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On WKB Theoretic Transformations for Painlevé

Transcendents on Degenerate Stokes Segments

by

Kohei Iwaki

Abstract

The WKB theoretic transformation theorem established in [KT2] implies that the first
Painlevé equation gives a normal form of Painlevé equations with a large parameter near
a simple P -turning point. In this paper we extend this result and show that the second
Painlevé equation (PII) and the third Painlevé equation (PIII′(D7)) of type D7 give a
normal form of Painlevé equations on a degenerate P -Stokes segment connecting two
different simple P -turning points and on a degenerate P -Stokes segment of loop type,
respectively. That is, any 2-parameter formal solution of a Painlevé equation is reduced
to a 2-parameter formal solution of (PII) or (PIII′(D7)) on these degenerate P -Stokes
segments by our transformation.
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§1. Introduction

Painlevé transcendents are remarkable special functions which appear in many ar-

eas of mathematics and physics. These are solutions of certain non-linear ordinary

differential equations known as Painlevé equations. Since the work of Painlevé

and Gambier there have been many works which investigate mutual relationships

(mainly on the formal level) between different Painlevé equations, often called the

degeneration or confluence procedure, or (double) scaling limits of Painlevé equa-

tions. More recently, relations of solutions of different Painlevé equations have also

been discussed: see [Ki1, Ki2, KapKi, KiVa, Ki3, GIL] and references therein. For

example, [KapKi] describes solutions of the first Painlevé equation in terms of

those of the second Painlevé equation using infinite iteration of Bäcklund trans-

formations. [GIL] also succeeds in giving a relation between solutions of different
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(PI) :
d2λ

dt2
= η2(6λ2+t),

(PII) :
d2λ

dt2
= η2(2λ3+tλ+c),

(PIII′(D6)) :
d2λ

dt2
=

1

λ

(

dλ

dt
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−
1

t

dλ

dt
+η2

[

λ3

t2
−

c∞λ2

t2
+

c0

t
−

1

λ

]

,

(PIII′(D7)) :
d2λ

dt2
=

1

λ

(

dλ

dt

)2

−
1

t

dλ

dt
+η2

[

−2λ2

t2
+

c

t
−

1

λ

]

,

(PIII′(D8)) :
d2λ

dt2
=

1

λ

(

dλ

dt

)2

−
1

t

dλ

dt
+η2

[

λ2

t2
−

1

t

]

,

(PIV) :
d2λ

dt2
=

1

2λ

(

dλ

dt

)2

+η2
[

3

2
λ3+4tλ2+(2t2−2c∞)λ−

2c20
λ

]

,

(PV) :
d2λ

dt2
=

(

1

2λ
−

1

λ−1

)(

dλ

dt

)2

−
1

t

dλ

dt

+η2
2λ(λ−1)2

t2

[

c2
∞

4
−

c20
4

1

λ2
−

c1t

(λ−1)2
−

t2

4

λ+1

(λ−1)3

]

,

(PVI) :
d2λ

dt2
=

1

2

(

1

λ
+

1

λ−1
+

1

λ−t

)(

dλ

dt

)2

−

(

1

t
+

1

t−1
+

1

λ−t

)

dλ

dt

+
λ(λ−1)

2t(t−1)(λ−t)
+η2

2λ(λ−1)(λ−t)

t2(t−1)2

[

c2
∞

4
−

c20
4

t

λ2
+

c21
4

t−1

(λ−1)2
−

c2t
4

t(t−1)

(λ−t)2

]

Table 1. Painlevé equations with a large parameter η.

Painlevé equations through explicit expressions of τ -functions and computations

of the limit in the degeneration procedure.

In this paper we discuss a different kind of relations between solutions of

Painlevé equations containing a large parameter η (cf. Table 1), called a WKB the-

oretic transformation. It is an invertible formal coordinate transformation which

relates formal solutions of different Painlevé equations. (See a series of papers

[KT1], [AKT2] and [KT2] by Aoki, Kawai and Takei for more details on WKB

theoretic transformations.) The main result of this paper is the construction of new

WKB theoretic transformations. That is, for any “2-parameter (formal) solution”

of a general Painlevé equation (PJ ), we can find a formal invertible coordinate

transformation which reduces the 2-parameter solution to a 2-parameter solution

of (PII) or (PIII′(D7)), when the configuration of “P -Stokes curves” of (PJ ) degen-

erates and contains a P -Stokes curve connecting two “P -turning points” (we call

such a special P -Stokes curve a P -Stokes segment).

We explain the motivation of our study. Some of the important results by

Aoki, Kawai and Takei are summarized as follows (see [KT1], [AKT2] and [KT2]):

• notions of P -turning points and P -Stokes curves are introduced for (PJ ),

• 2-parameter (formal) solutions λJ(t, η;α, β) of (PJ ) containing two free param-

eters α and β are constructed by the multiple-scale method,
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• the WKB theoretic transformation theory near a simple P -turning point is es-

tablished, that is, any 2-parameter solution of (PJ ) can be reduced to that of

the first Painlevé equation

(1.1) (PI) :
d2λ

dt2
= η2(6λ2 + t)

on a P -Stokes curve emanating from a simple P -turning point.

In this paper, for the sake of clarity, we call turning points (resp., Stokes curves) of

Painlevé equations P -turning points (resp., P -Stokes curves), following the termi-

nology used in [KT4] for example. The precise statement of the last claim is that,

for any 2-parameter solution λ̃J(t̃, η; α̃, β̃) of (PJ), there exist formal coordinate

transformation series x(x̃, t̃, η) and t(t̃, η) of dependent and independent variables

and a 2-parameter solution λI(t, η;α, β) of (PI) such that

(1.2) x(λ̃J(t̃, η; α̃, β̃), t̃, η) = λI(t(t̃, η), η;α, β)

in a neighborhood of a point t̃ = t̃∗ which lies on a P -Stokes curve emanating

from a simple P -turning point. Here we put ∼ on the variables relevant to (PJ ) to

distinguish them from those of (PI). In this sense the first Painlevé equation (PI)

is a canonical equation for Painlevé equations near a simple P -turning point.

The above result can be considered as a non-linear analogue of the transfor-

mation theory of linear ordinary differential equations near a simple turning point.

In the case of linear equations of second order, a canonical equation is given by

the Airy equation:

(1.3)

(

d2

dx2
− η2x

)

ψ(x, η) = 0.

See [AKT1] for the precise statement. The transformation gives an equivalence

between WKB solutions of a general Schrödinger equation and those of the Airy

equation (1.3) near a simple turning point, and consequently the explicit form of

the connection formula on a Stokes curve for a general equation is determined in

a “generic” situation [KT3].

The above genericity assumption means that the Stokes graph of the equation

does not contain any (degenerate) Stokes segments (i.e., Stokes curves connecting

simple turning points). We say that the Stokes geometry degenerates if such a

Stokes segment appears. When a Stokes segment appears in the Stokes geome-

try, the connection formula does not make sense on the Stokes segment (cf. [V,

Section 7]).

Typically two types of Stokes segments appear in the Stokes geometry of linear

equations: A Stokes segment of the first type connects two different simple turning

points, while a Stokes segment of the second type (sometimes called a loop-type
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Stokes segment) emanates from and returns to the same simple turning point and

hence forms a closed loop.

To analyze the degenerate situation where a Stokes segment connects two dif-

ferent simple turning points for a general Schrödinger equation, [AKT3] constructs

a transformation which brings WKB solutions of the general equation to that of

the Weber equation when x lies on a Stokes segment. Here the Weber equation

they discuss has the form

(1.4)

(

d2

dx2
− η2

(

c−
x2

4

))

ψ(x, η) = 0.

To be more precise, we need to replace the constant c by a formal power series

c = c(η) in η−1 with constant coefficients when discussing the transformation.

The Stokes geometry of the equation (1.4) when c ∈ R6=0 (where R6=0 is the set

of non-zero real numbers) has two simple turning points connected by a Stokes

segment. In this sense the Weber equation gives a canonical equation on a Stokes

segment which connects two different simple turning points.

On the other hand, recently Takahashi [Ta] has constructed a similar kind

of formal transformation which brings a general Schrödinger equation having a

loop-type Stokes segment to the Bessel-type equation of the form

(1.5)

(

d2

dx2
− η2

(

x− c2

x2

))

ψ(x, η) = 0.

When c ∈ R6=0, the Stokes geometry of (1.5) has one simple turning point, and

a Stokes curve emanating from the turning point turns around the double pole

x = 0 of the potential and returns to the original simple turning point. This gives

a loop-type Stokes segment. In this sense the Bessel-type equation gives a canonical

equation on a loop-type Stokes segment.

The transformations constructed in [AKT3] and [Ta] are expected to play im-

portant roles in the analysis of parametric Stokes phenomena. Actually, if we vary

the constant c, WKB solutions of (1.4) may enjoy a Stokes phenomenon, that is,

the correspondence between WKB solutions and their Borel sums changes discon-

tinuously before and after the appearance of Stokes segments (cf. [SS], [T3]). We

call such Stokes phenomena “parametric” since the Stokes phenomena occur when

we vary the parameter c which is not an independent variable. Due to parametric

Stokes phenomena, the transformation to the Airy equation does not work when

a Stokes segment appears. Actually, a Stokes segment yields so-called fixed singu-

larities (cf. [DP], [AKT3]) for the Borel transform of WKB solutions. Parametric

Stokes phenomena are caused by such singularities. They are analysed in [AKT3]

through the transformation to the Weber equation. If the Borel summability of the
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transformation series constructed in [AKT3] and [Ta] is established, then the ex-

plicit form of the connection formula describing the parametric Stokes phenomena

will be derived.

Here a natural question arises: What happens to 2-parameter solutions of

(PJ ) when the P -Stokes geometry degenerates, that is, when a P -Stokes segment

appears in the P -Stokes geometry of (PJ)?

It is shown in the author’s papers [Iw1]–[Iw3] that the parametric Stokes

phenomena also occur for 1-parameter solutions (which belongs to a subclass of

2-parameter solutions) of the Painlevé equations when a P -Stokes segment ap-

pears. For example, when the parameter c contained in the second Painlevé equa-

tion

(1.6) (PII) :
d2λ

dt2
= η2(2λ3 + tλ+ c)

is purely imaginary, P -Stokes segments appear in the P -Stokes geometry of (PII).

In this case three P -Stokes segments appear simultaneously and each connects

two different simple P -turning points (see Section 3.3). It is shown in [Iw1] that

1-parameter solutions of (PII) enjoy Stokes phenomena when P -Stokes segments

appear. Similarly, a loop-type P -Stokes segment also appears in the P -Stokes ge-

ometry of the degenerate third Painlevé equation

(1.7) (PIII′(D7)) :
d2λ

dt2
=

1

λ

(

dλ

dt

)2

−
1

t

dλ

dt
+ η2

[

−2λ2

t2
+
c

t
−

1

λ

]

of type D7 (in the sense of [OKSO]) when c ∈ iR6=0 (see Section 3.3).

Motivated by these results, in this paper we construct a transformation of

the form (1.2) when the P -Stokes geometry of (PJ) degenerates. That is, as is

described below, (under some geometric assumptions on the Stokes geometry of

isomonodromy systems) when a P -Stokes segment which connects two different

simple P -turning points (resp., a loop-type P -Stokes segment) appears, then any

2-parameter solution of (PJ) is reduced to a 2-parameter solution of (PII) (resp.,

(PIII′(D7))) on the P -Stokes segment (see Sections 4 and 5 for precise statements

and assumptions).

Theorem 1.1 (Theorem 4.2). Assume that (PJ) has a P -Stokes segment con-

necting two different simple P -turning points of (PJ). Then, for any 2-parameter

solution λ̃J(t̃, η; α̃, β̃) of (PJ), we can find

• formal coordinate transformation series x(x̃, t̃, η) and t(t̃, η) of dependent and

independent variables,

• a 2-parameter solution λII(t, η;α, β) of (PII) with a suitable choice of the con-

stant c in the equation,
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satisfying

(1.8) x
(

λ̃J(t̃, η; α̃, β̃), t̃, η
)

= λII
(

t(t̃, η), η;α, β
)

in a neighborhood of a point t̃ = t̃∗ which lies on the P -Stokes segment.

Theorem 1.2 (Theorem 5.2). Assume that (PJ) has a P -Stokes segment of loop

type. Then, for any 2-parameter solution λ̃J(t̃, η; α̃, β̃) of (PJ), we can find

• formal coordinate transformation series x(x̃, t̃, η) and t(t̃, η) of dependent and

independent variables,

• a 2-parameter solution λIII′(D7)(t, η;α, β) of (PIII′(D7)) with a suitable choice of

the constant c,

satisfying

(1.9) x
(

λ̃J(t̃, η; α̃, β̃), t̃, η
)

= λIII′(D7)

(

t(t̃, η), c, η;α, β
)

in a neighborhood of a point t̃ = t̃∗ which lies on the P -Stokes segment of loop

type.

In this sense, (PII) and (PIII′(D7)) are canonical equations for Painlevé equa-

tions on a P -Stokes segment connecting different simple P -turning points and a

loop-type P -Stokes segment, respectively. Our main results can be considered to

be non-linear analogues of the transformation theory of [AKT3] (to the Weber

equation) and [Ta] (to the Bessel-type equation). We expect that, together with

the previous results [Iw1]–[Iw3], our transformation theory will play an important

role in the analysis of parametric Stokes phenomena for Painlevé equations.

This paper is organized as follows. In Section 2 we briefly review some results

on WKB analysis of Painlevé equations (PJ) and the role of isomonodromy sys-

tems (SLJ ) and (DJ ) associated with (PJ ). Section 3 is devoted to the P -Stokes

geometry of (PJ) and the Stokes geometry of (SLJ ). Our main assumptions and

results are stated and proved in Sections 4 and 5.

§2. Review of the exact WKB analysis of Painlevé transcendents

with a large parameter

In this section we prepare some notation and review some results of [KT1], [AKT2]

and [KT2] that are relevant to this paper.

§2.1. 2-parameter solution λJ(t, η;α, β) of (PJ )

In [AKT2] a 2-parameter family of formal solutions of (PJ), called a 2-parameter

solution, is constructed by the so-called multiple-scale method. Here we introduce
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some notation to describe the solutions explicitly and to make our discussion

smooth. The notation introduced here is mostly consistent with that of [KT2].

As is clear from Table 1, each (PJ) has the form

(PJ) :
d2λ

dt2
= GJ

(

λ,
dλ

dt
, t

)

+ η2FJ(λ, t),

where FJ is a rational function in t and λ, and GJ is a polynomial in dλ/dt with

degree equal to or at most 2, and rational in λ and t. Define the set SingJ ⊂ P
1 of

singular points of (PJ ) by

(2.1)

SingI = SingII = {∞},

SingIII′(D6) = SingIII′(D7) = SingIII′(D8) = {0,∞},

SingIV = {∞}, SingV = {0,∞}, SingVI = {0, 1,∞},

and the set ∆J of branch points of (PJ) by

(2.2) ∆J = {r ∈ P
1 \ SingJ | FJ(λ, r) = (∂FJ/∂λ)(λ, r) = 0 for some λ}.

We also set ΩJ = P
1 \ (SingJ ∪∆J ).

Fix a holomorphic function λ0(t) that satisfies

(2.3) FJ(λ0(t), t) = 0

near a point t∗ ∈ ΩJ . The 2-parameter solutions are formal solutions of (PJ )

defined in a neighborhood V of t∗ of the form

(2.4) λJ(t, η;α, β) = λ0(t) + η−1/2
∞
∑

j=0

η−j/2Λj/2(t, η;α, β).

Here (α, β) = (
∑∞

n=0 η
−nαn,

∑∞
n=0 η

−nβn) is a pair of formal power series whose

coefficients {(αn, βn)}
∞
n=0 parametrize the formal solution, and the functions

(2.5) Λj/2(t, η;α, β) =

j+1
∑

m=0

a
(j/2)
j+1−2m(t) exp((j + 1− 2m)ΦJ (t, η))

labeled by half-integers have the following properties (see [AKT2], [KT2]):

• For any j ≥ 0 and ℓ = j + 1− 2m (m = 0, . . . , j + 1), a
(j/2)
ℓ (t) is a holomorphic

function of t on V and independent of η.

• The functions a
(0)
±1(t) contain the free parameters (α0, β0) as

(2.6) a
(0)
+1(t) =

α0

4

√

F
(1)
J (t)CJ (λ0(t), t)2

, a
(0)
−1(t) =

β0
4

√

F
(1)
J (t)CJ (λ0(t), t)2

,
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where

(2.7) F
(1)
J (t) =

∂FJ

∂λ
(λ0(t), t),

and CJ(λ, t) is given in Table 2.

CI(λ, t) = CII(λ, t) = 1, CIII′(D6)(λ, t) = CIII′(D7)(λ, t) = CIII′(D8)(λ, t) =
t

2λ2
,

CIV(λ, t) =
1

4λ
, CV(λ, t) =

t

2λ(λ− 1)2
, CVI(λ, t) =

t(t− 1)

2λ(λ− 1)(λ− t)

Table 2. CJ(λ, t).

• The function ΦJ (t, η), which is also holomorphic in t ∈ V , is given by

(2.8) ΦJ (t, η) = ηφJ(t) + α0β0 log(θJ (t)η
2),

where

(2.9) φJ(t) =

∫ t √

F
(1)
J (t) dt,

and θJ(t) is determined from FJ , GJ and λ0(t) (cf. [KT2, Section 1]). We will

fix the lower end-point of the integration path later.

• The functions a
(j/2)
ℓ (t) and (ℓ 6= ±1) are determined recursively from

{a
(j′/2)
j′+1−2m(t)}j′<j, 0≤m≤j′+1.

• a
(j/2)
±1 (t) = 0 for j odd, while a

(j/2)
+1 (t) and a

(j/2)
−1 (t) for j ≥ 2 even satisfy a

system of linear inhomogeneous differential equations of the form

(2.10)

{

d

dt
+

1

4

d

dt
logF

(1)
J (t) +

1

2
logCJ(λ0(t), t)

−

(

α0β0 α2
0

−β2
0 −α0β0

)

d

dt
log θJ(t)

}(

a
(n)
+1

a
(n)
−1

)

=

(

R
(n)
+1

R
(n)
−1

)

,

where R
(n)
±1 is determined by {a

(j′/2)
j′+1−2m(t)}j′<j=2n, 0≤m≤j′+1. The free parame-

ters (αn, βn) (n ≥ 1 integer) capture the ambiguity of solutions of the differential

equation for j = 2n.

Therefore, 2-parameter solutions are formal power series in η−1/2 whose coeffi-

cients Λj/2 may contain η-dependent terms of the form exp(ℓΦ(t, η)) for some

ℓ ∈ Z, called ℓ-instanton terms in [KT2]. In the present paper, formal series means

such a series, and we say that Λj/2(t, η) is holomorphic in t if the coefficients of

each instanton term in Λj/2(t, η) are holomorphic in t. Note that Λj/2(t, η) con-

tains instanton terms in such a way that, if j is odd (resp., even), then Λj/2(t, η)
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KI =
1
2

[

ν2 − (4λ3 + 2tλ)

]

,

KII =
1
2

[

ν2 − (λ4 + tλ2 + 2cλ)

]

,

KIII′(D6) =
λ2

t

[

ν2 − η−1 ν

λ
−

(

t2

4λ4
−

c0t

2λ3
−

c∞

2λ
+

1

4

)]

,

KIII′(D7) =
λ2

t

[

ν2 − η−1 ν

λ
−

(

t2

4λ4
−

ct

2λ3
−

c2

4λ2
−

1

λ

)]

,

KIII′(D8) =
λ2

t

[

ν2 − η−1 ν

λ
−

(

t

2λ3
+

1

2λ

)]

,

KIV = 2λ

[

ν2 − η−1 ν

λ
−

(

c20 − η−2

4λ2
−

c∞

4
+

(

λ+ 2t

4

)2)]

,

KV =
λ(λ− 1)2

t

[

ν2 − η−1

(

1

λ
+

1

λ− 1

)

ν

−

(

c20 − η−2

4λ2
+

t2

4(λ− 1)4
+

c1t

(λ− 1)3
+

c2
∞

− c20 − 3η−2

4(λ− 1)2

)]

,

KVI =
λ(λ− 1)(λ− t)

t(t− 1)

[

ν2 − η−1

(

1

λ
+

1

λ− 1

)

ν −

(

c20 − η−2

4λ2

+
c21 − η−2

4(λ− 1)2
+

c2t − η−2

4(λ− t)2
+

c2
∞

− (c20 + c21 + c2t )− η−2

4λ(λ− 1)

)]

Table 3. Hamiltonians of (HJ ).

contains only even (resp., odd) instanton terms. We call this property the alternat-

ing parity of 2-parameter solutions. In order to avoid some degeneracy, we assume

throughout that

(2.11) α0β0 6= 0.

It is well-known that the Painlevé equation (PJ) is equivalent to the following

Hamiltonian system (see, e.g., [Ok]):

(HJ ) :
dλ

dt
= η

∂KJ

∂ν
,

dν

dt
= −η

∂KJ

∂λ
.

Here the explicit forms of the Hamiltonians KJ = KJ(t, λ, ν, η) are tabulated in

Table 3. From 2-parameter solutions of (PJ), we can also construct 2-parameter

solutions of the Hamiltonian system (HJ ). From the explicit form of the Hamilto-

nians KJ , we see that ν is determined by λ and its first order derivative. Conse-

quently, νJ = νJ(t, η;α, β) has the form

(2.12) νJ (t, η;α, β) = η−1/2
∞
∑

j=0

η−j/2Nj/2(t, η;α, β),

where Nj/2 has a similar form to Λj/2, that is, it contains instanton terms and

exhibits alternating parity.
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Remark 2.1. If we put α = 0 or β = 0 or α = β = 0, then 2-parameter solutions

reduce to 1-parameter solutions or 0-parameter solutions. Here α = 0 etc. mean

that all αn are set to be 0 etc.; and 1-parameter solutions are also called trans-series

solutions. We can expect that 1-parameter solutions and 0-parameter solutions

are interpreted as analytic solutions through the Borel resummation method (see

[KaKo] for example).

§2.2. Isomonodromy system for (PJ) and WKB solutions

The Hamiltonian system (HJ ) arises when we consider isomonodromic deforma-

tions (see [JMU], [Ok]) of a Schrödinger equation of the form

(SLJ ) :

(

∂2

∂x2
− η2QJ (x, t, η)

)

ψ(x, t, η) = 0.

More precisely, there exists another differential equation

(DJ ) :
∂

∂t
ψ(x, t, η) =

(

AJ (x, t, η)
∂

∂x
−

1

2

∂AJ

∂x
(x, t, η)

)

ψ(x, t, η),

called the deformation equation, such that (HJ ) gives the compatibility conditions

for the system of linear differential equations (SLJ ) and (DJ ). See Tables 4 and 5

for the explicit forms of QJ and AJ .

Substituting 2-parameter solutions (λJ(t, η;α, β), νJ (t, η;α, β)) into (λ, ν)

that appears in QJ and AJ , we find that they have the same type formal series

expansions

(2.13) QJ(x, t, η) =
∞
∑

j=0

Qj/2(x, t, η), AJ (x, t, η) =
∞
∑

j=0

Aj/2(x, t, η).

Here we omit indicating explicitly the dependence on α and β for simplicity. The

top term Q0 = QJ,0(x, t) is independent of η (i.e., it does not contain instanton

terms), and can be written in the form

(2.14) QJ,0(x, t) = CJ(x, t)
2(x− λ0(t))

2RJ(x, t).

Thus, QJ,0(x, t) has a double zero at x = λ0(t) in general. (Here we have used

the fact that λ0(t) is defined by the algebraic equation (2.3).) Here RJ(x, t) is a

polynomial in x which satisfies

(2.15) RJ(λ0(t), t) = F
(1)
J (t).

We can verify that RI(x, t), RIII′(D7)(x, t) and RIII′(D8)(x, t) are polynomial in x

of degree 1, while RJ(x, t) for other J are polynomial in x of degree 2.



Transformation for Painlevé Transcendents 11

QI = 4x3 + 2tx+ 2KI − η−1 ν

x− λ
+ η−2 3

4(x− λ)2
,

QII = x4 + tx2 + 2cx+ 2KII − η−1 ν

x− λ
+ η−2 3

4(x− λ)2
,

QIII′(D6) =
t2

4x4
−

c0t

2x3
−

c∞

2x
+

1

4
+

tKIII′(D6)

x2
− η−1 λν

x(x− λ)
+ η−2 3

4(x− λ)2
,

QIII′(D7) =
t2

4x4
−

ct

2x3
+

c2

4x2
−

1

x
+

tKIII′(D7)

x2
− η−1 λν

x(x− λ)
+ η−2 3

4(x− λ)2
,

QIII′(D8) =
t

2x3
+

1

2x
+

tKIII′(D8)

x2
− η−1 λν − η−1

x(x− λ)
+ η−2 3

4(x− λ)2
,

QIV =
c20 − η−2

4x2
−

c∞

4
+

(

x+ 2t

4

)2

+
KIV

2x
− η−1 λν

x(x− λ)
+ η−2 3

4(x− λ)2
,

QV =
c20 − η−2

4x2
+

t2

4(x− 1)4
+

c1t

(x− 1)3
−

c2
∞

− c20 − 3η−2

4(x− 1)2

+
tKV

x(x− 1)2
− η−1 λ(λ− 1)ν

x(x− 1)(x− λ)
+ η−2 3

4(x− λ)2
,

QVI =
c20 − η−2

4x2
+

c21 − η−2

4(x− 1)2
+

c2t − η−2

4(x− t)2
+

c2
∞

− (c20 + c21 + c2t )− η−2

4x(x− 1)

+
t(t− 1)KVI

x(x− 1)(x− t)
− η−1 λ(λ− 1)ν

x(x− 1)(x− λ)
+ η−2 3

4(x− λ)2

Table 4. Coefficient of (SLJ ).

AI = AII =
1

2(x− λ)
, AIII′(D6) = AIII′(D7) = AIII′(D8) =

λx

t(x− λ)
,

AIV =
2x

x− λ
, AV =

λ− 1

t

x(x− 1)

x− λ
, AVI =

λ− t

t(t− 1)

x(x− 1)

x− λ

Table 5. Coefficient of (DJ ).

In what follows, we always assume that a 2-parameter solution (λJ , νJ ) of

(HJ ) is substituted into (λ, ν) which appears in the coefficients of (SLJ ) and

(DJ ). For such a Schrödinger equation (SLJ ), we can construct WKB solutions of

the form

(2.16) ψJ,±(x, t, η) =
1

√

SJ,odd(x, t, η)
exp

(

±

∫ x

SJ,odd(x, t, η) dx

)

.

Here SJ,odd(x, t, η) is the odd part of a formal series solution SJ(x, t, η) of

(2.17) S2 +
∂S

∂x
= η2QJ (x, t, η),

which is called the Riccati equation associated with (SLJ). Here the odd part

SJ,odd(x, t, η) is defined as follows (see [AKT2] for details). We can find two formal
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series solutions

(2.18) S
(±)
J (x, t, η) = ηS

(±)
−1 (x, t) +

∞
∑

j=0

η−j/2S
(±)
j/2 (x, t, η)

of (2.17) starting from

(2.19) S
(±)
−1 (x, t) = ±

√

QJ,0(x, t).

Once we fix the sign in (2.19) (i.e., the branch of the square root), the subsequent

terms are determined by a recursion relation. Then SJ,odd(x, t, η) is given by

SJ,odd(x, t, η) =
1
2

(

S
(+)
J (x, t, η)− S

(−)
J (x, t, η)

)

(2.20)

= ηS−1(x, t) +

∞
∑

j=0

η−j/2Sodd,j/2(x, t, η).

The integral of SJ,odd(x, t, η) appearing in (2.16) is defined by termwise integration

of formal series. We discuss the choice of the lower end-point of (2.16) later.

The formal series SJ,odd(x, t, η) etc. are constructed in the above manner for a

fixed t and have several good properties as functions of t. Firstly, SJ,odd(x, t, η) also

has the property of alternating parity: if j is odd (resp., even), then Sodd,j/2(x, t, η)

contains only odd (resp., even) instanton terms. Secondly, the derivative of

SJ,odd(x, t, η) with respect to t satisfies the following equation.

Proposition 2.2 ([AKT2, Proposition 2.1]). The formal solutions S
(±)
J (x, t, η)

satisfy

(2.21)
∂

∂t
S
(±)
J (x, t, η) =

∂

∂x

(

S
(±)
J (x, t, η)AJ (x, t, η)−

1

2

∂AJ

∂x
(x, t, η)

)

and hence

(2.22)
∂

∂t
SJ,odd(x, t, η) =

∂

∂x

(

SJ,odd(x, t, η)AJ (x, t, η)
)

.

Proposition 2.2 is proved by using the isomonodromy property of (SLJ ), that

is, the compatibility of (SLJ) and (DJ ). As a corollary, we obtain the following

important (formal series valued) first integral of (PJ) from (SLJ ).

Lemma 2.3 ([AKT2, Section 3]). The formal series E(η) defined by

(2.23) EJ(η) = 4 Res
x=λ0(t)

SJ,odd(x, t, η) dx

is independent of t.
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The independence from t implies that EJ (η) must be a formal power series in

η−1, that is, EJ(η) =
∑∞

n=0 η
−nEn with some constants En. The free parameters

αn and βn of a 2-parameter solution are contained in En in the following manner.

Lemma 2.4 ([KT2, Lemma 3.2]). (i) The top term E0 of EJ (η) is given by

(2.24) E0 = −8α0β0.

(ii) The coefficient En of η−n in EJ(η) depends only on {αn′ , βn′}0≤n′≤n. Fur-

thermore, En + 8(α0βn + αnβ0) is independent of (αn, βn).

Remark 2.5. Let us take a generic point t∗ such that QJ,0(x, t) has a simple zero

x = a(t) at any point t in a neighborhood of t∗. It is known that each coefficient

Sodd,j/2(x, t, η) of SJ,odd(x, t, η) has a square root type singularity at a simple zero

of QJ,0 (see, e.g., [KT3, Section 2]). Due to this property we can define the WKB

solution of (SLJ ) which is “well-normalized” at x = a(t) as follows:

(2.25) ψJ,±(x, t, η) =
1

√

SJ,odd(x, t, η)
exp

(

±

∫ x

a(t)

SJ,odd(x, t, η) dx

)

.

Here the integral in (2.25) is defined as a contour integral, that is,
∫ x

a(t)

SJ,odd(x, t, η) dx =
1

2

∫

δx

SJ,odd(x, t, η) dx,

where the path δx is depicted in Figure 1. The wiggly line in the figure is a branch

cut to determine the branch of
√

QJ,0(x, t), and the solid (resp., dashed) line is

a part of the path δx on the first (resp., second) sheet of the Riemann surface of
√

QJ,0(x, t). Then, we can show that the well-normalized WKB solutions (2.25)

satisfy both (SLJ ) and (DJ ) by using (2.22) (cf. [T2, Lemma 1]).

×•

δx

xa(t)

Figure 1. Integration path δx.

The following proposition will play an important role in the proof of our main

theorems.

Proposition 2.6. Let p be an even order pole of QJ,0(x, t) (hence, a singular

point of (SLJ )), and set

(2.26) Res(SLJ , p) = Res
x=p

SJ,odd(x, t, η) dx.

Then the list of Res(SLJ , p) for all J and p is given in Table 6, up to sign.
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Res(SLII,∞) = cη,

Res(SLIII′(D7), 0) = cη/2

Res(SLIII′(D6), 0) = c0η/2, Res(SLIII′(D6),∞) = c∞η/2,

Res(SLIV, 0) = c0η/2, Res(SLIV,∞) = c∞η/2,

Res(SLV,∞) = c∞η/2, Res(SLV, 0) = c0η/2, Res(SLV, 1) = 2c1η,

Res(SLVI,∞) = c∞η/2, Res(SLVI, 0) = c0η/2,
Res(SLVI, 1) = c1η/2, Res(SLVI, t) = ctη/2

Table 6. Res(SLJ , p) at singular points of (SLJ ).

Proof. Let us show the claim when J = II and p = ∞. The coefficients

{S
(±)
j/2 (x, t, η)}j≥−2 of the formal series S

(±)
J (x, t, η) in (2.18) must satisfy the re-

cursion relations

S
(±)
−1 (x, t) = ±

√

QJ,0(x, t), S
(±)
−1/2(x, t) = 0,(2.27)

S
(±)
(j+2)/2 =

1

2S
(±)
−1

(

Q(j+4)/2 −
∂S

(±)
j/2

∂x
−

∑

j1+j2=j
0≤j1,j2≤j

S
(±)
j1/2

S
(±)
j2/2

)

(j ≥ −2)(2.28)

since S
(±)
J (x, t, η) solve the Riccati equation (2.17). We can then directly compute

the asymptotic behavior of S
(±)
j/2 (x, t, η) near x = ∞ from the recursion relations

(2.27) and (2.28) and the explicit form of the potential QJ in Table 4; for example,

when J = II, these are given by

(2.29) S
(±)
j/2 (x, t, η) =

{

±(x2 + t/2− cx−1 +O(x−2)) if j = −2,

O(x−2) if j ≥ −1.

Thus we have

(2.30) Res
x=∞

SII,odd(x, t, η) dx = ±cη.

In a similar manner we can compute the residues of SJ,odd(x, t, η) dx at each sin-

gular point for the other J ’s by straightforward computations. Actually, when p

is a regular singular point of (SLJ), we need a more careful computation since

S
(±)
j/2 (x, t, η) may have first order poles at regular singular points in view of (2.27)

and (2.28). However, by the technique used in the proof of [KT3, Proposition 3.6]

we can check that the residues of S
(±)
j/2 (x, t, η) dx at regular singular points vanish

for j ≥ 0. Thus we obtain Table 6.

In particular, we can find that the residues in Table 6 are genuine constants

multiplied by η, which implies that the residue of SJ,odd(x, t, η) dx only comes from
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the top term ηS−1(x, t) dx:

(2.31) Res
x=p

SJ,odd(x, t, η) dx = ηRes
x=p

S−1(x, t) dx.

This will simplify our construction of transformations of Painlevé transcendents.

§2.3. Local transformation near the double turning point

In the (exact) WKB analysis, the zeros of QJ,0(x, t) play an important role. They

are called turning points of (SLJ ) (see Definition 3.3 below). In view of (2.14), the

point x = λ0(t∗) is a double turning point (i.e., a double zero of QJ,0(x, t∗)) when

t∗ is a generic point. This double turning point is particularly important in the

WKB analysis of Painlevé transcendents.

Let us fix a generic point t∗ and take a sufficiently small neighborhood V of

t∗ such that x = λ0(t) is a double zero of QJ,0(x, t) at any point t ∈ V . It is shown

in [KT2] that the isomonodromy system (SLJ ) and (DJ ) can be reduced to the

system

(Can) :

(

∂2

∂z2
− η2Qcan(z, s, η)

)

ϕ(z, s, η) = 0,

(Dcan) :
∂

∂s
ϕ(z, x, η) =

(

Acan(z, s, η)
∂

∂z
−
∂Acan

∂z
(z, s, η)

)

ϕ(z, s, η)

on U0 × V , where U0 is a neighborhood of the double turning point x = λ0(t).

Here Qcan and Acan are given by

Qcan(z, s, η) = 4z2 + η−1E(s, η)(2.32)

+ η−1/2 η−1ρ(s, η)

z − η−1/2σ(s, η)
+ η−2 3

4(z − η−1/2σ(s, η))2
,

Acan(z, s, η) =
1

2(z − η−1/2σ(s, η))
,(2.33)

with

(2.34) E(s, η) = ρ(s, η)2 − 4σ(s, η)2.

The system (Can) & (Dcan) is compatible if ρ and σ satisfy the Hamiltonian system

(Hcan) :
dρ

ds
= −4ησ,

dσ

ds
= −ηρ.

As a solution of (Hcan), we take

(2.35) σ(s, η;A,B) = Ae2ηs +Be−2ηs, ρ(s, η;A,B) = −2Ae2ηs + 2Be−2ηs,
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where A and B are complex constants, and (2.34) becomes independent of s:

(2.36) E(s, η;A,B) = ρ(s, η;A,B)2 − 4σ(s, η;A,B)2 = −16AB.

Denote by Qcan(z, s, η;A,B) the potential (2.32) with the solution (2.35) of (Hcan)

substituted into (σ, ρ) in its expression. Then the precise statement of the local

reduction theorem of [KT2] is as follows.

Theorem 2.7 ([KT2, Theorem 2.1, Lemma 3.3]; cf. [AKT2, Theorem 3.1]). Let

t∗ be a generic point as above. Then there exist a neighborhood U0×V of the point

(λ0(t∗), t∗) and formal series

zJ(x, t, η) =

∞
∑

j=0

η−j/2zj/2(x, t, η),(2.37)

sJ(t, η) =
∞
∑

j=0

η−j/2sj/2(t, η),(2.38)

AJ (η) =
∞
∑

n=0

η−nAn, BJ(η) =
∞
∑

n=0

η−nBn,(2.39)

satisfying the following conditions:

(i) For each j ≥ 0, zj/2(x, t, η) and sj/2(t, η) are holomorphic functions in

(x, t) ∈ U0 × V and in t ∈ V , respectively.

(ii) For each n ≥ 0, An and Bn are genuine constants.

(iii) z0(x, t) is independent of η, ∂z0/∂x never vanishes on U0×V , and z0(λ0(t), t)

= 0.

(iv) s0(t) is also independent of η and ds0/dt never vanishes on V .

(v) z1/2(x, t) and s1/2(t) vanish identically.

(vi) The η-dependence of zj/2(x, t, η) and sj/2(t, η) (j ≥ 2) is only through in-

stanton terms exp(ℓΦJ (t, η)) for ℓ = j − 2 − 2j′ with 0 ≤ j′ ≤ j − 2 that

appear in the 2-parameter solution λ(t, η;α, β) of (PJ ). Thus zJ(x, t, η) and

sJ(t, η) have alternating parity.

(vii) The following equality holds:

(2.40) QJ(x, t, η) =

(

∂zJ(x, t, η)

∂x

)2

Qcan

(

zJ(x, t, η), sJ (t, η), η;AJ (η), BJ (η)
)

−
1

2
η−2{zJ(x, t, η);x},
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where {zJ(x, t, η);x} denotes the Schwarzian derivative,

(2.41) {zJ (x, t, η);x}

=

(

∂3zJ(x, t, η)

∂x3

/

∂zJ(x, t, η)

∂x

)

−
3

2

(

∂2zJ(x, t, η)

∂x2

/

∂zJ(x, t, η)

∂x

)2

.

The proof of [KT2] also tells us that the formal series appearing in Theorem

2.7 are determined by the following process. First, the formal series zJ(x, t, η) is

fixed by [AKT2, Theorem 3.1]. In particular, the top term z0(x, t) is given with a

suitable choice of the square root as follows:

(2.42) z0(x, t) =

[
∫ x

λ0(t)

√

QJ,0(x, t) dx

]1/2

.

Next, in view of (2.36), we find formal power series AJ(η) and BJ(η) (not unique)

which satisfy

(2.43) −16AJ (η)BJ(η) = EJ(η).

Fixing (AJ (η), BJ (η)), we can find a formal series sJ(t, η) so that

σ(sJ(t, η), η;AJ (η), BJ (η)) = η1/2zJ(λJ(t, η;α, β), t, η).(2.44)

Here λJ is the 2-parameter solution of (PJ) substituted into the coefficients of

(SLJ ) and (DJ ). The top term s0(t) in sJ(t, η) is given by

(2.45) s0(t) =
1

2
φJ(t) =

1

2

∫ t √

F
(1)
J (t) dt.

Then the set of formal series (zJ (x, t, η), sJ (t, η), AJ (η), BJ (η)) satisfies the con-

ditions in Theorem 2.7. Note that there is an ambiguity in the above choice of

formal series; if a set of formal series

(

zJ(x, t, η), sJ (t, η), AJ (η), BJ (η)
)

satisfies the conditions in Theorem 2.7, then so does

(2.46)
(

zJ(x, t, η), sJ (t, η) +G(η), AJ (η) exp(−2ηG(η)), BJ (η) exp(2ηG(η))
)

.

Here

(2.47) G(η) =

∞
∑

n=1

η−nGn

is an arbitrary formal power series with constant coefficients Gn. Here we have

assumed that the formal power series (2.47) has no constant term G0. If we allow
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the constant term G0 6= 0, then AJ (η) exp(−2ηG(η)) is no longer a formal power

series in η−1, and hence we set G0 = 0. The existence of this ambiguity corresponds

to the fact that the relation between the parameters (α, β) and (A,B) is given by

essentially one relation, i.e., (2.43).

We will regard the coefficients Gn in (2.47) as free parameters. As is clear

from (2.46), such free parameters are contained in the transformation series sJ(t, η)

additively, and it is shown in [KT2, Proposition 3.2] that the formal series sJ(t, η)

is unique up to these additive free parameters (see [KT2, Remark 3.3]). Once the

free parameters Gn are fixed, the transformation from (SLJ) and (DJ ) to (Can)

and Dcan is fixed, and hence the correspondence between the solutions of (HJ )

and (Hcan) is also fixed. These free parameters will be fixed when we discuss the

transformation theory between Painlevé transcendents in Sections 4 and 5.

§3. Stokes geometries of Painlevé equations and

isomonodromy systems

In [KT1], [KT2] etc. the relationship between P -turning points, P -Stokes curves

of (PJ) and turning points, Stokes curves of (SLJ) plays an important role in the

construction of WKB theoretic transformations. In this section we review these

geometric properties of Stokes geometries of (PJ) and (SLJ ).

§3.1. P -Stokes geometry of (PJ )

First, we review the definition of P -turning points and P -Stokes curves of (PJ)

introduced by Kawai and Takei. Here we recall that SingJ is the set of singular

points of (PJ) defined in (2.1).

Definition 3.1 ([KT1, Definition 2.1]). Let λJ = λJ(t, η;α, β) be a 2-parameter

solution of (PJ) and λ0(t) be its top term.

• A point t = r /∈ SingJ is said to be a P -turning point of λJ if

(3.1) F
(1)
J (r) = 0,

where F
(1)
J (t) is defined by (2.7).

• A P -turning point t = r of λJ is called simple if

(3.2)
∂2FJ

∂λ2
(λ0(r), r) 6= 0.

• For a P -turning point t = r of λJ , a P -Stokes curve of λJ (emanating from

t = r) is an integral curve defined by

(3.3) Im

∫ t

r

√

F
(1)
J (t) dt = 0.
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P -turning points and P -Stokes curves of λJ are defined only in terms of the

top term λ0(t) of the 2-parameter solution in question. Although they are defined

for a fixed branch of the algebraic function λ0(t), we may regard them as objects

on the Riemann surface of λ0(t). By “a P -turning point (resp., a P -Stokes curve)”

we may simply mean “a P -turning point (resp., a P -Stokes curve) of some 2-

parameter solution λJ”. Note also that P -turning points and P -Stokes curves are

nothing but zeros and horizontal trajectories (see [St]) of the quadratic differential

F (1)(t) dt2 defined on the Riemann surface of λ0(t).

As is pointed out in [WT] and [T4], a point s ∈ SingJ contained in the

following list may play a role similar to P -turning points:

• s = 0 for (PIII′(D6)), (PIII′(D7)), (PIII′(D8)), (PV) and (PVI),

• s = 1 for (PVI),

• s = ∞ for (PVI).

At a singular point s in the above list, there exists a simple-pole type 2-parameter

solution, that is, the top term λ0(t) of a 2-parameter solution has a branch point

at t = s satisfying

(3.4) F
(1)
J (t) = O((t− s)−3/2) as t→ s.

Note that (3.4) guarantees that the corresponding quadratic differential F (1)(t) dt2

has a simple-pole type singularity at t = s after taking a new independent variable

T = (t − s)1/2, which is a local parameter of the Riemann surface of λ0(t) near

t = s. On the Riemann surface of λ0(t) we distinguish such singular points from

usual singular points, and call them P -turning points of simple-pole type. A P -

turning point of simple-pole type is denoted by rsp. A P -Stokes curve emanating

from rsp is also defined by

(3.5) Im

∫ t

rsp

√

F
(1)
J (t) dt = 0.

By the P -Stokes geometry (of (PJ)) we mean the configuration of P -turning

points, P -turning points of simple-pole type, singular points and P -Stokes curves

(of (PJ)). Figure 2 depicts examples of P -Stokes geometries. Five P -Stokes curves

emanate from each simple P -turning point. Figure 2(b) shows an example of

PIII′(D6) which has a P -turning point of simple-pole type at the origin, and one P -

Stokes curve emanates from the P -turning point of simple-pole type. Since λ0(t)

is a multi-valued function of t, P -Stokes curves intersect each other, as can be

seen in the figures. Such “apparent” intersections are resolved if we take a lift of

P -Stokes curves onto the Riemann surface of λ0(t) (see Section 3.3 below).
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(a): (PI)
(b): (PIII′(D6)) with
(c0, c∞) = (3, 2 + i) (c): (PIV) with (c0, c∞) = (1, 2)

Figure 2. Examples of P -Stokes geometries.

Remark 3.2. P -Stokes curves are used to describe the criterion of Borel summa-

bility of 0-parameter solutions (i.e., formal power series solutions of the form

λ(t, η) =
∑∞

n=0 η
−nλn(t)) of (PJ) by [KaKo]. It is known that certain non-linear

Stokes phenomena occur for such a formal solution of (PJ) on P -Stokes curves.

Takei discussed such Stokes phenomena for (PI) in [T1]. Moreover, it is also expected

that non-linear Stokes phenomena also occur for 2-parameter solutions (see [T2]).

§3.2. Stokes geometry of (SLJ )

Next, we recall the definition of turning points and Stokes curves for the linear

differential equation (SLJ ), and explain their relationship to the P -Stokes geome-

try defined in the previous subsection. Recall that we consider the situation that a

2-parameter solution (λJ , νJ ) = (λJ (t, η;α, β), νJ (t, η;α, β)) of (HJ ) is substituted

into (λ, ν) which appears in the coefficients of (SLJ ) and (DJ ), as explained in

Section 2.2. Here we assume that the 2-parameter solution is defined in a neigh-

borhood V of a point t∗ ∈ ΩJ , and the branch of λ0(t), which is the top term

of λJ , is fixed on V .

Definition 3.3 ([KT3, Definitions 2.4 and 2.6]). Fix a point t contained in V .

• A point x = a(t) is called a turning point of (SLJ) (at t) if it is a zero of

QJ,0(x, t).

• A Stokes curve of (SLJ ) is an integral curve emanating from a turning point

x = a(t) defined by

(3.6) Im

∫ x

a(t)

√

QJ,0(x, t) dx = 0.

Remark 3.4. Note that location of turning points and Stokes curves for (SLJ )

depends on t. More precisely, it also depends on the branch of λ0 at t, which is the
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top term of the 2-parameter solution substituted. Therefore, by “turning points

(resp., Stokes curves) of (SLJ ) at t ∈ V ” we mean “turning points (resp., Stokes

curves) of (SLJ ) at t with the fixed branch of λ0 on V ”.

Turning points and Stokes curves of (SLJ) are nothing but zeros and horizon-

tal trajectories of the quadratic differential QJ,0(x, t) dx
2. We say that a turning

point is of order m if it is a zero of QJ,0 of order m. In particular, turning points

of order 1 and 2 are called simple and double turning points, respectively. In view

of (2.14), in a generic situation (SLJ ) has a double turning point at x = λ0(t) and

one simple turning point (resp., two simple turning points) when J = I, III′(D7)

and III′(D8) (resp., J = II, III′(D6), IV,V and VI). In the case of a linear equation,

m + 2 Stokes curves emanate from a turning point of order m (m ≥ 1). By the

Stokes geometry (of (SLJ )) we mean the configuration of turning points, singular

points and Stokes curves (for a fixed t). Actually, if QJ,0(x, t) has simple poles, we

need to regard them as turning points similarly to P -turning points of simple-pole

type of (PJ ) (see [Ko]). However, in view of (2.14), such a simple pole does not

appear in a generic situation, and we will only consider situations where a simple

pole never appears in the Stokes geometry of (SLJ ).

Figure 3 depicts examples of Stokes curves of (SLI) for several t. Here t1 and

t3 are some points which do not lie on a P -Stokes curve of (PI), while t2 lies on a

P -Stokes curves of (PI)

×t2

×t1

×t3

λ0(t)

−2λ0(t)

(a): At t = t1 (b): At t = t2
(on a P -Stokes curve)

(c): At t = t3

Figure 3. Stokes curves of (SLI) (for several t).
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P -Stokes curve (PI). (SLI) has a double turning point at x = λ0(t) and a simple

turning point at x = −2λ0(t) when t 6= 0. Note that since λ0(t) =
√

−t/6 for (PI),

these two turning points merge as t tends to the P -turning point t = 0. We can

observe that a Stokes curve of (SLI) connects the two turning points x = λ0(t)

and −2λ0(t) when t = t2 which lies on a P -Stokes curve. We call such a Stokes

curve connecting turning points of (SLJ) a degenerate Stokes segment, or a Stokes

segment for short. (In the context of quadratic differentials Stokes segments are

called saddle connections.)

Actually, other (PJ) and (SLJ ) also enjoy the same geometric properties as

(PI) and (SLI) explained here. That is, P -turning points and P -Stokes curves for

(PJ ) are related to turning points and Stokes curves for (SLJ ) in the following

manner.

Proposition 3.5 ([KT1, Proposition 2.1]). (i) For a simple P -turning point r

(of λJ), there exists a simple turning point a(t) of (SLJ ) that merges with the

double turning point x = λ0(t) at t = r, and consequently at t = r there exists

a turning point of order three for (SLJ).

(ii) For the simple P -turning point r and the turning point a(t) of (SLJ ) as above,

the following equality holds:

(3.7)

∫ λ0(t)

a(t)

√

QJ,0(x, t) dx =
1

2

∫ t

r

√

F
(1)
J (t) dt.

Here the branches of the square roots are chosen so that

(3.8)
√

QJ,0(x, t) = CJ (x, t)(x− λ0)
√

RJ(x, t),
√

RJ(λ0(t), t) =

√

F
(1)
J (t).

Proposition 3.5 implies that, when t lies on a P -Stokes curve emanating from

a simple P -turning point r, a Stokes segment appears between the double turning

point λ0(t) and the simple turning point a(t). This relationship between P -Stokes

curves and Stokes curves is essential in the construction of WKB theoretic trans-

formation to (PI) near a simple P -turning point (see [KT1] and [KT2]).

Similar geometric properties are also observed when t lies on a P -Stokes curve

emanating from a P -turning point of simple-pole type.

Proposition 3.6 ([T4, Proposition 3.2(ii)]). Suppose that t lies on a P -Stokes

curve emanating from a P -turning point of (PJ) of simple-pole type. Then there

exists a Stokes curve of (SLJ ) which starts from λ0(t) and returns to λ0(t) after

encircling several singular points and/or turning points of (SLJ ).
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§3.3. Degeneration of P -Stokes geometry

As is explained in the Introduction, we are interested in the degenerate situations

of P -Stokes geometry, that is, situations where there exists a P -Stokes curve which

connects P -turning points or P -turning points of simple-pole type of a 2-parameter

solution λJ of (PJ). We will call such special P -Stokes curves degenerate P -Stokes

segments, or P -Stokes segments for short. In this section we discuss a relationship

between such a degeneration of the P -Stokes geometry of (PJ) and the Stokes

geometry of (SLJ).

Typically, there are two types of P -Stokes segments which appear in a generic

situation: A P -Stokes segment of the first type connects two different simple

P -turning points, while a P -Stokes segment of the second type (sometimes called

loop type) emanates from and returns to the same P -turning point and hence forms

a closed loop.

×

×

u∗,A

u∗,B

ΓA

ΓB

r rA

rB

0

Figure 4. The P -Stokes geometry of (PII) with P -Stokes segments (described on

the u-plane).

Figure 4 depicts the P -Stokes geometry of (PII) when c = i, and we can

observe that three P -Stokes segments appear in the figure. Here we have introduced

a new variable

(3.9) u = λ0(t)

of the Riemann surface of λ0(t), and Figure 4 describes the P -Stokes curves of (PII)

on the u-plane. Using the relation t = −(2u3+c)/u, the quadratic differential which

defines the P -Stokes geometry of (PII) can be written as

(3.10) F
(1)
II (t) dt2 = quadII(u, c) du

2, quadII(u, c) = (4u3 − c)3/u5,
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in the u-variable. Although Figure 4 depicts the case c = i, the P -Stokes geometry

of (PII) described in the variable u given in (3.9) for any c ∈ iR>0 is the same as in

Figure 4 since the quadratic differential (3.10) has the following scale invariance:

r−1
√

quadII(r
1/3u, rc) d(r1/3u) =

√

quadII(u, c) du (r 6= 0).

Therefore, when c ∈ iR>0, the P -Stokes geometry of (PII) has three simple

P -turning points and three P -Stokes segments. The symbols r, rA and rB (resp.,

ΓA, ΓB) in Figure 4 represent the P -turning points (resp., P -Stokes segments)

of (PII) when c ∈ iR>0. Furthermore, since quadII(u, c) is also invariant under

(u, c) 7→ (−u,−c), the P -Stokes geometry when c ∈ iR<0 is the reflection u 7→ −u

of Figure 4.

λ0(t)

a(t)

aA(t)

λ0(t)

a(t)

aB(t)

(SLII-A): The Stokes geometry of (SLII)
corresponding to u∗,A

(SLII-B): The Stokes geometry of (SLII)
corresponding to u∗,B

Figure 5. The Stokes geometries of (SLII) on P -Stokes segments.

Figure 5 (SLII-A) (resp., (SLII-B)) depicts the Stokes geometry of (SLII)

when we fix t at a point t∗,A (resp., t∗,B) corresponding to a point u∗,A (resp.,

u∗,B) which lies on the P -Stokes segment ΓA (resp., ΓB) in Figure 4. Note that

u determines a point t on the t-plane together with a branch of λ0 at t, and the

Stokes geometries shown in Figure 5 are drawn for the branch of λ0 determined by

u∗,A and u∗,B , respectively (see Remark 3.4). In both cases of Figure 5, there are

two Stokes segments in the Stokes geometry of (SLII), each connecting the double

turning point x = λ0(t) and a simple turning point. Here a(t), aA(t) and aB(t)

are the simple turning points of (SLII) which merge with λ0(t) at the P -turning

points r, rA and rB , respectively (cf. Proposition 3.5(i)). The points aA(t) and

aB(t) merge with λ0(t) when t tends to rA and rB along the P -Stokes segment ΓA

or ΓB , respectively.
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×× u∗,Au∗,B

Γ

r

rsp

Figure 6. The P-Stokes geometry of (PIII′(D7)) with a loop-type P -Stokes segment

(described on the u-plane).

On the other hand, Figure 6 depicts the P -Stokes geometry of (PIII′(D7)) when

c = i by using a new variable

(3.11) u =
2λ0(t)

2

cλ0(t)− t

of the Riemann surface of λ0(t). Since t = −u2(u− c)/2, the quadratic differential

becomes

(3.12)

F
(1)
III′(D7)

(t) dt2 = quadIII′(D7)(u, c) du
2,

quadIII′(D7)(u, c) =
(3u− 2c)3

u(u− c)2
du2.

Hence there is one simple P -turning point and one P -turning point of simple-

pole type in the P -Stokes geometry of (PIII′(D7)). In Figure 6 we can observe

that a P -Stokes segment of loop type, denoted by Γ, appears around the double

pole u = c of (3.12). It is known that such a loop occurs when the residue of
√

quadIII′(D7)(u, c) du at u = c is purely imaginary (see [St, Section 7]). Since the

quadratic differential (3.12) satisfies

r−1
√

quadIII′(D7)(ru, rc) d(ru) =
√

quadIII′(D7)(u, c) du

for any r 6= 0, we conclude that the P -Stokes geometry of (PIII′(D7)) (described

in the variable u given by (3.11)) when c ∈ iR>0 is the same as in Figure 6.

Furthermore, since quadIII′(D7)(u, c) is also invariant under (u, c) 7→ (−u,−c), the

P -Stokes geometry when c ∈ iR<0 is the reflection u 7→ −u of Figure 6.

Figure 7 (SLIII′(D7)-A) (resp., (SLIII′(D7)-B)) depicts the Stokes geometry of

(SLIII′(D7)) when t is a point t∗,A (resp., t∗,B) corresponding to u∗,A (resp., u∗,B)

which lies on the loop-type P -Stokes segment Γ in Figure 6. There are two Stokes
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a(t)

0

λ0(t)

γA

a(t)

0

λ0(t)

γB

(SLIII′(D7)-A): The Stokes geometry of
(SLIII′(D7)) corresponding to u∗,A

(SLIII′(D7)-B): The Stokes geometry of
(SLIII′(D7)) corresponding to u∗,B

Figure 7. The Stokes geometries of (SLIII′(D7)) on the loop-type P -Stokes segment.

segments in the Stokes geometry of (SLIII′(D7)), both connecting the double turn-

ing point λ0(t) and the same simple turning point a(t). When t tends to the simple

P -turning point r along Γ in Figure 6, one of the two Stokes segments shrinks to

a point (cf. Proposition 3.5(i)). In Figure 7 (SLIII′(D7)-A) (resp., (SLIII′(D7)-B))

the Stokes segment γA (resp., γB) shrinks to a point when t tends to r along Γ in

the clockwise (resp., counter-clockwise) direction.

In Figures 5 and 7 we can observe common properties of the Stokes geometries

of (SLJ)’s when t lies on a P -Stokes segment. Firstly, there appear two Stokes

segments each of which connects the double turning point λ0(t) and a simple

turning point. Secondly, these two Stokes segments are adjacent in the Stokes

curves emanating from λ0(t). We can show that these properties hold for the

Stokes geometry of (SLJ) when t lies on a P -Stokes segment of (PJ).

Proposition 3.7. Let r1 and r2 be (possibly the same) simple P -turning points

of λJ which are not of simple-pole type, and a1(t) and a2(t) be the simple turning

points of (SLJ ) corresponding to r1 and r2 by Proposition 3.5(i). Suppose that r1
and r2 are connected by a P -Stokes segment Γ, and take a point t∗ which lies on

Γ as in Figure 8. Then there are two Stokes segments γ1 and γ2 in the Stokes

geometry of (SLJ ) when t = t∗, where γ1 (resp., γ2) connects λ0(t∗) and a1(t∗)

(resp., a2(t∗)). Moreover, γ1 and γ2 are adjacent Stokes curves in the four Stokes

curves emanating from x = λ0(t∗).

Γ
×r1 r2

t∗

Figure 8. A P -Stokes segment Γ and two simple P -turning points r1 and r2.
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Proof. Since t∗ lies on P -Stokes curves emanating from r1 and r2 simultaneously,

it follows from Proposition 3.5 that the double turning point x = λ0(t) lies on

both Stokes curves emanating from a1(t) and a2(t) when t = t∗. Hence, in the

Stokes geometry of (SLJ ) there are two Stokes segments γ1 and γ2 which connect

λ0(t∗) and a1(t∗) and a2(t∗), respectively. Thus in Figure 9 two cases can occur:

In case (i) (resp., (ii)) γ1 and γ2 are adjacent (resp., opposite) Stokes curves which

emanate from λ0. However, case (ii) does not happen under our assumption, for

the following reason.

λ0(t∗)

γ1 γ2

(i)

λ0(t∗)

γ1 γ2

(ii)

Figure 9. Two candidates for Stokes segments.

For k = 1, 2, set

φJ,k(t) =

∫ t

rk

√

F
(1)
J (t) dt,(3.13)

vJ,k(t) =

∫ λ0(t)

ak(t)

√

QJ,0(x, t) dx.(3.14)

Proposition 3.5(ii) implies that vJ,k(t) = φJ,k(t)/2 (k = 1, 2). The real parts of

φJ,1(t∗) and φJ,2(t∗) have different signs since the real parts are increasing or

decreasing along P -Stokes curves. Thus the real parts of vJ,1(t∗) and vJ,2(t∗) also

have different signs. Therefore, case (ii) in Figure 9 never happens and only case

(i) appears.

Proposition 3.7 yields the following two possibilities for the geometric type of

the Stokes geometry of (SLJ) when t∗ lies on a P -Stokes segment (cf. Figure 10):

(a) The double turning point λ0(t∗) is connected with two different simple turning

points by two Stokes segments. This case is shown in Figure 5.

(b) The double turning point λ0(t∗) is connected with the same simple turning

point by two Stokes segments. This case appears in Figure 7.

The following fact will be used in the proof of our main results.
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λ0(t∗)

(a)

λ0(t∗)

(b)

Figure 10. Two Stokes segments in the Stokes geometry of (SLJ).

Lemma 3.8. In the situation of Proposition 3.7, we have

(3.15)

∫ a2(t)

a1(t)

√

QJ,0(x, t) dx =
1

2

∫ r2

r1

√

F
(1)
J (t) dt.

Here the integration path on the left-hand side is taken along a composition of

two Stokes segments γ1 and γ2 in the Stokes geometry of (SLJ ), while that on the

right-hand side is taken along the P -Stokes segment Γ.

Proof. Let φJ,k(t) and vJ,k(t) be functions defined in (3.13) and (3.14). Since

vJ,k(t) = φJ,k(t)/2 for k = 1, 2, we have vJ,1(t) − vJ,2(t) = (φJ,1(t) − φJ,2(t))/2.

This gives the desired relation.

Lemma 3.8 entails that the integral of
√

QJ,0(x, t) dx appearing (3.15) does

not depend on t. Generally, the integral of SJ,odd(x, t, η) along a closed cycle on

the Riemann surface of
√

QJ,0(x, t) is independent of t by (2.22). In particular,

from (3.15) and Table 6 we will deduce the following.

Lemma 3.9. (i) For J = II, we have

(3.16)

∫ r2

r1

√

F
(1)
II (t) dt = ±2πic

when c ∈ iR6=0. Here r1 and r2 are two simple P -turning points of (PII)

connected by a P -Stokes segment, and the integration path is taken along the

P -Stokes segment. The sign ± depends on the branch of the square root.

(ii) For J = III′(D7), we have

(3.17)

∫

Γ

√

F
(1)
III′(D7)

(t) dt = ±2πic

when c ∈ iR6=0. Here the integration path is taken along the loop-type P -Stokes

segment Γ of Figure 6. The sign ± depends on the branch of the square root.
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λ0(t∗)

a1(t∗) a2(t∗)

δ

Figure 11. The cycle δ.

Proof. We prove (3.16). Let t∗ be a point on the P -Stokes segment connecting r1
and r2, and a1(t) and a2(t) be the simple turning points of (SLII) which correspond

to r1 and r2 by Proposition 3.5(i). Then

∫ r2

r1

√

F
(1)
II (t) dt = 2

∫ a2(t∗)

a1(t∗)

√

QII,0(x, t∗) dx

by (3.15). The integral of
√

QII,0(x, t∗) dx can be written as

2

∫ a2(t∗)

a1(t∗)

√

QII,0(x, t∗) dx =

∮

δ

√

QII,0(x, t∗) dx,

where δ is a closed cycle on the Riemann surface of
√

QII,0(x, t∗) described in

Figure 11. The wiggly line in the figure represents the branch cut to determine the

branch of
√

QII,0(x, t∗), and the solid and dashed lines represent paths on the first

and the second sheet of the Riemann surface of
√

QII,0(x, t∗), respectively. Since

the 1-form
√

QII,0(x, t∗) dx has no singular point other than x = a1(t∗), a2(t∗)

and ∞, we have

(3.18)

∮

δ

√

QII,0(x, t∗) dx = 2πi Res
x=∞

√

QII,0(x, t∗) dx = ±2πic.

Here we have used (2.31) and Table 6 of residues. Thus we have proved (3.16).

The equality (3.17) can be proved in the same manner by using the following fact:

(3.19) Res
x=0

√

QIII(D7),0(x, t) dx = ±c/2.

§4. WKB theoretic transformation to (PII) on P -Stokes segments

Here we show our main claims concerning WKB theoretic transformations between

Painlevé transcendents on P -Stokes segments. Since we simultaneously deal with
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two different Painlevé equations (PJ) and (PII), in this section we put ∼ over

variables or functions relevant to (PJ ) and (SLJ) in order to avoid confusion.

§4.1. Assumptions and statements

Let (λ̃J , ν̃J ) = (λ̃J (t̃, η; α̃, β̃), ν̃J (t̃, η; α̃, β̃)) be a 2-parameter solution of (HJ ) de-

fined in a neighborhood of a point t̃∗ ∈ ΩJ , and consider (SLJ) and (DJ ) with

(λ̃J , ν̃J ) substituted into their coefficients. Here we assume the following condi-

tions.

Assumption 4.1. (1) J ∈ {II, III′(D6), IV,V,VI}.

(2) There is a P -Stokes segment Γ̃ in the P -Stokes geometry of (PJ ) which con-

nects two different simple P -turning points r̃1 and r̃2 of λ̃J (which are not of

simple-pole type), and the point t̃∗ in question lies on Γ̃.

(3) The function (2.9) appearing in the instanton Φ̃J(t̃, η) of the 2-parameter

solution (λ̃J , ν̃J ) is normalized at the simple P -turning point r̃1 as

(4.1) φ̃J(t̃) =

∫ t̃

r̃1

√

F̃
(1)
J (t̃) dt̃.

(4) The Stokes geometry of (SLJ) at t̃ = t̃∗ contains the same configuration as

in Figure 10(a). That is, the double turning point λ̃0(t̃∗) is connected to two

different simple turning points ã1(t̃∗) and ã2(t̃∗) by two Stokes segments γ̃1 and

γ̃2, respectively. Here the labels of the simple turning points and the Stokes

segments are assigned by the following rule: When t̃ tends to r̃1 (resp., r̃2)

along Γ̃, ã1(t̃) (resp., ã2(t̃)) merges with λ̃0(t̃) (cf. Proposition 3.5).

(5) All singular points of Q̃J,0(x̃, t̃∗) (as a function of x̃) are poles of even order.

Since the P -Stokes geometry for J = I, III′(D7) and III′(D8) never contains

a P -Stokes segment connecting two different simple P -turning points, we have

excluded these cases. One of our main results below claims that under Assumption

4.1 we can construct a formal transformation series defined on a neighborhood of

the union γ̃1 ∪ γ̃2 of two Stokes segments that brings (SLJ ) to (SLII) with an

appropriate 2-parameter solution (λII, νII) of (HII) being substituted into (λ, ν) in

(SLII), in the following sense.

First, we fix the constant c appearing in (PII) and (SLII) to be

(4.2) c =
1

2πi

∫ r̃2

r̃1

√

F̃
(1)
J (t̃) dt̃,

where the integration path is taken along the P -Stokes segment Γ̃. Since the func-

tion (4.1) is monotone and takes real values along Γ̃, the constant c determined
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×

0

t∗

r r′
Γ

a(t∗)
a′(t∗)

λ0(t∗)

γ
γ′

(P): P -Stokes geometry of (PII) (described
on the u-plane)

(SL): Stokes geometry of (SLII) at t = t∗

Figure 12. The P -Stokes geometry of (PII) and the Stokes geometry of (SLII).

by (4.2) is non-zero and purely imaginary. Here we assume that c ∈ iR>0. Then

the P -Stokes geometry of (PII) (described in the variable u given by (3.9)) when

c is given by (4.2) is the same as in Figure 12 (P). Thus, the P -Stokes geometry

of (PII) has three simple P -turning points, and three P -Stokes segments appear

simultaneously. (As is remarked in Section 3.3, when c ∈ iR<0, the P -Stokes geom-

etry of (PII) is the reflection u 7→ −u of Figure 12 (P). Our discussion below also

applies to c ∈ iR<0.) Furthermore, we can verify that the corresponding Stokes

geometry of (SLII) on a P -Stokes segment is as in Figure 12 (SL). That is, when

we take any point t∗ on a P -Stokes segment of (PII), say Γ in Figure 12 (P),

then the corresponding Stokes geometry of (SLII) has one double turning point

at x = λ0(t∗) and two simple turning points x = a(t∗) and a′(t∗), and there are

two Stokes segments γ and γ′ which connect λ0(t∗) to these simple turning points.

Note that a(t) (resp., a′(t)) merges with λ0(t) as t tends to r (resp., r′) along Γ.

Having these geometric properties in mind, we formulate the precise statement

of our first main result as follows.

Theorem 4.2. Under Assumption 4.1, for any 2-parameter solution (λ̃J , ν̃J ) =

(λ̃J (t̃, η; α̃, β̃), ν̃J (t̃, η; α̃, β̃)) of (HJ ), there exist

• a domain Ũ which contains the union γ̃1 ∪ γ̃2 of two Stokes segments,

• a neighborhood Ṽ of t̃∗,

• formal series

x(x̃, t̃, η) =
∑

j≥0

η−j/2xj/2(x̃, t̃, η), t(t̃, η) =
∑

j≥0

η−j/2tj/2(t̃, η)
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whose coefficients {xj/2(x̃, t̃, η)}
∞
j=0 and {tj/2(t̃, η)}

∞
j=0 are functions defined on

Ũ × Ṽ and Ṽ , respectively, and may depend on η,

• a 2-parameter solution

(λII, νII) = (λII(t, η;α, β), νII(t, η;α, β)),

(α, β) =
(

∞
∑

n=0

η−nαn,

∞
∑

n=0

η−nβn

)

of (HII) with the constant c determined by (4.2), and the function (2.9) appear-

ing in the instanton ΦII(t, η) that is normalized at a simple P -turning point r1
of (PII) as

(4.3) φII(t) =

∫ t

r1

√

F
(1)
II (t) dt,

which satisfy the relations below:

(i) The function t0(t̃) is independent of η and satisfies

(4.4) φ̃J(t̃) = φII(t0(t̃)).

(ii) dt0/dt̃ never vanishes on Ṽ .

(iii) The function x0(x̃, t̃) is also independent of η and satisfies

(4.5) x0(λ̃0(t̃), t̃) = λ0(t0(t̃)),

(4.6) x0(ãk(t̃), t̃) = ak(t0(t̃)) (k = 1, 2).

Here λ0(t) and ak(t) (k = 1, 2) are respectively the double and two simple

turning points of (SLII).

(iv) ∂x0/∂x̃ never vanishes on Ũ × Ṽ .

(v) x1/2 and t1/2 vanish identically.

(vi) The η-dependence of xj/2 and tj/2 (j ≥ 2) is only through the instanton

terms exp(ℓΦ̃J (t̃, η)) (ℓ = j − 2− 2m with 0 ≤ m ≤ j − 2) that appear in the

2-parameter solution (λ̃J , ν̃J ) of (HJ).

(vii) The following relations hold:

(4.7) x(λ̃J(t̃, η; α̃, β̃), t̃, η) = λII(t(t̃, η), η;α, β),

(4.8) Q̃J(x̃, t̃, η) =

(

∂x(x̃, t̃, η)

∂x̃

)2

QII(x(x̃, t̃, η), t(t̃, η), η)−
1

2
η−2{x(x̃, t̃, η); x̃},

where the 2-parameter solutions of (HJ ) and (HII) are substituted into (λ, ν)

in the coefficients of Q̃J and QII, respectively, and {x(x̃, t̃, η); x̃} denotes the

Schwarzian derivative (2.41).

The rest of this section is devoted to the proof of Theorem 4.2.
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§4.2. Construction of the top term of the transformation

Here we construct the top terms x0(x̃, t̃) and t0(t̃) of the formal series.

First, we explain the construction of t0(t̃). Since t̃ lies on a P -Stokes curve

emanating from r̃k (k = 1, 2), it is shown in [KT1, Theorem 2.2] that there exists

a function t
(k)
0 (t̃) such that

(4.9) φ̃J,k(t̃) = φII,k(t
(k)
0 (t̃))

for k = 1, 2, where

(4.10) φ̃J,k(t̃) =

∫ t̃

r̃k

√

F̃
(1)
J (t̃) dt̃, φII,k(t) =

∫ t

rk

√

F
(1)
II (t) dt.

Here r1 and r2 are two simple P -turning points of (PII) chosen by the following

rule. We have the following two possibilities for the Stokes geometry of (SLJ ) at t̃∗
(see Figure 13):

λ̃0(t̃∗)

ã1(t̃∗) ã2(t̃∗)

γ̃1 γ̃2

(A)

λ̃0(t̃∗)

ã2(t̃∗) ã1(t̃∗)

γ̃2 γ̃1

(B)

Figure 13. Two possibilities for adjacent Stokes segments of (SLJ ).

(A) The Stokes segment γ̃2 follows the Stokes segment γ̃1 in the counter-clockwise

order near λ̃0(t̃∗).

(B) γ̃2 follows γ̃1 in the clockwise order near λ̃0(t̃∗).

Set

(4.11) (r1, r2) =

{

(r, r′) when case (A) happens,

(r′, r) when case (B) happens,

where r and r′ are the P -turning points of (PII) depicted in Figure 12 (P). More-

over, the branch of

√

F
(1)
II (t) is taken so that the sign appearing on the right-hand

side of (3.16) is +:

(4.12)

∫ r2

r1

√

F
(1)
II (t) dt = +2πic.

This choice (4.11) of r1 and r2 is essential in the construction of x0(x̃, t̃) later.
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For each k = 1, 2, the function t
(k)
0 (t̃) satisfying (4.9) is unique if we require

that t
(k)
0 (t̃∗) lies on the P -Stokes segment Γ in Figure 12 (P) (cf. [KT1, Section 2,

(2.21)]). In what follows we assume that t
(k)
0 (t̃∗) lies on Γ. Then our choice (4.2)

of the constant c in (PII) and (4.12) imply that

(4.13) φII,1(t
(k)
0 (t̃))− φII,2(t

(k)
0 (t̃)) =

∫ r̃2

r̃1

√

F̃
(1)
J (t̃) dt̃ = φ̃J,1(t̃)− φ̃J,2(t̃)

for k = 1, 2. In particular, we have the equality φII,1(t
(2)
0 (t̃)) = φ̃J,1(t̃) as the

case of k = 2 of (4.13). Since t
(2)
0 (t̃∗) lies on Γ, we have t

(1)
0 (t̃) = t

(2)
0 (t̃) by the

uniqueness explained above. We set t0(t̃) = t
(1)
0 (t̃) = t

(2)
0 (t̃) and (4.4) follows from

(4.9) for k = 1. Taking a small neighborhood Ṽ of t∗, we may assume that also

the derivative dt0/dt̃ never vanishes on Ṽ . Thus we obtain t0(t̃) satisfying (i) and

(ii) of our main claim. In particular, we have

(4.14)

√

F̃
(1)
J (t̃) =

dt0(t̃)

dt̃

√

F
(1)
II (t0(t̃)).

Next, we construct x0(x̃, t̃). Set

(γ1, γ2) =

{

(γ, γ′) when case (A) happens,

(γ′, γ) when case (B) happens,
(4.15)

where γ and γ′ are the Stokes segments of (SLII) (at t = t0(t̃∗)) in Figure 12

(SL), and denote by a1(t) (resp., a2(t)) the simple turning point of (SLII) which

is the end-point of the Stokes segment γ1 (resp., γ2) at t = t0(t̃∗). Since t̃∗ lies on

a P -Stokes curve emanating from r̃1, and t0(t̃) satisfies φJ,1(t̃) = φII,1(t0(t̃)), the

same discussion as in [KT1, Section 2] enables us to construct x0(x̃, t̃) satisfying

the following conditions:

• x0(x̃, t̃) is holomorphic on Ũ1 × Ṽ , where Ũ1 is an open neighborhood of the

Stokes segment γ̃1 of (SLJ ), and ∂x0/∂x̃ never vanishes on Ũ1 × Ṽ .

• For any t̃ ∈ Ṽ , x0(x̃, t̃) maps Ũ1 biholomorphically to an open neighborhood U1

of the Stokes segment γ1 of (SLII).

• Set

(4.16)

Z̃J(x̃, t̃) =

∫ x̃

λ̃0(t̃)

√

Q̃J,0(x̃, t̃) dx̃,

ZII(x, t̃) =

∫ x

λ0(t0(t̃))

√

QII,0(x, t0(t̃)) dx,
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where the branches of
√

Q̃J,0(x̃, t̃) and
√

QII,0(x, t) are chosen so that

(4.17)

∫

γ̃k

√

Q̃J,0(x̃, t̃) dx̃ =
1

2

∫ t̃

r̃k

√

F̃
(1)
J (t̃′) dt̃′,

∫

γk

√

QII,0(x, t) dx =
1

2

∫ t

rk

√

F
(1)
II (t′) dt′

for k = 1, 2 (cf. (3.7)). In (4.17) the Stokes segments are directed from the simple

turning point to the double turning point. Then

(4.18) Z̃J(x̃, t̃) = ZII(x0(x̃, t̃), t̃),

(4.19) x0(λ̃0(t̃), t̃) = λ0(t0(t̃)), x0(ã1(t̃), t̃) = a1(t0(t̃)).

It is also shown in [KT1, Section 2] that x0(x̃, t̃) is the unique holomorphic solution

(satisfying x0(λ̃0(t̃), t̃), (∂x0/∂x̃)(λ̃0(t̃), t̃) 6= 0) of the implicit functional equation

ZJ(x̃, t̃)
1/2 = ZII(x0(x̃, t̃), t̃)

1/2.

Here the branches of ZJ(x̃, t̃)
1/2 and ZII(x, t̃)

1/2 are chosen so that they are positive

on γ̃1 and γ1, respectively, when t̃ = t̃∗. Note that since we have assumed that the

imaginary part of c in (4.2) is positive, the real parts of φ̃J,1(t̃) and φII,1(t) are

decreasing along the P -Stokes segments Γ̃ and Γ, respectively. Then the equality

(4.17) shows that the real parts of Z̃J(x̃, t̃∗) and ZII(x, t̃∗) are positive along γ̃1
and γ1, respectively.

In view of (4.18), the four Stokes curves of (SLJ ) emanating from λ̃0(t̃) are

mapped by x0(x̃, t̃) locally to those of (SLII) emanating from λ0(t0(t̃)). In par-

ticular, the Stokes segment γ̃1 of (SLJ) is mapped to the Stokes segment γ1 of

(SLII) when t̃ = t̃∗. Furthermore, since ∂x0/∂x̃ 6= 0 at x̃ = λ̃0(t̃), the other Stokes

segment γ̃2 is mapped to the Stokes curve emanating from λ0(t0(t̃∗)) which follows

γ1 in the counter-clockwise (resp., clockwise) order in case (A) (resp., (B)) when

t̃ = t̃∗. Thus, our choice (4.11) of the P -turning points r1 and r2 of (PII) entails

that x0(x̃, t̃∗) maps γ̃2 to the Stokes segment γ2 of (SLII) given by (4.15) near

x̃ = λ̃0(t̃∗).

Since our choice (4.2) of the constant c in (PII) also ensures the equality

φJ,2(t̃) = φII,2(t0(t̃)), the same discussion as in [KT1, Section 2] again enables us

to show that x0(x̃, t̃) is also holomorphic at the simple turning point ã2(t̃) and

satisfies

(4.20) x0(ã2(t̃), t̃) = a2(t0(t̃)).

Thus we have constructed x0(x̃, t̃) satisfying the desired properties (iii) and (iv)

of our main theorem.
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§4.3. Transformation near the double turning point

In this section we follow the discussion given in [KT2, Section 4]. Namely, with the

aid of Theorem 2.7, we construct a pair of formal series xpre(x̃, t̃, η) and tpre(t̃, η)

which transforms (SLJ ) and the deformation equation (DJ ) to (SLII) and (DII).

Let us first fix the correspondence of the parameters: For a given pair of

parameters (α̃, β̃) = (
∑∞

n=0 η
−nα̃n,

∑∞
n=0 η

−nβ̃n) of (λ̃J , ν̃J ) satisfying (2.11),

we choose (A(η), B(η)) = (
∑∞

n=0 η
−nAn,

∑∞
n=0 η

−nBn) in (2.35) and (α, β) =

(
∑∞

n=0 η
−nαn,

∑∞
n=0 η

−nβn) in (λII, νII) so that

(4.21) EII(α, β) = −16A(η)B(η) = ẼJ(α̃, β̃).

Here ẼJ(α̃, β̃) and EII(α, β) are the formal power series defined in (2.23). Lemma

2.4 guarantees that such a choice of parameters is possible. Then the discus-

sion in Section 2.3 enables us to construct formal series z̃J(x̃, t̃, η) and s̃J(t̃, η)

(resp., zII(x̃, t̃, η) and sII(t̃, η)) satisfying the properties in Theorem 2.7 for such

(A(η), B(η)); that is,

σ(s̃J(t̃, η);A(η), B(η)) = η1/2z̃J(λ̃J(t̃, η; α̃, β̃), t̃, η),(4.22)

σ(sII(t, η);A(η), B(η)) = η1/2zII(λII(t, η;α, β), t, η).(4.23)

Similarly to [KT2, Section 4], define

xpre(x̃, t̃, η) = z−1
II (z̃J (x̃, t̃, η), sJ (t̃, η), η),(4.24)

tpre(t̃, η) = s−1
II (s̃J(t̃, η), η).(4.25)

Then each coefficient of the formal power series xpre(x̃, t̃, η) is holomorphic in x̃

near x̃ = λ̃0(t̃) and also in t̃ on Ṽ , and each coefficient of tpre(t̃, η) is holomorphic

in t̃ on Ṽ . Furthermore, xpre(x̃, t̃, η) and tpre(t̃, η) have alternating parity; that is,

if we denote by {xprej/2(x̃, t̃, η)}
∞
j=0 (resp., {tprej/2(t̃, η)}

∞
j=0) the coefficient of η−j/2 in

the formal series (4.24) (resp., (4.25)), then:

• xpre0 (x̃, t̃) and tpre0 (t̃) are independent of η,

• xpre1/2 and tpre1/2 vanish identically,

• for j ≥ 2, the η-dependence of xprej/2(x̃, t̃, η) and tprej/2(t̃, η) is only through the

instanton terms exp(ℓΦ̃J (t̃, η)) (ℓ = j − 2− 2m with 0 ≤ m ≤ j − 2).

Lemma 4.3. The top terms xpre0 (x̃, t̃) and tpre0 (t̃) coincide with x0(x̃, t̃) and t0(t̃)

constructed in Section 4.2, respectively:

(4.26) xpre0 (x̃, t̃) = x0(x̃, t̃), tpre0 (t̃) = t0(t̃).
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Proof. It follows from (2.45) and the normalizations (4.1) and (4.3) that tpre0 (t̃)

satisfies

φ̃J,1(t̃) = φII,1(t
pre
0 (t̃)).

Hence it coincides with t0(t̃) constructed in Section 4.2. Furthermore, by choosing

a branch of the square root in (2.42) appropriately, we can show that xpre0 (x̃, t̃) sat-

isfies the following conditions in a neighborhood of the Stokes segment γ̃1 of (SLJ):

xpre0 (λ̃0(t̃), t̃) = λ0(t0(t̃)), (∂xpre0 /∂x̃)(λ̃0(t̃), t̃)) 6= 0,

ZJ(x̃, t̃)
1/2 = ZII(x

pre
0 (x̃, t̃), t̃)1/2.

Here ZJ and ZII are given in (4.16), and the branches of ZJ(x̃, t̃)
1/2 and ZII(x, t̃)

1/2

are chosen so that they are positive on γ̃1 and γ1. Thus, the top term xpre0 (x̃, t̃) of

xpre(x̃, t̃, η) (defined by choosing an appropriate branch of (2.42)) also coincides

with x0(x̃, t̃) constructed in Section 4.2.

Therefore, the top terms of xpre(x̃, t̃, η) and tpre(t̃, η) enjoy the desired prop-

erties. Moreover, they give a local equivalence between (SLJ ) and (SLII) together

with their deformation equations (DJ ) and (DII) near x̃ = λ̃0(t̃) in the following

sense.

Proposition 4.4 ([KT2, Section 4]). The following equalities hold near x̃ = λ̃0(t̃)

and t̃ ∈ Ṽ :

S̃J,odd(x̃, t̃, η) =

(

∂xpre

∂x̃
(x̃, t̃, η)

)

SII,odd

(

xpre(x̃, t̃, η), tpre(t̃, η), η
)

,(4.27)

∂xpre

∂t̃
(x̃, t̃, η) = ÃJ(x̃, t̃, η)

∂xpre

∂x̃
−AII

(

xpre(x̃, t̃, η), tpre(t̃, η), η
)∂tpre

∂t̃
.(4.28)

It follows from (4.27) and (4.28) that, if a WKB solution ψII(x, t, η) of (SLII)

also solves the deformation equation (DII), then

ψ̃J(x̃, t̃, η) =

(

∂xpre

∂x̃
(x̃, t̃, η)

)−1/2

ψII

(

xpre(x̃, t̃, η), tpre(t̃, η), η
)

is a WKB solution of (SLJ) which also satisfies (DJ ) simultaneously near x̃ = λ̃0(t̃)

(cf. [KT2, Proposition 3.1]).

Therefore, the formal series defined by (4.24) and (4.25) are “almost as re-

quired”. However, the coefficients of xpre(x̃, t̃, η) may not be holomorphic near a

pair of simple turning points ã1 and ã2, for the following reason.
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The equality (4.27) tells us that the coefficient xprej/2(x̃, t̃, η) (j ≥ 1) of

xpre(x̃, t̃, η) satisfies the following linear inhomogeneous differential equation:

(4.29)

S−1(x0, t0)
∂xprej/2

∂x̃
+
∂x0
∂x̃

∂S−1

∂x
(x0, t0)x

pre
j/2 +

∂x0
∂x̃

∂S−1

∂t
(x0, t0)t

pre
j/2 = Rj/2(x̃, t̃).

Here S−1(x, t) =
√

QII,0(x, t) is the top term of SII,odd(x, t, η) and Rj/2 consists

of the terms given by xpre0 , . . . , xpre(j−1)/2. Since the coefficients of S̃J,odd(x̃, t̃, η) are

singular at simple turning points, the coefficient Rj/2 may be singular at x̃ = ã1
and x̃ = ã2, that is, x

pre
j/2 is not holomorphic there in general.

Recall that the transformation series s̃J(t̃, η) and sII(t, η) contain infinitely

many free parameters as explained in Section 2.3. Thus the formal series tpre(t̃, η)

also has free parameters, which will be denoted by Cn, and we write

(4.30) C(η) =

∞
∑

n=1

η−nCn.

Since the free parameters enter s̃J(t̃, η) and sII(t, η) additively (cf. Section 2.3),

the formal series tpre(t̃, η) contains the free parameters in the following manner:

(4.31) s̃J(t̃, η) = sII(t
pre(t̃, η), η) + C(η).

In the subsequent subsections, we will show that, by appropriately choosing the

free parameters Cn (i.e., correcting the choices of tprej/2’s in (4.29)), xprej/2’s become

holomorphic in neighborhoods of both simple turning points x̃ = ã1, ã2. The con-

dition on Cn’s together with the constraint (4.21) between the parameters (α̃, β̃)

and (α, β) gives a correspondence between 2-parameter solutions (λ̃J , ν̃J ) of (PJ)

and (λII, νII) of (PII).

§4.4. Matching two transformations

With the aid of the idea of [KT2], we show that by appropriately choosing the

free parameters Cn, the coefficients xprej/2 of the formal series xpre(x̃, t̃, η) become

holomorphic in a neighborhood of one of the two simple turning points x̃ = ã1 and

x̃ = ã2.

The following lemma can be shown as in [AKT1] and [KT2].

Lemma 4.5 (cf. [AKT1, Lemma 2.2], [KT2, Sublemma 4.1]). For each k = 1, 2,

there exist an open neighborhood Ũ ′
k of x̃ = ãk(t̃) and a formal series

(4.32) y(k)(x̃, t̃, η) =

∞
∑

j=0

η−j/2y
(k)
j/2(x̃, t̃, η)

satisfying the following conditions:
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(i) Each coefficient y
(k)
j/2(x̃, t̃, η) is holomorphic in Ũ ′

k × Ṽ .

(ii) The top term y
(k)
0 (x̃, t̃) is independent of η, and ∂y

(k)
0 /∂x̃ never vanishes on

Ũ ′
k × Ṽ .

(iii) y
(k)
0 (x̃, t̃) satisfies y

(k)
0 (ãk(t̃), t̃) = ak(t0(t̃)) and maps the Stokes segment γ̃k

of (SLJ ) to the Stokes segment γk of (SLII) locally near x̃ = ãk(t̃).

(iv) y
(k)
1/2 vanishes identically.

(v) For j ≥ 2, the η-dependence of y
(k)
j/2(x̃, t̃, η) is only through the instanton

terms exp(ℓΦ̃J (t̃, η)) (ℓ = j − 2− 2m with 0 ≤ m ≤ j − 2).

(vi) The equalities

(4.33) S̃J,odd(x̃, t̃, η) =

(

∂y(k)

∂x̃
(x̃, t̃, η)

)

SII,odd

(

y(k)(x̃, t̃, η), tpre(t̃, η), η
)

,

(4.34)
∂y(k)

∂t̃
(x̃, t̃, η) = ÃJ(x̃, t̃, η)

∂y(k)

∂x̃
(x̃, t̃, η)

−AII

(

y(k)(x̃, t̃, η), tpre(t̃, η), η
)∂tpre

∂t̃

hold on Ũ ′
k × Ṽ . Here tpre(t̃, η) is given in (4.25).

The top term y
(k)
0 (x̃, t̃) is fixed as the unique holomorphic function near x̃ =

ãk(t̃) satisfying

(4.35)

√

Q̃J,0(x̃, t̃) =

(

∂y
(k)
0

∂x̃
(x̃, t̃)

)
√

QII,0(y
(k)
0 (x̃, t̃), t̃)

at x̃ = ãk(t̃) and condition (iii) in Lemma 4.5. Since x0(x̃, t̃) constructed in Section

4.2 also satisfies the conditions for both k = 1, 2, we conclude that

(4.36) y
(1)
0 (x̃, t̃) = y

(2)
0 (x̃, t̃) = x0(x̃, t̃).

Now we try to adjust the free parameters Cn that remain in tpre(t̃, η) as de-

scribed in (4.31) so that the higher order terms of the transformations xpre(x̃, t̃, η)

and y(1)(x̃, t̃, η) constructed above coincide. This is a kind of “matching prob-

lem” which has been used in constructions of WKB theoretic transformations in

[AKT1], [KT1], [KT2], etc.

In this subsection we denote by ypre(x̃, t̃, η) the formal series y(1)(x̃, t̃, η), and

write

(4.37) ypre(x̃, t̃, η) =
∞
∑

j=0

η−j/2yprej/2(x̃, t̃, η) (= y(1)(x̃, t̃, η)).

We note that the coefficients of the formal series y(k)(x̃, t̃, η) are holomorphic along

each Stokes curve emanating from ãk(t̃) (cf. [AKT1, Appendix A.2]). Thus, there
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exists a domain in the x̃-plane on which the coefficients of both formal series

xpre(x̃, t̃, η) and ypre(x̃, t̃, η) are holomorphic since the Stokes segment γ̃1 connects

the simple turning point ã1(t̃) and the double turning point λ̃0(t̃) of (SLJ) when

t̃ = t̃∗. In what follows we suppose that x̃ lies in this domain. To attain the

matching, we introduce the following functions:

R(x, t, η) =

∫ x

a1(t)

η−1SII,odd(x, t, η) dx,(4.38)

F(x̃, t̃, η) =R
(

xpre(x̃, t̃, η), tpre(t̃, η), η
)

,(4.39)

G(x̃, t̃, η) =R
(

ypre(x̃, t̃, η), tpre(t̃, η), η
)

.(4.40)

Due to the factor η−1 in (4.38), F and G become formal series starting from η0.

It is clear from the definition (4.27) and (4.33) that

(4.41)
∂(F − G)

∂x̃
= η−1S̃J,odd(x̃, t̃, η)− η−1S̃J,odd(x̃, t̃, η) = 0.

Furthermore, using (2.22), (4.27) and (4.28), we have

∂F

∂t̃
= η−1SII,odd

(

xpre(x̃, t̃, η), tpre(t̃, η), η
)

×

(

∂xpre

∂t̃
(x̃, t̃, η) +AII(x

pre(x̃, t̃, η), tpre(t̃, η), η)
∂tpre

∂t̃
(t̃, η)

)

= η−1ÃJ(x̃, t̃, η)
∂xpre

∂x̃
(x̃, t̃, η)SII,odd

(

xpre(x̃, t̃, η), tpre(t̃, η), η
)

= η−1ÃJ(x̃, t̃, η)S̃J,odd(x̃, t̃, η)

by a straightforward computation. In the same way we have

∂G

∂t̃
= η−1ÃJ(x̃, t̃, η)S̃J,odd(x̃, t̃, η).

Therefore,

(4.42)
∂(F − G)

∂t̃
= 0.

Combining (4.41) and (4.42), we conclude that

(4.43) F − G =

∞
∑

j=0

η−j/2Ij/2

with genuine constants Ij/2.

Let us prove the following statement (∗)j for any j by induction on j:

(∗)j A correct choice of tprej/2 entails the vanishing of Ij/2 and coincidence of xprej/2

and yprej/2.
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As shown in Section 4.2 and (4.36), (∗)0 holds. Since xpre1/2 = ypre1/2 = 0 and

tpre1/2 = 0, (∗)1 is also valid. Suppose j ≥ 2 and (∗)k holds for all k < j. It follows

from (4.39) and (4.40) and the induction hypothesis that

(4.44) Ij/2 = S−1(x0, t0)(x
pre
j/2 − yprej/2).

Here S−1(x, t) is the top term of SII,odd(x, t, η). On the other hand, as we have

seen in (4.29), the functions xprej/2 and yprej/2 satisfy linear inhomogeneous differential

equations

Lxprej/2 =R(xpre0 , . . . , xpre(j−1)/2, t
pre
0 , . . . , tpre(j−1)/2),(4.45)

Lyprej/2 =R(ypre0 , . . . , ypre(j−1)/2, t
pre
0 , . . . , tpre(j−1)/2),(4.46)

where L is a differential operator defined by

Lw= S−1(x0, t0)
∂w

∂x̃
+
∂x0
∂x̃

∂S−1

∂x
(x0, t0)w(4.47)

+
∂x0
∂x̃

∂S−1

∂t
(x0, t0) t

pre
j/2,

and the right-hand side of (4.45) (resp., (4.46)) is a function determined by xprej′/2

(resp., yprej′/2) and t
pre
j′/2 with j′ ≤ j − 1. The induction hypothesis implies that

R(xpre0 , . . . , xpre(j−1)/2, t
pre
0 , . . . , tpre(j−1)/2) = R(ypre0 , . . . , ypre(j−1)/2, t

pre
0 , . . . , tpre(j−1)/2).

Moreover, since xprej/2 is non-singular near x̃ = λ̃0(t̃), the right-hand sides of (4.45)

and (4.46) must be holomorphic at x̃ = λ̃0(t̃). The method of variation of constants

shows that yprej/2 has an at most simple pole near x̃ = λ̃0(t̃), and has the form

(4.48) yprej/2(x̃, t̃, η) =
dj/2(t̃, η)− tprej/2(t̃, η)

2(x0(x̃, t̃)− λ0(t0(t̃)))
+ (regular function at x̃ = λ0(t̃)).

Here dj/2(t̃, η) is determined by xprej′/2 and tprej′/2 with j′ ≤ j − 1 and, in particular,

independent of tprej/2. Substituting (4.48) into (4.44) and taking the limit x̃→ λ̃0(t̃),

we obtain

(4.49)
1

2

√

F
(1)
II (t0(t̃))

(

tprej/2(t̃, η)− dj/2(t̃, η)
)

= Ij/2.

Here we have used the equalities (2.15), (4.19),

S−1(x0, t0) =
(

x0(x̃, t̃)− λ0(t0(t̃))
)

√

RII(x0(x̃, t̃), t0(t̃)),

and the fact that xprej/2(x̃, t̃, η) is holomorphic at x̃ = λ̃0(t̃). Again we emphasize

that Ij/2 is independent of t̃.
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Suppose that j is even, j = 2n (n ≥ 1). Then, in view of (4.31), the free

parameter Cn remains in tprej/2(t̃, η) = tpren (t̃, η) in the form

(4.50) tpren (t̃, η) =

(

ds0
dt

(t0(t̃))

)−1

Cn +N(t̃, η).

Here s0(t) is the top term (2.45) of the formal series sII(t, η) and hence

ds0
dt

(t0(t̃)) =
1

2

√

F
(1)
II (t0(t̃))

is non-zero, at least when t̃ = t̃∗. The term N(t̃, η) in (4.50) consists of terms

which are independent of Cn. Thus, (4.49) and (4.50) show that a suitable choice

of the free parameter Cn makes Ij/2 = In vanish. Hence (4.44) implies

(4.51) xprej/2(x̃, t̃, η) = yprej/2(x̃, t̃, η),

that is, the claim (∗)j .

Next we consider the case where j is odd. In this case, by alternating parity,

Ij/2 must contain only odd instanton terms, and hence it never contains constant

terms. Thus Ij/2 must vanish, and (4.44) implies (4.51).

Thus (∗)j is valid for every j. In other words, the formal series xpre(x̃, t̃, η)

and ypre(x̃, t̃, η) coincide after the correct choice of free parameters:

(4.52) xpre(x̃, t̃, η) = ypre(x̃, t̃, η) (= y(1)(x̃, t̃, η)).

Since all the free parameters in tpre(t̃, η) have been fixed, the correspondence of

parameters between (α̃(η), β̃(η)) and (α(η), β(η)) is also fixed. In what follows we

always assume that the parameters are chosen so that (4.52) holds, and denote by

(4.53) t(t̃, η) =

∞
∑

j=0

η−j/2tj/2(t̃, η)

the formal series tpre after the correct choice of the free parameters. In the next

subsection, we will show that the formal series (4.52) also coincides with y(2)(x̃, t̃, η)

and consequently the coefficients of (4.52) are also holomorphic near the simple

turning point x̃ = ã2(t̃).

§4.5. Transformation near the pair of two simple turning points and

transformation of 2-parameter solutions

Finally, in this subsection we show that the formal series y(1)(x̃, t̃, η) and

y(2)(x̃, t̃, η) constructed in Lemma 4.5 coincide. Our choice (4.2) of the constant c

in (PII) and (SLII) enables us to show the following claim.
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Proposition 4.6. The formal series y(1)(x̃, t̃, η) and y(2)(x̃, t̃, η) constructed in

Lemma 4.5 coincide:

(4.54) y(1)(x̃, t̃, η) = y(2)(x̃, t̃, η).

Consequently, the coefficients of y(1)(x̃, t̃, η) and y(2)(x̃, t̃, η) are holomorphic in x̃

on a domain containing the pair of simple turning points x̃ = ã1(t̃), ã2(t̃) of (SLJ).

Proof. We assume that case (A) in Figure 13 happens. The discussion below is

also applicable to case (B). Moreover, we will show (4.54) for t̃ = t̃∗. This is just

for the sake of clarity, and our proof is also valid for any t̃ in a neighborhood Ṽ

of t̃∗. (We may take a smaller neighborhood Ṽ if necessary.)

By (4.52) the coefficients of y(1)(x̃, t̃, η) are holomorphic in x̃ near λ̃0(t̃). There-

fore, there exists a domain Ũ ′ containing a part of the Stokes segment γ̃2 on which

the coefficients of both y(1)(x̃, t̃, η) and y(2)(x̃, t̃, η) are holomorphic because γ̃2
connects ã2(t̃∗) and λ̃0(t̃∗). In the proof of Proposition 4.6 we assume that x̃ lies

in the domain Ũ ′. Note that the top terms y
(1)
0 (x̃, t̃) and y

(2)
0 (x̃, t̃) coincide and are

holomorphic in Ũ ′ as we have seen in (4.36).

Using (4.33), we have

(4.55)

∫

δ̃
(k)
x̃

S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ
(k)
x

SII,odd(x, t(t̃, η), η) dx
∣

∣

∣

x=y(k)(x̃,t̃,η)

for k = 1, 2 (cf. [KT3, Section 2]). Here the integration path δ̃
(k)
x̃ is a contour in

the domain Ũ ′
k depicted in Figure 14. That is, δ̃

(k)
x̃ starts from the point on the

second sheet of the Riemann surface of
√

QJ,0(x̃, t̃) corresponding to x̃, encircles

the simple turning point ãk(t̃∗) and ends at the point corresponding to x̃ on the

first sheet. (The wiggly line designates the branch cut for
√

QJ,0(x̃, t̃).) The path

λ̃0(t̃∗)

ã1(t̃∗) ã2(t̃∗)

x̃

×δ̃
(1)
x̃

δ̃
(2)
x̃

Figure 14. The paths δ̃
(k)
x̃ .
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δ
(k)
x is defined in the same manner for J = II. The right-hand side of (4.55) is

written as

(4.56)

∫

δ
(k)
x

SII,odd(x, t(t̃, η), η) dx
∣

∣

∣

x=y(k)
=

∫

δ
(k)
x

SII,odd(x, t(t̃, η), η) dx
∣

∣

∣

x=y
(k)
0

+
∞
∑

n=0

∂nSII,odd

∂xn
(y

(k)
0 , t(t̃, η), η)

(y(k) − y
(k)
0 )n+1

(n+ 1)!

by (formal) Taylor expansion. Taking the difference of both sides of (4.55) for

k = 1 and k = 2, we have

(4.57)

∫

δ̃′
S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ′
SII,odd(x, t(t̃, η), η) dx

+
∞
∑

n=0

∂nSII,odd

∂xn
(x0, t(t̃, η), η)

(y(2) − x0)
n+1 − (y(1) − x0)

n+1

(n+ 1)!
,

where δ̃′ is a closed path in Ũ ′
1∪Ũ

′
2 which encircles the pair of simple turning points

ã1(t̃∗) and ã2(t̃∗) as indicated in Figure 15 (δ′ is defined in the same manner for

J = II). Here we have used the equality (4.36).

λ̃0(t̃∗)

ã1(t̃∗) ã2(t̃∗)δ̃′

δ̃0

λ̃0(t̃∗)

ã1(t̃∗) ã2(t̃∗)

δ̃

Figure 15. The cycles δ̃′, δ̃0 and δ̃.

Now we prove the following key lemma.

Lemma 4.7. If the constant c in (PII) and (SLII) is chosen by (4.2) and the free

parameters satisfy (4.21), then

(4.58)

∫

δ̃′
S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ′
SII,odd(x, t, η) dx.

The left-hand (resp., right-hand) side of (4.58) does not depend on t̃ (resp., t),

and hence (4.58) is an equality for constants.
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Proof. Let δ̃ be a closed cycle encircling two Stokes segments γ̃1 and γ̃2 as indicated

in Figure 15, and δ be a similar cycle for J = II. The cycles can be decomposed as

δ̃′ = δ̃− δ̃0 and δ′ = δ− δ0, where δ̃0 is a closed cycle encircling the double turning

point λ̃0(t̃∗) as in Figure 15, and δ0 is defined in the same manner for J = II. Then

(4.21) implies that

(4.59)

∫

δ̃0

S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ0

SII,odd(x, t, η) dx

since ẼJ/4 and EII/4 are the residues of S̃J,odd(x̃, t̃, η) dx̃ and SII,odd(x, t, η) dx

at the double turning points λ̃0(t̃) and λ0(t0(t̃)), respectively. In particular, both

sides of (4.59) are independent of t̃ and t.

Furthermore, our choice (4.2) of the constant c in (PII) and (SLII) entails that

(4.60)

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ

SII,odd(x, t, η) dx

for the following reason.

First, since we assume that all singular points of Q̃J,0(x̃, t̃) are poles of even

order in Assumption 4.1(5),
√

Q̃J,0(x̃, t̃) (and hence S̃J,odd(x̃, t̃, η)) does not have

branch points except for ã1(t̃) and ã2(t̃). Therefore, the left-hand side of (4.60)

reduces to the sum of the residues of S̃J,odd(x̃, t̃, η) dx̃ at singular points of (SLJ).

As is noted in (2.31), these residues coincide with those of η
√

Q̃J,0(x̃, t̃) dx̃. Thus

we have

(4.61)

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃ = η

∫

δ̃

√

Q̃J,0(x̃, t̃) dx̃.

On the other hand, the equality (4.17) shows that
∮

δ̃

√

Q̃J,0(x̃, t̃) dx̃= 2

(
∫

γ̃1

√

Q̃J,0(x̃, t̃) dx̃−

∫

γ̃2

√

Q̃J,0(x̃, t̃) dx̃

)

(4.62)

=

∫ r̃2

r̃1

√

F̃
(1)
J (t̃) dt̃ = 2πic.

Here we have used (4.2). Since (4.61) and (4.62) also hold for J = II, we have

(4.63)

∫

δ

SII,odd(x, t, η) dx = 2πicη.

Combining (4.61)–(4.63), we obtain

(4.64)

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃ = 2πicη =

∫

δ

SII,odd(x, t, η) dx,

which proves (4.60).
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As is explained above, we have
∫

δ̃′
S̃J,odd(x̃, t̃, η) dx̃=

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃−

∫

δ̃0

S̃J,odd(x̃, t̃, η) dx̃,

∫

δ′
SII,odd(x, t, η) dx=

∫

δ

SII,odd(x, t, η) dx−

∫

δ0

SII,odd(x, t, η) dx.

Therefore, the desired equality (4.58) follows from (4.59) and (4.60).

By Lemma 4.7, the equality (4.57) implies that

(4.65)

∞
∑

n=0

∂nSII,odd

∂xn
(x0, t(t̃, η), η)

(y(2) − x0)
n+1 − (y(1) − x0)

n+1

(n+ 1)!
= 0.

The coefficient of η−(j−2)/2 on the left-hand side of (4.65) can be written as

S−1(x0, t0)(y
(2)
j/2 − y

(1)
j/2) +

(

Tj/2(y
(2)
0 , . . . , y

(2)
(j−1)/2)− Tj/2(y

(1)
0 , . . . , y

(1)
(j−1)/2)

)

,

where S−1(x, t) is the top term of SII,odd(x, t, η), and Tj/2(y
(2)
0 , . . . , y

(2)
(j−1)/2) (resp.,

Tj/2(y
(1)
0 , . . . , y

(1)
(j−1)/2)) consists of the terms given by y

(2)
0 , . . . , y

(2)
(j−1)/2 (resp.,

y
(1)
0 , . . . , y

(1)
(j−1)/2). Hence we can prove y

(1)
j/2(x̃, t̃, η) = y

(2)
j/2(x̃, t̃, η) for all j ≥ 0

by induction.

Set

(4.66) x(x̃, t̃, η) = xpre(x̃, t̃, η) (= y(1)(x̃, t̃, η) = y(2)(x̃, t̃, η)).

We have proved that the coefficients of the formal series x(x̃, t̃, η) are holomorphic

in a domain Ũ containing the double turning point λ̃0(t̃) and the pair of simple

turning points ã1(t̃) and ã2(t̃). The formal series x(x̃, t̃, η) and t(t̃, η) have almost

all the properties desired in Theorem 4.2.

It remains to prove (4.7). This is a consequence of Proposition 4.4; in fact,

(4.28) reads

(4.67) 2B̃J(x̃, t̃, η)
x(x̃, t̃, η)− λII(t(t̃, η), η)

x̃− λ̃J(t̃, η)

∂x

∂x̃

=
∂t

∂t̃
+ 2(x(x̃, t̃, η)− λII(t(t̃, η), η)

∂x

∂t̃
.

Here B̃J(x̃, t̃, η) is defined to be (x̃− λ̃J(t̃, η))ÃJ (x̃, t̃, η), which is holomorphic at

x̃ = λ̃J(t̃, η) in view of Table 5. Since the right-hand side of (4.67) is non-singular

at x̃ = λ̃J(t̃, η), we find

(4.68) x(λ̃J(t̃, η), t̃, η) = λII(t(t̃, η), η).

Thus we have proved all claims in Theorem 4.2.
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§5. Transformation to (PIII′(D7)) on loop-type P -Stokes segments

In this section we show our second main claim concerning WKB theoretic trans-

formation of Painlevé transcendents on a loop-type P -Stokes segment. We put ∼

over variables or functions relevant to (PJ) and (SLJ ) as in the previous section.

§5.1. Assumptions and statements

Let (λ̃J , ν̃J ) = (λ̃J(t̃, η; α̃, β̃), ν̃J (t̃, η; α̃, β̃)) be a 2-parameter solution of (HJ ) de-

fined in a neighborhood of a point t̃∗ ∈ ΩJ , and consider (SLJ ) and (DJ ) with

(λ̃J , ν̃J ) substituted into their coefficients. In this section we impose the following

conditions.

Assumption 5.1. (1) J ∈ {III′(D7), III
′(D6), IV,V,VI}.

(2) There is a P -Stokes segment Γ̃ of loop type in the P -Stokes geometry of (PJ )

which emanates from and returns to a simple P -turning point r̃ of λ̃J (which

is not of simple-pole type), and the point t̃∗ in question lies on Γ̃ as indicated

in Figure 16(a).

(3) The function (2.9) appearing in the instanton Φ̃J(t̃, η) of the 2-parameter

solution (λ̃J , ν̃J ) is normalized at the simple P -turning point r̃:

(5.1) φ̃J(t̃) =

∫ t̃

r̃

√

F̃
(1)
J (t̃) dt̃.

Here the integration path is taken along one of the paths Γ̃t̃,1 or Γ̃t̃,2 shown

in Figure 16(a). (Since there are singular points inside a loop-type P -Stokes

segment in general, the two paths Γ̃t̃,1 and Γ̃t̃,2 are not homotopic in general.)
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(a): The loop-type P -Stokes segment Γ̃
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(b): The Stokes geometry of (SLJ ) at
t̃ = t̃∗

Figure 16. The P -Stokes geometry of (PJ) and an example of the Stokes geometry

of (SLJ ) satisfying Assumption 5.1.

(4) The Stokes geometry of (SLJ ) at t̃ = t̃∗ contains the same configuration as in

Figure 16(b). That is, the following conditions hold:
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• The double turning point λ̃0(t̃∗) is connected to the same simple turning

point ã(t̃∗) by two Stokes segments γ̃1 and γ̃2. Here the labels of the Stokes

segments are given as follows: When t̃ tends to r̃ along the path Γ̃t̃,1 (resp.,

Γ̃t̃,2) depicted in Figure 16(a), the Stokes segment γ̃1 (resp., γ̃2) shrinks to

a point (cf. Proposition 3.5).

• The union of the Stokes segments γ̃1 and γ̃2 divides the x̃-plane into two

domains. Let W̃ be the one which contains the end-points p̃1 and p̃2 of two

Stokes curves of (SLJ ) emanating from λ̃0(t̃) other than γ̃1 or γ̃2. Then the

end-point of the Stokes curve emanating from ã(t̃∗) is not contained in the

domain W̃ . (Unlike in Figure 16(b), the domain W̃ may contain x̃ = ∞.

Also, the points p̃1 and p̃2 may coincide.)

(5) The domain W̃ defined above contains no turning point of (SLJ ) other than

ã(t̃) and λ̃0(t̃). All singular points of Q̃J,0(x̃, t̃) (as a function of x̃) contained

in W̃ are poles of even order.

Since the P -Stokes geometry for J = I, II, and III′(D8) never contains a

P -Stokes segment of loop type, we have excluded these cases. Similarly to Theorem

4.2, under Assumption 5.1 we will construct a formal transformation series to the

third Painlevé equation (PIII′(D7)) of type D7.

We fix the constant c contained in (PIII′(D7)) and (SLIII′(D7)) by

(5.2) c =
1

2πi

∫

Γ̃

√

F̃
(1)
J (t̃) dt̃,

where the integration path is taken along the loop-type P -Stokes segment Γ̃ in

the same direction as the integral (5.1); that is, when (5.1) is defined along the

path Γ̃t̃,1 (resp., Γ̃t̃,2) in Figure 16(a), then the integration path in (5.2) is taken

in the counter-clockwise (resp., clockwise) direction along Γ̃. Here we assume that

c ∈ iR>0. The P -Stokes geometry of (PIII′(D7)) (described in the variable u given by

(3.11)) is the same as in Figure 17 (P) when c is given by (5.2). Thus, the P -Stokes

geometry of (PIII′(D7)) has a loop-type P -Stokes segment Γ starting from and re-

turning to the same P -simple turning point r. (As is remarked in Section 3.3, when

c ∈ iR<0, the P -Stokes geometry of (PIII′(D7)) is the reflection u 7→ −u of Figure 17

(P), and our discussion below also applies to the case c ∈ iR<0.) Furthermore, we

can verify that the corresponding Stokes geometry of (SLIII′(D7)) on the loop-type

P -Stokes segment Γ is the same as the Stokes geometry in Figure 17 (SL). That

is, when a point t lies on Γ, the corresponding Stokes geometry of (SLIII′(D7)) has

a double turning point x = λ0(t) and a simple turning point x = a(t), and two

Stokes segments γ and γ′, both connecting λ0(t) and a(t). These Stokes segments

are labeled as follows: When t tends to r along the path Γt (resp., Γ
′
t) depicted in
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× u∗
Γ

r

0

a(t∗)

λ0(t∗)

γ

γ′

r

t

�

t

�

0

t

�

t

�

(P): The P-Stokes geometry of (PIII′(D7))
(described on the u-plane) (SL): The Stokes geomtry of (SLIII′(D7))

at t = t∗

Figure 17. The P -Stokes geometry of (PIII′(D7)) and the Stokes geometry of

(SLIII′(D7)).

Figure 17 (P), the Stokes segment γ (resp., γ′) shrinks to a point (cf. Proposition

3.5).

Having the above geometric properties in mind, we formulate our second main

result.

Theorem 5.2. Under Assumption 5.1, for any 2-parameter solution (λ̃J , ν̃J ) =

(λ̃J (t̃, η; α̃, β̃), ν̃J (t̃, η; α̃, β̃)) of (HJ ), there exist

• an annular domain Ũ which contains the union γ̃1 ∪ γ̃2 of two Stokes segments,

• a neighborhood Ṽ of t̃∗,

• formal series

x(x̃, t̃, η) =
∑

j≥0

η−j/2xj/2(x̃, t̃, η), t(t̃, η) =
∑

j≥0

η−j/2tj/2(t̃, η)

whose coefficients {xj/2(x̃, t̃, η)}
∞
j=0 {tj/2(t̃, η)}

∞
j=0 are functions defined on

Ũ × Ṽ and Ṽ , respectively, and may depend on η,

• a 2-parameter solution

(λIII′(D7), νIII′(D7)) = (λIII′(D7)(t, η;α, β), νIII′(D7)(t, η;α, β)),

(α, β) =
(

∞
∑

n=0

η−nαn,

∞
∑

n=0

η−nβn

)

,

of (HIII′(D7)) with the constant c being determined by (5.2), and the function

(2.9) appearing in the instanton ΦIII′(D7)(t, η) that is normalized at a simple

P -turning point r of (PIII′(D7)) as

(5.3) φIII′(D7)(t̃) =

∫ t

r

√

F
(1)
III′(D7)

(t) dt,
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which satisfy the relations below:

(i) The function t0(t̃) is independent of η and satisfies

(5.4) φ̃J(t̃) = φ̃III′(D7)(t0(t̃)).

(ii) dt0/dt̃ never vanishes on Ṽ .

(iii) The function x0(x̃, t̃) is also independent of η and satisfies

(5.5) x0(λ̃0(t̃), t̃) = λ0(t0(t̃), c),

(5.6) x0(ã(t̃), t̃) = a(t0(t̃), c).

Here λ0(t) and a(t) are double and simple turning points of (SLIII′(D7)).

(iv) ∂x0/∂x̃ never vanishes on Ũ × Ṽ .

(v) x1/2 and t1/2 vanish identically.

(vi) The functions {xj/2(x̃, t̃, η)}
∞
j=0 are single-valued in the annular domain Ũ

as functions of x̃.

(vii) The η-dependence of xj/2 and tj/2 (j ≥ 2) is only through the instanton

terms exp(ℓΦ̃J (t̃, η)) (ℓ = j− 2− 2m with 0 ≤ m ≤ j− 2) that appear in the

2-parameter solution (λ̃J , ν̃J ) of (HJ ).

(viii) The following relations hold:

(5.7) x(λ̃J(t̃, η; α̃, β̃), t̃, η) = λIII′(D7)(t(t̃, η), η;α, β),

(5.8) Q̃J (x̃, t̃, η) =

(

∂x(x̃, t̃, η)

∂x̃

)2

QIII′(D7)(x(x̃, t̃, η), t(t̃, η), η)

−
1

2
η−2{x(x̃, t̃, η); x̃},

where the 2-parameter solutions of (HJ ) and (HIII′(D7)) are substituted into

(λ, ν) in the coefficients of Q̃J and QIII′(D7), respectively, and {x(x̃, t̃, η); x̃}

denotes the Schwarzian derivative (2.41).

§5.2. Construction of the top term of the transformation

First we explain the construction of t0(t̃) and x0(x̃, t̃). In the proof we consider the

case where the integration path (5.1) is taken along the path Γ̃t̃,1 in Figure 16(a).

(This additional assumption is imposed just to fix ideas, and our discussion below

is also applicable to the case where the integration path is taken along Γ̃t̃,2.) Then

the definition (5.2) of the constant c implies that

(5.9)

∫

Γ̃t̃,1

√

F̃
(1)
J (t̃) dt̃−

∫

Γ̃t̃,2

√

F̃
(1)
J (t̃) dt̃ =

∫

Γ̃

√

F̃
(1)
J (t̃) dt̃ = 2πic.
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Let us construct t0(t̃). Similarly to Section 4.2, under the assumption that t̃∗
lies on the P -Stokes segment Γ̃, we can construct t

(k)
0 (t̃) so that

(5.10) φ̃J,k(t̃) = φIII′(D7),k(t
(k)
0 (t̃))

for k = 1, 2, where

(5.11) φ̃J,k(t̃) =

∫

Γ̃t̃,k

√

F̃
(1)
J (t̃) dt̃, φIII′(D7),k(t) =

∫

Γt,k

√

F
(1)
III′(D7)

(t) dt.

Here the path Γt,k for φIII′(D7),k(t) is a path from the P -turning point r of

(PIII′(D7)) to t defined by the following rule. Note that, under Assumption 5.1(4),

we have the following two possibilities for the Stokes geometry of (SLJ ) at t̃∗ (see

Figure 18):

(A) The Stokes segment γ̃2 follows the Stokes segment γ̃1 in the counter-clockwise

order near λ̃0(t̃∗).

(B) γ̃2 follows γ̃1 in the clockwise order near λ̃0(t̃∗).

Then we set

(5.12) (Γt,1,Γt,2) =

{

(Γt,Γ
′
t) when case (A) happens,

(Γ′
t,Γt) when case (B) happens,

where Γt and Γ′
t are the paths depicted in Figure 17 (P). Moreover, the branch of

√

F
(1)
III′(D7)

(t) in (5.11) is chosen so that the sign on the right-hand side of (3.17)

is + (the orientation of Γ is given appropriately):

(5.13)

∫

Γt,1

√

F
(1)
III′(D7)

(t) dt−

∫

Γt,2

√

F
(1)
III′(D7)

(t) dt=

∫

Γ

√

F
(1)
III′(D7)

(t) dt=+2πic.

This choice (5.12) of Γt,1 and Γt,2 is essential in the construction of x0(x̃, t̃).
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Figure 18. Two possibilities for adjacent Stokes segments of (SLJ ).
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Since the right-hand sides of (5.9) and (5.13) coincide, by the discussion of

Section 4.2 we can show that t
(1)
0 (t̃) = t

(2)
0 (t̃). We define t0(t̃) = t

(1)
0 (t̃) = t

(2)
0 (t̃).

Then, taking the path in (5.3) along Γ1,t, we have (5.4).

Next we construct x0(x̃, t̃). Set

(γ1, γ2) =

{

(γ, γ′) when case (A) happens,

(γ′, γ) when case (B) happens,
(5.14)

where γ and γ′ are the Stokes segments of (SLIII′(D7)) in Figure 17 (SL). Then,

by (5.10) and our choice (5.12) of paths in (5.11), the discussion of Section 4.2

is also valid in this case because the relative location (ã, λ̃0, γ̃1, γ̃2) of the simple

turning point, the double turning point and the two Stokes segments of (SLJ )

completely coincides with those (a, λ0, γ1, γ2) of (SLIII′(D7)). Thus we can con-

struct x0(x̃, t̃) satisfying (5.5) and (5.6) and mapping the Stokes segments γ̃1 and

γ̃2 to γ1 and γ2, respectively. Furthermore, x0(x̃, t̃) becomes single-valued in an

annular domain Ũ containing γ̃1 ∪ γ̃2 due to the following fact: At each turning

point ã(t̃) and λ̃0(t̃), there exists a unique holomorphic function which maps γ̃1
to γ1 and it must coincide with x0(x̃, t̃).

In what follows we choose the branches of
√

Q̃J,0(x̃, t̃) and
√

QIII′(D7),0(x, t)

appearing in the proof so that
∫

γ̃k

√

Q̃J,0(x̃, t̃) dx̃=
1

2

∫

Γ̃t̃,k

√

F̃
(1)
J (t̃) dt̃,(5.15)

∫

γk

√

QIII′(D7),0(x, t) dx=
1

2

∫

Γt,k

√

F
(1)
III′(D7)

(t) dt(5.16)

for k = 1, 2. In (5.15) and (5.16) the Stokes segments are directed from the simple

turning point to the double turning point.

§5.3. Construction of higher order terms of the transformation series

and transformation of 2-parameter solutions

Here we explain the construction of higher order terms of the transformation series.

We note that most of the discussion in Section 4 is applicable in this case. The

transformation series xpre(x̃, t̃, η) near the double turning point is constructed in

the same manner as in Section 4.3, and the matching procedure of Section 4.4 is

valid since we have only used the fact that “there is a Stokes segment of (SLJ )

connecting a simple turning point and the double turning point λ̃0(t̃∗)”. What

we have to prove here is the single-valuedness of the higher order coefficients of

formal series in the annular domain Ũ containing the union γ̃1 ∪ γ̃2 of two Stokes

segments.
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Define

xpre(x̃, t̃, η) = z−1
III′(D7)

(z̃J (x̃, t̃, η), sJ (t̃, η), η),(5.17)

tpre(t̃, η) = s−1
III′(D7)

(s̃J (t̃, η), η)(5.18)

in the same manner as in (4.24) and (4.25). Here we have fixed the correspondence

of free parameters (α̃, β̃) of (λ̃J , ν̃J ) and (α, β) of (λIII′(D7), νIII′(D7)) so that

(5.19) ẼJ(α̃, β̃) = EIII′(D7)(α, β),

similarly to (4.21). Let y(1)(x̃, t̃, η) and y(2)(x̃, t̃, η) be formal series which transform

(SLJ ) to (SLIII′(D7)) near the simple turning point ã(t̃) in the sense of Lemma 4.5.

Under our geometric assumption these two formal series coincide near x̃ = ã(t̃)

for the following reason. Since the top term of y
(1)
0 (x̃, t̃) of y(1)(x̃, t̃, η) maps the

Stokes segment γ̃1 of (SLJ ) to the Stokes segment γ1 of (SLIII′(D7)) by definition,

it also maps the other Stokes segment γ̃2 to γ2 simultaneously. Thus y
(1)
0 (x̃, t̃)

must coincide with y
(2)
0 (x̃, t̃) near x̃ = ã(t̃), and hence the higher order terms also

coincide, at least near x̃ = ã(t̃). In particular, their top terms also coincide with

x0(x̃, t̃) constructed in Section 5.2.

Furthermore, by the same argument as in Section 4.4 we can prove that all

coefficients of y(1)(x̃, t̃, η) become holomorphic also at x̃ = λ̃0(t̃) and we have

(5.20) xpre(x̃, t̃, η) = y(1)(x̃, t̃, η),

after we choose the free parameters in tpre(t̃, η) appropriately. We denote by t(t̃, η)

the formal series tpre(t̃, η) with parameters chosen appropriately in the above sense.

Then there exists a domain Ũ ′ near λ̃0(t̃) in which all the coefficients of the two

formal series y(1)(x̃, t̃, η) and y(2)(x̃, t̃, η) are holomorphic. We have to show that

the analytic continuation of the coefficients of y(1)(x̃, t̃, η) along the Stokes segment

γ̃1 coincides with the analytic continuation of the coefficients of y(2)(x̃, t̃, η) along

the Stokes segment γ̃2 in the domain Ũ ′. We will prove that the single-valuedness

is guaranteed by our choice (5.2) of the constant c in (PIII′(D7)) and (SLIII′(D7)).

Proposition 5.3. The analytic continuation of the coefficients of y(1)(x̃, t̃, η)

along the Stokes segment γ̃1 coincides with the analytic continuation of the co-

efficients of y(2)(x̃, t̃, η) along the Stokes segment γ̃2 in the domain Ũ ′:

(5.21) y(1)(x̃, t̃, η) = y(2)(x̃, t̃, η).

Consequently, the coefficients of y(1)(x̃, t̃, η) and y(2)(x̃, t̃, η) are holomorphic and

single-valued in x̃ on an annular domain Ũ containing γ̃1 ∪ γ̃2.
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Proof. In the proof we assume that case (A) in Figure 18 happens. (The discussion

is also applicable to case (B).) Moreover, we will prove (5.21) for t̃ = t̃∗. This is

just for the sake of clarity, and our proof is also valid in a neighborhood Ṽ of t̃∗.

(We may take a smaller neighborhood Ṽ of t̃∗.)

Let x̃ be a point in the domain Ũ ′. Similarly to (4.55), we have

(5.22)

∫

δ̃
(k)
x̃

S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ
(k)
x

SIII′(D7),odd(x, t(t̃, η), η) dx
∣

∣

∣

x=y(k)(x̃,t̃,η)

for k = 1, 2. Here the integration path δ̃
(k)
x̃ is depicted in Figure 19: it starts from

the point on the second sheet of the Riemann surface of
√

QJ,0(x̃, t̃) corresponding

to x̃, goes to the simple turning point ã(t̃∗) along the Stokes segment γ̃k, encircles

the simple turning point ã(t̃∗) and returns to the point corresponding to x̃ on the

first sheet along the Stokes segment γ̃k. (The wiggly line designates the branch cut

for
√

QJ,0(x̃, t̃).) The path δ
(k)
x is defined in the same manner for J = III′(D7).

Just as in (4.57), taking the difference of both sides of (5.22) for k = 1 and k = 2,

we obtain

(5.23)

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ

SIII′(D7),odd(x, t(t̃, η), η) dx

+

∞
∑

n=0

∂nSIII′(D7),odd

∂xn
(x0, t(t̃, η), η)

(y(2) − x0)
n+1 − (y(1) − x0)

n+1

(n+ 1)!
.

Here δ̃ = δ̃+ + δ̃− is the sum of two closed cycles δ̃+ and δ̃−, where δ̃+ (resp., δ̃−)

encircles the double turning point λ̃0(t̃) and all singular points contained in the

domain W̃ (cf. Assumption 5.1(4)) in the clockwise (resp., counter-clockwise) di-

rection on the first (resp., the second) sheet of the Riemann surface of
√

Q̃J,0(x̃, t̃)

as indicated in Figure 19. The path δ for J = III′(D7) is defined in the same

manner.
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line) designates the cycle δ̃+ (resp., δ̃−)

Figure 19. The cycles δ̃
(k)
x̃ (k = 1, 2) and δ̃ = δ̃+ + δ̃−.
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Under Assumption 5.1(5), there are no branch points of S̃J,odd(x̃, t̃, η) inside

the closed cycle δ̃. Thus the left-hand side of (5.23) can be written as

(5.24)

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃ =

∫

δ̃+

S̃J,odd(x̃, t̃, η) dx̃+

∫

δ̃−

S̃J,odd(x̃, t̃, η) dx̃

= 4πi Res
x̃=λ̃0(t̃)

S̃J,odd(x̃, t̃, η) dx̃+4πiR = πiẼJ +4πiR,

where R is the sum of the residues of S̃J,odd(x̃, t̃, η) dx̃ at the singular points of

Q̃J,0(x̃, t̃) in W̃ . As in the proof of Lemma 4.7 we have (cf. (4.61))

4πiR = η

∫

δ̃

√

Q̃J,0(x̃, t̃) dx̃.

Here Q̃J,0(x̃, t̃) is holomorphic at x̃ = λ̃0(t̃). On the other hand, using (5.9) and

(5.15), we have

(5.25)

∮

δ̃

√

Q̃J,0(x̃, t̃) dx̃ = 2

(
∫

γ̃2

√

Q̃J,0(x̃, t̃) dx̃−

∫

γ̃1

√

Q̃J,0(x̃, t̃) dx̃

)

= −2πic.

Then (5.24) yields

(5.26)

∫

δ̃

S̃J,odd(x̃, t̃, η) dx̃ = πiẼJ − 2πicη.

The same computation is also valid for J = III′(D7) and we obtain

(5.27)

∫

δ

SIII′(D7),odd(x, t, η) dx = πiEIII′(D7) − 2πicη

from (5.13) and (5.16). Since the parameters (α̃, β̃) and (α, β) are chosen as in

(5.19), the equality (5.23) implies

∞
∑

n=0

∂nSIII′(D7),odd

∂xn
(x0, t(t̃, η), η)

(y(2) − x0)
n+1 − (y(1) − x0)

n+1

(n+ 1)!
= 0.

Therefore, by induction we have the desired equality (5.21) on Ũ ′. Since y(1)(x̃, t̃, η)

and y(2)(x̃, t̃, η) coincide at the simple turning point ã(t̃) as is noted above, we have

proved the single-valuedness of the transformation series.

Set

(5.28) x(x̃, t̃, η) = xpre(x̃, t̃, η) (= y(1)(x̃, t̃, η) = y(2)(x̃, t̃, η)).

Then, since the equations (4.67) etc. also hold if we replace II by III′(D7), we have

(5.29) x(λ̃J(t̃, η), t̃, η) = λIII′(D7)(t(t̃, η), η).

Thus we have proved all claims in Theorem 5.2.
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Local reduction of 0-parameter solutions for Painlevé hierarchies (PJ ) (J=I, II-1 or
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transcendents, in Painlevé transcendents—their asymptotics and physical applications,
NATO ASI Ser. B 278, Plenum, 1992, 81–96. Zbl 00929738 MR 1243682

[Ki2] , Caustics in 1+1 integrable systems. J. Math. Phys. 35 (1994), 2934–2954.
Zbl 0807.35135 MR 1275481

[Ki3] , An isomonodromy cluster of two regular singularities, J. Phys. A 39 (2006),
12033–12072 (Sfb 288 preprint No. 149, 1994). Zbl 1116.34070 MR 2266211

[KiVa] A. V. Kitaev and A. H. Vartanian, Connection formulae for asymptotics of solutions
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