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From the Drinfeld Realization to the
Drinfeld–Jimbo Presentation of Affine Quantum

Algebras: Injectivity

by

Ilaria Damiani

Abstract

The surjective homomorphism ψ (see [Da1]) from the Drinfeld realization UDr
q to the

Drinfeld and Jimbo presentation UDJ
q of affine quantum algebras is proved to be injective.

A consequence of the arguments used in the paper is the triangular decomposition of the
Drinfeld realization of affine quantum algebras also in the twisted case. A presentation
of affine Kac–Moody algebras in terms of “Drinfeld generators” is also provided.
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§0. Introduction

Let X
(k)
ñ be a Dynkin diagram of affine type, UDJ

q = UDJ
q (X

(k)
ñ ) the quantum alge-

bra introduced by Drinfeld and Jimbo (see [Dr2] and [Jm]), and UDr
q = UDr

q (X
(k)
ñ )

its Drinfeld realization (see [Dr1]).

This paper concludes the proof that UDJ
q and UDr

q are isomorphic. More pre-

cisely, in [Da1] a homomorphism ψ : UDr
q → UDJ

q was defined (following [Be] for the

untwisted case), and proved to be surjective; previous attempts to give a complete

proof that these two algebras are isomorphic are also discussed in [Da1]. Here we

prove the injectivity of ψ.

As in [Be], the idea of the proof is to recover the injectivity of ψ from that of

its specialization at 1, based on the following:

Proposition 0.1. Let A = C[q](q−1) be the localization of C[q] at (q − 1), M a

finitely generated A-module, N a free A-module, f : M → N a homomorphism of
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A-modules, f1 : M/(q − 1)M → N/(q − 1)N the A/(q − 1) = C-linear homomor-

phism induced by f . If f1 is injective, so is f .

Proof. A is a local principal ideal domain; f(M) is a finitely generated A-sub-

module of N , hence a free A-module, so that there exists g : f(M)→M such that

f ◦ g = idf(M).

Of course ker(f) is a finitely generated A-module, M = ker(f) ⊕ Im(g),

ker(f)/(q − 1) ker(f) ↪→M/(q − 1)M and ker(f)/(q − 1) ker(f) ⊆ ker(f1) = {0}.
Thus (q − 1) ker(f) = ker(f), so that ker(f) = {0} (Nakayama lemma).

Note that the hypothesis that M is finitely generated over A is necessary, as

can be seen from the simple counterexample f : C(q)→ {0}.
The problem faced in the present paper is reducing to a situation where this

argument works.

Consider the (well defined) commutative diagram

F+/I+
f //

ψ̃
��

UDr
q

ψ

��
UDJ,+
A

� � // UDJ
q

where UDJ
q and UDr

q are respectively the Drinfeld–Jimbo presentation and the

Drinfeld realization of a quantum affine algebra (see §2 and §3), UDJ,+
A is the

integer form of the positive part of UDJ
q (Remark 2.4), F+ is the free A-algebra

generated by {X+
i,r | i ∈ I0, r ≥ 0} and I+ is the ideal of F+ generated by the

relations (ZX+
+ , DR+, S+, U3+) (see Notations 3.9 and 6.1).

The plan of the proof is to show that the injectivity of ψ̃ implies the in-

jectivity of ψ (see Proposition 5.2 and Corollary 6.4(ii)) and at the same time

that the conditions of Proposition 0.1 hold for the homogeneous components of

ψ̃ : F+/I+ → UDJ,+
A (see Remark 6.7), so that ψ is injective if ψ̃1 (the specializa-

tion at 1 of ψ̃) is injective. This reduces our problem to the study of ψ̃1, which

is found to be injective through a careful analysis of the classical (non-quantum)

affine Kac–Moody case (see Remark 7.6 and Corollary 8.21).

(A) It is well known that UDJ,+
A is a free A-module (see Remark 2.4(ii)); it

is straightforward to see that F+/I+ =
⊕

α∈Q+
(F+/I+)α where each (F+/I+)α

is a finitely generated A-module (see Remark 6.2(ii)). Finally ψ̃ is trivially Q-

homogeneous; then Proposition 0.1 applies and ψ̃ is injective if ψ̃1 is injective.

(B) Of course F+/I+, but also UDJ,+
A , can be easily described through a

presentation by generators and relations (it is well known that UDJ,+
A is generated

by {Ei | i ∈ I} with relations (SE), see Remark 2.4(iv)). Then their specializations
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at 1 are also immediate to describe by generators and relations (see Remarks 7.1

and 7.5), and ψ̃1 is explicitly known on the generators.

§8 is devoted to proving that ψ̃1 is injective. Since the specialization at 1 of

UDJ,+
A is well known (it is the enveloping algebra of the positive part of the Kac–

Moody algebra), the proof consists in the study of the classical (non-quantum)

situation, through a careful analysis of the specialization at 1 of F+/I+ (see Corol-

lary 7.29 and §8). In particular this analysis leads also to a “Drinfeld realization”

of affine Kac–Moody algebras (see Theorem 9.6).

(C) On the other hand f(F+/I+) generates over C(q) a subalgebra UDr,+,+
q

of UDr,+
q ⊆ UDr

q ; since f(F+/I+) is a direct sum of finitely generated A-modules,

it is an integer form of UDr,+,+
q (see Remark 6.3). So the injectivity of ψ̃ implies

that ψ|UDr,+,+
q

is injective (see Corollary 6.4(ii)).

But the injectivity of ψ̃ (hence of f) also implies that F+/I+ ∼= f(F+/I+),

that is, it provides a presentation by generators and relations of the integer form

of UDr,+,+
q (see Corollary 6.4(i)).

(D) Why does the injectivity of ψ|UDr,+,+
q

imply the injectivity of ψ? To answer

this question we study the connection between the PBW-basis of UDJ
q and the

tensor product UDr,−,−
q ⊗ UDr,0

q ⊗ UDr,+,+
q (see Proposition 5.1), recalling that

UDr,+
q can be recovered from UDr,+,+

q by “translations” (see Remark 3.5(vii)).

With these tools it is easy to conclude finally that the injectivity of ψ|UDr,+,+
q

implies the injectivity of ψ. At the same time it also implies the triangular decom-

position of UDr
q (see Proposition 5.2).

§1. General notation

We fix here the general notation that will be used in the paper (for a deeper and

more detailed understanding of this setting see [Bo], [K], [M]). Further notation is

spread out through the next sections.

Notation 1.1. Following the literature we denote by

ĝ = (g⊗C C[t±1])χ ⊕ Cc an affine Kac–Moody algebra

with

• Dynkin diagram Γ and set of vertices I = {0, 1, . . . , n},
• Cartan matrix A = (aij)i,j∈I ,

• root lattice Q =
⊕

i∈I Zαi and positive root lattice Q+ =
⊕

i∈I Nαi,
• root system (with real and imaginary roots) Φ = Φre ∪ Φim,

• root system with multiplicities Φ̂,
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• symmetric bilinear form (·|·) on Q induced by DA (D = diag(di | i ∈ I)) with

kernel Zδ (δ ∈ Q+),

• Weyl group W = 〈si : αj 7→ αj − aijαi | i ∈ I〉,
• extended Weyl group Ŵ = W o T (T ≤ Aut(Γ)) with length l : Ŵ → N,

• extended braid group with lifting Ŵ 3 w 7→ Tw,

where

• g is a simple Lie algebra over C of rank ñ;

• χ is an automorphism of the Dynkin diagram of g of order k;

and

• A0 = (aij)i,j∈I0 (I = I0 ∪ {0} 6= I0),

• Q0 =
⊕

i∈I0 Zαi ⊆ Q (Q0,+ = Q0 ∩Q+),

• Φ0 ⊇ Φ0,+ and

• W0 = 〈si | i ∈ I0〉 ≤W ≤ Ŵ

are respectively the Cartan matrix, the root lattice, the root system (with the set

of positive roots) and the Weyl group of the simple Lie algebra g0 = gχ.

If g is of type Xñ (X = A,B,C,D,E, F,G), then ĝ is said to be of type X
(k)
ñ .

Finally P̂ =
⊕

i∈I0 Zλi (〈λi|αj〉 = δij d̃i) is the sublattice of

Hom(Q0,Z) ⊆ Hom(Q0,Z)⊕Hom(Zδ,Z) = Hom(Q0 ⊕ Zδ = Q,Z)

such that Ŵ = P̂ oW0 and

d̃i =

{
1 if k = 1 or X

(k)
ñ = A

(2)
2n ,

di otherwise;

recall that for all λ̃ ∈ P̂ and α ∈ Q, λ̃(α) = α−〈λ̃|α〉δ and denote by λ the weight

λ = λ1 + · · ·+ λn, by N the length of λ, and by Ni the length of λi (i ∈ I0).

Remark 1.2. The structure of the set Φ̂ of positive roots with multiplicities is

the following (see [K]): Φ̂ = Φre
+ ∪ Φ̂im

+ with

Φre
+ = {rδ + α ∈ Q+ | α ∈ Φ0, r ∈ Z such that d̃α | r} ∪ Φ2,

Φ̂im
+ = {(rδ, i) | (i, r) ∈ IZ, r > 0},

where

d̃w(αi) = d̃i for w ∈W0, i ∈ I0,

Φ2 =

{
{(2r + 1)δ + 2α | r ∈ N, α ∈ Φ0, (α|α) = 2} in case A

(2)
2n ,

∅ otherwise,

IZ = {(i, r) ∈ I0 × Z | d̃i | r}.
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Notation 1.3 (see [Be] and [Da2]). The maps ι : Z → I and Z 3 r 7→ wr ∈ W
are defined by the following conditions:

(i) wr =

{
sι1 · sι2 · . . . · sιr−1

if r ≥ 1,

sι0 · sι−1
· . . . · sιr+1

if r ≤ 0;

(ii) for all r = 1, . . . , n there exists τr ∈ T such that

λ1 + · · ·+ λr = λ1 · . . . · λr = sι1 · . . . · sιN1+···+Nr
τr ∈ Ŵ ;

(iii) ιN+r = τn(ιr) for all r ∈ Z.

The bijection Z 3 r 7→ βr = wr(αιr ) ∈ Φre
+ induces a total ordering � on Φ̂+

defined by

βr � βr+1 � (m̃δ, i) � (mδ, j) � (mδ, i) � βs−1 � βs

for all r ≥ 1, s ≤ 0, m̃ > m > 0, j ≤ i ∈ I0 (choosing any ordering ≤ of I0).

The reverse ordering has the same properties (see [Da2]).

Notation 1.4. (i) Consider the ring Z[x, x−1]. Then for all m, r ∈ Z the ele-

ments [m]x, [m]x! (m ≥ 0) and
[
m
r

]
x

(m ≥ r ≥ 0) are defined by [m]x =
xm−x−m
x−x−1 , [m]x! =

∏m
s=1[s]x and

[
m
r

]
x

= [m]x!
[r]x![m−r]x! , which all lie in Z[x, x−1].

(ii) Consider the field C(q) and, given v ∈ C(q)\{0}, the natural homomorphism

Z[x, x−1] → C(q) determined by the condition x 7→ v; then for all m, r ∈ Z
the elements [m]v, [m]v! (m ≥ 0) and

[
m
r

]
v

(m ≥ r ≥ 0) denote the images in

C(q) of [m]x, [m]x! and
[
m
r

]
x

respectively.

(iii) For all i ∈ I0 we denote qi = qdi ∈ C(q).

Notation 1.5. Consider a Z[q±1]-algebra U , elements u, v ∈ U and r ∈ Z. The

q-bracket [u, v]qr is the element [u, v]qr = uv − qrvu.

Note that the specialization at 1 of [u, v]qr (the image of [u, v]qr in the

Z-algebra U/(q − 1)U) is the classical bracket [u, v] = uv − vu.

§2. Preliminaries: UDJ
q

In this section we recall the definition and the structures of the Drinfeld–Jimbo

presentation UDJ
q of affine quantum algebras (see [Dr2] and [Jm], and also [Be],

[Da2], [LS],[L]).

Definition 2.1. The Drinfeld–Jimbo presentation of the affine quantum algebra

of type X
(k)
ñ is the C(q)-algebra UDJ

q = UDJ
q (X

(k)
ñ ) generated by

{Ei, Fi,K±1i | i ∈ I}
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with relations

KiK
−1
i = 1 = K−1i Ki, KiKj = KjKi ∀i, j ∈ I,(KK)

KiEj = q
aij
i EjKi, KiFj = q

−aij
i FjKi ∀i, j ∈ I,(KEF )

[Ei, Fj ] = δij
Ki −K−1i
qi − q−1i

∀i, j ∈ I,(EF )

1−aij∑
u=0

(−1)u
[
1− aij
u

]
qi

Eui EjE
1−aij−u
i = 0 ∀i 6= j ∈ I,(SE)

1−aij∑
u=0

(−1)u
[
1− aij
u

]
qi

Fui FjF
1−aij−u
i ∀i 6= j ∈ I.(SF )

Remark 2.2. Recall that UDJ
q is endowed with the following structures:

(i) the Q-gradation UDJ
q =

⊕
α∈Q UDJ

q,α determined by the conditions

Ei ∈ UDJ
q,αi , Fi ∈ UDJ

q,−αi , K±1i ∈ UDJ
q,0 ∀i ∈ I;

UDJ
q,αUDJ

q,β ⊆ UDJ
q,α+β ∀α, β ∈ Q;

(ii) the triangular decomposition

UDJ
q
∼= UDJ,−

q ⊗ UDJ,0
q ⊗ UDJ,+

q
∼= UDJ,+

q ⊗ UDJ,0
q ⊗ UDJ,−

q ,

where UDJ,−
q , UDJ,0

q and UDJ,+
q are the subalgebras of UDJ

q generated respec-

tively by {Ei | i ∈ I}, {K±1i | i ∈ I} and {Fi | i ∈ I}; in particular

UDJ
q,α
∼=

⊕
β,γ∈Q+:
γ−β=α

UDJ,−
q,−β ⊗ U

DJ,0
q ⊗ UDJ,+

q,γ ∀α ∈ Q

where UDJ,±
q,α = UDJ

q,α∩UDJ,±
q is finite-dimensional for all α ∈ Q; note also that

if ŨDJ,−
q =

⊕
α∈Q+

ŨDJ,−
q,−α with ŨDJ,−

q,−α = UDJ,−
q,−αKα, we have that ŨDJ,−

q is a

graded subalgebra of UDJ
q and the triangular decomposition can be formulated

also as

UDJ
q
∼= ŨDJ,−

q ⊗ UDJ,0
q ⊗ UDJ,+

q .

(iii) the C-anti-linear anti-involution Ω : UDJ
q → UDJ

q defined by

Ω(q) = q−1, Ω(Ei) = Fi, Ω(Fi) = Ei, Ω(Ki) = K−1i ∀i ∈ I;

(iv) the extended braid group action defined by

Tsi(Kj) = KjK
−aij
i ∀i, j ∈ I,

Tsi(Ei) = −FiKi, Tsi(Fi) = −K−1i Ei ∀i ∈ I,
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Tsi(Ej) =

−aij∑
r=0

(−1)r−aijq−ri E
(−aij−r)
i EjE

(r)
i , Tsi(Fj) = Ω(Tsi(Ej))

∀i 6= j ∈ I

where E
(m)
i = Emi /[m]qi ! for all m ∈ N, and

Tτ (Ki) = Kτ(i), Tτ (Ei) = Eτ(i), Tτ (Fi) = Fτ(i) ∀τ ∈ Aut(Γ), i ∈ I0;

(v) positive and negative root vectors Eα ∈ UDJ,+
q,α and Fα = Ω(Eα) ∈ UDJ,−

q,−α
(α ∈ Φ̂+) such that Eβr = Twr (Eιr ) if r ≥ 1, Eβr = T−1

w−1
r

(Eιr ) if r ≤ 0, and

exp
(

(qi − q−1i )
∑
r>0

E(d̃irδ,i)
ur
)

= 1− (qi − q−1i )
∑
r>0

Ẽ(d̃irδ,i)
ur

where Ẽ(d̃irδ,i)
= −Ed̃irδ−αiEi + q−2i EiEd̃irδ−αi if r > 0 and i ∈ I0.

(Note that in [Da1], E(d̃irδ,i)
was confused with Ẽ(d̃irδ,i)

by a misprint.)

Remark 2.3. We have:

(i) Ω ◦Tw = Tw ◦Ω for all w ∈ Ŵ ;

(ii) Tw(UDJ
q,α) = UDJ

q,w(α) for all w ∈ Ŵ and α ∈ Q;

(iii) Tw(Ei), T
−1
w−1(Ei) ∈ UDJ,+

q if w ∈ Ŵ and i ∈ I are such that w(αi) ∈ Q+;

(iv) Tw(Ei) ∈ ŨDJ,−
q if w ∈ Ŵ and i ∈ I are such that w(αi) ∈ −Q+;

(v) Tw(Ei) = Ej if w ∈ Ŵ and i ∈ I are such that w(αi) = αj ;

(vi) Tλ(Eα) =

{
Eλ(α) = Eα−〈λ|α〉δ if λ(α) ∈ Q+,

−F−λ(α)K−λ(α) = −F〈λ|α〉δ−αK〈λ|α〉δ−α otherwise;

(vii) Erd̃iδ+αi = T−rλi (Ei) for all r ∈ N and i ∈ I0;

(viii) Tλi(E(d̃jrδ,j)
) = E(d̃jrδ,j)

for all i, j ∈ I0 and r > 0;

(ix) {Kα =
∏
i∈I K

mi
i | α =

∑
i∈I miαi ∈ Q} is a basis of UDJ,0

q ;

(x) {E(γ) = Eγ1 · . . . · EγM | M ∈ N, γ = (γ1 � · · · � γM ), γh ∈ Φ̂+ ∀h =

1, . . . ,M} is a basis of UDJ,+
q (PBW-basis);

(xi) for all α ≺ β ∈ Φ̂+, EβEα − q(α|β)EαEβ is a linear combination of {E(γ) |
γ = (γ1 � · · · � γM ) ∈ Φ̂M+ , M ∈ N, α ≺ γ1}; for real root vec-

tors this can be stated in a more precise way: for all βr ≺ βs ∈ Φ̂+,

EβsEβr − q(βr|βs)EβrEβs is a linear combination of {E(γ) | γ = (γ1 � · · ·
� γM ) ∈ Φ̂M+ , M ∈ N, βr ≺ γu ≺ βs ∀u = 1, . . . ,M} (Levendorskii–

Soibelman formula).
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Remark 2.4. The A-subalgebra UDJ
A of UDJ

q generated by {Ei, Fi,K±1i | i ∈ I}
is an integer form of UDJ

q :

(i) UDJ
q = C(q)⊗A UDJ

A ;

(ii) UDJ
A is a free A-module.

Moreover:

(iii) UDJ
A is Tsi-stable for all i ∈ I and Tτ -stable for all τ ∈ T ; it contains all the

root vectors;

(iv) UDJ,+
A = UDJ

A ∩UDJ,+
q is the A-algebra generated by {Ei | i ∈ I} with relations

(SE); it is a free A-module;

(v) UDJ,+
A =

⊕
α∈Q+

UDJ,+
A,α where UDJ,+

A,α = UDJ,+
A ∩ Uq,α is free of finite rank

over A;

(vi) UDJ,0
A = UDJ

A ∩ UDJ,0
q is the commutative A-algebra

UDJ,0
A =A

[
Ki,

Ki−K−1i
qi−q−1i

∣∣∣∣ i∈ I]/(Ki

(
Ki−(qi−q−1i )

Ki−K−1i
qi−q−1i

)
−1

∣∣∣∣ i∈ I);

it is a free A-module;

(vii) UDJ
A /(q − 1,Ki − 1 | i ∈ I) ∼= U(ĝ);

(viii) for all i ∈ I, Tsi induces T̃si : U(ĝ) → U(ĝ) and T̃si |ĝ ∈ AutLie(ĝ); the image

of all the root vectors lies in ĝ.

§3. Preliminaries: UDr
q

The Drinfeld realization UDr
q of affine quantum algebras was introduced in [Dr1],

and its defining relations were simplified in [Da1] thanks to the (q-)commutation

with the generators X±i,r, Hi,r.

Both the original and the simplified sets of relations are useful in this paper:

while studying the positive subalgebra UDr,+
q , which contains neither X−i,r nor Hi,r,

the set of relations given by Drinfeld is the most natural to deal with, and is finally

proved to provide a complete set of relations defining UDr,+
q (see Theorem 9.4(i));

vice versa, specializing at 1 the whole UDr
q provides a presentation of affine Kac–

Moody algebras in terms of the generators {x±i,r, hi,r, c}, whose relations can be

deduced from the simplified relations defining UDr
q (see Theorem 9.6(iv)).

In this section we recall: the definition of UDr
q through the simplified relations

given in [Da1] (Definition 3.1); the relations given by Drinfeld [Dr1] involving just

the positive generators X+
i,r’s and holding in UDr,+

q (Notation 3.9 and Remark

3.10); the structures defined on UDr
q (Q-gradation, (anti)automorphisms, first re-

marks about triangular decomposition).
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Definition 3.1. The Drinfeld realization of the affine quantum algebra of

type X
(k)
ñ is the C(q)-algebra UDr

q = UDr
q (X

(k)
ñ ) generated by

C±1, k±1i (i ∈ I0), X±i,r ((i, r) ∈ I0 × Z)

with relations

X±i,r = 0 ∀(i, r) ∈ (I0 × Z) \ IZ,(ZX±)

[C, x] = 0 ∀x, kikj = kjki (i, j ∈ I0),(CUK)

CC−1 = 1, kik
−1
i = 1 = k−1i ki (i ∈ I0),(CK)

kiX
±
j,r = q

±aij
i X±j,rki (i ∈ I0, (j, r) ∈ I0 × Z),(KX±)

[X+
i,r, X

−
j,s] =

δi,j
C−skiH̃

+
i,r+s−C

−rk−1
i H̃−i,r+s

qi−q−1
i

if d̃j |s,

0 otherwise,
(XX)

[Hi,r, X
±
j,s] = ±bijrC(r∓|r|)/2X±j,r+s ((i, r), (j, s) ∈ IZ, d̃i ≤ |r| ≤ d̃ij),

(HXL±)

[X±i,r±1, X
±
i,r]q2 = 0 (X

(k)
ñ = A

(1)
1 ),(X1±const)

[[X±i,r±1, X
±
i,r]q2 , X

±
i,r]q4 = 0 (X

(k)
ñ = A

(2)
2 ),(X3±const)

1−aij∑
u=0

(−1)u
[
1− aij
u

]
qi

(X±i,r)
uX±j,s(X

±
i,r)

1−aij−u = 0 (n > 1),(S±const)

where H̃±i,r, Hi,r, bijr and d̃ij are defined as follows:

H̃±i,r =


1 if r = 0,

±(qi − q−1i )C(r∓r)/2k∓1i [X+
i,r, X

−
i,0] if ±r > 0,

0 if ±r < 0;∑
r∈Z

H̃±i,±ru
r = exp

(
±(qi − q−1i )

∑
r>0

Hi,±ru
r
)

;

bijr =


0 if d̃i,j - r,
[2r]q(q

2r + (−1)r−1 + q−2r)/r if (X
(k)
ñ , di, dj) = (A

(2)
2n , 1, 1),

[r̃aij ]qi/r̃ otherwise, with r̃ = r/d̃i,j ;

d̃ij = max{d̃i, d̃j}.

Notation 3.2. In UDr
q :

(i) UDr,0
q denotes the C(q)-subalgebra generated by {C±1, k±1i , Hi,r | i ∈ I0,

r 6= 0}, or equivalently, the C(q)-subalgebra generated by {C±1, k±1i , H̃±i,r |
i ∈ I0, r ∈ Z};
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(ii) UDr,0,0
q , UDr,0,+

q and UDr,0,−
q denote the C(q)-subalgebras generated respec-

tively by {C±1, k±1i | i ∈ I0}, {Hi,r | i ∈ I0, r > 0} (or {H̃+
i,r | i ∈ I0, r ∈ Z})

and {Hi,r | i ∈ I0, r < 0} (or {H̃−i,r | i ∈ I0, r ∈ Z});
(iii) UDr,+

q and UDr,−
q denote the C(q)-subalgebras generated respectively by

{X+
i,r | i ∈ I0, r ∈ Z} and {X−i,r | i ∈ I0, r ∈ Z};

(iv) UDr,+,+
q and UDr,−,−

q denote the C(q)-subalgebras generated respectively by

{X+
i,r | i ∈ I0, r ≥ Z} and {X−i,r | i ∈ I0, r ≤ Z};

(v) given α ∈ Q, UDr
q,α denotes the α-homogeneous component of UDr

q : UDr
q =⊕

α∈Q UDr
q,α where C±1, k±1i ∈ Uq,0, X±i,r ∈ UDr

q,rδ±αi ; U
Dr,∗
q,α = UDr,∗

q ∩ UDr
q,α.

Remark 3.3. (i) UDr,0,0
q ⊆ UDr

q,0;

(ii) UDr,0
q ⊆

⊕
m∈Z UDr

q,mδ;

(iii) UDr,+
q ⊆ C(q)⊕

⊕
m∈Z, α∈Q0,+\{0} U

Dr
q,mδ+α;

(iv) UDr,+,+
q ⊆ C(q)⊕

⊕
m∈N, α∈Q0,+\{0} U

Dr
q,mδ+α;

(v) for all α ∈ Q0,+ and m ∈ Z, UDr,+,+
q,mδ+α is finite-dimensional, while UDr,+

q,mδ+α is

in general infinite-dimensional.

Definition 3.4. (i) Ω : UDr
q → UDr

q is the C-anti-linear anti-involution defined

by

q 7→ q−1, C±1 7→ C∓1, k±1i 7→ k∓1i , X±i,r 7→ X∓i,−r,

H̃±i,r 7→ H̃∓i,−r, Hi,r 7→ Hi,−r.

(ii) ti : UDr
q → UDr

q (i ∈ I0) is the C(q)-automorphism defined by

C±1 7→ C±1, k±1j 7→ (kjC
−δij d̃i)±1, X±j,r 7→ X±

j,r∓δij d̃i
,

H̃±j,r 7→ H̃±j,r, Hj,r 7→ Hj,r.

(iii) Ec : UDr
q → UDr

q (c : I0 → {±1} ) is the C(q)-automorphism defined by

Ec|UDr,0
q

= idUDr,0
q

, X±i,r 7→ ciX
±
i,r.

Remark 3.5. (i) For all i, j ∈ I0 we have Ω ◦ ti = ti ◦Ω and ti ◦ tj = tj ◦ ti;

(ii) Ω(UDr,0
q ) = UDr,0

q , Ω(UDr,0,0
q ) = UDr,0,0

q , Ω(UDr,0,±
q ) = UDr,0,∓

q , Ω(UDr,±
q ) =

UDr,∓
q , Ω(UDr

q,α) = UDr
q,−α;

(iii) ti(UDr
q,α) = UDr

q,λi(α)
;

(iv) ti(UDr,∗
q ) = UDr,∗

q , ti(UDr,0,∗
q ) = UDr,0,∗

q ;

(v) more precisely, ti|UDr,0,±
q

= idUDr,0,±
q

(∗ ∈ {0,+,−});

(vi) t−1i (UDr,+,+
q ) ⊆ UDr,+,+

q ;

(vii) UDr,+
q =

⋃
N∈N(t1 · . . . · tn)N (UDr,+,+

q );
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(viii) for all c, c̃ : I0 → {±1} and all i ∈ I0 we have Ec ◦ Ec̃ = Ecc̃, Ec ◦Ω = Ω ◦ Ec
and Ec ◦ ti = ti ◦ Ec;

(ix) Ec(x) = ±x for all x ∈ UDr
q,α and α ∈ Q.

Remark 3.6. In UDr
q we also have (see [Dr1] and [Da1]):

Hi,r = 0 ∀(i, r) ∈ (I0 × Z) \ IZ,(ZH)

[ki, Hj,s] = 0 (i ∈ I0, (j, s) ∈ I0 × (Z \ {0})),(KH)

[Hi,r, Hj,s] = δr+s,0bijr
Cr − C−r

qj − q−1j
((i, r), (j, s) ∈ I0 × (Z \ {0})),(HH)

so that:

(i) UDr,0,0
q is central in UDr,0

q ;

(ii) UDr,0,0
q is a quotient of C(q)[C±1, k±1i | i ∈ I0] and UDr,0,+

q is a quotient of

C(q)[Hi,r | i ∈ I0, d̃i | r > 0];

(iii) the natural homomorphism of C(q)-vector spaces

UDr,0,−
q ⊗C(q) UDr,0,0

q ⊗C(q) UDr,0,+
q → UDr,0

q

is surjective.

Remark 3.7. In UDr
q we also have (see [Dr1] and [Da1])

(HX±) [Hi,r, X
±
j,s] = ±bijrC(r∓|r|)/2X±j,r+s ((i, r), (j, s) ∈ I0 × Z, r 6= 0),

which, together with the relations (CUK), (CK), (KX±), (XX), implies that the

natural map UDr,−
q ⊗ UDr,0

q ⊗ UDr,+
q → UDr

q is surjective.

Remark 3.8. Notice that setting ŨDr,−
q =

⊕
α∈QKαUDr,−

q,α (=
⊕

α∈Q UDr,−
q,α Kα)

we get
ŨDr,−
q ⊗ UDr,0

q ⊗ UDr,+
q

∼= UDr,−
q ⊗ UDr,0

q ⊗ UDr,+
q .

Notation 3.9. (i) Denote by (DR) the following relations:

(XD) [X+

i,r+d̃ij
, X+

j,s]qaiji
+[X+

j,s+d̃ij
, X+

i,r]qajij
= 0 ((i, r), (j, s) ∈ IZ, aij < 0),

(X1)
∑
σ∈S2

σ.[X+

i,r1+d̃i
, X+

i,r2
]q2i = 0 ((r1, r2) ∈ Z2, (X

(k)
ñ , di) 6= (A

(2)
2n , 1)),

(X2)
∑
σ∈S2

σ.([X+
i,r1+2, X

+
i,r2

]q2 − q4[X+
i,r1+1, X

+
i,r2+1]q−6) = 0

((r1, r2) ∈ Z2, (X
(k)
ñ , di) = (A

(2)
2n , 1)),

(X3)
∑
σ∈S3

σ.[[X+
i,r1+1, X

+
i,r2

]q2 , X
+
i,r3

]q4 = 0

((r1, r2, r3) ∈ Z3, (X
(k)
ñ , di) = (A

(2)
2n , 1)),
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(SUL)
∑

σ∈S1−aij

σ.[[. . . [[X+
j,s, X

+
i,r1

]
q
−aij
i

, X+
i,r2

]
q
−aij−2

i

, . . . ]
q
aij+2

i

, X+
i,r1−aij

]
q
aij
i

=0

(i 6= j ∈ I0, aij ∈ {0,−1} if k 6= 1, r ∈ Z1−aij , s ∈ Z),

(T2)
∑
σ∈S2

σ.[[X+
j,s, X

+
i,r1+1]q2 , X

+
i,r2

] = 0,

(i, j ∈ I0, aij = −2, k = 2, X
(k)
ñ 6= A

(2)
2n , (r1, r2) ∈ Z2, s ∈ Z),

(S2)
∑
σ∈S2

σ.
(
(q2 + q−2)[[X+

j,s, X
+
i,r1+1]q2 , X

+
i,r2

]

+ q2[[X+
i,r1+1, X

+
i,r2

]q2 , X
+
j,s]q−4

)
= 0

(i, j ∈ I0, aij = −2, X
(k)
ñ = A

(2)
2n , (r1, r2) ∈ Z2, s ∈ Z),

(T3)
∑
σ∈S2

σ.
(
(q2 + 1)[[X+

j,s, X
+
i,r1+2]q3 , X

+
i,r2

]q−1

+ [[X+
j,s, X

+
i,r1+1]q3 , X

+
i,r2+1]q

)
= 0

(i, j ∈ I0, aij = −3, k = 3, (r1, r2) ∈ Z2, s ∈ Z).

(ii) Denote by (S) the relations

(S)
∑

σ∈S1−aij

σ.[. . . [[X+
j,s, X

+
i,r1

]
q
−aij
i

, X+
i,r2

]
q
−aij−2

i

, . . . , X+
i,r1−aij

]
q
aij
i

= 0

(i 6= j ∈ I0, r ∈ Z1−aij , s ∈ Z).

(iii) Denote by (U3) the relations

(U3)
∑
σ∈S3

σ.[[[X+
j,s, X

+
i,r1+1]q3 , X

+
i,r2

]q , X
+
i,r3

]q−1 = 0

(i, j ∈ I0, aij = −3, k = 3, (r1, r2) ∈ Z2, s ∈ Z).

(iv) Denote by (ZX+
+ ), respectively (DR+), (S+) and (U3+), the relations of

(ZX+), respectively (DR), (S) and (U3), involving just elements X+
i,r with

r ≥ 0 (see Definition 3.1).

Remark 3.10. (i) The relations (DR), (S) and (U3) hold in UDr
q (see [Dr1] and

[Da1]);

(ii) the relations (SUL) and (SUL+) depend on (S) and (S+) respectively;

(iii) the relations (S) and (U3) depend on (DR) (see [Da1]);

(iv) in the algebra generated by {X+
i,r | i ∈ I0, r ∈ N} the relations (S+) and

(U3+) do not depend on (DR+) (it is enough to compare the degrees of (S+)

and (U3+) with those of (DR+) remarking that the algebra generated by

{X+
i,r | i ∈ I0, r ∈ N} is Q0,+ ⊕ Nδ-graded).
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§4. Preliminaries: ψ

In this section we recall the homomorphism ψ : UDr
q → UDJ

q and some of its

properties (see [Be] and [Da2]).

Definition 4.1. ψ = ψ
X

(k)
ñ

: UDr
q (X

(k)
ñ ) → UDJ

q (X
(k)
ñ ) is the C(q)-algebra homo-

morphism defined on generators as follows:

C±1 7→ K±1δ , k±1i 7→ K±1i (i ∈ I0),

X+

i,d̃ir
7→ o(i)rT−rλi (Ei), X−

i,d̃ir
7→ o(i)rT rλi(Fi) (i ∈ I0, r ∈ Z),

Hi,d̃ir
7→

{
o(i)rE(d̃irδ,i)

if r > 0

o(i)rF(−d̃irδ,i) if r < 0
(i ∈ I0, r ∈ Z \ {0}),

where o : I0 → {±1} is a map such that:

(a) aij 6= 0⇒ o(i)o(j) = −1 (see [Be] for the untwisted case);

(b) in the twisted case different from A
(2)
2n , aij = −2⇒ o(i) = 1 (see [Da1]).

Remark 4.2 (see [Da1]). (i) ψ preserves the gradation, that is, ψ(UDr
q,α) = UDJ

q,α

for all α ∈ Q;

(ii) ψ ◦Ω = Ω ◦ψ;

(iii) ψ ◦ Eoi ◦ ti = Tλi ◦ψ for all i ∈ I0, where

oi(j) =

{
o(i) if j = i,

1 otherwise;

(iv) ψ is surjective.

Proposition 4.3. Let us compare UDr
q and UDJ

q through ψ; then the PBW-basis

of UDJ
q and Remark 3.6(ii)&(iii) imply that:

(i) UDr,0,0
q

∼= C(q)[C±1, k±1i | i ∈ I0] and ψ|UDr,0,0
q

: UDr,0,0
q → UDJ,0

q is an

isomorphism;

(ii) UDr,0,+
q

∼= C(q)[Hi,r | i ∈ I0, d̃i | r > 0] and UDr,0,−
q

∼= C(q)[Hi,r | i ∈ I0,

d̃i | r < 0];

(iii) the composition

UDr,0,−
q ⊗C(q) UDr,0,0

q ⊗C(q) UDr,0,+
q → UDr,0

q ↪→ UDr
q

ψ→ UDJ
q

is injective;

(iv) UDr,0,−
q ⊗C(q) UDr,0,0

q ⊗C(q) UDr,0,+
q

∼= UDr,0
q ;

(v) ψ|UDr,0
q

: UDr,0
q → UDJ

q is injective.
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§5. Reduction to a finite-dimensional situation and

triangular decomposition

The aim of this paper is to prove that ψ is an isomorphism, i.e. that it is injective

(since it is surjective). The strategy is to reduce the task to studying the restriction

of ψ to finitely generatedA-submodules of UDr
q , so that the specialization argument

described in the introduction (Proposition 0.1) can be applied.

The first step in this direction would be restricting to the Q-homogeneous

components UDr
q,α, which are though far from being finite-dimensional; in similar

situations, for example when studying the Drinfeld–Jimbo presentation of quantum

algebras, triangular decomposition solves this difficulty, because it provides the

lower bound 0 ∈ Q for the weight of the elements considered.

In the Drinfeld realization this simplification is important but not enough:

indeed, UDr,+
q,α is in general infinite-dimensional (see Remark 3.3(v)). The same

remark suggests analyzing in fact UDr,+,+
q since it is the direct sum of (its homo-

geneous) finite-dimensional components.

This section is devoted to showing that the injectivity of ψ|UDr,+,+
q

implies the

injectivity of ψ.

As outlined above, the reduction to this finite-dimensional situation requires

the analysis and understanding of the triangular decomposition of UDr
q .

By triangular decomposition of UDr
q we mean the following claim:

UDr,−
q ⊗C(q) UDr,0

q ⊗C(q) UDr,+
q

∼= UDr
q .

Hernandez [H] proved triangular decomposition for the quantum affinizations of

all symmetrizable quantum algebras; this class of algebras includes the untwisted

affine quantum algebras, but does not include the twisted ones.

Here we show that the injectivity of ψ|UDr,+,+
q

implies both the triangular

decomposition of UDr
q and the injectivity of ψ.

We have already noticed that the product UDr,−
q ⊗C(q)UDr,0

q ⊗C(q)UDr,+
q → UDr

q

is surjective (see Remark 3.7): therefore triangular decomposition is equivalent to

the injectivity of this map.

Proposition 5.1. The product map ψ(UDr,−,−
q ) ⊗C(q) ψ(UDr,0

q ) ⊗C(q) ψ(UDr,+,+
q )

→ UDJ
q is injective.

Proof. ψ(UDr,+,+
q ) is the subalgebra of UDJ

q generated by the root vectors Erδ+αi
(i ∈ I0, r ∈ N), hence, by the Levendorskii–Soibelman formula and the PBW-basis

(see Remark 2.3(x)&(xi)), it is a subspace of the linear span of the ordered mono-

mials in the root vectors Eβr with r ≤ 0. Of course ψ(UDr,−,−
q ) = Ω(ψ(UDr,+,+

q )),

hence it is a subspace of the linear span of the ordered monomials in the root

vectors Fβr with r ≤ 0.
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Recall that ψ(UDr,0
q ) ∼= ψ(UDr,0,−

q )⊗ψ(UDr,0,0
q )⊗ψ(UDr,0,+

q ) (see Proposition

4.3(iv)&(v)), and that ψ(UDr,0,+
q ) is the subalgebra of UDJ

q generated by the root

vectors E(rδ,i) (i ∈ I0, r > 0).

Then the triangular decomposition of UDJ
q (see Remark 2.2(ii)) and the struc-

ture of its PBW-basis (see Remark 2.3(x)) imply the assertion, thanks to Propo-

sition 4.3(i)&(ii).

Proposition 5.2. If ψ|UDr,+,+
q

is injective then:

(i) ψ is injective (that is, UDr
q
∼= UDJ

q , see Remark 4.2(iv));

(ii) UDr,−
q ⊗C(q) UDr,0

q ⊗C(q) UDr,+
q

∼= UDr
q .

Proof. It is enough to consider the following commutative diagram for all N ∈ N
(see Propositions 4.3 and 5.1 and Remarks 3.5(vii)&(viii), 3.7 and 4.2(iii)):

UDr,−,−
q ⊗ UDr,0

q ⊗ UDr,+,+
q

(Eo ◦ t1 ◦ ··· ◦ tn)N //
� _

��

UDr,−
q ⊗ UDr,0

q ⊗ UDr,+
q

µDr

����
ψ(UDr,−,−

q )⊗ ψ(UDr,0
q )⊗ ψ(UDr,+,+

q )
� _

��

UDr
q

ψ

��
UDJ
q

TNλ // UDJ
q

Remark 5.3. We have ψ(UDr,+,+
q ) ⊆ UDJ,+

q . On the other hand ψ(UDr,+
q ) 6⊆

UDJ,+
q . More precisely for all i ∈ I0 and r > 0 we have ψ(X+

i,−r) ∈ ŨDJ,−
q and

ψ(UDr,+
q ) ∩ ŨDJ,−

q,−rδ+αi 6= {0} if d̃i | r.
In particular the Drinfeld triangular decomposition that we aim to prove will

not correspond to the Drinfeld and Jimbo triangular decomposition, but will give

rise to a substantially different decomposition. For a comparison between the two

decompositions see Proposition 9.3.

Lemma 5.4. Let α ∈ Q0,+, r ≥ 0, i ∈ I0 be such that rδ + α ∈ Φre, or (rδ, i) ∈
Φ̂im. Then

(i) Erδ+α ∈ ψ(UDr,+
q ), and if r > 0 then Frδ−αKrδ−α ∈ ψ(UDr,+

q );

(ii) Kα−rδErδ−α ∈ ψ(UDr,−
q ) if r > 0;

(iii) E(rδ,i) ∈ ψ(UDr,0
q ) if r > 0.

Proof. Define

U = {x ∈ UDJ
q | ∀N � 0, T−Nλ (x) ∈ UDJ,+

q , TNλ (x) ∈ ŨDJ,−
q }.

Then:
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(a) U is a T±1λ -stable C(q)-subalgebra of UDJ
q (obvious).

(b) ψ(UDr,+,+
q ) ⊆ U thanks to Remarks 2.3(vi), 3.5(vi) and 5.3.

(c) ψ(UDr,+
q ) ⊆ U thanks to (a), (b) and Remark 3.5(vii).

(d) U = ψ(UDr,+
q ): consider the identifications induced by the product

UDJ
q
∼= ψ(UDr,−

q )⊗ ψ(UDr,0
q )⊗ ψ(UDr,+

q )

∼= ψ(UDr,−
q )⊗ ψ(UDr,0,−

q )⊗ ψ(UDr,0,0
q )⊗ ψ(UDr,0,+

q )⊗ ψ(UDr,+
q )

and note that through these isomorphisms, for every u ∈ UDJ
q there exists

Ñ ∈ Z such that for all N > Ñ ,

T−Nλ (u) ∈ ψ(UDr,−,−
q )⊗ ψ(UDr,0,−

q )⊗ ψ(UDr,0,0
q )⊗ ψ(UDr,0,+

q )⊗ ψ(UDr,+,+
q );

moreover

ψ(UDr,−,−
q )⊗ ψ(UDr,0,−

q ) ⊆ UDJ,−
q , ψ(UDr,0,0

q ) ⊆ UDJ,0
q ,

ψ(UDr,0,+
q )⊗ ψ(UDr,+,+

q ) ⊆ UDJ,+
q ;

hence if u ∈ U the condition T−Nλ (u) ∈ UDJ,+
q for all N � 0 and the triangular

decomposition of UDJ
q imply that u ∈ ψ(UDr,0,+

q )⊗ ψ(UDr,+
q ); but then for all

N � 0,

TNλ (u) ∈ ψ(UDr,0,+
q )⊗ ŨDJ,−

q ,

and again since ψ(UDr,0,+
q ) ⊆ UDJ,+

q , the condition TNλ (u) ∈ ŨDJ,−
q for all

N � 0 and the triangular decomposition of UDJ
q imply that u ∈ ψ(UDr,+

q ),

which implies the claim.

(e) Erδ+α ∈ U thanks to Remark 2.3(vi).

(f) Frδ−αKrδ−α ∈ U thanks to (a) and (e), since Frδ−αKrδ−α is Tλ-conjugate to

any Esδ+α with s ≥ 0 such that 〈λ|α〉 | r + s (see Remark 2.3(vi)).

(d)–(f) imply (i). Applying Ω to (f) we get (ii), while (iii) is a straightforward

consequence of the definitions.

Corollary 5.5. UDJ,+
q ∩ψ(UDr,+

q ) is the C(q)-linear span of the ordered monomials

in the Erδ+α’s with r ≥ 0 and α ∈ Q0,+ such that rδ + α ∈ Φre.

Proof. Let U+ be the C(q)-linear span of the ordered monomials in the Eβr ’s with

r ≤ 0, U− be the C(q)-linear span of the ordered monomials in the Eβr ’s with

r ≥ 1, and U0 be the C(q)-linear span of the monomials in the positive imaginary

root vectors. Then the PBW-basis of UDJ,+
q says that UDJ,+

q
∼= U−⊗U0⊗U+. But

U− ⊗ U0 ⊆ ψ(UDr,−
q )⊗ ψ(UDr,0

q ), U+ ⊆ ψ(UDr,+
q )
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and

ψ(UDr,−
q )⊗ ψ(UDr,0

q )⊗ ψ(UDr,+
q ) ∼= UDJ

q ,

so that UDJ,+
q ∩ ψ(UDr,+

q ) ⊆ U+, which is the assertion, thanks to Lemma 5.4(i).

§6. Integer form

We are reduced to proving that ψ|UDr,+,+
q

: UDr,+,+
q → UDJ,+

q is injective, and we

want to show it through specialization at 1. This requires passing to integer forms

of UDr,+,+
q and UDJ,+

q and to their presentations by generators and relations.

To this end we start with some notation, underlining that in this section we

work with the ring A = C[q](q−1) (the localization of C[q] at (q − 1)).

Notation 6.1. (i) F+ is the A-algebra freely generated by {X+
i,r | i ∈ I0, r ≥ 0};

(ii) I+ is the ideal of F+ defined by the relations (ZX+
+ ), (DR+), (S+) and (U3+)

(see Notation 3.9);

(iii) t′+ : F+ → F+ is the A-endomorphism defined by X+
i,r 7→ o(i)X+

i,r+d̃i
(see

Definitions 3.4(ii)&(iii) and 4.1); we also denote by t̄′+ the A-endomorphism

induced by t′+ on F+/I+.

Remark 6.2. (i) F+, I+ and consequently also F+/I+ are all Q-graded where

the degree of X+
i,r is αi + rδ;

(ii) the A-modules (F+)α and (F+/I+)α (α ∈ Q) are finitely generated: they are

generated over A by{
X+
i1,m1

· . . . ·X+
ih,mh

∣∣∣ ir ∈ I0, mr ≥ 0 ∀r = 1, . . . , h,

h∑
r=1

mrδ + αir = α
}

;

(iii) the natural map f+ : F+/I+ → UDr
q is well defined (see Definition 3.1 and

Remark 3.10(i));

(iv) f+ ◦ t̄
′
+ = Eo ◦ t−11 ◦ . . . ◦ t−1n ◦ f+.

Remark 6.3. Of course C(q) ⊗A f+(F+/I+)
∼=→ UDr,+,+

q and f+(F+/I+) is an

integer form of UDr,+,+
q : indeed, f+(F+/I+) is a direct sum of finitely generated

A-submodules of a C(q)-vector space, hence it is free over A.

In particular a C(q)-linear map defined on UDr,+,+
q is injective if and only if

its restriction to f+(F+/I+) is injective.

Corollary 6.4. If ψ ◦ f+ is injective then:

(i) f+ is injective, hence F+/I+ is an integer form of UDr,+,+
q (see Remark 6.3);

(ii) ψ|f+(F+/I+) is injective (then so are ψ|UDr,+,+
q

and ψ, see Proposition 5.2(i)

and Remark 6.3).
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Remark 6.5. The image of ψ ◦ f+ is contained in UDJ,+
A . Indeed, ψ(X+

i,r) ∈ UDJ
A ∩

UDJ,+
q = UDJ,+

A if r ≥ 0 (see Definition 4.1 and Remarks 2.3(iii) and 2.4(iii)).

Notation 6.6. Set ψ̃ = ψ ◦ f+ : F+/I+ → UDJ,+
A .

Remark 6.7. ψ̃ is obviously homogeneous, that is, ψ̃ =
⊕

α∈Q+
ψ̃α with ψ̃α =

ψ̃|(F+/I+)α and consequently ψ̃1 =
⊕

α∈Q+
(ψ̃α)1 where (ψ̃α)1 is the specialization

at 1 of ψ̃α.

Since (F+/I+)α is finitely generated over A and UDJ,+
A,α is free over A, we infer

that for each α ∈ Q+, ψ̃α is injective if (ψ̃α)1 is injective (see Proposition 0.1).

Thus ψ̃ is injective if ψ̃1 is injective.

§7. Specialization at q = 1

We are reduced to studying the specialization at 1 of ψ̃. To this end it is important

that we first understand the structure of the specialization at 1 of F+/I+ and

of UDJ,+
A . Since, as recalled in Remark 7.1 below, the specialization at 1 of UDJ,+

A
is well known, we concentrate on the description of the specialization of F+/I+.

Of course a first presentation by generators and relations of the specialization

at 1 of F+/I+ is immediate, by just specializing at 1 the defining relations of

F+/I+ (see Proposition 7.2). The present section is devoted to simplifying these

specialized relations.

Remark 7.1. Thanks to Remark 2.4(iv), the specialization at 1 of UDJ,+
A is the

enveloping algebra of the Lie algebra generated by {ei | i ∈ I} with relations

(ad ei)
1−aij (ej) = 0 when i 6= j (Serre relations), which is well known to be the

positive part of the Kac–Moody algebra ĝ = ĝ(X
(k)
ñ ) and also of the loop algebra

(g⊗C C[t±1])χ ⊇ gχ = g0 (see [K]).

By the very definition of F+ and I+ we have

Proposition 7.2. The specialization at 1 of F+/I+ is the (associative) algebra

generated by {x+i,r | i ∈ I0, r ≥ 0} with the following relations (d̃r+):

(zx) x+i,r = 0 (d̃i - r),
(xd) [x+

i,r+d̃ij
, x+j,s] + [x+

j,s+d̃ij
, x+i,r] = 0 ((i, r), (j, s) ∈ IZ, aij < 0),

(x1)
∑
σ∈S2

σ.[x+
i,r1+d̃i

, x+i,r2 ] = 0 ((r1, r2) ∈ N2, (X
(k)
ñ , di) 6= (A

(2)
2n , 1)),

(x2)
∑
σ∈S2

σ.[x+i,r1+2, x
+
i,r2

] = 0 ((r1, r2) ∈ N2, (X
(k)
ñ , di) = (A

(2)
2n , 1)),
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(x3)
∑
σ∈S3

σ.[[x+i,r1+1, x
+
i,r2

], x+i,r3 ] = 0

((r1, r2, r3),∈ N3, (X
(k)
ñ , di) = (A

(2)
2n , 1)),

(t2)
∑
σ∈S2

σ.[[x+j,s, x
+
i,r1+1], x+i,r2 ] = 0,

(i, j ∈ I0, aij = −2, k = 2, X
(k)
ñ 6= A

(2)
2n , (r1, r2) ∈ N2, s ∈ Z),

(s2)
∑
σ∈S2

σ.
(
[[x+j,s, x

+
i,r1+1], x+i,r2 ] + [[x+j,s, x

+
i,r2

], x+i,r1+1]) = 0

(i, j ∈ I0, aij = −2, X
(k)
ñ = A

(2)
2n , (r1, r2) ∈ N2, s ∈ Z),

(t3)
∑
σ∈S2

σ.(2[[x+j,s, x
+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1+1], x+i,r2+1]) = 0

(i, j ∈ I0, aij = −3, k = 3, (r1, r2) ∈ N2, s ∈ Z),

(u3)
∑
σ∈S3

σ.[[[x+j,s, x
+
i,r1+1], x+i,r2 ], x+i,r3 ] = 0

(i, j ∈ I0, aij = −3, k = 3, (r1, r2, r3) ∈ N3, s ∈ Z),

(s)
∑

σ∈S1−aij

σ.[. . . [[x+j,s, x
+
i,r1

], x+i,r2 ], . . . , x+i,r1−aij
] = 0

(i 6= j ∈ I0, r ∈ N1−aij , s ∈ Z).

Proof. All the relations (d̃r+) are the immediate specialization at 1 of the relations

(ZX+
+ , DR+, U3+, S+), recalling Notation 1.5 and Remark 3.10(ii), and noticing

that relations (S2+) specialize to

0 =
∑
σ∈S2

(
2[[x+j,s, x

+
i,r1+1], x+i,r2 ] + [[x+i,r1+1, x

+
i,r2

], x+j,s]
)

=
∑
σ∈S2

(
2[[x+j,s, x

+
i,r1+1], x+i,r2 ] + [x+i,r1+1, [x

+
i,r2

, x+j,s]]− [x+i,r2 , [x
+
i,r1+1, x

+
j,s]]
)

=
∑
σ∈S2

(
[[x+j,s, x

+
i,r1+1], x+i,r2 ] + [x+i,r1+1, [x

+
i,r2

, x+j,s]]
)
,

which is (s2).

Remark 7.3. In the relations (d̃r+) (see Proposition 7.2) all the products are

expressed in terms of brackets; hence the associative algebra generated by {x+i,r |
i ∈ I0, r ≥ 0} with the relations (d̃r+) is the enveloping algebra of the Lie algebra

generated by {x+i,r | i ∈ I0, r ≥ 0} with the relations (d̃r+). This Lie algebra plays

a central role in the following.

Definition 7.4. L+ is the Lie algebra generated by {x+i,r | i ∈ I0, r ≥ 0} with the

relations (d̃r+).
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Remark 7.5. The specialization at 1 of F+/I+ is the enveloping algebra U(L+)

of the Lie algebra L+ (see Proposition 7.2, Remark 7.3 and Definition 7.4). In

particular ψ̃1 is a homomorphism of associative algebras from U(L+) to U(ĝ+)

(see Remark 7.1). The next step is to prove that ψ̃1(L+) ⊆ ĝ+, which implies that

ψ̃1|L+ is a Lie algebra homomorphism from L+ to ĝ+ and ψ̃1 = U(ψ̃1|L+).

Remark 7.6. We have ψ̃1(L+) ⊆ (g+ ⊗C C[t])χ ⊆ ĝ+; in particular, thanks to

Remark 7.5 we deduce that ψ̃1 is injective if and only if ψ̃1|L+
is injective.

Proof. Since ψ̃ ◦ t̄′+ = T−1λ ◦ ψ̃ (see Remarks 4.2(iii) and 6.2(iv)), the claim follows

from the fact that ψ̃(x+i,0) = ei ∈ g0,+ ⊆ ĝ, from Remarks 2.4(viii) and 3.5(ix),

and from the fact that ĝrδ+αi ⊆ (g+ ⊗ C[t])χ for i ∈ I0 and r ≥ 0.

Proposition 7.7. ψ̃1|L+
: L+ → (g+ ⊗C C[t])χ is surjective.

Proof. We have

(g+ ⊗C C[t])χ =
⊕
r∈N

(g
[r]
+ ⊗C Ctr) ⊆

⊕
r∈N

(g[r] ⊗C Ctr) = (g⊗C C[t])χ

where g[r] = g
[r]
− ⊕ h[r] ⊕ g

[r]
+ is well known to be a simple finite-dimensional

g0 = g[0]-module, hence a lowest weight cyclic g
[0]
+ = g0,+-module (see [K]). Then

g
[r]
+ (=

⊕
α∈Q0,+\{0}(g

[r])α) is generated as a g0,+-module by⊕
i∈I0

(g[r])αi =
⊕
i∈I0

(g
[r]
+ )αi

(
=
⊕
i∈I0:
d̃i|r

(g
[r]
+ )αi since (g

[r]
+ )αi = (0) if d̃i - r

)
,

that is, (g+ ⊗C C[t])χ is generated as a g0,+-module by
⊕

i∈I0,r∈N:
d̃i|r

(g
[r]
+ )αi ⊗ Ctr

or equivalently by {ψ̃1(x+i,r) | i ∈ I0, r ∈ N such that d̃i | r} since for all i ∈ I0
and r ∈ N, ψ̃1(x+

i,d̃ir
) = ±T̃−rλ (ei) 6= 0 (see Remarks 2.4(viii), 3.5(ix), 4.2(iii) and

6.2(iv)), and (g
[d̃ir]
+ )αi is one-dimensional.

This forces {ψ̃1(x+i,r) | i ∈ I0, r ∈ N}, which obviously contains {ei =

ψ̃1(x+i,0) | i ∈ I0}, to generate (g+ ⊗C C[t])χ also as a Lie algebra; the assertion

follows.

Corollary 7.8. (i) Erδ+α ∈ ψ(UDr,+,+
q ) if r ≥ 0 and α ∈ Q0,+ \ {0};

(ii) UDJ,+
q ∩ ψ(UDr,+

q ) = ψ(UDr,+,+
q ).

Proof. (i) follows from (ii) by Corollary 5.5 (indeed, (i) and (ii) are equivalent

claims because ψ(UDr,+,+
q ) ⊆ UDJ,+

q ∩ ψ(UDr,+
q )). So it is enough to compare the

dimensions of the homogeneous components of UDJ,+
q ∩ψ(UDr,+

q ) and ψ(UDr,+,+
q ):

for all α ∈ Q,
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dimC(q) UDJ,+
q,α ∩ ψ(UDr,+

q ) ≥ dimC(q) ψ(UDr,+,+
q,α ) = rkA ψ̃(F+/I+)α

= dimC ψ̃1(U(L+)α) = dimC U((g+ ⊗C C[t])χ)α = dimC(q) UDJ,+
q,α ∩ ψ(UDr,+

q )

where the last two equalities follow respectively from Proposition 7.7 and from the

comparison of the C(q)-basis of UDJ,+
q ∩ ψ(UDr,+

q ) described in Corollary 5.5 with

the PBW-basis of U((g+ ⊗C C[t])χ).

Before proving, in §8, that the Lie-algebra homomorphism ψ̃1|L+
is actually

injective, in the remaining part of this section we simplify the relations defining L+

(see the following computations, summarized in Corollary 7.29).

Remark 7.9. Relations (xd) are equivalent to saying that if aij < 0, d̃i | r and

d̃j | s (i 6= j fixed) then [x+i,r, x
+
j,s] depends only on r+ s. Together with (s) in case

aij = 0 they imply

(xd) [x+i,r, x
+
j,s] depends only on r + s (i 6= j ∈ I0 fixed, d̃i | r, d̃j | s).

Lemma 7.10. Relations (x1) and (x2) are equivalent to

(x1,2) [x+i,r, x
+
i,s]=

{
0 if (X

(k)
ñ , di) 6= (A

(2)
2n , 1) or 2 | r + s,

(−1)h[x+i,s+h+1, x
+
i,s+h] if r = s+ 2h+ 1;

in particular (−1)s[x+i,r, x
+
i,s] depends only on r + s.

Proof. That (x1,2) implies (x1) and (x2) is obvious. Conversely:

Case (X
(k)
ñ , di) 6= (A

(2)
2n , 1): of course we can suppose r ≥ s and proceed by

induction on r− s, the cases r = s and r = s+ d̃i being obvious; if r > s+ d̃i then

[x+i,r, x
+
i,s] = −[x+

i,s+d̃i
, x+
i,r−d̃i

] = [x+
i,r−d̃i

, x+
i,s+d̃i

] = 0 (r − d̃i ≥ s+ d̃i).

Case (X
(k)
ñ , di) = (A

(2)
2n , 1): again we can suppose r ≥ s and proceed by

induction on r − s, the cases r − s = 0, 1, 2 being obvious:

r − s = 3 ⇒ [x+i,r, x
+
i,s] = [x+i,s+3, x

+
i,s] = −[x+i,s+2, x

+
i,s+1];

r − s > 3 ⇒ [x+i,r, x
+
i,s] = −[x+i,s+2, x

+
i,r−2] = [x+i,r−2, x

+
i,s+2],

from which the claim follows by the inductive hypothesis, since r − 2 ≥ s+ 2.

Corollary 7.11. If (X
(k)
ñ , di) 6= (A

(2)
2n , 1) or 2 | r + s we have [[a, x+i,r], x

+
i,s] =

[[a, x+i,s], x
+
i,r] for all a ∈ L+.

Proof. Indeed, [[a, x+i,r], x
+
i,s]− [[a, x+i,s], x

+
i,r] = [a, [x+i,r, x

+
i,s]] = 0 thanks to Lemma

7.10.

Lemma 7.12. If (X
(k)
ñ , di) = (A

(2)
2n , 1) relations (x1,2), (x3) imply

(x3) [[x+i,r1 , x
+
i,r2

], x+i,r3 ] = 0 ((r1, r2, r3) ∈ N3).
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Proof. Thanks to Lemma 7.10 it is enough to prove that

[[x+i,r+1, x
+
i,r], x

+
i,s] = 0 ∀r, s ∈ N.

Recall that by (x3),

[[x+i,r+1, x
+
i,r], x

+
i,s] + [[x+i,r+1, x

+
i,s], x

+
i,r] + [[x+i,s+1, x

+
i,r], x

+
i,r] = 0;

if r + s+ 1 is even then, by (x1,2),

[x+i,r+1, x
+
i,s] = 0 = [x+i,s+1, x

+
i,r],

so that

[[x+i,r+1, x
+
i,r], x

+
i,s] = 0;

if r + s is even then by Corollary 7.11,

[[x+i,r+1, x
+
i,r], x

+
i,s] = [[x+i,r+1, x

+
i,s], x

+
i,r];

moreover by (x1,2), [x+i,s+1, x
+
i,r] = ±[x+i,r+1, x

+
i,s], so that

0 = [[x+i,r+1, x
+
i,r], x

+
i,s] + [[x+i,r+1, x

+
i,s], x

+
i,r] + [[x+i,s+1, x

+
i,r], x

+
i,r]

= (2± 1))[[x+i,r+1, x
+
i,s], x

+
i,r],

which is [[x+i,r+1, x
+
i,r], x

+
i,s] = 0.

Proposition 7.13. Relations (x1), (x2), (x3) are equivalent to relations (x1,2),

(x3) (it is obvious that (x3) implies (x3)).

Lemma 7.14. Let i, j ∈ I0 and r1, r2, s ∈ Z be such that aij < 0, d̃i | r1, r2 and

d̃j | s. Then:

(i) if d̃i ≥ d̃j and (X
(k)
ñ , di) 6= (A

(2)
2n , 1) then

[[x+j,s, x
+
i,r1

], x+i,r2 ] = [[x+j,s+r1+r2 , x
+
i,0], x+i,0];

(ii) if 1 = d̃i < d̃j = k or (X
(k)
ñ , di) = (A

(2)
2n , 1), and k | r2 − ε2 (0 ≤ ε2 < k) then

[[x+j,s, x
+
i,r1

], x+i,r2 ] depends only on (s+ r1 + r2, ε2).

Proof. (i) is an immediate consequence of relations (xd), (x1,2) and of Corollary

7.11:

[[x+j,s, x
+
i,r1

], x+i,r2 ] = [[x+j,s+r1 , x
+
i,0], x+i,r2 ] = [[x+j,s+r1 , x

+
i,r2

], x+i,0]

= [[x+j,s+r1+r2 , x
+
i,0], x+i,0];
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(ii) is similar: if d̃i < d̃j or 2 | r1 + r2, then

[[x+j,s, x
+
i,r1

], x+i,r2 ] = [[x+j,s, x
+
i,r2

], x+i,r1 ] = [[x+j,s+r2−ε2 , x
+
i,ε2

], x+i,r1 ]

= [[x+j,s+r2−ε2 , x
+
i,r1

], x+i,ε2 ];

if (X
(k)
ñ , di) = (A

(2)
2n , 1), and s+ r1 > 0 or 2 | r2, then

[[x+j,s, x
+
i,r1

], x+i,r2 ] = [[x+j,s+r1−ε2 , x
+
i,ε2

], x+i,r2 ] = [[x+j,s+r1−ε2 , x
+
i,r2

], x+i,ε2 ];

in both cases [[x+j,s, x
+
i,r1

], x+i,r2 ] depends only on (s + r1 + r2 − ε2, ε2), that is, on

(s+ r1 + r2, ε2); finally if (X
(k)
ñ , di) = (A

(2)
2n , 1) and s = r1 = 0, r2 = 2r+ 1 we can

suppose r > 0 and we have

[[x+j,0, x
+
i,0], x+i,2r+1] = [[x+j,0, x

+
i,2r+1], x+i,0]+[x+j,0, [x

+
i,0, x

+
i,2r+1]]

= [[x+j,0, x
+
i,2r+1], x+i,0]+[x+j,0, [x

+
i,2, x

+
i,2r−1]]

= [[x+j,0, x
+
i,2r+1], x+i,0]+[[x+j,0, x

+
i,2], x+i,2r−1]−[[x+j,0, x

+
i,2r−1], x+i,2]

= [[x+j,0, x
+
i,2], x+i,2r−1],

and the claim follows from the previous cases.

Proposition 7.15. Relations (xd), (x1,2) and (t2) are equivalent to relations (xd),

(x1,2), (t′2) and (t′′2), where

[[x+j,s, x
+
i,1], x+i,0] = 0,(t′2)

[[x+j,s, x
+
i,1], x+i,1] = −[[x+j,s+2, x

+
i,0], x+i,0](t′′2)

(k = 2, aij = −2, X
(k)
ñ 6= A

(2)
2n ).

Proof. Indeed, Corollary 7.11 and Remark 7.14 imply that∑
σ∈S2

σ.[[x+j,s, x
+
i,r1+1], x+i,r2 ] = [[x+j,s, x

+
i,r1+1], x+i,r2 ] + [[x+j,s, x

+
i,r1

], x+i,r2+1]

=

{
[[x+j,s+r1+r2 , x

+
i,1], x+i,0] + [[x+j,s+r1+r2 , x

+
i,0], x+i,1] if 2 | r1 + r2,

[[x+j,s+r1+r2−1, x
+
i,1], x+i,1] + [[x+j,s+r1+r2+1, x

+
i,0], x+i,0] otherwise;

but by Corollary 7.11 we have

[[x+j,s+r1+r2 , x
+
i,1], x+i,0] + [[x+j,s+r1+r2 , x

+
i,0], x+i,1] = 2[[x+j,s+r1+r2 , x

+
i,1], x+i,0].

Proposition 7.16. Relations (xd), (x1,2) and (s2) are equivalent to relations

(xd), (x1,2) and (s2), where

(s2) [[x+j,s, x
+
i,0], x+i,1] + [[x+j,s+1, x

+
i,0], x+i,0] = 0 (aij = −2, X

(k)
ñ = A

(2)
2n ).
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Proof. Indeed, Lemma 7.14(ii) implies that∑
σ∈S2

σ.
(
[[x+j,s, x

+
i,r1+1], x+i,r2 ] + [[x+j,s, x

+
i,r2

], x+i,r1+1]
)

= 2
(
[[x+j,s+r1+r2 , x

+
i,0], x+i,1] + [[x+j,s+r1+r2+1, x

+
i,0], x+i,0]

)
.

Lemma 7.17. Relations (xd), (x1,2) and (t3) are equivalent to relations (xd),

(x1,2) and (t̃3), where

(t̃3) [[x+j,s, x
+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1+1], x+i,r2+1] + [[x+j,s, x

+
i,r1

], x+i,r2+2] = 0

(k = 3, aij = −3, s, r1, r2, r3 ∈ N).

Proof. Indeed, by Corollary 7.11,∑
σ∈S2

σ.
(
2[[x+j,s, x

+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1+1], x+i,r2+1]

)
= 2
(
[[x+j,s, x

+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1

], x+i,r2+2] + [[x+j,s, x
+
i,r1+1], x+i,r2+1]

)
.

Notation 7.18. Let us define the following relations:

[[x+j,s, x
+
i,1], x+i,1] = −2[[x+j,s, x

+
i,2], x+i,0] (k = 3, aij = −3),(t′3)

2[[x+j,s, x
+
i,2], x+i,1] = −[[x+j,s+3, x

+
i,0], x+i,0] (k = 3, aij = −3),(t′′3)

[[x+j,s, x
+
i,2], x+i,2] = −2[[x+j,s+3, x

+
i,1], x+i,0] (k = 3, aij = −3).(t′′′3 )

Remark 7.19. Relations (xd), (x1,2), (t̃3) imply relations (t′3)–(t′′′3 ).

Proof. Using relations (xd) and (x1,2) we find of course that (t′3), (t′′3) and (t′′′3 )

are (t̃3) with r1 + r2 = 0, 1, 2 respectively.

Proposition 7.20. Relations (xd), (x1,2), (t′3), (t′′3), (t′′′3 ) are equivalent to rela-

tions (xd), (x1,2), (t3).

Proof. We prove by induction on r1 + r2 that relations (xd), (x1,2), (t′3), (t′′3), (t′′′3 )

imply relations (t̃3), the cases 0 ≤ r1 + r2 < 3 being obvious (see the proof of

Remark 7.19). If r1 + r2 ≥ 3 use induction on r2: if r2 = 0 then r1 ≥ 3 and thanks

to (xd) we have

[[x+j,s, x
+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1+1], x+i,r2+1] + [[x+j,s, x

+
i,r1

], x+i,r2+2]

= [[x+j,s+3, x
+
i,r1−1], x+i,0] + [[x+j,s+3, x

+
i,r1−2], x+i,1] + [[x+j,s+3, x

+
i,r1−3], x+i,2],

which is zero by the inductive hypothesis (r1 − 3 + 0 < r1 + r2); if r2 > 0 then,

thanks to Lemma 7.14(iii), [[x+j,s, x
+
i,r1

], x+i,r2+2] = [[x+j,s, x
+
i,r1+3], x+i,r2−1], so that
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[[x+j,s, x
+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1+1], x+i,r2+1] + [[x+j,s, x

+
i,r1

], x+i,r2+2]

= [[x+j,s, x
+
i,r1+3], x+i,r2−1] + [[x+j,s, x

+
i,r1+2], x+i,r2 ] + [[x+j,s, x

+
i,r1+1], x+i,r2+1],

which is zero because r2 − 1 < r2.

Remark 7.21. If k = 3, aij = −3, relations (xd), (x1,2), (t′3), (t′′3), (t′′′3 ) imply

that if s > 0 then

[[[x+j,s, x
+
i,1], x+i,0], x+i,0] = 0, [[[x+j,s, x

+
i,2], x+i,0], x+i,0] = 0.

Proof. If s > 0 then s ≥ 3, so relations (t′′′3 ), (t′3), (t′′3) imply that

2[[[x+j,s, x
+
i,1], x+i,0], x+i,0] + [[[x+j,s−3, x

+
i,2], x+i,2], x+i,0] = 0,

2[[[x+j,s−3, x
+
i,2], x+i,0], x+i,2] + [[[x+j,s−3, x

+
i,1], x+i,1], x+i,2] = 0,

2[[[x+j,s−3, x
+
i,2], x+i,1], x+i,1] + [[[x+j,s, x

+
i,0], x+i,0], x+i,1] = 0,

from which, thanks to Corollary 7.11,

9[[[x+j,s, x
+
i,1], x+i,0], x+i,0] = 0.

Analogously

2[[[x+j,s, x
+
i,2], x+i,0], x+i,0] + [[[x+j,s, x

+
i,1], x+i,1], x+i,0] = 0,

2[[[x+j,s, x
+
i,1], x+i,0], x+i,1] + [[[x+j,s−3, x

+
i,2], x+i,2], x+i,1] = 0,

2[[[x+j,s−3, x
+
i,2], x+i,1], x+i,2] + [[[x+j,s, x

+
i,0], x+i,0], x+i,2] = 0,

which yields [[[x+j,s, x
+
i,2], x+i,0], x+i,0] = 0.

Notation 7.22. Let us define the following relations:

[[[x+j,0, x
+
i,1], x+i,0], x+i,0] = 0 (k = 3, aij = −3),(u′3)

[[[x+j,0, x
+
i,2], x+i,0], x+i,0] = 0 (k = 3, aij = −3).(u′′3)

Remark 7.23. Relations (x1,2), (t′3) and (u3) imply relations (u′3) and (u′′3).

Proof. (u′3) is (u3) with s = r1 = r2 = r3 = 0.

[(t′3), x+i,0] with s = 0 and (u3) with (s, r1, r2, r3) = (0, 1, 0, 0) imply (u′′3),

using Corollary 7.11.

Proposition 7.24. Relations (xd), (x1,2), (t′3), (t′′3), (t′′′3 ), (u′3), (u′′3) imply rela-

tions (u3) (hence are equivalent to relations (xd), (x1,2), (t3), (u3)).

Proof. The hypotheses imply that [[[x+j,s, x
+
i,r1

], x+i,r2 ], x+i,r3 ] is a rational multiple

of [[[x+j,s, x
+
i,r1+r2+r3

], x+i,0], x+i,0] (by (xd), (x1,2), (t′3), (t′′3), (t′′′3 )), which is zero if
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3 - r1 + r2 + r3 (by (xd), (u′3), (u′′3) and Lemma 7.21). In particular (u3) holds

if 3 - r1 + r2 + r3 + 1. Otherwise we can suppose 0 ≤ r1, r2, r3 < 3, r1 = r2,

r3 + 1 ≡ r1 (mod 3) (thanks to (xd) and (x1,2)), or equivalently that (r1, r2, r3) =

(1, 1, 0), (2, 0, 0), (2, 2, 1). In these cases (u3) corresponds to [(t′3), x+i,1], [(t′′3), x+i,0],

and [(t′′′3 ), x+i,2] respectively.

Notation 7.25. Let us define the following relations:

(serre) (adx+i,0)1−aij (x+j,s) = 0 (i 6= j).

Remark 7.26. Relation (s) implies relation (serre).

Proof. The claim is obvious since (serre) is (s) with ru = 0 for all u = 1, . . . , 1−aij .

Proposition 7.27. Relations (xd), (x1,2), (x3), (t′2), (t′′2), (s2), (t′3), (t′′3), (t′′′3 ),

(u′3), (u′′3), (serre) imply that [[. . . [x+j,s, x
+
i,r1

], . . . ], x+i,r1−aij
] = 0 for all s ∈ Z and

r ∈ Z1−aij ; in particular they imply relation (s).

Proof. The relations, Corollary 7.11 and Lemma 7.14 imply that

[[. . . [x+j,s, x
+
i,r1

], . . . ], x+i,r1−aij
]

is a rational multiple of

[[. . . [[x+j,s, x
+
i,r1+···+r1−aij

], x+i,0], . . . ], x+i,0]

=

(− adx+i,0)1−aij (x+j,s+r1+···+r1−aij
) if d̃j | r1 + · · ·+ r1−aij ,

0 otherwise

(hence zero by (serre)) apart from the case A
(2)
2n , aij = −2, r3 odd, when

[[[x+j,s, x
+
i,r1

], x+i,r2 ], x+i,r3 ] = (−1)r2 [[[x+j,s+r1+r2 , x
+
i,0], x+i,0], x+i,r3 ].

But by the above considerations

[[[x+j,s, x
+
i,0], x+i,0], x+i,r] = [[x+j,s, x

+
i,0], [x+i,0, x

+
i,r]] + [[[x+j,s, x

+
i,0], x+i,r], x

+
i,0]

= [x+j,s, [x
+
i,0, [x

+
i,0, x

+
i,r]]] + [[x+j,s, [x

+
i,0, x

+
i,r]], x

+
i,0]

= [[[x+j,s, x
+
i,0], x+i,r], x

+
i,0]− [[[x+j,s, x

+
i,r], x

+
i,0], x+i,0] = 0.

Thus [[. . . [x+j,s, x
+
i,r1

], . . . ], x+i,r1−aij
] = 0 always.

Remark 7.28. It is worth remarking that in the cases k > 1, aij = −k relations

(zx), (xd), (x1,2), (x3), (t′2), (t′′2), (s2), (t′3), (t′′3), (t′′′3 ) imply (serre) with s ≥ k

(that is, s > 0 if X
(k)
ñ 6= A

(2)
2n and s > 1 if X

(k)
ñ = A

(2)
2n ). Compare this observation

with Remark 3.10(iii)&(iv).
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Proof. Suppose k = 2, X
(k)
ñ 6= A

(2)
2n . If s > 0 then s ≥ 2, hence

[[[x+j,s, x
+
i,0], x+i,0], x+i,0] = −[[[x+j,s−2, x

+
i,1], x+i,1], x+i,0]

= −[[[x+j,s−2, x
+
i,1], x+i,0], x+i,1] = 0.

If X
(k)
ñ = A

(2)
2n let r < s; then

[[[x+j,s, x
+
i,0], x+i,0], x+i,0] = −[[[x+j,s−r−1, x

+
i,r], x

+
i,1], x+i,0]

= −[[[x+j,s−r−1, x
+
i,r], x

+
i,0], x+i,1]− [[x+j,s−r−1, x

+
i,r], [x

+
i,1, x

+
i,0]]

= −[[[x+j,s−1, x
+
i,0], x+i,0], x+i,1]− [[x+j,s−r−1, [x

+
i,1, x

+
i,0]], x+i,r]

= −[[[x+j,s−1, x
+
i,0], x+i,0], x+i,1]− [[[x+j,s−r−1, x

+
i,1], x+i,0], x+i,r]

+ [[[x+j,s−r−1, x
+
i,0], x+i,1], x+i,r]

= −[[[x+j,s−1, x
+
i,0], x+i,0], x+i,1]− 2[[[x+j,s−r, x

+
i,0], x+i,0], x+i,r];

in particular if s ≥ 2 we have (choosing r = 0, 1)

3[[[x+j,s, x
+
i,0], x+i,0], x+i,0] + [[[x+j,s−1, x

+
i,0], x+i,0], x+i,1] = 0,

[[[x+j,s, x
+
i,0], x+i,0], x+i,0] + 3[[[x+j,s−1, x

+
i,0], x+i,0], x+i,1] = 0,

from which the claim follows.

Now suppose k = 3. Then s > 0 implies s ≥ 3, hence

[[[[x+j,s, x
+
i,0], x+i,0], x+i,0], x+i,0] = −2[[[[x+j,s−3, x

+
i,2], x+i,1], x+i,0], x+i,0]

= −2[[[[x+j,s−3, x
+
i,2], x+i,0], x+i,0], x+i,1] = 0.

Corollary 7.29. L+ is the Lie algebra generated by {x+i,r | i ∈ I0, r ≥ 0} with re-

lations (zx), (xd), (x1,2), (x3), (t′2), (t′′2), (s2), (t′3), (t′′3), (t′′′3 ), (u′3), (u′′3), (serre).

§8. Affine Kac–Moody case

This section is devoted to the study of the Lie algebra L+ (see Definition 7.4) and

of its relation, through ψ̃1 (see Remarks 7.5 and 7.6 and Proposition 7.7), with

the Kac–Moody algebra ĝ (see Corollary 8.21).

Proposition 7.7 and the structure of the root system of ĝ (see Remark 1.2)

imply that in order to prove that ψ̃1|L+ is injective it is enough to show that for

all α ∈ Q0,+ \ {0} and r ∈ N,

dimC (L+)α+rδ ≤ dimC ĝα+rδ =

{
1 if α+ rδ ∈ Φre

+ ,

0 otherwise.

Notice that the results of §7 imply the following:
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Proposition 8.1. If i ∈ I0 and r ∈ N then:

dim (L+)αi+rδ ≤

{
1 if d̃i | r,
0 otherwise,

(D1)

dim (L+)2αi+rδ ≤

{
1 if (X

(k)
ñ , di) = (A

(2)
2n , 1) and 2 - r,

0 otherwise,
(D2)

dim (L+)hαi+rδ = 0 if h > 2.(D3)

Proof. (L+)αi+rδ = 〈x+i,r〉 for all r ∈ N and, for all h > 1 and r ∈ N,

(L+)hαi+rδ = 〈[(L+)(h−1)αi+r1δ, x
+
i,r2

] | r1 + r2 = r〉;

in particular:

(i) (L+)hαi+rδ = {0} for all r ∈ N implies Lh̃αi+rδ = {0} for all r ∈ N and h̃ ≥ h;

(ii) (L+)hαi+rδ = {0} for all h > 0, i ∈ I0 and r ∈ N such that d̃i - r; in particular

(D1) holds;

(iii) (D2) follows from Lemma 7.10;

(iv) (D3) follows from Lemma 7.12.

In order to generalize this result to all the roots we embed L+ into a g0-

module L; this structure provides the symmetries that allow one to easily determine

the needed dimensions of the homogeneous components of L+.

Definition 8.2. (i) L0 is the abelian Lie algebra generated by {hi,r | i ∈ I0,

r ∈ N} with relations hi,r = 0 if d̃i - r (hence {hi,r | i ∈ I0, d̃i | r ∈ N} is a

basis of L0);

(ii) L− = (L+)op;

(iii) for all i ∈ I0 and r ∈ N, x−i,r denotes −x+i,r as an element of L−;

(iv) L = L− ⊕ L0 ⊕ L+;

(v) σ : L → L is the linear map defined by L = L− ⊕ L0 ⊕ L+ 3 (y, h, x) 7→
(x, h, y) ∈ L− ⊕ L0 ⊕ L+ = L (in particular σ(hi,r) = hi,r, σ(x±i,r) = −x∓i,r).

Remark 8.3. (i) L0 = Lop
0 as Lie algebras (since L0 is abelian);

(ii) σ|L+
: L+ → L−, σ|L− : L− → L+ and σ|L0

= idL0
: L0 → L0 are anti-

isomorphisms of Lie algebras.

Remark 8.4. (i) h0 3 hi 7→ hi,0 ∈ L0 defines a homomorphism of Lie algebras;

(ii) g0,+ 3 ei 7→ x+i,0 ∈ L+ defines a homomorphism of Lie algebras, hence it

induces an action of g0,+ on L+ (ei 7→ adL+
x+i,0), and adL+

x+i,0 is locally

nilpotent;
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(iii) g0,− 3 fi 7→ x−i,0 ∈ L− defines a homomorphism of Lie algebras, hence it

induces an action of g0,− on L− (fi 7→ adL− x
−
i,0), and adL− x

−
i,0 is locally

nilpotent.

Proposition 8.5.

hi,r.x
+
j,s = Bijrx

+
j,r+s with Bijr =


0 if d̃i,j - r,
2(2− (−1)r) if (X

(k)
ñ , di, dj) = (A

(2)
2n , 1, 1),

aij otherwise,

defines a Lie algebra homomorphism D+ : L0 → Der(L+). Then L0 ⊕ L+ =

L0 nD+ L+ is endowed with a Lie algebra structure (semidirect product of L0

and L+). Of course (L0 nD+
L+)op = L− ⊕ L0 is a Lie algebra.

Proof. It is obvious that for all i ∈ I0 and r ∈ N the ideal generated by the

relations (d̃r+) is stable under the derivation x+j,s 7→ Bijrx
+
j,r+s (see also [Da1]),

hence hi,r. defines a derivation of L+; it is also immediate to see that hi,r. = 0

if d̃i - r and that hi,r.hj,s. = hj,s.hi,r., hence the map hi,r 7→ hi,r. induces a Lie

algebra homomorphism D+ : L0 → Der(L+).

Remark 8.6. (i) σ|L0⊕L+ : L0 ⊕ L+ → L− ⊕ L0 and σ|L−⊕L0 : L− ⊕ L0 →
L0 ⊕ L+ are anti-isomorphisms of Lie algebras;

(ii) σ ◦ (adL0⊕L+
a) ◦σ|L−⊕L0

= −(adL−⊕L0
σ(a))|L−⊕L0

for all a ∈ L0 ⊕ L+;

(iii) h0 ⊕ g0,+ → L0 ⊕ L+ and g0,− ⊕ h0 → L− ⊕ L0 are homomorphisms of Lie

algebras (indeed Bij0 = aij); in particular they induce actions of h0⊕g0,+ on

L0⊕L+ (hi 7→ adL0⊕L+ hi,0, ei 7→ adL0⊕L+ x
+
i,0) and of g0,−⊕ h0 on L−⊕L0

(fi 7→ adL−⊕L0
x−i,0, hi 7→ adL−⊕L0

hi,0);

(iv) for all i ∈ I0, adL0⊕L+
x+i,0|L0

maps L0 in L+ (L+ is an ideal of L0 ⊕ L+),

hence adL0⊕L+
x+i,0 is locally nilpotent, since it is locally nilpotent on L+ (see

Remark 8.4(ii)); analogously adL−⊕L0 x
−
i,0 is locally nilpotent;

(v) for all h ∈ L0,

adL0⊕L+ h|L0 = 0 = adL−⊕L0 h|L0 , σ ◦ adL0⊕L+ h ◦σ|L− = − adL−⊕L0 h|L− ;

in particular the adjoint actions of L0 on L0⊕L+ and on L−⊕L0 coincide on

L0 and thus define an L0-module structure on L (denoted by h 7→ hL) such

that σ ◦hL ◦σ = −hL;

(vi) h0 (⊆ L0) acts diagonally on L and trivially on L0; more precisely L± and

L0, hence L, are Q-graded (x±i,r ∈ (L±)±αi+rδ = L±αi+rδ and hi,r ∈ (L0)rδ =

Lrδ) and h ∈ h0 acts on Lα as α(h)idLα ;

(vii) the action of h0 ⊕ g0,+ on L0 ⊕ L+ and that of g0,− ⊕ h0 on L− ⊕ L0 are

obviously homogeneous.
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Remark 8.7. We want to provide L with a g0-module structure extending the h0-

module structure (Remark 8.6(vi)), compatible with the h0⊕g0,±-module structure

on L0 ⊕ L± (Remark 8.6(iii)), and homogeneous with respect to the Q-grading.

Remark 8.8. Let ei,L, fi,L : L → L be homogeneous linear maps (that is,

ei,L(Lα) ⊆ Lα+αi and fi,L(Lα) ⊆ Lα−αi). Then:

(i) the relations [(hi)L, ej,L] = aijej,L, [(hi)L, fj,L] = −aijfj,L are automatically

satisfied (because of the diagonal action of h0 on L, see Remark 8.6(vi));

(ii) if moreover ei,L|L+
= adL+

x+i,0 and fi,L|L− = adL− x
−
i,0, then ei,L and fi,L

are locally nilpotent (see Remark 8.4(ii)&(iii) and notice that for all x ∈ L
there exists m ∈ N such that emi,L(x) ∈ L+ and fmi,L(x) ∈ L−);

(iii) for all r ∈ N, L(r) =
⊕

α∈Q0
Lα+rδ is ei,L- and fi,L-stable, and L =

⊕
r∈NL

(r).

Definition 8.9. Given i ∈ I0 let fi,L+
: L+ → L0 ⊕ L+ be the derivation defined

on generators by fi,L+(x+j,r) = −δi,jhi,r, and let ei,L− : L− → L− ⊕ L0 be defined

by ei,L− = σ ◦ fi,L+
◦σ|L− .

Proposition 8.10. fi,L+
and ei,L− are well defined derivations.

Proof. Obviously if ρ is a relation involving only indices in I0 \ {i} then fi,L+
(ρ)

= 0; it is also obvious that if d̃j - r fi,L+(x+j,r) = −δijhjr = 0 (hence fi,L+ preserves

relation (zx)). Moreover:

(i) if i 6= j fi,L+
([x+i,r, x

+
j,s]) = −aijx+j,r+s, which depends only on r + s, hence

relation (xd) is preserved by fi,L+ and symmetrically by fj,L+ ;

(ii) fi,L+
((−1)s[x+i,r, x

+
i,s]) = (−1)s(−Biir+Biis)x

+
i,r+s, which is zero if (X

(k)
ñ , di)

6= (A
(2)
2n , 1) or 2 | r+ s and in any case depends only on r+ s, hence relation

(x1,2) is preserved by fi,L+
;

(iii) if (X
(k)
ñ , di) = (A

(2)
2n , 1) then

fi,L+
([[x+i,r1 , x

+
i,r2

], x+i,r3 ]) = [fi,L+
([x+i,r1 , x

+
i,r2

]), x+i,r3 ] + [[x+i,r1 , x
+
i,r2

], fi,L+
(x+i,r3)],

which, if 2 | r1+r2 or 2 | r1+r2+r3, is of course zero by (ii) and relation (x1,2),

while it is (−6 + 2)[x+i,r1+r2 , x
+
i,r3

] + 2[x+i,r1+r3 , x
+
i,r2

] + 2[x+i,r1 , x
+
i,r2+r3

] = 0 if

2 - r1, 2 | r2 and 2 | r3, by relation (x1,2). It follows that fi,L+ also preserves

relations (x1,2, x3).

Furthermore if k > 1 and aij = −k:

(iv) fj,L+
((−1)r2 [[x+j,s, x

+
i,r1

], x+i,r2 ]) = −(−1)r2aji[x
+
i,s+r1

, x+i,r2 ], which is zero if

(X
(k)
ñ , di) 6= (A

(2)
2n , 1) or 2 | s + r1 + r2, and depends only on s + r1 + r2

otherwise;
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(v) fi,L+
([[x+j,s, x

+
i,r1

], x+i,r2 ])

= aij [x
+
j,s+r1

, x+i,r2 ] + aij [x
+
j,s+r2

, x+i,r1 ] +Biir2 [x+j,s, x
+
i,r1+r2

]

(we can and do suppose d̃j | s and d̃i | r1, r2).

Let us distinguish three cases:

If k = 2 and X
(k)
ñ 6= A

(2)
2n , then x+j,s+1 = 0, so that

fi,L+
([[x+j,s, x

+
i,1], x+i,0]) = −2[x+j,s, x

+
i,1] + 2[x+j,s, x

+
i,1] = 0

and

fi,L+
([[x+j,s, x

+
i,1], x+i,1] + [[x+j,s+2, x

+
i,0], x+i,0])

= 2[x+j,s, x
+
i,2]− 2[x+j,s+2, x

+
i,0]− 2[x+j,s+2, x

+
i,0] + 2[x+j,s+2, x

+
i,0] = 0;

together with (i), (ii) and (iv) this implies the stability of (xd, x1,2, t
′
2, t
′′
2) by the

action of the fl’s (l ∈ I0).

If X
(k)
ñ = A

(2)
2n , then

fi,L+
([[x+j,s, x

+
i,1], x+i,0] + [[x+j,s, x

+
i,0], x+i,1])

= −2[x+j,s+1, x
+
i,0]− 2[x+j,s, x

+
i,1] + 2[x+j,s, x

+
i,1]

− 2[x+j,s, x
+
i,1]− 2[x+j,s+1, x

+
i,0] + 6[x+j,s, x

+
i,1] = 0;

together with (i), (ii) and (iv) this implies the stability of (xd, x1,2, s2) by the

action of the fl’s.

If k = 3, then

fi,L+([[x+j,s, x
+
i,r1

], x+i,r2 ])

=


(−6 + 2)[x+j,s, x

+
i,r1+r2

] if 3 | r1, 3 | r2,
(−3 + 2)[x+j,s, x

+
i,r1+r2

] if 3 - r1, 3 | r2 or 3 | r1, 3 - r2,
2[x+j,s, x

+
i,r1+r2

] if 3 - r1, 3 - r2;

in particular

fi,L+
([[x+j,s, x

+
i,1], x+i,1] + 2[[x+j,s, x

+
i,2], x+i,0]) = (2− 2)[x+j,s, x

+
i,2] = 0,

fi,L+
(2[[x+j,s, x

+
i,2], x+i,1] + [[x+j,s+3, x

+
i,0], x+i,0]) = 4[x+j,s, x

+
i,3]− 4[x+j,s+3, x

+
i,0] = 0,

fi,L+([[x+j,s, x
+
i,2], x+i,2] + 2[[x+j,s+3, x

+
i,1], x+i,0])2[x+j,s, x

+
i,4]− 2[x+j,s+3, x

+
i,1] = 0,

which, together with (i), (ii) and (iv), implies the stability of (xd, x1,2, t
′
3, t
′′
3 , t
′′′
3 )

by the action of the fl’s.

If k = 3 and aij = −3 then:

(vi) fj,L+([[[x+j,s, x
+
i,r1

], x+i,r2 ], x+i,r3 ]) = −aji[[x+i,s+r1 , x
+
i,r2

], x+i,r3 ] = 0;
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if moreover 3 - r then:

(vii) fi,L+([[[x+j,s, x
+
i,r], x

+
i,0], x+i,0]) = (2aij + 3aii)[[x

+
j,s, x

+
i,r], x

+
i,0] = 0.

Clauses (vi) and (vii), together with (i) and (ii), imply the stability of

(xd, x1,2, x3, u
′
3, u
′′
3) by the action of the fl’s.

Finally if i 6= j it is well known that

(viii) fl,L+
((adx+i,0)1−aijx+j,s) = 0,

which implies the stability of (serre) by the action of the fl’s.

Definition 8.11. Let ei,L, fi,L, hi,L : L→ L be defined by:

ei,L|L0⊕L+
= adL0⊕L+

x+i,0 and fi,L|L−⊕L0
= adL−⊕L0

x−i,0 (see Remark 8.6(iii));

fi,L|L+
= fi,L+

and ei,L|L− = ei,L− (see Definition 8.9);

hi,L = (hi,0)L (see Remark 8.6(v)).

Definition 8.12. Define g̃0 to be the Lie algebra generated by {ei, fi, hi | i ∈ I0}
with relations

[hi, hj ] = 0, [hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, fj ] = δi,jhi ∀i, j ∈ I0.

Lemma 8.13. (i) ei,L, fi,L : L→ L are homogeneous linear maps, hence locally

nilpotent;

(ii) σ ◦ fi,L ◦σ = ei,L;

(iii) [ei,L, fj,L] = δi,jhi,L;

(iv) L is a g̃0-module.

Proof. (i) follows from Remark 8.8(ii), and (ii) from Remark 8.6(ii) and from

Definitions 8.9 and 8.11.

(iii) By (ii) and Remark 8.6(v) it is enough to prove the identity on L0⊕L+. By

homogeneity ei,L ◦ fj,L and fj,L ◦ ei,L map L0 to Lαi−αj ⊆ L0, and in particular

to {0} if i 6= j while ei,L ◦ fi,L|L0 = σ ◦ ei,L ◦ fi,L ◦σ|L0 = fi,L ◦ ei,L|L0 because

σ|L0
= idL0

; hence [ei,L, fj,L]|L0
= 0 = δi,j(hi)L|L0

; on the other hand, since

fj,L|L+ = fj,L+ : L+ → L0 ⊕ L+ is a derivation,

fj,L ◦ ei,L|L+ = fj,L ◦ adL+ x
+
i,0

= (adL0⊕L+
(fj,L(x+i,0)) + (adL0⊕L+

x+i,0) ◦ fj,L)|L+

= (−δij adL0⊕L+
hi,0 + ei,L ◦ fj,L)|L+

= (−δij(hi,0)L + ei,L ◦ fj,L)|L+

= (−δijhi,L + ei,L ◦ fj,L)|L+
,

which is the claim.
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(iv) is a consequence of (iii) together with Proposition 8.6(v) and Re-

mark 8.8(i).

Lemma 8.14. Let ρ : g̃0 → gl(M) be a g̃0-module structure on M with weight

space decomposition M =
⊕

α∈h∗0
Mα (ρ(h)|Mα = α(h)idMα for all h ∈ h0, remark-

ing that h0 ↪→ g̃0) and suppose that ρ(ei) and ρ(fi) are locally nilpotent. Then M

is a g0-module.

Proof. Let i 6= j ∈ I0; we want to prove that ρ(ad(ei)
1−aij (ej)) = 0 and

ρ(ad(fi)
1−aij (fj)) = 0.

(a) Given x ∈ M homogeneous, the subspace Mx = 〈ρ(ei)
r(x), ρ(fi)

r(x) | r ∈ N〉
is finite-dimensional and ei, fi, hi-stable;

(b) for M̃ ⊆ M finite-dimensional there exists r ∈ N such that ρ(ei)
r|M̃ = 0; in

particular there is rx ∈ N such that ρ(ei)
rx |Mx

= 0, ρ(ei)
rx |ρ(ej)(Mx) = 0;

(c) for r ∈ N and ρ(ad(ei)
r(ej)) =

∑r
u=0

(
r
u

)
ρ(ei)

r−uρ(ej)ρ(ei)
u; in particular if

r ≥ 2rx − 1 then ρ(ad(ei)
r(ej))|Mx = 0;

(d) for r ∈ N, [ei, ad(ei)
r(ej)] = ad(ei)

r+1(ej) and [fi, ad(ei)
r(ej)] = −r(aij +

r − 1) ad(ei)
r−1(ej);

(e) let Y = {r ∈ N | ρ(ad(ei)
r(ej))|Mx

= 0}; then 2rx − 1 ∈ Y 6= ∅, r ∈ Y ⇒
r + 1 ∈ Y and r ∈ Y \ {0, 1− aij} ⇒ r− 1 ∈ Y ; in particular 1− aij ∈ Y and

ρ(ad(ei)
1−aij (ej))(x) = 0.

Thus ρ(ad(ei)
1−aij (ej)) = 0. Composing ρ with the Lie automorphism of g0 defined

by ei 7→ −fi, fi 7→ −ei, hi 7→ −hi, we conclude that also ρ(ad(fi)
1−aij (fj)) = 0.

Corollary 8.15. L is a g0-module; L(r) is a g0-module for all r ∈ N.

Proof. The claim is a straightforward consequence of Remark 8.6(vi), of Lemma

8.13(i)&(iv) and of Lemma 8.14.

Lemma 8.16. Let g be a Lie algebra, h ⊆ g a subalgebra, M a g-module with

M =
⊕

α∈h∗Mα, Mα = {m ∈M | h.m = α(h)m for all h ∈ h}. Let τ ∈ AutLie(g)

and ϕ ∈ GL(M) be such that:

(i) τ(h) = h;

(ii) ϕ(y.m) = τ(y).ϕ(m) for all y ∈ g and m ∈M .

Then τ. = (τ |−1h )∗ ∈ GL(h∗) and ϕ(Mα) = Mτ.α for all α ∈ h∗. In particular

PM = {α ∈ h∗ |Mα 6= {0}} is τ.-stable and dimMα = dimMτ.α for all α ∈ PM .

Lemma 8.17. Let g be a Lie algebra, M be a g-module and x ∈ g be such that

adx and xM are nilpotent (xM denotes the map m 7→ x.m), τ (x) = exp(adx)
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and ϕ(x) = exp(xM ). Then τ (x) ∈ AutLie(g), ϕ(x) ∈ GL(M) and ϕ(x)(y.m) =

τ (x)(y).ϕ(x)(m) for all y ∈ g and m ∈ M . Moreover if x1, . . . , xr ∈ g are

such that adxi and (xi)M are nilpotent and we set τ = τ (x1) ◦ · · · ◦ τ (xr) and

ϕ = ϕ(x1) ◦ · · · ◦ϕ(xr), we still have τ ∈ AutLie(g), ϕ ∈ GL(M) and ϕ(y.m) =

τ(y).ϕ(m) for all y ∈ g and m ∈M .

Proof. This is a straightforward consequence of the well known identity

xnM (y.m) =

n∑
r=0

(
n

r

)
(adx)r(y).xn−rM (m).

Remark 8.18. For all r ∈ N let us consider the g0-module L(r) and the elements

ei, fi ∈ g0. Let

τi = exp(ad ei) exp(− ad fi) exp(ad ei),

ϕi = exp(ei,L|Lr ) exp(−fi,L|Lr ) exp(ei,L|Lr ).

Then it is well known and obvious (from Lemmas 8.13(i), 8.15 and 8.17) that

τi ∈ AutLie(g) and ϕi ∈ GL(M) are well defined and ϕi(y.m) = τi(y).ϕi(m) for

all y ∈ g0 and m ∈M .

It is also well known (see [K]) that τi(h0) = h0 and in fact τi|h0
= si ∈ W0,

hence by Lemma 8.16, {α ∈ h∗0 | (L(r))α (= Lα+rδ) 6= {0}} is W0-stable and

dimLw(α)+rδ = dimLα+rδ for all α ∈ h∗0, r ∈ N and w ∈W0.

Recall that {α ∈ h∗0 | Lα+rδ 6= {0}} ⊆ Q0,+ ∪ (−Q0,+).

Lemma 8.19. Let P ⊆ Q0,+ ∪ (−Q0,+) be W0-stable. Then each α ∈ P is

W0-conjugate to an integer multiple of a simple root.

Proof. Let α ∈ P \{0} and take β ∈W0.α∩Q0,+ (6= ∅ because there exists w̃ ∈W0

such that w̃(Q0,+) = −Q0,+) of minimal height. Since (β|β) > 0 there exists i ∈ I0
such that (β|αi) > 0, so that, by the choice of β, si(β) ∈ −Q0,+. This implies β is

a multiple of αi.

Let us now come to our point.

Proposition 8.20. Given α ∈ Q0

dimLα+rδ ≤

{
1 if α+ rδ ∈ Φ,

0 otherwise.

Proof. We have already proved (see Remark 8.18 and Lemma 8.19) that

dimLα+rδ = 0 if α 6∈
⋃
h>0 hΦ0. By Remark 8.18 it is then enough to prove

the claim when α is an integer multiple of a simple root; but this is nothing but

(D1)–(D3) (see Proposition 8.1).
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Corollary 8.21. ψ̃1|L+
: L+ → (g+ ⊗ C[t])χ is an isomorphism of Lie algebras.

Proof. The claim is a consequence of Propositions 7.7 and 8.20.

§9. Conclusions

In this section we point out and underline several consequences of Corollary 8.21.

They include the main result (ψ is an isomorphism) together with other results

which are worth presenting, both about the Drinfeld realization of affine quantum

algebras and affine Kac–Moody algebras.

Theorem 9.1. ψ : UDr
q → UDJ

q is an isomorphism. This means that the affine

quantum algebras UDJ
q (Drinfeld and Jimbo presentation) and UDr

q (Drinfeld

realization) are different presentations of the same algebra Uq = Uq(X(k)
ñ ), the

affine quantum algebra of type X
(k)
ñ .

Theorem 9.2. The product induces an isomorphism

UDr,−
q ⊗ UDr,0

q ⊗ UDr,+
q

∼= UDr
q = Uq

(triangular decomposition of the Drinfeld realization, or Drinfeld triangular de-

composition of the affine quantum algebra).

As remarked above (see Remark 5.3), the Drinfeld triangular decomposition

is essentially different from the Drinfeld and Jimbo triangular decomposition (Re-

mark 2.2(ii)). Their precise connection is described below.

Proposition 9.3. (i) UDr,+
q ∩ UDJ,+

q = UDr,+,+
q ; it is the C(q)-linear span of

the ordered monomials in the Erδ+α’s with α ∈ Q0,+ and r ≥ 0;

(ii) UDr,0
q ∩ UDJ,+

q = UDr,0,+
q ;

(iii) ŨDr,−
q ∩ UDJ,+

q is the C(q)-linear span of the ordered monomials in the

Erδ−α’s with α ∈ Q0,+ and r > 0;

(iv) UDJ,+
q

∼= (ŨDr,−
q ∩ UDJ,+

q )⊗C(q) UDr,0,+
q ⊗C(q) UDr,+,+

q ;

(v) UDr,+
q ∩ ŨDJ,−

q is the C(q)-linear span of the ordered monomials in the

Frδ−αKrδ−α’s with α ∈ Q0,+ and r > 0;

(vi) (X+
i,r | i ∈ I0, r < 0) = UDr,+

q ∩ ŨDJ,−
q in case A

(1)
1 and (X+

i,r | i ∈ I0, r < 0)

( UDr,+
q ∩ ŨDJ,−

q otherwise;

(vii) UDr,+
q ∩ ŨDJ,−

q ( (X+
i,r | i ∈ I0, r ≤ 0);

(viii) UDr,+
q = UDr,+,+

q ⊗ (UDr,+
q ∩ ŨDJ,−

q ).

Proof. With the notation of Corollary 5.5 we have UDJ,+
q = U− ⊗ U0 ⊗ U+ with

U−⊆ŨDr,−
q , U0⊆UDr,0

q , U+⊆UDr,+
q , which implies (i)–(iv); (v) is equivalent to (iii).
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In (vi) the inclusions are obvious, as is the claim in case A
(1)
1 ; in the other cases

there exist i, j ∈ I0 such that δ−(αi+αj) is a root, so Fδ−(αi+αj) ∈ UDr,+
q ∩ŨDJ,−

q

while (X+
i,r | i ∈ I0, r < 0)−δ+(αi+αj) = (0).

In (vii) the inequality is obvious (X+
i,0 6∈ UDr,+

q ∩ ŨDJ,−
q ); for the inclusion,

consider the subalgebra of Uq generated by (UDr,+
q ∩ ŨDJ,−

q ) and by the X+
i,0’s; it

is isomorphic to (UDr,+
q ∩ ŨDJ,−

q )⊗ (X+
i,0 | i ∈ I0), thanks to the triangular decom-

position of UDJ
q and to the fact that for all x ∈ (UDr,+

q ∩ ŨDJ,−
q )α, i ∈ I0 we have

[X+
i,0, x]q(α|αi) ∈ UDr,+

q ∩ ŨDJ,−
q , which implies (UDr,+

q ∩ ŨDJ,−
q )⊗ (X+

i,0 | i ∈ I0) is

not only a (UDr,+
q ∩ ŨDJ,−

q )-module, but also stable by left multiplication by the

X+
i,0’s, hence a subalgebra of Uq; but of course it contains (X+

i,r | i ∈ I0, r ≤ 0), so

in order to prove that (UDr,+
q ∩ ŨDJ,−

q ) ⊗ (X+
i,0 | i ∈ I0) and (X+

i,r | i ∈ I0, r ≤ 0)

are equal (which is the claim), it is enough to compare the dimensions of their

homogeneous components: for all m ≥ 0 and α ∈ Q0,+.

dim ((UDr,+
q ∩ ŨDJ,−

q )⊗ (X+
i,0 | i ∈ I0))α−mδ

=
∑

β∈Q0,+

UDr,+
q ∩ ŨDJ,−

q )α−mδ−βX
+
i,0 | i∈ I0)β

= #
{

(m1δ− γ1� · · ·�msδ− γs)
∣∣∣mu> 0, γu ∈Q0,+,

∑
u

mu =m,
∑
u

γu =α−β
}

·#
{

(γ01 � · · ·� γ0s̃ )
∣∣∣ γ0u ∈Q0,+,

∑
u

γ0u =β
}

= #
{

(m1δ+ γ1� · · ·�msδ+ γs)
∣∣∣mu> 0, γu ∈Q0,+,

∑
u

mu =m,
∑
u

γu =α−β
}

·#
{

(γ01 � · · ·� γ0s̃ )
∣∣∣ γ0u ∈Q0,+,

∑
u

γ0u =β
}

= #
{

(m1δ+ γ1� · · ·�msδ+ γs)
∣∣∣mu≥ 0, γu ∈Q0,+,

∑
u

mu =m,
∑
u

γu =α
}

= dimUDr,+,+
q,mδ+α = dim (X+

i,r | i∈ I0, r≥ 0)mδ+α = dim (X+
i,r | i∈ I0, r≤ 0)−mδ+α;

this chain of equalities follows from the PBW-bases of UDr,+
q ∩ ŨDJ,−

q (see (v)),

of (X+
i,0 | i ∈ I0) and of UDr,+,+

q (see (i)) and from the isomorphism between

(X+
i,r | i ∈ I0, r ≤ 0) and (X+

i,r | i ∈ I0, r ≥ 0) (see [Da1]).

(viii) Thanks to (i) and to Remarks 2.3(x) and 3.5(vii) the claim follows by

remarking that for r ≤ s ≤ 0, λN (βr) ∈ −Q+ implies λN (βs) ∈ −Q+ (hence

TNλ (Eβr ) ∈ ŨDJ,−
q ⇒ TNλ (Eβs) ∈ ŨDJ,−

q , by Remark 2.3(vi)).

Theorem 9.4. (i) UDr,+
q is the C(q)-algebra generated by {X+

i,r | i ∈ I0, r ∈ Z}
with relations (ZX+) and (DR).

(ii) UDr,+,+
q is the C(q)-algebra generated by {X+

i,r | i ∈ I0, r ∈ N} with relations

(ZX+
+ ), (DR+), (S+), (U3+).
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(iii) The A-subalgebra UDr,+
A of UDr

q generated by {X+
i,r | i ∈ I0, r ∈ Z} is the

A-algebra generated by {X+
i,r | i ∈ I0, r ∈ Z} with relations (ZX+) and (DR)

and is a free A-module: it is an integer form of UDr,+
q .

(iv) The A-subalgebra of UDr
q generated by {X+

i,r | i ∈ I0, r ∈ N} is the A-algebra

generated by {X+
i,r | i ∈ I0, r ∈ N} with relations (ZX+

+ ), (DR+), (S+),

(U3+) and it is a free A-module: it is an integer form of UDr,+,+
q .

Proof. (iv) is true by Corollary 6.4 and clearly implies (ii). Of course (iii) im-

plies (i).

(iii) follows from (iv): Let F be the A-algebra freely generated by {X+
i,r |

i ∈ I0, r ∈ Z}, I the ideal of F defined by the relations (DR), t : F → F the

A-automorphism defined by X+
i,r 7→ X+

i,r+d̃i
, t̄ the A-automorphism induced by t

on F/I, and f : F/I → UDr
q the natural homomorphism. Consider also the natural

homomorphism j : F+/I+ → F/I (see Notation 6.1 and Remark 3.10(iii)).

Since of course f ◦ j = f+ and f ◦ t̄ = (t1 ◦ · · · ◦ tn)−1 ◦ f , f is injective thanks

to Corollary 6.4(i) and to the fact that F/I =
⋃
N∈N t̄

−N (j(F+/I+)).

In order to prove that F/I is free over A it is enough to remark that the

image of the (injective) homomorphism ψ ◦ f is contained in UDJ
A (see Remarks

2.4(iii) and 6.5), which is well known to be a free A-module (see Remark 2.4(ii)).

Theorem 9.5. Let UDr,+
A be as in Theorem 9.4(iii) and let UDr

A , UDr,−
A and UDr,0

A
be the A-subalgebras of UDr

q generated respectively by {X±i,r, k
±1
i , C±1 | i ∈ I0,

r ∈ Z}, {X−i,r | i ∈ I0, r ∈ Z} and {Hi,r, ki, C, C̃ | i ∈ I0, r ∈ Z}, where

Hi,0 =
ki − k−1i
qi − q−1i

and C̃ =
C − C−1

q − q−1
.

Then:

(i) UDr
A = UDr,−

A ⊗A UDr,0
A ⊗A UDr,+

A ;

(ii) UDr,0
A = UDr,0

q ∩ UDr
A and UDr,±

A = UDr,±
q ∩ UDr

A ;

(iii) UDr,∗
A is an integer form of UDr,∗

q ; this means that it is a free A-module and

UDr,∗
q = C(q)⊗A UDr,∗

A ;

(iv) UDr,0
A is the A-algebra generated by {Hi,r, ki, C, C̃ | i ∈ I0, r ∈ Z} with rela-

tions (ZH), (CUK),

(CUH) [C̃, x] = 0, [ki, Hj,0] = 0, [Hi,0, Hj,0] = 0 (i, j ∈ I0),

(IQ) ki(ki − (qi − q−1i )Hi,0) = 1, C(C − (q − q−1)C̃) = 1,

(KQH) [Hi,0, Hj,r] = 0 (i, j ∈ I0, r ∈ Z),

(KH) and (HH);
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(v) UDr
A is the A-algebra generated by {X±i,r, Hi,r, ki, C, C̃ | i ∈ I0, r ∈ Z} with

relations (ZX±), (CUK), (CUH), (IQ), (KQH), (KX±),

(HQX±) Hi,0X
±
j,r = X±j,r(±[aij ]qiki + q

∓aij
i Hi,0),

(HH), (HX±), (XX), (X1±const), (X3±const) and (S±const);

(vi) UDr
A = UDJ

A .

Proof. First of all note that UDr,0
A ⊆ UDr

A , since Hi,0 = [X+
i,0, X

−
i,0] for all i ∈ I0

and C̃ = ki([X
+
i,1, X

−
i,−1] − CHi,0) if i ∈ I0 is such that d̃i = di = 1. Moreover

UDr,∗
A ⊆ UDr,∗

q = C(q) ⊗A UDr,∗
A , so that UDr,−

A ⊗A UDr,0
A ⊗A UDr,+

A → UDr
A is

injective, thanks to Theorem 9.2.

Let V be the A-algebra generated by {X±i,r, Hi,r, ki, C, C̃ | i ∈ I0, r ∈ Z}
with relations (ZX±), (CUK), (CUH), (IQ), (KQH), (KX±), (HQX±), (HH),

(HX±), (XX), (X1±const), (X3±const), (S±const), and V+, V−, V0 be the A-

subalgebras of V generated respectively by {X+
i,r | i ∈ I0, r ∈ Z}, {X−i,r | i ∈ I0,

r ∈ Z} and {Hi,r, ki, C, C̃ | i ∈ I0, r ∈ Z}.
Let Ṽ0 be the A-algebra generated by {Hi,r, ki, C, C̃ | i ∈ I0, r ∈ Z}

with relations (ZH), (CUK), (CUH), (IQ), (KH), (KQH), (HH), and Ṽ0,0 =

A[ki, C,Hi,0, C̃ | i ∈ I0]/J where J is the ideal generated by the relations (IQ).

Then:

(a) V∗ → UDr,∗
A is well defined and surjective (∗ ∈ {∅, 0,+,−}).

(b) V−⊗V0⊗V+ → V is surjective, thanks to relations (CUK), (CUH), (KX±),

(HQX±), (HX±), (XX), so that the commutativity of the diagram

V− ⊗ V0 ⊗ V+ //

��

V

��

// 0

0 // UDr,−
A ⊗ UDr,0

A ⊗ UDr,+
A

// UDr
A

��
0

implies (i); (ii) follows from (i).

(c) Ṽ0,0 ∼= UDJ
A ∩UDJ,0

q is a free A-module (well known, see Remark 2.4(ii)&(vi)),

so that Ṽ0,0 → UDr
A is injective; moreover the (well defined) maps

A[Hi,r | i ∈ I0, r < 0]⊗ Ṽ0,0 ⊗A[Hi,r | i ∈ I0, r > 0]→ Ṽ0 and Ṽ0 → V0

are surjective (thanks to relations (CUK), (CUH), (KH), (KQH) and

(HH)), and the composition

A[Hi,r | i ∈ I0, r < 0]⊗ Ṽ0,0 ⊗A[Hi,r | i ∈ I0, r > 0]→ Ṽ0 → V0 → UDr,0
A
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is injective; in particular Ṽ0 ∼= V0 ∼= UDr,0
A so that (iv) holds, and UDr,0

A is a free

A-module; together with (i) and with Theorem 9.4(iii) this also implies (iii).

(d) UDr,+
A → V is well defined (Remark 3.10 holds also on A, see [Da1]) with

image in V+, and UDr,+
A → V+ is obviously surjective: since

UDr,+
A → V+ → UDr,+

A

is the identity we have UDr,+
A

∼= V+; then the commutativity of the diagram

V− ⊗ V0 ⊗ V+ //

∼=
��

V

��

// 0

UDr,−
A ⊗ UDr,0

A ⊗ UDr,+
A

∼= // UDr
A

implies that UDr
A
∼= V, that is, (v) holds.

(e) Since UDJ
A is ti-stable for all i ∈ I0, we have X±i,r ∈ UDJ

A for all (i, r) ∈ IZ; it

is also clear that UDr,0
A ⊆ UDJ

A , hence UDr
A ⊆ UDJ

A ; on the other hand clearly

C,Ki, Ei ∈ UDr
A for all i ∈ I0, E0 ∈ UDr

A (see [Da1]) and Fi ∈ UDr
A for all i ∈ I

since UDr
A is Ω-stable; then UDJ

A ⊆ UDr
A and (vi) follows.

Theorem 9.6. Consider the affine Kac–Moody algebra

ĝ = ĝ− ⊕ ĝ0 ⊕ ĝ+ = (g− ⊗ C[t±1])χ ⊕
(
(g0 ⊗ C[t±1])χ ⊕ Cc

)
⊕ (g+ ⊗ C[t±1])χ.

Then:

(i) ĝ+ is the Lie algebra generated by {x+i,r | i ∈ I0, d̃i | r ∈ Z} with relations:

[x+i,r, x
+
j,s] depends only on r + s (i 6= j ∈ I0 fixed);

[x+i,r, x
+
i,s] =

{
0 if (X

(k)
ñ , di) 6= (A

(2)
2n , 1) or 2 | r + s,

(−1)h[x+i,s+h+1, x
+
i,s+h] if r = s+ 2h+ 1;

[[x+i,r1 , x
+
i,r2

], x+i,r3 ] = 0 ((r1, r2, r3) ∈ N3);

[[x+j,s, x
+
i,1], x+i,0] = 0,

[[x+j,s, x
+
i,1], x+i,1] = −[[x+j,s+2, x

+
i,0], x+i,0] (k = 2, aij = −2, X

(k)
ñ 6= A

(2)
2n );

[[x+j,s, x
+
i,0], x+i,1] + [[x+j,s+1, x

+
i,0], x+i,0] = 0 (aij = −2, X

(k)
ñ = A

(2)
2n );

[[x+j,s, x
+
i,1], x+i,1] = −2[[x+j,s, x

+
i,2], x+i,0] (k = 3, aij = −3);

2[[x+j,s, x
+
i,2], x+i,1] = −[[x+j,s+3, x

+
i,0], x+i,0] (k = 3, aij = −3);

[[x+j,s, x
+
i,2], x+i,2] = −2[[x+j,s+3, x

+
i,1], x+i,0] (k = 3, aij = −3);

(adx+i,0)1−aij (x+j,s) = 0 (i 6= j with k = 1 or aij ≥ −1).
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(ii) ĝ− = (ĝ+)op.

(iii) ĝ0 is the Lie algebra generated by {hi,r, c | i ∈ I0, d̃i | r ∈ Z} with relations

[c, hi,r] = 0, [hi,r, hj,s] = δr+s,0
rBijr
dj

c.

(iv) ĝ is the Lie algebra generated by {x+i,r, x
−
i,r, hi,r, c | i ∈ I0, d̃i | r ∈ Z} with

relations

[c, a] = 0 ∀a,

[hi,r, hj,s] = δr+s,0
rBijr
dj

c,

[hi,r, x
±
j,s] = ±Bijrx±j,r+s,

[x+i,r, x
−
j,s] = δi,j

(
hi,r+s + δr+s,0

r − s
2di

c

)
,

[x±i,r±1, x
±
i,r] = 0 (X

(k)
ñ = A

(1)
1 ),

[[x±i,r±1, x
±
i,r], x

±
i,r] = 0 (X

(k)
ñ = A

(2)
2 ),

(adx±i,r)
1−aij (x±j,s) = 0 (n > 1, i 6= j ∈ I0).

(Note that the relations [hi,r, hj,s] = δr+s,0
rBijr
dj

c depend on the others.)

Proof. Since

U(ĝ) = UDJ
A /(q − 1,Ki − 1 | i ∈ I) = UDr

A /(q − 1, C − 1, ki − 1 | i ∈ I0)

(see Remark 2.4(vii) and Theorem 9.5(vi)) the claims follow from Theorem 9.4(iii),

Remark 3.5(ii) and Theorem 9.5(iv)&(v).
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Sci. Paris Sér. II 258 (1964), 3419–3422. Zbl 0128.25202 MR 0183818

[N] H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine
algebras, J. Amer. Math. Soc. 14 (2001), 145–238. Zbl 0981.17016 MR 1808477

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1007.17012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1802170
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0667.16004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0914215
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0588.17015&format=complete
http://www.ams.org/mathscinet-getitem?mr=0802128
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1102.17009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2195598
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0587.17004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0797001
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0537.17001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0739850
http://www.ams.org/mathscinet-getitem?mr=1120927
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0695.16006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1013053
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0128.25202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0183818
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0981.17016&format=complete
http://www.ams.org/mathscinet-getitem?mr=1808477

	Introduction
	General notation
	Preliminaries: UqDJ
	Preliminaries: UqDr
	Preliminaries: 
	Reduction to a finite-dimensional situation and triangular decomposition
	Integer form
	Specialization at q=1
	Affine Kac–Moody case
	Conclusions
	References

