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From the Drinfeld Realization to the
Drinfeld—Jimbo Presentation of Affine Quantum
Algebras: Injectivity

by

Ilaria DAMIANI

Abstract

The surjective homomorphism ¢ (see [Dal]) from the Drinfeld realization U}" to the
Drinfeld and Jimbo presentation Z/{(]ID 7 of affine quantum algebras is proved to be injective.
A consequence of the arguments used in the paper is the triangular decomposition of the
Drinfeld realization of affine quantum algebras also in the twisted case. A presentation
of affine Kac-Moody algebras in terms of “Drinfeld generators” is also provided.
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§0. Introduction

Let X%k) be a Dynkin diagram of affine type, Z/{,?J = U(?J(X%k)) the quantum alge-
bra introduced by Drinfeld and Jimbo (see [Dr2] and [Jm]), and U™ = U(?r(X,gk))
its Drinfeld realization (see [Drl]).

This paper concludes the proof that L[;DJ and Z/I(?r are isomorphic. More pre-
cisely, in [Dal] a homomorphism ¢ : 4" — UP? was defined (following [Be] for the
untwisted case), and proved to be surjective; previous attempts to give a complete
proof that these two algebras are isomorphic are also discussed in [Dal]. Here we
prove the injectivity of 1.

As in [Be], the idea of the proof is to recover the injectivity of ¢ from that of
its specialization at 1, based on the following:

Proposition 0.1. Let A = Clq]4—1) be the localization of Clq] at (¢ — 1), M a
finitely generated A-module, N a free A-module, f: M — N a homomorphism of
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A-modules, f1 : M/(q—1)M — N/(q — 1)N the A/(q — 1) = C-linear homomor-
phism induced by f. If f1 is injective, so is f.

Proof. A is a local principal ideal domain; f(M) is a finitely generated .A-sub-
module of N, hence a free A-module, so that there exists g : f(M) — M such that
f og = ldf(M) .

Of course ker(f) is a finitely generated A-module, M = ker(f) & Im(g),
ker(£)/(q — 1) ker(f) = M/(q — 1)M and ker(f)/(q — 1) ker(f) C ker(f;) = {0}.
Thus (¢ — 1) ker(f) = ker(f), so that ker(f) = {0} (Nakayama lemma).

Note that the hypothesis that M is finitely generated over A is necessary, as
can be seen from the simple counterexample f : C(q) — {0}.

The problem faced in the present paper is reducing to a situation where this
argument works.

Consider the (well defined) commutative diagram

Fo/Te Ly

5| |+

Z/{,BJHF( quJ

where U(?J and L{(?r are respectively the Drinfeld-Jimbo presentation and the
Drinfeld realization of a quantum affine algebra (see §2 and §3), UBJ’+ is the
integer form of the positive part of L{,?J (Remark 2.4), Fy is the free A-algebra
generated by {X:‘T | i € Ip, » > 0} and Z, is the ideal of F generated by the
relations (ZX{,DRy,S4,U3.) (see Notations 3.9 and 6.1).

The plan of the proof is to show that the injectivity of 121 implies the in-
jectivity of 1 (see Proposition 5.2 and Corollary 6.4(ii)) and at the same time
that the conditions of Proposition 0.1 hold for the homogeneous components of
Vi Fy )Ty — Z/{BJ’+ (see Remark 6.7), so that 1 is injective if ), (the specializa-
tion at 1 of 1[)) is injective. This reduces our problem to the study of 1, which
is found to be injective through a careful analysis of the classical (non-quantum)
affine Kac-Moody case (see Remark 7.6 and Corollary 8.21).

(A) It is well known that UBJ’+ is a free A-module (see Remark 2.4(ii)); it
is straightforward to see that 7 /7, = @,eq, (F+/Z+)a Where~each (Fi/Zi)a
is a finitely generated A-module (see Remark 6.2(ii)). Finally ¢ is trivially Q-
homogeneous; then Proposition 0.1 applies and v is injective if 1;1 is injective.

(B) Of course Fi/Z., but also Uﬁ‘]’Jr, can be easily described through a
presentation by generators and relations (it is well known that L{i‘]’+ is generated
by {E; | i € I} with relations (SE), see Remark 2.4(iv)). Then their specializations
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at 1 are also immediate to describe by generators and relations (see Remarks 7.1
and 7.5), and 7]11 is explicitly known on the generators.

88 is devoted to proving that Uy is injective. Since the specialization at 1 of
UBJ’Jr is well known (it is the enveloping algebra of the positive part of the Kac—
Moody algebra), the proof consists in the study of the classical (non-quantum)
situation, through a careful analysis of the specialization at 1 of F /Z  (see Corol-
lary 7.29 and §8). In particular this analysis leads also to a “Drinfeld realization”
of affine Kac-Moody algebras (see Theorem 9.6).

(C) On the other hand f(F;/Z) generates over C(q) a subalgebra Z/I;Dr"“""
of U(?r’+ C L[fr; since f(Fy/Z4) is a direct sum of finitely generated A-modules,
it is an integer form of UL+ (see Remark 6.3). So the injectivity of ¢ implies
that w‘u(];)r,-f—,-%— is injective (see Corollary 6.4(ii)).

But the injectivity of ¢ (hence of f) also implies that F /Zy = f(Fy/Z;),
that is, it provides a presentation by generators and relations of the integer form
of U™t (see Corollary 6.4(i)).

(D) Why does the injectivity of w\u?r,+,+ imply the injectivity of ¢? To answer
this question we study the connection between the PBW-basis of Z/{L?J and the
tensor product U(?r’_’_ ® Ul?r’o ® U(]]Dr"""*' (see Proposition 5.1), recalling that
M;Dr’“L can be recovered from Z/{(?T"“"" by “translations” (see Remark 3.5(vii)).

With these tools it is easy to conclude finally that the injectivity of ¢|u§’“+‘+
implies the injectivity of 1. At the same time it also implies the triangular decom-
position of Z/{g)r (see Proposition 5.2).

81. General notation

We fix here the general notation that will be used in the paper (for a deeper and
more detailed understanding of this setting see [Bo], [K], [M]). Further notation is
spread out through the next sections.

Notation 1.1. Following the literature we denote by
d = (g ®c C[tT'])X @ Cc an affine Kac-Moody algebra
with

e Dynkin diagram I" and set of vertices I = {0,1,...,n},
e Cartan matrix A = (a;;)i jer,
e root lattice Q@ = @,

root system (with real and imaginary roots) ® = ®* U @™,

Za; and positive root lattice Q4 = @, ; Nay,

root system with multiplicities (i),
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e symmetric bilinear form (-]-) on @ induced by DA (D = diag(d; | i € I)) with
kernel Zé (6 € Q4),

o Weyl group W = (s; : oj = o — ay;04 | i € I),

e extended Weyl group W =W x T (T < Aut(T")) with length [ : W — N,

e extended braid group with lifting W o w— T,

where

e g is a simple Lie algebra over C of rank n;

e Y is an automorphism of the Dynkin diagram of g of order k;

and

o Ay = (aij)ijer, I = IoU{0} # Ip),

® Qo=c;, Za; CQ (Qo+ =QoNQy),

o &y 2O Py and

Wo={(s;|iel)<W<W

are respectively the Cartan matrix, the root lattice, the root system (with the set
of positive roots) and the Weyl group of the simple Lie algebra go = gX.
If g is of type X5 (X = A, B,C, D, E, F,G), then § is said to be of type X;Lk).
Finally P = Dicr, ZNi ((Nilaj) = 8;;d;) is the sublattice of

Hom(Qy,Z) C Hom(Qo, Z) ® Hom(Z,Z) = Hom(Qo B Zd = Q,7Z)

such that W = P x Wy and
. {1 if k=1o0r X = AP

d; otherwise;

recall that for all A € P and a € Q, A(e) = o — (A|a)é and denote by A the weight
A=A+ 4+ Ay, by N the length of A\, and by N; the length of \; (i € I).
Remark 1.2. The structure of the set ® of positive roots with multiplicities is
the following (see [K]): ® = ®7¢ U &' with

P ={ré+a € Q4 | a€ dy reZsuch that d, |7} U Py,

(i)if ={(rd,%) | (i,7) € Iz, r > 0},
where

dw((x,y) = CL for w € Wy, i € I,

2n

o {2r+1)04+2a|reN, ae Py, (o|a) =2} in case AP
2 =
0

otherwise,

Iz = {(i,7) € Iy x Z | d; | r}.
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Notation 1.3 (see [Be| and [Da2]). The maps ¢t : Z - [ and Z > r — w, € W
are defined by the following conditions:

{5/,1 Sy et Sy, ifr>1,

(i) wy =
Sup Sy teeer Suyy AT <05

(ii) for all r =1,...,n there exists 7. € T such that
>\1+"'+)\r:>\1'...~>\,«:5“ ."'.SLN1+---+NTTT€W;
(iii) tN4r = Tn(t,) for all r € Z.

The bijection Z > r — 3, = w,(a,,) € @ induces a total ordering < on o
defined by

ﬂr j ﬁrJrl j (méal) j (m&]) j (m67z) j ﬁsfl j ﬁs

forallr>1,s<0,m>m>0,j<ié€ Iy (choosing any ordering < of Iy).
The reverse ordering has the same properties (see [Da2]).

Notation 1.4. (i) Consider the ring Z[x,2~!]. Then for all m,r € Z the ele-
ments [m]y, [m],! (m > 0) and [T] (m > r > 0) are defined by [m], =

=, [mls! = TTi, [s]e and [7] = Grirazi, which all lie in Z[z,271].

z"—x
z—z—1t

(ii) Consider the field C(g) and, given v € C(q) \ {0}, the natural homomorphism
Zlr, 2~ '] — C(q) determined by the condition x +— v; then for all m,r € Z
the elements [m],, [m],! (m > 0) and [7'] (m >r > 0) denote the images in

C(q) of [m]s, [m],! and [7]  respectively.
(iii) For all i € Iy we denote ¢; = ¢% € C(q).
Notation 1.5. Consider a Z[¢T']-algebra U, elements u,v € U and r € Z. The
g-bracket [u,v]q- is the element [u, v]gr = uv — ¢ vu.

Note that the specialization at 1 of [u,v]s (the image of [u,v], in the
Z-algebra U/(q — 1)U) is the classical bracket [u, v] = uv — vu.

82. Preliminaries: U(?J

In this section we recall the definition and the structures of the Drinfeld-Jimbo
presentation U’ of affine quantum algebras (see [Dr2] and [Jm], and also [Be],
[Da2], [LS],[L)).

Definition 2.1. The Drinfeld-Jimbo presentation of the affine quantum algebra
of type Xék) is the C(g)-algebra Z/{(?J = U;)J (X,%k)) generated by

{E,, Fi, KE' |ieT}
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with relations

(KK) KK '=1=K'K,, KK;=KK, VYijcl,
(KEF) KiEj = q,?ijEjKi, KZ'F]' = q;aiijKi V’L,j S I,
K —K!
(EF) [E;, F}] = 0;;———— Vi,jel,
qi — g,
1—a;j 1 B
(SE) > <—1>“[ uam] BYE;E " =0 Vigjel,
u=0 qi
s 1—ay;
(SF) > (1)“{ . ”] FUF;F ™" Vitjel
u=0 qi

Remark 2.2. Recall that L[f‘] is endowed with the following structures:

(i) the Q-gradation YD’ = Daco UP7, determined by the conditions
Eieu)l ., FeuX,., Kleu)l Viel
DJ;/DJ DJ .
Upallgp S Ugars Y, B € Qs

(ii) the triangular decomposition

U’ =uU U o U = U U)oU),

where Z/{EJ”, L{(?J’O and L{[?J’+ are the subalgebras of Z/l(?‘] generated respec-

tively by {FE; | i € I}, {KF' | i€ I} and {F; | i € I}; in particular

upl= @ Uty euP Ut vaeQ

BYEQ+:
y—B=a

where L{(]I?o{*i = UPI NYUPI =+ is finite-dimensional for all a € Q; note also that

~ EEg - ~
if UP = Do, ujff; with U 70 = Uy 0 Ko, we have that UP7~ is a

graded subalgebra of L{(?J and the triangular decomposition can be formulated

also as
D ~DJ,— DJ,0 DJ
U =Up U ouyt.

iii) the C-anti-linear anti-involution Q : UP7 — YUP7 defined by
q q

Qq)=q¢Y, QUE)=F, QUF)=E, QK)=K ' Viel

(iv) the extended braid group action defined by

T,,(K;) = K;K; “7 Yi,jel,
T.,(E) = -FK;, T, (F)=-K'E Viel,

i
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T, (E) =Y (1) ~%ig "B VEED, T (F) = QT4 (E)))
Vitjel

where E™ = E™ /[m],,! for all m € N, and
TT(Ki) = Kr(i)7 T.,—(El) = ET(Z'), TT(Fl) = F‘r(i) VT € AAut(F)7 1 € Ip;

(v) positive and negative root vectors E, € U2 T and F, = Q(E,) € Z/l;)i’;
(v € &y) such that B, =Ty, (E,,) ifr > 1, Eg, =T 1,(E,) if r <0, and

exp( ZE(d ré,i) W ) =l-(6—a") ZE(&M,@“T

>0 >0
where E(d;r&’i) —E;s o Lita QEEU”(s o, 7 >0and i€ I.

(Note that in [Dal], E ;s was confused with EN'(djiré ;) by a misprint.)
Remark 2.3. We have:

) QoTy = Tyo for all w € W;

) TwUP)) = Z/IDJ ) for all w € W and o € Q;

(iti) Tw(E;), T, (E ) UPTt if w e W and i € I are such that w(a;) € Q4;
) Tw(E;) € L[DJ if we W and i € I are such that w(e;) € —Q4;

(v) Tl

D) a) — ozf « if A € 5
(vi) TA<Ea):{ ey e e ) € O
—F_xa) K -xa) = “Fiays—aK(A|a)s—a otherwise;

E;) = Ejif w e W and i € I are such that w(e;) = ay;

(Vil) B jsiq, =Ty, (Ei) for all 7 € N and i € Io;

(i) {Ka =Tl K™ | a =30, mia; € Q} is a basis of U270,

(x) {E ()— e By | M ENy = (m 2 - 2 ), m € &4 VR =
1,..., M} is a basis of U7+ (PBW-basis);

(xi) for all @ < B € ., EgE, — ¢*1P E,Ej is a linear combination of {E(y) |
vy =(n =% - 2 yy) € @f, M € N, a < m}; for real root vec-
tors this can be stated in a more precise way: for all 8, < 8; € @,

) E

(viii) T: (E(d v6.)) = E(d,rs,5) for all i,j € Ip and 7> 0;
)
)

Es,Ep, — qPr1%)Eg Epg_ is a linear combination of {E(y) | v = (71 <
= M) € (I>J\+4, M eN, B <7 < Bs Vu=1,...,M} (Levendorskii—
Soibelman formula).
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Remark 2.4. The A-subalgebra U2’ of UP? generated by {E;,F;, KF' | i eI}
is an integer form of Z/l(?‘]:

(i) U’ =C(q) ®aUR’;
(ii) UR7 is a free A-module.

Moreover:

(iii) UR? is Ty,-stable for all i € I and T,-stable for all 7 € T; it contains all the
root vectors;

(iv) L{BJ’Jr =URTNUPT is the A-algebra generated by {E; | i € I'} with relations
(SE); it is a free A-module;

(V) UR"T = Bocq, Unn' where UL = URMT Uy s free of finite rank
over A;

(vi) UBJ’O =u’n Z/{BLO is the commutative .A-algebra

iEI]/(ﬁ(ﬁ-(%—Qﬁ)W)—l

4i—q;

UDJ’OZA{I( Ki—Ki—l
A a—q; "

1€ I) ;
it is a free A-module;

(vi)) UR? /(¢ — L, Ki = 1]i € I) 2 U(g);

(viii) for all i € I, Ty, induces Ty, : U(g) — U(§) and Ty, |3 € Autric(g); the image
of all the root vectors lies in g.

83. Preliminaries: L{(Pr

The Drinfeld realization L{(?r of affine quantum algebras was introduced in [Drl],
and its defining relations were simplified in [Dal] thanks to the (¢-)commutation
with the generators Xfr, H;,.

Both the original and the simplified sets of relations are useful in this paper:
while studying the positive subalgebra L{?“*, which contains neither X, nor H; ,,
the set of relations given by Drinfeld is the most natural to deal with, and is finally
proved to provide a complete set of relations defining 2" (see Theorem 9.4(i));
vice versa, specializing at 1 the whole U(?r provides a presentation of affine Kac—

Moody algebras in terms of the generators {z

7,7

hir,c}, whose relations can be
deduced from the simplified relations defining 2" (see Theorem 9.6(iv)).

In this section we recall: the definition of Z/I;DY through the simplified relations
given in [Dal] (Definition 3.1); the relations given by Drinfeld [Drl1] involving just
the positive generators X:‘r’s and holding in Z/I(?r"“ (Notation 3.9 and Remark
3.10); the structures defined on UP" (Q-gradation, (anti)automorphisms, first re-
marks about triangular decomposition).
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Definition 3.1. The Drinfeld realization of the affine quantum algebra of
type Xék) is the C(q)-algebra U™ = Z/l,?r(XT%k)) generated by

o kP (iely), X

7,7

((7;”‘) el XZ)

with relations

(ZX*) X5 =0 V()€ (loxZ)\ I,
(CUK) [C, .’E] =0 V.’E, klkj = kjkz (Z,j S IQ),
(CK) CO™t=1, kki'=1=k"k (icl),
(KX*) kiXF = Xk (i€ Iy, (jr) € Iy x ),
CkiHf,  ,—C"k7'H . .. 5
i 1,748 — i i, 7+ fd ,
(XX)  XLX]=0Y el
0 otherwise,
(HXL?)
[Hi,T’X]:{:s] = ibij"C(Tq:|T|)/2XJ:'|,:r+s ((Z, 7")7 (]7 3) € Iz, CZ% < ‘T| < CZij)?
k 1
(X15000) (XE e Xl =0 (X = al),
k 2
(X3%st) (X7 e Xl Xl =0 (X7 = AD),
17(11'3'
u 1- Qg N —aii—u
D S I G- D e B B UL
u=0 qi
where Hfr, H; ., b;j and Jij are defined as follows:
1 if r=0,
ﬁ[;i ={ (g — qi—l)c(rﬂ)/%fl[X;jr,X;O] if £ >0,
0 if +r <0;
Z ]le’:f:irur = eXP(i((h‘ —q ") Z Hi,:l:rur>;
TEZ >0
0 lf dNi’j Jf’f',
bijr = [2rlg(¢* + (=114 q72) /i (X, di,dj) = (A5),1,0),
Taiilq, /T otherwise, with 7 =r d; =
J14qi 3]

CZZ‘]‘ = max{cﬁ-, CZ]}
Notation 3.2. In Z/l(?r:

(i) Z/{(?”O denotes the C(g)-subalgebra generated by {C’il,kiil,H” | i € I,
r # 0}, or equivalently, the C(g)-subalgebra generated by {C*!, kiil,flfr
i €Iy, r €L}
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i) YyPr00 b0+ and YPr0~ denote the C(g)-subalgebras generated respec-
q q q
tively by {C*1, ki [ i € Io}, {H;, | i € Io, v > 0} (or {Hj, | i € Io, r € Z})
and {H; , | i € Iy, r < 0} (or{H |i€ely, reZ});

(iii) L{Dr’+ and UP"~ denote the (C( )-subalgebras generated respectively by
{X; |2€IO7rEZ}and{X | i€ Iy, reZ};

(iv) L{D]“+ T and Z/IDr’ '~ denote the C(q)-subalgebras generated respectively by
{X .|Z€I0,T>Z}and{X |iely, r<Z};

(v) given a € Q, MDr denotes the a- homogeneoub component of Z/{l?r: Z/I;Dr =
BuocoUPs where CEL RS € Uyo, X[ € UPR sy o s UPT =UP™ NUDE.

Remark 3.3. (i) UP"00 C Uy

(ii) uDrO C @Bz qmé’

(i) U™ " € C(q) ® Bez, acqo o\ (0} Upmotal

(iv) Up" T C C(a) @ Brnen, acqo o\ (0} Yamstas

(v) for all @ € Qo1 and m € Z, U>" 1t

q,mé+a 18
in general infinite-dimensional.

Dr,+
is finite-dimensional, while L{q méta

Definition 3.4. (i) Q: U " — UP" is the C-anti-linear anti-involution defined

by
g—q ', CH' o kT e kT XS e X
H r Hz:FfW Hi,r — Hi,—r~

(i) i : UPT — UPT (i € Ip) is the C(g)-automorphism defined by
+1 +1 +1 —8;;di\£1 + +
CH =07,k — (k;,CTou% )= Xj’r»—>Xj’er5ijJi,
+ +
H '—).[T[jr7 Hj,rHHj,W
(iii) & : UPT = UL (c: Io — {£1} ) is the C(¢)-automorphism defined by
SC‘L{?T'O = idut?r,o, Xlir — CiXii,r-

Remark 3.5. (i) For all4,j € Iy we have Qot; =t;0Q and t;0t; =t 0t;;

(11) Q(u{]]ﬁ)r,O) — uDrO Q(uDr,0,0) — Z/{(]]:)I‘,O,07 Q(u{]})r,o,i) — utlli)r,O,:F’ Q(u{]li)r,i) —
UPEE, QDT = UP"

iURe) = U (o

(uDr *) uDr * t (uDr ,0, *) uDr,O,*.

(i) ¢
) t

(v) more precisely, ¢; |um 0+ = id,, Dr0, & (x€40,+,-});
i)
)

(iv

—1(uDr++) Z/{Dr4r+7

(vi
(vii L{DH‘ Unen(ts---. -tn)N(Z/Ifr’J“‘“);
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(viii) for all ¢,é: Iy — {£1} and all i € Iy we have .0 = Ez, Eco = Qo0&
and EC oti = ti o(‘:c;
(ix) E.(w) = £x for all z € UPY, and « € Q.

q,c

Remark 3.6. In U4’" we also have (see [Drl] and [Dal]):

(ZH) Hi,r =0 V(Z,T') € (I() X Z) \IZ7
(KH) [kis Hjs] =0 (i € Lo, (4, s) € Io x (Z\ {0})),
cr—-cr

(HH) [Hiﬂ“a Hj,S] = 6T+870bijr 1 ((@7’), (37 S) € Iy x (Z\ {0}))7

4 —4q;
so that:

(i) UPm00is central in U0
(i) UP00 is a quotient of C(q)[C*!, kF! | i € Iy] and UP™*F is a quotient of
C(Q)Hr | i € Lo, di[r > 0];
(iii) the natural homomorphism of C(g)-vector spaces
U™ B U™ B U™ = U™

is surjective.

Remark 3.7. In )" we also have (see [Drl] and [Dal])
(HX®)  [Hip, XG] = £by, CUTIDRXE L (7). (G, 8) € To X Z, 7 # 0),

which, together with the relations (CUK), (CK), (KX¥), (XX), implies that the
natural map U(?r’_ ® U(]]Dr’o ® U(?r"“ — U(?' is surjective.

Remark 3.8. Notice that setting UP"~ = @ e KaldPh™ (= Bpeo Ut Ka)

we get B
UPr @ UP™ Ul =2 UPtT @ UPTC U

Notation 3.9. (i) Denote by (DR) the following relations:

(XD) [X:r%j,xjfs]q?u+[Xjfs+gij,xj,]q;ﬁ =0 ((i,r),(j,s) € Iz, aij < 0),
k 2

(X1 > olX X e =0 ((rure) €22 (X di) # (A5, 1)),

1,71
€S,

(X2) Z o (X7 o X g2 — a* (X5 1 Xialg-0) = 0
€S,

((r1,72) € 22, (X9, d;) = (AD), 1)),

(X3) Z O-'[[X;,rrlJrl?X;TTQ]QQ’Xirg}q4 =0
oES3

((r1,r2,73) € Z%, (XL, dy) = (A, 1)),
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(SUL) Z [[ [[X]—tsterq*aw’Xjrz]q7“77*27"']q;‘i.j+27X:_r1 a; }qalﬂ =0

o’ES1—aij

(’L #] € IOv Qi € {07_1} if k 7é 1a T e Zl_aij7 s € Z)’

(T2) Z HXJ 97Xz r1+1]q 7Xi+r2} :07
oeSs

(i,j € Io, aij = -2, k=2, X 2 4D (ry, 1) € 22, 5 € ),

(52) Z J'((q2+q )HX] s7Xz 7‘1+1]q2’X1 Tz]
€S,
+q[[X1r1+17X2r2]2X }*>:O
(1,7 € In, aij = =2, X(k Agi, (r1,m) € Z%, s € ),

(T3) Y 0@+ DIXG X polen Xl

€S,
+ HX]JFS’ Xz r1+1]q3’Xz r2+1] ) - O

(Z,] c I(), Q5 = —3, k= 3, (?"1,7“2) S ZQ, CES Z)
(ii) Denote by (S) the relations

(S) Z [ HX;S;X:FH] U?X'LJrrg] 7_“ ig T2y Xl+7"1 a”]qj” =0
0’6517«1”

(i#7€ly,rcZ™i scl).
(iii) Denote by (U3) the relations

(US) Z [[[X] 57Xz 7"1+1]q ’Xz VQ]Q’X;Lm] :0

c€S3 L 2
(i, € Iy, a;j =—3, k=3, (r1,r2) € 2%, s € Z).

: + et NS
y + /s )
(iv) Denote by (ZX7), respectively (DR,), (S4) and (U3,), the relations of
(ZX™), respectively (DR), (S) and (U3), involving just elements XZ-""T with
r > 0 (see Definition 3.1).

Remark 3.10. (i) The relations (DR), (S) and (U3) hold in D" (see [Dr1] and
[Dal]);

(ii) the relations (SUL) and (SUL,) depend on (S) and (S ) respectively;

(iii) the relations (S) and (U3) depend on (DR) (see [Dal]);

(iv) in the algebra generated by {X | i € Ip,r € N} the relations (S1) and
(U3;) do not depend on (DR4.) (1t is enough to compare the degrees of (S,)
and (U3;) with those of (DR,) remarking that the algebra generated by
{X;. |i€ly, reN}is Qo @ No-graded).
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84. Preliminaries: 9

In this section we recall the homomorphism 1 : L{l?r — L{(PJ and some of its
properties (see [Be] and [Da2]).

Definition 4.1. ¥ = ¢ ) : U(?Y(Xrgk)) — U?J(Xék)) is the C(q)-algebra homo-
morphism defined on gengrators as follows:
CE s K kP e KEY O (i€ D),

X:&ir = o()" Ty (B, X 5~ o) T (Fi) (i € lo, 7 €Z),

VE - ifr>0
H, ; o) Bgirspy T (i € Io, r € 2\ {0}),
o o(i)' F(_jssy fr<0

where o : Iy — {%1} is a map such that:

(a) a;; # 0= 0(i)o(j) = —1 (see [Be] for the untwisted case);
(b) in the twisted case different from AP a;j = —2 = o0(i) =1 (see [Dal]).

2n >

Remark 4.2 (see [Dal]). (i) ¢ preserves the gradation, that is, Y (UD%) = UL s
for all @ € Q;

(i) ¥oQ = Qot;
(111) 1/) 0801, oty = T)\i ot for all i € Iy, where

oili) = {o(i) if j =1,

1 otherwise;
(iv) 1 is surjective.

Proposition 4.3. Let us compare L{?r and L{(PJ through 1 ; then the PBW-basis
of UP? and Remark 3.6(ii)&(iii) imply that:
(i) Upr00 =~ C(Q)[CH, K | i € Iy and w|u§>r,o,o 2 UPOO — YPIO is an
isomorphism;
(il) UP™OF = C(q)[Hiy | i € Iy, di|r > 0] and UPO~ = C(q)[H,, | i € I,
d; |r < 0];

(iii) the composition
U(]]Dr’o’_ ®c(q) U,?r’o’o ®c(q) U,?r’o’+ — U(?r’o — U(]]Dr i) U;DJ

18 1njective;

(iv) UPTO~ ®¢(g) UPTO0 @ (g UPTO+ 2 3P0,

(v) T/)|u§r,o : Z/l(?r’o — U(?J 18 injective.
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85. Reduction to a finite-dimensional situation and
triangular decomposition

The aim of this paper is to prove that 1 is an isomorphism, i.e. that it is injective
(since it is surjective). The strategy is to reduce the task to studying the restriction
of 1 to finitely generated A-submodules of Z/{,?r, so that the specialization argument
described in the introduction (Proposition 0.1) can be applied.

The first step in this direction would be restricting to the @-homogeneous
components U;?;, which are though far from being finite-dimensional; in similar
situations, for example when studying the Drinfeld—Jimbo presentation of quantum
algebras, triangular decomposition solves this difficulty, because it provides the
lower bound 0 € @ for the weight of the elements considered.

In the Drinfeld realization this simplification is important but not enough:
indeed, UD% is in general infinite-dimensional (see Remark 3.3(v)). The same
remark suggests analyzing in fact U(?"“"Jr since it is the direct sum of (its homo-
geneous) finite-dimensional components.

This section is devoted to showing that the injectivity of ¢\u£r,+,+ implies the
injectivity of .

As outlined above, the reduction to this finite-dimensional situation requires
the analysis and understanding of the triangular decomposition of Z/ll?r.

By triangular decomposition of L{?r we mean the following claim:

Dr,— Dr,0 Dr,4+ ~ Dr
U™ B Us™ Beig U™ = UG

Hernandez [H] proved triangular decomposition for the quantum affinizations of
all symmetrizable quantum algebras; this class of algebras includes the untwisted
affine quantum algebras, but does not include the twisted ones.

Here we show that the injectivity of wu}f“*'* implies both the triangular
decomposition of Z/{(?r and the injectivity of .

We have already noticed that the product Z/l(?r’_ ®C(q)u$f70®c(q)u;3f’+ — Z/[,?r
is surjective (see Remark 3.7): therefore triangular decomposition is equivalent to
the injectivity of this map.

Proposition 5.1. The product map (U™ ") Qc(q) YUP™?) @c(q) (U™ )
— Z/{(?J 1s 1njective.

Proof. h(UP"T) is the subalgebra of UP” generated by the root vectors Eysa,
(i € In, r € N), hence, by the Levendorskii-Soibelman formula and the PBW-basis
(see Remark 2.3(x)&(xi)), it is a subspace of the linear span of the ordered mono-
mials in the root vectors Eg, with 7 < 0. Of course ¢(UP™™7) = QUL TT)),
hence it is a subspace of the linear span of the ordered monomials in the root
vectors Fg, with » < 0.
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Recall that ¢ (UP™0) = p(UPT0 ™) @ pUPH0) @ (UPHOT) (see Proposition
4.3(iv)&(v)), and that ¢ (UP"%") is the subalgebra of U generated by the root
vectors E,5,) (i € Io, 7 > 0).

Then the triangular decomposition of U’ (see Remark 2.2(ii)) and the struc-
ture of its PBW-basis (see Remark 2.3(x)) imply the assertion, thanks to Propo-
sition 4.3(1)& (ii).

Proposition 5.2. If 1/)|M(113r,+,+ is injective then:

i) 1) is injective (that is, UPT = UPY | see Remark 4.2(iv));
q q
(ii) U™ ®c(q) Uy ®c(q) U™t = U™

Proof. Tt is enough to consider the following commutative diagram for all N € N
(see Propositions 4.3 and 5.1 and Remarks 3.5(vii)&(viii), 3.7 and 4.2(iii)):

N
UPT =~ @UPr0 g yPrt+ Eotteret)
q q q

Dr,— Dr,0 Dr,+
UL QU @ Y]

ium

YUPHTT) @ PUPO) @ UPTH) U
N
U’ U’

Remark 5.3. We have ¢, %) C UP?+. On the other hand p(UP" 1) ¢
U;DJ"“. More precisely for all i € Iy and » > 0 we have w(X;’r_r) € Z;lf‘]’_ and
YUPTTY U # {0} if di |

In particular the Drinfeld triangular decomposition that we aim to prove will
not correspond to the Drinfeld and Jimbo triangular decomposition, but will give
rise to a substantially different decomposition. For a comparison between the two
decompositions see Proposition 9.3.

Lemma 5.4. Let o € Qo 4, r > 0, i € Iy be such that rd + o € ™, or (16, 1) €
®'"™. Then
(i) Ersta € w(Z/{tPr’*‘), and if r > 0 then Frs5_oK,5_o € 1/}(1/[(?“‘“);
(i) Ko rsBrs_a € 9UP™) if 7> 0;
(il)) B, € 0UP™) if 1> 0.

Proof. Define
U={o ety | VN >0, Ty V(@) e U™, T (2) € U~
Then:
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(a) U is a T -stable C(q)-subalgebra of UP? (obvious).

(b) $(UP™*+) C U thanks to Remarks 2.3(vi), 3.5(vi) and 5.3.

(c) ¢(UP™+) C U thanks to (a), (b) and Remark 3.5(vii).

(d) U =UP""): consider the identifications induced by the product

UPY = HUP™) @ HUP™) @ D (UP™)
= YUy ") @YU T) @YU ) @ YU @ U )

and note that through these isomorphisms, for every u € Z/{(?J there exists
N € Z such that for all N > N,

TN (u) € pUY™7) @ U T) @ pUP™0) @ YUYW T) @ YUY TT);
moreover

YUPTTT) @ PUPTCTy CUuPt T, Um0 cuPe,
Dr,0, Dr,+, DJ,+.
PUPOT) @ PP ) CuP

hence if u € U the condition T5 ™ (u) € UPT for all N > 0 and the triangular
decomposition of UP” imply that u € ¥(UP""T) @ (UL"T); but then for all
N >0,
T (1) € HUP™0) 0 P

and again since (UP"0T) C UPT T, the condition T3 (u) € Z:IJIDJ’_ for all
N > 0 and the triangular decomposition of U}IDJ imply that u € z/J(Z/[(?r’+),
which implies the claim.

(€) Ersta € U thanks to Remark 2.3(vi).

(f) Frs—aKr5—a € U thanks to (a) and (e), since Fr5_q K 5—q is Th-conjugate to
any Fgs1q with s > 0 such that (Ma) |7 + s (see Remark 2.3(vi)).

(d)—(f) imply (i). Applying Q to (f) we get (ii), while (iii) is a straightforward
consequence of the definitions.

Corollary 5.5. UP?+nup(UP™T) is the C(q)-linear span of the ordered monomials
in the Ersiq’s with r >0 and o € Qo+ such that rd + o € ®*°.

Proof. Let Uy be the C(g)-linear span of the ordered monomials in the Fg_’s with
r < 0, U_ be the C(g)-linear span of the ordered monomials in the Eg ’s with
r > 1, and Uy be the C(g)-linear span of the monomials in the positive imaginary
root vectors. Then the PBW-basis of Z/l,?‘]’+ says that U(PJ’* =2U_@UyeU,. But

U_ @ Uy CoUP™™ ) @p@UP™), Uy CpUPst)
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and
DUPTT) @ YU) @ U = Uy,
so that UP" T NYUP"T) C Uy, which is the assertion, thanks to Lemma 5.4(i).

86. Integer form

We are reduced to proving that w|u313r,+,+ : L{l?r7+7+ N L{(]]DJ»'*' is injective, and we
want to show it through specialization at 1. This requires passing to integer forms
of U(?r’*"‘*‘ and U(?J T and to their presentations by generators and relations.

To this end we start with some notation, underlining that in this section we
work with the ring A = C[q](4—1) (the localization of Clq] at (¢ — 1)).

Notation 6.1. (i) F; is the A-algebra freely generated by {Xir | i€ lo,r >0}

(ii) Zy is the ideal of F defined by the relations (ZX), (DR4), (S4) and (U34)
(see Notation 3.9);

(iii) ¢, : Fy — Fy is the A-endomorphism defined by X — o(i)X:T+Ji (see
Definitions 3.4(ii)&(iii) and 4.1); we also denote by ¢/, the .A-endomorphism
induced by t/, on Fy/Z,.

Remark 6.2. (i) Fy, Z; and consequently also F /Z, are all Q-graded where
the degree of Xj, is a; + 10;

(ii) the A-modules (Fy), and (Fi/Z1)a (o € Q) are finitely generated: they are
generated over A by

h
{X+ coe X iT.EIO,m,.ZOVTzl,...,h,Zm7.5—|—air=a};
r=1

i1,m1 Th,MMh

(iii) the natural map fi : Fy/Z, — U." is well defined (see Definition 3.1 and
Remark 3.10(i));

(iV) f+ ol?/_,'_ = Sootl_lo otglof_,_.

Remark 6.3. Of course C(q) ®4 f4(Fs/Ty) = U t and fo(Fy/Zy) is an
integer form of Z/{}]Dr’*""‘: indeed, fy(F}/Z;) is a direct sum of finitely generated
A-submodules of a C(g)-vector space, hence it is free over A.

In particular a C(g)-linear map defined on Z/l(?r""’*‘ is injective if and only if
its restriction to fy(Fy/Z4) is injective.

Corollary 6.4. If 1o fi is injective then:

(i) f+ is injective, hence Fy /Iy is an integer form on/{(?r’+’+ (see Remark 6.3);

(i) ls, (7, /z,) is injective (then so are wlu;:)r,-%—,-f— and 1), see Proposition 5.2(1)
and Remark 6.3).



148 I. DAMIANI

Remark 6.5. The image of ¢ o f is contained in Z/{BJ"". Indeed, ’(,ZJ(X;_T) € UEJ N
UPIH =UR"" if r > 0 (see Definition 4.1 and Remarks 2.3(iii) and 2.4(iii)).

Notation 6.6. Set ¢ = o f1 : Fy /Ty — U™,

Remark 6.7. 1/; is obviously homogeneous, that is, 1[1 = ®aeQ+ 1/~Ja with 1/~)a =

1/~)|(}-+/1+)a and consequently 1/;1 = ®a€Q+ (1[)&)1 where (1[)&)1 is the specialization
at 1 of Yq.
Since (Fi /L4 )q is {initely generated over A and Z/IJ]Z:](;JF is free over A, we infer
that for each a € Q, 1, is injective if (¢,)1 is injective (see Proposition 0.1).
Thus ¢ is injective if 17 is injective.

87. Specialization at ¢ =1

We are reduced to studying the specialization at 1 of 1]) To this end it is important
that we first understand the structure of the specialization at 1 of F/Z; and
of L{BJ’Jr. Since, as recalled in Remark 7.1 below, the specialization at 1 of UBJ’J’
is well known, we concentrate on the description of the specialization of F /7.

Of course a first presentation by generators and relations of the specialization
at 1 of /T, is immediate, by just specializing at 1 the defining relations of
F+ /I, (see Proposition 7.2). The present section is devoted to simplifying these
specialized relations.

Remark 7.1. Thanks to Remark 2.4(iv), the specialization at 1 of UEJHF is the
enveloping algebra of the Lie algebra generated by {e; | i« € I} with relations
(ade;)!7%i(e;) = 0 when i # j (Serre relations), which is well known to be the
positive part of the Kac-Moody algebra g = @(X;Lk)) and also of the loop algebra

(g ®c C[tF])* 2 gX = go (see [K]).

By the very definition of F; and Z; we have

Proposition 7.2. The specialization at 1 of F+ /Ty is the (associative) algebra
generated by {x], | i € Iy, r > 0} with the following relations (dr):

+ + + +1 =
(xd) [xi,wdij’xj’s] + [:ijerJij,xM] =0
@) Y olef af,]=0 0 () e N (X di) # (A8) 1)),

iri4d;” T2
gESs

($2) Z U.[x;fm+2,$;;2] =0 ((T1’T2) € NZ’ (Xrglk)’di) = (Agi), 1))7
g€Ss

(zz) zh =0 (ditr),
((4,7), (4, 8) € Iz, aij <0),
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(1"3) Z U'[[I’:’l‘l-‘rl? x'j:'rZ]? xj:'rg] = O
oc€ES3
((r1,m2,ms), € N°, (X, dy) = (45, 1)),

(t2) Z U'Hx;:s’xir1+1]7‘ri'r2] = 0’

7S 0 4 4@
(i,j S Io, Q5 = —2, k= 2, Xﬁ 7é AQn’ (T1,7“2) S NQ, CRS Z),
(82) Z 0.([[$IS,$:T1+1},1':T2} + [[‘r;:s7x:r2]7x:rl+l]) =0
gESy

1,7 € Iy, a;; = —2, ng) :A(Q), 71,72 EN2, sEZ),
J n 2n

(t3) Z O-'(z[[x;:s’xj:rl+2]’xj:r2] + [[z;:svxz—‘fr1+1]vxz,_r2+1]) =0

oES, o 9
(i,j € In, a;j = =3, k=3, (r1,m2) € N*, s € Z),

(US) Z U'[[[Izwzirl-i-l],:17;’:7«2]7:17?:7«3] =0

oc€ES3 o 3
(i,j € In, a;; = =3, k=3, (r1,r2,713) € N°, s € Z),
+ o+ + + _
(S) Z J'[' o [[mLS’ xiﬂ‘l]’ xiﬂé]’ T ’$i77'17a7‘,j] =0
Ueslfaij

(i#3j€ly,r e N'"% s€7).

Proof. All the relations (dr, ) are the immediate specialization at 1 of the relations
(ZX$,DR;,U3,S ), recalling Notation 1.5 and Remark 3.10(ii), and noticing
that relations (52, ) specialize to

0 = Z (2[[1’;8,.%:7"1_‘_1],.%;;2] + [[xzih—s—l?x;:rg]?x;:s])

gES>

- Z (2[[xj:b’ xi—T'rf-l]’ ‘r:Tz] + [x;:"'l"l‘l’ [x:w’x;:s]] o [x:ﬁ’ [x:7‘1+1’ ‘TIé]])
gES>

= Z ([[x;s?z:rl-i-l]’z:rz] + [Iz—'i:rl-i-l? [Ii_rpxj:s“)a
gES2

which is (s2).

Remark 7.3. In the relations (dr,) (see Proposition 7.2) all the products are
expressed in terms of brackets; hence the associative algebra generated by {acj'r
i € Iy, > 0} with the relations (dr.) is the enveloping algebra of the Lie algebra
generated by {x;, | i € Iy, r > 0} with the relations (dry). This Lie algebra plays
a central role in the following.

Definition 7.4. Ly is the Lie algebra generated by {x;,. | i € Iy, r > 0} with the
relations (dr, ).
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Remark 7.5. The specialization at 1 of F/Z, is the enveloping algebra U(L.)
of the Lie algebra L, (see Proposition 7.2, Remark 7.3 and Definition 7.4). In
particular t; is a homomorphism of associative algebras from U(Ly) to U(§")
(see Remark 7.1). The next step is to prove that zﬁl(LJr) C g which implies that
wl‘h is a Lie algebra homomorphism from L to g+ and ¢ = (¢1|L+).

Remark 7.6. We have ¢1(Ly) C (g4 ®c C[t])X C g*; in particular, thanks to
Remark 7.5 we deduce that 1 is injective if and only if 11|z, is injective.

Proof. Since o =Ty ¥ (see Remarks 4.2(iii) and 6.2(iv)), the claim follows
from the fact that ¢ (z i t) =ei € go+ C @, from Remarks 2.4(viii) and 3.5(ix),
and from the fact that §,54q, C (g4 ® C[t])X for i € Iy and r > 0.

Proposition 7.7. 1/;1\L+ : Ly — (g4 ®c C[t])X is surjective.
Proof. We have

(g4 ®c C)* = P @c Ct") @ (9" @c Ct7) = (g @c C[t)*
reN eN

[r]

where gl'l = g apllag }' is well known to be a simple finite-dimensional

go = g[o]—module, hence a lowest weight cyclic gEE] = go,+-module (see [K]). Then

g[ﬂ (= @a€Q07+\{(]}(g[7'])a) is generated as a go +-module by

D e: =B De (= B (e since (o), = (0) if di 7)),

iclo iclo icly:
di\r

that is, (g4+ ®c C[t])X is generated as a go +-module by EBiGIo,TGN: (gk])ai ® Ct"
B di|r

or equivalently by {11 (z; ) | i € Iy, » € N such that d; |r} since for all i € I,

and r € N, 1, (x t_ )= iT "(e;) # 0 (see Remarks 2.4(viii), 3.5(ix), 4.2(iii) and

6.2(iv)), and (g+ ])a is one-dimensional.

This forces {1y (x; ) | i € Ip,r € N}, which obviously contains {e; =
e xfo) | i € Io}, to generate (g+ ®c C[t])X also as a Lie algebra; the assertion
follows.

Corollary 7.8. (i) Ersiq € U™ 1) if 1> 0 and o € Qo4+ \ {0};
(i) LD O GUP) = U,

Proof. (i) follows from (ii) by Corollary 5.5 (indeed, (i) and (ii) are equivalent
claims because (UL ) C UPTT N p(@UPTT)). So it is enough to compare the
dimensions of the homogeneous components of U Ny UP*T) and UL+ T):
for all @ € Q,
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dimeg) UDTT N YUP™T) > dime) Y UPLTT) = tka ¥ (F4 /T4 )a
= dimc 1 (U(L4)a) = dime U((g4+ ®¢ Ct])¥)a = dime(g UDDT NP )

where the last two equalities follow respectively from Proposition 7.7 and from the
comparison of the C(q)-basis of UP"* Ny (UP"T) described in Corollary 5.5 with
the PBW-basis of U((g+ ®c C[t])X).

Before proving, in §8, that the Lie-algebra homomorphism 121| L, is actually
injective, in the remaining part of this section we simplify the relations defining L
(see the following computations, summarized in Corollary 7.29).

Remark 7.9. Relations (zd) are equivalent to saying that if a;; < 0, d; |r and
d;|s (i # j fixed) then [z, 2] depends only on r + s. Together with (s) in case

1,7 ],8
ai; = 0 they imply
(zq) [x;%xjfs] depends only on 7 +s (i # j € Iy fixed, d; |7, d;|s).
Lemma 7.10. Relations (x1) and (x2) are equivalent to
Lo fo if (X3, di) # (A5),1) or 2|7 45,
(x172) ['Tiﬁ" mi,s] = hio+ + .
(-1) [xi,s+h+17 xi,erh] if r=s+2h+1;

+ ot

in particular (=1)°[x;" ., 2] depends only onr + s.

Proof. That (x1,2) implies (1) and (22) is obvious. Conversely:
Case (ng)7di) =+ (Aéi), 1): of course we can suppose r > s and proceed by

n
induction on r — s, the cases r = s and r = s + d; being obvious; if r > s+ d; then

;%xj’s] = —[x;;_s_(iﬁx;_dl] = [z zt . ]=0 (r—d;>s+d;).

[217 i,r—Ji7 i,s+(ii

Case (ng),di) = (Agl),l): again we can suppose r > s and proceed by

n
induction on r — s, the cases r — s = 0, 1,2 being obvious:

r-—s=3 = [‘riwx;ts] = [x;fs+37 xjs] = _[‘ris+2’x;,rs+l];
r—s>3 = [‘T;tr’xifs] = _[‘ris+27$;tr72] = [xi'r727x;fs+2]7

from which the claim follows by the inductive hypothesis, since r — 2 > s + 2.

Corollary 7.11. If (X", d;) # (A2 1) or 2|r + s we have la, 2], 27, =
[la,x] ], ;] for alla € L.

» Vel Ve

Proof. Indeed, [[a, 2] .], =] ,] = [[a, 2], 2] = [a, [z}, 2] ,]] = 0 thanks to Lemma
7.10.

Lemma 7.12. If (Xék),di) = (A(z) 1) relations (x12), (£3) imply

2n

(x3) [ b Jaf 1=0  ((r1,re,7r3) € N?).

1,71 Vi, rel) Virs
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Proof. Thanks to Lemma 7.10 it is enough to prove that
[[J:;frﬂ,xzfr],xis] =0 Vr,seN.
Recall that by (x3),

Hx?:rJrl? Z'ZT], mj,_s] + [[x’;',_’l’+17 x;:]’ x'j,_r] + [[.’13;—:+1, Z‘:,,,], ‘r:rr] = 07

)

if r 4+ s+ 1 is even then, by (z1,2),

[x'j,_rJrl’xj,_s] =0= [xj:s+1axj:r]v
so that
[[x?:r-i-l? m::r]’ x::s] = Oa

if » + s is even then by Corollary 7.11,

H‘Ti_r—&-l’ x:r]’ Ij,_s] = [[‘T:',_T-‘rl’ ‘TISL xj_r]?

moreover by (z12), [x], 1,27, ] = £[z], 1, 2], so that

0= H‘/E:r+1’ x?,_r]’ 'r:_s] + [[Z‘IrJrl? xis]’ x'-:r] + [[x:s+1’ xz—'t_’r]’ xj,_r]

= Q@+ D)l 2] 2],

which is [[:C:H_p x:r]ﬂ x;":s] =0.

Proposition 7.13. Relations (z1), (22), (3) are equivalent to relations (x1.2),
(z3) (it is obvious that (x3) implies (23)).

Lemma 7.14. Let i,j € Iy and r1,72,s € Z be such that a;; < 0, d~i|r17r2 and
dj|s. Then:

() ifdi > d; and (X, d;) # (A2, 1) then

Hx;:s’ 'rj:rl]? Ij,_rz] = [[xj:s+’r1+r2 ’ x;,_OL x:()}a

(i) ifl=d; <d;j =k or (Xék),dz) = (Agff, ), and k|rq —e2 (0 < e < k) then
[[xzs,xiﬁ],miw] depends only on (s + 11 + ra,e2).
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(i) is similar: if d; < dj or 2|71 + 79, then

[[x;':svxj,_’rvaZ_Tz] = [[Ijjsazi}‘z];m:rl] = HIIS-‘:-T‘z—&‘z’x:Ez]’x;x_Tl]
- + + + 7.
= [[:Cj;s+r2762’ mi,ﬁ]’ i,Ez]’

if(XT%k),d) (Agi, 1), and s+ 71 > 0 or 2| rg, then

H.’E;ts,l':ﬁ},x:TJ = [[x;ts-l—rl—sg’x:sg]’xxrg] = [[x;s—i-rl—ewx:rz]?x:sg};

in both cases [[x;rwxjrl]wl +,] depends only on (s + 71 + ro — £2,€2), that is, on

(s + 71+ 72, €2); finally if (X (k),di) = (Agl), 1)and s =71 =0, rp =2r+1 we can
suppose r > 0 and we have

Hx;r,()? wio], xi2r+1] = ij,O’ Ly 2r+1]’ l’z‘,o]“‘[x;r,o’ [l’j,o» xj2r+1”
= [[x;fo,wj2r+1],a:;f0]+[x;fo, [ijxjw 1]
= Hx;fo’xjwﬂ]amio]"‘[[x;fo’xiz]axjw == ;F,O»xiw—l]w:fg]
= H'T;507x1+2]7xi+2r—1]7

and the claim follows from the previous cases.

Proposition 7.15. Relations (zq), (z1,2) and (t2) are equivalent to relations (zq),
(z1.2), (t5) and (t5), where

(tIQ) ijyle]vxjo] =0,
(t3) [z} i) ais] = =[l2] s po 20 270)

(k = 2, a'ij = —2, X;Lk) 7& Agi))
Proof. Indeed, Corollary 7.11 and Remark 7.14 imply that

Z 0'.[[33;:8, x?:rlJrl]’ xz_’rz] = Hx;:y x;,_r1+1]7 xz,_m] + [[x;:m x?:u]’ x?,_rngl]
oESy

_ {[[ Is+7‘1+r2’ z+1]’ J?J': ] + Hx;:errlJrrz?xz_O]? 'T'j,_l} if 2 | 1+ 7o,
[[ ;rs+r1+r2 1 ;rl » L 1] + [[x;ts+r1+r2+1’ aj;fO]’ x;CO] otherwise;
but by Corollary 7.11 we have

Hm;r,errlJrrg ’ x;1]7 .7}:0] + [[w;S+T1+T‘2 ) x;fOL xtl] = 2[[xj,s+r1+r2 ’ .’L‘le x:O] .
Proposition 7.16. Relations (xq), (x12) and (s2) are equivalent to relations
(za), (z1,2) and (s2), where

2
(s2)  llafy afol afa) + lefen 2iol 2fol =0 (ai; = -2, XV = AQ).
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Proof. Indeed, Lemma 7.14(ii) implies that

Z U'([[x;s’wzfrl—i—l]’wim] + Hm;fs7x:r2]7x:r1+l])

gES,
_ + + + + +
= 2([[Ij,s+rl+r27zz-’i:0]’ 5172‘71] + [[Ij,s+r1+rz+1’ ‘TLO]? l’zgo])-

Lemma 7.17. Relations (z4), (x12) and (t3) are equivalent to relations (zq),

(z12) and (t3), where

(53) [[‘Tj:y x?,_r1+2]7 1';}2] + [[‘Tj:s? x?,_rl-f-l]? x?,_rz-&-l} + [[SC;:S, ‘Ti_rl]’ 13:7,24_2] =0

(k = 3} aij = 73} 5,T1,T2,T3 € N)

Proof. Indeed, by Corollary 7.11,

Z 0. (2[[%;57 x:rl-‘,-QL "L‘:T‘Q} + [[x;s7 xir1+1]7 xir2+1])
oeSs

= 2([@;37‘%.:7“1-&-2}7%':7“2} + [[x;:sa "E?:'r‘l]’ "I"zfrg+2] + H‘T;fsaxxrl—i-l]axim—i-l])‘

Notation 7.18. Let us define the following relations:

(t5) [z g aia)s wifh] = =2[[z] . aio), 3] (k =3, ai; = =3),
(t3) 2[[xj+,sa$;fz]a$:1] = _[[x;fs+3vmi+,o]v$i+,o} (k =3, aij = =3),
(t5') [[xzsa x;tz]a 351+2] = —2[[x;ts+3,x:1],x;fo] (k =3, a;; =-3).

Remark 7.19. Relations (z4), (z12), (£3) imply relations (t5)—(t4’).

Proof. Using relations (z4) and (x712) we find of course that (t4), (t4) and (¢5')
are (£3) with ry + ro = 0, 1,2 respectively.

Proposition 7.20. Relations (zq), (z1,2), (t5), (t5), (t5') are equivalent to rela-
tions (zq), (z1,2), (t3).

Proof. We prove by induction on r1 + 7 that relations (x4), (x1,2), (¢5), (t4), (t5)
imply relations (£3), the cases 0 < r; + 72 < 3 being obvious (see the proof of
Remark 7.19). If 71 + ro > 3 use induction on ro: if 7o = 0 then r1 > 3 and thanks
to (z4) we have

[[x;:s’ x:m-i—Z]? x?:?"g] + Hm}ts’ x?:rl—i-l]’ x’;’:’f’g-‘rl] + [[:L';Cs? x;:rl]v x;:r2+2]
= [[$Is+3’ x:frlq]vxxo] + [[x;-fﬁnginlewill + [[x;L,Hva:nfg]’ x:ﬂa

which is zero by the inductive hypothesis (r; —3 4+ 0 < r; + r2); if 72 > 0 then,

thanks to Lemma 7.14(iii), [[xjfs,xth],xzfmw] = [[x;fs,xim%],xirrl], so that
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+ o+ + + o+ + + .+ +
([Ec7 RN P 2 | R SN SR P ARSI o | R e SO

= [[x;w ‘T;tr1+3]’ xir@—l] + Hm;fy x:r1+2]7 ',I;;’:T‘Q] + [[‘/L’jm xir1+l]7 :I";Trrl-l}?
which is zero because ro — 1 < 9.

Remark 7.21. If k = 3, a;; = —3, relations (zq), (z1,2), (t5), (t5), (t§') imply
that if s > 0 then

[[[xj:sa $;f1], zio]amio] =0, [[['1’13’:871‘2,—2]71‘?:0]7113:0] =0.

Proof. If s > 0 then s > 3, so relations (¢§), (t4), (t4) imply that

Analogously

2[[@;5 Iﬁfz],xfo],mﬁfo] + [[[m+ l":ﬂﬂ"*ﬂﬁ%] =

0

) i
[z}, afi ] afol, b ) + laf g 2hy), 2fo), 28] =0
x;fsf3axzf2]>$;f1]7$2t2] + [[[wjfs,w;fo},xio]wiz] =0

which yields [[[xjs7 mLL x;fo], x;fo] =0.

Notation 7.22. Let us define the following relations:
(u3) H[SU;CO,I'ZI],CEIO],(E =0 (k=3 ay=-3),
(ug) [z} o, 2ia), 2ol afol =0 (k =3, ai; = =3).

Remark 7.23. Relations (z1,2), (t5) and (u3) imply relations (uj) and (uf).

+
i,0
+
i,0

Proof. (uj) is (u3) with s =r; =ro =13 =0.
[(té),:ci‘o] with s = 0 and (u3) with (s,ry,72,73) = (0,1,0,0) imply (u}),
using Corollary 7.11.

Proposition 7.24. Relations (zq), (z1,2), (t5), (t4), (t5'), (us), (us) imply rela-
tions (u3) (hence are equivalent to relations (zq), (z1,2), (t3), (u3)).

Proof. The hypotheses imply that [[[z1,, 2, ],z ],z; ] is a rational multiple

7,87 u,r b ara Iy Mg

of [[[2] s % sy srpgry s Tl 0] (BY (a), (212), (85), (t5), (t5)), which is zero if
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3tri+re+rs (by (zq4), (uj), (uf) and Lemma 7.21). In particular (u3) holds
if 34 r; 4+ re+ rs+ 1. Otherwise we can suppose 0 < 1,719,713 < 3, r1 = T2,
rg+1=r1 (mod 3) (thanks to (zq) and (x1,2)), or equivalently that (rqi,re,r3) =
(1,1,0),(2,0,0),(2,2,1). In these cases (u3) corresponds to [(t’s),x;fl], [(tg),x;fo],
and [(t4"), sz] respectively.

Notation 7.25. Let us define the following relations:

(serre) (ad x;-fo)lfaij (:cj's) =0 (i#£}7).

Remark 7.26. Relation (s) implies relation (serre).

Proof. The claim is obvious since (serre) is (s) withr, = 0forallu =1,...,1—a;;.

Proposition 7.27. Relations (zq), (x12), (x3), (t5), (¢5), (s2), (t5), (t5), (¢5'),
(uy), (uf), (serre) imply that [[... [z zf |,...], 2] ] =0 forall s € Z and

o890 Tiry LR S P

r € Z'=%i; in particular they imply relation (s).
Proof. The relations, Corollary 7.11 and Lemma 7.14 imply that

.. [a:;:s,xz'rl], .. .],xzﬁia“]

is a rational multiple of

L1 A P AT PR P 2

(7 ad l,;i:o)lfaij (xj:s"r’f‘l"r“"'l""l—a,;j) lf d] | 1 + 4 rl—aija

0 otherwise
hence zero by (serre)) apart from the case A(z)7 a;; = —2, r3 odd, when
2n J
(o) )i, adn ] = (U@ gy e @0)s 0], 3 -

But by the above considerations

+

mm;r,s’x;fo]?xio]’xi,r] = [[xzs,x;fo], [%‘foa l‘;rr” + [[[xjsaxz,o]vxj,r]@io]
= [x;is’ [xim [xjm xj,r 1+ [[xISJ [wj,oa m:fr s xio]
= [[[xjfyxif()]’xierxiO} - [[[‘T;fsaxj,r}vxio],xio] =0.
Thus [[... [z}, 2,1, -], xirl_aij] = 0 always.
Remark 7.28. It is worth remarking that in the cases & > 1, a;; = —k relations

(22), (za); (21,2), (23), (3), (£2), (s2), (85), (15), (t5") imply (serre) with s > k
(that is, s > 0 if Xék) # Agl) and s > 1 if Xék) = A;i)) Compare this observation
with Remark 3.10(iii)&(iv).
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Proof. Suppose k = 2, X,%k) =+ Agi) If s > 0 then s > 2, hence
[[[m;sa x;to]axxo]axio] = _[Hl’j:s_27x:1}vx:1}ax:0]
= _H[mjfs—zvfil}’f:io}’wa] =0.

If ch) = A(2) let r < s; then

[[[xzs’wio],zio]azio] = *[[[wzs—r—hx:r]vx%]v93;,_0]
= *[[[I;fs—r—ux:r], z;fo ’Iz—{_l - [[IIS—T—DIz vl [@fv 17:0]]
= 7[[[1‘;:5—17:E:O]’ 1‘:0], zjﬂ - [[IIs—T—N E i,10 %4 OH?Ij,_T]
= —[[[x;:kl’z:o]aafxo]aziﬂ - [[[xj_s r—1>T4, x;4), @ O]’xj,_r]
+ [ij:sfrfl’ mio]’ inl]’ ijr]
[ +

in particular if s > 2 we have (choosing r=20,1)

3[[[$jgax¢+0]7xi+o]7xi+o] + ([ Ie 1 jo} x+o]»$zf1] =0,
[[[xjsa :ro]a ;Lo]a zo] + 3[[[= ;fs 1»3”:0}»‘%:0]»%;?1] =0,
from which the claim follows.
Now suppose k = 3. Then s > 0 implies s > 3, hence
[[[[x;fsvxio]vxz_o]vxio]vx;,_o} = —2[[[[z ;':s 3T jz]a z+1] 33+0]a33:0]

= _2[[[[9@573737:?2],x:fo]@xo]a le] =0.
Corollary 7.29. L. is the Lie algebra generated by {ch'r | i€ Iy, r >0} with re-

lations (zz), (xa), (21,2), (23), (t5), (82), (s2), (83), (£5), (157), (u3), (u3), (serre).

§8. Affine Kac—Moody case

This section is devoted to the study of the Lie algebra L (see Definition 7.4) and
of its relation, through v, (see Remarks 7.5 and 7.6 and Proposition 7.7), with
the Kac-Moody algebra § (see Corollary 8.21).

Proposition 7.7 and the structure of the root system of g (see Remark 1.2)
imply that in order to prove that 151| L. is injective it is enough to show that for
all @ € Qo+ \ {0} and r € N,

1 if at+rdedry

dim(C (L+)o¢+r6 § dll’l’l(c ga+r6 - .
0 otherwise.

Notice that the results of §7 imply the following:
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Proposition 8.1. Ifi € Iy and r € N then:

1 if di|r,

(D1) dim (L4 )a;+r6 <
0 otherwise,

1 if (X0 d) = (AP 1) and 2147,
0 otherwise,

(DQ) dim (L+)2ai+r5 < {

(D3) dim (L )has4rs =0 if h>2.
Proof. (Ly)a,4rs = () for all 7 € N and, for all h > 1 and r € N,

(L naitrs = (L) (h=1yas4rsr Tipy) | 71+ 12 = 7);
in particular:
(1) (L4)ha;+rs = {0} for all r € Nimplies L;,, s = {0} for all » € N and h > h;
(ii
D1) holds;
(iii) (D2) follows from Lemma 7.10;
(iv) (D3) follows from Lemma 7.12.

In order to generalize this result to all the roots we embed L, into a go-
module L; this structure provides the symmetries that allow one to easily determine
the needed dimensions of the homogeneous components of L .

Definition 8.2. (i) Ly is the abelian Lie algebra generated by {h;, | i € Io,
r € N} with relations h;, = 0 if d; {7 (hence {h;, | i € Iy, d; |r € N} is a
basis of Ly);

(ii) L- = (L4)°%;

i

)
(iii) for all i € Ip and r € N, x; . denotes —z;",
(iv) L=L_®Lo® Ly;
(v) o : L — L is the linear map defined by L = L_ ® Lo ® Ly > (y,h,z) —

(x,h,y) € L_® Lo ® Ly = L (in particular o(h; ) = h; r, U(xfr) =—z]).

@7

as an element of L_;

Remark 8.3. (i) Lo = Ly" as Lie algebras (since Lg is abelian);

() olp, : Ly = L_, ol : L — Ly and olp, = idg, : Lo — Lo are anti-
isomorphisms of Lie algebras.

Remark 8.4. (i) ho 3 h; — h; o € Lo defines a homomorphism of Lie algebras;

(i) go+ > € xi‘o € L, defines a homomorphism of Lie algebras, hence it
induces an action of g+ on Ly (e; — adp, 17:0)7 and adp, xi‘o is locally
nilpotent;
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(iii) go,~ > fi v ;¢ € L defines a homomorphism of Lie algebras, hence it

induces an action of go— on L_ (f; — adp_ xl’o), and adp_ z; o is locally
nilpotent.

Proposition 8.5.

0 Zf CL‘J '|"I’,
hipx], = Bijrad, o with By = 22— (=1)7) if (X, dy, d;) = (A2, 1,1),
aij otherwise,

defines a Lie algebra homomorphism Dy : Lo — Der(Ly). Then Lo @ Ly =
Lo xp, Ly is endowed with a Lie algebra structure (semidirect product of Lo
and Ly). Of course (Lo Xp, L, )°® = L_ @ Ly is a Lie algebra.

Proof. 1t is obvious that for all i € Iy and r € N the ideal generated by the

relations (dr, ) is stable under the derivation 17;5 — Bijrx;fr 4o (see also [Dal]),
hence h; . defines a derivation of L,; it is also immediate to see that h;,. = 0
if d; ¥ r and that h;,.h;s. = hj;s.h; ., hence the map h;, +— h;,. induces a Lie

algebra homomorphism D, : Ly — Der(Ly).

Remark 8.6. (i) o|r,er, : Lo ® Ly — L_® Lo and o|p_gr, : L- ® Lo —
Lo & L, are anti-isomorphisms of Lie algebras;

(ii) oo(adryer, a)oo|L_er, = —(adr_gr, 0(a))|L_aer, for all a € Lo ® Ly ;

(iii) ho ® go,.+ — Lo ® Ly and go,— ® ho — L_ & Lo are homomorphisms of Lie
algebras (indeed B;jo = a;;); in particular they induce actions of ho @ go,+ on
Lo® Ly (hi = adr,gr, hio, € — adryer, m;t'o) and of gg— ®hoon L_ B Lo
(fz — adL_@LO LI}ZO, hl —> adL_@Lo hi70);

(iv) for all i € Iy, adr,er, =L, maps Lo in Ly (Ly is an ideal of Lo ® L),
hence adr,er, 37:0 is locally nilpotent, since it is locally nilpotent on L (see
Remark 8.4(ii)); analogously ad_gr, 7; is locally nilpotent;

(v) for all h € Ly,

adLO@LJr h|L(J =0= ade@LO h|L07 g o adLO@L+ hoO’|L7 = —ade@LO h|L7;

in particular the adjoint actions of Ly on Lo@® Ly and on L_ & Lg coincide on
Ly and thus define an Ly-module structure on L (denoted by h — hp) such
that cohp oo = —hyp;

(vi) ho (C Lg) acts diagonally on L and trivially on Lg; more precisely Ly and
Lg, hence L, are Q-graded (:L';tr € (Lt)+ai+rs = Lta,+rs and h; » € (Lo)ys =
L.s) and h € b acts on L, as a(h)idg,;

(vii) the action of ho @ go,+ on Lo & Ly and that of go— & ho on L_ & Ly are
obviously homogeneous.
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Remark 8.7. We want to provide L with a go-module structure extending the bo-
module structure (Remark 8.6(vi)), compatible with the ho@®go +-module structure
on Lo @ Ly (Remark 8.6(iii)), and homogeneous with respect to the Q-grading.

Remark 8.8. Let e, 1, fir : L — L be homogeneous linear maps (that is,
ei,L(LO&) C Lota, and fi,L(Loz) - L(x—ai)- Then:

(i) the relations [(h;)r,ej,.] = aijejr, [(hi)r, fj,0] = —aij f;,1 are automatically
satisfied (because of the diagonal action of hg on L, see Remark 8.6(vi));

(ii) if moreover e; 1|, = adp, foO and f;r|lp. = adp_ T; ¢, then e; 1 and firL
are locally nilpotent (see Remark 8.4(ii)&(iii) and notice that for all x € L
there exists m € N such that e, () € Ly and /" (z) € L-);

(iii) forallr € N, L") = D.cq, La+rs is € - and f; p-stable, and L = @TGNL(T).

Definition 8.9. Given i € Ig let f; ., : Ly — Lo ® Ly be the derivation defined
on generators by f; . (xjr) = —0; jhir, and let ;1 : L_ — L_ & Ly be defined
by ei,L7 = O'Ofi,L+ oO"Li.

Proposition 8.10. f; 1. and e;r_ are well defined derivations.

Proof. Obviously if p is a relation involving only indices in Iy \ {i} then f; 1, (p)
= 0; it is also obvious that if Jj 17 fir, (:E;FT) = —0;jhjr = 0 (hence f; 1, preserves
relation (zz)). Moreover:

(i) ifi#j fi,L+([x+ vl ]) = —aija:;frﬂ, which depends only on r + s, hence

i, % 4,8
relation (x4) is preserved by f; ;. and symmetrically by f; 1 ;
(i) fir, (—1)°fzf, 27,)) = (~1)°(~Byir+ Biis)af, . ,, which is zero if (X", d;)
#* (Agl), 1) or 2|7+ s and in any case depends only on r + s, hence relation
(w1,2) is preserved by f; 1 ;

(iii) if (X# d;) = (A2, 1) then

2n

fino (e, ody, ) o)) = oy (0, 28D, o8, + lod, ] fin, (),

which, if 2| 71 +rg or 2| 11 +ra+73, is of course zero by (ii) and relation (x; 2),
while it is (=6 +2)[x;", |, 2]+ 2[2), el 4202 el ] = 0f
2171, 2|72 and 2|73, by relation (z1,2). It follows that f; 1, also preserves

relations (z1 2, x3).

Furthermore if £ > 1 and a;; = —k:

(iV) fj,LJr((_1)T2HmjfsvxifanIrg]) = _(_1)T2aji[xi+,s+r17xi7’2]7 which is zero if
(Xék),di) + (Agl),l) or 2|s+ ry + 72, and depends only on s + 11 + 9

otherwise;
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) fipy (i ol L 2,0
- aij[ ;_s+7"17 7 TQ] + G‘U[ j s+rg? 7, ’l“l] + B”TZ[ j s’xj,_rlJrrg]

(we can and do suppose d; | s and d; |1, 72)

Let us distinguish three cases
If k=2 and XF £ A then 2} .11 =0, so that
fi,L+(H‘r;:s7 l’:l}, x:O]) 72[ 7,87 :—1] + 2[x;:s7 zi_l] =0

and
fi,L+([[II5,xj_1],$j:1] + H Is+27x?,_0}71'?:0})
*2[ J,s7x,2] [ Is+27x:0}72[ js+27 ]+2[ ]s+27 +] :0)
27 t/2/) by the

together with (i), (ii) and (iv) this implies the stability of (x4, 21 2,

action of the f;’s (I € Ip).
1t X% = AP then

fi,L+([[x;:s’xj,_1]’xj_0] + Hx;‘ts?xi_o}vxi_l])
= _2[1‘;:3+1’xj,_0] 2[z ,s’xi_l] + 2[1‘;:57332'_1]
- 2[x+ 7$:1} - 2[ j:erlv :To] + G[xj:s’xz_l] - 07

together with (i), (ii) and (iv) this implies the stability of (x4, 1 2,$2) by the

action of the f;’s

If k£ = 3, then
fi,L+([[x;fsvxj:r1]7xj:r2])
( 6+2)[ T zr1+r2] if3|7‘1,3|7'2,
=49 (-3+2)x ;' M1+rz] if 3try, 3|roor 3|11, 317a,
2[3:;5, jr1+rz] if 347y, 3try;
in particular
fl L+([[ _]s’ + ] :_1] + 2[[ ],s? jQ]?xZO]) = (2 - 2)[1';:53‘,1::2] - Oa
roal ] 4[IIs+3’Ij_O] =0,

oy ] IIOD = 4[%‘,5,%’,3 -

LE+ ] + [[Ijs—i-?ﬂx
+ ] xj,_o]ﬂ[xy s z 4

flL+( [[]s’ j_2] 3,1
fZL+(H 3,87 j_} 12]+2[[ s30T

which, together with (i), (ii) and (iv), implies the stability of (x4, 21 2,t5,t4,t4")

by the action of the f’s.
If k=3 and a;; = —3 then:

V) fioe (g2, )2l Lol ) = —aslled oy, 28, L 2l ] = 0;
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if moreover 3 { r then:

(vit) fi,o. (o) 2] adol, 2dol) = (2055 + 3ai) [, o), o] = 0.

7,8 Vi,r ,80 Y, %,

Clauses (vi) and (vii), together with (i) and (ii), imply the stability of
(x4, x1 2,3, u5,uy) by the action of the f’s.
Finally if ¢ # j it is well known that

(viil) fiz, ((adafy)'~ia],) =0,
which implies the stability of (serre) by the action of the f;’s.
Definition 8.11. Let e; 1, fi 1, hi,r : L — L be defined by:

Lo®Ly = adLOQBLJr 1‘:’:0 and fi,L|L,€BL0 = ade@LO .Z‘ZO (SCC Remark 8.6(iii));

fi.r
hir = (hio)r  (see Remark 8.6(v)).

€i,L

Ly = fir, and e;rlp_ =e;r_  (see Definition 8.9);

Definition 8.12. Define gj to be the Lie algebra generated by {e;, fi, h; | i € Io}
with relations

[his hjl = 0, [hie5] = aijej, [hi, fi] = —aijfj, les, f;] = 6ijhi Vi, j € Io.
Lemma 8.13. (i) e; 1, fi, : L = L are homogeneous linear maps, hence locally
nilpotent;
(i) oofiroo=c¢e;r;
(i) ez, fi,L] = dijhiL;
(iv) L is a go-module.

Proof. (i) follows from Remark 8.8(ii), and (ii) from Remark 8.6(ii) and from
Definitions 8.9 and 8.11.

(iii) By (ii) and Remark 8.6(v) it is enough to prove the identity on Loy@® L. By
homogeneity e; 1o fj . and fjroe;r map Lo to La,—a, C Lo, and in particular
to {0} if ¢ # j while e; o firlL, = 0o€irofiroo|, = firoeir|L, because
olr, = idry; hence [e;r, fjrllL, = 0 = & ;(hi)r|L,; on the other hand, since

fiL

L. = fiLy : Ly — Lo ® Ly is a derivation,

firoeirln, = firoadr, o,

= (adrer, (fi.(x7) + (adLeer, 7o) o fi.0)lL,

= (_5ij adLo@LJr hi,O + e o fj,L)‘LJr = (—5¢j (hi,O)L +e; o fj,L)|L+
= (=0i;hi,L +eiro fiL)l,,

which is the claim.
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(iv) is a consequence of (iii) together with Proposition 8.6(v) and Re-
mark 8.8(1).

Lemma 8.14. Let p : go — gl(M) be a go-module structure on M with weight
space decomposition M = @aehs Moy (p(h)|a, = a(h)idag, for allh € by, remark-

ing that ho — @go) and suppose that p(e;) and p(f;) are locally nilpotent. Then M
s a go-module.

Proof. Let i # j € Ip; we want to prove that p(ad(e;)'~%i(e;)) = 0 and
plad(fi)' = (f;)) = 0.

(a) Given & € M homogeneous, the subspace M, = (p(e;)"(x), p(f;)"(z) | r € N)
is finite-dimensional and e;, f;, h;-stable;

(b) for M C M finite-dimensional there exists 7 € N such that p(e;)"|;; = 0; in
particular there is 7, € N such that p(e;)"™ |ar, = 0, p(€i)"|p(e,)(M,) = 0;

(c) for r € N and p(ad(e;)"(e;)) = >on_o (0)ples)""“p(e;)p(es)®; in particular if
r > 2r, — 1 then p(ad(e;)"(e;))|am, = 0;

(d) for r € N, [e;,ad(e;)"(e;)] = ad(e;) T (e;) and [f;,ad(e;)"(e5)] = —r(aij +
r—1)ad(e;)""*(e;);

(e) let Y = {r € N | p(ad(e;)"(¢;))|am, = 0}; then 2r, —1 €Y #0,r €Y =
r+leYandreY\{0,1—aqa;;} =r—1€Y;in particular 1 —q;; € Y and
plad(e:)' = (¢;))(x) = 0.

Thus p(ad(e;)* =% (e;)) = 0. Composing p with the Lie automorphism of g defined
by e; — —fi, fi = —e;, hi = —h;, we conclude that also p(ad(f;)' =% (f;)) = 0.

Corollary 8.15. L is a go-module; L") is a go-module for all r € N.
Proof. The claim is a straightforward consequence of Remark 8.6(vi), of Lemma
8.13(1)&(iv) and of Lemma 8.14.

Lemma 8.16. Let g be a Lie algebra, b C g a subalgebra, M a g-module with
M =@, cp- Mo, Mo ={m € M | h.m = a(h)m for all h € bh}. Let T € Autric(g)
and ¢ € GL(M) be such that:

(i) 7(h) = b;
(i) p(y.m) =71(y).p(m) for ally € g and m € M.

Then 7. = (T|E1)* € GL(b*) and p(My) = M. for all « € b*. In particular
Py ={a€b*| M, #{0}} is 7.-stable and dim M,, = dim M. o for all & € Py;.

Lemma 8.17. Let g be a Lie algebra, M be a g-module and © € g be such that
adx and xpr are nilpotent (xp; denotes the map m +— x.m), 7®) = exp(adx)
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and @@ = exp(zpr). Then () € Autrio(g), ¢'® € GL(M) and o™ (y.m) =
7@ (3).0 ) (m) for all y € g and m € M. Moreover if x1,...,z, € g are
such that adz; and (z;)n are nilpotent and we set 7 = 7" o .. o7(@) gnd
0 = @) o o) we still have T € Autpic(g), ¢ € GL(M) and o(y.m) =
7(y).o(m) for ally € g and m € M.

Proof. This is a straightforward consequence of the well known identity

n

) = 3 () (o) )ty m)

r=0
Remark 8.18. For all r € N let us consider the go-module L(") and the elements
ei:fi € go- Let
7; = exp(ade;) exp(—ad f;) exp(ad e;),

w; = exp(e; |, ) exp(—firlr,) exp(ei L, )-

Then it is well known and obvious (from Lemmas 8.13(i), 8.15 and 8.17) that
7; € Autrie(g) and p; € GL(M) are well defined and ¢,;(y.m) = 7;(y).@i(m) for
all y € go and m € M.

It is also well known (see [K]) that 7;(ho) = ho and in fact 7;|p, = s, € W,
hence by Lemma 8.16, {a € b5 | (L™")y (= Latrs) # {0}} is Wo-stable and
dim Ly (a)4rs = dim Loy for all a € b, 7 € N and w € Wy.

Recall that {a € §§ | Lotrs # {0}} C Qo+ U (—Qo,+)-

Lemma 8.19. Let P C Qo+ U (—Qo,+) be Wy-stable. Then each a € P is
Wo-conjugate to an integer multiple of a simple root.

Proof. Let o € P\{0} and take 8 € Wy.aNQo,+ (# @ because there exists w € W
such that @(Qo +) = —Qo,+) of minimal height. Since (5]8) > 0 there exists i € I
such that (8|a;) > 0, so that, by the choice of 8, s;(8) € —Qo +. This implies 3 is
a multiple of «y.

Let us now come to our point.
Proposition 8.20. Given a € Qg

1 if a+71d€ P,

0 otherwise.

dim La+r6 < {

Proof. We have already proved (see Remark 8.18 and Lemma 8.19) that
dim Lotrs = 0 if o & Jyooh®Po. By Remark 8.18 it is then enough to prove
the claim when « is an integer multiple of a simple root; but this is nothing but
(D1)—(D3) (see Proposition 8.1).



DRINFELD—JIMBO PRESENTATION 165

Corollary 8.21. 151|L+ : Ly — (g4 @ C[t])X is an isomorphism of Lie algebras.

Proof. The claim is a consequence of Propositions 7.7 and 8.20.

89. Conclusions

In this section we point out and underline several consequences of Corollary 8.21.
They include the main result (¢ is an isomorphism) together with other results
which are worth presenting, both about the Drinfeld realization of affine quantum
algebras and affine Kac-Moody algebras.

Theorem 9.1. ¢ : Z/l(?r — L{(?J is an isomorphism. This means that the affine
quantum algebras L{(PJ (Drinfeld and Jimbo presentation) and L{(?r (Drinfeld
realization) are different presentations of the same algebra U, = Z/Iq(X;lk)), the
affine quantum algebra of type Xék).

Theorem 9.2. The product induces an isomorphism
Dr,— Dr,0 Dr,+ ~ 7/Dr _
U7 QU U 22U =U,y

(triangular decomposition of the Drinfeld realization, or Drinfeld triangular de-
composition of the affine quantum algebra).

As remarked above (see Remark 5.3), the Drinfeld triangular decomposition
is essentially different from the Drinfeld and Jimbo triangular decomposition (Re-
mark 2.2(ii)). Their precise connection is described below.

Proposition 9.3. (i) Z/l(?“+ N L{(?J*Jr = L{f“***; it is the C(q)-linear span of
the ordered monomials in the Frsiq’s with o € Qo + and r > 0;
(ii) UL NYPIt = yPro+;
(i) U™~ N UPTT is the C(q)-linear span of the ordered monomials in the
E.5_o’s with a € Qo4+ and r > 0;
: DJ,+ o (7/Dr,— DJ, Dr,0, Dr,+,+ .
(IV) uq + - (Nuq N uq +) ®C(‘Z) Z/{q 0t ®C(q) Z/{q * +’
(v) Z/{(?r"“ N Z/{?J’_ is the C(q)-linear span of the ordered monomials in the
Frs—aKrs—o’s with o € Qo4 and r > 0;
(vi) (X:'T |ie Io, 7 < 0) =uym+ ﬂl:ll?‘]’* in case Agl) and (X;; | i€ ly, r<0)
CUPST NUPT otherwise;
(vil) UPT+ NUPI C (X i€ To, r <0);
(viil) YD~ =yPrtt @ P+ nuPdo).
Proof. With the notation of Corollary 5.5 we have U(?J’+ =U_ ® Uy ® Uy with
U_CUP™, U CUP™Y, Uy CUP™ T, which implies (i)—(iv); (v) is equivalent to (iii).
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In (vi) the inclusions are obvious, as is the claim in case Agl); in the other cases
there exist ¢, j € I such that § — (o; + ;) is a root, so Fs_(ai+a;) € L{;Dr’JrﬂL?f‘]”
while (X::T | 1€y, r< 0)_6"‘(061"'1‘01]') = (O) ~

In (vii) the inequality is obvious (X & UP™T NUPT~); for the inclusion,
consider the subalgebra of U, generated by (UP™*+ NUYP?~) and by the X;fy's; it
is isomorphic to (UP"+ ﬂZ:{(?J’_) ® (X% | i € Ip), thanks to the triangular decom-
position of Z/{?J and to the fact that for all z € (Z/{;Dr"" ﬂZ:{(?J’_)a, 1 € Iy we have
[X;0r @] gatan € UPTH NUPT—, which implies U™+ NUPT—) @ (X[, | i € I) is
not only a (L[l?“' OZ;I(?J’_)-module, but also stable by left multiplication by the
Xl-fo’s7 hence a subalgebra of U,; but of course it contains (Xj’r | i€ Iy, r <0),s0
in order to prove that (17" ﬂl;lg)‘]’_) @ (XY | i€ lp) and (X | i€ Io,r <0)
are equal (which is the claim), it is enough to compare the dimensions of their
homogeneous components: for all m > 0 and a € Qg 4.

dim (UL NUPTT) @ (X i € To))amms

= > UPTOUPT T )arms-p Xy li € 10)s
BEQo,+

:#{(m15—71j~--jms5—'ys) mu>O,7u6Q07+,Zmu=m,2’yu=a—ﬁ}

(7?5"'572)‘VSEQO,%ZVg:ﬁ}
u

{
= #{ o+ < XM +9) | mu>0.9 € Qo Y mu=m, Y =a— 5}
{(v?j'dvg) ‘vﬁEQo,Jr,ZvS:ﬂ}

(

:#{ mid+y1 = 2msd 4 7s) muZO,vuEQ0,+,Zmu:m,Z%:a}

=dim 5t =dim (X} i€ To, 7> 0)mssa =dim (X1, [i € Ip, 7 <0) ot

this chain of equalities follows from the PBW-bases of ¢, N Z:l(?‘] '~ (see (v)),
of (X;'0 | i € Ip) and of UP" T (see (i) and from the isomorphism between
(X i€ ly, r<0)and (X i€l r>0) (see [Dal]).

(viii) Thanks to (i) and to Remarks 2.3(x) and 3.5(vii) the claim follows by
remarking that for r < s < 0, AV(B,) € —Q4 implies AV (85) € —Q4 (hence
TN (Eg,) € U~ = TN (Ep,) € UP?~, by Remark 2.3(vi)).

s

Theorem 9.4. (i) UP™T is the C(q)-algebra generated by {Xi't'r |i€ Iy, reZ}
with relations (ZX ™) and (DR).

(ii) UP"+ is the C(q)-algebra generated by {X7, | i € Iy, r € N} with relations
(ZX{), (DRy), (S+), (U34).
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(iii) The A-subalgebra L{Br"" of UP" generated by {Xi't'r | i € Io, r € Z} is the
A-algebra generated by {Xi't'r | i € Iy, r € Z} with relations (ZX™*) and (DR)
and is a free A-module: it is an integer form of Z/{(?“Jr.

(iv) The A-subalgebra of L{,?r generated by {X;fr | i € Iy, r € N} is the A-algebra
generated by {X. | i € Ip,r € N} with relations (ZX7), (DRy), (S1),
(U34) and it is a free A-module: it is an integer form of UP* .

Proof. (iv) is true by Corollary 6.4 and clearly implies (ii). Of course (iii) im-
plies (i).

(iii) follows from (iv): Let F be the A-algebra freely generated by {X;)“T |
i € Iy, r € Z}, T the ideal of F defined by the relations (DR), t : F — F the
A-automorphism defined by X:'T — Xi+r+ i t the A-automorphism induced by ¢
on F/Z,and f: F/T — UP" the natural homomorphism. Consider also the natural
homomorphism j : F,/Z, — F/Z (see Notation 6.1 and Remark 3.10(iii)).

Since of course foj = fy and fot = (tjo - ot,) Lo f, f is injective thanks
to Corollary 6.4(i) and to the fact that F/Z = Jyent VN (G(F4/Zy)).

In order to prove that F/Z is free over A it is enough to remark that the
image of the (injective) homomorphism %o f is contained in U3’ (see Remarks
2.4(iii) and 6.5), which is well known to be a free A-module (see Remark 2.4(ii)).

Theorem 9.5. Let UL be as in Theorem 9.4(iii) and let UR", UL and UL"°
be the A-subalgebras of Z/{,?r generated respectively by {X4jE kL c*t | i € Iy,

i7"V

reZ}, {X;, |i€ly,relZ} and {Hi, k;,C,C|i€ Iy, v € L}, where

ki — k! .
Hijp=——"5 and C=
qi — 4q;

c-cCc!

q—q '

Then:

(1) UR =UL" @U@ URT;

(i) UL =UPO NURT and URYF = UPHE nUR;

(iii) Z/lir’* is an integer form of Z/l(?r’*; this means that it is a free A-module and
Uy =Clg) @4 U™

(iv) Z/{BT’O is the A-algebra generated by {H; ., k;,C,C | i € Iy, 7 € Z} with rela-
tions (ZH), (CUK),

(CUH) [C’,ZL’] = O, [kl, ij} = 0, [Hi,Oa ijo] =0 (Z,] S Io),

(I1Q) ki(ki — (¢ — q; ") Hip) =1, C(C—(q—q ")C) =1,

(KQH) [Hi,OaHj,r] = 0 (Z,j S Io, re Z),

(KH) and (HH);
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(v) URr is the A-algebra generated by {XfT,Hm,ki,C,C' | ¢ € Ip, r € Z} with
relations (ZX%*), (CUK), (CUH), (1Q), (KQH), (KX*%),

(HQX*) H; o X5, = X3 (£laijlg.ki +q; " Hio),
(HH)7 (HXi); (XX), (Xli)nst% (X3§)nst) and (Scionst);

(vi) URr =u’.

Proof. First of all note that U3"" C UR*, since Hyo = (X%, Xio] for all i € I
and C = ki([X{pr;,l] — CH;) if i € I is such that d; = d; = 1. Moreover
UBT’* C UPm = C(q) ®a L{Er’*, so that UBY’_ ® A UBT’O ®A L{Br’+ — UL" is
injective, thanks to Theorem 9.2.

Let V be the A-algebra generated by {XfT,Hi’T,ki,C,CN' | i € Ip,r € Z}
with relations (ZX*), (CUK), (CUH), (IQ), (KQH), (KX*), (HQX*), (HH),
(HXi)7 (XX)7 (chzz‘f)nst)v (X?’(::tonst)7 (Sé‘(:)nst)a and V+7 Vo, V0 be the A-
subalgebras of V generated respectively by {X; | i € Ip, r € Z}, {X;, | i € Iy,
r e Z} and {H;,, k;,C,C | i€ Iy, r € Z}.

Let V° be the A-algebra generated by {Himki,C,C' | ¢ € Ip,r € Z}
with relations (ZH), (CUK), (CUH), (IQ), (KH), (KQH), (HH), and V°° =
Alki, C,H;0,C | i € Iy]/J where .J is the ideal generated by the relations (1Q).

Then:

(a) V* — Z/{A]?r’* is well defined and surjective (x € {0,0,+,—}).

(b) V= @V°@V* — V is surjective, thanks to relations (CUK), (CUH), (KX¥),
(HQX®), (HX®), (XX), so that the commutativity of the diagram

V-V eVt % 0

| |

0——=U"" QU QUL ——=uURr

|

0

implies (i); (ii) follows from (i).
(c) VOO =yl NUP?0 is a free A-module (well known, see Remark 2.4(ii)&(vi)),
so that V90 — URT is injective; moreover the (well defined) maps

AlH;, |i€ o, <0 @V @ A[H;, |i€ly,r>0 -V’ and V' —)°

are surjective (thanks to relations (CUK), (CUH), (KH), (KQH) and
(HH)), and the composition

AlHi, i€ o, r < 0] @ V0 @ A[H,, | i€ Iy, r>0] = V° = V0 - ym°
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is injective; in particular V0 2 V0 = L{A]?r’o so that (iv) holds, and Z/IBT’O is a free
A-module; together with (i) and with Theorem 9.4(iii) this also implies (iii).

(d) L{Dr * — Vis well defined (Remark 3.10 holds also on A, see [Dal]) with
image in V*, and Uﬁr’+ — V7T is obviously surjective: since

uDr ,+ N v+ — uDr ,+

is the identity we have U Ar’+ =~ P+: then the commutativity of the diagram

V- oW eyt % 0
Dr,— Dr,0 Dr, = r
U~ U U —=UR

implies that 45" =2V, that is, (v) holds.

(e) Since UR” is t;-stable for all i € Iy, we have X € UR? for all (i,r) € Iz; it
is also clear that Mi)r 0 - Z/{BJ, hence MBr C UDJ, on the other hand clearly
C,K;,E; L{B” for all i € Iy, Ey € UBT (see [Dal]) and F; € UBT foralli eI
since UR" is Q-stable; then UR? C UL and (vi) follows.

Theorem 9.6. Consider the affine Kac—Moody algebra
=0 0’0" = (5- 9 Ct"' )X @ ((90 @ CH™'])* ® Ce) @ (g+ @ ClEH)X.
Then:

(i) §* is the Lie algebra generated by {x7, | i € Iy, d; | 7 € Z} with relations:

[chr, T *.] depends only on r+s (i # j € Iy fized);
xn,xm‘{o if (X7 d) # (A5 1) or 2|7+,
o (_1)h[xi+,s+h+1>x;fs+h] if r=s+2h+1;
Hxiﬁﬂxirz]@im] =0 ((ri,r2,r3) € N?);
[[x;ryle]v j,o] 0,

o}, aia afs) = —llef ool 2ol (=2, ay = =2, X1 # AQ));
ety afolaf )+ [loh o et el =0 (ay = -2, X% = A2);
ij_sa Hlahl = *2[[$IS,$:§2L1’¢0] (k=3, a;; = -3);
2[[IIvaZ_2]v$;,_1] =[x j_Hg, ;fo],z;’o] (k=3, aij = —3);
Hx;:s’x&]’xi?] =—2[lz js+37 i, jo] (k=3 aiyj = =3);

(ad mi’o)l*‘“-f (33;'8) =0 ((#jwithk=1ora;>-1).
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Bi i
[C, hi,r] == 07 [hi,ra hj,s] - 5r+s,0r7jc~
d;

(iv) g is the Lie algebra generated by {:z:;fr,a:;r,hiyr,c | i € Iy, di|r € Z} with
relations
[c,a] =0 Va,
rB:.
[hi,ra hj,s] = 57‘—4—5,0 dZJT’ &
J
[h’i,'f” 'r]i,s] = :I:Bijrxji,r+s7

_ r—s
2 z;,]=0i; (hz',r+s + Or45,0 2dic>’
0 (r = )
0 (X7 =),
0 (n>1,i#j¢€ ).

+ +
[xi,rilv xi,r]

+ +1 .+
[[xi,rih xi,r]? xi,r]

+ \1—a,j (. £t
(adxi,r)l aj(mj,s)

T

Note that the relations [hi ., his] = 0r1s0 Bijjrc depend on the others.
s 7> > d]

Proof. Since
UG =UR’ (g -1L,K—1]iel)=U3"/(¢=1,C =1,k —1]i € I

(see Remark 2.4(vii) and Theorem 9.5(vi)) the claims follow from Theorem 9.4(iii),
Remark 3.5(ii) and Theorem 9.5(iv)&(v).
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