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Abstract

Let x be a bi-homomorphism over an algebraically closed field of characteristic zero. Let
U(x) be a generalized quantum group, associated with x, such that dimU*(x) = oo,
|R*(x)| < oo, and R*(x) is irreducible, where U™ () is the positive part of U(x), and
R™(x) is the Kharchenko positive root system of U"(x). In this paper, we give a list
of finite-dimensional irreducible U (x)-modules, relying on a special reduced expression
of the longest element of the Weyl groupoid of R(x) := R (x) U (—=R"(x)). From the
list, we explicitly obtain lists of finite-dimensional irreducible modules for simple Lie
superalgebras g of types A—G and the (standard) quantum superalgebras U,(g). An
intrinsic gap appears between the lists for g and Uq(g), e.g, if g is B(m,n) or D(m,n).
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Introduction

Let K be an algebraically closed field of characteristic zero (see also (1.1)). Let x
be a bi-homomorphism over K.
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In this paper, we give a list of finite-dimensional irreducible modules of a
generalized quantum group U(y) over K whose positive part U (x) is infinite-
dimensional and has a Kharchenko PBW-basis with a finite irreducible positive
root system. We call such a U(x) a generalized quantum group of finite-and-
infinite-dimensional type (FID-type, for short). From the list, we explicitly obtain
lists of finite-dimensional irreducible modules for simple Lie superalgebras g of
types A-G and the (standard) quantum superalgebras Uy (g).

We begin by recalling some facts about Lie superalgebras. The class of con-
tragredient Lie superalgebras [17, Subsection 2.5.1] is defined in a way similar to
that for Kac-Moody Lie algebras. Kac classified the finite-dimensional simple Lie
superalgebras [17, Theorem 5], where finite-dimensional irreducible contragredient
Lie superalgebras played crucial roles; those are

(1) simple Lie algebras of type Xy, where X = A, ..., G,

(2) silm+1|n+1) (m+n>1 mn>0),

(3) B(m,n) (m >0, n > 1), C(n) (n > 3), D(m,n) (m > 2, n > 1), D(2,1;x)
(x #£0, 1), F(4), G(3).

The ones in (1) and (3) are simple. The simple Lie superalgebras A(m,n) are
defined by sl(m + 1|n 4+ 1) if m # n, and otherwise A(n,n) :=sl(n+ 1|n+ 1)/i,
where i is its unique one-dimensional ideal.

Bases of the root systems of the Lie superalgebras of (2)—(3) are not conjugate
under the action of their Weyl groups. However any two of them can be transformed
to each other by the action of their Weyl groupoids W, axiomatically treated by
Heckenberger and the second author [13]. Kac [17, Theorem 8(c)] gave a list of
finite-dimensional irreducible modules of the Lie superalgebras in (2)—(3) above.
After reading the main part of this paper, a reader familiar with Lie superalgebras
will realize that our approach can also be applied to recover Kac’s list; indeed we
can also obtain it by a specialization argument (see Subsection 7.6). Our idea is to
use a specially good reduced expression of the longest element (with a ‘standard’
end domain) of the Weyl groupoid W (see also Remark 7.17).

Let g :=sl(m+ 1|n+ 1) (m # n) or C(n) for example. Let h be a Cartan
subalgebra of g such that the Dynkin diagram of (g, ) is a standard one. Let
II = {a; | 1 <¢ < dimbh} be the set of simple roots «; corresponding to b.
Let wy be the longest element of the Weyl groupoid W of g whose end domain
corresponds to f. Then the length ¢(wp) of wq is equal to the number of positive
roots of g. Let k be the number of even positive roots of g. The key fact used

in this paper is that there exists a reduced expression s;, - of wqy such

a Sil(ﬂlo)
that s;, ---s;, ,(a;,), 1 < 2 < k, are even positive roots, and s;, -+ -5, (o, ),

kE+1 <y < {(wpy), are odd positive roots. This is essential to showing that an
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irreducible highest weight g-module of highest weight A is finite-dimensional if
and only if 2(A, a;)/(ay, ;) € Z>q for all even simple roots «;, where (, ) is the
bilinear form coming from the Killing form of g.

Motivated by Andruskiewitsch and Schneider’s theory [2], [3] toward the clas-
sification of pointed Hopf algebras, Heckenberger [10] classified the Nichols al-
gebras of diagonal type. Let K be an algebraically closed field of characteris-
tic zero. Let U(x) be the K-algebra defined as in Lusztig’s book [19, 3.1.1(a)—
(e)] for any bi-homomorphism x : ZII x ZII — K*, where IT = {o; | @ € I}
is the set of simple roots of the Kharchenko positive root system R™(x) asso-
ciated with x. We call U(x) a generalized quantum group. We say that x (or
U(x)) is of finite type if RT(x) is finite and irreducible. We say that y (or U(x))
is of finite-and-infinite-dimensional type (FID-type, for short) if x is of finite
type and dimU™(x) = oo. A Nichols algebra of diagonal type is isomorphic
to the positive part UT(x) of U(x) for some x of finite type. If U(y) is of
FID-type, then it is a multi-parameter quantum algebra of a simple Lie alge-
bra in (1), a multi-parameter quantum superalgebra of a simple Lie superalge-
bra in (2) or (3), or one of the two algebras in [10, Table 1, Row 5, Table 3,
Row 14]. We show that every finite-dimensional irreducible U (x)-module is a high-
est weight module (see Lemma 4.23). Our main results, Theorems 7.1 (rank one
cases), 7.2 (simple Lie algebra cases), 7.4 (A(m — 1, N —m) and C(N) cases), 7.6
(B(m, N —m) cases), 7.7 (D(m, N —m) cases) and 7.8 (F(4), G(3), D(2, 1;z) cases
and extra cases) give a list of finite-dimensional irreducible modules of U(x) of
FID-type in the way mentioned above. From it, we explicitly obtain lists of finite-
dimensional irreducible modules for the standard quantum superalgebra U, (g) (see
Lemma 7.12) and the simple Lie superalgebra g (see Lemma 7.15) corresponding
to x.

Studying the representation theory of U(x) is interesting and fruitful since
the factorization formula of Shapovalov determinants of any U(x) of finite type
has been obtained by Heckenberger and the second author [14]. We believe that it
would help us to find a new approach to Lusztig’s conjecture [20].

This paper is organized as follows.

In Section 1, we collect general facts about Weyl groupoids. In Section 2,
we give examples of reduced expressions of longest elements of Weyl groups,
which will be used in Section 3. In Section 3, we give reduced expressions of
the Weyl groupoids associated to Lie superalgebras of ABCD types. In Section 4,
we give the definition of generalized quantum groups U(x) associated with any
bi-homomorphism y, explain Kharchenko’s PBW theorem for U(y), and intro-
duce the Weyl groupoids associated with x. In Section 5, we discuss the properties
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of Weyl groupoids associated with U(x) of finite type, and Heckenberger’s clas-
sification of U(x)’s of FID type. In Section 6, we give a key criterion for deter-
mining when an irreducible highest weight U (x)-module is finite-dimensional (see
Lemma 6.6). In Section 7, we give a list of finite-dimensional irreducible U(x)-
modules for U(x) having a standard Dynkin diagram, and we also show that from
it, we can explicitly obtain lists of such modules for the standard quantum super-
algebra and the simple Lie superalgebra corresponding to x.

In [29], the second author has given a result similar to Theorem 7.8 for the
case (FGE-4) of that theorem.
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81. Weyl groupoids
§1.1. Basic terminology

For a set s, let |s| denote the cardinality of s. Let N denote the set of positive
integers, Z the ring of integers, and Q denote the field of rational numbers. For
z,y € Q,let J,, :={ne€Z |z <n <y} Notethat J,, is empty if z > y or if
n<z<y<n+1lforsomenecZ ForxeQlet J,o:={meZ]|m>z}and
Joogi={m e Z|m <z} Thus N = Jj . Let Z>p := Jy,co. Let R denote the
field of real numbers.

For a field Y, a Y-linear space V, a non-empty subset X of V, and a subset
Z of Y, let Span,(X) := U;’il{zzzl zyty € V0|zy € Z,xy € X (y € J14)}; let
Span (0) := {0}.

Throughout this paper, we use the fixed notation below:

N € N is a fixed positive integer and I := J; y,
V is a fixed N-dimensional R-linear space,
(Il) = (a; |4 € I) is a fixed ordered R-basis of V,
IT:={a; |i € I}, so Il is a (set) R-basis of V,
K is an algebraically closed field of characteristic zero,
K* ;=K\ {0}.
Let ZII := Spany(Il) (= @,;¢; Za; S V), ie., ZII is the free Z-module with

basis II. Then rankz ZIl = N. Let Z>oll := Spany_ () (= @,c; Z>o0a; S ZII).
For an R-linear space V, an R-bilinear map  : V X V — R and an element
X=(x;]te€l)of Vx- -+ xV (N times) with dimg Spang({z; | ¢ € I}) = N,
define an R-linear map &x : Spang({z; | ¢ € I}) — V by &x () := oy (i € 1)
and an R-bilinear map nx : Vx V — R by nx := 5o (5" x &x'). For a map
0 : 1 — Jou, define a map [0] : ZIT — Jo1 by [0](D;c;nics) — D _,cpnab(i) € 22
(’I’Li S Z)
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For n € NU {oc}, let Mapr be the set of maps from J; , to I. Let Mapé be
the set composed of a unique element ¢, i.e., |Mapé| =1land ¢ € Mapé.

For a unital K-algebra G, let Ch(G) denote the set of K-algebra homomor-
phisms from G to K.

Let t € K. For m € Zxo, let (m)y == 3 o, ) and (m)e! =[], (F)e,
where (0), := 0 and (0),! := 1. For m € Z>p and n € Jy 55,1, let (’g”)t = (z)t =1
and (Zl)t = (Tr?:ll)t + tn(mﬁl)f Then (:’;)t(n)t'(m —n)! = (m)t! and (Tr?)t =
() + 0 ()

For m € N, let KX = {r € K* | r™ = 1,7 # 1 (t € Jim-1)}. Let
K% =KX\ Upmen Ko -

For an associative K-algebra a and X, Y € a, let [X,Y] := XY - Y X.

Let W mean disjoint union of sets.

For Z-modules b and ¢, let Homy(b,¢) be the Z-module formed by the Z-
module homomorphisms from b to c.

The symbols d;5, 6; 5, and (4, j) denote Kronecker’s delta.

81.2. Modification of axioms of generalized root systems

Recall (1.1). We call an N x N-matrix C = [¢;;]i jer over Z a generalized Cartan
matrix if:

(Ml) Cii = 2 (’L S I)
(M2) ¢k <0, 6(cjk,0) = (ck;,0) (j,k €1, j # k).
Let A be a non-empty set. Let 7; : A — A be maps (i € I). Let C* = [¢f]; jer be
generalized Cartan matrices (a € A). We call the data
C= C(Ia Av (Ti)ieh (Ca)aG_A)
a (rank-N) Cartan scheme if:

(C1) 72 =idy (i € 1).
(C2) ' =y (i€ 1)

)

Let C = C(I, A, (1i)icr, (C*)qea) be a Cartan scheme. Define s¢ € GL(V)
(ae A iel)by
(1.2) si(aj) = aj — ¢ (j ).
Then

(1.3) (s1)2 =57 50 —idy (a€ A, iel).

K2 K2
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Notation 1.1. Let C = C(I, A, (7:)icr, (C*)aca) be a Cartan scheme.
(1) For a € A and f € Map’, for some n € Zso U {0}, let

(1.4) aro = a, 1%sy,0 = idy,
. aft = Tf(t)(af7t_1), 1a5f7t = 1a3f,t_18;€5 (t S Jl,n)-

(2) For a,d’ € A, let
(1.5) H(a,a') := {1%;, | f € Map’_, t € Zso, ajs = a'} € GL(V).

We say that a Cartan scheme C = C(I, A, (7)icr, (C%)aca) is connected if
[H(a,a’)| > 1 for all a, a’ € A.

Definition 1.2. Let C = C(I, A, (7:)ic1, (C*)aca) be a Cartan scheme. For each
a € A, let R(a) be a subset of V.= @,.; Ra;, and R*(a) := R(a)NZxoIl. We call
the data

R =TR(C, (R(a))aca)

a generalized oot system of type C if:
) R(a) = R*(a) U—R*(a) (a € A).
R2) R(a) NZa; ={a;, —a;} (a€ A, i €1).
R3) si(R(a)) = R(ri(a)) (a € A, i € I).
4) For a,d’ € A, if idy € H(a,a’), then a = a’.

R1

(
(
(
(

=

Let R = R(C, (R(a))qca) be a generalized root system of type C. By (R1)-
(R3) and the definition of s¢, we have

(1.6) si(R¥(a) \ {ai}) = R¥ (ri(a)) \ {ai},
and
(1.7) —c; =max{k € Z>o | a;j + ka; € R™(a)} (4,5 € I, i # j).

If C is connected, we say that R is connected.

Lemma 1.3. Let R = R(C, (R(a))aca) and R = R(C',(R'(a'))arca’) be gener-
alized root systems of types C and C' respectively. Let a € A and &' € A’. Assume
that R(a) = R'(a'). Then

R(afn) = R’((z’f’n), s?f’" = s?f’" (neN, fe Mapfl7 iel).

Proof. This lemma follows easily from (1.3), (1.7) and (R3). O
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Definition 1.4. Let R = R(C, (R(a))aeca) and R = R(C’, (R'(a))arc.a’) be con-
nected generalized root systems of types C and C’ respectively. Let @ € A and
a'e A

(1) We say that the pair (R, a) is quasi-isomorphic to (R',a’) if R(a) = R'(a').
(2) We say that (R, a) is isomorphic to (R',a’) if R(a) = R'(d’) and for any n € N

and any f € Mapi, we have ., = a if and only if d af’n =a.

Lemma 1.5. Let C = C(I, A, (7:)ier, (C*)aeca) be a Cartan scheme. Let R =
R(C,(R(a))aca) be a generalized root system of type C. Let a € A and i,j € I
with i # j. Let m := |R"(a) N (Ra; ®Ray))| € Ja 00 U{00}. Assume m < co. Define
f €Maps,, by f(2x —1):=1i and f(2x) :=j (x € J1,m). Then

(R4)" apom = a and 1%sf 9, = idy.

Proof. For x € Jym, let By := 1%s5 4 1(0f(y)). For & € Jom, let Z, := R (ay,.)N
(R ® Rayy) and Y, := Zp N —1%s5 4(Z;). By (1.2) and (1.6),

(1.8) |Zsl=m  (z € Jom).

We show that for z € J;

(%) Yol =z and Y, ={By, |y € Ji o}

Then (*); follows from (1.6). Assume that x € J3 ,, and (*);_1 holds. Then
(1.9)  Yo=ZoN(-1%s52(Zo \ {op)}) U{-1"ssu(s(2))})

= Zo N (—1%844-1(Zo—1 \ {ap}) U{B:})  (by (1.2) and (1.6))
= (Yot \{=Fc}) U (Zo N {B:})-

Since —1%sf.2(Zs \ {02y }) U{=1%Sf2(f(z))} = 0, we have (Yo—1 \ {—5.}) N
(Zo N {Bz}) = 0. Hence, by (1.9),

(1.10) Y, = (Yw—l \{_ﬂw}) W (ZO N {ﬁx})
Assume that 8, ¢ Zy. Then 8, € —Zy, so 1%sy,_1(afy)) = fo € —Zp. Since
Be-1 € Zo, 19550 1(p@-1)) = —1%f22(ap@-1)) = —Pe—1 € —Zp. Since

{f(x =1), f()} = {i, j}, we have Y,_; = Zy. Hence z — 1 = m, a contradic-
tion. So B, € Zy. From (1.10), we obtain (k).

By (1.8) and (%), 1%s7m(Zm) = —Zp. Hence we have 1%s7 ., ({ay, o)) =
{—a;, —a;}. By the same argument, letting f' € Map’ by f'(y) := f(m +y),
we have 190 msp o ({ou, a;}) = {—a;, —a;}. Hence 1%s 9 ({i, o)) = {au, a;}.
By (1.2), the determinant of the 2 x 2-matrix (3;{5)&%@]1&% is —1 for every
x € Jiam. S0 1%s7om(ar) = oy for k € {3, j}. By (1.2), for k € I\ {i, j},
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155 om(o) € ax + (Z>ooy ® Z>ocyj). From (R1), we obtain the second claim
of (R4)’. From (R4), we obtain the first claim of (R4)’. O

Remark 1.6. The original definition of generalized root systems was given in
terms of (R1)—(R3), (R4)’ (see [13], [6]). From [13, Lemma 8(iii)] and Lemma 1.5,
it follows that the definition based on (R1)—-(R4) is equivalent to the one in terms
of (R1)—(R3), (R4)".

Definition 1.7. Let C = C(I, A, (7;)ier, (C*)aea) be a Cartan scheme. Let W(C)
be the category defined by:
(catl) Ob(W(C)) = A.
(cat2) For a,a’ € A,
Homyy c)(a, a’) := {(a,w,a") |w € H(a,a')} € Ax GL(V) x A.
(cat3) For a,a’,a” € A, the composition
Homyy (c)(a, a’) x Homyyc)(a',a”) = Homyy(cy(a, a”)
is defined by
(a,0,0) o (d', 0/, 0") = (o, ww', a"),
where ww’ means the product in the group GL(V).

We call W(C) the Weyl groupoid of C. If R is a generalized root system of type C,
we let W(R) := W(C) and call it the Weyl groupoid of R.

§1.3. Length function of a Weyl groupoid

’

In Subsections 1.3—-1.5, we fix a Cartan scheme C = C(I, A, (7;)icr, (C* )aren),
a generalized root system R = R(C, (R(a’))arca) of type C, and a € A.
Let H(a, =) := Uy e H(a,d’). For w € H(a, —), let

(1.11) Lo(w) = {6 € R* (@) |w™)(8) € ~Zsoll}.
Define a map ¢, : H(a, —) — Z>o by
(1.12) Lo(w) := |Lg(w)].
Lemma 1.8. (1) Let w € H(a,—). Then the following conditions are equivalent:

(1-i) L,(w) = R"(a).
(1-ii) w™Y(IT) C —Z>oIl\ {0}, i.e., I C Ly (w).
(1-iii) w(Il) = —IL.
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(2) Forad € A and w € H(a,a’), we have
La(w) = {8 € R*(a) |w™"(B) € —R*(d)}.

(3) Letd',a" € A, w € H(a,ad') and w' € H(a,a"). If w=w', then a’ =d".
(4) For w € H(a,—), we have
(
(

1.13) lo(w) = min{l € Zso | If € Map}, 1%s7; = w}.
5) Let o’ € A. For w € H(a,d’) and i € I, we have

ra'y _ ) La(w) + 1 if w(a;) € R (a),
(1.14) falws™ ) = {éa(w) -1 if w(ey) € —R7(a).

(6) Let w € H(a,—) and | := l,(w). Let f € Map] be such that w = 1%ss,. Then

(1.15) La(w) = {1a5fm_1(05f(¢)) |7’ S Jl,l}-

Proof. (1) is clear from (R1), (R2) of Definition 1.2 and (1.11); (2) follows from
(R1); (3) follows from (R4); (4) (resp. (5), (6)) follows from Definition 1.2, Lem-
ma 1.5 and [13, Lemma 8(iii)] (resp. [13, Corollary 3], [13, Corollary 2]). O

81.4. Longest elements of a finite Weyl groupoid

Lemma 1.9 ([13, Corollary 5]). Assume |R*(a)| < oo, and set n := |R"(a)|.
Then:

(1) There exists a unique 1%wo € H(a,—) such that £,(1%wo) = n.
(2) Forw e H(a,—),

(1.16) w = 1%wg if and only if w(Il) = —IIL.
(3) Fora' € A and w € H(a,a’), we have n = £,(w) + Lo (w1 1%wyp).

Proof. Let a € A. Let w € H(a,a’). Assume {,(w) < n. By (1.13), we have
Lo (w™t) = £, (w). By (R3) of Definition 1.2 and Lemma 1.8(1), there exists i € I
such that w(e;) € RT(a). By (1.14), éa(ws?“/) = {,(w) + 1. Thus we get the
existence of 1%wg. Let w’,w” € H(a,—) be such that £,(w') = £,(w") = n. By
Lemma 1.8(1), we see that w'(II) = w”(IT) = —II. Since (w”)~*w/(II) = II, by
(1.13), we have (w”)~'w’ = idy. Hence w’ = w”. This yields the uniqueness of
1%wq. Thus we obtain claims (1) and (2).

Let wy € H(a,a'). By (1.11), £,(w1) < n. Assume wy # 1%wy. By claim (1),
lo(w1) < m. By an argument as above, there exists wy € H(a’,—) such that
lo(wiwse) = n and € (we) < n — Le(wy). By (1.13), Lo (wa) = n — £, (wy) since
Ly (wywe) = n. By (1), wiwe = 1%wg. Thus we obtain (3). O
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If |[RT(a)| < oo, we call the only element 1%wq (or more precisely, the pair
(a,1%wp)) as in Lemma 1.9(1) the longest element ending with a.

Lemma 1.10 (see [6, Proposition 2.12]). Assume |R™(a)| < oo, and set n :=
|R*(a)|. Let f € Mapl, be such that 1%s;,, = 1%wy. Then

(1.17) R*(a) = {1"sp,—1(af(r) |7 € Jin}.

In particular,

(1.18) Ra)=) | 1%sp.D).
k=0 f’€Map]

Proof. Equation (1.17) follows from (1.12), Lemma 1.9(1), and (1.15). Equation
(1.18) is clear from (1.17). O

Lemma 1.11. Let n € N, f € Mapl, and X := {1%sfr—1(apey) | 7 € Jin}
(C R(a)). Assume

(1.19) 1 C X C Zsoll
Then n = |R"(a)], 1*sy,,, = 1%wy and R*(a) = X.

Proof. Let w := 1%sy,,. It follows from (1.12), (R3) of Definition 1.2 and (1.14)
that ¢,(w) = n. By (1.15), X = Ly(w). Hence II C L, (w). By Lemma 1.8(1), X =
R*(a). Since X = Ly (w), we have |X| = {,(w) = n by (1.12). By Lemma 1.9(1),
we have w = 1%wy. O
81.5. A technical fact

By Lemmas 1.3 and 1.11, we have

Lemma 1.12. Keep the notation of Definition 1.4. Assume |R*(a)| < oo. Then
(R,a) is quasi-isomorphic to (R’,a") if and only if

sim = s?'f’” (n € Zso, f € Mapl, i € T).

In particular, 1%wy = 1% wy and R*(a) = (R')H(a).

§2. Longest elements of finite Weyl groups
§2.1. Root systems of types A—-G

In this section, we consider some longest elements of finite Weyl groups, or crys-
tallographic finite Coxeter groups, which will be used to study x treated in Theo-
rem 5.10(2) below.
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Let N € N. Let RY denote the N-dimensional R-linear space of N -tuple col-
umn vectors, that is, RN = {![z1,...,25]|z; e R(i € J, z)}. Let {e; | i € J, 5}
be the standard R-basis of RV. For m € J1 &> we regard R™ as the R-linear

subspace EB:«”:1 Re, of RY. For a subset X of J; N

RN — RV by Px(e;) = e; (i € X) and Px(e;) 1= 0 (j € J; 5\ X). Let Mg/(R) be
the R-algebra of N x N-matrices. Let GL g (R) be the group of invertible N x N-
matrices. Let 7 : RV x RY — R be the R-bilinear map defined by 7(eg, eT) = Ok
For v € RV \ {0}, define 3, € GL 5 (R) by 8,(u) = u — 2200 Yy (u € RY), that is,

define an R-linear map Py :

8y is the reflection with respect to v. Note that P

(2.1) $2=idys  (veRV\{0}),

and

(2:2) (80 (), 8 () = w,e) (0 € RVA{0}, wu’ € RY),
Using (2.1) and (2.2), we have

(2.3) Suburde = 5o, (0,0 RV \{0}),

We say that a finite subset R of RN \ {0} is a crystallographic root sys-
tem (in RN) if |R < oo, éU(R) = R, RunNR = {v,—v} for all v € R, and
27 (v’, v")/ﬁ(v v') € Z for all v/, v" € R (see [15, 1.2, 2.9]).

Let R be a crystallographic root system in RY. We call R irreducible if for
all 3,8 € R, there exist r € N and Bt € R (t € Jy,) such that A3, 1) # 0,
7(Bir Br1) # 0 (t € Ji 1) and (B, ) # 0 (see [15, 2.2] and (2.4)). We say
that a subset II of R is a root basis of R if II is a (set) R-basis of Spang (IT) and
RC SpanZ> (1IN U —Spang,_, (IT) (this is called a simple system in [15, 1.3, 2.9)).

Let IT be a root basis of R. We call dimg Spang(IT) = |II| the rank of R.
Let W(II) be the subgroup of GL(R) generated by all 5, with v € II. By [15,
Corollary 1.5], we have

(2.4) R=W(7I)-1I

We call W(II) the Cozeter group associated with (R,II). Let S(II) := {3, €
W (IT) |v € TI}. We call (W(TI), S(IT)) the Cozeter system associated with (R, TI)
(see [15, 1.9 and Theorem 1.5]). Let II be a root basis of R. Let RT(II) :=
RN SpanZ>0(fI). We call RT(I1) a positive root system of R associated with II

(this is called a positive system in [15, 1.3]).

Definition 2.1 (see [15, 2.10]). Recall N and I = .J; y from (1.1). Let N € Jy cc.
Let R be a rank-N crystallographic root system in RY. Let Il = {&; | i € I} be a
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root basis of R. Let (IT) := (41, ..., dy) € RN x ... xRN (N times), so (II) is an

ordered R-basis of Spang(R).
(1) Assume that N > 1 and N = N 4 1. We call R the A y-type standard root
system if

(2.5) R={es—e,|z,y€ Jins1, z#y}

We call (IT) the Ay-data if &; = e; — e;1q (i € I).
(2) Assume N = N > 2. We call R the By -type standard root system if

(2.6) R={cex+ce,|x,yein, x<y,cc e{l,—-1}}
u{d’e.|z€ Jin, " e{l,-1}}.

We call <f[> the By-data if &; = e; —e;41 (1 € J1 n—1) and &y = en.
(3) Assume N = N > 3. We call R the Cy-type standard root system if

(2.7) R= {ces + Cley | z,y € Jin, x <y, c, de {1,-1}}
u{2d’e,|z € Jin, " €{1,-1}}.

We call (II) the Cn-data if &; = e; —e;41 (1 € J1 nv—1) and &y = 2ep.
(4) Assume N = N > 4. We call R the Dy-type standard root system if

(2.8) R={ce, +ce, |z, yc iy, x <y, cc c{l,~1}}.

A~

We call (II) the Dy-dataif &; =e; —e;41 (i € Jin—1) and &y = en—_1 + en.
(5) Assume that N = 6 and N = 8. We call R the Eg-type standard root
system if
R={ce, +ce,|x,y€Jis o<y, c,c €{l,~1}}
U520 erer) + [Tz er)(es — e —es)) | er € {1, -1} (r € Ji5)}.
We call <ﬂ> the Eg-data if &1 = %(el + eg — ZZ:Q er)), G2 = e1 + ez and &; =
€i—1 — €;—2 (Z S J376). R R
(6) Assume that N =7 and N = 8. We call R the E7-data if
R={ce,+ce, |z, yedig x<y,cc e{l,—1}}
U{c’(er —eg) | " € {1,-1}}
ULz erer) = (TTimy ) (er —es)) | ¢ € {1, =1} (r € Ji6)}-

We call (f[> the E7-data if & = %(61 + eg — ZZ:2 er), &g = e + ey and
G; =ei—1 —ej—2 (1 € J37).
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(7) Assume N = N = 8. We call R the Eg-type standard root system if
R={ce, +ce,|z,y€ ig, x<y,cc €{l,~1}}
VLS ever) + (TThor er)es) | e € {1, =1} (r € Ji7)}
We call <f[> the Eg-data if &1 = %(61 + eg — ZZ:Q er)), o = ey + eg and
di=¢e;_1—¢€_2 (1€ Jig’g). )
(8) Assume N = N = 4. We call R the F4-type standard root system if
R={ce,+ce,|x,ye iy, x<y, cc e{l,—1}}
U{d’e,|z€ Jia, " €{1,-1}}
UL crer [ € {1, -1} (r € Jia)}.

We call (II) the Fy-data if &; = eg —e3, o = e3 — €4, &3 = e4 and Gy =
%(61—62—63—64). A )

(9) Assume that N = 2 and N = 3. We call R the Ga-type standard root
system if

R={cles—e,) | m,y€ i3, o<y, ce{l,-1}}
U{d(2e,, — €., —€,) | {21, 22, 23} = J13, ¢ € {1,—1}}.

We call (IT) the Ga-data if &1 = e1 — ey and G = —2e1 + €3 + 3.
(10) Let R and IT be any of those in (1)-(9). We call R a rank-N standard

irreducible root system. We call (II) a rank-N Cartan data.

It is well-known that rank-V irreducible crystallographic root systems are
isomorphic to rank-N standard irreducible root systems (cf. [15, 2.10]).

Definition 2.2. Let (IT) be a rank-N Cartan data. Fix a set Ay with [A gy | = 1.
Let A gy = {a}. Let R(a) := iy (R), where R is the rank-N root system corre-

sponding to (II). Let ¢ := 2(d;, &;)/(6, 65), and C® := [¢%];je. Let 75 == id;
(i € I). Let Cipyy == C(I, Ay, (Ti)ier, (CG)GGA<ﬁ>). Then C g, is a Cartan scheme.
Let R gy = R(C<ﬁ>, (R(a))aeAm))- We can see that R g, is a generalized root
system of type C<f1>’ by (1.18), (2.4) and the equations

(2.9) sy = §<ﬁ> 034, 0 f(l% (a € A<ﬁ>, iel).

Proposition 2.3. The correspondence (f[) — T\’,<ﬁ>, from the set of all rank-N
Cartan data to the family of all connected generalized root systems R =
R(C, (R(a))aeca) with |[A] =1 and |R(a)| < oo (a € A) (and |I| = N), is injective.
Moreover it is surjective up to isomorphisms in the sense of Definition 1.4(2).

Proof. See [16, Proposition 4.9]. O
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§2.2. Longest elements of irreducible Weyl groups

In this subsection, let (II) = (& | @ € I) be a rank-N Cartan data, and con-
sAiderARSl:I> = R(C<ﬂ>,(R(a))a6A<ﬁ>) (see (2.9)). Let a € A5ﬂ>~ Define a map
¢ : W(II) — Z>¢ in the following way (see [15, 1.6]). Let £(1) := 0, where 1
is a unit of W (II). Note that every W € W(II) can be written as a product of
finitely many sﬂ 's with 5 € I, say w = sﬂ1 "'§5r for some r € N and some

B € T (x € Ji,). If 0 # 1, let £() be the smallest  for which such an ex-

pression exists, and then call the expression reduced. By (1.13) and (2.9), we have

I() =1, (E(H oW of ) We call £(w) the length of . Let

L(w) == {8 € RN(I) | @(8) € —RT(I)} (w0 € W(TD)),

50 L(t) = La (&, 0 0 &) by (L.11) and (2.9). By (1.12) and (2.9),

(2.10) 0(i) = |L(w)|

(see also [15, Corollary 1.7]). By (1.6) and (2.9),

(2.11) Sa(RT(I)\ {a}) = R (I)\ {a} (aeT)

(see also [15, Proposition 1.4]). By (1.14) and (2.9),
A o o

(2.12) iis) = {li(w) +1 ifw(a)eRr A(H)A,
Ib) — 1 if w(a) € —R+(IT),

for & € TI (see also [15, Lemma 1.6 and Corollary 1.7)).

Assume that |R\ < 00. By the above properties, we can see that there exists
a unique wy € W (IT) such that o (IT) = —IT (see [15 1.8]). It is well-known that
((ig) = |R+( )|, that 1 is the only element of W (IT) such that /() < £(1) for
all w € W(II), and that

(2.13) () = U(ibg) — L(wow ™) for all & € W (IT).
We call @y the longest element of the Cozeter system of (W (IT), S(IT)). Note that
(2.14) W = g&; ol%wgo &y and {(ibg) = £4(1%wp).

It is well-known that
(2.15) {(io) = |RT(ID)|

(see also Lemma 1.9). Let n := £(i), and let 85,83 be the reduced expression

of Wy, where Bk’s are some elements of II. Then
(2.16) RT(II) = {§Bl .- ~§Bk_1(ﬁk) | ke Jin}
(see also (1.17)).
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Proposition 2.4. Let (II) = (4y,...,é4n) be a rank-N Cartan data. Let TT =
{&; | i € I}. Let §; := 34, (i € I). Let g be the longest element of the Cozeter
system (W (1), S(IT)). Let h := 2|R*T(I1)|/N. Let V := Spang(I1). Then:

(1) heN.

(2) Assume that (1) is neither the An-data, the Dy-data, nor the Eg-data. Then
there is no bijection w : I — I satisfying the condition that v # id; and
(&, &5) = NGy, Gu(y)) (4,5 € I). Moreover (wo)|y = —idy. Furthermore
h € 2N, and (5, ---5n5)"? is a reduced expression of 1.

(3) Assume that (1) is the An-data. Then wo(e,) = € w1 (@ € Jy ), s0
Wo(&;) = —Gn—iy1 (1 € I). Moreover

(217) if)o = (.§1-"§N)(§1~-'§N,1)"-(8182)817

and the RHS of (2.17) is a reduced expression of .

(4) Assume that (1) is the Dy-data. If N € 2N, then o = —idgx. If N € 2N—1,
then UA}()(OA{Z) = —q&; (’L S JLN,Q), 1?]()<de1) = —ay and wo(dN) = —GQn_1.
Moreover (51---8n5)N"1 is a reduced expression of . Furthermore, for

r € Ji,n—1, we have

(2.18) ($r8rg1-8n)N " =Py, = Ps o+ (DR

expression of Wy.

Proof. Let b:= &, ---én. Let A’ be the order of b. Then b and h' are called a
Cozeter element and the Cozeter number respectively (see [15, Exercise 3.19]). By
[15, Proposition 3.18], we have

(2.19) W = h.

Fix ¢ € C},. It is clear from (2.2) that b acts on the N-dimensional C-linear
space V ®r C as a diagonalizable linear map whose eigenvalues are (™ for some
m € Jon—1; these integers m are called the exponents (see [15, 3.16]).

(1) This is clear from (2.19).

(2) The first claim is clear. By (2.10) and (2.15), wo (R (IT)) = —R*(II), so
1o(I) = —II. Then the second claim follows from the first and (2.2). The third
claim follows from (2.10), (2.15), (2.19) and the fact that h is even and all the
exponents are odd (see [15, Tables 3.1 and 3.2, Theorem 3.19)]).

(3) Let by = 818 (i € I). Let ) := bnbn_1---b1. Then lA)i(ex) = €z11
(x € J1,), (;i(ei+1) = eq, and I;i(ey) =ey (y € Ji+1,]\7)' Hence w)(e;) = €N —at1



IRREDUCIBLE REPRESENTATIONS VIA WEYL GROUPOIDS 75

(z € J, ). In particular, w)([T) = —~IL. By (2.5), |[Rt(IT)] = N(N — 1)/2. Hence
(3) follows from (2.15).

(4) Let r € Jy,n-1, and b= 58441 Sn. Then l;(ex) =e; (x € Ji,—2),
bley) = eys1 (Y € Jin_2), 5(61\7—1) = —e, and B(eN) = —ey . Then we obtain (4)
in a way similar to that for (3).

(5) This can be proved directly. O

§2.3. Longest element of a type-A classical Weyl group
Proposition 2.5. Let (II) = (d1,...,ay) be the Ay-data, and 11 := {a; | i € I}.

Let g be the longest element of the Coxeter system (W(IT), S(I)). Let §; =
84, € S(IT) (i € I). Letn := N(N 4+1)/2. Letm € Jy x andr := n—m(N—m+1).
Then

(2.20) {(io) = n.

Moreover there exists f € Map?, such that {f(t) |t € Ji,.} = I\{m}, f(r+1)=m
and Sf(1y -+ 8¢y 18 a reduced expression of wo. Furthermore for such f, we have

221) {8 3p-0) (@) [k € Jirl
={ex —ew |2,2" € Jim, <2’} U{ey —ey [4,¥ € Tmi1,n41, Y <Y},

and

(222)  {8;)8f2)  3r—1) (G [t € TN}

={e,—es|2€ Jim 2 € Jni1Nt1}-
Proof. The claim (2.20) follows from (2.15) and (2.5). Let R’ be the crystallo-
graphic root system in RY defined as the RHS of (2.21). Let 1T := 1\ {dyn}.
Then IT' is a root basis of R’, Note that the Coxeter system (W (IT'), S(II')) is
isomorphic to the product of the Coxeter systems of types A,,,—1 and Ay _,, (resp.
the Coxeter system of type Anx_1) if m € Jo y_1 (vesp. m € {1, N}). Note that r

equals the length of the longest element of (W (IT'), S(I')). The remaining claims
follow from these facts, (2.5), (2.13) and (2.16). O

Remark 2.6. A reduced expression as in Proposition 2.5 is given by

(2.23) Wo = (§1 -~-§m)(§1 --~§m,1)~-~(§1§2)§1
“(8m428mas3 - SN)Bma28mys - Sn—1) - (Sma28m+3)Sm+2
(mg18maz - 38) Gmbma1 - 3n_1) - (81 SN_m)-

This can be proved in a way similar to that for Proposition 2.4(3).
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82.4. Longest element of a type-B classical Weyl group

Lemma 2.7. Let (IT) = (é4,...,ay) be the By-data, and Il := {&; | i € I}. Let

o be the longest element of (W (II), S(I1)). Let 8; := 84, € S(II) (i € I).

(1) Let k,r € Jin withk < r. Let b= —Py,_+ Py _\s,, € GLy(R). Then
be W(I) and

(2.24) (3k8k41 - SN_18NEN_1 - 8rp18,)  FFL =,

Moreover the LHS of (2.24) is a reduced expression of b.

(2) Let k,t,r € J; g be such that k <t <r. Let b e W(II) be as in (1). Define
by € W(II) (resp. by € W(II)) in the same way as b with k and t (resp.
t+ 1 and r) in place of k and r respectively. Then b = bibs = bsoby and
0(b) = 0(by) + £(by).

(3) Let m € Jin—1. Then

(2.25) o = (3N-ms18N—mi2SN)™ (31 - EN_18NEN_1 - EN-m)V

Moreover the RHS of (2.25) is a reduced expression of wg. In particular,
(2.26) {(ig) = N2.

Proof. (1) Let b € W(II) be the LHS of (2.24). By (2.3), we have

SpSr41° " SN—-1SNSN—-1"""Sr = Se,.-

Hence

b = (818641 8p_18e, ) HFL

Then by the same claim as in Proposition 2.4(2) for the By-data with » — k in
place of N, we have b =0 € W(II). We see that

]T_:(ZA)) = {Gt | t e Jk,r} U {et + cey | ce {*1, 1}7 te Jk,r, te Jt’,N}~

Therefore by (2.10), we have

(2.27)  Ib)=(r—k+1)+2 i(zv —t)
t=k

=(r—k+1)+2N@r—-k+1)-2(r(r+1)/2—-k(k—-1)/2)
=(r—k+1)1+2N—-(r+k)=C2N—-k—r+1)(r—k+1).

Hence we obtain the last statement of (1).
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(2) The first statement is clear. The second follows from (1) and the calculation

(2.28)  U(by) 4+ (b)) = (2N —k —t+1)(t —k+1)+ (2N —t —71)(r — 1)
=2N(r—k+1)—(k+t—1)(t—k+1)—(t+7r)(r—1t)
=2N(r—k+1)— (=k*+ £ +2k—1) — (r* - 1?)
=2N(r—k+1) (k:2—7° —2k:+1)
=2N(r—k+1)+ (k—
=N —r—k+1)(r—

+
+

+ +
v

Il

()Y

—~

=

=

(3) This follows immediately from claims (1), (2) and (2.15). O

§3. Longest elements of Weyl groupoids of a simple Lie superalgebra
of type ABCD

83.1. Super-data

Let N € N. Let {e; | i € Jy 5} be the standard R-basis of RN Let m € Jo.x-
Let Amwfm
p € ATn|]\7—m’
§(p(i),p(5))(—1)P™). Define pﬂN o € A DY p:;lN L) =0 (i € Jim
N~ m(])—l(]EJ +1N) Deﬁnep ¥ —m eAmlN . by p” (i) =
(i€ Jim)andp o () =00 €y 5)-

The sets R given in Definition 3.1 below are almost the sets of roots of finite-

be the set of all maps p : J; y — Jo,1 with Zf\;1 p(i) = m. For

define an R-bilinear map 7P : RY xRV & R by 7P (e;, e;)

—_ ~—

and p*

m|N—m

dimensional contragredient Lie superalgebras whose quotients by their centers are
simple Lie superalgebras; in this paper, we impose a technical assumption on x
for Definition 3.1(7), i.e. for D(2,1;z): instead of letting = be any element of
C\ {0, —1}, in this paper we assume x € Z \ {0, —1}.

See also Theorem 3.4.

Definition 3.1. Keep the notation as above. We also use the terminology of Def-
inition 2.1. Let

(M) = (a; |iel)=(a1,,...,an) €RY x - x RN (N times).

Let R be a subset of RV Let 6 : I — Jy; be a map.

(1) Assume that N —1= N >2 and m € J;, . We call (7 PN 41 , (1)) the
A(m —1, N —m)-data if (I) is the A y-data. We call R the A(m — 1, N —m)-type
standard root system if R is the A y-type standard root system (see (2.5)). We call
0 the A(m — 1, N — m)-type parity map if (m) :=1 and 0(i) :=0 (i € T \ {m}).
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(2) Assume that N = N > 1 and m € Jyny_1. We call ("N =mim (II)) the
B(m, N — m)-data if (II) is the By-data. Let R be the By-type standard root
system (see (2.6)); if N =1, let R := {e1, —e1}. Assume that R = RU {2ce; | i €
JiN—m,c € {—1,1}}. We call R the B(m, N —m)-type standard root system. Note
that R\ 2R = R. We call 6 the B(m, N — m)-type parity map if (N —m) =1
and 6(i) :=0 (1 € I \ {N —m}).

(3) Assume that N = N > 3. We call (771151, (IT)) the C(N)-data if (IT) is
the Cy-data. Let R be the Cy-type standard root system (see (2.7)). Assume that
R =R\ {2e1,—2¢;}. We call R the C(N)-type standard root system. We call § the
C(N)-type parity map if 6(1) :=1 and 0(i) :=0 (i € I \ {1}).

(4) Assume that N = N > 3 and m € Jony_1. We call (7°¥-mim (IT)) the
D(m, N — m)-data if (IT) is the Dy-data. Let R be the Dy-type standard root
system (see (2.8)). Assume that R = RU {2ce; | i € Jin_m,c € {—1,1}}. We
call R the D(m, N —m)-type standard root system. We call § the D(m, N —m)-type
parity map if (N —m):=1and 0(i) :=0 (i € I \ {N —m}).

(5) Assume N = N = 4. We call (77115, (IT)) the F(4)-data if &, = %(\/gel -
eg —e3 —e4), Ay = V/2ea, &3 = V2(—es + e3), and ay = V2(—e3 + e4). Assume
that R = RT U (—R"), where Rt := {ay, a3 + a4, as + a3 + au, 242 + ag + au,
A1 + Qg + @3 + Ay, 209 + 203 + G4, @1 + 280 + Az + @4, @1 + 209 + 203 + au,
a1+ 3ao + 203 + g, 2001 + 3o + 2Qi3 + Gy, Qg , 1 + Qo Gy + Qg + g, Q1 + 2002 + Qg
Qg, 209 + as,as + az,az}. We call R the F(4)-type standard root system. We
call 0 the F(4)-type parity map if 6(1) := 1 and 6(i) := 0 (i € I\ {1}). (Let
<f[> = (&1, (o, &3, Gq) and R be the F,-data and the F4-type standard root system
respectively. Define an R-linear isomorphism ¢” : R* — R* by £(4;) = as_;.
Then R =& (R\ {ce1 + ey |z € Jou, ¢,¢ € {1,—1}}).)

(6) Assume that N = 3 and N = 4. We call (7"12, (1)) the G(3)-data if
a1 = V2e1+es—ey, @y = ea—es, Az = —2es+e3+€4. Assume that R = RTU—RT,
where RT := {ay, @y +as, @1 +ay +as, @1 + 20 +as, @1 + 302+ s, a1 +3az+2as,
a1+ 4dvg + 2003, A, g+ g, Bdig + 203, 200 + A, Ao + Ais, A3, 201 + A + 2ai3 . We
call R the G(3)-type standard root system. Note that RN2R = {2a; +4as + 2as}.
We call 6 the G(3)-type parity map if (1) :=1 and 6(i) :=0 (z € I \ {1}).

(7) Assume that N = 3 and N = 4. Let 2 € Z\ {0, —1}. We call (7722, (I1)) the
D(2,1;xz)-dataif a1 = e3—ey, o = ea—e3, aig = x(63+e4)+\/Me1. Assume
that R = RT U —R*, where RT := {ay, &1 + Qo, an, 201 + ag + a3, 0y + a3, as}.
We call R the D(2,1;z)-type standard root system. We call @ the D(2, 1;z)-type
parity map if 6(1) := 1 and (i) :==0 (i € I \ {1}).

(8) Let (7, (IT)) be a data as in (1)—(7) above, i.e., (7, (II)) is the X-data with X
being A(m — 1, N —m) (for some m € Jy n if N > 2), B(m, N —m) (for some
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m € Jony—1 if N > 1), C(N) (if N > 3), D(m, N —m) (for some m € Jy y_1 if
N >3), F(4) (if N = 4), G(3) (if N = 3), or D(2,1; ) (for some = € Z\ {0, —1} if
N = 3). (Note that X # A(0,0).) We then call (7, (IT)) a rank-N standard super-
data. If R is the X-type standard root system, we call R the standard root system
associated with (7, (I1)). If 6 is the X-type parity map, we call # the parity map
associated with (7, (I1)).

We can directly see

Lemma 3.2. Let (7, (II)) be a rank-N standard super-data. Let R be the stan-

dard root system associated with (7, (I1)). Let 6 be the parity map associated with
(7, (I)). Let & € R. Then [01(§my (@) = 1 if and only if (&, &) =0 or 2a € R.

Definition 3.3. (1) Let g be a C-linear space. Let g(t) (t € Jp,1) be subspaces
of g with g = g(0)®g(1). Define subspaces g(t) (t € Z\ Jo,1) of g by g(t) = g(t£2).
Let [,]: g x g — g be a C-bilinear map. We call g a Lie superalgebra if:

(Sul) [z,y] € g(t +¢') and [z,y] = —(=1)"'[y,2] (t,t' € Z, z € g(t), y € g(t')).
(Su2) [v,[y. 2] = [z, 9], 2 + (=1)" [y, [, 2]) (t,¢ € Z, w € g(1), y € 0(t), = € 9).
(

2) Let g be a Lie superalgebra. Let Y be a non-empty subset of g. Let
)M = Spanc (V). Let () := Spanc({[y,2] | y € Y, 2z € ("){V) for
t € Jooo. Let (Vg := SpanC(Ui1<Y>(gt)). We call (Y)y the sub Lie superalgebra
of g generated by Y.

(3) Let Y be the set of all pairs af = (1%, 6*) of symmetric R-bilinear maps
n*: VxV — R and maps 6° : I — Jo ;. In a standard way, for a* = (n#,6%) € Yy,
we have the Lie superalgebra g(a*) over C (unique up to isomorphism) satisfying
the following conditions, where we let g := g(a*):

(CoSul) There exist 3N linearly independent elements Hf, Ef, Fiji (te€I)ofg
such that ({H!, EL, FF |ie 1))y =g.

(CoSu2) H! € g(0), Ef, FF € g(6%() (i € I).

(CoSud) [H},H] =0, [Hf, B = nt(ay, o) EY, [HE, FY] = —nf (0, ) FE, [EF, FF]
=0 HE (i,j €1).

(CoSu4) There exist subspaces go (o € ZII) of g(n,0) such that g = P,y da,
(05,95 C gpap (8.5 € ZID), g0 = @y, CH}, and go, = CE},
o, = CF}i (j € I). We also assume that dimc go = N and dimg go, =
dimg g_a, =1 (i € I).

(CoSu5) Let a € Zsoll \ (ITU {0}). For X € ga, if [X, F’] = 0 for all i € I, then
X =0.ForY € g_q,if [E},;Y] =0for alli € I, then Y = 0.
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(Note that the conditions (CoSul)—(CoSu4) imply that gg = {0} for g € ZII \
(ZZOH U _ZZOH)')

Let R¥(a*) := {8 € ZIT\ {0} | g(a*)s # {0}}. We call g(a*) the contragredient
Lie superalgebra.

The following is well-known:

Theorem 3.4 (cf. [17, Proposition 2.5.5]). Define a* = (n*,0%) € Yy and a sub-

set X of ZII by (i) or (ii) below.

(i) Let (II) be a rank-N Cartan data. Let nf = My - Define 0% by 6%(i) == 0
(i € I). Let R be the Cank-N standard irreducible root system associated
with (IT). Let X := & g, (R).

(ii) Let (7, (I)) be a rank-N standard super-data. Let n* := Miryy- Let R and 0 be the

standard root system and the parity map associated with (7, (I)) respectively.
Let 0% := 0 and X := &y (R).

Then for o € ZI1, dim g(a*),, > 1 if and only if o € X U{0}. Moreover, for a € X,
we have dim g(a*), = 1. In particular, |R*(a%)| < co.

Let (7, (IT)) be a rank-N standard super-data. Let 6 be the parity map as-
sociated with (7, (IT)). Let a* := (i, 0) and g := g(a). Following [17], we in-
troduce the following terminology. Assume that (7, (II)) is the X-data. If X =
A(m—1,N —m) and 2m —1 = N > 2, then g has a one-dimensional center
¢, g/c is a simple Lie superalgebra and g/c is called A(m — 1,m — 1). Other-
wise g is a simple Lie superalgebra and called X. If X is A(m — 1, N —m) (resp.
B(m,N —m), C(N), D(m,N —m)), then g is also called sl(m|N —m + 1) (resp.
osp(2m + 1| 2(N —m)), osp(2|2(N — 1)), osp(2m |2(N —m))).

§3.2. The Weyl groupoids of Lie superalgebras
For a* = (n¥,0%) € Y, i,j € I with i # j, and k € N, let

@nﬁ(ahai) + knf (i, o) i 0F(i) = 0,
i
Liw = 5 (s i) + 1 (i, ) if (i) = 1 and k € 2N — 1,
Enf(ci, o) if 0%(i) = 1 and k € 2N,
and let tf’uj;m! =T, t?’uj;k for m € Zxy.

For af € Y and 4,5 € I, define c?j €{2}UJ_w,oU{—0} by

2 if i = 7,
(3.1) @ =) —0o ifi#jandtd’ 140 forall meN,

ij ijim

—max{m € Zxo | t%;m! # 0} otherwise.
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For i € I, let (V5™); := {a* € Yn | Vj € I, ¢fi # —oco}. Fori € I and

at = (nf,0%) € (yj@ﬁ“)i, define s?ﬁ € GL(ZII) by s?ﬁ (o) = o — cf;ai, and define

rhat = (Tfnu,TfHu) € Yy by Tlﬁnﬁ(aj,ak) = 77‘1(5?1i (ozj),sftt (ag)) and Tl.uﬂu(j) =

3 au
[0F](s¢" (7))
We can directly see that for s € I and af = (n*, %) € (yj&ﬁ“)i,

gt

)=

(3:2) rhat € (V§™)s, ririaf = df, st = (s

K2 7

#

We can also see that for i € I and af = (n*,0%) € (y;\',’ﬁn)i, if n* (v, ;) # 0, then

o

at = at.
We can see that

(3.3) {reZ|ai+ra; € RYd")} = Jo,; fori,jelwithi#j,

:
where ¢;; := ¢f;.

For i € I and af = (n*,6%) € (y;\/,’ﬁn)i, we have the Lie superalgebra isomor-

phism

‘I'vn(ljj
(3.4) TH=TF  g(rfat) = gla?)
defined by

forty . pt gt
THHY) = H! — c;;HY,

Ft ifi=j
THE®) :={ 3 ’
() {(adEf)—cwEg if i # j,
_1\0* () ot e
THEFY) = ((_11))9”(1‘)5@”)9”0)+2Nm1,c,,,_?.|> e
A T (ad Ff)=co FF if i # j,
1,J;—¢Cij "

]
where ¢;; 1= c?;, so we have s, (Rﬁ(Tlpaﬁ)) = Ri(a).

Let Y™ = ;e (VW™ Let Y™ o= {af € YR | Vi € I, tfa? € Y™,
For a* € y;f‘“, let G#(a) := {Tfl ~~~7'iﬁrati |r €N, i; € I(t € Ji,)} Let Yir .=

{af € Yy | |R¥(a%)| < oo} By (3.3), Yir c Y™,

Definition 3.5. Let af € y;f“‘.
f #
(1) For i € I, define a map Tigﬁ(a ) G4 (a%) — G%(a?) by Tigﬁ(a )(au) = Tfaﬁ. For
a®’ € Gt(at), let C*’ be the N x N-matrix [c;’;/] We call the quadruple Cy; =
# N
Cot (I,G*(a), (Tf (an))ie[, (C’au' )atveg(y)) the Cartan scheme associated with a*.
Indeed, by (3.2), C,: is a connected Cartan scheme.
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(2) We call the data Ry = Ry:(Cos, (R¥(a?') \ 2R*(a*)) 1 cgi(ar)) the gen-
eralized root system associated with af. Indeed, by Definition 1.1, R, is a root
system of type C,:.

Remark 3.6. The Weyl groupoids W(R ;) seem to be closely related to the finite
groups W introduced in [22, Section 6] (see also [13, Remark 4]). See [31] for the
root systems of extended affine Lie superalgebras.

§3.3. Longest element of the simple Lie superalgebra A(m — 1, N —m)

()

Let N € J2,00. For i € J; y_4, define a bijection p;" " : J, ¢ — J; 5 by

) i+1 ifj =1,
(3.5) oM () =i ifj=i+1,
J lfj c J1,1\7 \ Ji,z‘+1-

Let m € Jyn. For i € I, define a bijection 7; : Apnt1-m — Am|N+1-m
by #i(p) = po pl(-NH). Let (I) = (&; | i € I) and R be the Ay-data and
the Apn-type standard root system respectively. For any p € Ay, niy1—m, let
R(p) = §<ﬁ>(R), and define a generalized Cartan matrix C? = (¢;)ijer by
&y = 20)(&i, &) [1)(Gui,s Gi). We easily see that
ém|N+1fm = C(L Am|N+17mv (%i)iED (ép)PEAm\N+1—m)
is a Cartan scheme, and 7v3m|N+1,m = ’R(Cu, (R(p))peAm\Nﬂfm) is a generalized
root system of type Cvm‘N_H_m. In particular, we have

Lemma 3.7. Let (II) = (&; | ¢ € I) be the Any-data. Let a be the only element

of A<ﬂ>. Then for any m € Jin and any p € Apint1-ms (Rm|N4+1—m,P) and
(R<ﬂ>, a) are quasi-isomorphic.

Note that for the generalized root system 7v3m| N+1-m, We have
=P P D — —P{,r

for p € Apny1—m, [ € Mapgo and r € N.

Recall that if p := p:;lNH_m € Apm|N41—m, then (77, (f[)) is the A(m — 1,
N — m)-data and R is the standard root system associated with (77, (II)).

We have

Lemma 3.8. Let m € I, and consider the Weyl groupoid W(ﬁm‘NH,m). Let
p = p;w“_m € Ap|N41—m- Let 0 be the A(m — 1, N —m)-type parity map.



IRREDUCIBLE REPRESENTATIONS VIA WEYL GROUPOIDS 83
(1) Let a* := (ﬁ€ﬁ>79) € Yin. Then (7U2m|N+1_m,p) and (Rqs,a*) are isomorphic.
Moreover for f € Mapl_ and r € N, agc’r = (
[01(1Ps 7. () (i € 1).
(2) Let n == N(N+1)/2 and v := n — m(N —m + 1). Let f € Map! be as
in Proposition 2.5 (or the one obtained from (2.23)). Let By = 1757 »—1(cvy)
(z € Jin). Then (P(1Pwo) = n, 1Pwo = 1Ps5,, and R*(p) = {B. | © € Ji,}.
Moreover

=Pf,r

M) Ofr), where Of (i) =

Ty (B B) € =22}, [1(B) =0 (k€ Ji,),

(3.7)
ﬁﬁm (Btvﬁt) =0, M(Bt) =1 (t € Jr+1,n)’

Proof. (1) can be proved directly, and (2) follows from Lemmas 1.12 and 3.7 and
(1.17), (2.14), (2.16), (2.21) and (2.22). 0

§3.4. Longest element of the Weyl groupoid of the simple Lie
superalgebra B(m, N —m) with m > 1

Let m € Jy n. For i € I, define a bijection 7; : Ay nv—m — Am|N—m by

. po pEN) itieJin_1,
Ti(P) = ) J
P ifi=N.

Let (II) = (4; | @ € I) and R be the By-data and the By-type standard root
system respectively. For any p € Ay n_m, let R(p) = §<ﬁ> (]:Z), and define a
generalized Cartan matrix cr = (C.?;j)@je.j by ¢ = 20(&i, &) /1(Gi, Gi). We see
that Cpun—m = C(L, Am|N—m; (Ti)icr, (CP)pea,, n_,,) i a Cartan scheme, and
Ron|N—m = R(C, (R(p))peA, x_.) is a generalized root system of type Cpn|n—m-
In particular, we have

Lemma 3.9. Let (II) = (&; | i € I) be the By-data. Let a be the only element

0fA<ﬁ>. Then for anym € Jy n and any p € ApN—m, (Rm|N—m,D) and (R<ﬁ>,a)
are quast-isomorphic.

Note that for the generalized root system Rm‘ N+1—m, We have
—p _ =Pfr
(38) Wiy (Ps10(0), 155, (9) = 145 (2,9) (w9 € V)

for pe Ay nom, f € Mapic and r € N.
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Define fm‘N_m € Mapfvz by

N—-—m-+t iftEJLm,
fm|N7m(t_m) ift e Jm+1,m2a
(3.9) fin—m(t) i= § t —m? £t € Jmzi1,m24nN,

N_ (t— (m2—|—N)) lft S J’I’?’L2+N+l,m2+N+ma
f’m|N7m(t - (N + m)) ift e Jm2+N+m+l,N2~

Let prN—m = PN—mfm € A |N—m- Note that if p = pr,|n_rm, then (7P, (f[))
is the B(m, N — m)-data. Moreover if p = p, n_rm and R is the standard root

system associated with (7%, (IT)), then R = R\ 2R.

k k—1
Let p£n|)N m = Pm|N—m- For k € Ji m, let pgn\)N m pgn\N)m °© @S\f )m+k 1

Then for t € J; 2, we have

Prn|N-m ift € Jim2yN—m—1,
<(t—(m?+N-m—1 i
| I T .
(3.10) (pm\me)f'mlN,m,t ) L(m—(—(mP+N)) .
pm\N m ift e Jm2+N,m2+N+m’
t—(N+ i
in\l\(f mm)) ift e Jm2 ¢ Ntm+1,N2-

Lemma 3.10. Let m € I, and consider the Weyl groupoid W(’me,m). Let
D= pm|N—m € Am|N—m
(1) Let 6 be the B(m, N — m)-type parity map. Let a* := (7?,0) € Vir. Then

(Rm‘N m>D) and (Rq:,a) are isomorphic. Moreover for f € MapOO and
reN, d, = (7P1r,05,), where 07 (i) = [0](17ss () (i € I).

(2) Letn:= N? and f := fm‘N_m € Map’. Then
(3.11) P(1Pwg) =n  and 1Pwy = 1ﬁsf,n.

Moreover fort € Ji ,, letting B == 11"sf-,t_1(at), we have Rt = {Be |t € i},

2 Zf te Jl,mflv
1 ift=m
If]?fw (/Bt—ma/Bt—m) Zf te Jm+1,m27
=P —2 Zf t € Jm2i1,m24N—m—1,
12 D — +1,m*+

(3 ) ! 1) (ﬁt’ Bt) 0 Zf te Jm2+N7m,m2+N711
-1 if t=m2?+N,
0 if t€ Jm2iNt1,m2+N+m>
77?1—[ (61& (N+m)» ﬂt (N+'rn)) Zf te Jm2+N+m+1,N27

(313) 01(80) = (0 (B 30).0) + 8, (8o ). ~1).

Proof. (1) can be proved directly.



IRREDUCIBLE REPRESENTATIONS VIA WEYL GROUPOIDS 85

(2) We have (3.11) by Lemmas 1.12 and 3.9 and (2.14), (2.16), (2.25) and
(2.26). Then (3.12) follows directly from (3.11), (1.17), (3.8), (3.9) and (3.10). We
can also prove (3.13) directly. O

83.5. Longest element of the Weyl groupoid of the simple Lie
superalgebra D(m, N —m)
In this subsection, assume N > 3. Let [ := I U {N+1}=J Nt1-
Let m € Jy n—1. Let Am\N—m be the set of all maps p: I — Jo,1 satisfying:

(P1) Xier B(i) = m.
(p2) If p(N) =0, then p(N + 1) = 0.

For example, |Ayjs| = 9 (see Figure 1 in Section 5).
For ¢ € I, define a bijection

i -Am\N—m — Am\N—m

by the following conditions (recall pENH) from (3.5)):

(7-1) For i € Jy n_o, let 7;(P) :=po @ENH)

(7-2) For i = N —1, define 7;(p) —pOpg\j,\H'l ) if 5(N+1) = 0, and define 7;(p) := p
if (N +1) = 1.

(7-3) For i = N, define 7;(p) := p if p(N — 1) = p(N), and define 7;(p) by
Fi(B)| w2 = Dlay v, and (7P ( —1)),7(B(N)), 7(B(N +1))) := (0,1,0)
(resp. (1,0,0), (0,1,1)) if (p(N — 1),p(N),p(N + 1)) equals (0,1,0) (resp.
(0,1,1), (1,0,0)).

2

All p e Am\N—m with N =4 and m = 2 are given in Figure 1.
Let 5 € Ay n—m. Define an R-bilinear map ij? : RY x RN — R by

(3.14) i (eir e5) = 6(B(1), () (=D (i, € ).
Define a subset R(j) of RY by
(3.15) R(p) :={cei +cej|i,jel,i#j, c,d €{l, —1}}

U{c"e |iel, p(i) =1, " € {2, —2}}.
Let (ITP) := (6P | i € I) e RN x--- x RN (N times). For i € I, define P € RN by

ei—eip1 ifieJynoo,

eN—_1 — EN ifi:N—landp(N+ ) 0,
(3.16) Gl ={ —2ey ifi:N—landp(N+) 1,

en—1ten ifi:Nandp( )— ( )

2en ifi =N and p(N) =1, p(N +1) =0.
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We can directly see that

P — pTib (o & ; N
(317) 77<Hp>('rvy) - 77(1'[/>(504f (1’), Saf’ (y)) (Z € Ia €,y € R )

where (IT') := (II7#). Define the generalized Cartan matrix C? = [cfj]”g €
My (Z) by

2 if i = j,
2ifP (67, b)) P
5 ) 5o ifi#jand iP(G7,d7) # 0,
ij = 771’(04?7 O‘f) e e
0 if i # j and ﬁp(df,df):ﬁp(df,dg)zo,
-1 if i # , ii? (6, 67) = 0 and i (67, &) # 0
We can directly see the following:
Proposition 3.11. (1) C“m|N,m = C(I’Am‘N7m7(%i)i617(éij)ﬁ€¢4mu\],m) s a

Cartan scheme.

(2) There exists a unique generalized root system

Rm|N7m = R(Cm|N7m7 (R(p.))ﬁe-/‘(m\me)

of type C"m|N,m such that

(3.18) & (R) = RG) (€ Auin-n).
Moreover,
) SN SN JN | .o ;
(3.19) §<ﬂ/> © 85 =57 & iy (D€ ApiN—m, i € 1),

where (IT') := (IT%iP).
Define jjm|N—m € Am|N—m by

1 ifi€ Jin—m,
0 ifie JN,erLNJrl.

ﬁm\N—m(i) = {

Note that for m € Jy y_1, (ijfmin-m (IIPmiv-m)) is the D(m, N — m)-data and
R(ijPmIn-m) is the D(m, N — m) standard root system associated with (jjmN-m
(fiPoixr)).

For k € Jy 1, define j)'(k) € Am|N_m by

m|N—m

(k) . 0 if7ie Jl,N—m—l U {N —m + k‘} U {N =+ 1},
pm|N—m(l) =

1 ifi € In—mNemtk—1 U IN—mtbt1,N,
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SO

(320) ﬁm\N—m = P'gng,m and I"f:fN,m = ﬁﬁff]\}zmopx\[jﬁ_l% (k S Jl,m)~
By Lemma 1.9(1), (3.15) and (3.18),

(3.21) lp(1Pwo) = [RY ()| = N® —=m (5 € Ay —m)-

Define fm‘N_m € Mapfvz,m by

(322)  fan-m(®)

N-m+t ift e Jim,

fm\N—m(t —m) ift e Jm+17m(m_1),
=qt—m(m—1) ift e Jm(m_1)+17m(m_1)+1\/,

]Y —(t—(m(m—-1)+N)) ifte Jm(m—1)+N+1,m(m—1)+N+m7

Smin—m(t — (N +m)) if t € Jnpm2 i1 N2 m-

Using (3.20), we can see that for t € Jy y2_p,,

(323)  (Paiv—m)

f;n\me,wt
Dm|N—m ift € J1mm-1)+N-m—1,
jjgﬁ\(f?(mmil)ﬂwmil)) if ¢ € Jin(m—1)+N—m,m(m—1)+N—1
- ﬁ%ﬂr(-t;(m(mfmm) if t € Jn(m—1)+N,m(m—1)+N+m>
p-grtll—]\({JX;m)) ift e JN+m2+1,N2fm-

Note that if m € Jo N1, P = Prm|N—m, then (7P, <H7’>) is the D(m, N —m)-data
and R(p) is the standard root system associated with (77, (II?)).

Proposition 3.12. Let m € I, and consider the Weyl groupoid W(?émw,m). Let
pi= pm\me € -Am\me-

(1) Assume m € Jaon-—1. Let 0 be the D(m, N — m)-type parity map. Let a* :=
(ﬁ?ﬁﬁyﬂ) € ylﬁvn. Then (kmw_m,p‘) and (Rau,aﬁ) are isomorphic. Moreover
for f € Map’, and r € N, at}vr = (ﬁi}’f{’,;,ﬂfm), where (IT') := (ITP7), and 0;.,
is defined by 0y (1) == [0](1Psfr(cw)) (i € I).

(2) Letn:= N?—m and fi= f.m|N_m € Mapi. Then

(3.24) U5(1Pwg) = N* —m, 17wy = 175
(3.25) Py =D

n’
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Moreover, letting r := m(m — 1), we have

(3:26) Pt (e, ie) (= il (s, (0n) 1Ps ()

2

nﬁf’hmfl (&t—ma dt—m)
2

=<0

—4

0

TP F =N e =1 (G (N my s G (Nm) )

and

if te Jl,mv

Zf te J77L+1,r7

if t€ Jrgi1 i Nom—1,
if te J7'+N—m,7'+N—1a
if t=m2?+ N,

if t€ Jri Nt N+ms
if t€ JriN+mt1n

(3.27) [9](1133,?,15—1(%)) = 5(ﬁ?ﬁﬁ>(1ﬁ8f7t—l(at)7 1ﬁ5f,t—1(at))7 0) (t€Jin).

Proof. (1) can be proved directly.

(2) Let 7 := m(m—1) and ' := n —r. Define f € Mapl, by f'(y) :== f(y+r)
(y € Jim). By (3.23), p= Pf, =Dj,, since r" = (N +m)(IN —m). Hence we have

(3.25) and

(3.28) VPsp =105 175

AR
\T

For t € Jy ., since f(t) € JN—m+1,n for t € Jy ,, by (3.16) and (3.23), we have

o

FO 7\ ejuyr +eje i F(t) =N,

Hence by (2.18) and (3.19), we have

sPrt {ef'(t) ~Ciw)+1 if f(t) € JN-m+1,N-1,

(329) (f(HP))il o 1ﬁ5f1r o §<HP> = PJl,N—wn - PJN—m+1,N—1 - (_1)mPJN,N'

For t' € Jy v, we can directly see

“pwy T

(3.30) SBpe ) ey T epangr i Ji/(t/) € Jin-1,
2en it (1) =

By (2.24), (3.19) and (3.30), we have

N.

(3.31) Etiny) " 0 1P 00 igisy = =Py + P in

By (3.28), (3.29) and (3.31), we have

(3.32) (f(ﬁzﬁ))_l © 1ﬁ3f,n o &y = —Pryvy — (=)™ Py x-



IRREDUCIBLE REPRESENTATIONS VIA WEYL GROUPOIDS 89

By (3.16) and (3.32), we have

—Qy ifie JLN,Q,

—ay ifme2Nand i€ Jy_1n,
—an ifme2N—1andi=N —1,
—ay_1 ifme2N—-1andi=N.

1ﬁsf~ (o) =

n

Hence lﬁsf’n(l_[) = —II. By (1.16) and (3.21), we have (3.24). We can prove (3.26)
and (3.27) directly.
O

83.6. Longest element of the Weyl groupoid of the simple Lie
superalgebra C(N)

In this subsection, assume N > 3. Define gy € Al\N—l by pn (i) :==1—0;1—8; N1
(i € I). Note that if p = p and (I) = (IT), then (—ij?, (IT)) is the C(N)-data and
R(p) is the standard root system associated with (—ij?, (I1)), where ij? is defined
by (3.14). Define fy € Maph_; by

t+1 ifte Jin-1,
: n(t— (N —1 if
fN(t) — fN(t ( ) )) 1 te JN,(N71)27
t— (N — 1) ifte J(N71)2+1,(N71)2+N7

N—l—(t—((N—1)2+N)) ift e J(N71)2+N+1,N271-

Proposition 3.13. Consider the Weyl groupoid W(?é”N,l). Let p := pn and

(IT) := (IIP).

(1) Let 6 be the C(N)-type parity map. Let a* := (fﬁfm,ﬁ) € Vi, Then
(7%1|N,1,]5) and (Ry:,at) are isomorphic. Moreover for f € Mapl  and
r € N, auf’r = (—ﬁfg,g,em), where (IU) := ([1P+r), and Oy, is defined by

07,0 (i) = [0](1Ps 7 ()) (i € I).

(2) We have
(3.33) Cs(1Pwo) = N? =1, 1Pwo =175z po .
(3.34) Bionea(@) =161 (i€l

Moreover letting mq, = —ﬁ?ﬁ> (o, ) (v € RT(p)), we have

(3.35) {1ﬁSfN,t—1(afN(t)) [t € Jiv-1)2}
={a € R*(p) | ma € {2,4}} = {a € R (p) | [](r) = 0},
(3.36)  {1Psp., y(ap ) |t € Jnv 121 ne 1}
={a € R*(p) | ma =0} = {a € R*(p) | [)(a) = 1}.
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Proof. (1) This can be proved directly.
(2) Let f:= fy and r := (N —1)2. For t € J1,r, we have ps, = p, so (3.16)
implies

(3.37) abfe = ) € T Cfw+ if f,(t) € Jo,n-1,
’ f(@®) 2en if f(t) = N.
In particular,
(3.38) Bi, = b
By (2.24), (3.19) and (3.37), we have
(3.39) (&))"t o1Psz o0&y = Pr, = Pry x-

By (3.38), we directly have (3.34) and

€t — €rq1 ifte Jin_1,

(3.40) d’}f(";':;) = eniten ift =N,

eaN—1—-t —€aN—¢ ift € Iny1an—2,

for t € Jyan—2. SInce Sey_1—enSen_14en = Sen_18ens Dy (3.40) we have

(341) ‘§f(r+1) M <§f(N2_1) - =§81‘§€N - 7PJ1,1 + PJ2,N—1 - PJN,N'
By (2.24), (3.19), (3.39) and (3.41),
(3'42) (g(f[))_l © 1ﬁsf,n ° éh(l‘[’) = _PJl,N—l + PJN,Nv

where n := N2 — 1 and (IT") := (II/'"). By (3.16) and (3.42),

—Qy if1 € JLN_Q,
lﬁsﬂNLl(ai): —aN ifi=N—1,
—QON_—-1 if 1= N.

Hence 1155f"N271(H) = —II. Hence by (1.16) and (3.21), we have (3.33). By (1.15),

(3.15), (3.16), (3.18) and (3.39), the LHS of (3.35) is R+(]5)ﬂé’5(@ivz2 Re, ). Hence
we obtain (3.35) and (3.36). O

84. Generalized quantum groups
§4.1. Bi-homomorphism yx and Dynkin diagram of y
We say that a map x : ZII x ZII — K* is a bi-homomorphism on II if

x(a, B+7) = x(a, B)x(e,7),  x(a+B,7) = x(e7)x(B,7)
for all «, 8, € ZII. Let Xy be the set of bi-homomorphisms on II.
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Let x € Xy and let g;; := x(ay, a;) for i, j € I. By the Dynkin diagram of x,
we mean the unoriented graph with N dots such that the i-th dot is labeled oy
and g;;, and the j-th and k-th dots with j # k and gjrqr; # 1 are joined by a
single edge labeled gjxqy;. For example, if N = 3 and ¢11 = —1, g22 = ¢°, q33 = ¢°,
q12q21 = G2, qa3qz2 = ¢ ° and qi3g31 = 1 for some ¢ € KX, then the Dynkin
diagram of y is the leftmost diagram of Figure 9. Note that the Dynkin diagram of
x does not determine x. In fact, it determines the = equivalence class of x, which
will be introduced in (4.18) below.

§4.2. The quantum group U = U(x) associated with x € Xy

From now on until the end of Subsection 4.4, we fix x € Xy, and let ¢;; := x (o, o))
for i,j5 € I.
Let U := U(x) be the unital associative K-algebra defined by the generators

Ko, Lo (€ ZIT),  Ey F; (i€ 1)
and relations
Ro=Fo=1, KaRs=FRuip Lalp=TLars Ralp=Lske.
(4 1) kaEN‘i == X(Oz, ai)E’if(a, LaEi = X(—th a)EiLa,
' K. F; = x(a, —ai)ﬁ'if(m L F, = x (e, a)ﬁ'if/a,
Eiﬁ‘j — FJEZ = 5ij(_Kai + f/ai),
for all a, 8 € ZII and all i,5 € I.

Remark 4.1. U has a Hopf algebra structure with coproduct A : U—-UaU
such that A(Ky) = Ko @ Ko, A(La) = Lo ® Lo (o € ZI1), and A(E;) = E; @1+
Ko, @Ej, A(F}) = Fi® Lo, + 1@ F; (i € 1).

Define a K-algebra automorphism Q : U — U by Q(K,) :== K_o, Q(Ls) ==
L_o, QE;) := F;L_,,, and Q(F;) := K_,, E;. Define X € Xy by x°?(a, 3) :=
x(B,a) (o, B € ZII). Define a K-algebra automorphism T : ﬁ(XOP) — (]’(X) by
P(Ko) = Ly, T(E) = K, T(By) = F, and T(E,) = B,

Let U := U°(x) (resp. Ut := U*(x), U~ := U~ (x)) be the unital subalgebra
of U generated by K, L (o € ZII) (resp. E; (i € I), F; (i € I)).

Lemma 4.2. The elements

(4.2) By By RalpEy - By

"

with m,m € Z>o, iy € I (x € J1,), Gy €I (y € Jim), @, B € ZII form a K-basis
of U, where we use the convention that if r = 0 (resp. m = 0), then E; -+ E;,

resp. F. ---F. ) means 1.
J1 Jm

Proof. This can be proved in a standard way as in [24, Lemma 2.2]. O
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Define the ZII-grading U = Docrm U, onUby K, €Uy, Lo € Uy, E; € f]ai,
F, € U—a,;, and UaUB - O(H_g. For a € ZII, let Uai .= U* NU,. Then U* =
@O{Eilzgn UO:zt

For m € Z>¢, and t1,t2 € KX, let

(m;ty,te) :=1— tT_ltg and (m;ty,te)! = H (J; t1,t2).
jEJl,nL

For m € Z>o and 4,j € I with i # j, define Em,a,-,a,- € ﬁntaiJraj, and Fm,ai,aj €

U__mai_aj inductively by Eo o, .a; := Ej, Fo,a;.0; := Fj, and
(4 3) E~‘m+1,ai,a]‘ = EQ m,a,0 ngijpmvai,ajpi)
Frt1,050; = FiFma,0; = 4G GiFm,ai,a; Fi-

Remark 4.3. The elements in (4.3) appear naturally when considering the twist-
ing of the Hopf algebra structure of quantum groups. For example, see [27, Sec-
tion 7]. Here twisting refers to the method given by [27, Proposition 7.2.3] in order
to obtain another Hopf algebra structure.

We have

T(Fm’ai,aj) = EN’m’ai,aj and Y(Em’ai,aj) = Fm,ai’a]..
Lemma 4.4. (1) Form € N and i,j € I with i # j, we have
(4.4) [Eiy F]"] = (m)g (— Ko, + a5 Lo )E"
(2) Forme N and i,j € I with i # j, we have
(4.5) [E;, Fm,ai,aj] = —(m)g,, (Mm; gii, Qijqji)KaiFm—l,ai,aj-
(3) Let n,m € Z>o withn <m and i,j € I with i # j. Then

~ ~ m ~ o~
[Enyamame,ai,Otj] = (n)qn'(n> (m;QiiaQiiji)!Fim nLnai+aj~
q

In particular,

46) [E] Fm,ai,a]-] = (m; qii, qijqji)!ﬁ‘sz/aj .

(

(4) Form € Z>o and i,j € I with i # j, we have

(47) [Em705i7aj ) Fm,ui7aj] = (m)qn '(ma qii, Qiiji)!(_Kmai-i-aj + INJmui—i—aj)-
(

5) Form,n € Z>q and i,j,k € I with i # j # k # i, we have

[Em,(!maj’Fn,m,Oék] =0.
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Proof. These equations are obtained directly as in [11, Corollary 4.25, Lem-
ma 4.27]. O

For a = 7, nicy € Zxoll with n; € Z>¢, using induction on ), ; n;, we
define a K-subspace Z~,, of U, as follows. Let Z; := {0}. For a € ZxoII \ {0},
let Z~,, be the K-subspace of U, formed by the elements Y € U~ with [E;, Y] €
i:wralf(ai +f:a+ml~/ai for all ¢ € I with oo — «; € Z>oIl. Note that i’:ai = {0}
for all i € I.

Let I~ := ®an>0Hi:a and set J~ := Spang(Z~-U°U*). Then J~ is an

ideal of U. We define a unital K-algebra U = U(x) by
(4.8) U=U/(T" +QJ)=U/(T +T(T))

(the quotient algebra).

The K-algebra U(x) defined by (4.8) is isomorphic to the one given by [14,
(3.14)]. By [14, Proposition 3.5(iv)] (see also [11, Proposition 5.4, Theorem 5.8]),
U(x) can also be defined in a way similar to that given by Lusztig [19, 3.1.1(a)—(e)].
See also Remarks 5.12 and 7.11 below.

Let 7, := 7 : U — U be the canonical map. We denote 7(K,), 7(La), 7(E;),
7(F;) by Kq, Ly, E;, F; respectively. Let
(49) Em,ai,ozj = W(Em,ai,a]‘)a Fm,ai,aj = W(Em,ai,a_j)

(m € ZZOa 27.] € I7 i #])

Let U := U%(x) := 7(U°) and U* := U%(x) := n(U*). For o € ZII, let U, :=
U(X)a = 1(Uy) and UE := UE(x), := n(UZ).

We have a K-algebra automorphism Q : U — U with Qo7 = 7 0 Q. We have
a K-algebra isomorphism Y : U(x°P) — U(x) with T o myep = m, 0 Y.

Using €2, we have

Lemma 4.5. There exists a unique K-linear isomorphism from U~ @ U’ @ U™
toU sendingY @ Z@ X toYZX (X eUY, Ze U, Y € U™). Moreover, U’ =
B pezn KKaLs, U= czn Uas UF = B oep. i ULy, and dim U = dimU~,
for all a € Z>oll.

Remark 4.6. By Lemma 4.2, we have the same results as Lemma 4.5 with U in
place of U. By Lemma 4.5, the structure of U° = U°(x) as a unital K-algebra is
independent of the choice of y € Xn.

Remark 4.7. U can be regarded as a Hopf algebra such that 7 is a Hopf algebra
homomorphism.
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84.3. Kharchenko PBW theorem

Define hX : ZIT — N U {oco} by

WX (a) = {oo if (m)x-(aya)! # 0 for all m € N,
max{m € N | (m)y(a,a)! # 0} otherwise.
For i,j € I, define ¢;; := ¢ € {2} U J_o0 0 U{—00} by
(4.10)
2 ifi=yj,
cij =y = —oo if i # jand (m)g,,(m; i, gijqji)! # 0 for all m € N,

—max{m € Zx¢ | (m)g,,!(m; Gii, ¢;5q;:)! # 0} otherwise.
By (4.4) and Lemma 4.5, the following lemma holds.

Lemma 4.8. Leti € I and m € Z>o. Then F™ = 0 if and only if m > hX(a;).
In particular, if m € Jopx(a,), then dimUZ, = 1, and if m > hX(q;), then
dimU=,,,, = 0.

We also have the following result.

Lemma 4.9. Leti,j € I withi# j, and m € Z>.

(1) Fnaia; 70 if and only if m € Jo ;.

(2) If m > WX(i)—cqj, then dimUZ,, = 0. Also if m < hX(a;) —cy5, then the
elements Fy o, o F{" ™" with 7 € Jiax{0,m—hx(a;)},min{m,—c;;} form a K-basis
of Unai—a -

(3) dimU-,, _,,
FiFj = QiijFi-

€ Ji,2. Moreover, ¢;;q;; =1 & ¢;; = 0 & dimU_ =1

—Q;— Oy

Proof. (1) follows from Lemmas 4.5 and 4.8, together with (4.5)—(4.7).

(2) If m = 0, this follows from Lemma 4.8. Assume m > 1. Note that —¢;; <
hX(e;). By (1) and (4.3), UZ,,,q,_q, is spanned by elements as in the statement.

Assume m < hX(;) — ¢ij. Let Z := Jax(0,m—hx(as)},min{m,—c;;} and X =
Yorez YrFroio, F{"T" with y, € K. Assume X = 0. Observing the coefficients
Fhai,ajFim_r_lLai (r € ZNJom—1) of [E;, X], by Lemma 4.5 and (4.4), (4.5) and
induction, we see y, = 0 for 7 € Z N Jym—1. In a similar way, we see y,, = 0 (if
m < —c¢;;) by (4.5).

(3) follows from (1) and (2). O

By the Kharchenko PBW theorem, we have



IRREDUCIBLE REPRESENTATIONS VIA WEYL GROUPOIDS 95

Theorem 4.10 ([18], see also [9, Section 3, (P)], and [14, Theorem 4.9]).

(1) There exists a unique pair
(BT =R (x), ¢ = ¢x);

where RT C Zxoll \ {0} and ¢ : RY — N satisfy the condition that there
ezist k € NU {oo}, a surjective map ¢ : J1 — R with [~ ({a})| = ¢(a)
(a € RY), and Fr] € UZyr \ {0} (r € J1 k) such that the elements

(4.11) F[l]ml s F[m]zm (m S J17k, Ty € JO,hX(i/)(y)) (y S J17m))

form a K-basis of U~ (where we mean that for m < m, F[1]** ... F[m]*™ =
F[]** ... F[m])® if and only if x, = T, for ally € Jy,m and Ty = 0 for all
ye Jm+1,fn)'

(2) Assume |RY| < oo. Then o(RT) = {1}, and there emist F,, € U_, \ {0}
(v € RT) satisfying

(i) Let n := |R*|. Then for any bijection ¢ : J1, — RT, the elements

Flztl) e Fj?n) with z; € Jo px(yp(e)) (t € Jin) form a K-basis of U™.

(ii) For B € Rt with hX(B) < oo, Fg"<ﬂ>+1 —0.
(See also Remarks 6.2 and 4.11(1) below.)

Remark 4.11. (1) By Lemma 4.5, using T, we can easily see that (R (x°P), pyer)
= (RT(X),¢y)- It is clear that ¢, (a;) = 1 for ¢ € I. Note that we have the
K-algebra isomorphism Y- (yer) : U™ (x°) = Ut (x).

(2) The following facts are well-known (see [19, 33.3, Corollary 33.1.5] and
[12, Section 2.4] for example). Let § € KX . Let A = [a;;];,jer be a symmetrizable
generalized Cartan matrix. Let d; € N (¢ € I) be such that d;a;; = d;a;; (4,5 € I).
Let g be the Kac-Moody Lie algebra defined for A. Let n~ be the negative part
of g, and U(n~) be the universal enveloping algebra of n~. Let x € Xy be such
that x(ci,a;) = %% (i,j € I). Then the ideal Z~ of U~ (x) is generated by
Fl_ama“aj (1 # j), and dim U~ (x)—o = dimU(n~)_, for all @ € Z>oIl, where
Un)_q is the weight subspace of U(n~) corresponding to —a. In particular,
RT(x) can be identified with the set of positive roots of g and ¢, (o) = dim g,
(=dimg_,) for all @« € R (x).

Once we know Theorem 4.10, the following lemma is clear from Lemmas 4.8
and 4.9.
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Lemma 4.12. (1) IC R™".
(2) Fori,j €I withi# j, we have

(4.12) RN (oj + Z>oo;) = {aj +na; | n € Jo,fc}j}a

and @(o; +rag) =1 for allr € Jo ;.
(3) Let I' be a non-empty proper subset of I. Let I" = I\ I'. Then RT =

(RY N Dyer Zxo00i) & (RY N D jepn Zzoey) if and only if qijq;i = 1 for all
1€l and allj € I".

For x € X, we say that x is irreducible if its Dynkin diagram is connected,
that is, for any 4,j € I with ¢ # j, there exist m € Z>q, i, € I (r € Ji ) such
that gi, i1 Giyy,i, 7 1 for all t € Jo g, where we let ig := @ and iy,41 1= j. Let
X = {xy € Xy | x is irreducible}.

84.4. Irreducible highest weight modules

Let A € Ch(UY). By Lemma 4.5, we have a unique left U-module M, (A) satisfying
the following conditions:

(i) There exists 9y € M, (A) \ {0} such that Zoy = A(Z)0, for all Z € U® and
E;op =0foralliel.

(ii) The K-linear map U~ — M, (A), Y + Y0,, is bijective.

For i € I and m € Z>g, by (4.4), we have

0 ifm=0,

413) B FM, =
o) e {(m)qii<_qi1imA(KaJ‘f'A(Lai))Fim117/\ otherwise.

For a € ZII, let M, (A)y := U, Ua. We say that a K-subspace V of M, (A) is
ZIl-graded it V = @, ez qn(V N My(A)o). If V is a ZIl-graded U(x)-submodule
of My (A), then ¥V # M, (A) if and only if 05 ¢ V.

Let N := N, (A) be the maximal proper ZII-graded U(x)-submodule of
My (A). Note NN Koy = {0}. Let £,(A) be the quotient left U-module defined
by

Ly (A) = My (A)/N.
We denote the element 95 + AN of £, (A) by va. For a € ZII, let Ly (A)q := Uy va.
Then L, (A) = D ez i1 £x(A) —a- Also Ly (A)o = Kua, and dim £, (A)o = 1. We
say that a K-subspace V' of £, (A) is ZIl-graded it V' = @,z . n(V' N Ly (A)a).
There exists no non-zero proper ZIl-graded U (x)-submodule of L, (A).
By (4.13), for m € N, we have

(4.14) EMuy =0 < (m)g,'(m;q;" A(Ko, L_a,))! = 0.
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Let

0o if (m)g,,!(m;q;; 'y A(Ka,L_y,))! # 0 for all m € N,
(4.15) hyni = max{m € Zsq | (m)g,,'(m;q;;", A(Ko,L_0,))! # 0}
otherwise.

By (4.14), since £, (A) is ZII-graded, we have
(4.16) dim L, (A) <oo = Viel, hya,; < oo.

Lemma 4.13. (1) For any A € Ch(U°(x)), L, (A) is an irreducible U (x)-module.

(2) Let A, N € Ch(U°(x)). Let f: Ly (A') = Ly (A) be a U(x)-module homomor-
phism. Then A =N, and f = c-id for some ¢ € K. In particular,

(4.17)  if A# N, then L, (A) and L, (A') are not isomorphic as U(x)-modules.
Proof. These claims are clear from the following fact:
VA € Ch(U°(x)),Yv € L, (A)\ {0},3X € UT(x), Xv=u,. O
84.5. Notation =

Notation 4.14. Let x,x’ € Xn. Let gi; := x(a;, ;) and ¢j; = x'(as, ). We
write

(4.18) x=x" if gi = qj; for all i € I and gjrqr; = ¢jrqy; for all j, &k € I.
By (4.10),
(4.19) X=X = Vijel ¢ =cy.
Let A € Ch(U%x)) and A’ € Ch(U°(x")). We write

A =(LA) ifx=x and A(Ky,L_o,) = AN (Ka,L_y,) for alli € I.

Note that
(4.20) GA) =L AN) = Viel, hyni = hyoa

84.6. Weyl groupoids of bi-homomorphisms

Let X .= {x € Xn | |[RT(x)| < co}. If x € X8 N X we say that x is of finite
type.

Let 4 € I, and set (Xj'\/,’ﬁn)i ={x € Ay | Vj € I,¢j # —oo}. For x €
(XF™),, define s¥ € GL(ZI) by sX(a;) = a; — 0. Note that sf(a;) = —a;
and (sX)% = idy (i € I). For x € (Xg"™);, define 7,5 € Xn by

(4.21) Tix(a, B) := x(s¥(e), sX(B)) for all o, f € ZIL.

’ 921
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Lemma 4.15 (see also [14, (2.10)-(2.11)]). Let x € (Xp™),.

(1) If x(as,a5) =1, then x(ay, a5)x(ey,05) =1 for all j € 1.
(2) We have
(422) X =cS (e, mxe @Y™ sTX=sY  mmx=x.

(3) If x € XI*, then 1y € X,

Proof. (1) is clear from (4.10) since x € (XJ/\',’ﬁn)i.

(2) Let ¢;; := c§‘j (i,j € I). Let quy = x(au, ), and qy,, = Tix(az, ay)

2(—ciz)— _ ,

(2. € D). We have f; = gis, and (¢})"afjaj; = (a5 """ (aija50)) " for j € I
and m € Z. If g;; = 1, the statement is clear from (1) since ¢;; = 0 for all j € I'\ {i}.
Assume g;; # 1. Let j € I\ {i}. Assume ¢;; = 0. Then ¢;;q;; = 1. Hence ¢;;¢}; = 1,
S0 CZ-X = 0. Assume —c;; > 1. Assume g;;“? q;;q;; = 1. Then (i)~ qi;q5 = 1.
Moreover, we have (¢)™*' = ¢/ ™' # 1 and (¢})" ¢} = ;"™ # 1 for
m € Jo,_c,,—1. Hence cf}x = ¢ij. Assume q;; "7 ¢;jq;; # 1. Then g;; is a primitive
(1 = ¢i;)-th root of unity. Since ¢ qi;q;; # 1 for m € Jo _,;, we have ¢}}qi;q;i # 1
for all n € Z. Hence c;;* = c;j.

(3) Let gzy and ¢, be as above. By (4.10), for z,y € I with c;; = ¢;y = 0, we
have ¢y = q3,,- Then (3) follows from (2). O

/

Let X0 = .., (X0™);. By (4.12), we have

icl
(4.23) Xfn o xpin,

Notation 4.16. Let x, ' € Xy. We write x ~ x’ if x = x’ or there exist m € N,
ir €I (t € Jim) and x, € Xn (r € J1m+1) such that x = x1, X’ = Xm+1 and
Xt € (XJ/\/r’ﬁn)it, TiyXt = Xt+1 (t € J1,m)-

For x € Xy, let G(x) ={x" € ¥~ | X' ~ x}
Let X5 = {x € X0 | 7x’ € X0 (' € G(x), i € I)}.

Definition 4.17. Let x € X3™. For i € I, define a map Tig(X) :G(x) = G(x)
by Tig(X)(X/) = 7;x’. For ¥’ € G(x), let CX' be the N x N-matrix [CZ/} over Z,
where by Lemma 4.9(3), CX' is a generalized Cartan matrix (see (M1), (M2) of
Subsection 1.2). We call the quadruple

Cy = Cx(1.G00 (7 ier. (C¥) )

the Cartan scheme associated with x. Indeed, by (4.22), C, is a Cartan scheme
(see (C1), (C2) of Subsection 1.2).
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Let x € X;\}ﬁn. Recall Notation 1.1. Since C,, is a Cartan scheme, by (4.21) we
have

(4.24)  xpa-alape, apm) = x(Wspa1(ape), sp-a(arm))
(n € Zso U {oc}, f € Mapl,, t € N).

For x € Xn, let R(x) := RT(x) U (=R"(x)), and extend the initial domain

of oy to R(x) by ¢y (—a) = ¢y (a).
It is well-known that

Theorem 4.18 ([9, Proposition 1], see also [13, Example 4]). (1) For i € I and
X € (X%, we have
mix € (XM sHRT 00\ {ea)) = B (mx) \ {au}
prix(57(8)) = ox(B) (B € R(X)).
In particular, s¥(R(x)) = R(Tix)-
(2) Let x € X, Then m;x € X8 and |[RT(x)| = |RT (1ix)]-

(4.25)

We have obtained the first property in (4.25) by (4.22).
The following theorem is also well-known.

Theorem 4.19 ([11, Theorem 3.14]). Let x € X5™. Then the data

RX = RX(CXﬂ (R(Xl))x/GQ(x))

is a root system of type C, (see Definition 1.2). In particular, for x',x" € G(x)
and w € H(x',x"), we have

(4.26) w(R(X")) = R(X).
Proof. This can easily be shown by using Theorem 4.18 and Definition 1.2. O

Corollary 4.20. Let x,x' € X;\’,ﬁn be such that R(x) = R(x’) (as a subset of V).
Then 1Xs;, = 1X's; 4 (as an element of GL(V)) for all f € Map’, and t € Z>.

Proof. This follows from Lemma 4.12 and (4.26). (See also Lemma 1.12.) O
By (4.23) and Theorem 4.18(2), we have
(4.27) xfn oy,

Lemma 4.21. Leti € I and x € (X]/\/,’ﬁn)i. Assume that x (o, 0q) € KX . Then
X = X-
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Proof. Let quy = Xx(aw, ) and qp, = Tix(au,qy) for z,y € I. Let j,k € I.
Assume j # i # k. By (4.10), ¢;; ¢i;qji = 4;; “* qikqri = 1 since g;; € KX . Hence

Ty = X(aj — cijai, ap — capog) X (ar — cinty, o — cijoy)
e i 2CiiCik
= Qe (¢i3251) " (Qinqrd) "% 5 7" = Qg
as desired. The other cases can be treated similarly. O

Let i € I. Let x € (X0™); and ' € Xy. By (4.19), we have

(4.28) x=x = X € (X]/\/,’ﬁn)i, sX = 5?/7 TiX = TiX

K2

Lemma 4.22. Let x € X, Let ' € Xy be such that X' = x. Then X' € X,
1Xwe = 1X'wy and R(x') = R(x).

Proof. This follows from (4.28) and Lemma 1.12. O

§4.7. Finite-dimensional irreducible U(x)-modules

Here as an application of Theorem 4.19, we show that if x € X" satisfies an
extra condition, every finite-dimensional irreducible U (x)-module is isomorphic to
L, (A) for some A € Ch(U°(x)).

Lemma 4.23. Let x € XN X, Assume that if N = 1, then x(a1,a1) # 1.
Then {L,(A) | A € Ch(U%x)),dim L, (A) < oo} is a complete set of pairwise
non-isomorphic finite-dimensional irreducible U(x)-modules (see also (4.17)).

Proof. Let V be a non-zero finite-dimensional irreducible U(x)-module. For A €
Ch(U%x)), let Vs = {v € V |VZ € U(x), Zv = A(Z)v}, and VA = {v € V, |
Vi € I, B;v = 0}. Let O := {A € Ch(U°(x)) | Va # {0}}. Note |O] < oo, since
dimV < co. Since K is an algebraically closed field, O # 0. Let O := {A € O |
VA £ {0}}. Since V is irreducible, we have V = V = Darco Va (# {0}). Let
Ut(x) = Dsez.o\ (0} Ut(x)g and U™ (x)" = Dsezo\ioy U™ (X)-5-

Assume for a moment that

(+) I eN, Vo eV, VX, e UT(x) (t€ Ji,), Xi- Xov =0,
and that
(%) IreN,YeV, VW, eU (x) (te i), Yi---Yuo=0.

By (%), there exist A € Ch(U°(x)) and v € VA # {0}. Then there exists a non-zero
U(x)-module epimorphism f : M, (A) — V with f(0a) = v. Assume that N, (A) ¢
ker f. Then there exists Y’ € U~ (x)" \ {0} such that 95 + Y'05 € ker f. Then
v = (=Y")v, which contradicts (sx). Hence N, (A) C ker f, so Ny (A) = ker f since
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V is irreducible. Thus f induces the U(x)-module isomorphism f' : £, (A) — V
with f/(vp) = v.

Let F, € U™ (X)—a (@ € RT(X)) be as in Theorem 4.10(2). Since |O| < oo,
for a € R (x), if @ € KX, F, acts nilpotently on V. By Lemma 4.15(1), Theo-
rem 4.19 and (1.18), since y € X", we have x(a, a) # 1 for all « € R™(x). Hence
Theorem 4.10(2) implies (xx). Similarly we also have (x). O

Remark 4.24. Let y € XI*N A, Assume dim U~ (x) < oo (see also Lemma 5.9
below). By Lemma 4.23, {£,(A) | A € Ch(U%(x))} is a complete set of pairwise
non-isomorphic finite-dimensional irreducible U (x)-modules (see also (4.17)).

85. FID-type bi-homomorphisms

85.1. Some bi-homomorphisms
Let
(5.1) YR = {af = (F,0) € Vi | ni(anap) € Z (i € D).
Lemma 5.1. Let § € KX.

(1) We have an injection wg : Vo™ — XM defined by
(5:2) (0 (g, 05) = (~) )i j e 1)

for a¥ = (n*,0%) € y§5=ﬁf‘.
(2) Leta* € y;&ﬁ“. Then (Rgs,a*) and (qu(au),w(;(aﬁ)) are isomorphic.
(3) wa(Vim) c xfin. Moreover R(a*) = R(wy(a*)) for af € Yiin.

Proof. Claims (1) and (2) can be proved directly. Claim (3) follows from (2) and
Lemma 1.12. O

Definition 5.2. Recall Definition 2.1. Define 6 : I — Iy1 by 6(3) := 0 (¢ € I).
For a rank-N Cartan data (IT), let a%m = (M. 0) € Yin (cf. Theorem 3.4).

Let X$#%" be the subset of Xy formed by w@(aﬁm) for some ¢ € KX and some

rank-N Cartan data (IT). Let X$'%(Xy) be the subset of XSG formed by
) .

wé(am)) for some ¢ € KX and some Xpy-data (IT), where X is one of A,...,G.

Using Lemma 5.1, we can easily prove

Lemma 5.3. Let (II) be a rank-N Cartan data. Let y = w(i(a%m) € xgartan,
Then (Ry, x) is isomorphic to (Riys @), where a € Az, (note A =1). In

particular, |G(x)| = 1, and identifying (I1) with (II), we have R(x) = R, where R

is the rank-N root system corresponding to (II).
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Figure 1. All p € A'Q|2 and the Dynkin diagrams of all y € )'(EuPer(D(Z 2)), where
(21, 22, 23, 24; 25) means p € /(g|2 with p(i) = z.

Definition 5.4. Recall Definition 3.1. For a rank-N standard super-data (7, (II)),

let a%m = (M, 0) € VB (cf. Theorem 3.4), where 6 is the parity map associated

with (77, (I)). Let X5"™" be the subset of Xy formed by w@(aﬁm) for some ¢ € KX
and some rank-N standard super-data (77, (IT) = (a; | i € I)). Let X3™(X) be
the subset of X3 formed by wQ(a§ﬁ>) for some ¢ € K% and some X-data.

Using Lemma 5.1 and facts mentioned in Section 3, we can prove
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Lemma 5.5. Let y € Xf’,upcr. Assume that x belongs to A.,’I%,upcr(A(mf 1,N—m))
with N > 2 and m € Jin, /\:’Is’,upcr(B(m,N —m)) with N > 1 and m € Ji n,
XN (C(N)) with N > 3, or Xy (D(m, N —m)) with N >3 and m € Jo ny_1.
Define G € KX, a Cartan scheme C = C(I, A, (7;)icr, (C*)aca), and a generalized
root system R = R(C, (R(a))aca) of type C, p € A, and symmetric bilinear maps
n®:VxV—-R(ae A by Tables 1 and 2.

‘ g c R
A(m_ 17N_m) X(a17a2)71 CU77'L|N+17m 72’{71|N+17m
B(mvam) X(aNzo‘N) Cm\me Rm\me
C(N) x(o1, o)™t Cin—1 Rijn-1
D(mzN _m) X(O‘N721QN71)71 C7n\N7'm R'm\anL

Table 1. Generalized root systems of ABCD-type quantum superalgebras.

a

I
+ .
A(m—1,N —m) P N+1—m n?m
B(m, N —m) PN_m|m ﬁ?ﬁ)
o ; —ija,
I I
D(mv N — m) p7rL|N7'm W?ﬁa>

Table 2. Bilinear forms of ABCD-type quantum superalgebras.
For a € A, define the map 6% : I — {0,1} by

aa(i) L 1 Zf 77“(041‘7%‘) € {07 71}7
10 if % (eu, ) € {1,2,-2,4, —4}.

(n*(cvi, i) € {1,=1} if and only if x € XY™ (B(m,N —m)) and i = N.) Let
at := (nP,0P) € Yn. Then at € Vin. Then for f € Mapé<> and t € Z>o, we have
aﬁf’t € Yin (in Cyr) and

(5.3) Xpi = wglah,) € X"

(in Cy). In particular, (Ry,X) is isomorphic to (R,p).

Lemma 5.6. Let x := wﬁ(a%fn) € XY be as in Definition 5.4. Let R be the

standard root system associated with (7, (I1)). Then
(5.4) R(x) = &my (R \ 2R).
In particular, x € X,f\i,n.

Proof. This follows from (1.18), Theorem 3.4, Definition 3.5(2) and Lemma 5.1.
O
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Definition 5.7. If N € N\ Ja 4, let X]%Xtra :=0.If N =2 (resp. N =3, N =4),
let X¥*# be the set of bi-homomorphisms y € Xy satisfying condition (5.5) (resp.
(5.6), (5.7)) below. In the following, let g;; := x(a, a;).

(5.5) ‘J%1 +qu+1=0, q2=q1 €K}, ¢2g21¢22=1.

(5.6) G2=¢21 €KY, qiqi2ga1 =1, ¢2=-1, q3=g¢n =1,

023 = @32, G23¢32¢33 =1, qgs3#1, qugss # 1.
Q12 = Qo1 = Q23 = @32 € K, @34 = qu3,
(5.7) Q13 = (31 = q14 = Qa1 = 24 = Qa2 = 1,
g33 = Q11944 = —1,  qu1q12921 = Q12G21922 = 1, q34Qa3qaa = 1.

Remark 5.8. Note that
(5.8) if N =3, then U,ez 0.1y AT (D(2, 152)) € XFx,

Let x € X2 If N = 2, then R (x) = {9, a1 + as, 201 4+ ag, 1 }. If N = 4,
then R*(x) = {a1, a3, a1 + as +as, as + a3, a1 + 20 + a3, a1 +ag, az}. If N = 3,
then RT(x) = {a1, 01 + s, 0, a4, a1 + a2 + ag + ag, a1 + s + ag, a1 + 209 +
203 + (g, vy + g + 2ai3 + g, vy + 2000 + 3 + 204, iy + 200 + 3z + g, a0 + a3 +
ay, 03 + g, 0 + 203 + g, a0 + as,az}t. We can directly prove these facts using
Lemma 1.11 and (7.37) below.

85.2. Heckenberger’s classification of FID-type bi-homomorphisms

Lemma 5.9. Let x € XN". Let q;; := x(c, ;) fori,j € I. Then dim U~ (x) < oo
if and only if x € X and either (x) or (y) below holds.

(x) N =1 and g1 ¢ KX UK.
(y) N >2 and q;jq;; ¢ KX for alli,j e 1.

Proof. By Theorem 4.10, we see that
(5.9)  dimU (x) <o & x € X and Vo € RT(x), x(a,a) ¢ KX UK.

Hence, if N =1, the statement is true.

Assume N > 2 and y € X5, Since x € X, by (4.23) and Lemma 4.15(1),
we have ¢;; # 1 for all 4 € I.

Assume that (y) is not true. If ¢;; € KX for some i € I, then dim U~ (x) = co
by (5.9). Assume that there exist ¢,j € I with ¢ # j such that ¢, ¢;; ¢ KX and
¢i;95i € KX. Then —cfj € N by (4.10) and (4.23). Let 8 := «a; + «;. By (4.12),
B € Rt (x). Since x(8,8) € KX, we have dim U~ (x) = oo by (5.9).
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Figure 2. Dynkin diagrams of X2,

Assume that (y) is true. Let @ € RT(x). It is clear that x(a, ) ¢ KX . By
(1.17), Theorem 4.18(2) and Lemma 4.15(3), there exist X' € XA N XN and i € T
such that x' ~ x and x'(ay, ;) = x(a,a). By (4.23) and Lemma 4.15(1), since
X € X Xl we have y(a,a) # 1. By (5.9), we have dimU~(x) < oo, as
desired. O
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7'2A A
T1T2 A 1A
T1T2T1A TQTlA
= ToT1 T2 A

Figure 3. £, (A) for x' € X3P (A(m —1,N —m)) with N =2, m =1, A\, # —1,
A2 = @8, MA2d? # —1, where \; := A(K,, L_y,)-

Xr.t (€ Joa) Xf.5
~2 _ R A2 A2 _ o 1 o R ~—2
q s—2 ml q2 /q\ q2 q . 1 q2 ml G 2m1 qz q
o—0—0———0 —0O0——0—0—=0
aq (o) as [} a1 a2 a3 Qg
X7 Xf,6 ITs
_ R A—2 A—2 o _ R =2 5 1 .o _
1 q2 rq\ q2 fq\ q2 1 s 1 qz fq\ 2 ml G 2 —1
[e5] a9 [07%:3 (e %) [e5] a9 [0 %: (o %}
Xf,8 I"'l Xf£,9
—1 -2 —1 2 G2 2 —1 G2 2 —1 -2 —1 42 —1
O M) 4 M) 4 <—>T2 O 4 M) 4 M) 4 O
/ U/ / /
[e %1 (e %) s g [e5) (oD} a3 (e %]
X f,10 ITS
A2 A2 ~2
q 2 q 2 —1 ~—2 ¢
O a ) a ) a
N\ N\
1 a2 ag Qg

Figure 4. Dynkin diagrams of X:Xf’ozx'EXEuper(A(m —1,N —m)) with N=4
£l X2 Xf,3 Xf4 XF,5 Xf.6 Xf,7_Xf.8_Xf,9 Xf,l().

and m=1, and X, where 1Xwo=s7"" 53?5} s34 5350 5300 sy 17 5118 5579 8
For x,x’ € Xn, we write y = x’ if there exist x1,x2 € Xy and a bijection
f I — I such that x ~ x1 = x2 and x'(a;, ;) = xa(ay@), apey) (4,5 € I).
By Heckenberger’s classification [10, Tables 1-4, Theorems 17, 22] and Lem-
ma 5.9, we have

Theorem 5.10 ([10]). (1) Assume N =1. Let x € Xn. Then dim U~ () = oo if
and only if x(a1, 1) € KX or x(ag,a1) = 1.
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(2) Assume N > 2. Then

(5.10) {(x e XN | dimU~ (x) = oo}
= {x € Xy | I € X U XL U X v o~ ')

As in Introduction, if x is as in (5.10) or is the one with N =1 and x(o1, a1)
in KX U {1}, we say that x (or U(x)) is of finite-and-infinite-dimensional type
(FID-type, for short).

Remark 5.11. We have X$*0(By) = X3P (B(0, N)). We have a bijection
/'\',’f,uper(A(m - 1,N —m)) — X]%uper(A(N —m,m — 1)), x — %, defined by
X' (i, ;) == x(an—it1,an—j+1) (1,5 € I), where we also have x =~ x’ (see Fig-
ure 4). If N = 3, then we have (5.8) and Xy (D(2,1)) = X3P (D(2,1;1)),
and we see that for x, ¥’ € /\.’1}\3,"“3, x =~ X if and only if {q11, ¢33, (q11q33) "'} =
{d41, d33, (¢11453) "'}, where ¢;; == x(i, o) and gj; = x/(ay, ;) (see also Fig-
ure 10).

Remark 5.12. For the defining relations of U(y) with x =~ x’ for some x’ €
X see [4], [1], [25], [26], [27], [28], [30]. See also Remark 7.11 below.

86. Lusztig isomorphisms
86.1. Lusztig isomorphisms of generalized quantum groups
In this section, fix i € I and x € (X]/\/;’ﬁn)i, and let g;; := x(as, ;) (j € I).

Theorem 6.1 ([11, Theorem 6.11]). Assume x € (Xu"™);. Then there exists a
unique K-algebra isomorphism

T; =T, : U(rix) — U(x)
such that
T:(Ka,) = Ksz_'iX(a), Ti(La) = LinX(a)’
Ti(E;) = FiL_q,, Ti(F;) = K_q, E;,
TZ(EJ) = E*C?j,ai,aJ”
1

(=€) ais (=355 Qi Gi§ q50)!

TZ(FJ) = —cai,a

for a € ZI1 and j € T\ {i}. In particular,

(6.1) T(U(Tx)a) = U)sxiey (€ ZI0).



108 S. Azam, H. YAMANE AND M. YOUSOFZADEH

Assume y € X;\}ﬁn. Let 7 € Zso U {oo} and f € Map’. For t € Jy,,, define
the K-algebra isomorphism 1XT; : U(xys:) — U(x) in the same way as in (1.4)
with T}’s of Theorem 6.1 in place of s;’s.

Remark 6.2. Assume x € X Let n := |R*(x)|. Let f € Map’, be such that
1Xs7,, = 1Xwg. For B € R*(x), letting t € Jy, be such that 8 = 1Xsy,_1(asy))
(see (1.17) and Theorem 4.19), let Fp := 1XT};_1(F})). Then the elements Fp
(8 € R*(x)) have the properties of Theorem 4.10(2) (see [14, Theorem 4.9]).

86.2. Lusztig isomorphisms between irreducible modules

In this subsection, fix A € Ch(U%(x)). Let h := hy ;. Assume that x € (X]’\',’ﬁn)i
and h # oco. Define 7;A := 7*A € Ch(U%(7;x)) by

X(ai, 57%(8))"

6.2 TLXA KaL = A KGUX « LgTiX —
( ) ( 5) ( s, () s, (B))X<si1,>((a)’ai)h

(o, B € ZI0).

oo

y (4.15) and (4.22), we have

6.3 hrixrini =h and  77XTXA = AL

By (4.20), (4.28) and (6.2), for ' € Xy and A’ € Ch(U%(x’)), we have
(6.4) (GA) = (G A) = (T m¥A) = (md 7N,

where X/ € (X)),

(
)

—~

Lemma 6.3. Assume h < co. There exists a unique K-linear isomorphism

Ty = T70T0 L (TXA) = Ly(A)
such that
(6.5) Ti(Xvry) = Ti(X)Flopy (X € U(rix)).

2

Proof. We can regard £, (A) as a left U(r;x)-module defined by X - u := T;(X)u
(X € U(1ix), u € Ly (A)). Let v := F'vp € L£,(A). Note that a U(y)-submodule
of £, (A) is a U(7;x)-submodule, and vice versa. By (4.14), v' # 0 and E; - v’ =0,
so we also have E; -v' = 0 for j € I\ {i}. Then we have a U(7;x)-module homo-
morphism z : My, (;A) — £, (A) such that 2(X0,4) = X -0’ for X € U(mx).
By (4.13), z is surjective, and we also have z(M,(TiA)a) = Ly (A)s,(a)—ha, for
a € Z>oll. In particular, ker z is a proper ZII-graded left U(7;x)-submodule of
M, (TiN), so ker z C N, (1;A). By (4.14) and (6.3), we have M,y (TiA) _pqa, N
Noy (Tih) = {0} since Mo,y (TiA)—ha, = Fl'0ra. Therefore, z(N,,\(T;A)) is a
proper Zll-graded U (x)-submodule of £, (A). Hence z(N;,y(7;A)) = {0}, which
implies Ny, (7;A) = ker z. Hence z induces a U(7;x)-module isomorphism 7}, as

desired. O
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Using Lemma 4.21, together with (4.20) and (4.27), the following lemma is
an easy exercise for the reader.

Lemma 6.4. Assume x € Xﬁ‘,“, Assume that q;; € K% and hy o # co. Then
(Tixs TA) = (X, A), and hoyy oxp 5 = hyonj for j € 1.

7

Definition 6.5 (Definition of H(x, A, f)). Assume x € X]’\’,ﬁn. Let r € Z>oU{oo}

and f € Mapi. Recall Notation 1.1. Let Ay ¢ := A. If t € J; ,., we define A, ¢, :=

T?(’;‘)*’IAXJ¢_1 if Ay ft-1 can be defined and hy,, A ;, . f@) < 0o. Define

H(x, A, f) € Jor as follows. If r =0, let H(x, A, f) := 0. If there exists t € Jy,—1
such that hy, A .y p(k) < oo forall k € Jiyand hy, A, . pe41) = 00, let
HOGA f) =t hy, a o fk) <o0oforallk € Jy,, let H(x, A, f) :=r. For
t € Jo,H(x.A,f), define the K-linear isomorphism AT, Ly (A re) = Ly (A)
as in (1.4) with 7}’s of Lemma 6.3 in place of s;’s.

The following lemma is crucial to this paper.

Lemma 6.6. Assume x € X8 Let n := |R*(x)|. Let f € Map’, be such that
Xs¢n = 1Xwy (see also Lemma 1.9(2)). Then dim Ly (A) < oo if and only if
H(x, A, f) =n.

Proof. Assume dim £, (A) < oo. Then hy, A, r1) < o0. By Lemma 6.3, we have
dim Ly, (A1) < co. Repeating this argument, we find H(x, A, f) = n.

Assume H(x, A, f) = n. Let v := ZteJm Piioihgoor,p1Xspi—1(ay)) By
(1.17), v € ZxolL By (6.5), 1XATy ,(va,.) € Ly (A)_. Let

X = {B S ZZOH | ¥ - B e Zzoﬂ}.
Then | X| < co. We have

ﬁx(A) = 1X’ATf,n(£Xf,n (Ax,f,n)) = 1X’ATf,n(U_ (Xf,n)UAX,f,n)

= P AU (Xpm)-avay,.)
QGZZ()H

@ ]-X’ATf,n(U(Xf,n)favAX,f,n)
QEZZ()H

P PTnUxsn) ) Tynlva, ;) (by (6.5))
a€Z>oll

B U)s1¥ rnlva,,,) (by (1.16) and (6.1))
5€ZZOH

= @ Ly(A)p—~

BEZZOH
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=P £ (W) (since L(A) = Boez o Lx(A)-a)-
BeX

Hence dim £, (A) = 35y dim £, (A)s—, < 00, as desired. O
The following lemma follows from (4.20), (6.4), and Lemmas 6.6 and 4.22.

Lemma 6.7. Assume x € X, Let x' € X and A’ € Ch(U°) be such that
(X', AN) = (x,A). Then dim L,/ (A") < oo if and only if dim L, (A) < co.

87. Main theorems
8§7.1. Irreducible modules for Cartan and super-AC cases
For x € Xy and i € I, let
Si(x) = {A € Ch(U°(x)) | 3r € Zxo, A(Ka,L-a,) = x(0, )"}
Theorem 7.1. Assume N = 1. Let x € Xn. Let q11 := x(a1,1).
(1) If g11 € K (resp. g1 € KX\ (KX U{1})). then {L,(A) | A € S1(x)} (resp.
{L,(A) | A € Ch(U°(x))}) is a complete set of pairwise non-isomorphic finite-

dimensional irreducible U(x)-modules (see also (4.17)).

(2) Assume gq11 = 1. Let V be a finite-dimensional U(x)-module. Then V is ir-
reducible if and only if dimV = 1. If this is the case, Ko, L_n,v = v for all
veV.

Proof. (1) This follows from (4.14) and Lemma 4.23. (See also Remark 4.24.)

(2) Assume that V is irreducible. Let f : U(x) — Endg(V) be the K-algebra
homomorphism obtained from V. Then f(K,,) = x -idy for some x € K*, and
f(La,) =y -idy for some y € K*. Since the trace of f(E1F; — F1E1) is zero, we
have z = y, so f(E1F1 — F1E1) = 0. Then dimV = 1, since K is algebraically
closed. O

Theorem 7.2. Assume N > 2. Let x € Xy be such that x ~ X' for some
X' € XGatan. Then {L£,(A) | A € Micr Si(x)} is a complete set of pairwise non-
isomorphic finite-dimensional irreducible U(x)-modules (see also (4.17)).

Proof. By Theorem 5.10, x € X" Note that x(a;, ;) € KX for all i € I. Now
the conclusion follows from (4.15), (4.16) and Lemmas 4.23, 6.4 and 6.6. O

Remark 7.3. See [21] for some related results concerning Theorem 7.2.

Theorem 7.4. (1) Assume N > 2. Let m € I. Let x € Xy be such that x = X’
for some x' € X3 (A(m—1,N—m)). Then {L,(A) | A € Nier fmy Si(X)} s
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a complete set of pairwise non-isomorphic finite-dimensional irreducible U(x)-
modules (see also (4.17)).

(2) Assume N > 3. Let x € Xn, and assume that x = X' for some
X € XYP(C(N)). Then {L (M) | A € Niengy Si(x)} is a complete set
of pairwise non-isomorphic finite-dimensional irreducible U(x)-modules (see
also (4.17)).

Proof. (1) By Theorem 5.10, we see that x,x’ € X{". By Lemma 6.7, we may
assume y = x'. Let A € Ch(U°(x)). By Lemma 4.23, we only need to show that
dim £, (A) < oo if and only if A € (;cp gy Si(X). By (4.15) and (4.16), we see
that the ‘only if’ part holds.

We show the ‘if” part. Let n,7 € N and f € Mapfb be as in Proposition 2.5.
By Lemmas 1.12, 3.8(2) and 5.5, we have 1Xs¢ , = 1Xwq. By Lemmas 3.2 and 5.5
and (4.24), (3.7), (5.2), we see that

(7.1) Xf7k_1(04k,ak) S K?;o (]{1 S J1,T),
(7.2) Xfi—1(a, o) = =1 (1 € Jrg1n).

By (4.15), (7.1) and Lemma 6.4, we also see that A € (o () Si(x) implies
H(x,A, f) > r.By (4.15), (7.2) and Lemma 6.4, H(x, A, f) > r must be H(x, A, f)
= n. Thus the ‘if” part follows from Lemma 6.6. This completes the proof of (1).

(2) can be proved in the same way by using Propositions 3.13(2) and Lem-
ma 5.5. O

87.2. Some technical maps

In Section 7, for A € (K*)" and i € I, let )\; be the i-th component of ), that is,
A= (A1, AN).

In Subsection 7.2, assume N > 2 and let ¢ € KX and m € J; ny—1. Let
Qq = {qA“L ‘ x e ZZO}' Let

(7.3) K™ = (e (KN | A € Qg (i € In-mern)}-

Define maps ng’m) : ICém) — K* (k € JN_m,n) and @gg,m) : ngm) — K* by
V) = AN,
q,m q.m R _ (g,m)
74) V) = VT )@ YET O (k€ Ty i),

~(G.m )\ G.m N _ g,m
Vg@’ )O\) =5 N v§3; )(A)2q4(1 6(1,V§\‘}71>(/\))).

The following lemma is used in the proofs of Theorems 7.6 and 7.7 below.
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Xs.t (L€ Joo) Xf,10
—1 qu @2 472 (jz qu; (j4 -1 2 -1 quz ziz 474 q4
O—0O——=0 > O—O—0—o0
[e5) Q2 [e %3 Qg [e5% Q2 e %) Qg
T2
Xf,11
q* g2 1 42 —1 44 g*
73 ) )
O—0O—0O—=0
o1 (e D) s a4
Xf,14
1 g2 =152 ¢ ;-44"
T2 M) M)
O—O0—_0O—=0
a1 a2 Qg a3
T1
Xf,15
1424 424 444"
M M
O—O0—_0O—=0
[e%% [e D) Qay a3

Figure 5. Dynkin diagrams of x = x70 = X € XN (C(N)) with N = 4, and

. _ X O XF1 U XE,2 XF,3 XF4 Xf5 XF6 Xf7 Xf8 _Xf9 Xf,10
Xfu With f = fn, where 1Xwg = 557" 557 75,77 557" 5577 5,7° 557755755577 57

Xf11 Xf,12 X f,13 _Xf,14 _Xf,15
dsy? sgh sy sy s

Lemma 7.5. (1) Let z € K*\ Q4. Then

(7.5) (V™) = e | I »- Q)

i=N—m

(2) Let z € K*\ Q4. Then
(7.6) (V™) ({2
N-2

N-1
- {/\ € ’C((im) ’ H Aj# G2 Y AN AN H 2 = qA74mz}

j:me 1=N—m
N-1
u{rerd™ | TI A =20 aw = Avoaz

j=N-—-m
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(3) We have
(77) (V™)1
N—m-+t

= U{A € Kém) ‘ H N=q N =1(j€ JN—m+t+1,N)}-
t=0 1=N—m
(4) We have
(7.8)  (VR™)T'({1)
=neki™ I N=1(€Iymn)}

m—2 N—m+t
ny {A ext™ | I m=d x=1(c¢ JN,mHH,N)}
t=1 j=N-m
N—-1
N {)‘ < Kém) ’ [T =" v =2 }
j=N—-—m
N-1 N-2
oprert | T gt s T -1},
j=N-—m i=N—m

Proof. In this proof, we fix A € IC((jm), and use the following notation. For k €
IN—m—1,N+1, let

0 ifk=N—-m—1,
(V) = {r € Inomu | V™) £ 1} ik € In_mon,
en(N) if k=N+1.
Let
k N-2
g = J[ N (*kevomn) and g\ :=Av_idyv J[ A
j=N-—-m j=N-—m

Let t(\) :=6(gn—_1(\),¢ 2™~ V) € Jo;. Let

min{z € Jxy_m n | V() =1}

r(A) if V?(ﬁ’m)()\) =1 for some y € Jn_m N,
N 4+ 1 otherwise.
Note that
r(A) = (N —=m) = c;(n—1(A) = cra)(A),
(7.9) cry(A) < ey(A)  for y € Jr(ay+1.8+15
cr(y(A) = ¢y(A) ifand only if A, =1 (2 € Jr(n)41,y)-
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We have
(7.10) for i € JN—mi1n, N =q' for some l; € Zxo,
(7.11) for k € Jn_mi1n, V(N = @21 Mg (N).

By (7.10), we can easily see that
(7.12)  fork € In_mun, ge(A) = @ 2F=(N=m) if and only if 7(\) = k.

From (7.10)—(7.12), we easily deduce claims (1) and (3).
Since cy_1(A) = en_2(A) + 6(1, V&™) (N)), by (7.11), we have

(7.13) VETO) = ' Mg (),
By (7.9) and (7.12), if r(A\) € JN—m n—1, then

N-2
qA_4CT(>‘)()\)/\N—1)\N H /\12 if r(A) € In—m,N—2,
(7.14) n(A) = i=r(\)+1
A
gero) 2N if r(A\) =N —1.

N-1

We now prove claim (2). Let Y7 and Y2 be the LHS and RHS of (7.6).
Let A € Y. Then

(7.15) z = @M=t g (N).

Assume r(X) € Jy_m,n—2. By (7.9), (7.14) and (7.15),
N—2
(7.16) 2= q4<N—t<A>—T<A>>AN,1AN( 11 A?).
i=r(A)+1

Since t(A) € Jo,1, by (7.10) and (7.16), z € Q; \ {1}, a contradiction. Hence
r(A) € Jny_1,n+1. Hence cy_o(A) = m — 1. By (7.12), exy—1(A) = m — t(A). By
(7.13) and (7.15), we have A € Y;. Hence Y5 C Y;. Let A € Y7, ie., VI&™()) = 2.
Assume r()\) € Jy n41- By (7.13), gn(A) = ¢4 2. Since r(\) # N — 1, by (7.12),
G Ygn_1(\) # 1. Hence X € Ya. Assume 7(\) € Jy_m n—2. By (7.13) and
(7.14), we have
N—2
z = gHev-1N=eron )\ v Ay H A2,
i=r(A)+1

Hence by (7.9) and (7.10), z € Q4, a contradiction. Assume r(\) = N — 1. By
(7.12), gn—1(A) = ¢ 20"=D. By (7.9), ex_1(\) = m — 1. By (7.14) and (7.13),
z=An/An—1. Hence X € Ya, so Y7 C Ys, and finally Y; = Y3, proving (2).
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Finally, we prove claim (4). Let Y3 and Y; be the LHS and RHS of (7.8)
respectively. For t € Jy_,, v, let

{re Kfjm) lr(A) =t, i=13G¢€Jian)} ifte Iy mn_2,
Y= e K™ [r(0) = N — 1, Ay_1 = An} ift=N-1,
Ae K™ [r(\) € Iy, Gv(A) =4} ift = N.

By (7.10), (7.12) and (7.14), we have Y; = U~ _. Ya,. Then, by (7.10), (7.13)
and (7.14), we can easily see that Y5 C Y3. Let A € Y3. By (7.13),

(7.17) gn(\) = gten ),

Assume r(A) € Jn w41, that is, en—1(A) = m. By (7.17), A € Y, y. Assume
r(A\) = N —1. By (7.14) and (7.17), Any/An—1 = 1. Hence A € Y, y_1. Assume
7(A) € IN—m,N—2- By (7.9), ¢;x) < env—1. By (7.10), (7.14) and (7.17), we have
A € Yy r(n)- Thus we have Y3 C Yj. Consequently, Y3 =Y}, as desired. O

§7.3. Irreducible modules for super-BD cases

Theorem 7.6. Assume N > 1. Let m € Jon—1. Let x € Xn be such that
x = x for some x' € XE“per(B(m,N —m)). If m = 0, let S(B(m, N —m)) :=
Nicr Si(x). If m € Ji n—1, then letting ¢ := x(an,an) € KX and letting g(A') =
Hf.V:me N (Ko, L_y,), for A € Ch(U%x)), let S(B(m, N —m)) be the subset of
Ch(U°(x)) formed by A satisfying

(irrB-m-1) A € Niep (v—my Si(X)-

(irrB-m-2) g(A) € {42 | 2 € Jom1} U {(~d)~0+2) | y € Zo).

(irrB-m-3) If g(A) = ¢=%* for some x € Jom—1, then A(Ko,L_n,) = 1 for all
1 € JN—mtat+1,N-

Then {L,(A) | A € S(B(m, N —m))} is a complete set of pairwise non-isomorphic
finite-dimensional irreducible U(x)-modules (see also (4.17)).

Proof (see also Figure 6). If m = 0, the claim follows from Theorem 7.2. Assume
m € J17N_1.

Let A € Ch(U%)). By Theorem 5.10, we see that x,x’ € Xi". Hence by
Lemma 6.7, we may assume x = x'. Let n := N2. Let f € Mapl, be fm|N_m
(see (3.9)). By Lemmas 1.12, 3.10(2), 4.22 and 5.5, we have n = |RT(x)| and
1Xs4,, = 1Xwg. By (3.8), (3.12) and (5.3), we find that

(7.18) xﬁt_l(af(t), Ozf(t)) € K:o (t e Jl,m2+N—m—1)7
(7.19) Xf7t,1(ozf(t), Oéf(t)) =-1 (te 2 N—m,m2+N+m \ {m2 + N},
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Xf,uq (w1 € Jos U{10,11,16}) Xfug (u2 € {6,9,12,15})

—2 1 oo 42 o 4 1 e R 1 0 4
q 42 ml g 2;1\ § 2 g . 1 g 2/\1 qz /\1 2 g
O—0O0—"C0C—=0 O—O0—"0C—=>0
[e5]) a2 a3 Qg aq [6'5) a3 (e %}

T3

Xfoug (ug € {7,8,13,14})

—1 -2 2 g2 ~1 42 —g~ !
Oo—0O—0O—=0

a1 a2 as a4

Figure 6. Dynkin diagrams of x = x50 =X’ € ).(]%uper(B(m, N —m)) with N =4

= i — f X XF2 X3 XS4 XS5
and m = 2, and xy, with f = f,N_m, where 1Xwy = s377 537 537 537" 57

Xf,6 Xf,7 Xf,8 Xf,9 Xf,10 Xf,11 Xf,12 Xf,13 _Xf,14 X f,15 X f,16
857837 847 837 8y 57 Sy S3 Sy S3 Sy .

(7.20)  xpi—1(opuy,ape) =—4¢ " ift=m?+N.

By (3.9),

(7.21) fJimeeN—m—1) = I\ {N —m}.

By (4.15), (4.20), (7.18), (7.21) and Lemma 6.4, we see that

(7.22) H(x, A, f) >m? + N —m — 1if and only if (irrB-m-1) holds.

By (4.15) and (7.19), H(x, A, f) > m?+N —m—1 can be replaced by H(x, A, f) >
m? + N — 1. Hence

(7.23) H(x, A, f) >m? + N — 1 if and only if (irrB-m-1) holds.

Assume H(x, A, f) > m? + N — 1. (By (3.10) and (5.3), Xfm24N-m—1 = X-)
By (7.18) and Lemma 6.4, we have

(7'24) (Xf,m2+N—m—17Ax,f,m2+N—m—1) = (X,A).

Let A := (A(Ka,L_o,)li € I) € (K*)N. By (7.23), A € K™ (see also (7.3)). Let
t€ 2y Nomm2+nN—1- Let hy := hx,f,t—l,Ax,f,t_l,f(t)' By (3.9),

(7.25) ft)y=t—m? and f(t+1)= f(t)+ 1.
By (7.25) and Lemmas 3.9 and 5.5,

(7.26) sty agmr) = g+ agay.
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Using induction, we have

(7.27) Ava»t(KOéfuﬂ)L*af(tH))
= T;((f,{)t_lAx,f,tfl(Kaf(tHlLfaf(tHl) (by (7.25) and Definition 6.5)
B Xri—1 (@), =@y + apyra)™
- Ava’t_l(Ko‘f(t)+0‘f(t)+1L_(af(t)+af(t)+1) h

Xfi—1(0p() + apiyr1, g
(by (6.2) and (7.26))

= Ay fi-1(Ka 2

sotasws L—(asm+asi))d
(by (7.19), since xrt—1(af), apy+1)X -1 (Qrmy+1, pey) = 4
by (3.10) and (5.3))

B 22(1=8(Ay, 7,61 (Ka oy Loy )s1)

- Avaat—l(Kafm+af<t)+1L*(af<t>+af<t>+1))q o o o
(by (4.15) and (7.19))

=VEM (A (by (7.4) and (7.28) below).

2

As above, we have
(7.28) Msimt(KarLoa) = MEaLw) (i € Jpenn),

where we use (7.24) if t = m? + N —m.
Since ¢ € KX, by (4.15), (7.20), (7.25) and (7.27) for t = m? + N — 1, we see
that

(7.29)  H(x, A, f) >m?+ N if and only if (irrB-m-1) holds and there exists
x € Zsg with V™ (\) = (—¢~1)°.

By (7.5), (7.7) and (7.29), we can see that

(7.30) H(x, A, f) >m? + N if and only if (irrB-m-1)—(irrB-m-3) hold.
Assume H(x, A, f) > m? + N. By (4.15) and (7.19), we see that

(7.31) H(x, A, f) >m?+ N +m.

(By (3.10) and (5.3), Xfm24N—1 = Xf,m2+n~-) By (7.19) and Lemma 6.4,

(7.32) (Xfm2+N—1 Ay pm24N—1) = (Xp.m2 4N Ay fm2 4N )-

(By (3.10) and (5.3), X = Xf,m2+N+m-) By (3.9),

(7.33) F) = f2m* +N)=t)  (t € T2y Ng1,m2 4 N-£m)-
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For t € Jp2 4 N41,m24+ N+m, We inductively see

(Xrts Ax.pt)
Tr()Xfit—1s }((f)f_ Ay fi-1)
by Notation 1.1(1) and Definition 6.5)

X m2
= (TroXs2m2+N)—6Trl ) A fameen)—t)

= (
(
(
(by induction and (6.4); use (7.32) if t = m? + N + 1)
(
(
= (

X m2 Xf,2(m?2
THOTHOX20m2 4N —t-1 Tyl Tyl T T A pa(m 4N 1)

by Notation 1.1(1), Definition 6.5 and (7.33))
Xf2(m24N)—t—1 My fa(m2+N)—t—1)  (by (4.22) and (6.3)).

In particular,

(7.34) (X m2 4 Ntms A fm2 4 Ntm) = (Xfm2 4 Nom—15 Ay frm2 4t N —m—1)-
By (7.30) and (7.31), we see that
(7.35) H(x, A, f) > m?+ N +m if and only if (irrB-m-1)—(irrB-m-3) hold.
By (3.9), f(t) = f(t— (N +m)) (t € J24Ntm+1.n). Hence by (7.34) and (7.35),
(7.36) H(x, A, f) =n if and only if (irrB-m-1)—(irrB-m-3) hold.
By (7.36) and Lemmas 4.23 and 6.6, Theorem 7.6 is proved. O

Theorem 7.7. Assume N > 3. Let m € Jo n_1. Let x € Xy be such that x = x’
for some x' € X3P (D(m, N —m)). Let § € KX be such that ¢ = x(an,an).
For A" € Ch(U°(x)), let

:( H AIK Lo )>2A/(KQN,1L7aN,1)A/(KaNL*OCN)'

1=

Let S(D(m, N —m)) be the subset of Ch(U°(x)) formed by all A satisfying:

(irrD-m-1) A € Miep gn—my Si(X)-

(irrD-m-2) g(A) = ¢=** for some x € Z>g.

(irrD-m-3) If g(A) = ¢~*¥ for some y € Jo.m—2, then Hfi;vwitg ANKy,L_y,) =
G dA(K L_,.)zlforalleJN m4y+1,N-

(irrD-m-4) If §(A) = —4<m D then [Ty, A(Ka, L_g,) = ¢ 20m=1).
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X fur X fusz

(u1 € Jo,7 U{14,15,22}) (ue € {8,13,16,21})
~2
q

T2

Xf»us
(ug € {9,12,17,20})

X fua
(us € {10,11,18,19})

_ o ~2 o ~2 o _ . ~—4
1 g 2 q g 2 q g 2 —1 q4 q
) ) ) O
O N N /
[e%% [e D) as Qy Qs

Figure 7. Dynkin diagrams of x = x50 = X’ € ).(I%uper(D(m,N — m)) with

N =5 and m = 3, and xy, with f = f,/N_m, where 1Xwy = s3"'s}7? 3/

Xf,a Xf,5 Xf.6 X7 Xf,8 _ Xf,9 _Xf,10 _Xf,11 Xf,12 Xf,13 X f,14 X f,15 X f,16 _Xf,17 /X f,18 _Xf,19
53 54 55 81 52 53 54 55 54 53 52 51 52 53 54 85
Xf,20 (X f,21 _Xf,22

54 53 52 .

Then {Ly(A) | A € S(D(m, N —m))} is a complete set of pairwise non-isomorphic
finite-dimensional irreducible U(x)-modules (see also (4.17)).

Proof (see also Figure 7). Let A € Ch(U°(x)). Let n := N2 — m. Let f € Mapl,
be f'm|N_m defined by (3.22). Using this f, the theorem can be proved in a way
similar to that for Theorem 7.6. Here we only mention the following facts. By
Lemmas 1.9(1) and 5.5 and (3.24), £, (1Xwg) = |RT(x)| = n and 1Xsy, = 1Xwy.
Let r := m(m — 1)+ N. By (3.26) and (5.3), we have x ¢, ~1(as,), ap@,)) € KX
(t1 € Jip—m—1) and Xy,i,—1(Qf@,), Qf(ty)) = —1 (t2 € Jr_pr—1). Then, similarly
to (7.23), we can see that H(x, A, f) > r — 1 if and only if (irrD-m-1) holds.
Note that f(r) = N. By (3.26) and (5.3), xs.+—1(an,an) = ¢* € KX. Similarly
to (7.27), letting A := (A(Ko,L_q,) | @ € I), we have Ay j,r_1(KayLoay) =
V&™) (X). Similarly to (7.27), by (7.6) and (7.8), we can see that H(x, A, f) > r—1
if and only if (irrD-m-1)—(irrD-m-4) hold. Similarly to (7.36), we can see that
H(x,A, f) =n if and only if (irrD-m-1)—(irrD-m-4) hold. Hence, by Lemmas 4.23
and 6.6, the conclusion follows. O
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87.4. Irreducible modules for super-FG and extra cases

Theorem 7.8. Let x € Xn. Assume N € Jy 4. Assume that one of the following
conditions is satisfied:

(FGE-1) N =4 and x = X’ for some X' € Xf,“per(F(zl))_
(FGE-2) N =3 and x = x’ for some x' € /’t"]%vuper(G(3)).
(FGE-3) N =3 and x =\’ for some X' € X3t
(FGE-4) N =2 and x = X' for some x' € X&xte,
(FGE-5) N =4 and x = X' for some x' € X<,

For k € Jy 5, if x satisfies (FGE-k), let S be the subset of Ch(U%(x)) defined in
(cL-k) below. Then {L,(A) | A € S} is a complete set of pairwise non-isomorphic
finite-dimensional irreducible U(x)-modules (see also (4.17)).

In the following, \; := A(Ky,L_q,) (i € I).

(cL-1) Let ¢ € KX be such that ¢* = x(aa,2). Let S be the subset of
Ch(U%(x)) formed by all A satisfying one of the following conditions:
(irrF-1) A € ﬂ?ﬂ Si(x) and N2X3N3\, = G5+ for some x € Zsg.
(iI‘I‘F—2) )\1 = )\2 = )\3 = )\4 =1.
(irrF—S) Ac S3(X), A =M =1 and /\1/\3 = Cj_G.
(irrF-4) A € N3 Si(x), MAsA3 = §7'2 and g = ¢*\y.

(cL-2) Let ¢ € KX be such that ¢* = x(aa,2). Let S be the subset of
Ch(U%(x)) formed by all A satisfying one of the following conditions:
(irrG-1) A € ﬂ?:2 Si(x) and MA3As = (—G~2)"TC for some x € Z>o.
(iI‘I‘G—Q) )\1 = )\2 == Ag =1.
(irrG-3) A € S3(x), MA3 =G¢ % and Ay = 1.

(cL-3) Let ¢ == x(a1,1) € KX and 7 := x(az,a3) € K*\ {1,§7'}. Let
S :=S1(x) NSs(x) (resp. S' :=S1(x)) if 7 € KE (resp. # ¢ KX). If ¢ ¢ KX, let
S:=§" If & € KX, let S be the subset of Ch(U%(x)) formed by all A satisfying
one of the following conditions:
(irrEx3-1) A € S’ and M A3z = (§7)~@+2) for some x € Z>y.
(irrEx3—2) )\1 = )\2 = )\3 =1.
(irI‘EX3—3) AeS and Xy = 1, M3 = (qA’fA‘)_l
(irrEx3-4) AeS and Ao = Cj_l, A3 = L

(cL-4) Let G := x(a2,0) € KX and ¢ := x(a1,01) € K. Let'S be the subset
of Ch(U°(x)) formed by all A satisfying one of the following conditions:
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(irrEx2-1) A € Sa(x) and A3y = ((G )12 for some x € L.
(irrEx2-2) Ay = Ag = 1.

(cL-5) Let G := x(az,a2) € KX . Let S be the subset of Ch(U%(x)) formed by
all A satisfying one of the following conditions:

(irrEx4-1) A € S1(x)NS2(x)NSa(x) and MAZAIN, = (=G~ 1) T3 for some x € Z>y.

(il“IEX4—2) )\1 = )\2 = )\3 = /\4 =1.

(irrEx4-3) A2 = A3 =1 and A1 = %%, Ay = (=4 1)?>*FL for some x € Z>o.

(irrEx4-4) A3 = 1 and there exist x,y € Z>o such that A1 = ¢°%, Ao = ¢V and
)\4 — qA—Q(x-i—y-&-l)'

(irrEx4-5) There exist v € Z>o and y € Jo 5/2 such that Ay = GEtY, Ny = ¢7 %,

A3 = ¢ 201 and Ny = g%,

Proof. We define n € N, f € Mapf,, and a map z : Ji, — K* as follows. Let
Fr=(f@t) |t € Ji,) € ™ and 2 := (2(t) | t € Ji,) € (KX)™

If x is as in (FGE-1), let n := 18, f= (2,3,4,2,3,4,2,3,4,1,2,3,4,1,4,3,
2,1) and 2 := (¢%, 4%, ¢* 42, 4%, ¢*, ¢, ¢*, ¢*, —1,—-1,—-1,—-1,476,—1,—1, -1, -1).

If y is as in (FGE-2), let n := 13, f := (2,3,2,3,2,3,1,2,3,1,3,2,1) and
2:=(4%4%4¢%¢5 4% 4% —-1,-1,-1,—G72,—-1,-1,-1).

If x is as in (FGE-3), let n :=7, fi= (1,3,2,1,3,1,2) and 2 := (4,7, —1,—1,
(gr)~t —1,-1).

If x is as in (FGE-4), let n := 4, fA: (2,1,2,1) and 2 := (cj,é,&j_l,é).

If x is as in (FGE-5), let n:= 15, f :=(1,2,1,4,3,4,2,1,4,3,1,2,4,2,1) and
z2:=1(4,4.q.—¢ ", —-1,-1,-1,-1,—¢ ', —¢ ', —1,-1,-1,—-1,-1).

Using Lemmas 1.11 and 4.22 (see also Figures 8-12), we can directly see that

(7.37) n=|R"(x)| and X5, = 1wy

We can also see that 2(t) = xy,i—1(af), @) (t € Jin) (see also Figures 8-12).

Define r := max{t € Ji1, | V' € Ji, 2(t) € KX} and b := |[{t € Jpq1,n |
2(t) € KX}|. Then b < 2, and b = 2 if and only if N = 4 and x = y/ € XP¥2,
Then we can prove the theorem in much the same way as Theorems 7.6 and 7.7;
in fact, it is easier since b < 2.

Let us explain more precisely how to prove the theorem for y as in (FGE-5).
Let A € Ch(U°(x)). Note r = 4. Since 2(t) = —1 ¢ KX (¢t € J5), by an argument
similar to that for (7.22), we see that

(7.38) H(x,A, f) > 8 ifand only if A € Si(x) N Sa2(x) N Sa(x)-
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ngul
(u1 S J(),g U {18})
—1 é72 (f ~—4 q4 ~—4 ¢j4
M) )
/ / O
(631 a2 a3 Qg
Xf,uz T1 Xf,us
(u2 € {10,17}) (usz € {11,16}) §*
J} a1
—1 ‘?2 —1 @_4 q4 @_4 q4 ¢j4 4—4 —1 4
M) M) T2 -2
O O O O q
a1 a2 a3 (e %) (e %
q 2
IT3 -1
Xfus Xfua
(us € J13,14) (usq € {12,15}) -1
A2 a1
q‘* ~—4 q4 ~—4 —1 6 (}’5 (j4 ~—4 —1 4
TN N T4 a 66
1\ 1\ O O q
o2 asg [e71 [e31 [e 2]

. L. .S .
Figure 8. Dynkin diagrams of x = xf0=x € Xy ' (F(4)) with N =4, and x4
with f = f, where 1Xwg = sy s3" sy 0 syl sy 12510 sy T 3% g {00 1010 301

Xf£12 XF13 X514 XF15 XF,16 XF17 Xf,18
L N A A M A

Xfus
X fun Xfous (ug € {8,11})
(u1 € Jo,6 U {13}) (u2 € {7,12})
-1 424 463d° R
q q q q

O—O—~0O ~* O0—0O0—-O0
a1 a2 as (e %} (e as

Xfua

(us € Jo,10)

-6 1 A
q que 1 q4 q

Oo—0O0—=0

a2 a3 (e 5]

Figure 9. Dynkin diagrams of x = xf0 = X’ € X]%uper(G(?))) with N = 3, and
Xfu With f = f, where 1Xwy = s3/' 5372537 s34 372 310 61T 53108 g 3000 5110

Xf11 Xf,12 X f,13
szl sy s

Assume H(x, A, f) > 8. By (7.38), (A1, A2, A1) = (¢, 42, (—g~1)%) for some
(ll,lz,l4) S (Zzo)g. Let h; := th,f,—hAf,t—l,f(t) for t € JLH(X’A,f)' By Lemma 6.4,
hy = lf(t) (t € J174), hs =1— (5(1,)\3), hg =1 — (5(1,(—@_1)}”’)\3)\4), h =1—
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X £ uz

X foun (u2 € {3,6}) X f,us
(ur € Jo2 U {7} (ug € J415)

q Gt —1 p-1 7

O—0O—~0O =

[e5] a9 [0 7%:3

. 1 (am—1
SYCRRICLA

Qg aq [07%:3

Figure 10. Dynkin diagrams of x = xs0 =X’ € Xﬁx“a with N = 3, and x . with
f = f, where 1Xwg = s 53523 5104 530 5100 5557,

X fuq X fousa

(u1 € Jo,1 U {4}) (uz € Ja,3)

¢ g1 q . ¢ Gé-1 égt
o—=o0O o—=0O
Qp a2 [e%1 [e %)

Figure 11. Dynkin diagrams of x = xs0 =X’ € Xﬁ’ma with N = 2, and x . with
f = f, where 1Xwg = s)/ 712 X134

5(1, (—=1)hsths \oA2ZAy4), and hg = 1 — §(1, (—1)"s 6 Gh7 X\ A3 A2 A4). We see that
3 q 3

H(x,A, f) >9 if and only if

7.39
( ) (=g 1)e = (=g )~ hsthrhs) X\  NZA3N,  for somec € Zs.

We can see that if H(x, A, f) > 9, then

(7.40) H( A f) 210 & 3¢ € Zao, (—47) = (=47 .

By (7.39) and (7.40), we see that H(x, A, f) > 9 can be replaced by H(x, A, f) >
10, since if hs = l4 = 0, then A3 = 1 and hg = 0. Since 2(t) = —1 ¢ KX (t € J11.,),
H(x,A, f) > 10 can be replaced by H(x, A, f) = n. Then using Lemma 6.6 and
(7.39), by a direct argument, we can see that claim (5) holds. O

§7.5. Irreducible modules of U,(g)

For arguments below involving the symbol ‘o’, see also [26, Subsection 1.9] and
[27, Subsection 6.4].

We call x € Xy symmetric if x(a, 8) = x(8, @) for all a, 8 € ZII.

Let x € Xy, and assume it is symmetric. Let U = U(X) be the quotient
K-algebra of U(x) by the two-sided ideal generated by the elements K,L, — 1
(v € ZID). Let 7 : U(x) — U(x) be the canonical map. Let Ut := Ut(y) :=
(Ut (x)), U° := U°x) := #(U°(x)) and U~ := U~ (x) := #(U~(x)). Then we
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ngul

(u1 € Jo,a)

~ ~ _ N _ =1

LA A71m1 — A

O—O0—_0O—=0

a1 a2 (e %:3 Qg

ITS
X fruz Xf,us
(uz € {5,13}) -1 (us € {6,12})
. o
i g1 -1 4 P IR
G—1 T4 ) )
O—O0—_0—=0
(&5} Q2 Qg [e%:)
IT2

X fua

(ug € {7,11}) -1

a3 [eP) aq (e 71 Qo g Qg (6%}

Figure 12. Dynkin diagrams of x = xr0 =X’ € XExtra with N = 4, and X f,u With
_f O XEL X2 X FL3 XS4 X5 JXFL6 XFLT X8 X9 X F,10 X FL11 X f,12
f = f, where WXwy = sy 557777 sy 55725y 0557 51 sy 10 557 0 57 s

Xf,13 Xf,14 X f,15
Sy Sy 571 .

have the K-linear isomorphism U~ @ U @ Ut - U (Y @ Z® X + YZX). We
also have the K-algebra isomorphisms 7|+ : UT(x) — Ut (x) and TU-(x) °
U (x) > U (x) Let Ky = 7(K,) (o € ZII), so K_, = 7(Lq). The elements
K, (a € ZII) form a K-basis of U°. Let E; := 7(FE;) and F; := #(F;) (i € I).
For A € Ch(U°(x)), letting A := Ao Tuo) € Ch(U°(x)), we can regard the
U(x)-module £, (A) as the U(x)-module so that #(X’) - v = X'v (v € L, (A),
X' € U(x)), and, when regarding it as a U (x)-module, we denote it by £, (A); we
also denote vy (€ Ly (A)) by v; (€ Ly (A)).
By Lemma 4.23, we have

Lemma 7.9. Let x € Xn be as in Lemma 4.23. Assume it is symmetric. Then
{Ly(A) | A € Ch(U%x)), dim L, (A) < oo} is a complete set of pairwise non-
isomorphic finite-dimensional irreducible U(x)-modules.
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Assume y is symmetric. Let U = U?(y) be the K-algebra including U =
U(x) as a K-subalgebra and having an element o with 02 = 1, 0 Ejo = (—1)* D E;,
oFjo = (—l)eu(i)Fi (i € I) and U° = U @ Uo (as K-linear spaces). For A e
Ch(U°(x)) and = € {1}, we can regard the U(x)-module £, (A) as a U(x)-
module so that X -v = Xv (v € L£,(A), X € U(x)) and ov; = xv;; when
regarding it as a U(x)?-module, we denote it by £, (A)®).

Definition 7.10. Let § € KX, and x := wgy(a®) € Xy™ (see (5.2)) for some af =
(n*,0%) € yj’é’ﬁ“ (see (5.1)). Then y is symmetric. For i € I, let K; := Kaiaeu(i),
E;:=FE;, F, := —qAﬂli,lFiaen(i) (€ U(x)?). Recall the Lie superalgebra g = g(at)
(see Definition 3.3). Let U;(g) be the K-subalgebra of U(x)? generated by Kj,
K';l, E;, F; for all i € I. We call U;(g) the (standard) quantum superalgebra of g

(over K) (see Remark 7.11 below for the original definition of Uj(g).)

Remark 7.11 (Defining relations of Uj(g)). Keep the notation of Definition 7.10.
The generators K;, K; ', E;, F; (i € I) of Uy(g) satisfy the equations (7.41) below,

K3
which are the usual ones for the quantum superalgebra:

KK =K 'Ki=1, KK;=EKK,

KT nt(ai,05) B = = = et (o o) B
(7.41) KB KT = qr o) B KRR = ¢ v By,

a _— K, —K!

EiF; —( 1)0”(1)0“(J)F3E1:5” qA—q—ll G, jel)

Let Ug(g)? := U(x)?. Then Us(g)” = Us(g) @ U;(g)o as K-linear spaces. His-
torically, in [26, Theorem 2.9.4], [27, (6.4.1)] (see also [25, Section 3]), U;(g)”
has been introduced as the Hopf (non-super) algebra defined in the same way as
in (4.8), which is similar to Lusztig’s well-known way [19, 3.1.1(a)—(e)] (see also
[5, Subsection 2.1]), and Us(g) has been introduced as its subalgebra (U;(g) is a
Hopf superalgebra); see [26, Corollary 2.9.11], [27, Subsection 6.8]. For a complete
set of its defining relations, we make the same remark as in Remark 5.12. Let
Emoie; = 7 (Bmana;)s Fraca = 7(Fmaga, )0 00 € Uy(g) (see (4.9)
for B a;,a; and Fp, o, o, ). Assume that y € X;uper. If x ¢ Xffu"er(B(O, N)), there
exists a unique o € I with 7 (as, ap) = 0. If x € X3P (B(0, N)), such an 6 does
not exist. Recall ¢;; := c?j from (3.1). By [25, Section 3], [26, Theorem 10.5.1(ii)],
[27, Theorem 6.8.1], a complete set of defining relations of the K-algebra Uy(g) is
formed by the relations in (7.41) and in (7.42) below.
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Elfcmai)% = Flfcij,ai,a,- =0 (o#1i+#))
(usual quantum Serre relations),

EZ=F:=0,

ELak,aaEl,ar,aa + El,ar,aaEl,ak,aa =0,

FioapaoFlara0 T Flay a0 Flaga, =0

(0 #k #71# 0, 0 (ar, a5) = —1*(ar, a5) # 0).

Since the Dynkin diagram of g corresponding to af is the best-known among all

(7.42)

those of g (recall the definition of Xy™°"), the number of relations is rather small.

Let ¢ € KX and x € Xn = wy(a*) (see (5.2)) for some a = (n,6%) €
y;&ﬁ“. Let g := g(a). For k = (x; | i € I) € (KX)V, define A, € Ch(U(x)) by
A (Ka,) := ki, and when regarding the U(x)?-module £, (A,)™") as the U,(g)-
module, we denote it by L4(k); let v, :=v; and note that

Ki ve=rkive, Ei-v,=0 (G€l), Lyikr)=Uig): v,
where - means the action of Us(g) on L4(k).

By using Lemma 7.9 and an argument similar to that for Lemma 4.23, we
have

Lemma 7.12. Let af = (nf,0%) € y;&ﬁ“ be as in Theorem 3.4. Then {L;(k) |
k € (K*)N, dim L4(k) < oo} is a complete set of pairwise non-isomorphic finite-
dimensional irreducible Ug(g(a®))-modules.

Example 7.13. Let af = (n,0%) € J)J/\b,’ﬁn be as in Lemma 7.12. Let § € KX . Fix
¢'/? € K* so that (¢'/?)2 = §. For r € Z, let §"/? := (§"/?)". Fix /=1 € K* so
that (v—1)2 = —1. Let x := w;(a?) € XY™, Recall that the U;(g(a!))-module
L4(k) can also be regarded as the U(x)-module £, (A, o). If x is considered in
Theorems 7.1, 7.2, 7.4, 7.6, 7.7, or 7.8, since x? = (A, o T) (Ko, L_o,;) (1 € I), we
explicitly obtain dim £;(x) < oo from dim £, (A, o 71) < oco.

(1) (See Theorem 7.4(1).) Assume a is the A(m — 1, N — m)-data (N > 2,
m € Ji n). Then dim £4(k) < oo if and only if there exist r; € Z>g, z; € {£1}
(t eI\ {m})and y € K* with x; = 2;¢" (i € J1,m-1), km =y, and k; = ;G "
(J € Jm-&-l,N)-

(2) (See Theorem 7.6.) Assume a? is the B(m, N — m)-data (N > 2, m €
J1,n-1). Then dim £4(k) < oo if and only if there exist r; € Z>q, z; € {£1} (i € I)
and ¢ € Jo1 with #; = 2,677 (i € JiN—m—1), KN-m = TN—m(v/—1)¢G"N-m/2,
kj =G (j € INcm41,N=1), KN = xnG"™N/? for which one of the following cases

7 N-1
occurs, where b :=ry_,, — (ry + QZj:meH ;)
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(Bmg-1) ¢ =0, and b = 2(m + z) for some z € Zx.

(Bmg@-2) ¢c=1, and b= 2(m + 2) + 1 for some z € Z>y.

(Bmg-3) ¢ = 0, and there exists k € Jo,,_1 such that b = 2k, ry_,, = 2(k +
Z;V;Nm_trlfﬂ r;), and 7y =0 (t € IN—mtk+1,N)-

(3) (See Theorem 7.7.) Assume a is the D(m, N — m)-data (N > 2, m €
Ja,n—1). Then dim L4(k) < oo if and only if there exists r; € Zxo, x; € {£1}
(¢el)and ce Jy1 with k; =2;¢7™ (i € JiNem—1)s EN—m = Ti(v/—1)°¢" N,
kj = ;4" (j € JN—m+1,~n) for which one of the following cases occurs, where
d:=rN_m—(rN—1+7N+2 Zé\f:—]\?_m+1 ;)

(Dmg-1) d = 2(m + z) for some z € Zxo.

(Dmg-2) ¢ = 0,d = 2(m — 1), and ry_,, = m — 1 + E;V;]\Lmﬂ r;. (Hence
TN—1= TN.)

(Dmg-3) ¢ = 0, and there exists k € Jy,—2 such that d =2k, rnem = k +
S s and 1y =0 (t € JN—miks1,N)-

§7.6. Recovery of Kac’s list as ¢ — 1

Geer [8, Theorem 1.2] showed that any irreducible highest weight module of the
Lie superalgebra g (treated below) allows an ‘hA-deformation’ as a topological high-
est weight module of the Drinfeld-type quantized superalgebra Uy(g) (see Re-
mark 7.14). The argument here proceeds in the opposite direction.

Let C((h)) be the field of fractions of the formal power series ring C[[A]]
over C. In this subsection, we assume K is an algebraic closure of C((%)). Let
G = exp(h) € C[[h]]. Let a* = (0%, 6% € y;@ﬁ“ be as in Theorem 3.4, as in
Subsection 7.5. Let g := g(a®). Let X; := K(;__;Sl € U;(g) (i € I). Let Un(g) be
the CJ[[h]]-subalgebra of Us(g) generated by K;, K; ', X;, E;, F; (i € I). We can
easily see that

(7.43) T;(Un(a(fa*))) = Un(g),

where we recall T; from (6.1). By [26, Theorem 10.5.1], we have a C-algebra
monomorphism I' : U(g) — Ux(g)/hUx(g) such that D(HY) = X; + hUx(g),
T(EY) = E; + hUp(g), T(FY) = F, + hUx(g) (i € I), where U(g) is the uni-
versal enveloping algebra of g. By [26, Theorem 10.5.1], we see that for any
C-basis {m. | z € Z} of U(g), letting m. € Ux(g) (z € Z) be such that
. + hUx(g) = T(m.), the set {m, - K¢ |z € Z, ¢ € Jyo.} is a free C[[h]]-basis of
Un(g)-
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Remark 7.14. Asin [27, Subsections 6.6, 7.1], by [26, Theorem 10.5.1], we obtain
a Drinfeld-type topological quantum superalgebra Uy (g) which includes the (non-
topological) C[[fi]]-subalgebra Uy (g) as a dense subset.

Let = (v; | i € I) € CN. Let £ (x) := Uh(g)ve(x)/hﬁh(g)ve(m) where
e(z) := (exp(z;h) | i € I), and regard it as a U(g)-module through T'. Let 9, :=
Ve(a) + hUh(g)ve(z) € L% (z). Then H!0, = 2;0,, E*, = 0, and L (x) = U(g)0,.
Let Y be a maximal proper submodule of £*/(x). (By the same argument as in
the proof of Lemma 4.23, we can see that Y exists.) Let £*(x) := £*'(2)/Y. (By
[8, Theorem 1.2], £*'(x) is irreducible, so Y = {0}.)

By (7.43), T;’s induce Tiﬁ’s (see (3.4)), and induce results for the irreducible
g-modules £#(z)’s similar to those of Lemmas 6.3 and 6.6; we also have a result
for g similar to Lemma 4.23. Thus we have Lemma 7.15 below, from which, using
Theorems 7.4, 7.6, 7.7 and 7.8, we can recover Kac’s list [17, Theorem 8(c)] of
irreducible g-modules.

Lemma 7.15. Let af € yﬁ’ﬁ“ be as in Lemma 7.12. Then {L*(z) | » € CN,
dim L4(e(x)) < oo} is a complete set of pairwise non-isomorphic finite-dimensional
irreducible g(a*)-modules.

Remark 7.16. If g = B(m, N — m) or D(m, N — m), an intrinsic gap appears
between the list for g and the one for Uy(g); there does not exist the case for g
corresponding to (Bmg-2) or (Dmg-1) with ¢ = 1.

Remark 7.17. Shu and Wang [23, Theorem 5.3, Remark 5.4] also recovered Kac’s
list for the simple Lie superalgebras B(m, N —m), C(N) and D(m, N —m) by using
odd reflections in a way totally different from that in this paper.
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