ∗ · · · ∗ µin,t.

The probability measures µI,t give rise to the Markov operators TI,t on `2(G)

given by

TI,t =
∑
g∈G

µI,t(g)λg.
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The support of the probability measures γi,t and µi,t equals Gi. So the support S

of the probability measure µ(1,2),t equals G1G2. Since SS−1 generates the group

F2 and since F2 is nonamenable, it follows from Kesten’s criterion (see e.g. [Pi84,

Corollary 18.5]) that ‖T(1,2),t‖ < 1 for all t ∈ (0, 1). Writing ct = ‖T(1,2),t‖1/2, we

have found numbers 0 < ct < 1 such that

‖TI,t‖ ≤ c|I|−1
t for all I ∈ S and all 0 < t < 1.

For every x ∈ M̃ and h ∈ G, we define (x)h = EN (xu∗h). So with ‖ · ‖2-

convergence, we have x =
∑
h∈G(x)huh. We recall the following result of [Io12].

Lemma 3.2 ([Io12, formula (3.5)]). For all t ∈ (0, 1), h ∈ G and x, y ∈ L2(M),

〈(θt(x))h, (θt(y))h〉 =
∑
I∈S
〈PI(x), y〉 µI,t(h).

Also recall from [Io12] that Lemma 3.2 yields the following result.

Theorem 3.3 ([Io12, Theorem 3.2]). Let p ∈M be a nonzero projection and A ⊂
pMp a von Neumann subalgebra. Assume that θt(A) ≺

M̃
N for some t ∈ (0, 1).

Then at least one of the following statements holds:

• A ≺M B.

• There exists an i ∈ {1, 2} such that NpMp(A)′′ ≺M Mi.

Proof. Assume that the conclusion fails. By Theorem 3.1, we find a net (ai)i∈I of

unitaries in U(A) such that limi∈I ‖EM (θs(ai))‖2 = 0 for all s ∈ (0, 1). We will

prove that θt(A) 6≺
M̃
N for all t ∈ (0, 1). So fix t ∈ (0, 1). It suffices to prove that

limi∈I ‖(θt(ai))h‖2 = 0 for all h ∈ G.

Fix h ∈ G and fix ε > 0. Take a large enough integer n0 such that cn0−1
t < ε.

So, for all I ∈ S with |I| ≥ n0, we have ‖TI,t‖ < ε and, in particular,

µI,t(h) = 〈TI,tδe, δh〉 < ε.

Denote by

P0 =
∑

I∈S, |I|<n0

PI

the projection onto the closed linear span of “all words of length < n0”. Using

Lemma 3.2, we see that for all i ∈ I,

‖(θt(ai))h‖22 ≤ ‖P0(ai)‖22 + ε.

By (3.1), we can take s > 0 small enough such that ‖P0(ai)‖2 ≤ 2‖EM (θs(ai))‖2
for all i ∈ I. Since limi∈I ‖EM (θs(ai))‖2 = 0, it follows that

lim sup
i∈I

‖(θt(ai))h‖22 ≤ ε.
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Since ε > 0 is arbitrary, it indeed follows that limi∈I ‖(θt(ai))h‖2 = 0 for all

h ∈ G.

§3.3. Relative amenability and the malleable deformation

The following is our main technical result. The same statement was proven in [Io12,

Theorem 5.1] under the additional assumption that A′ ∩ (pMp)ω = C1 for some

free ultrafilter ω, i.e. under the assumption that there are no nontrivial bounded

sequences in pMp that asymptotically commute with A.

Theorem 3.4. Let p ∈M be a nonzero projection and A ⊂ pMp a von Neumann

subalgebra. Assume that for all t ∈ (0, 1), θt(A) is amenable relative to N inside M̃ .

Then at least one of the following statements holds:

• There exists i ∈ {1, 2} such that A ≺M Mi.

• A is amenable relative to B inside M .

Proof. Assume that A 6≺M M1 and A 6≺M M2. Denote by z the maximal projection

in the center of A′∩pMp such that Az is amenable relative to B inside M . If z = p,

then the theorem is proven. If z < p, we replace p by p − z and we replace A by

A(p− z). So, A 6≺M Mi for all i ∈ {1, 2}, and Aq is amenable relative to B for no

nonzero projection q ∈ Z(A′ ∩ pMp). We refer to this last property by saying that

“no corner of A is amenable relative to B inside M .” We will derive a contradiction.

Exactly as in the proof of [Io12, Theorem 5.1], we define the index set I

to consist of all quadruplets i = (X,Y, δ, t) where X ⊂ M̃ and Y ⊂ U(A) are

finite subsets, δ ∈ (0, 1) and t ∈ (0, 1). We turn I into a directed set by putting

(X,Y, δ, t) ≤ (X ′, Y ′, δ′, t′) if and only if X ⊂ X ′, Y ⊂ Y ′, δ′ ≤ δ and t′ ≤ t. Since

θt(A) is amenable relative to N inside M̃ for all t ∈ (0, 1), we can choose, for every

i = (X,Y, δ, t) in I, a vector ξi ∈ L2(〈M̃, eN 〉) such that ‖ξi‖2 ≤ 1 and

|〈xξi, ξi〉 − τ(x)| ≤ δ whenever x ∈ X or

x = (θt(y)− y)∗(θt(y)− y) with y ∈ Y,
‖θt(y)ξi − ξiθt(y)‖2 ≤ δ whenever y ∈ Y.

It follows that limi∈I〈xξi, ξi〉 = τ(x) for all x ∈ M̃ . Since limt→0 ‖θt(y)− y‖2 = 0

for all y ∈ U(A), it follows that limi∈I ‖yξi − ξiy‖2 = 0 for all y ∈ U(A).

Denote by K the closed linear span of {xugeNu∗g | x ∈ M, g ∈ G} inside

L2(〈M̃, eN 〉). Since u∗gMug ⊂ N , we see that ugeNu
∗
g commutes with M for all

g ∈ G. Therefore, K is an M -M -bimodule. Denote by e the orthogonal projection

onto K. The net of vectors ξ′i = p(1 − e)(ξi) satisfies lim supi∈I ‖xξ′i‖2 ≤ ‖x‖2 for

all x ∈ pMp and limi∈I ‖aξ′i − ξ′ia‖2 = 0 for all a ∈ A. By [Io12, Lemma 4.2], the
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M -M -bimodule L2(〈M̃, eN 〉) 	 K is isomorphic to L2(M) ⊗B L for some B-M -

bimodule L. Since no corner of A is amenable relative to B inside M , it follows

from Lemma 2.1 that limi∈I ‖ξ′i‖2 = 0. So,

lim
i∈I
‖pξi − e(pξi)‖2 = 0.

Define the isometry

U : L2(M)⊗ `2(G)→ L2(〈M̃, eN 〉) : U(x⊗ δg) = xugeNu
∗
g.

Note that UU∗ = e and

U((x⊗ 1)η(y ⊗ 1)) = xU(η)y for all x, y ∈M, η ∈ L2(M)⊗ `2(G).

We define the net (ζi)i∈I of vectors in pL2(M)⊗ `2(G) by ζi = U∗(pξi). Note that

‖ζi‖2 ≤ 1. The properties of (ξi)i∈I imply that

lim
i∈I
‖pξi − U(ζi)‖2 = 0,

lim
i∈I
〈(x⊗ 1)ζi, ζi〉 = τ(pxp) for all x ∈M,

lim
i∈I
‖(a⊗ 1)ζi − ζi(a⊗ 1)‖2 = 0 for all a ∈ U(A).

We view pL2(M)⊗ `2(G) as a closed subspace of L2(M̃)⊗ `2(G). Hence, the

following claim makes sense.

Claim. For every ε > 0, there exists an s0 ∈ (0, 1) and an i0 ∈ I such that

‖ζi − (θs ⊗ id)(ζi)‖2 < ε for all s ∈ [0, s0] and all i ≥ i0.

Proof of the claim. Assume the contrary. Using (3.2), we then find an ε > 0 such

that for every s ∈ (0, 1), we have

lim sup
i∈I

‖(θs ⊗ id)(ζi)− (EM ◦ θs ⊗ id)(ζi)‖2 ≥ ε.

Since lims→0 ‖θs(a)− a‖2 = 0 for every a ∈ U(A), we can choose a subnet (µk) of

the net of vectors (
(p⊗ 1)((id− EM ) ◦ θs ⊗ id)(ζi)

)
(i,s)∈I×(0,1)

with the properties that

lim sup
k
‖(x⊗ 1)µk‖2 ≤ ‖x‖2 for all x ∈ pMp,

lim inf
k
‖µk‖2 ≥ ε,

lim
k
‖(a⊗ 1)µk − µk(a⊗ 1)‖2 = 0 for all a ∈ U(A).
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The M -M -bimodule L2(M̃ 	M)⊗ `2(G) is isomorphic to L2(M)⊗B L for some

B-M -bimodule L. By Lemma 2.1, we have reached a contradiction with the as-

sumption that no corner of A is amenable relative to B inside M . This proves the

claim.

Put ε = τ(p)/14. Fix i0 ∈ I and s0 ∈ (0, 1) such that for all i ≥ i0 and all

s ∈ [0, s0], we have

‖pξi − U(ζi)‖2 < ε and ‖ζi − (θs ⊗ id)(ζi)‖2 < ε.

Write i0 = (X0, Y0, δ0, t0). Enlarging i0 if necessary, we may assume that p ∈ X0,

p ∈ Y0 (note that p is the unit element of U(A)), δ0 < ε2/2, t0 ≤ s0 and

‖θt0(p)− p‖2 < ε/2.

Denote by J the index set consisting of all triplets j = (X,Y, δ), where X ⊂
pMp and Y ⊂ U(A) are finite subsets and δ ∈ (0, δ0). We turn J into a directed

set in a similar way to I above. For every j = (X,Y, δ), we put

ηj = ζ(X0∪X,Y0∪Y,δ,t0).

Note that we use here the fixed index t0. In particular, (ηj)j∈J is not a subnet

of (ζi)i∈I . Also note that ‖ηj‖2 ≤ 1. We claim that the net (ηj)j∈J of vectors in

pL2(M)⊗ `2(G) has the following properties:

lim sup
j∈J

‖(x⊗ 1)ηj‖2 ≤ ‖x‖2 for all x ∈M,(3.3)

lim inf
j∈J

|〈θt0(a)U(ηj), U(ηj) θt0(a)〉| ≥ τ(p)− 6ε for all a ∈ U(A),(3.4)

‖ηj − (θs ⊗ id)(ηj)‖2 ≤ ε for all s ∈ [0, t0], j ∈ J.(3.5)

To prove (3.3), fix x ∈M and fix j = (X,Y, δ) with px∗xp ∈ X. It suffices to

prove that

(3.6) ‖(x⊗ 1)ηj‖22 ≤ ‖x‖22 + δ.

Put i = (X0 ∪X,Y0 ∪ Y, δ, t0). We get

‖(x⊗ 1)ηj‖2 = ‖(x⊗ 1)ζi‖2 = ‖xU(ζi)‖2 = ‖xe(pξi)‖2 = ‖e(xpξi)‖2 ≤ ‖xpξi‖2.

But also

‖xpξi‖22 = 〈px∗xpξi, ξi〉 ≤ τ(px∗xp) + δ ≤ ‖x‖22 + δ

because px∗xp ∈ X ⊂ X0 ∪X. So (3.6) follows and (3.3) is proven.

To prove (3.4), fix a ∈ U(A) and fix j = (X,Y, δ) with a ∈ Y . It suffices to

prove that

(3.7) |〈θt0(a)U(ηj), U(ηj) θt0(a)〉| ≥ τ(p)− 6ε− 2δ.
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Put i = (X0 ∪X,Y0 ∪ Y, δ, t0). Since p ∈ Y0 ⊂ Y0 ∪ Y , we have

‖θt0(p)ξi − pξi‖22 ≤ ‖θt0(p)− p‖22 + δ ≤ ε2/2 + δ0 ≤ ε2.

So ‖θt0(p)ξi − pξi‖2 ≤ ε. Since ‖pξi − U(ζi)‖2 ≤ ε, we get

‖θt0(p)ξi − U(ηj)‖2 ≤ 2ε.

Since p ∈ Y0 ⊂ Y0 ∪ Y , we also have ‖θt0(p)ξi − ξiθt0(p)‖2 ≤ δ ≤ δ0 ≤ ε. In

combination with the previous inequality, this gives

‖ξiθt0(p)− U(ηj)‖2 ≤ 3ε.

In the following computation, we write y ≈ε z when y, z ∈ C with |y − z| ≤ ε. We

also use throughout that ‖ζi‖2 ≤ 1 and ‖ηj‖2 ≤ 1 for all i ∈ I and j ∈ J . So,

〈θt0(a)U(ηj), U(ηj) θt0(a)〉

≈2ε 〈θt0(a)ξi, U(ηj) θt0(a)〉 because ‖U(ηj)− θt0(p)ξi‖2 ≤ 2ε,

≈3ε 〈θt0(a)ξi, ξiθt0(a)〉 because ‖U(ηj)− ξiθt0(p)‖2 ≤ 3ε,

≈δ 〈θt0(a)ξi, θt0(a)ξi〉 because ‖ξiθt0(a)− θt0(a)ξi‖2 ≤ δ since a ∈ Y,
= 〈θt0(p)ξi, ξi〉
≈ε 〈pξi, ξi〉 because ‖θt0(p)ξi − pξi‖2 ≤ ε,
≈δ τ(p) because p ∈ X0 ⊂ X0 ∪X.

From this computation, (3.7) follows immediately. So also (3.4) is proven.

Finally (3.5) follows because ‖ζi − (θs ⊗ id)(ζi)‖2 ≤ ε for all s ∈ [0, t0] and all

i ≥ i0.

Denote ηj =
∑
g∈G ηj,g ⊗ δg, where ηj,g ∈ L2(M) and where (δg)g∈G is the

canonical orthonormal basis of `2(G). Recall that for every x ∈ L2(M̃) and h ∈ G,

we denote (x)h = EN (xu∗h).

For every a ∈ U(A), we have∑
g,h∈G

‖(θt0(aηj,g))h‖22 =
∑
g∈G
‖θt0(aηj,g)‖22 =

∑
g∈G
‖aηj,g‖22 = ‖(a⊗ 1)ηj‖22 ≤ 1.

Because the subspaces (L2(N)uhgeNu
∗
g)h,g∈G of L2(〈M̃, eN 〉) are orthogonal, the

formula

ξ(a, j) =
∑
g,h∈G

(θt0(aηj,g))huhgeNu
∗
g

provides a well defined vector in L2(〈M̃, eN 〉) with ‖ξ(a, j)‖2 ≤ 1. We claim that

for every a ∈ U(A) and all j ∈ J , we have

(3.8) ‖θt0(a)U(ηj)− ξ(a, j)‖2 ≤ ε.
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To prove (3.8), first note that

θt0(a)U(ηj) =
∑
g∈G

θt0(a)ηj,gugeNu
∗
g =

∑
g,h∈G

(θt0(a)ηj,g)huhgeNu
∗
g.

It then follows that

‖θt0(a)U(ηj)− ξ(a, j)‖22 =
∑
g,h∈G

‖(θt0(a)ηj,g)h − (θt0(aηj,g))h‖22

=
∑
g∈G
‖θt0(a)ηj,g − θt0(aηj,g)‖22 =

∑
g∈G
‖ηj,g − θt0(ηj,g)‖22

= ‖ηj − (θt0 ⊗ id)(ηj)‖22 ≤ ε2.

So (3.8) is proven.

We similarly define the vectors ξ′(a, j) ∈ L2(〈M̃, eN 〉) by the formula

ξ′(a, j) =
∑
g,h∈G

(θt0(ηj,ga))hugeNu
∗
guh =

∑
g,h∈G

(θt0(ηj,hga))huhgeNu
∗
g

and deduce that ‖ξ′(a, j)‖2 ≤ 1 and

(3.9) ‖U(ηj)θt0(a)− ξ′(a, j)‖2 ≤ ε

for all a ∈ U(A) and all j ∈ J .

Combining (3.7)–(3.9), we find that for all a ∈ U(A),

lim sup
j∈J

|〈ξ(a, j), ξ′(a, j)〉| ≥ τ(p)− 8ε.

We now apply Lemma 3.2 and the notation introduced before its formulation. For

every a ∈ U(A) and j ∈ J , we have

〈ξ(a, j), ξ′(a, j)〉 =
∑
g,h∈G

〈(θt0(aηj,g))h, (θt0(ηj,hga))h〉

=
∑
g,h∈G

∑
I∈S
〈PI(aηj,g), ηj,hga〉µI,t0(h)

= 〈Qt0((a⊗ 1)ηj), ηj(a⊗ 1)〉,

where Qt0 ∈ B(L2(M)⊗ `2(G)) is defined by

Qt0 =
∑
I∈S

PI ⊗ TI,t0 .

So for all a ∈ U(A),

(3.10) lim sup
j∈J

|〈Qt0((a⊗ 1)ηj), ηj(a⊗ 1)〉| ≥ τ(p)− 8ε.
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Fix a large enough integer n0 such that cn0−1
t0 ≤ ε. So, ‖TI,t0‖ ≤ ε whenever

|I| ≥ n0. Denote by

P0 =
∑

I∈S, |I|<n0

PI

the projection onto the closed linear span of “all words of length < n0”.

We claim that there exists a unitary a ∈ U(A) such that

(3.11) lim sup
j∈J

‖(P0 ⊗ 1)((a⊗ 1)ηj)‖2 ≤ 4ε.

To prove this claim, we first use (3.1) to fix 0 < s ≤ t0 close enough to zero such

that

‖(P0 ⊗ 1)(η)‖2 ≤ 2‖(EM ⊗ id)((θs ⊗ id)(η))‖2 for all η ∈ L2(M)⊗ `2(G).

Since A 6≺ M1 and A 6≺ M2, it follows from Theorem 3.1 that we can choose

a ∈ U(A) such that ‖EM (θs(a))‖2 ≤ ε. We will prove that this unitary a ∈ U(A)

satisfies (3.11).

From (3.5), we know that ‖ηj − (θs ⊗ id)(ηj)‖2 ≤ ε for all j ∈ J . It follows

that

‖(θs ⊗ id)((a⊗ 1)ηj)− (θs(a)⊗ 1)ηj‖2 ≤ ε for all j ∈ J.

So for all j ∈ J , we get

‖(P0 ⊗ 1)((a⊗ 1)ηj)‖2 ≤ 2‖(EM ⊗ id)((θs ⊗ id)((a⊗ 1)ηj))‖2
≤ 2‖(EM ⊗ id)((θs(a)⊗ 1)ηj)‖2 + 2ε

= 2‖(EM (θs(a))⊗ 1)ηj‖2 + 2ε.

Using (3.3), we get

lim sup
j∈J

‖(P0 ⊗ 1)((a⊗ 1)ηj)‖2 ≤ 2‖EM (θs(a))‖2 + 2ε ≤ 4ε.

So the claim in (3.11) is proven and we fix the unitary a ∈ U(A) satisfying (3.11).

We will now deduce that

(3.12) lim sup
j∈J

‖Qt0((a⊗ 1)ηj)‖2 ≤ 5ε.
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Indeed, since ‖TI,t0‖ ≤ 1 for all I ∈ S and ‖TI,t0‖ ≤ ε for all I ∈ S with |I| ≥ n0,

we get

‖Qt0((a⊗ 1)ηj)‖22 =
∑
I∈S
‖(PI ⊗ TI,t0)((a⊗ 1)ηj)‖22

≤
∑

I∈S, |I|<n0

‖(PI ⊗ 1)((a⊗ 1)ηj)‖22 + ε2
∑

I∈S, |I|≥n0

‖(PI ⊗ 1)((a⊗ 1)ηj)‖22

≤ ‖(P0 ⊗ 1)((a⊗ 1)ηj)‖22 + ε2‖(a⊗ 1)ηj‖22.

Taking the lim sup over j ∈ J and using (3.11) and (3.3), we arrive at

lim sup
j∈J

‖Qt0((a⊗ 1)ηj)‖22 ≤ 17ε2,

and (3.12) follows. But (3.12) implies that

lim sup
j∈J

|〈Qt0((a⊗ 1)ηj), ηj(a⊗ 1)〉| ≤ 5ε.

Since ε = τ(p)/14, we have 5ε < τ(p)−8ε and so we have obtained a contradiction

with (3.10).

§4. Proof of Theorem A and a version for HNN extensions

Proof of Theorem A. We use the malleable deformation θt of M ⊂ M̃ as explained

in Section 3.1. Write G = F2 and M̃ = N oG as in Section 3.2. By assumption, A

is amenable relative to one of the Mi inside M . A fortiori, A is amenable relative

to Mi inside M̃ . Fix t ∈ (0, 1). Applying θt, we see that θt(A) is amenable relative

to θt(Mi) inside M̃ . Since θt(Mi) is unitarily conjugate to Mi and Mi ⊂ N , it

follows that θt(A) is amenable relative to N inside M̃ .

Put P := NpMp(A)′′. We apply [PV11, Theorem 1.6 and Remark 6.3] to the

crossed product M̃ = N o G and the subalgebra θt(A) of this crossed product.

We conclude that at least one of the following statements holds: θt(A) ≺
M̃
N or

θt(P ) is amenable relative to N inside M̃ . Since this holds for every t ∈ (0, 1), we

see that at least one of the following is true:

• There exists a t ∈ (0, 1) such that θt(A) ≺
M̃
N .

• θt(P ) is amenable relative to N inside M̃ for every t ∈ (0, 1).

In the first case, Theorem 3.3 implies that A ≺M B or P ≺M Mi for some i ∈
{1, 2}. In the latter case, Theorem 3.4 implies that P ≺M Mi for some i ∈ {1, 2},
or that P is amenable relative to B inside M .
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By [Ue07], HNN extensions can be viewed as corners of amalgamated free

products. Since Theorem A has no particular assumptions on the inclusions

B ⊂Mi, we can immediately deduce the following result.

Theorem 4.1. Let M = HNN(M0, B, θ) be the HNN extension of the tracial

von Neumann algebra (M0, τ) with von Neumann subalgebra B ⊂ M0 and trace

preserving embedding θ : B → M0. Let p ∈ M be a nonzero projection and A ⊂
pMp a von Neumann subalgebra that is amenable relative to M0 inside M . Then

at least one of the following statements holds:

• A ≺M B.

• NpMp(A)′′ ≺M M0.

• NpMp(A)′′ is amenable relative to B inside M .

Proof. By [Ue07, Proposition 3.1], we can view M = HNN(M0, B, θ) as a corner

of an amalgamated free product. More precisely, we put M1 = M2(C) ⊗M0 and

M2 = M2(C)⊗B. We consider B0 = B ⊕B as a subalgebra of both M1 and M2,

where the embedding B0 ↪→M2 is diagonal and the embedding B0 ↪→M1 is given

by b⊕d 7→ b⊕θ(d). We denote by eij the matrix units in M1 and by fij the matrix

units in M2. The HNN extension M is generated by M0 and the stable unitary u.

There is a unique surjective ∗-isomorphism

Ψ : HNN(M0, B, θ)→ e11

(
M1 ∗B0

M2

)
e11 :

{
Ψ(x) = e11x for all x ∈M0,

Ψ(u) = e12f21.

Note that in the amalgamated free product, e11 = f11 and e22 = f22. Therefore

e12f21 is really a unitary.

DenoteM := M1 ∗B0 M2. Whenever Q ⊂ pMp is a von Neumann subalgebra,

one checks that:

• Q ≺M B iff Ψ(Q) ≺M B0 iff Ψ(Q) ≺M M2.

• Q ≺M M0 iff Ψ(Q) ≺M M1.

• Q is amenable relative to B inside M iff Ψ(Q) is amenable relative to B0 in-

side M.

So Theorem 4.1 is a direct consequence of Theorem A.

§5. Cartan-rigidity for amalgamated free product groups and

HNN extensions

Recall from [PV11] that a countable group Γ is called C-rigid if for every free

ergodic pmp action Γ y (X,µ), L∞(X) is the unique Cartan subalgebra of
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L∞(X) o Γ up to unitary conjugacy. By [Po01, Theorem A.1], C-rigidity is an

immediate consequence of the following stronger property (∗):

(∗) For every trace preserving action Γ y (B, τ), projection p ∈ M = B o Γ and

amenable von Neumann subalgebra A ⊂ pMp with NpMp(A)′′ = pMp, we

have A ≺ B.

As was shown in the proof of [PV12, Theorem 1.1], a direct product Γ1× · · · ×Γn
of finitely many groups Γi with property (∗) is C-rigid.

Property (∗) was shown to hold, among other groups, for all weakly amenable

Γ with β
(2)
1 (Γ) > 0 in [PV11, Theorem 7.1] and for all nonelementary hyperbolic

Γ in [PV12, Theorem 1.4]. In [Io12, Theorem 7.1], property (∗) was proven for a

large class of amalgamated free products, and in [DI12, Proof of Theorem 8.1] for

a large class of HNN extensions. For completeness, we show how to deduce these

last two results from Theorem A, resp. Theorem 4.1.

Theorem 5.1. The following groups have property (∗) and, in particular, are

C-rigid:

1. ([Io12, Theorem 7.1]) Amalgamated free products Γ = Γ1 ∗Σ Γ2 such that

[Γ1 : Σ] ≥ 3, [Γ2 : Σ] ≥ 2 and there are g1, . . . , gn ∈ Γ with |
⋂n
k=1 gkΣg−1

k | <∞.

2. ([DI12, Proof of Theorem 8.1]) HNN extensions Γ = HNN(Γ1,Σ, θ), given by a

subgroup Σ < Γ1 and an injective group homomorphism θ : Σ → Γ1, such that

Σ 6= Γ1 6= θ(Σ) and there are g1, . . . , gn ∈ Γ with |
⋂n
k=1 gkΣg−1

k | <∞.

Proof. Let Γ y (B, τ) be a trace preserving action and put M = B o Γ. Let

p ∈M be a projection and A ⊂ pMp an amenable von Neumann subalgebra with

NpMp(A)′′ = pMp. In the first case, M is the amalgamated free product of BoΓ1

and BoΓ2 over BoΣ. In the second case, M is the HNN extension of BoΓ1 over

BoΣ. In both cases, Γi < Γ has infinite index and Σ < Γ is not co-amenable (see

e.g. the final paragraphs of the proof of [Io12, Theorem 7.1] and [DI12, Lemma

7.2]). So it follows from Theorem A and Theorem 4.1 that A ≺ B o Σ.

Define the projection z(Σ) ∈ M ∩ (B o Σ)′ as in [HPV10, Section 4]. Since

A ≺ B o Σ, we see that z(Σ) 6= 0. From [HPV10, Proposition 8], we know that

z(Σ) belongs to the center of M . Take g1, . . . , gn ∈ Γ such that Σ0 =
⋂n
k=1 gkΣg−1

k

is a finite group. We have z(gkΣg−1
k ) = ugkz(Σ)u∗gk = z(Σ), because z(Σ) belongs

to the center of M . It then follows from [HPV10, Proposition 6] that

z(Σ0) = z(g1Σg−1
1 ) · · · z(gnΣg−1

n ) = z(Σ) 6= 0.

So A ≺ B o Σ0. Since Σ0 is finite, we conclude that A ≺ B.
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§6. Proof of Corollary B

Write Mi = L(Ri) and B = L∞(X). Note that L(R) = M1 ∗B M2. Corollary B

is a direct consequence of Theorem A, provided that we prove the following two

statements:

1. M 6≺M Mi.

2. M is not amenable relative to B, i.e. M is not amenable itself.

Since |R1 · x| ≥ 3 for a.e. x ∈ X and using e.g. [IKT08, Lemma 2.6], we can take

unitaries u, v ∈ U(M1) such that EB(u) = EB(v) = EB(u∗v) = 0. We similarly

find a unitary w ∈ U(M2) with EB(w) = 0.

Proof of 1. Define wn ∈ U(M) by wn = (uw)n. Denote by Xm ⊂ M the linear

span of all products of at most m elements from M1 	B and M2 	B. Whenever

2n > 2m+ 1 and x, y ∈ Xm, a direct computation shows that EMi
(xwny) = 0. So

it follows that limn ‖EMi(xwny)‖2 = 0 for all x, y ∈M , and statement 1 follows.

Proof of 2. Assume that M is amenable and take an M -central state Ω on

B(L2(M)). Define K1 as the closed linear span of B and all products of the form

x1x2 · · ·xn with x1 ∈ M1 	 B, x2 ∈ M2 	 B, x3 ∈ M1 	 B, etc. Define K2 as

the closed linear span of all products of the form y1y2 · · · yn with y1 ∈ M2 	 B,

y2 ∈ M1 	 B, y3 ∈ M2 	 B, etc. By construction, L2(M) = K1 ⊕K2. Denote by

ei the orthogonal projection of L2(M) onto Ki. It follows that ue2u
∗ and ve2v

∗

are orthogonal and lie under e1. Hence, 2Ω(e2) = Ω(ue2u
∗) + Ω(ve2v

∗) ≤ Ω(e1).

On the other hand, we1w
∗ ≤ e2, implying that Ω(e1) = Ω(we1w

∗) ≤ Ω(e2). Alto-

gether it follows that Ω(e1) = Ω(e2) = 0. Since 1 = e1 + e2 and Ω(1) = 1, we have

reached a contradiction.

§7. Proof of Corollary C

Let A ⊂M be a diffuse amenable von Neumann subalgebra. Denote P = NM (A)′′

and assume that P is not amenable. Take a nonzero central projection z ∈ Z(P )

such that Pz has no amenable direct summand. Since Pz ⊂ NzMz(Az)
′′, it follows

from Theorem A that one of the following statements holds:

1. Az ≺M B.

2. Pz ≺M Mi for some i ∈ {1, 2}.
3. Pz is amenable relative to B inside M .

It suffices to prove that each of the three statements is false.

1. Observe that the inclusion M2 ⊂ M is mixing. To prove this, fix a se-

quence bn in the unit ball of M2 such that bn → 0 weakly. We must show that
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limn ‖EM2
(x∗bny)‖2 = 0 for all x, y ∈ M 	 M2. It suffices to prove this when

x = x1x2 · · ·xn and y = y1y2 · · · ym with n,m ≥ 2, x1, y1 ∈ M2, x2, y2 ∈ M1 	 B,

x3, y3 ∈M2 	B, etc. But then

EM2
(x∗bny) = EM2

(x∗n · · ·x∗3EB(x∗2EB(x∗1bny1)y2)y3 · · · yn),

and the conclusion follows because EB(x∗1bny1) → 0 weakly and the inclusion

B ⊂M1 is mixing.

Assume that statement 1 holds. Then certainly Az ≺M M2. Since the inclu-

sion M2 ⊂ M is mixing, it follows from [Io12, Lemma 9.4] that Pz ≺M M2. So

statement 2 holds and we proceed to the next point.

2. Assume that statement 2 holds. We then find a nonzero projection p ∈
Mn(C) ⊗Mi and a normal unital ∗-homomorphism ϕ : Pz → p(Mn(C) ⊗Mi)p.

Then ϕ(Az) is a diffuse von Neumann subalgebra of p(Mn(C)⊗Mi)p whose nor-

malizer contains ϕ(Pz). Since Pz has no amenable direct summand, ϕ(Pz) is

nonamenable. Hence p(Mn(C) ⊗Mi)p is not strongly solid. Since Mi is strongly

solid, this contradicts the stability of strong solidity under amplifications as proven

in [Ho09, Proposition 5.2].

3. Since B is amenable, statement 3 implies that Pz is amenable, contradicting

our assumptions.

§8. W∗-superrigid actions of type III

In the same way as [HV12, Theorem A] was deduced from the results in [PV12],

we can deduce from Theorem A the following type III uniqueness statement for

Cartan subalgebras. Our theorem is a generalization of [BHR12, Theorem D],

where the same result was proven under the assumption that Σ is a finite group.

Rather than looking for the most general statement possible, we provide a

more ad hoc formulation that suffices to prove the W∗-superrigidity of the type

III1 actions in Proposition D (see also Remark 8.3 below). Recall that a nonsingular

action Λ y (X,µ) is said to be recurrent if there is no Borel subset U ⊂ X such

that µ(U) > 0 and µ(g · U ∩ U) = 0 for all g ∈ Λ− {e}.

Theorem 8.1. Let Γ = Γ1 ∗Σ Γ2 be an amalgamated free product group and as-

sume that there exist g1, . . . , gn ∈ Γ such that
⋂n
k=1 gkΣg−1

k is finite. Let Γ y
(X,µ) be any nonsingular free ergodic action. Assume that each Γi admits a sub-

group Λi such that the restricted action Λi y (X,µ) is recurrent and Λi ∩ Σ is

finite. Then L∞(X) is the unique Cartan subalgebra of L∞(X) o Γ up to unitary

conjugacy.
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For Theorem 8.1 to hold, it is essential to impose some recurrence of Γi y
(X,µ) relative to Σ. Indeed, otherwise the action Γ y (X,µ) could simply be the

induction of an action Γi y (Z, η) so that L∞(X) o Γ ∼= B(H) ⊗ (L∞(Z) o Γi)

and we cannot expect uniqueness of the Cartan subalgebra.

Before proving Theorem 8.1, we provide a semifinite variant of the machinery

developed in [HPV10, Sections 4 and 5]. We start from the following elementary

lemma, leaving the proof to the reader.

Lemma 8.2. Let (N,Tr) be a von Neumann algebra equipped with a normal semi-

finite faithful trace. Let H be a right Hilbert N -module and p ∈ N a projection.

We consider dimensions using the trace Tr and its restrictions to subalgebras of

N and pNp.

(i) dimpNp(Hp) ≤ dimN (H).

(ii) dimN (closure(KN)) = dimpNp(K) for all closed pNp-submodules K ⊂ Hp.

(iii) Let P ⊂ N be a von Neumann subalgebra such that Tr|P is semifinite. Let

K ⊂ H be a closed P -submodule. Then dimN (closure(KN)) ≤ dimP (K).

Assume that Γ is a countable group and Γ y (B,Tr) a trace preserving

action on a von Neumann algebra B equipped with a normal semifinite faithful

trace Tr. Denote M = B o Γ and use the canonical trace Tr on M. Let p ∈ M
be a projection with Tr(p) < ∞ and A ⊂ pMp a von Neumann subalgebra with

NpMp(A)′′ = pMp. Whenever Λ < Γ is a subgroup, we consider

EΛ = {H | H is an A-(B o Λ)-subbimodule of L2(pM) with dimBoΛ(H) <∞}.

If H ∈ EΛ, u ∈ NpMp(A) and v ∈ U(B o Λ), then uHv again belongs to EΛ. So

the closed linear span of all H ∈ EΛ is of the form L2(pMz(Λ)), where z(Λ) is a

projection inM∩ (BoΛ)′. We make z(Λ) uniquely determined by requiring that

z(Λ) is smaller than or equal to the central support of p in M.

If Λ < Λ′ < Γ are subgroups, we have z(Λ) ≤ z(Λ′). Indeed, whenever

H ⊂ L2(pM) is an A-(B o Λ)-subbimodule with dimBoΛ(H) < ∞, we de-

fine K as the closed linear span of H(B o Λ′). By Lemma 8.2, we see that

dimBoΛ′(K) < ∞. Since H ⊂ K and since this works for all choices of H, we

conclude that z(Λ) ≤ z(Λ′).
The basic construction 〈M, eBoΛ〉 carries a natural semifinite trace Tr satisfy-

ing Tr(xeBoΛx
∗) = Tr(xx∗) for all x ∈M. The projections e ∈ A′ ∩ p〈M, eBoΛ〉p

are precisely the orthogonal projections onto the A-(B o Λ)-subbimodules H ⊂
L2(pM). Moreover under this correspondence, we have Tr(e) = dimBoΛ(H). We

also have the canonical operator valued weight TΛ from 〈M, eBoΛ〉+ to the ex-

tended positive part ofM such that Tr = Tr ◦TΛ. Using the anti-unitary involution
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J : L2(M)→ L2(M) : J(x) = x∗, we can therefore alternatively define z(Λ) as

pJz(Λ)J =
∨
{e | e ∈ A′ ∩ p〈M, eBoΛ〉p is a projection with ‖TΛ(e)‖ <∞}

=
∨
{supp(a) | a ∈ A′ ∩ p〈M, eBoΛ〉+p and ‖TΛ(a)‖ <∞}.

If now Λ < Γ and Λ′ < Γ are subgroups, we can repeat the proof of [HPV10,

Proposition 6] verbatim to conclude that z(Λ) and z(Λ′) commute, with

(8.1) z(Λ ∩ Λ′) = z(Λ)z(Λ′).

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Denote by ω : Γ × X → R the logarithm of the Radon–

Nikodym cocycle. Put Y = X × R and equip Y with the measure m given by

dm = dµ×exp(t)dt, so that the action Γ y Y given by g ·(x, t) = (g ·x, ω(g, x)+t)

is measure preserving (see [Ma63]). The restricted actions Λi y (Y,m) are still

recurrent.

Put B = L∞(Y ) and denote by Tr the canonical semifinite trace on M =

B o Γ, given by the infinite invariant measure m. Choose a projection p ∈ B with

0 < Tr(p) < ∞. Put Σi = Λi ∩ Σ. Since Σi is a finite group, the von Neumann

algebra p(BoΣi)p is of type I. Since the action Λi y (Y,m) is recurrent, the von

Neumann algebra p(BoΛi)p is of type II1. In particular, the inclusion p(BoΣi)p ⊂
p(BoΛi)p has no trivial corner in the sense of [HV12, Definition 5.1] and it follows

from [HV12, Lemma 5.4] that there exists a unitary ui ∈ p(B o Λi)p such that

Ep(BoΣi)p(u
n
i ) = 0 for all n ∈ Z−{0}. Since Λi ∩Σ = Σi, we have Ep(BoΣ)p(x) =

Ep(BoΣi)p(x) for all x ∈ p(B o Λi)p. So, we deduce that Ep(BoΣ)p(u
n
i ) = 0 for all

n ∈ Z − {0}. We put vi = u∗i and have thus found unitaries ui, vi ∈ p(B o Γi)p

satisfying

(8.2) Ep(BoΣ)p(ui) = Ep(BoΣ)p(vi) = Ep(BoΣ)p(u
∗
i vi) = 0.

Define the normal trace preserving ∗-homomorphism

∆ :M→M⊗ L(Γ) : ∆(bug) = bug ⊗ ug for all b ∈ B, g ∈ Γ.

We use the unitaries ui satisfying (8.2) to prove the following two easy statements.

Statement 1. For i = 1, 2, we have ∆(pMp) 6≺pMp⊗L(Γ) pMp⊗ L(Γi).

Statement 2. The von Neumann subalgebra ∆(pMp) ⊂ pMp ⊗ L(Γ) is not

amenable relative to pMp⊗ L(Σ).

Proof of Statement 1. Denote by |g| the length of an element g ∈ Γ, i.e. the minimal

number of factors that are needed to write g as a product of elements in Γ1, Γ2, with
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the convention that |g| = 0 if and only if g ∈ Σ. Denote by Qm the orthogonal

projection of L2(pMp) onto the closed linear span of {pbugp | b ∈ B, g ∈ Γ,

|g| ≤ m}. Denote by Pm the orthogonal projection of `2(Γ) onto the closed linear

span of {ug | g ∈ Γ, |g| ≤ m}. A direct computation yields

(1⊗ Pm)(∆(x)) = ∆(Qm(x)) for all x ∈ pMp.

Define the unitary wn = (u1u2)n. Since Qm(wn) = 0 whenever n > m/2, we have

(1⊗Pm)(∆(wn)) = 0 for all n > m/2. It follows in particular that for all g, h ∈ Γ,

EpMp⊗L(Γi)
((1⊗ ug)∆(wn)(1⊗ uh)) = 0 whenever n > (|g|+ |h|+ 1)/2.

So, for every x, y ∈ pMp⊗L(Γ), we get limn ‖EpMp⊗L(Γi)
(x∆(wn)y)‖2 = 0. Hence,

∆(pMp) 6≺ pMp⊗ L(Γi) and Statement 1 is proven.

Proof of Statement 2. Assume that the subalgebra ∆(pMp) is amenable relative

pMp ⊗ L(Σ). So we find a positive ∆(pMp)-central functional Ω on the basic

construction 〈pMp ⊗ L(Γ), epMp⊗L(Σ)〉 such that Ω(x) = (Tr ⊗ τ)(x) for all x in

pMp⊗ L(Γ). Note that we can identify

〈pMp⊗ L(Γ), epMp⊗L(Σ)〉 = pMp⊗ 〈L(Γ), eL(Σ)〉

= (p⊗ 1)〈M⊗ L(Γ),M⊗ L(Σ)〉(p⊗ 1).

Since EM⊗L(Σ) ◦∆ = ∆◦EBoΣ and the closed linear span of ∆(M)L2(M⊗L(Σ))

equals L2(M⊗L(Γ)), there is a unique normal unital ∗-homomorphism satisfying

Ψ : 〈M, eBoΣ〉 → 〈M⊗ L(Γ), eM⊗L(Σ)〉 : Ψ(xeBoΣy) = ∆(x)eM⊗L(Σ)∆(y)

for all x, y ∈ M. The composition of Ω and Ψ yields a pMp-central positive

functional Ω0 on p〈M, eBoΣ〉p satisfying Ω0(p) = Tr(p). Note that we can view

p〈M, eBoΣ〉p as the commutant of the right action of B o Σ on pL2(M).

Denote by Hi ⊂ pL2(M) the closed linear span of all pbug with b ∈ B and

g ∈ Γ such that a reduced expression of Γ as an alternating product of elements

in Γ1 − Σ and Γ2 − Σ starts with a factor in Γi − Σ. Denote H0 = pL2(B).

So we have the orthogonal decomposition pL2(M) = H0 ⊕ H1 ⊕ H2. Denote

by ei : pL2(M) → Hi the orthogonal projection. Note that ei is a projection

in p〈M, eBoΣ〉p. By (8.2), the projections u2(e0 + e1)u∗2 and v2(e0 + e1)v∗2 are

orthogonal and lie under e2. Since Ω0 is pMp-central, it follows that

2Ω0(e0 + e1) ≤ Ω0(e2).

It similarly follows that 2Ω0(e2) ≤ Ω0(e1). Together, it follows that Ω0(e0 + e1) =

Ω0(e2) = 0. Since e0 + e1 + e2 = p, we obtain the contradiction that Ω0(p) = 0. So

also Statement 2 is proven.
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Assume now that L∞(X)oΓ admits a Cartan subalgebra that is not unitarily

conjugate to L∞(X). The first paragraphs of the proof of [HV12, Theorem A] are

entirely general and yield an abelian von Neumann subalgebra A ⊂ pMp such that

NpMp(A)′′ = pMp and A 6≺ Bq whenever q ∈ B is a projection with Tr(q) < ∞.

So to prove the theorem, we fix an abelian von Neumann subalgebra A ⊂ pMp

with NpMp(A)′′ = pMp. We have to find a projection q ∈ B with Tr(q) <∞ and

A ≺ Bq.
Note that ∆(A) ⊂ pMp ⊗ L(Γ) is an abelian, hence amenable, von Neu-

mann subalgebra whose normalizer contains ∆(pMp). We view pMp ⊗ L(Γ) as

the amalgamated free product of pMp⊗L(Γ1) and pMp⊗L(Γ2) over their com-

mon von Neumann subalgebra pMp ⊗ L(Σ). A combination of Theorem A and

Statements 1 and 2 above implies that ∆(A) ≺ pMp ⊗ L(Σ). So there is no se-

quence of unitaries (an) in U(A) satisfying limn ‖EpMp⊗L(Σ)(x∆(an)y)‖2 = 0 for

all x, y ∈ pMp ⊗ L(Γ). This means that we can find ε > 0 and h1, . . . , hm ∈ Γ

such that

(8.3)
m∑

i,j=1

‖EpMp⊗L(Σ)((1⊗ u∗hi
)∆(a)(1⊗ uhj

))‖22 ≥ ε for all a ∈ U(A).

Consider the positive element T =
∑m
i=1 puhieBoΣu

∗
hi
p in p〈M, eBoΣ〉p. The left

hand side of (8.3) equals Tr(TaTa∗). Denote by S the element of smallest ‖ · ‖2,Tr-

norm in the weakly closed convex hull of {aTa∗ | a ∈ U(A)}. Then S is a nonzero

element of A′ ∩ p〈M, eBoΣ〉p and Tr(S) < ∞. In the notation introduced before

this proof, this means that z(Σ) 6= 0.

Since the action Γ y Y is free, we have M ∩ B′ = B. So the projections

z(Σ) and z(Γi) belong to B and are, respectively, Σ- and Γi-invariant. We prove

below that z(Σ) is a Γ-invariant projection in B. We prove this by showing that

z(Γ1) = z(Σ) = z(Γ2).

Since Σ < Γi, we have z(Σ) ≤ z(Γi) for every i = 1, 2. We claim that equality

holds. Assume that z(Σ) < z(Γ1). Note that both projections belong to B. Choose

a nonzero projection q ∈ B with Tr(q) <∞ and q ≤ z(Γ1)−z(Σ). Choose H ∈ EΓ1

such that Hq 6= {0}. By Lemma 8.2, we have

dimq(BoΓ1)q(Hq) ≤ dimBoΓ1
(H) <∞.

We conclude that L2(pMq) admits a nonzero A-q(B o Γ1)q-subbimodule K that

is finitely generated as a right Hilbert module. Since q ⊥ z(Σ), we also know that

L2(pMq) does not admit an A-q(B o Σ)q-subbimodule that is finitely generated

as a right Hilbert module. We then encode K as an integer n, a projection q1 ∈
Mn(C) ⊗ q(B o Γ1)q, a nonzero partial isometry V ∈ p(M1,n(C) ⊗M)q1 and a
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normal unital ∗-homomorphism ϕ : A→ q1(Mn(C)⊗ (B o Γ1))q1 such that

(8.4) aV = V ϕ(a) for all a ∈ A and ϕ(A) 6≺Mn(C)⊗q(BoΓ1)q q(B o Σ)q.

Let u ∈ NpMp(A) and write uau∗ = α(a) for all a ∈ A. Then V ∗uV is an element

of q1(Mn(C)⊗M)q1 satisfying

V ∗uV ϕ(a) = ϕ(α(a))V ∗uV for all a ∈ A.

By (8.4) and [CH08, Theorem 2.4], it follows that V ∗uV ∈ q1(Mn(C)⊗(BoΓ1))q1.

This holds for all u ∈ NpMp(A). Since the linear span of NpMp(A) is strongly

dense in pMp, and writing q2 = V ∗V , we have found a nonzero projection q2 ∈
Mn(C)⊗ (B o Γ1) with the property that

q2(Mn(C)⊗M)q2 = q2(Mn(C)⊗ (B o Γ1))q2.

In the von Neumann algebra Mn(C) ⊗ (B o Γ1), the projection q2 is equivalent

to a projection in Dn(C) ⊗ B, where Dn(C) ⊂ Mn(C) is the diagonal subal-

gebra. So, we find a nonzero projection q3 ∈ B satisfying q3Mq3 = q3(B o Γ1)q3.

As in (8.2), there however exists a unitary v ∈ q3(B o Γ2)q3 with the property

that Eq3(BoΣ)q3(v) = 0. It follows that v belongs to q3Mq3, but is orthogonal to

q3(B o Γ1)q3. We have reached a contradiction and conclude that z(Σ) = z(Γ1).

By symmetry, we also have z(Σ) = z(Γ2).

Since z(Γi) is a Γi-invariant projection in B, we conclude that z(Σ) is a

nonzero Γ-invariant projection in B. Take now g1, . . . , gn ∈ Γ such that Σ0 =⋂n
k=1 gkΣg−1

k is finite. By definition, we have z(gkΣg−1
k ) = σgk(z(Σ)). Since z(Σ) is

Γ-invariant, it follows that z(gkΣg−1
k ) = z(Σ) for every k. Using (8.1), we conclude

that z(Σ) = z(Σ0). In particular, z(Σ0) 6= 0. So we find a nonzero A-(B o Σ0)-

subbimodule H of L2(pM) with dimBoΣ0(H) < ∞. A fortiori, H is an A-B-

bimodule. Since Σ0 is finite, also dimB(H) < ∞. Taking a projection q ∈ B with

Tr(q) <∞ and Hq 6= {0}, it follows from Lemma 8.2 that we have found a nonzero

A-Bq-subbimodule of L2(pMq) having finite right dimension. This precisely means

that A ≺ Bq, and hence ends the proof of the theorem.

We can now deduce Proposition D.

Proof of Proposition D. Write X = R5/R+ × [0, 1]Γ and Y = R5 × [0, 1]Γ. Put

G = Γ× R+ and consider the action Gy Y given by

(g, α) · (x, y) = (απ(g) · x, g · y) for all g ∈ Γ, α ∈ R+, x ∈ R5, y ∈ [0, 1]Γ.

Note that the restricted action Γ y Y is infinite measure preserving and can

be identified with the Maharam extension of Γ y X. Since the Bernoulli action
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Γ y [0, 1]Γ is mixing, we use throughout the proof the fact that the restriction of

Γ y Y to a subgroup Λ < Γ is ergodic whenever π(Λ) acts ergodically on R5 (see

e.g. [Sc82, Proposition 2.3]). Using [PV08, Lemma 5.6], we find in particular that

Γ y Y is ergodic, meaning that Γ y X is of type III1.

Let G be a Polish group in Popa’s class Ufin, i.e. a closed subgroup of the uni-

tary group of a II1 factor, e.g. any countable group. We claim that every measurable

1-cocycle ω : G × Y → G is cohomologous to a continuous group homomorphism

G → G. As explained in detail in [KS12, Step 1 of the proof of Theorem 21], it

follows from [PV08, Theorem 5.3] that up to cohomology, we may assume that the

restriction of ω to SL(5,Z) is a group homomorphism. By [PV08, Lemma 5.6], the

diagonal action SL(3,Z) y R3 ×R3 is ergodic. It follows that the diagonal action

Σ y R5 × R5 is ergodic as well. But then also the diagonal action Σ y Y × Y is

ergodic. Since the restriction of ω to Σ is a homomorphism and since Σ commutes

with the natural copies of Z and R+ inside G, it now follows from [PV08, Lemma

5.5] that ω is also a homomorphism on Z and on R+. Because SL(5,Z), Z and R+

together generate G, we have proven the claim that ω is cohomologous to a group

homomorphism.

We next prove that R+ is the only open normal subgroup of G that acts

properly on Y . Indeed, if G0 is such a subgroup, we first see that R+ ⊂ G0 because

R+ is connected. So G0 = Γ0 × R+ where Γ0 is a normal subgroup of Γ that acts

properly on Y . Then π(Γ0) is a normal subgroup of SL(5,Z). So either π(Γ0) = {1}
or π(Γ0) has finite index in SL(5,Z). In the latter case, Γ0 acts ergodically on Y ,

rather than properly. In the former case, Γ0 only acts by the Bernoulli shift and

the properness forces Γ0 to be finite. But Γ is an icc group, so that Γ0 = {e}.
The cocycle superrigidity of G y Y , together with the previous paragraph

and [PV08, Lemma 5.10], now implies that the only actions that are stably orbit

equivalent to Γ y X are the induced Γ′-actions, given an embedding of Γ into Γ′.

So to conclude the proof, it remains to show that L∞(X) o Γ has a unique

Cartan subalgebra up to unitary conjugacy. This follows from Theorem 8.1, using

the subgroups SL(2,Z) < SL(5,Z) (embedded in the upper left corner) and Z <

Σ× Z that act recurrently on X and intersect Σ trivially.

Remark 8.3. In the formulation of Theorem 8.1, we required the existence of

subgroups Λi < Γi that intersect Σ finitely and that act in a recurrent way on

(X,µ). It is actually sufficient to impose the following more ergodic-theoretic con-

dition. Denote by Γ y (Y,m) the (infinite measure preserving) Maharam exten-

sion of Γ y (X,µ). Consider the orbit equivalence relations R(Γi y Y ) and

R(Σ y Y ), as well as their restrictions to nonnegligible subsets of Y . It is then

sufficient to assume that for every Borel set U ⊂ Y with 0 < m(U) < ∞, almost
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every R(Γi y Y )|U -equivalence class consists of infinitely many R(Σ y Y )|U -

equivalence classes. Indeed, writing B = L∞(Y ), it then follows from [IKT08,

Lemma 2.6] that for every projection p ∈ B with 0 < Tr(B) < ∞, there exist

unitaries ui, vi ∈ p(B o Γi)p satisfying (8.2). So the proof of Theorem 8.1 goes

through.
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