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Anti-norms on Finite von Neumann Algebras

by

Jean-Christophe Bourin and Fumio Hiai

Abstract

As the reversed version of usual symmetric norms, we introduce the notion of symmetric
anti-norms ‖ · ‖! defined on the positive operators affiliated with a finite von Neumann
algebra with a finite normal trace. Related to symmetric anti-norms, we develop majoriza-
tion theory and superadditivity inequalities of the form ‖ψ(A+B)‖! ≥ ‖ψ(A)‖!+‖ψ(B)‖!
for a wide class of functions ψ.
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§1. Introduction

In functional analysis, symmetrically normed Banach function spaces are classi-

cal objects, as also are their non-commutative generalizations in the setting of

τ -measurable operators affiliated with a von Neumann algebra with a faithful

normal finite trace τ . Symmetric norms are homogeneous convex functionals com-

pletely determined by their values on the positive cone of the function space or the

operator algebra. This point of view motivates the study of concave, homogeneous

functionals on positive operators. It is our concern in this article.

A part of our work could fit in a very general setting, for instance, in the C∗-

algebra framework. However, we confine ourselves to finite von Neumann algebras

for two reasons. First, dealing with a von Neumann algebra equipped with a nor-

mal finite trace allows us to consider unbounded operators, and hence to develop

a theory parallel to most of the usual non-commutative Banach function spaces.
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25030 Besançon, France;
e-mail: jcbourin@univ-fcomte.fr
F. Hiai: Tohoku University (Emeritus), Hakusan 3-8-16-303, Abiko 270-1154, Japan;
e-mail: hiai.fumio@gmail.com

c© 2015 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



208 J.-C. Bourin and F. Hiai

Secondly, the finiteness assumption allows us to consider many functionals which

would not make sense in the non-finite case, such as the Fuglede–Kadison deter-

minant. The assumption is also essential for some technical reasons (for instance,

a unitary operator can be taken as a phase of the polar decomposition). Moreover,

this setup of a finite von Neumann algebra naturally extends the matrix approach

in our previous work.

We call our functionals, defined on the positive part N+ of a finite von Neu-

mann algebra N , symmetric anti-norms on N+, as the triangle inequality for

norms is then reversed. Section 2 gives the precise definition and exhibits an im-

portant family of such anti-norms which are derived from symmetric norms. For

the convenience of the reader and to fix terminology which has some variants in

the literature, our discussion also covers basic facts on symmetric norms. Our ap-

proach to symmetric norms may be of independent interest. Section 4 is devoted to

the (non-obvious) extension of these anti-norms to the whole set of densely-defined

positive operators affiliated with N . Here we consider the more classical case of

symmetric norms as well. Section 5 presents a superadditivity inequality for convex

functions which is a far-reaching extension of a classical trace inequality of Rot-

fel’d. Several norm inequalities follow from this anti-norm inequality. In Sections 6

and 7, we focus on a special class of symmetric norms and anti-norms which corre-

sponds, in the commutative case, to the class of rearrangement invariant function

spaces. The theory is then related to majorization relations.

Most of the results, norm and anti-norm inequalities given in Sections 4–7, are

based on operator inequalities via unitary orbits. These essential operator inequali-

ties are established in Section 3. The idea of the proofs consists in combining a uni-

tary orbit technique for spectral dominance in a finite factor with the disintegration

of N into its factorial components. These results nicely extend the scope of some

well-known matrix inequalities to the general finite von Neumann algebra setting.

§2. Symmetric norms and symmetric anti-norms

Let N be a finite von Neumann algebra acting on a separable Hilbert space H with

a faithful normal finite trace τ , and N+ the set of positive operators in N . Let N
denote the set of τ -measurable operators affiliated with N (see [13] for details),

and N+
the positive cone of N . Since τ is finite, N is the set of all densely-defined

closed operators affiliated with N .

In this article, a symmetric norm ‖·‖ onN means a norm satisfying ‖UXV ‖ =

‖X‖ for all X ∈ N and all unitaries U, V ∈ N . The monotonicity of such a norm

in the next lemma is a well-known simple fact [14, Lemma 3.2, Corollary 3.3]. We

give an alternative proof. The letter I stands for the identity (of any algebra).
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Lemma 2.1. Any symmetric norm ‖ · ‖ on N is monotone, i.e., ‖A‖ ≤ ‖B‖ if

A,B ∈ N+ and A ≤ B.

Proof. Let T ∈ N be a contraction. Note that |T | = (V1 + V2)/2 where V1 :=

|T |+ i
√
I − |T |2 and V2 := |T | − i

√
I − |T |2 are unitaries. As T = U |T | for some

unitary U ∈ N (sinceN is a finite von Neumann algebra), we have T = (U1+U2)/2

with two unitaries U1, U2 ∈ N . Therefore ‖TXT‖ ≤ ‖X‖ for all X ∈ N . Now,

assume that 0 ≤ A ≤ B in N . Then there exists a contraction C ∈ N+ such

that A = B1/2CB1/2 = V C1/2BC1/2V ∗ for some unitary V ∈ N . Hence ‖A‖ =

‖C1/2BC1/2‖ ≤ ‖B‖.

Consequently, any symmetric norm on N is continuous with respect to the

operator norm ‖ · ‖∞. In fact, since |X| ≤ ‖X‖∞I, we have

(2.1) ‖X‖ ≤ ‖X‖∞‖I‖, X ∈ N .

A symmetric norm ‖ ·‖ on N depends only on its values on positive operators

via the polar decomposition, and its restriction to N+ satisfies

(1) ‖αA‖ = α‖A‖ for all A ∈ N+ and all scalars α ≥ 0,

(2) ‖A‖ = ‖UAU∗‖ for all A ∈ N+ and all unitaries U ∈ N ,

(3) ‖A‖ ≤ ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A, B ∈ N+.

The first inequality in (3) follows from Lemma 2.1. Conversely, if ‖ · ‖ is a non-

negative functional on N+ satisfying (1)–(3), then ‖X‖ := ‖ |X| ‖ for X ∈ N
becomes a symmetric norm (more precisely, seminorm) on N , as immediately

shown by a triangle inequality in [1] or by Proposition 3.4 below.

We introduce the notion of symmetric anti-norms on the positive cone N+, by

replacing the convexity/subadditivity of symmetric norms with concavity/super-

additivity.

Definition 2.2. A symmetric anti-norm ‖·‖! on N+ is a functional taking values

in [0,∞) satisfying the following properties:

(1)! ‖αA‖! = α‖A‖! for all A ∈ N+ and all scalars α ≥ 0,

(2)! ‖A‖! = ‖UAU∗‖! for all A ∈ N+ and all unitaries U ∈ N ,

(3)! ‖A+B‖! ≥ ‖A‖! + ‖B‖! for all A, B ∈ N+.

(4)! ‖A+ εI‖! ↘ ‖A‖! as ε↘ 0 for all A ∈ N+.

This definition was first introduced in [6, 7] for the matrix algebra Mn. In the

matrix case, (4)! is equivalent to the usual continuity with respect to the operator

norm.
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Typical examples of symmetric anti-norms are A 7→ {τ(Aq)}1/q, 0 < q ≤ 1,

and A 7→ {τ(A−1/p)}−1/p, 0 < p <∞. The latter is first defined on the invertible

part of N+, and understood for non-invertible operators as

{τ(A−p)}−1/p := lim
ε↘0
{τ((A+ εI)−p)}−1/p,

where the finiteness assumption τ(I) <∞ is essential to have non-trivial function-

als on N+. These Schatten-like functionals with negative exponents are a special

case of a more general family.

Definition 2.3. Fix a symmetric norm ‖ · ‖ on N and p > 0. For each A ∈ N+,

since ‖(A+ εI)−p‖−1/p decreases as ε↘ 0 by Lemma 2.1, we can define

‖A‖! := lim
ε↘0
‖(A+ εI)−p‖−1/p.

Note that if A is invertible, then the above ‖A‖! is equal to ‖A−p‖−1/p, i.e.,

(2.2) ‖A−p‖−1/p = lim
ε↘0
‖(A+ εI)−p‖−1/p.

We call this functional N+ 3 A 7→ ‖A‖! a derived anti-norm and say that it is

derived from ‖ · ‖ and p.

A derived anti-norm is indeed a symmetric anti-norm as claimed in the next

statement.

Theorem 2.4. The above functional ‖ · ‖! derived from a symmetric norm ‖ · ‖
on N and a p > 0 satisfies

‖A+B‖! ≥ ‖A‖! + ‖B‖!

for every A,B ∈ N+. Hence ‖ · ‖! is a symmetric anti-norm on N+.

To prove this result, we begin with an operator arithmetic-geometric mean

inequality.

Lemma 2.5. Let A,B ∈ N+. Then there exists a unitary V ∈ N such that

|BA| ≤ A2 + V B2V ∗

2
.

Proof. Consider [
A2 AB

BA B2

]
,
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which is a positive operator on H⊕H. Thus, for any V ∈ N so is[
I −V

] [A2 AB

BA B2

][
I

−V ∗

]
.

Letting V ∗ be the unitary factor in the polar decomposition BA = V ∗|BA| yields

the desired inequality.

Combining Lemmas 2.1 and 2.5 yields ‖AB‖ ≤ (s‖A2‖ + s−1‖B2‖)/2 for all

symmetric norms, A,B ∈ N+, and s > 0. Thus, minimizing over s and taking

A = |X∗|, B = |Y ∗| for any operators X,Y ∈ N , we obtain the Cauchy–Schwarz

inequality for symmetric norms.

Corollary 2.6. Let X,Y ∈ N . Then for any symmetric norm on N ,

‖X∗Y ‖ ≤ ‖X∗X‖1/2‖Y ∗Y ‖1/2.

As a byproduct of this inequality we get from ‖ · ‖ another symmetric norm.

Corollary 2.7. If ‖ · ‖ is a symmetric norm on N , then so is X 7→ ‖X∗X‖1/2.

For symmetric anti-norms, the following proposition is known in the matrix

case [6].

Lemma 2.8. If ‖ · ‖! is a symmetric anti-norm on N+ and 0 < q < 1, then

A 7→ ‖Aq‖1/q! is also a symmetric anti-norm on N+.

Proof. The same proof as in the matrix case [6] shows that this is a homoge-

neous, unitarily invariant and concave functional. The continuity property (4)!,

i.e., ‖Aq‖1/q! = limε↘0 ‖(A + εI)q‖1/q! , is obvious from the monotonicity of ‖ · ‖!
since Aq ≤ (A+ εI)q ≤ Aq + εqI.

We are now in a position to prove the theorem.

Proof of Theorem 2.4. Let ‖ · ‖ be a symmetric norm on N . Let A,B ∈ N+ be

invertible and assume that ‖A−1‖ = ‖B−1‖ = 1. As t 7→ t−1 is operator convex

on (0,∞), we have, for 0 < s < 1,

‖(sA+ (1− s)B)−1‖ ≤ ‖sA−1 + (1− s)B−1‖ ≤ s+ (1− s) = 1

and so

‖(sA+ (1− s)B)−1‖−1 ≥ 1.

For general invertible S, T ∈ N+, taking in this estimate A = ‖S−1‖S, B =

‖T−1‖T , and s = ‖S−1‖−1/(‖S−1‖−1 + ‖T−1‖−1) yields

‖(S + T )−1‖−1 ≥ ‖S−1‖−1 + ‖T−1‖−1.
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Therefore, A 7→ ‖A‖! := ‖A−1‖−1 is a homogeneous and concave/superadditive

functional on the invertible part of N+. It can be extended with the same prop-

erties to the whole of N+ by the limit formula ‖A‖! := limε↘0 ‖A + εI‖!. Hence,

this functional derived from a symmetric norm ‖ · ‖ and p = 1 is a symmetric

anti-norm on N+.

Next we consider a functional derived from a symmetric norm ‖ · ‖ and an

arbitrary p > 0. We have p = 2nq where n is a positive integer and 0 < q < 1. By

Corollary 2.7 applied n times and the first step of the proof,

‖A‖(n)
! := lim

ε↘0
‖(A+ εI)−2n

‖−1/2n

is a symmetric anti-norm on N+. Applying Lemma 2.8 shows that A 7→
(‖Aq‖(n)

! )1/q is a symmetric anti-norm too, which is readily verified to be the

functional derived from ‖ · ‖ and p.

§3. Inequalities via unitary orbits

This section is the main technical part of this article. The next theorems give

superadditive or subadditive operator inequalities via unitary orbits for convex or

concave functions, which will be of essential use in Sections 4 and 5.

Theorem 3.1. Let g be a non-negative convex function on [0,∞) with g(0) = 0.

Assume that either N is a factor and A,B ∈ N+
, or A,B ∈ N+ without the fac-

toriality assumption on N . Then, for every ε > 0, there exist unitaries U, V ∈ N
such that

g(A+B) + εI ≥ Ug(A)U∗ + V g(B)V ∗.

Theorem 3.2. Let f be a non-negative concave function on [0,∞). Assume that

either N is a factor and A,B ∈ N+
, or A,B ∈ N+ without the factoriality of N .

Then, for every ε > 0, there exist unitaries U, V ∈ N such that

f(A+B) ≤ Uf(A)U∗ + V f(B)V ∗ + εI.

Before proving the theorems we recall the notion of the spectral scale [26].

The spectral scale of A ∈ N+
is defined as

(3.1) λt(A) := inf{s ∈ R : τ(1(s,∞)(A)) ≤ t}, t ∈ (0, τ(I)),

where 1(s,∞)(A) is the spectral projection of A corresponding to (s,∞). We

write λ(A) for the function t 7→ λt(A) on (0, τ(I)), which is non-increasing

and right-continuous. Furthermore, we write λ0(A) and λτ(I)(A) for limt↘0 λt(A)

and limt↗τ(I) λt(A), respectively, which are the maximal and minimal spectra
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of A (when A is bounded). The generalized s-numbers [13] of X ∈ N are

µt(X) := λt(|X|), t ∈ (0, τ(I)).

To prove the theorems we will use the following lemma. The lemma is rather

well-known but we give the proof for the convenience of the reader.

Lemma 3.3. Let N be a finite factor and A,B ∈ N+
. If B spectrally domi-

nates A, i.e., λt(A) ≤ λt(B) for all t ∈ (0, τ(I)), then for every ε > 0 there exists

a unitary U ∈ N such that UAU∗ ≤ B + εI.

Proof. Since the matrix case is obvious without εI on the right-hand side, we

may assume that N is a type II1 factor with the normalized trace τ . Choose an

increasing family {Ft}0≤t≤1 of projections inN such that τ(Ft) = t for all t ∈ [0, 1].

Define

Ã :=

∫ 1

0

λt(A) dFt, B̃ :=

∫ 1

0

λt(B) dFt.

Then λ(Ã) = λ(A), λ(B̃) = λ(B) and Ã ≤ B̃. Hence the assertion follows since

‖A − V ÃV ∗‖∞ < ε/2 and ‖B −WB̃W ∗‖∞ < ε/2 for some unitaries V,W ∈ N
by [18, Lemma 4.1].

We now turn to the proofs of the theorems, which are based on the spectral

dominance theorem [9] and the central direct decomposition.

Proof of Theorem 3.1. First assume that N is a finite factor. Then the matrix case

is [2, Theorem 2.1] (without εI on the left-hand side). The proof in the type II1

factor case is similar based on [9]. For any contraction Z ∈ N and any T ∈ N+
it

is known [9, Lemma 10(ii)] that Z∗g(T )Z spectrally dominates g(Z∗TZ). Hence,

by Lemma 3.3,

(3.2) Z∗g(T )Z + εI ≥Wg(Z∗TZ)W ∗

for some unitary W ∈ N . Then, by arguing as in the proof of [2, Theorem 2.1] or

[8, Corollary 3.2], one can see that the claimed inequality holds for some unitaries

U, V ∈ N .

For the non-factor case, as in [16], we take the central direct integral decom-

position into factors (see [27]) as

(3.3) {N ,H} =

∫ ⊕
Ω

{Nω,Hω} dν(ω), τ =

∫ ⊕
Ω

τω dν(ω)

over a finite measure space (Ω,B, ν) that may be assumed to be complete. Then

A,B ∈ N are represented as

(3.4) A =

∫ ⊕
Ω

Aω dν(ω), B =

∫ ⊕
Ω

Bω dν(ω)
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with unique (a.e.) measurable fields ω 7→ Aω, Bω ∈ Nω. For each ω ∈ Ω, from the

first step of the proof, there are unitaries U, V ∈ Nω such that

(3.5) g(Aω +Bω) + εIω ≥ Ug(Aω)U∗ + V g(Bω)V ∗.

Now, define F (ω) to be the set of pairs (U, V ) of unitaries in Nω satisfying (3.5),

and prove that there are measurable fields ω 7→ Uω and ω 7→ Vω such that

(Uω, Vω) ∈ F (ω) for all ω ∈ Ω. For this, as in [16], we may assume that ω 7→ Hω
is a constant field H0. Then F (·) is a multifunction whose values are non-empty

closed subsets of a Polish space B(H0)1 × B(H0)1, where B(H0)1 is the closed

unit ball of B(H0) with the strong* topology. By using [20, Theorem 6.1], we infer

that the graph

{(ω,U, V ) ∈ Ω×B(H0)1 ×B(H0)1 : (U, V ) ∈ F (ω)}

of F (·) belongs to B⊗B(B(H0)1×B(H0)1), where B(B(H0)1×B(H0)1) is the Borel

σ-field of B(H0)1 × B(H0)1. Hence, as in [16] the measurable selection theorem

(see e.g. [20]) yields measurable fields ω 7→ Uω and ω 7→ Vω as desired, so we obtain

the claimed inequality with the unitaries U =
∫ ⊕

Ω
Uω dν(ω) and V =

∫ ⊕
Ω
Vω dν(ω)

in N .

Proof of Theorem 3.2. The matrix case is in [2, Theorem 2.1]. In the type II1

factor case, inequality (3.2) for a contraction Z ∈ N and an T ∈ N+
is, in turn,

reversed as

Z∗f(T )Z ≤Wf(Z∗TZ)W ∗ + εI

by [9, Lemma 10(i)] and Lemma 3.3 similarly. (Here, note that although our as-

sumption on f is slightly weaker than that in [9], the proof of [9, Lemma 10(i)] can

easily be modified to show that f(Z∗TZ) spectrally dominates Z∗f(T )Z.) Hence

the desired assertion follows in the factor case. Now, the proof for the non-factor

case is the same as above.

An idea of the above proofs is to combine a unitary orbit technique with the

measurable selection theorem. We end the section with another illustration of the

idea, along the lines of [8, Proposition 2.11] for the matrix case.

Proposition 3.4. Let g be a non-decreasing convex function on [0,∞). Assume

that either N is a factor and X,Y ∈ N , or X,Y ∈ N without the factoriality

of N . Then, for every ε > 0, there exist unitaries U, V ∈ N such that

g(|X + Y |) ≤ Ug(|X|+ |Y |)U∗ + V g(|X∗|+ |Y ∗|)V ∗

2
+ εI.
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Proof. For any X ∈ N , the decomposition X = |X∗|1/2V |X|1/2 with a unitary V

shows that [
|X∗| X

X∗ |X|

]
is a positive τ -measurable operator affiliated with M2(N ) = N⊗M2. Consequently,[

|X∗|+ |Y ∗| X + Y

X∗ + Y ∗ |X|+ |Y |

]

also belongs to M2(N )
+

. Let W be the unitary part in X +Y = W |X +Y |. Then

[
−W ∗ I

] [|X∗|+ |Y ∗| X + Y

X∗ + Y ∗ |X|+ |Y |

][
−W
I

]

is in N+
, so that

(3.6) |X + Y | ≤ |X|+ |Y |+W ∗(|X∗|+ |Y ∗|)W
2

.

As g is non-decreasing and convex, in the factor case, (3.6) combined with [13,

Proposition 4.6(ii)] shows that g(|X+Y |) is spectrally dominated by {g(|X|+|Y |)+
W ∗g(|X∗|+ |Y ∗|)W}/2. Using Lemma 3.3 completes the proof of the proposition

when N is a factor. The non-factor case follows by using the measurable selection

method as in the previous proofs.

It is not known whether the measurable selection technique can work to prove

Theorems 3.1, 3.2 or Proposition 3.4 when A,B ∈ N+
or X,Y ∈ N without the

factoriality of N . But Theorems 3.1 and 3.2 will be applied to only bounded

operators so that we shall never assume the factoriality of a finite von Neumann

algebra in the rest of the paper.

§4. Extension of symmetric norms and anti-norms

The aim of this section is to show that a symmetric norm on N and a symmetric

anti-norm on N+ can naturally be extended, respectively, to N and to N+
. First,

let ‖ · ‖ be a symmetric norm on N . For each X ∈ N and s > 0, the function

t 7→ βs(t) := min{s, t} is used to define |X| ∧ s := βs(|X|). Since Lemma 2.1

implies that ‖ |X| ∧ s‖ is increasing as s↗∞, a natural extension of ‖ · ‖ to N is

given as

‖X‖ := lim
s↗∞

‖ |X| ∧ s‖ = sup
s>0
‖ |X| ∧ s‖ ∈ [0,∞].



216 J.-C. Bourin and F. Hiai

Proposition 4.1. The above extension of ‖ · ‖ becomes a symmetric norm on N
(with the value ∞ permitted).

Proof. It is immediate to see that the extended ‖·‖ on N satisfies ‖αX‖ = |α| ‖X‖
for all α ∈ C and ‖UXV ‖ = ‖X‖ for all unitaries U, V ∈ N . For every A,B ∈ N+

,

s > 0 and ε > 0, since βs is concave on [0,∞), by Theorem 3.2 there are unitaries

U, V ∈ N such that

(A+B) ∧ s ≤ U(A ∧ s)U∗ + V (B ∧ s)V ∗ + εI.

By Lemma 2.1 this implies that

‖(A+B) ∧ s‖ ≤ ‖A ∧ s‖+ ‖B ∧ s‖+ ε‖I‖.

Letting ε ↘ 0 and s ↗ ∞ gives ‖A + B‖ ≤ ‖A‖ + ‖B‖. Next we extend the

monotonicity of ‖ · ‖ to A ≤ B in N+
. For every s > 0 and ε > 0 there exists a

unitary U ∈ N such that U(A ∧ s)U∗ ≤ B ∧ s + εI. Since λt(A ∧ s) ≤ λt(B ∧ s)
for all t ∈ (0, τ(I)), this follows from Lemma 3.3 when N is a factor. For the non-

factor case, we can use the measurable selection method under the central direct

decomposition as in the previous section. Therefore, ‖A ∧ s‖ ≤ ‖B ∧ s‖ + ε‖I‖,
which implies that ‖A‖ ≤ ‖B‖. Now, the subadditivity ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖ in

the whole N follows from the triangle inequality

|X + Y | ≤ U |X|U∗ + V |Y |V ∗

for some unitaries U, V ∈ N ([13, Lemma 4.3], [21]), or else by use of (3.6).

Secondly, let ‖ · ‖! be a symmetric anti-norm on N+. For every A ∈ N+
and

s > 0, since ‖A ∧ s‖! increasing as s↗∞, we can extend ‖ · ‖! to N+
by

‖A‖! := lim
s↗∞

‖A ∧ s‖! ∈ [0,∞].

Proposition 4.2. The above extension of ‖ · ‖! to N+
still satisfies the three

conditions (1)!, (2)! and (3)!.

Proof. Since (1)! and (2)! are immediate by definition, we may prove (3)!. Let

A,B ∈ N+
, s > 0 and ε > 0 be arbitrary. We show that there exists a unitary

U ∈ N such that

(4.1) (A+B) ∧ 2s+ εI ≥ U(A ∧ s+B ∧ s)U∗.

When N is a factor, this follows from Lemma 3.3 since we have, for t ∈ (0, τ(I)),

λt((A+B) ∧ 2s) = λt(A+B) ∧ 2s ≥ λt(A ∧ s+B ∧ s) ∧ 2s = λt(A ∧ s+B ∧ s)
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due to A∧s+B∧s ≤ 2sI. For the non-factor case, under the decompositions (3.3)

and (3.4) we have A∧s =
∫ ⊕

Ω
Aω∧s dν(ω) and similarly for B∧s and (A+B)∧2s.

For each ω ∈ Ω, from the above factor case, there is a unitary V ∈ Nω such that

(4.2) (Aω +Bω) ∧ 2s+ εIω ≥ V (Aω ∧ s+Bω ∧ s)V ∗.

Now, define F (ω) to be the set of unitaries V ∈ Nω satisfying (4.2), and use

the measurable selection method as before to obtain a measurable field ω 7→ Uω
such that Uω ∈ F (ω) for all ω ∈ Ω. Therefore, we have (4.1) with the unitary

U :=
∫ ⊕

Ω
Uω dν(ω) in N , so that ‖(A+B)∧2s+εI‖! ≥ ‖A∧s‖! +‖B∧s‖!. Letting

ε↘ 0 and s↗∞ gives ‖A+B‖! ≥ ‖A‖! + ‖B‖!.

Remark 4.3. Let N =
⊕∞

n=1Nn where Nn = M2 for all n. We equip N with

the trace τ =
∑
n≥1 2−nτn where τn is the standard trace on Nn. The func-

tion t 7→ βn(t) = min{t, n} is concave and there exist An, Bn ∈ M+
2 such that

Trβn(An+Bn) < Trβn(An)+Trβn(Bn). Hence, there exist A,B ∈ N+
such that

τ((A + B) ∧ n)) < τ(A ∧ n) + τ(A ∧ n) for all n ∈ N. Such a phenomenon for τ

(regarded as an anti-norm) explains why the proof of the superadditivity part (3)!

in Proposition 4.2 is non-trivial.

Derived anti-norms extended to N+
have the following simple properties;

(a) and (b) may be used to check that a symmetric anti-norm is not a derived one.

Proposition 4.4. Let ‖ · ‖! be a derived anti-norm on N+, which is derived from

a symmetric norm ‖ · ‖ on N and a p > 0. The following hold for the extensions

of ‖ · ‖! to N+
and ‖ · ‖ to N :

(a) ‖A‖! <∞ for all A ∈ N+
.

(b) If A ∈ N+
is singular, i.e., the kernel of A is non-trivial, then ‖A‖! = 0.

(c) If A ∈ N+
is non-singular, then ‖A‖! = ‖A−p‖−1/p (with the convention

∞−1/p = 0).

Proof. (a) is obvious once (b) and (c) have been proved.

(b) Assume that kerA 6= {0}, and let P be the projection onto kerA. For each

s > 0 and ε > 0 we have (A∧s+εI)−p ≥ ε−pP and so ‖(A∧s+εI)−p‖ ≥ ε−p‖P‖.
By definition (2.2),

‖A ∧ s‖! = lim
ε↘0
‖(A ∧ s+ εI)−p‖−1/p ≤ lim

ε↘0
ε‖P‖−1/p = 0.

Therefore, ‖A‖! = 0.
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(c) First we extend (2.2) to a non-singular A ∈ N+
. Let A ∈ N+

with

kerA = {0}; hence A−p ∈ N+
. For every s > 0 and ε > 0, set

φs(ε) := sup
x≥0
{x−p ∧ s− (x+ ε)−p}.

Then it is clear that φs(ε) > 0 and limε↘0 φs(ε) = 0 for each s > 0. Since

‖(A+ εI)−p‖ increases as ε↘ 0 by Lemma 2.1 and

A−p ∧ s ≤ (A+ εI)−p + φs(ε)I,

we have ‖A−p ∧ s‖ ≤ limε↘0 ‖(A+ εI)−p‖. Hence ‖A−p‖ ≤ limε↘0 ‖(A+ εI)−p‖.
On the other hand, since (A+ εI)−p ≤ A−p ∧ ε−p, we have ‖(A+ εI)−p‖ ≤ ‖A−p‖
for every ε > 0. Therefore,

(4.3) ‖A−p‖−1/p = lim
ε↘0
‖(A+ εI)−p‖−1/p.

Now, looking at the function 0 ≤ x 7→ (x ∧ s+ ε)−p, one can easily see that

(A+ εI)−p ≤ (A ∧ s+ εI)−p ≤ (A+ εI)−p + s−pI

and hence

‖(A+ εI)−p‖−1/p ≥ ‖(A ∧ s+ εI)−p‖−1/p ≥ (‖(A+ εI)−p‖+ s−p‖I‖)−1/p.

Thanks to (4.3), letting ε↘ 0 gives

‖A−p‖−1/p ≥ ‖A ∧ s‖! ≥ (‖A−p‖+ s−p‖I‖)−1/p,

so that ‖A‖! = ‖A−p‖−1/p follows.

§5. Superadditivity for convex functions

The aim of this section is to prove the next superadditivity theorem for a symmetric

anti-norm involving a convex function g on [0,∞). Note that a non-negative convex

function g on [0,∞) is superadditive if and only if g(0) = 0. Also, note that

the assumption on g in the theorem is best possible; indeed, the assumption is

necessary even for the classical Rotfel’d trace inequality for matrices.

Theorem 5.1. Let A,B ∈ N+
and let g be a non-negative convex function on

[0,∞) with g(0) = 0. Then, for all symmetric anti-norms on N+,

‖g(A+B)‖! ≥ ‖g(A)‖! + ‖g(B)‖!.
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Here, and in what follows, we assume that symmetric anti-norms on N+ are

automatically defined on the full cone N+
as in Proposition 4.2, and similarly

symmetric norms on N are defined on the whole N as in Proposition 4.1.

Theorem 5.1 claims a numerical inequality; however, its proof relies on an op-

erator inequality presented in Section 3. Indeed, when A,B ∈ N+, it is a straight-

forward consequence of Theorem 3.1. When A,B ∈ N+
in the factor case, we

cannot argue by letting ε ↘ 0 in Theorem 3.1 because (4)! may not hold in N+
;

for instance, when ‖ · ‖! is the Fuglede–Kadison determinant (see the end of Sec-

tion 6), there is an A ∈ N+
which has the non-trivial kernel (hence ‖A‖! = 0) but

satisfies ‖A+ εI‖! =∞ for all ε > 0.

Proof of Theorem 5.1. Let A,B ∈ N+
and s > 0. Since g is continuous and

non-decreasing on [0,∞), thanks to [13, Lemma 2.5(iv)] we have

λt(g((A+B) ∧ 2s)) = g(λt(A+B) ∧ 2s)

≥ g(λt(A ∧ s+B ∧ s))
= λt(g(A ∧ s+B ∧ s)), t ∈ (0, τ(I)).

Given ε > 0, when N is a finite factor, Lemma 3.3 then entails

g((A+B) ∧ 2s) + εI ≥Wg(A ∧ s+B ∧ s)W ∗

for some unitary W ∈ N . This inequality can be extended to the non-factor case

by using the measurable selection method under the central direct decomposition

as in Section 3; full details are left to the reader. Hence, Theorem 3.1 applied to

A ∧ s, B ∧ s in place of A, B shows that

g((A+B) ∧ 2s) + 2εI ≥ Ug(A ∧ s)U∗ + V g(B ∧ s)V ∗

for some unitaries U, V ∈ N . Therefore,

‖g((A+B) ∧ 2s) + 2εI‖! ≥ ‖g(A ∧ s)‖! + ‖g(B ∧ s)‖!

so that ‖g((A+B) ∧ 2s)‖! ≥ ‖g(A ∧ s)‖! + ‖g(B ∧ s)‖!. Since a simple estimation

gives

‖g(A)‖! = lim
s↗∞

‖g(A) ∧ s‖! = lim
s↗∞

‖g(A ∧ s)‖!,

the claimed inequality follows.

In the rest of the section we collect a few special illustrations of Theorem 5.1.
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Corollary 5.2. Let A,B ∈ N+
be non-singular and p1, . . . , pm be positive scalars

such that
∑m
i=1 pi ≥ 1. Then, for all symmetric norms on N ,

m∏
i=1

‖(A+B)−pi‖−1 ≥
m∏
i=1

‖A−pi‖−1 +

m∏
i=1

‖B−pi‖−1.

Proof. Let gi be strictly increasing convex functions on [0,∞) with gi(0) = 0,

and let qi > 0, 1 ≤ i ≤ m. Theorem 5.1 applied to the derived anti-norms A 7→
‖A−qi‖−1/qi yields, in view of Proposition 4.4(c),

‖g−qii (A+B)‖−1/qi ≥ ‖g−qii (A)‖−1/qi + ‖g−qii (B)‖−1/qi , 1 ≤ i ≤ m.

Now, assume that
∑m
i=1 qi = 1. By the elementary inequality following from the

concavity of the weighted geometric mean,

m∏
i=1

(ai + bi)
qi ≥

m∏
i=1

aqii +

m∏
i=1

bqii

with ai = ‖g−qii (A)‖−1/qi and bi = ‖g−qii (B)‖−1/qi , we have

(5.1)

m∏
i=1

‖g−qii (A+B)‖−1 ≥
m∏
i=1

‖g−qii (A)‖−1 +

m∏
i=1

‖g−qii (B)‖−1.

Let p =
∑m
i=1 pi. Take in (5.1) gi(t) = tp and qi = pi/p, 1 ≤ i ≤ m, to obtain the

required estimate.

Corollary 5.3. Let A,B ∈ N+
be non-singular. Then, for all symmetric norms

on N , and m = 1, 2, . . . ,∥∥∥ m∑
k=1

(A+B)−k
∥∥∥−1

≥
∥∥∥ m∑
k=1

A−k
∥∥∥−1

+
∥∥∥ m∑
k=1

B−k
∥∥∥−1

.

Proof. Let m ≥ 2 and let

g(t) :=
tm

1 + t+ · · ·+ tm−1
=
tm+1 − tm

tm − 1
.

Then g(0) = 0 and for t > 0,

g′′(t) =
mtm−2{(m− 1)tm+1 − (m+ 1)tm + (m+ 1)t− (m− 1)}

(tm − 1)3
.

For φ(t) := (m− 1)tm+1 − (m+ 1)tm + (m+ 1)t− (m− 1) compute

φ′(t) = (m+ 1){(m− 1)tm −mtm−1 + 1},
φ′′(t) = (m+ 1)m(m− 1)tm−2(t− 1).
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Since φ(1) = φ′(1) = φ′′(1) = 0, we see that φ(t) ≤ 0 for 0 ≤ t ≤ 1 and φ(t) ≥ 0

for t ≥ 1. Hence g′′(t) ≥ 0 for all t > 0, so g(t) is convex on (0,∞). Note that

g(t) = (
∑m
k=1 t

−k)−1 for t > 0. So, applying Theorem 5.1 to this g and the derived

anti-norm A 7→ ‖A−1‖−1 proves the corollary.

The next corollary involves an anti-norm specific to the matrix algebra Mn.

Here
∧m

A denotes the mth antisymmetric tensor power of a matrix A (see [4]).

Corollary 5.4. Let A,B ∈ M+
n be non-singular. Let g : [0,∞) → [0,∞) be a

strictly increasing convex function with g(0) = 0. Then, for all 0 < q ≤ 1 and all

m = 1, 2, . . . ,{
Tr
∧m

gq(A+B)

Tr
∧m−1

gq(A+B)

}1/q

≥
{

Tr
∧m

gq(A)

Tr
∧m−1

gq(A)

}1/q

+

{
Tr
∧m

gq(B)

Tr
∧m−1

gq(B)

}1/q

.

Note that letting m = q = 1 we recapture the Rotfel’d trace inequality.

Proof. By a theorem of Marcus and Lopes [24] (also [25, p. 116]), the functional

on positive non-singular matrices

A 7→ Tr
∧m

A

Tr
∧m−1

A

is superadditive. This can be extended as an anti-norm on the whole of M+
n by

using condition (4)!. The corollary then follows from Lemma 2.8 combined with

Theorem 5.1.

§6. Full symmetry and majorization

In this section we consider a stronger symmetry property of norms and anti-norms

in connection with majorization relations. We will focus on the case of diffuse

algebras. Indeed, the case of Mn is simpler as well as classical. Meanwhile, the

setting of a general finite von Neumann algebra N is inappropriate to apply the

majorization technique. This may be justified by the fact [14, Theorem 3.27] that

(N , τ) with τ(I) = 1 satisfies the weak Dixmier property (i.e., τ(A) is in the ‖ ·‖∞-

closure of the convex hull of {B ∈ N+ : λ(B) = λ(A)} for every A ∈ N+) if

and only if either (N , τ) is a subalgebra of (Mn, n
−1Tr) containing all diagonal

matrices, or N is diffuse.

Thus, in Sections 6 and 7, we shall always use M (but not N ) to denote

a diffuse finite von Neumann algebra with a faithful normal trace τ such that

τ(I) = 1.
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Definition 6.1. A symmetric norm ‖ · ‖ on M is said to be fully symmetric (or

rearrangement invariant ) if λ(A) = λ(B) implies ‖A‖ = ‖B‖ for A,B ∈ M+.

Also, a symmetric anti-norm ‖ · ‖! onM+ is said to be fully symmetric if the same

holds for ‖ · ‖!.

The next proposition says that symmetry and full symmetry are equivalent

when M is a II1 factor (this is also true and well-known for Mn).

Proposition 6.2. IfM is a factor, then any symmetric norm and any symmetric

anti-norm are fully symmetric.

Proof. Let A,B ∈ M+ and assume that λ(A) = λ(B). For a symmetric norm

‖ · ‖, by Lemmas 2.1 and 3.3 we have ‖A‖ ≤ ‖B‖ + ε‖I‖ for every ε > 0, so

‖A‖ ≤ ‖B‖, and similarly for the reverse inequality. The proof is similar for a

symmetric anti-norm by using condition (4)!.

Recall some notions of majorization relevant to our discussion below. For

A,B ∈M+
, the submajorization A ≺w B is defined as λ(A) ≺w λ(B), i.e.,∫ t

0

λs(A) ds ≤
∫ t

0

λs(B) ds, t ∈ (0, 1),

and the majorization A ≺ B means that A ≺w B and τ(A) = τ(B) < ∞. The

supermajorization A ≺w B is defined as∫ 1

t

λs(A) ds ≥
∫ 1

t

λs(B) ds, t ∈ (0, 1).

The log-supermajorization A ≺w(log) B is defined as∫ 1

t

log λs(A) ds ≥
∫ 1

t

log λs(B) ds, t ∈ (0, 1).

These definitions make sense since the integrals always exist, with ±∞ permitted.

(The finiteness assumption τ(I) < ∞ is essential to introduce supermajorization

and log-supermajorization.)

Example 6.3. (1) For each t ∈ (0, 1] the functional

‖X‖(t) :=

∫ t

0

µs(X) ds, X ∈M,

is a fully symmetric norm on M, which is the continuous version of the Ky Fan

k-norm for matrices. The triangle inequality for ‖ · ‖(t) is a consequence of the

submajorization µ(X + Y ) ≺w µ(X) + µ(Y ) for X,Y ∈M (see [17]).
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(2) For each t ∈ (0, 1] the functional

‖A‖{t} :=

∫ 1

1−t
λs(A) ds, A ∈M+,

is a fully symmetric anti-norm on M+. The superadditivity of ‖ · ‖{t} is a conse-

quence of λ(A + B) ≺ λ(A) + λ(B) for A,B ∈ M+ (see [17]). This anti-norm is

not a derived anti-norm.

(3) For each t ∈ (0, 1] and p > 0, the anti-norm derived from the above ‖ · ‖(t)
and p is written as

(6.1) ‖A‖! := lim
ε↘0
‖(A+ εI)−p‖−1/p

(t) =

(∫ 1

1−t
λs(A)−p ds

)−1/p

, A ∈M+,

with the usual convention 0−p = ∞ and ∞−1/p = 0. Obviously, this anti-norm is

fully symmetric. One can easily find a sequence An, A ∈M+ such that ‖An−A‖∞
→ 0 and ‖An‖! = 0 for all n, but ‖A‖! > 0. Therefore, ‖·‖! is not ‖·‖∞-continuous

on M+. On the other hand, the anti-norm derived from ‖ · ‖∞ (and any p > 0)

is λ1(A), which is ‖ · ‖∞-continuous on M+. Thus, the continuity behavior with

respect to the operator norm in the diffuse case is subtler than in the matrix case.

Since M is diffuse, we can choose a family {Ft}0≤t≤1 of projections as in the

proof of Lemma 3.3. In our discussion below we will use such a family {Ft} without

explicit mention.

§6.1. Fully symmetric norms

The following properties of fully symmetric norms were discussed in more or less

detail in the study of non-commutative Banach function spaces (see e.g. [11, 12,

28]), usually as working assumptions rather than results. The book [23] contains

a nice discussion of this topic.

Proposition 6.4. Let ‖ · ‖ be a fully symmetric norm on M.

(a) For every A,B ∈M+
, A ≺w B implies ‖A‖ ≤ ‖B‖.

(b) If A,An ∈ M
+

and An ↗ A in the τ -measure topology (or more weakly

λt(An)↗ λt(A) for a.e. t ∈ (0, 1)), then ‖An‖ ↗ ‖A‖.
(c) ‖X‖1‖I‖ ≤ ‖X‖ ≤ ‖X‖∞‖I‖ for all X ∈ M, where ‖X‖1 := τ(|X|) and

‖X‖∞ := limt↘0 λt(|X|), the operator norm.

Proof. (a) (for bounded operators) Assume that A,B ∈ M+ and A ≺w B. Since

f := λ(A) ≺w g := λ(B) as functions in L∞(0, 1)+, by [10, Theorem 1.1] there

is an h ∈ L∞(0, 1)+ such that f ≤ h ≺ g. Let Γ denote the set of bijective Borel
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transformations on (0, 1) preserving the Lebesgue measure. As in the proof of [19,

Theorem 2.1, Lemma 2.2] we can see that the decreasing rearrangement h∗ of h is

in the ‖ · ‖∞-closure of the convex hull of {γf : γ ∈ Γ}, where (γf)(t) := f(γ−1t).

Thus, for every ε > 0 there are γi ∈ Γ and λi > 0, 1 ≤ i ≤ k, such that
∑k
i=1 λi = 1

and h∗ ≤
∑k
i=1 λiγig + ε1. Let C :=

∫ 1

0
h∗(t) dFt and Bi :=

∫ 1

0
(γig)(t) dFt. Since

λ(Bi) = λ(B), the monotonicity and full symmetry of ‖ · ‖ yield

‖A‖ ≤ ‖C‖ ≤
k∑
i=1

λi‖Bi‖+ ε‖I‖ = ‖B‖+ ε‖I‖.

Hence ‖A‖ ≤ ‖B‖.
(b) First we prove that if A,An ∈ M+ and λt(An) ↗ λt(A) a.e., then

‖An‖ ↗ ‖A‖. By (a), ‖An‖ is increasing in n. For every ε > 0, since λ0(An) =

‖An‖∞ ↗ λ0(A) = ‖A‖∞ and

lim
t↘0

1

t

∫ t

0

(λs(A)− λs(An)) ds = λ0(A)− λ0(An),

one can choose n0 ∈ N and δ > 0 so that t−1
∫ t

0
(λs(A) − λs(An0

)) ds < ε for all

t ∈ (0, δ), and hence

1

t

∫ t

0

(λs(A)− λs(An)) ds < ε, t ∈ (0, δ), n ≥ n0.

Furthermore, for any t ∈ [δ, 1) one has

1

t

∫ t

0

(λs(A)− λs(An)) ds ≤ 1

δ

∫ 1

0

(λs(A)− λs(An)) ds↘ 0 as n→∞

by the dominated convergence theorem. Hence there exists an n1 ∈ N such that

1

t

∫ t

0

(λs(A)− λs(An)) ds < ε, t ∈ [δ, 1), n ≥ n1.

If n ≥ max{n0, n1}, then the above estimates imply that A ≺w An + εI so that

‖A‖ ≤ ‖An‖+ ε‖I‖ by (a). Thus ‖An‖ ↗ ‖A‖.
Next assume that A,An ∈ M

+
and λt(An) ↗ λt(A) a.e. For every s > 0,

since λt(An ∧ s)↗ λt(A∧ s) a.e., we have ‖An ∧ s‖ ↗ ‖A∧ s‖ from the first step.

Hence ‖An‖ = sups>0 ‖An ∧ s‖ is increasing in n and

‖A‖ = sup
s>0
‖A ∧ s‖ = sup

s>0, n∈N
‖An ∧ s‖ = sup

n∈N
‖An‖.

Therefore, ‖An‖ ↗ ‖A‖.
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(c) For X ∈ M, the inequality ‖X‖ ≤ ‖X‖∞‖I‖ was given in (2.1). Since

τ(|X|)I ≺ |X|, we have ‖X‖1‖I‖ ≤ ‖X‖ by (a). These easily extend to all X ∈M
by (b).

(a) (for unbounded operators) Let A,B ∈M+
and assume A ≺w B. We may

assume that ‖B‖ <∞ and so ‖A‖1 ≤ ‖B‖1 <∞ by (c). Fix 0 < ρ < 1. Then, for

each n ∈ N, since
∫ t

0
λs(B)∧mds↗

∫ t
0
λs(B) ds as m→∞ uniformly in t ∈ (0, 1),

one can choose an m ∈ N such that ρA ∧ n ≺w B ∧m and hence ‖ρA ∧ n‖ ≤ ‖B‖
by (a). Hence ‖A‖ ≤ ‖B‖ by letting n→∞ and then ρ↗ 1.

In view of Example 6.3(1) we have

Corollary 6.5. Let X,Y ∈ M. Then |X| ≺w |Y | (i.e., µ(X) ≺w µ(Y )) if and

only if ‖X‖ ≤ ‖Y ‖ for all fully symmetric norms on M (extended to M).

§6.2. Fully symmetric anti-norms

Fully symmetric anti-norms have the following properties. It would be worthwhile

considering these properties in parallel to those in Proposition 6.4.

Proposition 6.6. Let ‖ · ‖! be a fully symmetric anti-norm on M+.

(a) For every A,B ∈M+
, A ≺w B implies ‖A‖! ≥ ‖B‖!.

(b) If A,An ∈ M+ and An ↘ A (or more weakly λt(An) ↘ λt(A) for a.e.

t ∈ (0, 1)), then ‖An‖! ↘ ‖A‖!.
(c) λ1(A)‖I‖! ≤ ‖A‖! ≤ τ(A)‖I‖! for all A ∈M, where λ1(A) := limt↗1 λt(A).

Proof. (a) Since A ≺w B implies A ∧ s ≺w B ∧ s for any s > 0 (which can

be seen as in the discrete case [25, p. 167]), we may assume A,B ∈ M+. Since

f := λ(A) ≺w g := λ(B) as functions in L∞(0, 1)+, there is an h ∈ L∞(0, 1)+

such that f ≥ h ≺ g. The remaining proof being similar to that of Proposition

6.4(a), we omit the details.

(b) Assume that A,An ∈ M and λt(An) ↘ λt(A) for a.e. t ∈ (0, 1). By (a),

‖An‖! is decreasing in n. For every ε > 0, since λ1(An)↘ λ1(A) and

lim
t↘0

1

t

∫ 1

1−t
(λs(An)− λs(A)) ds = λ1(An)− λ1(A),

one can show that A + εI ≺w An for all sufficiently large n as in the proof of

Proposition 6.4(b) by replacing t−1
∫ t

0
with t−1

∫ 1

1−t. By (a) this implies ‖A+εI‖! ≥
limn ‖An‖!. Letting ε↘ 0 gives ‖A‖! ≥ limn ‖An‖! and so ‖An‖! ↘ ‖A‖!.

(c) For A ∈ M+
, λ1(A)I ≤ A implies that λ1(A)‖I‖! ≤ ‖A‖!. Assuming

τ(A) <∞, we have τ(A)‖I‖! ≥ ‖A‖! from τ(A)I ≺ A.

In view of Example 6.3(2) we have
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Corollary 6.7. Let A,B ∈ M+
. Then A ≺w B if and only if ‖A‖! ≤ ‖B‖! for

all fully symmetric anti-norms on M+ (extended to M+
).

Remark 6.8. Proposition 6.4(b) means that a fully symmetric norm extended

to M satisfies the Fatou property (see [12]). Proposition 6.6(b) is considered as

the “anti-Fatou property”. Even though (4)! may not hold in M+
as noted in

Section 5, it is not known whether the anti-Fatou property holds for A,An ∈M
+

when ‖An‖! < ∞ and An ↘ A in the τ -measure topology. For fully symmetric

derived anti-norms, this property will be shown in the next subsection.

§6.3. Fully symmetric derived anti-norms

In the rest of the section we will consider fully symmetric derived anti-norms.

Lemma 6.9. Let ‖·‖! be an anti-norm onM+ which is derived from a symmetric

norm ‖·‖ onM and a p > 0. Then ‖·‖! is fully symmetric if and only if so is ‖·‖.

Proof. From (2.1), a symmetric norm on M is fully symmetric if the condition

in Definition 6.1 holds for invertible A,B ∈ M+. From condition (4)!, the same

is true for a symmetric anti-norm. Hence the assertion follows from the relations

‖A‖! = ‖A−p‖−1/p and ‖A‖ = ‖A−1/p‖−p! for invertible A ∈M+.

Properties (a) and (b) of Proposition 6.6 are strengthened for fully symmetric

derived anti-norms as follows. Note that A ≺w(log) B is weaker than A ≺w B for

A,B ∈M+
.

Proposition 6.10. Let ‖ · ‖! be a fully symmetric derived anti-norm on M+.

(a) For every A,B ∈M+
, A ≺w(log) B implies ‖A‖! ≥ ‖B‖!.

(b) If A,An ∈ M
+

and An ↘ A in the τ -measure topology (or more weakly

λt(An) ↘ λt(A) for a.e. t ∈ (0, 1)), then ‖An‖! ↘ ‖A‖!. In particular, (4)!

holds in M+
.

Proof. From Lemma 6.9, let ‖ · ‖! be derived from a fully symmetric norm ‖ · ‖
and a p > 0.

(a) Assume that A ≺w(log) B. Since this implies that A ∧ s ≺w(log) B ∧ s
for all s > 0 (similarly to the assertion for ≺w in the proof of Proposition 6.6,

by considering the function log(ex ∧ s)), we can assume that A,B ∈ M+. Fur-

thermore, by replacing A with A + εI for any ε > 0, A may be assumed to

be invertible. First, we assume that
∫ 1

0
log λs(B) ds = −∞, and we prove that

‖B‖! = 0 for every derived anti-norm ‖ · ‖!. By Proposition 6.4(c) it suffices to

prove this for the anti-norm derived from ‖·‖1 and any p > 0. So we may show that

limε↘0 ‖(B + εI)−p‖1 =∞. Since
∫ 1

0
log λs(B) ds = −∞ implies that λ1(B) = 0,
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we have − log λs(B) ≤ λs(B)−p for all s sufficiently near 1. Hence by (6.1) for

t = 1,

lim
ε↘0
‖(B + εI)−p‖1 =

∫ 1

0

λs(B)−p ds =∞.

Next assume that B as well as A are invertible. Then A ≺w(log) B means

log λ(A) ≺w log λ(B). For every p > 0, since log λ(A−p) ≺w log λ(B−p), we have

A−p ≺w B−p by [17, Proposition 1.2]. Hence by Proposition 6.4(a), ‖A−p‖ ≤
‖B−p‖ for any fully symmetric norm ‖ · ‖, implying the assertion.

Finally, assume that B is not invertible but
∫ 1

0
log λs(B) ds > −∞, so

λs(B) > 0 for all s ∈ (0, 1) and log λ(B) is integrable on (0, 1). One can fix

an r0 ∈ (0, 1) such that λr0(B) ≤ λ1(A) (since A is invertible while B is not). For

every δ > 0 there exists an r ∈ (r0, 1) such that∫ 1

r

(log λr(B)− log λs(B)) ds ≤ δ(1− r0),

so we define

B̂ :=

∫ r

0

λs(B) dFs +

∫ 1

r

λr(B) dFs,

which is invertible. If t ∈ (r0, 1), then∫ 1

t

(log λs(A) + δ) ds ≥
∫ 1

t

log λs(A) ds ≥
∫ 1

t

log λr0(B) ds ≥
∫ 1

t

log λs(B̂) ds.

If t ∈ (0, r0], then∫ 1

t

(log λs(A) + δ) ds ≥
∫ 1

t

log λs(B) ds+ δ(1− r0)

=

∫ 1

t

log λs(B̂) ds−
∫ 1

r

(log λr(B)− log λs(B)) ds+ δ(1− r0)

≥
∫ 1

t

log λs(B̂) ds.

The above estimates imply that eδA ≺w(log) B̂. Since B̂ is invertible, ‖(eδA)−p‖ ≤
‖B̂−p‖ as in the previous case. Therefore,

eδ‖A−p‖−1/p ≥ ‖B̂−p‖−1/p = ‖B̂‖! ≥ ‖B‖!

by Proposition 6.6(a) since λ(B̂) ≥ λ(B). Letting δ ↘ 0 gives ‖A‖! ≥ ‖B‖!.
(b) If kerA 6= {0}, then there is a δ ∈ (0, 1) such that λ1−δ(A) = 0. Since

λ1−δ/2(An)↘ 0, for every ε > 0 there exists an n0 ∈ N such that λ1−δ/2(An) < ε
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for all n ≥ n0. For each n ≥ n0, letting Pn := 1[0,ε](An) we have τ(Pn) ≥ δ/2 and

(An + εI)−p ≥ (2ε)−pPn. Therefore,

‖(An + εI)−p‖ ≥ (2ε)−p‖Pn‖ ≥ (2ε)−p‖I‖δ/2

so that ‖An‖! ≤ 2ε(‖I‖δ/2)−1/p for all n ≥ n0. Hence ‖An‖! ↘ 0.

Next assume that kerA = {0}, so A−p ∈M+
. Since

λt(A
−p
n ) = λ1−t(An)−p ↗ λ1−t(A)−p = λt(A

−p)

for a.e. t ∈ (0, 1), we have ‖A−pn ‖ ↗ ‖A−p‖ by Proposition 6.4(b). Therefore,

‖An‖! ↘ ‖A‖! by Proposition 4.4(c).

The next theorem is concerned with the converse to Proposition 6.10(a).

Theorem 6.11. Let A,B ∈ M+
and assume that

∫ 1

0
λs(B)−p ds < ∞ for some

p > 0 (in particular, this is the case if B ≥ δI for some δ > 0). Then the following

two conditions are equivalent:

(i) A ≺w(log) B.

(ii) ‖A‖! ≥ ‖B‖! for every fully symmetric derived anti-norm ‖ · ‖! on M+.

To prove the theorem, we first give a lemma. When A is invertible, the lemma

is [3, Lemma 4.3.6] with a simpler proof.

Lemma 6.12. Let A ∈M+ and assume that
∫ 1

0
λs(A)−p ds <∞ for some p > 0.

Then, for every t ∈ (0, 1],

exp

(
1

t

∫ 1

1−t
log λs(A) ds

)
= lim
p↘0

(
1

t

∫ 1

1−t
λs(A)−p ds

)−1/p

= lim
p↘0

t1/p‖A−p‖−1/p
(t) ,

where ‖ · ‖(t) is as in Example 6.3(1).

Proof. Replacing A with αA for some α > 0, we may suppose that A ≤ I. Assume

that
∫ 1

0
λs(A)−p0 ds <∞ for some p0 > 0; then 0 < λs(A) ≤ 1 for all s ∈ (0, 1) and

−λs(A)−p log λs(A) is integrable on (0, 1) for every p ∈ (0, p0). Write ϕ(s, p) :=

λs(A)−p for s ∈ (0, 1) and p ∈ (0, p0). Since

ϕ(s, p)− ϕ(s, 0)

p
= ∂pϕ(s, θp) = −λs(A)−θp log λs(A) ≤ −λs(A)−p log λs(A),

where θ ∈ (0, 1) (depending on s, p) and

lim
p↘0

ϕ(s, p)− ϕ(s, 0)

p
= ∂pϕ(s, 0) = − log λs(A),
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it follows from the Lebesgue dominated convergence theorem that, for every t ∈
(0, 1],

d

dp

∫ 1

1−t
ϕ(s, p) ds

∣∣∣∣
p=+0

= lim
p↘0

∫ 1

1−t

ϕ(s, p)− ϕ(s, 0)

p
ds = −

∫ 1

1−t
log λs(A) ds,

where d
dp (·)

∣∣
p=+0

means the right derivative at p = 0. Therefore,

lim
p↘0

[
−1

p
log

(
1

t

∫ 1

1−t
λs(A)−p ds

)]
= − d

dp
log

(
1

t

∫ 1

1−t
λs(A)−p ds

)∣∣∣∣
p=+0

=
1

t

∫ 1

1−t
log λs(A) ds,

which is equivalent to the desired limit formula.

Proof of Theorem 6.11. By Proposition 6.10(a) we may prove that (ii)⇒(i), so

assume that
∫ 1

0
λs(B)−p ds < ∞ for some p > 0 and ‖A‖! ≥ ‖B‖! for all fully

symmetric derived anti-norms. It suffices to show that, for each t ∈ (0, 1) fixed, if

‖A−p‖−1/p
(t) ≥ ‖B−p‖−1/p

(t) for all p > 0, then
∫ 1

1−t log λs(A) ds ≥
∫ 1

1−t log λs(B) ds.

Since all the relevant quantities depend on λ(A), λ(B) restricted on (1− t, 1), we

may assume that A,B ∈ M+, by replacing A, B with A ∧ α, B ∧ β where α :=

λ1−t(A), β :=λ1−t(B), respectively. Then for every δ>0 we have ‖(A+δI)−p‖−1/p
(t)

≥ ‖A−p‖−1/p
(t) ≥ ‖B−p‖−1/p

(t) . Applying Lemma 6.12 to A+ δI and B yields∫ 1

1−t
log(λs(A) + δ) ds ≥

∫ 1

1−t
log λs(B) ds.

Letting δ ↘ 0 gives the desired inequality.

Remark 6.13. Note that there is a B ∈ M+ such that
∫ 1

0
log λs(B) ds > −∞

but
∫ 1

0
λs(B)−p ds =∞ for all p > 0. For instance, this is the case when λs(B) =

exp
(
−1/
√

1− s
)
. For such a B ∈M+ and every p > 0, if ‖ · ‖ is a fully symmetric

norm on M+, then by Proposition 6.4(c) we have

lim
ε↘0
‖(B + εI)−p‖ ≥ lim

ε↘0
‖(B + εI)−p‖1‖I‖ =

∫ 1

0

λs(B)−p ds ‖I‖ =∞.

This means that ‖B‖! = 0 for every fully symmetric derived anti-norm, so (ii) of

Theorem 6.11 is satisfied for any A ∈ M+. Therefore, (ii)⇒(i) does not hold for

general A,B ∈ M+. This subtle difference between (i) and (ii) does not occur in

the matrix case. In the matrix algebra Mn, the conditions (i) and (ii) of Theorem

6.11 are equivalent: (i)⇒(ii) is shown in [7, Lemma 4.10], and (ii) ⇒ (i) is implicit

in [7, Example 4.5], the discrete version of the anti-norms in (6.2).
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The following is a consequence of Lemma 6.12.

Corollary 6.14. For every t ∈ (0, 1] the functional

(6.2) ∆t(A) := exp

(
1

t

∫ 1

1−t
log λs(A) ds

)
, A ∈M+,

is a symmetric anti-norm on M+.

Proof. The properties (1)! and (2)! of Definition 2.2 for ∆t are clear, and (4)! is

immediate from the monotone convergence theorem. To show (3)!, we may assume

in view of (4)! that A,B ∈M+ are invertible. Then Lemma 6.12 yields

(6.3) ∆t(A) = lim
p↘0

t−1/p‖A−p‖−1/p
(t)

and the same expressions for ∆t(B) and ∆t(A+B). Hence (3)! for ∆t follows from

the case of the derived anti-norms ‖A−p‖−1/p
(t) .

The symmetric anti-norms ∆t are not derived ones, but (6.3) says that they

are on the boundary of the derived anti-norms. In particular, when t = 1,

∆(X) := exp

(∫ 1

0

log λs(|X|) ds
)

= ∆1(|X|), X ∈M,

is the Fuglede–Kadison determinant [15]. This is extended to M by Proposition

4.2 and the above expression holds whenever
∫ 1

0
log λs(|X|) ds makes sense with

±∞ permitted. The determinant ∆ has turned out useful in non-commutative H∞

theory (see e.g. [3, 5]).

§7. Superadditivity with more functions

For a fully symmetric derived anti-norm, Theorem 5.1 for convex functions can be

extended to a considerably larger class of superadditive functions given as follows:

Let S be the class of functions ψ : [0,∞)→ [0,∞) such that ψ = f ◦ g for some

superadditive log-concave function f : [0,∞) → [0,∞) and some superadditive

convex function g : [0,∞)→ [0,∞).

Recall that f : [0,∞) → [0,∞) is log-concave if f ((a+ b)/2) ≥
√
f(a)f(b)

for all a, b ≥ 0, i.e., log f : [0,∞) → [−∞,∞) is concave. A convex function

g : [0,∞)→ [0,∞) is superadditive if and only if g(0) = 0. Note that any function

ψ in S is superadditive and non-decreasing on [0,∞) with ψ(0) = 0.

Any superadditive log-concave function ψ : [0,∞) → [0,∞) is in S. Any

convex function ψ : [0,∞) → [0,∞) with ψ(0) = 0 is in S. The next examples
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point out some functions in S which are in the intersection of these two subclasses,

or only in one subclass, or in none of them. We implicitly assume that superadditive

functions are defined on [0,∞).

Example 7.1. • The power functions t 7→ tp, p ≥ 1, and the angle function at any

α > 0, t 7→ (t−α)+ := max{t−α, 0}, are superadditive, convex and log-concave.

The function t 7→ t arctan t is also superadditive, convex and log-concave.

• For any γ > 1, the functions t 7→ sinh tγ and t 7→ t exp tγ are superadditive and

convex, but not log-concave.

• When 1 ≤ α < β, the function t 7→ min{tα, tβ} is superadditive and log-concave,

but not convex. The function t 7→ tα exp(−1/tβ) has the same properties when-

ever α ≥ 1 and β > 2α − 1 + 2
√
α(α− 1). When 0 < a < b, the function

t 7→ (t− a)1[b,∞)(t) also has the same properties though it is not continuous.

• For f(t) = min{tα, tβ} with 1 ≤ α < β and g(t) = sinh tγ or t exp tγ with γ > 1,

f ◦ g is a function in S, but neither log-concave nor convex.

Recall thatM stands for a (finite) diffuse algebra. The superadditivity results

in this section also hold with Mn in place ofM, with similar though simpler proofs.

The next theorem is the main result of this section.

Theorem 7.2. Let A,B ∈ M+
and let ψ ∈ S. Then, for any fully symmetric

derived anti-norm on M+
,

‖ψ(A+B)‖! ≥ ‖ψ(A)‖! + ‖ψ(B)‖!.

The proof is based on Theorem 3.1 and the next lemma.

Lemma 7.3. Let ‖ · ‖! be a fully symmetric derived anti-norm on M+. Let

A,B ∈M+
. If f : [0,∞)→ [0,∞) is superadditive and log-concave, then

‖f(A+B)‖! ≥ ‖f(A)‖! + ‖f(B)‖!.

Proof. For each s > 0, since λ(f(A + B)) ≥ λ(f(A ∧ s + B ∧ s)), by Propo-

sition 6.10(a) we have ‖f(A + B)‖! ≥ ‖f(A ∧ s + B ∧ s)‖!. Since ‖f(A)‖! =

lims↗∞ ‖f(A ∧ s)‖! and similarly for ‖f(B)‖! as in the proof of Theorem 5.1, we

may assume that A,B ∈M+. We prove that

(7.1) f(A+B) ≺w(log)

∫ 1

0

f(λt(A) + λt(B)) dFt.

As f(t) is non-decreasing, we have λ(f(A+B)) ≥ λ(f(A)) so that ‖f(A+B)‖! ≥
‖f(A)‖!, and similarly ‖f(A + B)‖! ≥ ‖f(B)‖!. Hence, the claimed inequality

is obvious if ‖f(A)‖! = 0 or ‖f(B)‖! = 0. So assume that ‖f(A)‖! > 0 and
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‖f(B)‖! > 0. This implies by Proposition 4.4(b) that f(A) and f(B) are non-

singular, so f(λt(A)) > 0 and f(λt(B)) > 0 for all t ∈ (0, 1). Hence f(t) > 0 for

all t > t0 := min{λ1(A), λ1(B)}. Furthermore, thanks to Proposition 6.10(b), it

suffices to prove the claimed inequality for A+ εI and B+ εI for any ε > 0. Thus

we can assume that f(t) > 0 for all t ≥ t0.

Then, from λ(A+B) ≺ λ(A) + λ(B) and the concavity of log f , we have

log λ(f(A+B)) = log f(λ(A+B)) ≺w log f(λ(A) + λ(B)),

which means that (7.1) holds. As f is further superadditive, (7.1) entails

f(A+B) ≺w(log)

∫ 1

0

(f(λt(A)) + f(λt(B))) dFt.

Therefore, Proposition 6.10(a) implies that

‖f(A+B)‖! ≥
∥∥∥∥∫ 1

0

f(λt(A)) dFt

∥∥∥∥
!

+

∥∥∥∥ ∫ 1

0

f(λt(B)) dFt

∥∥∥∥
!

= ‖f(A)‖! + ‖f(B)‖!.

Proof of Theorem 7.2. As in the proof of the previous lemma, we may and do

assume that A,B ∈ M+. Let ψ in S be written as ψ = f ◦ g, with f superad-

ditive log-concave and g superadditive convex. If ‖ψ(A)‖! = 0 or ‖ψ(B)‖! = 0,

then the claimed inequality follows as in the proof of the previous lemma. So we

assume that ‖ψ(A)‖! > 0 and ‖ψ(B)‖! > 0. This implies that f(λt(g(A))) > 0

and f(λt(g(B))) > 0 for all t ∈ (0, 1). Hence, f(t) > 0 for all t > t0 :=

min{λ1(g(A)), λ1(g(B))}, so that f is continuous on (t0,∞). For every ε > 0

let U, V ∈M be unitaries as given in Theorem 3.1. Then

λt(f(g(A+B) + εI)) ≥ λt(f(Ug(A)U∗ + V g(B)V ∗))

for all t ∈ (0, 1). By Proposition 6.10(a) and Lemma 7.3, this implies that

‖f(g(A+B) + εI)‖! ≥ ‖f(Ug(A)U∗ + V g(B)V ∗)‖! ≥ ‖f(g(A))‖! + ‖f(g(B))‖!.

Letting ε↘ 0 yields the claimed inequality thanks to Proposition 6.10(b).

Finally, we return to a general finite von Neumann algebra N with a faithful

normal trace τ , τ(I) = 1, and extend Theorem 7.2 to N+
with a restriction

on derived anti-norms. For this, we start with a fully symmetric norm ρ on the

commutative von Neumann algebra L∞(0, 1) with the trace
∫ 1

0
· dt (expectation).

Define a fully symmetric norm ‖ · ‖ρ on N as

‖X‖ρ := ρ(µ(X)), X ∈ N ,
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which we call a ρ-symmetric norm. This way of constructing symmetric norms

is common in the theory of non-commutative Banach function spaces (see e.g.

[11, 12]). Let ‖ · ‖! be the (fully symmetric) anti-norm on N+ that is derived from

‖ · ‖ρ and a p > 0. ForM diffuse, any fully symmetric norm onM is ρ-symmetric

with

ρ(h) :=

∥∥∥∥∫ 1

0

h(t) dFt

∥∥∥∥, h ∈ L∞(0, 1),

so the restriction here to fully symmetric derived anti-norms is indeed no restriction

in the diffuse case. However, on a general N we have a fully symmetric norm which

is not written as a ρ-symmetric norm.

Consider the tensor product (diffuse) von Neumann algebra

M := N ⊗L∞(0, 1)

with the tensor product trace τ ⊗
∫ 1

0
· dt, and define the ρ-symmetric norm ‖ · ‖ρ

on M and the corresponding derived anti-norm ‖ · ‖! on M+ in the same way as

above on N and N+. Then the following equations are obvious:

‖X‖ρ = ‖X ⊗ 1‖ρ, X ∈ N ; ‖A‖! = ‖A⊗ 1‖!, A ∈ N+
.

Therefore, all the results concerning fully symmetric derived anti-norms on M+

in Section 6 and in this section remain true for the anti-norm ‖ · ‖! on N+ derived

from ‖ · ‖ρ as above. In particular, we have

Corollary 7.4. Let ‖ · ‖! be an anti-norm on N+ that is derived from a ρ-

symmetric norm ‖ · ‖ρ on N and a p > 0. Then, for every A,B ∈ N+
and

every function ψ in S,

‖ψ(A+B)‖! ≥ ‖ψ(A)‖! + ‖ψ(B)‖!.

Corollary 7.5. Let g : [0,∞) → [0,∞) be a convex function with g(0) = 0, and

let ψ be a strictly increasing function in S. Then, for all non-singular A,B ∈ N+

and all 0 < p ≤ 1,

τ(gp(A+B))

τ(ψp−1(A+B))
≥ τ(gp(A))

τ(ψp−1(A))
+

τ(gp(B))

τ(ψp−1(B))
.

Proof. By Theorem 5.1 the functional A 7→ {τ(gp(A))}1/p is superadditive with

finite values on N+. By the previous corollary, A 7→ {τ(ψp−1(A))}1/(p−1) is super-

additive with strictly positive finite values on the non-singular part of N+. Hence,

their p-weighted geometric mean is again superadditive on the non-singular part

of N+.
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Note that ‖ · ‖(t) is a ρ-symmetric norm and (6.3) is valid in N+. Hence,

through Corollary 7.4 applied to the anti-norm derived from ‖ · ‖(t), we have

∆t(ψ(A+B)) ≥ ∆t(ψ(A)) + ∆t(ψ(B)), A,B ∈ N+
,

for all t ∈ (0, 1] and all ψ in S. For the Fuglede–Kadison determinant ∆, since

∆(
√
ψω(A)) = {∆(ψ(A))∆(ω(A))}1/2 for ψ, ω : [0,∞)→ [0,∞) and A ∈ N+

, we

furthermore have

Corollary 7.6. Let ψ, ω ∈ S. Then, for all A,B ∈ N+
,

∆(
√
ψω(A+B)) ≥ ∆(

√
ψω(A)) + ∆(

√
ψω(B)).

This is a substantial generalization of the Minkowski inequality for ∆(A) on

M+ given in [3] as a consequence of a variational expression of ∆. Note that the

concavity of A 7→ ∆(f(A)) on Msa for a positive concave function f was shown

in [22] (a similar result for matrices is in [6]).
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