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The Spaces of Analytic Functions on Open
Subsets of RN and CN

by

José M. Ansemil, Jerónimo López-Salazar and Socorro Ponte

Abstract

This paper is devoted to studying the space A(U) of all analytic functions on an open
subset U of RN or CN. It is proved that if U satisfies a weak condition (that will be
called the 0-property), then every f ∈ A(U) depends only on a finite number of vari-
ables. Several topologies on A(U) are then studied: the compact-open topology, the τδ
topology (already known in spaces of holomorphic functions) and a new one, defined by
the inductive limit of the subspaces of analytic functions which only depend on a finite
number of variables.
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§1. Introduction

If E is a locally convex space over K = R or K = C and A(U) denotes the

space of all analytic functions from an open subset U ⊂ E into K, perhaps the

most natural topology on A(U) is the compact-open topology τ0, although other

natural topologies can also be considered. One is the so called τδ topology, intro-

duced independently by Cœuré [8] and Nachbin [18] in the seventies for spaces of

holomorphic functions. Let us recall its definition. If V =(Vj)
∞
j=1 is an increasing

countable open cover of U , let

(1) AV(U) =
{
f ∈ A(U) : sup

x∈Vj

|f(x)| <∞ for all j ∈ N
}
.
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When K = C, we sometimes write H(U) and HV(U) instead of A(U) and AV(U).

The subspace AV(U) is always endowed with the topology of uniform convergence

on each Vj . It is known that A(U) =
⋃
V AV(U), where V ranges over the family of

all increasing countable open covers of U . The proof when E is complex appears

in Dineen [9, Proposition 3.18], but it is also valid for real spaces because it only

depends on the continuity of analytic functions. Then τδ denotes the topology on

A(U) defined by the inductive limit of all subspaces AV(U) in the category of

locally convex spaces:

(2) (A(U), τδ) = lim−→
V
AV(U).

That is, τδ is the strongest locally convex topology on A(U) such that the inclusion

AV(U) ↪→ A(U) is continuous for every V.

In several recent papers, the present authors and Richard Aron have proved

that if U is an open subset of an infinite-dimensional Banach space, then the

inductive limit in (2) is not countable. In fact, it is not possible to represent

A(U) as a countable union of such spaces AV(U) (see [2], [3, Theorem 2] and [14,

Theorem 9]). On the contrary, we prove in this paper that if K = C or K = R and

U belongs to a large class of open subsets of KN, then A(U) can be written as

a countable union of subspaces of type AV(U). In the complex case, we even see

that (H(U), τδ) = lim−→
k∈N
HVk(U) for a specific sequence {Vk}∞k=1 of covers of U .

In addition to τδ, a new topology on A(U) is studied in this article. It is

denoted by τ` and is defined by the inductive limit of all subspaces of analytic

functions which only depend on a finite number of variables. That new topology

is strictly stronger than τδ in the real case, but they coincide in the complex case

and also on the spaces of polynomials on RN. The metrizability and completeness

of (A(U), τ`) are also studied.

The reader is referred to the article of Bochnak and Siciak [7] for the definitions

and main properties of polynomials and analytic functions on locally convex spaces.

For a deep study of the τ0 and the τδ topologies on spaces of holomorphic functions,

see the book of Dineen [9].

§2. Open subsets of KN with the 0-property

Given k ∈ N, let πk : KN → Kk and π∗k : A(πk(U))→ A(U) represent the mappings

πk((xn)∞n=1) = (x1, . . . , xk) for (xn)∞n=1 ∈ KN,

π∗k(g) = g ◦ πk for g ∈ A(πk(U)).



Spaces of Analytic Functions 193

Nachbin proved that a holomorphic function on a balanced subset of CN depends

only on a finite number of variables:

Theorem 2.1 (Nachbin). If U is a balanced open subset of CN and f ∈ H(U),

then there are k ∈ N and f̂ ∈ H(πk(U)) such that f = f̂ ◦ πk on U .

For the proof of Theorem 2.1, see Dineen [9, p. 162]. We recall that a subset U

of a vector space over the field K is said to be balanced if it has the following

property: if x ∈ U , λ ∈ K and |λ| ≤ 1, then λx ∈ U . The conclusion of Theorem

2.1 does not hold in general if U does not have that property: counter-examples

are due to Hirschowitz [10, p. 222] and Nachbin [19, Example 10].

In this paper, we will prove Nachbin’s Theorem for a new class of open subsets

of KN, not necessarily balanced.

Definition 2.2. A subset U of KN is said to have the 0-property for some d ∈ N
if 0 ∈ U and (x1, . . . , xk, 0, 0, . . .) ∈ U for all (xn)∞n=1 ∈ U and all k ≥ d.

For example, if V is an open neighborhood of 0 in Kd, then the set

(3) U = V ×K×K× · · ·

is open in KN and has the 0-property for d. Moreover, U is balanced if and only if

V is balanced. There are open subsets with the 0-property that are not a product

as in (3). For instance, the set

U =

∞⋃
m=1

{(xn)∞n=1 ∈ KN : |xm| < 1}

is open, balanced and has the 0-property for every d ∈ N. The set

U =

∞⋃
m=1

{(xn)∞n=1 ∈ KN : Re(xm) < 1}

is open and has the 0-property for every d ∈ N, but it is not balanced.

If U is any open subset with the 0-property for some d ∈ N, and if k ∈ N and

k ≥ d, then the function

T : (x1, . . . , xk) ∈ Kk 7→ (x1, . . . , xk, 0, 0, . . .) ∈ KN

is a continuous linear mapping such that T (πk(U)) ⊂ U . Hence if f ∈ A(U), then

the function

f̂(x1, . . . , xk) = f(x1, . . . , xk, 0, 0, . . .)

is well defined and it is analytic on πk(U). This fact will be used several times in

what follows.
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Throughout the paper, we will frequently apply the Identity Theorem. This

result is well known for holomorphic functions and it was also explicitly stated

by Bochnak and Siciak [7, Proposition 6.6] for real or complex analytic functions

on locally convex spaces. However, the proof that they present is not clear for us

and we have not found any other precise reference for real analytic functions on

non-normed spaces. For completeness, we present a proof which is analogous to

the one given by Mujica [17, Proposition 5.7].

Lemma 2.3. Let E be a locally convex space over K = R or K = C and let U be

a connected open subset of E. If f ∈ A(U), V is a non-empty open subset of U

and f = 0 on V , then f = 0 on U .

Proof. We first assume that U is convex. Given x ∈ U , we consider a point a ∈ V
and define

Λ = {λ ∈ K : a+ λ(x− a) ∈ U}, Ω = {λ ∈ K : a+ λ(x− a) ∈ V }.

Since U is open and convex and x ∈ U , the set Λ is also open and convex and

1 ∈ Λ. Moreover, Ω is open and non-empty because 0 ∈ Ω. The function

g(λ) = f(a+ λ(x− a))

is analytic on the connected domain Λ and g = 0 on Ω ⊂ Λ. By the Identity The-

orem for analytic functions of one variable, we deduce that g = 0 on Λ. Therefore,

f(x) = g(1) = 0. This shows that f = 0 on U .

In the general case, let us define

A = {a ∈ U : f = 0 on a neighborhood of a}.

The set A is open and non-empty because V ⊂ A. To deduce that A = U , we

only have to show that A is closed in U . Let (ai) be a net in A which converges to

b ∈ U . Let Ub be a convex open neighborhood of b such that Ub ⊂ U . There is an

index i such that ai ∈ Ub. As ai ∈ A, there is a neighborhood Vai of ai such that

Vai ⊂ Ub and f = 0 on Vai . As has been proved in the convex case, it follows that

f = 0 on Ub and thus b ∈ A. Therefore, A is closed in U and so A = U .

Lemma 2.4. Let U be a connected open subset of CN with the 0-property for

some d ∈ N. Let F be a subset of H(U) with the following property: there is a

neighborhood of zero V contained in U such that

(4) sup{|f(z)| : z ∈ V, f ∈ F} <∞.

Then there is k ∈ N, k ≥ d, such that F ⊂ π∗k(H(πk(U))).
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Proof. We can assume that

V = {(zn)∞n=1 ∈ CN : |z1| < ε, . . . , |zk| < ε}

for some k ≥ d and ε > 0. Let f ∈ F and z = (zn)∞n=1 ∈ V . Let

w = (0, . . . , 0︸ ︷︷ ︸
k

, zk+1, zk+2, . . .).

Then z + λw ∈ V ⊂ U for all λ ∈ C, so the function of one complex variable

h(λ) = f(z + λw)

is entire. By (4), h is bounded, so by Liouville’s Theorem it is constant. Then

(5) f(z) = h(0) = h(−1) = f(z1, . . . , zk, 0, 0, . . .)

for every z ∈ V . As U has the 0-property for d and k ≥ d, we can define the

following holomorphic function on πk(U):

f̂(z1, . . . , zk) = f(z1, . . . , zk, 0, 0, . . .).

By (5), we know that f = f̂ ◦ πk on V and hence f = f̂ ◦ πk on U by the Identity

Theorem. This proves that F ⊂ π∗k(H(πk(U))).

Theorem 2.5. Let K = R or K = C. Let U be a connected open subset of KN

with the 0-property for some d ∈ N. If f ∈ A(U), then there are k ∈ N, k ≥ d, and

f̂ ∈ A(πk(U)) such that f = f̂ ◦ πk.

Proof. If K = C, the result is a particular case of Lemma 2.4 with F = {f}.
Therefore, we will suppose that K = R. If f is an analytic function on U , then

there are an open subset UC ⊂ CN and a holomorphic function fC : UC → C such

that U ⊂ UC and fC = f on U (see Bochnak and Siciak [7, Theorem 7.1]). Since

0 ∈ U , there are m ∈ N and ε > 0 such that

W = {(xn)∞n=1 ∈ RN : |x1| < ε, . . . , |xm| < ε} ⊂ U,
V = {(zn)∞n=1 ∈ CN : |z1| < ε, . . . , |zm| < ε} ⊂ UC.

The set V has the 0-property for d. As has been proved in the complex case,

there are k ∈ N, k ≥ d, and f̂C ∈ H(πk(V )) such that fC = f̂C ◦ πk on V . Let

f̂ ∈ A(πk(U)) be the function

f̂(x1, . . . , xk) = f(x1, . . . , xk, 0, 0, . . .).
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If (xn)∞n=1 ∈W ⊂ V , then also (x1, . . . , xk, 0, 0, . . .) ∈W ⊂ V , so

f((xn)∞n=1) = fC((xn)∞n=1) = f̂C(x1, . . . , xk)

= fC(x1, . . . , xk, 0, 0, . . .) = f(x1, . . . , xk, 0, 0, . . .)

= f̂(x1, . . . , xk) = (f̂ ◦ πk)((xn)∞n=1).

Hence the analytic functions f and f̂ ◦πk agree on the open subset W of U . Then

f = f̂ ◦ πk on U by the Identity Theorem.

§3. Topologies on A(U)

It was proved in Theorem 2.5 that if U is a connected open subset of KN with the

0-property for some d ∈ N, then

A(U) =

∞⋃
k=d

π∗k(A(πk(U))).

Thus, we can introduce a new topology on A(U). Let τ` denote the topology on

A(U) defined by the inductive limit of the subspaces (π∗k(A(πk(U))), τ0) in the

category of locally convex spaces:

(A(U), τ`) = lim−→
k≥d

(π∗k(A(πk(U))), τ0).

That is, τ` is the strongest locally convex topology on A(U) such that the inclusion

(π∗k(A(πk(U))), τ0) ↪→ A(U)

is continuous for every k ≥ d.

In order to study the properties of τ`, we first have to introduce some notation

and to prove a preliminary lemma. If U is an open subset of KN with the 0-property

for some d ∈ N, k, j ∈ N and k ≥ d, we define the following sets:

Vk,j = {x ∈ U : |x1| < j, . . . , |xk| < j, dist(πk(x),Kk \ πk(U)) > 1/j},(6)

Ck,j = {x ∈ Kk : |x1| ≤ j, . . . , |xk| ≤ j,dist(x,Kk \ πk(U)) ≥ 1/j},(7)

Lk,j = {x ∈ KN : (x1, . . . , xk) ∈ Ck,j and xn = 0 for all n > k}.(8)

Note that there is jk ∈ N such that Vk,j 6= ∅, Ck,j 6= ∅ and Lk,j 6= ∅ for every

j ≥ jk.

The sequence Vk = (Vk,j)
∞
j=1 is an increasing countable open cover of U .

Moreover, every Ck,j is a compact subset of πk(U). Finally, Lk,j is a compact subset

of U . Indeed, if (x1, . . . , xk, 0, 0, . . .) ∈ Lk,j , then (x1, . . . , xk) ∈ Ck,j ⊂ πk(U).

Hence there is x ∈ U such that πk(x) = (x1, . . . , xk). Since U has the 0-property

for d and k ≥ d, we deduce that (x1, . . . , xk, 0, 0, . . .) ∈ U , that is, Lk,j ⊂ U .
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Lemma 3.1. Let K = R or K = C and let U be a connected open subset of KN

with the 0-property for some d ∈ N. Let k ∈ N, k ≥ d.

(a) If Vk = (Vk,j)
∞
j=1 is the increasing countable open cover of U defined in (6),

then π∗k(A(πk(U))) ⊂ AVk(U).

(b) The space (π∗k(A(πk(U))), τ0) is metrizable.

(c) π∗k(A(πk(U))) ⊂ π∗k+1(A(πk+1(U))).

(d) π∗k(A(πk(U))) is closed in (A(U), τ0) and hence in (π∗k+1(A(πk+1(U))), τ0).

Proof. If f ∈ π∗k(A(πk(U))), there is f̂ ∈ A(πk(U)) such that f = f̂ ◦ πk. Then

sup
x∈Vk,j

|f(x)| = sup{|f̂(x1, . . . , xk)| : (x1, . . . , xk) ∈ Ck,j} = sup
x∈Lk,j

|f(x)| <∞

for every j ∈ N (note that Ck,j = πk(Vk,j) and Lk,j is a compact subset of U).

Therefore, f ∈ AVk(U), which proves that π∗k(A(πk(U))) ⊂ AVk(U).

If L is a compact subset of U , then πk(L) is compact in πk(U) and there is

j ∈ N such that πk(L) ⊂ Ck,j . Therefore, if f ∈ π∗k(A(πk(U))), then

sup
x∈L
|f(x)|= sup{|f̂(x1, . . . , xk)| : (x1, . . . , xk) ∈ πk(L)}

≤ sup{|f̂(x1, . . . , xk)| : (x1, . . . , xk) ∈ Ck,j} = sup
x∈Lk,j

|f(x)|.

Consequently, the compact-open topology on π∗k(A(πk(U))) is defined by the se-

quence of seminorms supx∈Lk,j
|f(x)|, where j ∈ N. This implies that the space

(π∗k(A(πk(U))), τ0) is metrizable.

If f ∈ π∗k(A(πk(U))), f̂ ∈ A(πk(U)) and f = f̂ ◦ πk, let g ∈ A(πk+1(U)) be

the following function:

g(x1, . . . , xk+1) = f̂(x1, . . . , xk).

If (xn)∞n=1 ∈ U , then

f((xn)∞n=1) = f̂(x1, . . . , xk) = g(x1, . . . , xk+1) = g ◦ πk+1((xn)∞n=1).

Therefore, f = g ◦ πk+1 ∈ π∗k+1(A(πk+1(U))). This proves that π∗k(A(πk(U))) ⊂
π∗k+1(A(πk+1(U))).

Let us see that each π∗k(A(πk(U))) is closed in (A(U), τ0). Let (fα) be a net

in π∗k(A(πk(U))) that converges to a function f ∈ A(U) uniformly on compact

subsets of U . For each index α there is f̂α ∈ A(πk(U)) such that fα = f̂α ◦πk. The

function

f̂(x1, . . . , xk) = f(x1, . . . , xk, 0, 0, . . .)
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is analytic on πk(U) because U has the 0-property. If (xn)∞n=1 ∈ U , then also

(x1, . . . , xk, 0, 0, . . .) ∈ U and

f((xn)∞n=1) = lim
α
fα((xn)∞n=1) = lim

α
f̂α(x1, . . . , xk)

= lim
α
fα(x1, . . . , xk, 0, 0, . . .) = f(x1, . . . , xk, 0, 0, . . .)

= f̂(x1, . . . , xk) = f̂ ◦ πk((xn)∞n=1).

Hence, f = f̂ ◦πk ∈ π∗k(A(πk(U))). Thus, π∗k(A(πk(U))) is closed in (A(U), τ0).

Theorem 3.2. If U is a connected open subset of KN with the 0-property for

some d ∈ N, then τ0 ≤ τδ ≤ τ` on A(U).

Proof. The fact that τ0 ≤ τδ is well known in the case of spaces of holomorphic

functions. If W = (Wj)
∞
j=1 is an increasing countable open cover of U and K is a

compact subset of U , there is j ∈ N such that K ⊂ Wj and so supx∈K |f(x)| ≤
supx∈Wj

|f(x)| for every f ∈ A(U). This implies that the inclusion

AW(U) ↪→ (A(U), τ0)

is continuous for every increasing countable open cover W of U . By the definition

of τδ, we have τ0 ≤ τδ.
For each k ∈ N, k ≥ d, let Vk = (Vk,j)

∞
j=1 be the increasing countable open

cover of U defined in (6). By Lemma 3.1, it is known that

π∗k(A(πk(U))) ⊂ AVk(U).

The topology on AVk(U) is defined by the sequence of seminorms

sup
x∈Vk,j

|f(x)| = sup{|f̂(x1, . . . , xk)| : (x1, . . . , xk) ∈ Ck,j} = sup
x∈Lk,j

|f(x)|,

where j ∈ N. Since every Lk,j is compact in U , the inclusion

(π∗k(A(πk(U))), τ0) ↪→ AVk(U)

is continuous. Moreover, the mapping

AVk(U) ↪→ (A(U), τδ)

is also continuous by the definition of τδ. Then the inclusion

(π∗k(A(πk(U))), τ0) ↪→ (A(U), τδ)

is continuous for every k ≥ d. By the definition of τ`, we deduce τδ ≤ τ` on A(U).
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We now recall the Dieudonné–Schwartz Theorem, whose proof can be found

in Horváth [11, p. 161]. It will be applied to prove that the τ` topology is defined

by a regular inductive limit.

Theorem 3.3 (Dieudonné–Schwartz). Let X = lim−→
k∈N

(Xk, τk) be a countable in-

ductive limit of locally convex spaces with the following properties:

(a) Xk ⊂ Xk+1 for all k ∈ N.

(b) The topologies τk and τk+1 are equal on Xk.

(c) Xk is closed in (Xk+1, τk+1) for every k.

Then the inductive limit is regular. That is, a subset B ⊂ X is bounded if and only

if there is k ∈ N such that B is a bounded subset of (Xk, τk).

Theorem 3.4. Let K = R or K = C. If U is a connected open subset of KN with

the 0-property for some d ∈ N, then the inductive limit

(A(U), τ`) = lim−→
k≥d

(π∗k(A(πk(U))), τ0)

is regular.

Proof. This follows directly from Lemma 3.1 and the Dieudonné–Schwartz Theo-

rem.

Theorem 3.5. If U is a connected open subset of CN with the 0-property for

some d ∈ N, then τδ = τ` on H(U).

Proof. It was seen in Lemma 3.1 that every subspace (π∗k(A(πk(U))), τ0) is

metrizable and hence it is bornological. Then the inductive limit (A(U), τ`) =

lim−→
k≥d

(π∗k(A(πk(U))), τ0) is also bornological (see Horváth [11, p. 222]).

By Theorem 3.2 we know that τ0 ≤ τδ ≤ τ`. We prove now that τ0 and τ`
define the same bounded subsets ofH(U). Let F be a bounded subset of (H(U), τ0).

As CN is metrizable, the set F is locally bounded at zero; that is, there is a

neighborhood of zero V ⊂ U such that

(9) sup{|f(z)| : z ∈ V, f ∈ F} <∞

(see Dineen [9, Example 3.20a]). By Lemma 2.4, there is k ∈ N, k ≥ d, such that

F ⊂ π∗k(H(πk(U))). As F is τ0-bounded and the inclusion

(π∗k(H(πk(U))), τ0) ↪→ (H(U), τ`)
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is continuous by the definition of τ`, we see that F is also τ`-bounded. Therefore,

τ0 and τ` define the same bounded subsets of H(U) and τ` is the bornological

topology associated with τ0. Finally, as CN is metrizable, it is known that τδ is the

bornological topology associated with τ0 (see Dineen [9, Example 3.20a]). Thus

τ` = τδ on H(U).

The fact that τδ = τ` on H(CN) was already proved in [1, Proposition 1.3]. It

is also known that τ0 < τδ on H(CN) (see Barroso and Nachbin [5]).

As mentioned above, if U is an open subset of a locally convex space E, then

A(U) can be written as the union of all the subspaces of type AV(U) defined in (1).

However, it was proved in [2] that if E is any infinite-dimensional complex Banach

space with a Schauder basis, then H(E) is not a countable union of subspaces of

type HV(E). That result was generalized in [14, Theorem 9] to the case of open

subsets of a complex Banach space without basis and finally in [3, Theorem 2]

to the case of real Banach spaces. Therefore, the inductive limit (A(U), τδ) =

lim−→
V
AV(U) is not countable if U is an open subset of an infinite-dimensional Banach

space. On the contrary, the situation can be different for non-normed spaces, as

the next theorem states.

Theorem 3.6. Let K = R or K = C. Let U be a connected open subset of KN

with the 0-property for some d ∈ N. For each k ∈ N, k ≥ d, let Vk = (Vk,j)
∞
j=1 be

the increasing countable open cover of U defined in (6). Then

A(U) =

∞⋃
k=d

AVk(U).

Moreover, if K = C, then

(H(U), τδ) = lim−→
k≥d
HVk(U).

Proof. By Lemma 3.1, we know that π∗k(A(πk(U))) ⊂ AVk(U). By Theorem 2.5,

it is known that

A(U) =

∞⋃
k=d

π∗k(A(πk(U))).

Hence

A(U) =

∞⋃
k=d

AVk(U).

We now assume that K = C and prove that HVk(U) = π∗k(H(πk(U))) if k ≥ d.

Let us suppose that f ∈ HVk(U). The function

g(z1, . . . , zk) = f(z1, . . . , zk, 0, 0, . . .)
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is holomorphic on πk(U). Let j ∈ N be such that Vk,j 6= ∅. As in Lemma 2.4, if

z = (zn)∞n=1 ∈ Vk,j and

w = (0, . . . , 0︸ ︷︷ ︸
k

, zk+1, zk+2, . . .) ∈ CN,

then z + λw ∈ Vk,j for all λ ∈ C. The function h(λ) = f(z + λw) is holomorphic

on C and is bounded because f ∈ HVk(U):

sup
λ∈C
|h(λ)| = sup

λ∈C
|f(z + λw)| ≤ sup

v∈Vk,j

|f(v)| <∞.

Therefore, h is constant. Then

f(z) = h(0) = h(−1) = f(z1, . . . , zk, 0, 0, . . .)

= g(z1, . . . , zk) = g ◦ πk(z).

Hence f(z) = g ◦πk(z) for all z ∈ Vk,j . By the Identity Theorem, f = g ◦πk on U .

Therefore, HVk(U) = π∗k(H(πk(U))) if k ≥ d.

Let Ck,j and Lk,j be the compact subsets of πk(U) and U respectively defined

in (7) and (8). The topology on HVk(U) is defined by the sequence of seminorms

sup
z∈Vk,j

|f(z)| = sup{|f̂(z1, . . . , zk)| : (z1, . . . , zk) ∈ Ck,j} = sup
z∈Lk,j

|f(z)|,

where j ∈ N. Thus we deduce that the identity mapping

(π∗k(H(πk(U))), τ0)→ HVk(U)

is continuous. Since every compact subset of U is contained in some Vk,j , the

identity mapping

HVk(U)→ (π∗k(H(πk(U))), τ0)

is also continuous. Hence HVk(U) = (π∗k(H(πk(U))), τ0) topologically if k ≥ d.

Finally, by Theorem 3.5,

(H(U), τδ) = (H(U), τ`) = lim−→
k≥d

(π∗k(H(πk(U))), τ0) = lim−→
k≥d
HVk(CN).

Let us remark that, in contrast to the complex case, the subspaces AVk(U)

and π∗k(H(πk(U))) never agree if U is an open subset of RN. For example, the

function

f((xn)∞n=1) = sin(xk+1)

is bounded on RN, so f ∈ AVk(U). However, f depends on the (k + 1)th variable

and so f /∈ π∗k(A(πk(U))).
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Next we will prove that, in the real case, (A(U), τδ) is not the inductive

limit of all the subspaces (π∗k(A(πk(U))), τ0), in contrast to the complex case of

Theorem 3.5.

Theorem 3.7. If U is a connected open subset of RN with the 0-property for

some d ∈ N, then τδ < τ` on A(U).

Proof. By Theorem 3.2 we have τδ ≤ τ`. Let us see that τδ 6= τ`. For every m ∈ N
and each (xn)∞n=1 ∈ RN, let

gm((xn)∞n=1) = sin(xm).

Let W = (Wj)
∞
j=1 be an increasing countable open cover of U . Since

sup
m∈N

(
sup
x∈Wj

|gm(x)|
)
≤ 1

for all j ∈ N, it follows that {gm : m ∈ N} is bounded in AW(U). As the inclusion

AW(U) ↪→ (A(U), τδ) is continuous, the set {gm : m ∈ N} is also bounded in

(A(U), τδ). By Theorem 3.4, the inductive limit

(A(U), τ`) = lim−→
k≥d

(π∗k(A(πk(U))), τ0)

is regular. If {gm : m ∈ N} were bounded for τ`, there would be k ∈ N, k ≥ d, such

that {gm : m ∈ N} ⊂ π∗k(A(πk(U))). However, gk+1 /∈ π∗k(A(πk(U))). Therefore,

{gm : m ∈ N} is not bounded in (A(U), τ`) and τδ 6= τ`.

If E is a locally convex space and m ∈ N, the symbol P(mE) denotes the

space of all continuous m-homogeneous polynomials from E into K. The following

result is due to Bochnak and Siciak [6, Theorem 3 and Lemma 4] and it will be

applied to prove that τ0 = τδ = τ` on P(m(KN)).

Theorem 3.8 (Bochnak and Siciak). If P ∈ P(m(RN)), then there is PC ∈
P(m(CN)) such that PC(x) = P (x) for every x ∈ RN. If U is a convex subset

of RN and P (U) ⊂ (−1, 1), then

PC

(
1

4e
(U + iU)

)
⊂ (−1, 1) + i(−1, 1).

Theorem 3.9. Let K = R or K = C. If m ∈ N and F is any equicontinuous

subset of P(m(KN)), then there is k ∈ N such that F ⊂ π∗k(A(Kk)).

Proof. If K = C, the result is a particular case of Lemma 2.4. Therefore, we will

suppose that K = R. As F is equicontinuous, there is a neighborhood U of zero
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in RN such that |P (x)| < 1 for all x ∈ U and all P ∈ F . We can assume that

U = {(xn)∞n=1 ∈ RN : |x1| < ε, . . . , |xk| < ε}

for some k ∈ N and ε > 0. We will prove that F ⊂ π∗k(A(Rk)).

Let P ∈ F and let P̂ : Rk → R be the mapping defined as

P̂ (x1, . . . , xk) = P (x1, . . . , xk, 0, 0, . . .).

Given x = (xn)∞n=1 ∈ U , let

y = (0, . . . , 0︸ ︷︷ ︸
k

, xk+1, xk+2, . . .) ∈ RN.

If λ = a+ ib ∈ C, then

x+ λy = (x1, . . . , xk, xk+1 + axk+1, xk+2 + axk+2, . . .)

+i(0, . . . , 0, bxk+1, bxk+2, . . .) ∈ U + iU.

As P (U) ⊂ (−1, 1), Theorem 3.8 implies that

PC

(
1

4e
(x+ λy)

)
∈ (−1, 1) + i(−1, 1)

for every λ ∈ C, where PC is the complex extension of P . Then |PC(x + λy)| <
(4e)m

√
2 for all λ ∈ C. Hence the function

h : λ ∈ C 7→ h(λ) = PC(x+ λy)

is holomorphic and bounded on C, hence constant. Therefore,

P (x) = PC(x) = h(0) = h(−1) = PC(x− y) = P (x− y)

= P (x1, . . . , xk, 0, 0, . . .) = P̂ ◦ πk(x).

This proves that P (x) = P̂ ◦ πk(x) for all x ∈ U . By the Identity Theorem,

P = P̂ ◦ πk on RN.

Theorem 3.10 (Mujica). Let E be a metrizable locally convex space. Let m ∈ N
and let τp be the topology on P(mE) of pointwise convergence. Then τ0 is the finest

locally convex topology on P(mE) that agrees with τp on equicontinuous subsets

of P(mE).

Proof. The result is due to Mujica [16, Theorem 2.1], who states it for complex

spaces. However, the same proof is also valid for real spaces.

It is known that τ0 = τδ on P(m(CN)) for every m ∈ N (see Barroso and

Nachbin [5, Proposition 10] and Dineen [9, Proposition 3.22b]). Now we prove

that these topologies and τ` also agree on spaces of polynomials on RN.
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Theorem 3.11. Let K = R or K = C. If m ∈ N, then τ0 = τδ = τ` on P(m(KN)).

Proof. By Theorem 3.2, we have τ0 ≤ τδ ≤ τ` on A(KN), so we only have to prove

that τ` ≤ τ0 on P(m(KN)). Let us suppose that F is an equicontinuous subset

of P(m(KN)). By Theorem 3.9, there is k ∈ N such that F ⊂ π∗k(A(Kk)). The

inclusions

(F , τ0) ↪→ (π∗k(A(Kk)), τ0) ↪→ (A(KN), τ`)

are continuous by the definition of τ`, so τ` ≤ τ0 on F and thus τ0 = τ` on F .

By Theorem 3.10, it is known that τ0 = τp on F . Hence τp = τ` on every

equicontinuous subset F ⊂ P(m(KN)). Then Theorem 3.10 implies that τ` ≤ τ0 on

P(m(KN)). Therefore, τ0 = τ` on P(m(KN)).

Theorem 3.12. Let K = R or K = C. Let U be a connected open subset of

KN with the 0-property for some d ∈ N. If τ is any topology on A(U) such that

τ0 ≤ τ ≤ τ`, then the space (A(U), τ) is not metrizable.

Proof. Let β denote the topology on the dual space (KN)′ = P(1(KN)) of uniform

convergence on bounded subsets of KN. As every bounded subset of KN is relatively

compact, we deduce that τ0 = β on (KN)′. Then Theorem 3.11 implies that β =

τ0 = τ = τ` on (KN)′.

If (A(U), τ) were metrizable, then the subspace ((KN)′, τ) = ((KN)′, β) would

also be metrizable. Hence both KN and ((KN)′, β) would be metrizable, which is

not possible because KN is not a normed space (see Köthe [12, p. 394]).

Let us mention that, in the complex case, the fact that (H(U), τ0) and

(H(U), τδ) are not metrizable was already proved in [13] for every open subset

U of a metrizable locally convex space of infinite dimension.

Mujica proposed the following problem [15, Problem 11.8]: find metrizable

complex locally convex spaces E and open subsets U ⊂ E such that the space

(H(U), τδ) is complete. That happens, for example, if E is metrizable and complete

and U is balanced (see Dineen [9, Corollary 3.53]). The following theorem shows

the completeness of (H(U), τδ) for some open subsets of CN that may not be

balanced.

Theorem 3.13. If U is a connected open subset of CN with the 0-property for

some d ∈ N, then the space (H(U), τδ) is complete.

Proof. As CN is metrizable, the space (H(U), τ0) is complete (see Barroso [4,

p. 239]). By Lemma 3.1, the subspace π∗k(H(πk(U))) is closed in (H(U), τ0), so

it is also complete for the compact-open topology. By Theorem 3.5, we have

(H(U), τδ) = (H(U), τ`) = lim−→
k≥d

(π∗k(H(πk(U))), τ0).
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Thus (H(U), τδ) is a countable inductive limit of complete spaces, which implies

that (H(U), τδ) is also complete (see Köthe [12, p. 225]).

Theorem 3.14. If U is a connected open subset of RN with the 0-property for

some d ∈ N, then the space (A(U), τ`) is not complete.

Proof. Let f : R→ R be the periodic continuous function defined as f(t) = |t| on

[−1, 1] and then extended to R. If Sm is the mth sum of the Fourier series of f ,

then Sm is an analytic function on R and the sequence (Sm)∞m=1 converges to f

uniformly on R. Let h : U → R be the mapping

h((xn)∞n=1) = f(x1).

For each m ∈ N, the mapping hm : U → R defined as

hm((xn)∞n=1) = Sm(x1)

is analytic on U and (hm)∞m=1 converges to h uniformly on U . Then (hm)∞m=1

is a Cauchy sequence in (π∗1(A(π1(U))), τ0), so also in (A(U), τ`). However, the

function h, which is the unique possible limit, is not analytic on U because f is

not analytic at zero in R.
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ciones del Departamento de Teoŕıa de Funciones, Universidad de Santiago de Compostela,
1978.

[16] , Complex homomorphisms of the algebras of holomorphic functions on Fréchet
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