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Power Operations and Coactions in Highly
Commutative Homology Theories

by

Andrew Baker

This paper is dedicated to the memory of my friend Goro Nishida (1943–2014),

whose pioneering work on power operations inspired it.

Abstract

Power operations in the homology of infinite loop spaces, and H∞ or E∞ ring spectra
have a long history in algebraic topology. In the case of ordinary mod p homology for a
prime p, the power operations of Kudo, Araki, Dyer and Lashof interact with Steenrod
operations via the Nishida relations, but for many purposes this leads to complicated
calculations once iterated applications of these functions are required. On the other hand,
the homology coaction turns out to provide tractable formulae better suited to exploiting
multiplicative structure.

We show how to derive suitable formulae for the interaction between power oper-
ations and homology coactions in a wide class of examples; our approach makes crucial
use of modern frameworks for spectra with well behaved smash products. In the case of
mod p homology, our formulae extend those of Bisson and Joyal to odd primes. We also
show how to exploit our results in sample calculations, and produce some apparently new
formulae for the Dyer–Lashof action on the dual Steenrod algebra.

2010 Mathematics Subject Classification: Primary 55S12; Secondary 55P42, 55S10.
Keywords: power operations, coactions, E∞ and H∞ ring spectra.

Introduction

In this note we study the interaction between coactions over homology Hopf alge-

broids (such as the Steenrod algebra for a prime p) and power operations (such as

Dyer–Lashof operations). Some of our results are surely known, but we are only

aware of partial references such as [4, 5] which only deal with the case of ordinary
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mod 2 homology. In any case, our approach to understanding this relationship

involves a modern perspective based on a symmetric monoidal category of spectra

with good properties such as that of [10].

The examples we discuss in detail are based on ordinary mod p homology for

a prime p and the power operations originally introduced by Kudo, Araki, Dyer

and Lashof, then generalised by May et al. [9, 12, 7], usually rather unhistori-

cally referred to as Dyer–Lashof operations. Studying the interaction between the

coaction and the Dyer–Lashof operations amounts to studying dual versions of

the classical Nishida relations [17]. We use knowledge of the coaction of the dual

Steenrod algebra A(p)∗ to investigate the homology of commutative S-algebras

R where π0(R) has characteristic p. Of course such questions were studied by

Steinberger [7, Chapter III]. However, our approach offers some clarification of the

algebra involved in the Dyer–Lashof action on the dual Steenrod algebra itself,

relating it to work of Kochman [11] (see also [20]); our detailed knowledge of the

homology also allows us to give a refined version of Steinberger’s splitting result,

giving more information on the multiplicative structure.

The results of this paper have been used in joint work with Rolf Hoyer and

some were an outcome of discussions with him.

Notation, etc.

We will use the floor and ceiling functions b−c, d−e : R→ Z taking values

bxc = max{n ∈ Z : n 6 x}, dxe = min{n ∈ Z : n > x}.

In particular, for x ∈ Z we have bxc = dxe = x, while if x /∈ Z, then dxe = bxc+ 1.

When working with power series f(t) in an indeterminate t, [f(t)]tn will denote

the coefficient of tn in f(t).

Bimodules

We will often consider bimodules. If R,R′,R′′ are three rings, M is an R-R′-

bimodule, and N is an R′-R′′-bimodule, then we will denote the tensor product

over R′ by M�R′ N. We will reserve ⊗R for the situation where R is commutative

and U,V are two left R-modules and denote their tensor product by U⊗R V. We

will sometimes consider a left R∗-module M∗ over a graded commutative ring R∗
as having a canonical right R∗-module structure given by

m · r = (−1)|r|·|m|rm

for homogeneous elements r ∈ R|r| and m ∈ M|m|.
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Bigebroids and comodules

Suppose that A,B,H are commutative (graded) rings and that

A
ηA−−→ H

ηB←−− B

are ring homomorphisms. We use these to define a left A-module structure and a

right B-module structure on H. Given a right A-module M and a left B-module N,

we can define the bimodule tensor products

M�A H, H�B N, M�A H�B N.

If R is a commutative graded ring, then its opposite ring has as its underlying set

Rop = R and multiplication of homogeneous elements given by

xopyop = (±)(yx)op,

where the sign is determined in the usual way in terms of the degrees of x, y.

The opposite ring Hop admits a right Aop-module structure and a left Bop-module

structure and there is a ring isomorphism

R
∼=−→ Rop, x↔ (±)xop,

which interchanges the two pairs of module structures.

Part I

Power operations and coactions

§1. Extended powers and power operations

In this section we give some general observations on extended powers. We will work

in the category MS of S-modules of [10] and write ∧ for ∧S . For an S-module M ,

M∧n = M ∧ · · · ∧M.

For an S-module N with a left Σn-action we will denote the half-smash product

by EΣn nΣn
N . In particular we will write

DnM = EΣn nΣn M
∧n

for the extended power, and when G 6 Σn, we will sometimes set

DGM = EΣn nGM∧n.

If M is cofibrant then by [10, Theorem III.5.1], the projection of EΣn to a point

induces a weak equivalence

DnM = EΣn nΣn M
∧n ∼−→M∧n/Σn.
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More generally, if R is a cofibrant commutative S-algebra, then in the cate-

gory MR of R-modules, for an R-module N we can define

DR
nN = EΣn nΣn

N∧Rn,

and if N is a cofibrant R-module, the natural map gives a weak equivalence

DR
nN = EΣn nΣn N

∧Rn ∼−→ N∧Rn/Σn.

If M ∈MS , there is an isomorphism

(1.1) R ∧DnM ∼= DR
n (R ∧M).

Now we recall the definition of power operations. We will do this in a general

setting, for three commutative S-algebras A,B,E (actually, it is enough to assume

that E is an H∞ ring spectrum). There is a map µn : DnE → E which induces a

diagram of A-module morphisms.

A ∧DnE
I∧µn //

''

A ∧ E

DA
n (A ∧ E)

88

If x : Sm → A ∧ E, then the composition of solid arrows in the commutative

diagram

(1.2) Ske

uu

Θe(x)

((
A ∧DnS

m id∧Dnx //

x̃

44A ∧Dn(A ∧ E)
I∧µn // A ∧A ∧ E mult∧id // A ∧ E

defines a power operation

(1.3) Θe : Am(E)→ Ak(E), Θe(x) = x̃∗e,

for each element e ∈ Ak(DnS
m) = πk(A ∧DnS

m).

§2. Generalised coactions

For any S-module X, we can use the unit S → B and switch maps to induce the

horizontal morphisms in the following commutative diagram:

(2.1)

A ∧X
∼= //

switch
��

A ∧ S ∧X unit //

switch
��

A ∧B ∧X

switch
��

X ∧A
∼= // S ∧X ∧A unit // B ∧X ∧A
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On applying homotopy π∗(−) we obtain maps similar to coactions, at least when

suitable flatness conditions hold.

We make an algebraic assumption: the left B∗-module B∗(A) = π∗(B ∧A) is

flat. Then on passing to homotopy groups we find that there is an isomorphism of

left B∗-modules

B∗(X ∧A)
∼=−→ B∗(X)⊗B∗ B∗(A),

and an isomorphism

A∗(B ∧X)
∼=−→ A∗(B)�B∗ B∗(X).

The rightmost switch map induces an isomorphism

A∗(B ∧X)
∼=−→ B∗(X)⊗B∗ B∗(A)

which converts the left A∗-module structure to a right module structure. These

ingredients give the following commutative diagram:

A∗(X)

�� ��
A∗(B)�B∗ B∗(X) A∗(B ∧X)

∼=oo ∼= // B∗(X)⊗B∗ B∗(A)

If A = B, then in

(2.2)

A∗(X)ψ

��

ψ̃

��
A∗(A)�A∗ A∗(X) A∗(A ∧X)

∼=oo ∼= // A∗(X)⊗A∗ A∗(A)

the homomorphism ψ is the usual left A∗(A)-coaction on A∗(X), while ψ̃ is ob-

tained by composing ψ with the antipode of the Hopf algebroid A∗(A) and a switch

map. In fact ψ̃ is a right coaction making A∗(X) into a right A∗(A)-comodule. If

we also take E = A, then for each e ∈ Ak(DnS
m) there is a power operation Θe

as in (1.3), but also another obtained by interchanging the rôles of the two factors

of A,

(2.3) Θ̃e = χΘeχ,

where χ : A∗(A)→ A∗(A) is the antipode induced by the switch map on A ∧A.

The unit S → B induces the downward morphisms in the following commu-

tative diagram:



242 A. Baker

(2.4)

A ∧ S ∧Dn(A ∧ E)
∼= // A ∧Dn(S ∧A ∧ E) //

��

A ∧ (S ∧A ∧ E)

∼=

��

// A ∧ S ∧ E

��

A ∧ S ∧DnS
m

id∧id∧Dnx

OO

��

S ∧ (A ∧A) ∧ E

��

// S ∧A ∧ E

��

∼=

OO

A ∧B ∧DnS
m

id∧id∧Dnx

��

B ∧ (A ∧A) ∧ E // B ∧A ∧ E

∼=

��
A ∧B ∧Dn(A ∧ E)

∼= // A ∧DB
n (B ∧ (A ∧ E)) // A ∧B ∧ (A ∧ E)

∼=

OO

// A ∧B ∧ E

On applying π∗(−) to this diagram we obtain an algebraic analogue:

(2.5)

A∗(S ∧Dn(A ∧ E))
∼= // A∗(Dn(S ∧A ∧ E)) //

��

A∗(S ∧A ∧ E)

∼=

��

// A∗(S ∧ E)

��

A∗(S ∧DnS
m)

(id∧Dnx)∗

OO

��

S∗((A ∧A) ∧ E)

��

// S∗(A ∧ E)

��

∼=

OO

A∗(B ∧DnS
m)

(id∧Dnx)∗

��

B∗((A ∧A) ∧ E) // B∗(A ∧ E)

∼=

��
A∗(B ∧Dn(A ∧ E))

∼= // A∗(DB
n (B ∧ (A ∧ E))) // A∗(B ∧ (A ∧ E))

∼=

OO

// A∗(B ∧ E)

When B = A and A∗(A) is A∗-flat, (A∗, A∗(A)) has the structure of a Hopf

algebroid. For any spectrum X, the unit S → A induces a map

A ∧X
∼=−→ A ∧ S ∧X → A ∧A ∧X,

and there is a left coaction

ψ : A∗(X)→ A∗(A)�A∗ A∗(X)

which fits into the following commutative diagram:

A∗(A ∧X)

∼=

��

A∗(X) ∼= A∗(S ∧X)

00

ψ ,, A∗(A)�A∗ A∗(X)
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In this situation, (2.5) can be used to study the A∗(A)-coaction and its relationship

with power operations defined above. Taking an element

e ∈ A∗(DnS
m) ∼= A∗(S ∧DnS

m)

and chasing it upwards to the right and downwards to

A∗(A ∧ E) ∼= A∗(A)�A∗ A∗(E)

and then comparing the result with that obtained by going downwards to the right,

A∗(E)
∼= //

ψ

��
ψ̃

((

A∗(S ∧ E)

A∗(DnS
m)

..

++
ψ̃

��

A∗(A)�A∗ A∗(E)
∼= //

∼=
��

A∗(A ∧ E)

A∗(DnS
m)⊗A∗ A∗(A) // A∗(E)⊗A∗ A∗(A)

∼= // A∗(E ∧A)

we obtain the following important formula:

(2.6) ψ̃(Θe(x)) =
∑
i

(1⊗ χ(θi))Θ
ei(ψ̃x),

where ψ(e) =
∑
i θi ⊗ ei.

§3. Further generalisations

The situation of the previous sections can be generalised somewhat. Suppose that

M is a right A-module. Then we can replace the element of Ak(DnS
m) with

e ∈Mk(DnS
m) and use the composition

(3.1)

M ∧DnS
m

id∧Dnx
//

x̃

++
M ∧Dn(A ∧ E)

I∧µn

// M ∧A ∧ E
mult∧id

// M ∧ E

to define a power operation

(3.2) Θe : Am(E)→Mk(E), Θe(x) = x̃∗e,

analogous to that of (1.3).

In order to get a sensible notion of left coaction M∗(X)→M∗(B)�B∗ B∗(X)

leading to analogues of the formulae above in good situations, it is necessary to

assume that B∗(A) is B∗-flat, and also that one of the following conditions holds:

• A∗(X) is A∗-flat;

• M∗ is A∗-flat as a right A∗-module.
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When B = A, the assumptions that A∗(A) is flat as a left or right A∗-module are

equivalent, and in the most important cases in algebraic topology this holds for

any M . We leave the interested reader to work out the details. Such operations

are likely to be hard to work with unless M has suitable multiplicative structure

(e.g., it is a commutative A-algebra).

One important class of examples is that where A = B = En, the n-th Lubin–

Tate spectrum for a prime p, and M = Kn, the n-th Morava K-theory. In this

case, Kn is an En ring spectrum (non-homotopy commutative if p = 2); more

generally, we could take M = En ∧W , where W is a generalised Moore spectrum

as in [8]. The work of the latter suggests defining power operations using pro-

systems of such operations; this is presumably related to the work of McClure [7,

Chapter IX] on power operations in K-theory.

Part II

Eilenberg–Mac Lane spectra and Dyer–Lashof operations

§4. Eilenberg–Mac Lane spectra and the dual Steenrod algebra

In this section we discuss the important case of the Eilenberg–Mac Lane spectrum

for a prime p and take A = B = H = HFp. The dual Steenrod algebra A∗ =

A(p)∗ = H∗(H) is actually a Hopf algebra over π∗(H) = Fp since the two unit

homomorphisms coincide. We will usually write ⊗ = ⊗Fp
in place of �Fp

as there

is no danger of confusion. The above isomorphism

H∗(H)�Fp H∗(X)
∼=−→ H∗(X)⊗Fp H∗(H)

coincides with the composition switch ◦ (χ⊗ I), and

ψ̃ = switch ◦ (χ⊗ I) ◦ ψ.

On a basic tensor α⊗ x ∈ H∗(H)⊗H∗(X) this gives

α⊗ x↔ (−1)|α|·|x|x⊗ χ(α).

The Steenrod algebra A∗ is the Fp-linear dual of A∗ with associated dual

pairing

〈− | −〉 : A∗ ⊗A∗ → Fp.

This gives rise to a right action of A∗ on a left A∗-comodule M∗ by

a∗x = x · a = (−1)|a|·|x|
∑
i

〈a | γi〉xi,
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where a ∈ A∗, x ∈M∗ and ψx =
∑
i γi ⊗ xi. There is also a dual pairing

〈− | −〉 : A∗ ⊗A∗ → Fp defined by 〈α | a〉 = (−1)|α|·|a|〈a | χα〉,

giving an alternative formulation of the right action as

a∗x =
∑
i

〈γ′i | a〉xi, where ψ̃x =
∑
i

xi ⊗ γ′i.

§4.1. The case p = 2

When A = B = H = HF2, the dual Steenrod algebra is

A∗ = F2[ξr : r > 1] = F2[ζr : r > 1],

where the Milnor generator ξr ∈ A2r−1 is defined to be the image of the generator

of H2r−1(RP∞) under the homomorphism induced by the canonical map RP∞ →
ΣHF2, and ζr = χ(ξr) is its conjugate; by convention ξ0 = ζ0 = 1. We will make

use of the generating series

ξ(t) = t+
∑
r>1

ξrt
2r

, ζ(t) = t+
∑
r>1

ζrt
2r

which are composition inverses, i.e., ζ(ξ(t)) = t = ξ(ζ(t)).

We have

H2m+r(D2S
m) =

{
F2 if r > 0,

0 otherwise,

and the generator in degree r + 2m gives the operation Qr = Qr+m. We write

Q̃r = Q̃r+m for the twisted version of these as in (2.3), so

Q̃r = χQrχ = χQr+mχ = Q̃r+m.

Theorem 4.1. Let x ∈ Hm(E) and ψ(x) =
∑
i αi ⊗ xi. Then∑

m6r

ψ(Qrx)tr =
∑
m6k

∑
06j6k

∑
i

ξ(t)kQ̃jαi ⊗Qk−jxi,

or equivalently

ψ(Qrx) =
∑
m6k

∑
06j6k

∑
i

[ξ(t)k]tr Q̃jαi ⊗Qk−jxi.

Proof. We recall that for m ∈ Z, there is a weak equivalence

D2S
m ∼−→ ΣmRP∞m ,
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where RP∞m is the Thom spectrum of the virtual bundle mλ, and λ ↓ RP∞ is the

canonical real line bundle associated to the real sign representation of Σ2. When

m > 0,

RP∞m = RP∞/RPm−1.

Writing ēr+m (r > 0) for the image of the generator er ∈ Hr(RP∞) under the

Thom isomorphism

H∗(RP∞) ∼= H∗+m(RP∞m ),

the coaction is given by∑
r>0

tr+mψēr+m =
∑
s>0

ξ(t)s+m ⊗ ēs+m.

Under the composition of the isomorphisms

H∗(D2S
m)

∼=−→ H∗(Σ
mRP∞m )

∼=−→ H∗−m(RP∞m )

induced by the above equivalence, the following elements correspond:

er ⊗ x⊗2
m ↔ ēr+m,

where xm ∈ Hm(Sm) is the generator. Now the result follows from (2.6), which

gives the following in terms of the right coaction ψ̃:∑
m6r

ψ̃(Qrx)tr =
∑
m6k

Qk(ψ̃x)(1⊗ ζ(t)k).

We will sometimes use generating functions to express such formulae. For

example, we have the series

Qt =
∑
r∈Z

Qrtr,

and on substituting ζ(t) for t,

Qζ(t) =
∑
r∈Z

Qrζ(t)r.

Then

(4.1) ψ̃Qtx =
∑
|x|6r

ψ̃(Qrx)tr =
∑
|x|6r

Qr(ψ̃x)ζ(t)r = Qζ(t)(ψ̃x).

The following formulae for Dyer–Lashof operations at the prime 2 are due to

Steinberger [7, Theorem III.2.2].
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Theorem 4.2. For r, s > 1,

Q2s−2ζ1 = ζs, Qrζ1 6= 0, Qrζs =

{
Qr+2s−2ζ1 if r ≡ 0,−1 (mod 2s),

0 otherwise.

Corollary 4.3. For s, t > 1,

Q̃2s−2ξ1 = ξs, Q̃rξ1 6= 0, Q̃rξs =

{
Q̃r+2s−2ξ1 if r ≡ 0,−1 (mod 2s),

0 otherwise.

For later use we record a result that may be known but we know of no refer-

ence.

Lemma 4.4. For s > 1,

(4.2) Q2s

ξs = ξs+1 + ξ1ξ
2
s .

Proof. Before proving this we note that if 1 6 r 6 s, then for degree reasons

Q2s

(ζrξ
2r

s−r) = (Q2r−1ζr)Q
2s−2r+1(ξ2r

s−r) + (Q2r

ζr)Q
2s−2r

(ξ2r

s−r) = ζr+1ξ
2r+1

s−r .

Suppose that (4.2) is true for s < n. By definition of the antipode χ, and

using Theorem 4.2 we obtain

Q2n

ξn = Q2n

(ζn + ζn−1ξ
2n−1

1 + · · ·+ ζ1ξ
2
n−1)

= ζn+1 + (Q2n−1

ζn−1)ξ2n

1 + · · ·+ (Q2ζ1)ξ22

n−1

= ζn+1 + ζnξ
2n

1 + · · ·+ ζ2ξ
22

n−1

= (ζn+1 + ζnξ
2n

1 + · · ·+ ζ2ξ
22

n−1 + ζ1ξ
2
n) + ζ1ξ

2
n

= ξn+1 + ξ1ξ
2
n.

§4.2. The case of an odd prime

Suppose that p is an odd prime and A = H = HFp. The dual Steenrod algebra is

A∗ = Fp[ξr : r > 1]⊗ Λ(τs : s > 0) = Fp[ζr : r > 1]⊗ Λ(τ̄s : s > 0)

where the Milnor generators ξr ∈ A2(pr−1) and τr ∈ A2pr−1 are the images of

generators of H2pr−1(BCp) and H2pr (BCp) under the homomorphism induced by

the canonical map BCp → ΣHFp, and ζr = χ(ξr), τ̄r = χ(τr) are their conjugates;

by convention ξ0 = ζ0 = 1.

For m ∈ Z,

H2mp+2r(p−1)−ε(DpS
2m) =


Fp if r > 0 and ε = 0,

Fp if r > 1 and ε = 1,

0 otherwise,



248 A. Baker

and a suitably chosen generator in degree 2mp + 2r(p − 1) − ε gives rise to the

operation βεQr = βεQr+m.

In order to give a similar discussion to that for the case p = 2, we follow the

outline of [7, Section V.2]. Let

W = {(x1, . . . , xp) ∈ Rp : x1 + · · ·+ xp = 0}

be the reduced real permutation representation of Σp in which not all elements

act orientably, although Cp 6 Σp does act by preserving orientations. Given any

finite-dimensional real vector space U , we can view Up = U ⊕ · · · ⊕ U with the

permutation action of Σp as equivalent to

(R⊕W )⊗R U ∼= U ⊕ (W ⊗R U)

with Σp acting only on the left hand factor and second summands respectively. As

Cp-representations,

W ∼= W1 ⊕ · · · ⊕W(p−1)/2,

where Wr = R2 with the generator of Cp acting as the matrix[
cos(2πr/p) − sin(2πr/p)

sin(2πr/p) cos(2πr/p)

]
,

which commutes with
[

0 −1
1 0

]
. Therefore each Wr together with W itself has a

natural complex structure compatible with the Cp-action, so W⊗RU can be viewed

as a complex Cp-representation. In particular, for any n, as a Cp-representation,

(Rn)p ∼= Rn ⊕ (W ⊗R Rn) ∼= Rn ⊕Wn,

where Wn has the componentwise action, and it follows that

DCp
Sn ∼= Sn ∧ EΣp nCp

(Wn)†,

where (−)† denotes one-point compactification of a vector space. Here EΣp nCp

(Wn)† is the Thom spectrum of the bundle

EΣp nCp
Wn ↓ BCp.

As explained in [7, Section V.2], this spectrum can be interpreted as the suspension

spectrum of a truncated lens space, but the orientability of this bundle suffices for

our purposes since there is a Thom isomorphism in mod p homology

H∗(BCp) ∼= H∗+n(p−1)(EΣp nCp (Wn)†).
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We remark that this viewpoint is likely to be useful in investigating the kind of

operations mentioned in Section 3 associated with Lubin–Tate spectra and Morava

K-theory.

Let z ∈ H1(BCp) and let y = βz ∈ H2(BCp) be generators of

H∗(BCp) = Fp[y]⊗ Λ(z).

Let an ∈ Hn(BCp) be dual to zε(n)ybn/2c, where ε(n) = (1 − (−1)n)/2 and b−c
is the floor function. We will use a formula for the left coaction ψ : H∗(BCp) →
A∗ ⊗H∗(BCp), originally due to Milnor [16] (see also Boardman’s account [6]).

We introduce two formal variables t+, t− in degrees −2,−1 respectively (so

the usual graded commutativity rules apply), and defining generating series

a(t) = a(t+, t−) =
∑
n>1
r=0,1

a2n−rt
n−r
+ tr−,

ξ(t) = ξ(t+) =
∑
r>0

ξrt
pr

+ , ζ(t) = ζ(t+) =
∑
r>0

ζrt
pr

+ ,

τ(t) = τ(t+, t−) = t− +
∑
r>0

τrt
pr

+ , τ̄(t) = τ̄(t+, t−) = t− +
∑
r>0

τ̄rt
pr

+ .

Notice that τ(t) and τ̄(t) have odd degree and so τ(t)2 = 0 = τ̄(t)2. The left

coaction is given by

(4.3) ψa(t) =
∑
n>1
r=0,1

ψa2n−rt
n−r
+ tr− = a(ξ(t+), τ(t+, t−))

=
∑
k>1

(
ξ(t+)k ⊗ a2k − τ(t+, t−)ξ(t+)k−1 ⊗ a2k−1

)
=
∑
k>1

(
ξ(t+)k ⊗ a2k −

∑
r>0

τrt
pr

+ ξ(t+)k−1 ⊗ a2k−1 + ξ(t+)k−1 ⊗ a2k−1t−

)
=
∑
k>1

(
ξ(t+)k ⊗ a2k −

∑
r>0

τrt
pr

+ ξ(t+)k−1 ⊗ a2k−1 − ξ(t+)k−1t− ⊗ a2k−1

)
.

Notice the effect of interchanging t− and a2k−1 which disappears when we instead

take the right coaction:

(4.4) ψ̃a(t) = a(ζ(t+), τ̄(t+, t−))

=
∑
k>1

(
a2k ⊗ ζ(t+)k + a2k−1 ⊗ τ̄(t+, t−)ζ(t+)k−1

)
=
∑
k>1

(
a2k ⊗ ζ(t+)k +

∑
r>0

a2k−1 ⊗ τ̄rtp
r

+ ζ(t+)k−1 + a2k−1 ⊗ ζ(t+)k−1t−

)
.
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By comparing coefficients of monomials in t+ and t− we obtain explicit formulae

for n > 1:

ψ(a2n) =

n∑
k=1

[ξ(t+)k]tn+ ⊗ a2k −
∑

06pr6n
16k6n

[τrt
pr

+ ξ(t+)k−1]tn+ ⊗ a2k−1,(4.5)

ψ(a2n−1) =

n∑
k=1

[ξ(t+)k−1]tn−1
+
⊗ a2k−1,(4.6)

or equivalently

ψ̃(a2n) =

n∑
k=1

a2k ⊗ [ζ(t+)k]tn+ +
∑

06pr6n
16k6n

a2k−1 ⊗ [τ̄rt
pr

+ ζ(t+)k−1]tn+ ,(4.7)

ψ̃(a2n−1) =

n∑
k=1

a2k−1 ⊗ [ζ(t+)k−1]tn−1
+

.(4.8)

We recall from [7, Chapter III] the following definitions of Dyer–Lashof oper-

ations on x ∈ Hm(E). As for the prime 2, Qrx and βQrx originate on elements

H∗(DCp
Sm), namely whenever 2r > m,

(−1)rν(m)a(2r−m)(p−1) ⊗ x⊗pm 7→ Qrx,

(−1)rν(m)a(2r−m)(p−1)−1 ⊗ x⊗pm 7→ βQrx.

where

ν(m) = (−1)m(m−1)(p−1)/4
(
((p− 1)/2)!

)m
.

Notice that this factor does not depend on r.

We will use generating series in the indeterminates t+, t− for encoding actions

of Dyer–Lashof operations. We set

Qt(−) = Qt+,t−(−) =
∑
r

Qr(−)t
r(p−1)
+ ,

βQt(−) = βQt+,t−(−) =
∑
r

βQr(−)t
r(p−1)−1
+ t−,

where the coefficients are operators that can be applied to homology elements.

We obtain the following result on the coaction and Dyer–Lashof operations

in the homology of an H∞ ring spectrum E. To ease the notation, we state it in

terms of the right coaction ψ̃, omitting ⊗ when no confusion seems likely.

Choose ω ∈ F×p2 to be a primitive (p−1)-th root of −1; although not uniquely

determined, ω gives a well defined element of the cyclic group F×p2/F
×
p . We make

use of the ceiling function d−e.
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Theorem 4.5. For x ∈ Hm(E),

ψ̃(Qtx) =
∑

dm/2e6r

ψ̃(Qrx)t
r(p−1)
+

= Qωζ(ω−1t+)(ψ̃x)

+(−1)m
(
βQωζ(ω−1t+),τ̄(ωζ(ω−1t+),ω−1t−)(ψ̃x)−βQωζ(ω−1t+),t−(ψ̃x)

)
=

∑
dm/2e6k

Qk(ψ̃x)
(
1⊗(ωζ(ω−1t+))k(p−1)

)
+
∑
r>0

∑
dm/2e6`

(−1)m+rβQ`(ψ̃x)
(
1⊗ τ̄rtp

r

+ (ωζ(ω−1t+))`(p−1)−1
)
,

ψ̃(βQt(x)) =
∑

dm/2e6r

ψ̃(βQrx)t
r(p−1)−1
+ t−

= βQωζ(ω−1t+),t−(ψ̃x) =
∑

dm/2e6s

βQs(ψ̃x)
(
1⊗(ωζ(ω−1t+))s(p−1)−1t−

)
.

Outline of proof for m > 0. Using the description of an extended power DCpS
m

as a suspension of a truncated lens space, we can pull back to BCp. The origins

of Qrx, βQrx then lie in the m-fold suspension of the elements

(−1)ra2(p−1)r = (ω−1)r(p−1)a2(p−1)r, (−1)ra2(p−1)r−1 = (ω−1)r(p−1)a2(p−1)r−1.

As the map defining the Dyer–Lashof operations factors throughDCp
Sm → DpS

m,

the formulae follow from (4.7) and (4.8).

The case where m < 0 can be proved using Thom spectra of virtual bundles.

The odd primary part of Steinberger’s [7, Theorem III.2.2] gives the following

result.

Theorem 4.6. For r, s > 1,

Q(ps−1)/(p−1)τ0 = (−1)sτ̄s,

βQ(ps−1)/(p−1)τ0 = (−1)sχξs = (−1)sζs, βQrτ0 6= 0,

Qrζs =


(−1)sβQr+(ps−1)/(p−1)τ0 if r ≡ −1 (mod ps),

(−1)s+1βQr+(ps−1)/(p−1)τ0 if r ≡ 0 (mod ps),

0 otherwise,

Qr τ̄s =

{
(−1)s+1Qr+(ps−1)/(p−1)τ0 if r ≡ 0 (mod ps),

0 otherwise.

In particular,
Qpsζs = ζs+1, Qps τ̄s = τ̄s+1.
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Our next result is analogous to Lemma 4.4.

Lemma 4.7. For r > 0 and s > 1,

Qprτr = τr+1 − τ0ξr+1,(4.9)

βQprτr = ξr+1,(4.10)

Qpsξs = ξs+1 − ξ1ξps .(4.11)

Proof. Conjugation is defined by the recursive formulae

τ̄s + τ̄s−1ξ
ps−1

1 + τ̄s−2ξ
ps−2

2 + · · ·+ τ̄0ξs + τs = 0,

ζs + ζs−1ξ
ps−1

1 + ζs−2ξ
ps−2

2 + · · ·+ ζ1ξ
p
s−1 + ξs = 0.

Applying Qps to the first equation, using the Cartan formula and considering

degrees carefully, we obtain

Qpsτs = −
(
Qps τ̄s + (Qps−1

τ̄s−1)ξp
s

1 + (Qps−2

τ̄s−2)ξp
s−1

2 + · · ·+ (Q1τ̄0)ξps
)

= −
(
τ̄s+1 + τ̄sξ

ps

1 + τ̄s−1ξ
ps−1

2 + · · ·+ τ̄1ξ
p
s

)
= −

(
τ̄s+1 + τ̄sξ

ps

1 + τ̄s−1ξ
ps−1

2 + · · ·+ τ̄1ξ
p
s + τ̄0ξs+1 + τs+1

)
+ τ̄0ξs+1 + τs+1

= τs+1− τ0ξs+1,

and

Qpsξs = −
(
Qpsζs + (Qps−1

ζs−1)ξp
s

1 + (Qps−2

ζs−2)ξp
s−1

2 + · · ·+ (Qpζ1)ξp
2

s

)
= −

(
ζs+1 + ζsξ

ps

1 + ζs−1ξ
ps−1

2 + · · ·+ ζ2ξ
p2

s

)
= −

(
ζs+1 + ζsξ

ps

1 + ζs−1ξ
ps−1

2 + · · ·+ ζ2ξ
p2

s + ζ1ξ
p
s + ξs+1

)
+ ζ1ξ

p
s + ξs+1

= ξs+1− ξ1ξps .

We also have

βQpsτs = βτs+1 − β(τ0ξs+1) = 0− (βτ0)ξs+1 + τ0(βξs+1) = ξs+1,

since the Bockstein β acts on A∗ by the left action of A∗, i.e., if a ∈ A∗ and

ψ(a) =
∑
i a
′
i ⊗ a′′i , then

βa =
∑
i

〈β, χ(a′i)〉a′′i ,

where 〈−,−〉 is the dual pairing between A∗ and A∗. This gives βτ0 = −1 as used

above.
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§5. Dyer–Lashof operations on the dual Steenrod algebra

We will require more information on the action of Dyer–Lashof operations inA(p)∗.

In the discussion following we make use of Kochman [11] and Steinberger [7].

Let R be a commutative ring. Define the Newton polynomials

Nn(t) = Nn(t1, . . . , tn) ∈ R[t1, . . . , tn]

recursively by setting N1(t) = t1 and

Nn(t) = t1Nn−1(t)− t2Nn−2(t) + · · ·+ (−1)n−2tn−1N1(t) + (−1)n−1ntn.

It is well known that for a prime p,

Npn(t) ≡ Nn(t)p (mod p),

In A(p)∗, we can consider the values of these obtained by setting

tn =

{
ξr if n = pr − 1,

0 otherwise,

and we denote these elements by Nn(ξ). They satisfy recurrence relations of the

form

Nn(ξ) = −ξ1Nn−p+1(ξ)− ξ2Nn−p2+1(ξ) + · · ·
and in particular

Nps−1(ξ) = −ξ1Nps−p(ξ)− ξ2Nps−p2(ξ) + · · · − ξs−1Nps−ps−1(ξ)− (ps − 1)ξs

= −ξ1Nps−1−1(ξ)p − ξ2Nps−2−1(ξ)p
2

+ · · · − ξs−1Np−1(ξ)p
s−1

+ ξs.

Since Np−1(ξ) = ξ1 = −ζ1, it follows that the negatives −Npr−1(ξ) satisfy the

same recurrence relation as the conjugates ζr = χ(ξr), hence for each s > 1,

(5.1) Nps−1(ξ) = −ζs.

See [1, Lemma 2.8] for a closely related result which also implies this one. We also

mention another easy consequence of the recursion formula which can be verified

by working modulo the ideal (ξi : i > 2)CA(p)∗.

Lemma 5.1. For any prime p and any k > 1,

Nk(p−1)(ξ) 6= 0.

The generating series for the (−1)nNn(ξ) satisfies the relation(
1 +

∑
r>1

ξrt
pr−1

)(∑
n>1

(−1)nNn(ξ)tn
)

=
∑
r>1

ξrt
pr−1,
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hence

(5.2)
∑
n>1

(−1)nNn(ξ)tn = 1−
(

1 +
∑
r>1

ξrt
pr−1

)−1

= 1− t

ξ(t)
.

We will give formulae for the Nn(ξ) modulo the ideal (ζj : j 6= s)CA(p)∗, for

some fixed s > 1. The recursive formula for the antipode of A(p)∗ gives

ξns ≡ −ζsξp
s

(n−1)s mod (ζj : j 6= s),

and an induction shows that

(5.3) ξns ≡ (−1)nζ(pns−1)/(ps−1)
s mod (ζj : j 6= s).

Combining this with (5.2) we obtain

(5.4)
∑
n>1

(−1)nNn(ξ)tn

≡ 1−
(

1 +
∑
r>1

(−1)rζ(prs−1)/(ps−1)
s tp

rs−1
)−1

mod (ζj : j 6= s).

Our next result is a number-theoretic observation.

Lemma 5.2. Let p be a prime and let s > 1. Suppose that the natural number n

has p-adic expansion

n = nkp
k + nk+1p

k+1 + · · ·+ nk+` p
k+`

where ` > 0 and nk, nk+` 6≡ 0 (mod p). Then(
nps − 1

n

)
6≡ 0 (mod p)

⇔ ns+k 6 nk − 1, ns+k+1 6 nk+1, . . . , nk+` 6 nk+`−s.

Proof. The p-adic expansion of nps − 1 is

nps − 1 = (p− 1) + (p− 1)p+ · · ·+ (p− 1)ps+k−1

+ (nk − 1)ps+k + nk+1p
s+k+1 + · · ·+ nk+` p

s+k+`

so(
nps − 1

n

)
≡
(
p− 1

nk

)
· · ·
(
p− 1

ns+k−1

)(
nk − 1

ns+k

)(
nk+1

ns+k+1

)
· · ·
(
nk+`−s

nk+`

)
(mod p).

This does not vanish mod p exactly when the stated conditions hold.
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For example, when p = 2 and s = 1,

(5.5)

(
2n− 1

n

)
6≡ 0 (mod 2) ⇔ n = 2k for some k > 0.

We will use this in proving our next result.

Lemma 5.3. Let p be a prime and let s > 1. Then

(
1 +

∑
m>1

(−1)mζ(pms−1)/(ps−1)
s tp

ms−1
)−1

≡ 1 +
∑
n∈N

(nps−1
n ) 6≡0 (mod p)

(−1)n+1

(
nps − 1

n

)
ζns t

n(ps−1) mod (ζj : j 6= s).

Hence

Nn(ps−1)(ξ) ≡
(
nps − 1

n

)
ζns mod (ζj : j 6= s),

and this is non-zero precisely when the coefficients in the p-adic expansion

n = nkp
k + · · ·+ nk+` p

k+`

satisfy the inequalities

ns+k 6 nk − 1, ns+k+1 6 nk+1, . . . , nk+` 6 nk+`−s.

Proof. We will use residue calculus to determine the coefficient of tn of positive

degree, and will denote by ∮
f(z) dz = c−1

the coefficient of z−1 in a meromorphic Laurent series

f(z) =
∑

k06k∈Z
ckz

k ∈ R[[z]][z−1],

where R is any commutative ring and k0 ∈ Z. We may apply standard rules of

calculus for manipulating such expressions. For example, on changing variable by

setting z = h(w) ∈ R[[w]][w−1], we obtain∮
f(z) dz =

∮
f(h(w))h′(w) dw.
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We may determine the coefficient of tn(ps−1) in t/ξ(t) by calculating∮
t

ξ(t)

dt

tn(ps−1)+1
=

∮
ζ(u)

u

du

ζ(u)n(ps−1)+1
=

∮ (
ζ(u)

u

)−n(ps−1)
du

un(ps−1)+1

≡
∮

(1 + ζsu
ps−1)−n(ps−1) du

un(ps−1)+1
≡
∮

(1 + ζsv)−n(ps−1) (−1)dv

vn+1

≡ −
(
−n(ps − 1)

n

)
ζns ≡ (−1)n+1

(
n(ps − 1) + (n− 1)

n

)
ζns

≡ (−1)n+1

(
nps − 1

n

)
ζns mod (ζj : j 6= s).

Now we can use Lemma 5.2 to complete the analysis of these coefficients.

To determine the Dyer–Lashof operations on the dual Steenrod algebra A∗ we

use results of Kochman [11], where the operations are calculated in H∗(BO;F2)

and H∗(BU ;Fp). We remark that in each case the Thom isomorphism is known to

respect the Dyer–Lashof operations, so this determines the Dyer–Lashof actions

in H∗(MO;F2) and H∗(MU ;Fp).
For p = 2, H∗(MO) = H∗(MO;F2) is the polynomial algebra on generators

an ∈ Hn(MO) which correspond to generators of H∗(BO) coming from those in

H∗(BO(1)) = H∗(RP∞). Under the homomorphism H∗(MO) → A∗ induced by

the orientation MO → HF2,

an 7→

{
ξs if n = 2s − 1,

0 otherwise.

The Newton polynomial Nn(a) = Nn(a1, . . . , an) ∈ Hn(MO) corresponds to the

Hopf algebra primitive generator in Hn(BO), so [11, Corollary 35] gives

QrNn(a) =

(
r − 1

n− 1

)
Nn+r(a).

This yields the following formula in A∗:

(5.6) QrNn(ξ) =

(
r − 1

n− 1

)
Nn+r(ξ).

Using (5.1) for p = 2, we obtain

(5.7) Qrζs =

(
r − 1

2s − 2

)
N2s−1+r(ξ),

and it is easy to see that

(5.8)

(
r − 1

2s − 2

)
≡ 1 (mod 2) ⇔ r ≡ 0,−1 (mod 2s).

Using Lemma 5.1, this recovers part of Steinberger’s result (see our Theorem 4.2).
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For an odd prime p, H∗(MU) is polynomial on generators bn ∈ H2n(MU)

coinciding under the Thom isomorphism with generators of H∗(BU) coming from

H∗(BU(1)) = H∗(CP∞). Under the homomorphism induced by the orientation

MU → HFp,

bn 7→

{
ξs if n = ps − 1,

0 otherwise,

and so by [11, Theorem 5], the Newton polynomial Nn(ξ) satisfies

(5.9) QrNn(ξ) = (−1)r+n
(
r − 1

n− 1

)
Nn+r(p−1)(ξ),

and using (5.1) we obtain

(5.10) Qrζs = (−1)r+1

(
r − 1

ps − 2

)
Nps−1+r(p−1)(ξ).

It is easy to see that

(5.11)

(
r − 1

ps − 2

)
6≡ 0 (mod p) ⇔ r ≡ 0,−1 (mod ps),

thus recovering part of Steinberger’s result (see Theorem 4.6).

§6. Verification of the Nishida relations

For completeness we show how the usual Nishida relations are consequences of

coaction formulae.

§6.1. The case p = 2

First we recall that with respect to the monomial basis for A∗ = A(2)∗, the dual

element of ξr11 · · · ξ
r`
` is Sq(r1,...,r`) ∈ A∗. The dual of ξn1 is the Steenrod operation

Sq(n) = Sqn, i.e.,

〈Sqn | ξr11 · · · ξ
r`
` 〉 =

{
1 if ξr11 · · · ξ

r`
` = ξn1 ,

0 otherwise.

In terms of the right pairing, this becomes

〈ζr11 · · · ζ
r`
` | Sqn〉 =

{
1 if ζr11 · · · ζ

r`
` = ζn1 ,

0 otherwise.

We will work with the right coaction so the latter formulae will often be used.
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Notice that for a left A∗-comodule M∗ and x ∈M∗, we have

ψ(x) =
∑

(r1,...,r`)

ξr11 · · · ξ
r`
` ⊗ Sq(r1,...,r`)

∗ x,(6.1)

ψ̃(x) =
∑

(r1,...,r`)

Sq(r1,...,r`)
∗ x⊗ ζr11 · · · ζ

r`
` .(6.2)

In particular

Sqn∗ x = 〈Sqn⊗1 | ψx〉 = 〈ψ̃x | 1⊗ Sqn〉.
We want to determine expressions of the form Sqr∗Qsx where x ∈ H∗(E) for

a commutative S-algebra E. We have

Sqr∗Qsx = 〈ψ̃Qsx | 1⊗ Sqr〉,

and combining these for all values of s we obtain

Sqr∗Qtx =
∑
s

(Sqr∗Qsx)ts =
〈∑

s

ψ̃Qsxts
∣∣∣ 1⊗ Sqr

〉
=
〈∑

k

Qk(ψ̃x)ζ(t)k
∣∣∣ 1⊗ Sqr

〉
= 〈Qζ(t)(ψ̃x) | 1⊗ Sqr〉.

In the expression (6.2), applying Qζ(t) to a term yields

Qζ(t)(Sq(r1,...,r`)
∗ x⊗ ζr11 · · · ζ

r`
` ) = Qζ(t)(Sq(r1,...,r`)

∗ x)⊗Qζ(t)(ζ
r1
1 · · · ζ

r`
` )

= Qζ(t)(Sq(r1,...,r`)
∗ x)⊗ (Qζ(t)ζ1)r1 · · · (Qζ(t)ζ`)

r` ,

so we need to investigate the terms Qζ(t)ζs. In fact for our purposes it is sufficient

to know these mod (ζj : j > 1).

Lemma 6.1. For s > 2,

Qtζs ≡ 0 mod (ζj : j > 1).

Proof. By (5.8) and (5.7), Qrζs 6= 0 only when r ≡ 0,−1 (mod 2s), and then

Qrζs =

{
N1+2+···+2s−1+2k+rk+12k+1+···+2`(ξ) if r ≡ 0 (mod 2s),

N2+···+2s−1+2k+rk+12k+1+···+2`(ξ) if r ≡ −1 (mod 2s),

for some k, ` with s 6 k 6 `. In either case we find that Qrζs ≡ 0 mod (ζj : j > 1)

by using Lemma 5.3 (with s = 1).

For the case s = 1, we have

Qtζ1 =
1

t
− 1

ξ(t)
+ ζ1,

hence
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Qζ(t)ζ1 =
1

ζ(t)
− 1

t
+ ζ1 ≡

1− (1 + ζ1t) + ζ1(t+ ζ1t
2)

(t+ ζ1t2)

≡ ζ2
1 t

(1 + ζ1t)
≡ ζ2

1 t(1 + ζ1t)
−1 mod (ζj : j > 1).

So we have

Sqr∗Qtx =
∑
j>0

〈
Qζ(t)(Sqj∗ x)(Qζ(t)ζ1)j

∣∣ 1⊗ Sqr
〉

=
∑
j>0

∑
k

〈
ζ(t)k(Qζ(t)ζ1)j

∣∣ 1⊗ Sqr
〉
Qk Sqj∗ x

=
∑
j>0

∑
k

〈
ζ2j
1 tj+k(1 + ζ1t)

k−j ∣∣ 1⊗ Sqr
〉
Qk Sqj∗ x

=
∑
j>0

∑
k

(
k − j
r − 2j

)
Qk Sqj∗ xt

r+k−j ,

or equivalently

Sqr∗Qnx =
∑
j>0

(
n− r
r − 2j

)
Qn−r+j Sqj∗ x,

which is the usual form of the Nishida relations.

§6.2. The case p odd

We begin by determining formulae for Dyer–Lashof operations in A∗ = A(p)∗ mod

(ζj : j > 2). By (5.10) and (5.11) we find that for an indeterminate t of degree −2,

Qtζs =
∑
k>1

(
(−1)k+1

(
kps − 1

ps − 2

)
N(kps+ps−1+···+p+1)(p−1)(ξ) t

kps(p−1)

+(−1)k
(
kps − 2

ps − 2

)
N(kps+ps−1+···+p)(p−1)(ξ) t

(kps−1)(p−1)

)
≡
∑
k>1

(−1)k(N(kps−1+ps−2+···+p+1)(p−1)(ξ))
p t(kp

s−1)(p−1) mod (ζj : j > 2),

where the first term in each summand vanishes thanks to Lemma 5.3. Also, when

s > 2, Lemma 5.3 implies that

(6.3) Qtζs ≡ 0 mod (ζj : j > 2).

When s = 1,

Qtζ1 ≡
∑
k>1

(−1)k(Nk(p−1)(ξ))
p t(kp−1)(p−1) ≡ t−(p−1)

(∑
k>1

Nk(p−1)(ξ) (−t(p−1))k
)p

≡ t−(p−1)
(∑
k>1

Nk(p−1)(ξ)(ω
−1t)k(p−1)

)p
mod (ζj : j > 2),
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where ω ∈ F×p2 is a primitive (p−1)-th root of −1 as introduced earlier. Using (5.2),

we obtain

(6.4) Qtζ1 ≡ −
1

(ω−1t)p−1

(
1− ω−1t

ξ(ω−1t)

)p
mod (ζj : j > 2).

Replacing t by ωζ(ω−1t) gives another useful formula:

Qωζ(ω−1t)ζ1 ≡ −
1

ζ(ω−1t)p−1

(
1− ζ(ω−1t)

ω−1t

)p
≡ ζp1 t(p−1)2(1− ζ1tp−1)1−p(6.5)

≡
∑
k>0

(
p− 2 + k

k

)
ζp+k1 t(p+k−1)(p−1) mod (ζj : j > 2).

Now we follow a similar line of argument to that for the case p = 2 above. We

recall that A(p)∗ has a basis consisting of monomials

ξr11 · · · ξ
rk
k τ

e0
0 · · · τ

e`
`

where ei = 0, 1 and ri > 0. In A(p)∗, the dual basis element is P(r1,...,rk;e0,...,e`).

In particular, P(r) = Pr is the reduced power operation.

We want to determine the series Pr∗Qtx, and this turns out to be given by

Pr∗Qtx =
∑
j>0

〈
Qωζ(ω−1t)(Pj∗x)(Qωζ(ω−1t)ζ1)j

∣∣ Pr〉
=
∑
j>0

∑
k

〈
(ωζ(ω−1t))k(p−1)(Qωζ(ω−1t)ζ1)j

∣∣ Pr〉QkPj∗x

=
∑
j>0

∑
k

t(k+j(p−1))(p−1)
〈
ζjp1 (1− ζ1tp−1)(k−j)(p−1)

∣∣ Pr〉QkPj∗x

=
∑
j>0

∑
k

t(k+j(p−1))(p−1)(−1)r−jp
(

(k − j)(p− 1)

r − jp

)
t(r−jp)(p−1)QkPj∗x

=
∑
j>0

∑
k

(−1)j+rt(k−j+r)(p−1)

(
(k − j)(p− 1)

r − jp

)
QkPj∗x.

Taking the coefficient of ts(p−1) by putting k = s− r + j we obtain

Pr∗Qsx =
∑
j>0

(−1)r+j
(

(s− r)(p− 1)

r − jp

)
Qs−r+jPj∗x,

which is the usual form of the Nishida relations.

We leave the interested reader to perform a similar verification of the Nishida

relations for Pr∗βQs.
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§7. Working modulo squares and Milnor primitives

In this section we work at the prime 2, but there are analogous results at odd

primes. Let E be a commutative S-algebra.

As another example of the utility of our methods, we will investigate the

induced coaction

H∗(E)
ψ //

Ψ

((
A∗ ⊗H∗(E) // E∗ ⊗H∗(E)

where
E∗ = A∗//A(2)

∗ = A∗/(ζ2
s : s > 1)

is the exterior quotient Hopf algebra dual to the Hopf subalgebra of A∗ generated

by the Milnor primitives qr ∈ A2r+1−1 recursively defined by setting q0 = Sq1 and

for r > 1,
qr = [qr−1,Sq2r

] = qr−1 Sq2r

+ Sq2r

qr−1.

To avoid cumbersome notation, we will write u $ v in place of u ≡ v mod

(ζ2
s : s > 1) when working with the quotient ring E∗, and identify elements of A∗

with their residue classes.

As with ψ, there is a corresponding right coaction

H∗(E)
ψ̃ //

Ψ̃

&&
H∗(E)⊗A∗ // H∗(E)⊗ E∗

Our interest is in the general form of the right coaction on elements of the

form QIz, or equivalently in qr∗Q
Iz for r > 0. Of course it is well known that

q0
∗Q

az = Sq1
∗Qaz = (a+ 1)Qa−1z.

Using the monomial basis in the residue classes ξ̄i of the ξi, qr is dual to the residue

class of

ξr+1 = χ(ζr+1) = ζ1ξ
2
r + · · ·+ ζrξ

2r

1 + ζr+1 ≡ ζr+1 mod (ζ2
i : i > 1).

Hence ξr+1 $ ζr+1 is primitive in the quotient Hopf algebra E∗. To calculate qr∗w

we may use the formulae

qr∗w = 〈qr ⊗ 1 | Ψw〉 = 〈Ψ̃w | 1⊗ qr〉.

It is clear that the action of the Dyer–Lashof operations descends from A∗ to

the quotient E∗. We start by determining the image of Qrζs in E∗.

Lemma 7.1. For s > 1 and r > s, we have

Qrζs $

{
ζs+m if r = 2s+m − 2s,

0 otherwise.
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Proof. Using (5.7) and (5.8), it suffices to consider the cases r = 2sk, 2sk− 1. The

Newton recurrence formula gives

Q2skζs = N2s(k+1)−1(ξ) = ξ1N2s(k+1)−2(ξ) + ξ2N2s(k+1)−4(ξ) + · · ·
= ξ1N2s−1(k+1)−1(ξ)2 + ξ2N2s−2(k+1)−1(ξ)4 + · · · ,

and this is 0 mod (ζ2
i : i > 1) unless 2s(k + 1) = 2s+m, i.e., k = 2m − 1, and then

Q2s+m−2s

ζs $ ζs+m.

Also,

Q2sk−1ζs = N2s(k+1)−2(ξ) = N2s−1(k+1)−1(ξ)2 $ 0.

Using the notation

Ξ(r) =
∑
r+16k

ζkt
2k−2r

, Ξ(r, s) = Ξ(r)− Ξ(s) =
∑

r+16k6s

ζkt
2k−2r

,

where 0 6 r < s, we obtain the following succinct formula:

(7.1) Qtζs $
∑
s+16k

ζkt
2k−2s

= Ξ(s).

If s > 1,

Ξ(s)2 $ 0,

hence when s1 < s2,

(7.2) Ξ(s1)Ξ(s2) $ Ξ(s1, s2)Ξ(s2).

More generally, if s1 < s2 < · · · < s`, then

Qt(ζs1ζs2 · · · ζs`) = Qt(ζs1)Qt(ζs2) · · ·Qt(ζs`)(7.3)

$ Ξ(s1, s2)Ξ(s2, s3) · · ·Ξ(s`−1, s`)Ξ(s`).

Now we can give a formula for the E∗-coaction.

Proposition 7.2. If z ∈ Hn(E), then

Ψ̃Qtz $ Qt(Ψ̃z) +
∑
a>n

∑
j>1

(a+ 1)Qa−2j+1(Ψ̃z)ζjt
a.

Equivalently, for each a > n,

Ψ̃Qaz $ Qa(Ψ̃z) + (a+ 1)
∑
j>1

Qa−2j+1(Ψ̃z)ζj .
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Proof. This follows from the calculation

Ψ̃Qaz $
∑

n6k6a

Qk(Ψ̃z)
[
(1 + Ξ(0))k

]
ta−k

$ Qa(Ψ̃z) +
∑

n6k6a−1

kQk(Ψ̃z) [Ξ(0)]ta−k

$ Qa(Ψ̃z) +
∑

n6a−2j+16a−1

(a− 2j + 1)Qa−2j+1(Ψ̃z) [Ξ(0)]t2j−1

$ Qa(Ψ̃z) +
∑

262j6a−n+1

(a+ 1)Qa−2j+1(Ψ̃z)ζj .

We can use this to derive formulae for the action of the Milnor primitives.

Proposition 7.3. If z ∈ Hn(E), s > 0 and a > n, then

qs∗Q
az = (a+ 1)Qa−2s+1+1z +

∑
06r6s−1

Qa−2s+1+2r+1

(qr∗z).

Proof. We can determine qs∗Q
az using the inner product, i.e.,

qs∗Q
az = 〈Ψ̃Qaz | 1⊗ qs〉.

By Proposition 7.2, we have

qs∗Q
az = 〈Qa(Ψ̃z) | 1⊗ qs〉+ (a+ 1)Qa−2s+1+1z.

To analyse 〈Qa(Ψ̃z) | 1⊗ qs〉, we note that only the term in Qa(Ψ̃z) of form (?)⊗
ζs+1 can provide a non-zero contribution, while in Ψ̃z any term of form (?) ⊗
ζi1 · · · ζi` with ` > 1 contributes zero. Since Q2s+1−2r+1

(ζr+1) $ ζs+1 we must have

〈Qa(Ψ̃z) | 1⊗ qs〉 =
∑
r

〈Qa(qr∗z ⊗ ζr) | 1⊗ qs〉

=
∑
r

〈Qa−2s+1+2r+1

(qr∗z)⊗ ζs+1 | 1⊗ qs〉

=
∑
r

Qa−2s+1+2r+1

(qr∗z).

This result is useful when calculating with iterated Dyer–Lashof operations.

For example,

q1
∗Q

az = (a+ 1)Qa−3z + Qa−2(q0
∗z),

q1
∗Q

aQbz = (a+ 1)Qa−3Qbz + (b+ 1)Qa−2Qb−1z.

In general, qs∗Q
a1 · · ·Qas+1z does not depend on the coaction on z.
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Part III

Free commutative S-algebras

§8. Free commutative S-algebras and their homology

Following [10] we work in the model categories of left S-modules M = MS and

commutative S-algebras C = CS . The latter are the commutative monoids in M .

The forgetful functor U : C →M has a left adjoint P : M → C , the free commu-

tative S-algebra functor, giving a Quillen adjunction:

C

U

44M
P

uu

For an S-module X,

PX =
∨
j>0

X(j)/Σj ,

where X(j) = X ∧ · · · ∧ X is the j-fold smash power with its evident Σj-action,

and X(j)/Σj is the orbit spectrum. When X is cofibrant, the natural map DjX →
X(j)/Σj is a weak equivalence, hence there is a weak equivalence∨

j>0

DjX
∼−→ PX.

The mod p homology of extended powers DnX has been studied extensively,

and the answer is expressible in terms of a free algebra construction. Recently,

Kuhn & McCarty [14] gave an explicit description for the prime 2, and we adopt

a similar viewpoint. Older references of relevance are May [15], McClure [7, Theo-

rem IX.2.1], and Kuhn [13]. In keeping with our emphasis on coactions and comod-

ule structures, we phrase this in terms of the dual Steenrod algebra, thus avoiding

the local finiteness condition for actions of the Steenrod algebra.

Fix a prime p and let A∗ = A(p)∗. We adopt the following notation.

• ComodA∗ is the category of Z-graded right A∗-comodules, where we denote

the coaction by Ψ: M∗ →M∗ ⊗A∗.
• VectDL is the category of graded Fp-vector spaces V∗ equipped with actions

of Dyer–Lashof operations Qr : V∗ → V∗+2(p−1)r and βQr : V∗ → V∗+2(p−1)r−1

(when p = 2, Qr : V∗ → V∗+r) subject to the Adem relations and the unstable

condition Qrv = 0 if 2r < |v| (when p = 2, Qrv = 0 if r < |v|).
• ComodDL

A∗ is the full subcategory of ComodA∗ ∩ VectDL which consists of

right A∗-comodules with Dyer–Lashof action that satisfies the formulae of The-

orem 4.5 when p is odd, or Theorem 4.1 when p = 2.
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The free algebra PX has a natural homotopy coproduct ∆: PX → PX ∧ PX
induced by the pinch map X → X ∨X. The induced homomorphism

∆∗ : H∗(PX)→ H∗(PX)⊗H∗(PX)

turns H∗(PX) = H∗(PX;Fp) into a cocommutative coalgebra, and so H∗(PX) is

a bicommutative Hopf algebra. This structure is discussed in detail in [14, Sec-

tion 2.3] at least for the prime 2. The component maps of ∆ are transfers associated

to inclusions of block subgroups Σr ×Σs 6 Σr+s and the Dyer–Lashof operations

on H∗(PX) satisfy a Cartan formula making it a bicommutativeA∗-comodule Hopf

algebra with Dyer–Lashof action satisfying the restriction condition Q|x|/2x = xp

if |x| is even (and Q|x|x = x2 if p = 2). We denote the category of all such

bicommutative Hopf algebras by HopfAlgA∗,DL.

There are two algebraic free functors that are relevant here.

• The left adjoint

R : ComodA∗ → ComodDL
A∗

of the forgetful functor ComodDL
A∗ → ComodA∗ ; this is a coproduct R =⊕

s Rs where the summand Rs is expressed in terms of Dyer–Lashof words of

length s.

• The left adjoint

U : ComodDL
A∗ → HopfAlgA∗,DL

of the coalgebra primitives functor Pr : HopfAlgA∗,DL → ComodDL
A∗ ; this in-

volves the free graded commutative algebra functor with additional relations

coming from the restriction condition.

The structure of H∗(PX) is given by the next result.

Theorem 8.1. If X is cofibrant, then in HopfAlgA∗,DL there is a natural iso-

morphism

U(R(H∗(X))) ∼= H∗(PX).

Of course this is an abstract version of a description in terms of a free algebra

on admissible Dyer–Lashof monomials applied to elements of H∗(X) with suitable

excess conditions; see [2] for details.

§9. Sample calculations for p = 2

In this section we take p = 2, and assume that all spectra are localised at 2.



266 A. Baker

Consider the commutative S-algebra S//2 obtained as the pushout in the

diagram of commutative S-algebras

PS0

~~
R

// //
��

��

PD1

��

��
S S̃

∼oooo // // S//2

in which S0 ∼−→ S is the functorial cofibrant replacement of S as an S-module,

S0 → D1 ∼ ∗ is the functorial cofibrant replacement for the collapse map S0 → ∗,
the diagonal map is induced from a realisation of the degree 2 map S0 → S,

and S̃ is defined using the functorial factorisation in the model category CS . It

follows that S//2 is cofibrant in CS , and furthermore there is an isomorphism of

commutative S-algebras

S//2 ∼= S̃ ∧PS0 PD1.

This description allows a calculation of homology using the Künneth spectral se-

quence. Since the degree 2 map induces the trivial map in mod 2 ordinary homo-

logy, we can determine H∗(S//2) = H∗(S//2;F2) with the aid of [3, Theorem 1.7].

The answer is

H∗(S//2) = F2[QIx1 : I admissible, exc(I) > 1],

where x1 ∈ H1(S//2) satisfies Sq1
∗ x1 = 1.

Our formulae for the right coaction give

ψ̃Qrx1 =
∑

16k6r

Qk(x1 ⊗ 1 + 1⊗ ζ1)[1⊗ ζ(t)k]tr

=
∑

16k6r

[
Qkx1 ⊗ ζ(t)k + 1⊗ (Qkζ1)ζ(t)k

]
tr
.

For example

ψ̃Q2x1 = Q2x1 ⊗ 1 + x2
1 ⊗ ζ1 + 1⊗ (ζ3

1 + ζ2) = Q2x1 ⊗ 1 + x2
1 ⊗ ζ1 + 1⊗ ξ2,

ψ̃Q3x1 = Q3x1 ⊗ 1 + 1⊗Q3ζ1 = Q3x1 ⊗ 1 + 1⊗ ζ4
1 ,

which give

ψQ2x1 = 1⊗Q2x1 + ζ1 ⊗ x2
1 + ζ2 ⊗ 1, ψQ3x1 = 1⊗Q3x1 + ζ4

1 ⊗ 1.

Using ideas of [18, 19] we will give a description of H∗(S//2) as an extended

A∗-comodule algebra, which then gives an explicit description of S//2 as a wedge

of suspensions of HF2.
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First we specify some elements, namely for s > 1,

Xs = Q2s

Xs−1 = Q2s

Q2s−1

· · ·Q2x1,

where X0 = x1. Notice that the degree of Xs is |Xs| = 2s+1 − 1.

Definition 9.1. When considering an element of the form QIx, we will say that

it is strictly allowable if I is admissible and exc(I) > |x|.

This is more stringent than the usual notion of allowable where only exc(I) >
|x| is required.

Lemma 9.2. The Dyer–Lashof monomial QrXs is only strictly allowable if

r = 2s+1.

Proof. If QrXs is admissible then r 6 2s+1, while the excess condition holds only

if r > 2s+1 − 1.

Next we consider the coaction on these elements.

Proposition 9.3. In the ring H∗(S//2), the sequence X0, X1, X2, . . . is regular,

and generates an ideal J = (Xs : s > 0) C H∗(S//2). The left coaction on Xs is

given by

ψXs = 1⊗Xs + ζ1 ⊗X2
s−1 + ζ2 ⊗X22

s−2 + · · ·+ ζs ⊗X2s

0 + ζs+1 ⊗ 1(9.1)

≡ ζs+1 ⊗ 1 mod J.

Proof. We begin with the formula

ψ̃(X0) = X0 ⊗ 1 + 1⊗ ζ1 = X0 ⊗ 1 + 1⊗ ξ1.

We will verify by induction on s that

ψ̃Xs = Xs ⊗ 1 +X2
s−1 ⊗ ξ1 +X22

s−2 ⊗ ξ2 + · · ·+X2s

0 ⊗ ξs + 1⊗ ξs+1.

So assume that this holds for some s > 0. We have

ψ̃Xs+1 = ψ̃Q2s+1

Xs = (Q2s+1−1ψ̃Xs)(1⊗ ξ1) + Q2s+1

ψ̃Xs

= X2
s ⊗ ξ1 +X22

s−1 ⊗ ξ3
1 +X23

s−2 ⊗ ξ2
2ξ1

+ · · ·+X2s+1

0 ⊗ ξ2
sξ1 + 1⊗ ξ2

s+1ξ1 +Xs+1 ⊗ 1

+ Q2s+1−2(X2
s−1)⊗Q2ξ1 + Q2s+1−22

(X22

s−2)⊗Q22

ξ2

+ · · ·+ Q2s+1−2s

(X2s

0 )⊗Q2s

ξ2 + 1⊗Q2s+1

ξs+1
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= X2
s ⊗ ξ1 +X22

s−1 ⊗ ξ3
1 +X23

s−2 ⊗ ξ2
2ξ1 + · · ·+X2s+1

0 ⊗ ξ2
sξ1

+ 1⊗ ξ2
s+1ξ1 +Xs+1 ⊗ 1 +X22

s−1 ⊗Q2ξ1 +X23

s−2 ⊗Q22

ξ2

+ · · ·+X2s+1

0 ⊗Q2s

ξs + 1⊗Q2s+1

ξs+1

= Xs+1 ⊗ 1 +X2
s ⊗ ξ1 +X22

s−1 ⊗ (ξ3
1 + Q2ξ1) +X23

s−2 ⊗ (ξ2
2ξ1 + Q22

ξ2)

+ · · ·+X2s+1

0 ⊗ (ξ2
sξ1 + Q2s

ξs) + 1⊗ (ξ2
s+1ξ1 + Q2s+1

ξs+1)

= Xs+1 ⊗ 1 +X2
s ⊗ ξ1 +X22

s−1 ⊗ ξ2 +X23

s−2 ⊗ ξ3
+ · · ·+X2s+1

0 ⊗ ξs+1 + 1⊗ ξs+2,

where we make use of Lemma 4.4 in the last step.

Now consider the following composition of left A∗-comodule algebra homo-

morphisms:

H∗(S//2)
ψ
//

ψ̄

**
A∗ ⊗H∗(S//2)

quo
// A∗ ⊗H∗(S//2)/J

where the second and third terms are extended left comodules. By Proposition 9.3

this composition is an isomorphism of comodule algebras

H∗(S//2)
ψ̄−−→∼= A∗ ⊗H∗(S//2)/J

and there is a polynomial subalgebra P∗ ⊆ H∗(S//2) with ψ̄P∗ = F2⊗H∗(S//2)/J .

A standard argument shows that

π∗(S//2) ∼= P∗ = Ext0,∗
A∗(F2, H∗(S//2)) ⊆ H∗(S//2),

and in fact as a spectrum S//2 is weakly equivalent to a wedge of suspensions

of HF2, and a choice of basis for P∗ determines such a splitting.

We remark that any connective commutative S-algebra E for which 0 = 2 ∈
π0(E) admits a morphism of commutative S-algebras u : S//2 → E. Using the

commutative diagram of F2-algebras

H∗(S//2) //
ψ //

u∗

��

A∗ ⊗H∗(S//2)

I⊗u∗
��

H∗(E) //
ψ // A∗ ⊗H∗(E)

we see that

ψ(u∗Xs) = 1⊗ u∗Xs + ζ1 ⊗ u∗X2
s−1 + ζ2 ⊗ u∗X22

s−2 + · · ·+ ζs ⊗ u∗X2s

1 + ζs+1 ⊗ 1
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so the u∗Xs is a sequence of algebraically independent elements. It follows that

there is an isomorphism of A∗-comodule algebras

H∗(E) ∼= A∗ ⊗H∗(E)/(u∗Xs : s > 0),

so H∗(E) is also an extended comodule and E is weakly equivalent to a wedge

of suspensions of HF2. This gives a different approach to proving Steinberger’s

result [7, Theorem III.4.1], which potentially contains more information on the

multiplicative structure of the splitting.

Rolf Hoyer has pointed out some explicit formulae for primitives in H∗(S//2)

and thus for families of polynomial generators for π∗(S//2).

§10. Sample calculations for odd primes

Now we assume that p is an odd prime and that all spectra are localised at p. There

are similarities to the 2-primary case, although some of the details are slightly more

complicated.

Consider the commutative S-algebra S//p which is the pushout in the diagram

of commutative S-algebras

PS0

~~
R

// //
��

��

PD1

��

��
S S̃

∼oooo // // S//p

where the notation is similar to that in the case p = 2. Then S//p is cofibrant

in CS , and there is an isomorphism of commutative S-algebras

S//p ∼= S̃ ∧PS0 PD1.

Since the degree p map induces the trivial map in mod p ordinary homology,

H∗(S//p) = H∗(S//p;Fp) can be determined by methods of [3, Theorem 1.7]. The

answer is a free graded commutative algebra

H∗(S//p) = Fp〈QIx1 : I admissible, exc(I) > 1〉,

where x1 ∈ H1(S//p) satisfies βx1 = 1.

We define two sequences of elements, beginning with X0 = x1 and Y0 = 1,

Xs = Qps−1

Xs−1 = Qps−1

Qps−2

· · ·QpQ1x1,

Ys = βQps−1

Xs−1 = βQps−1

Qps−2

· · ·QpQ1x1.

Notice that the degrees of these elements are |Xs| = 2ps − 1 and |Ys| = 2(ps − 1).
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We will again use the terminology of strictly allowable introduced in Defini-

tion 9.1.

Lemma 10.1. Let r > 1. Then the Dyer–Lashof monomial QrXs is strictly al-

lowable only if r = ps, while QrYs is never strictly allowable.

Proof. If QrXs = QrQps−1

Xs−1 is admissible then r 6 ps, while the required

excess condition is 2r > 2ps − 1.

If QrYs = QrβQps−1

Xs−1 is admissible then r < ps, while the excess condition

required for it to be strictly allowable is 2r > 2(ps − 1). Clearly these conditions

are contradictory.

Proposition 10.2. The left coaction on Xs and Ys is given by

ψXs = 1⊗Xs + τ̄0 ⊗ Ys + τ̄1 ⊗ Y ps−1 + τ̄2 ⊗ Y p
2

s−2 + · · ·+ τ̄s−1 ⊗ Y p
s−1

1(10.1)

+ τ̄s ⊗ 1,

ψYs = 1⊗ Ys + ζ1 ⊗ Y ps−1 + ζ2 ⊗ Y p
2

s−2 + · · ·+ ζs−1 ⊗ Y p
s−1

1 + ζs ⊗ 1.(10.2)

Proof. Translating the formulae into statements about the right coaction we must

prove that the following equations are satisfied for every s:

ψ̃Xs = Xs ⊗ 1 + Ys ⊗ τ0 + Y ps−1 ⊗ τ1 + Y p
2

s−2 ⊗ τ2 + · · ·+ Y p
s−1

1 ⊗ τs−1 + 1⊗ τs,

ψ̃Ys = Ys ⊗ 1 + Y ps−1 ⊗ ξ1 + Y p
2

s−2 ⊗ ξ2 + · · ·+ Y p
s−1

1 ⊗ ξs−1 + 1⊗ ξs.

Assuming these are true for some s, we have

ψ̃Xs+1 = ψ̃QpsXs = Qps(ψ̃Xs)−βQps(ψ̃Xs)τ̄0

= Qps
(
Xs⊗1 +Ys⊗ τ0 +Y ps−1⊗ τ1 +Y p

2

s−2⊗ τ2+ · · ·+Y p
s−1

1 ⊗ τs−1 + 1⊗ τs
)

+βQps
(
Xs⊗1 +Ys⊗ τ0 +Y ps−1⊗ τ1 +Y p

2

s−2⊗ τ2+ · · ·+Y p
s−1

1 ⊗ τs−1 + 1⊗ τs
)
τ0

=
(
QpsXs⊗1 + (Qps−1Ys)⊗Q1τ0 + (Qps−1−1Ys−1)p⊗Qpτ1

+(Qps−2−1Ys−2)p
2 ⊗Qp2τ2 + · · ·+ (Qp−1Y1)p

s−1 ⊗Qps−1

τs−1+1⊗Qpsτs
)

+
(
βQpsXs⊗1 + (Qps−1Ys)⊗βQ1τ0 + (Qps−1−1Ys−1)p⊗βQpτ1

+ (Qps−2−1Ys−2)p
2

⊗βQp2τ2 + · · ·+ (Qp−1Y1)p
s−1

⊗βQps−1

τs−1+1⊗βQpsτs
)
τ0

=
(
Xs+1⊗1 +Y ps ⊗ (τ1− τ0ξ1) +Y p

2

s−1⊗ (τ2− τ0ξ2) +Y p
3

s−2⊗ (τ3− τ0ξ3)

+ · · ·+Y p
s

1 ⊗ (τs− τ0ξs) + 1⊗ (τs+1− τ0ξs+1)
)

+
(
Ys+1⊗1 +Y ps ⊗ ξ1 +Y p

2

s−1⊗ ξ2 +Y p
3

s−2⊗ ξ3+ · · ·+Y p
s

1 ⊗ ξs+ 1⊗ ξs+1

)
τ0

= Xs+1⊗1 +Ys+1⊗ τ0 +Y ps ⊗ τ1 +Y p
2

s−1⊗ τ2 + · · ·+Y p
s

1 ⊗ τs+ 1⊗ τs+1.
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A similar calculation shows that

ψ̃Ys+1 = Ys+1 ⊗ 1 + Y ps ⊗ ξ1 + Y p
2

s−1 ⊗ ξ2

+ · · ·+ Y p
s−1

2 ⊗ ξs−1 + Y p
s

1 ⊗ ξs + 1⊗ ξs+1.

The result follows by induction.

Let J = (Xs, Ys+1 : s > 0)CH∗(S//p) be the ideal generated by the elements

Xs, Ys. As happens for the prime 2, the following composition of left A∗-comodule

algebra homomorphisms

H∗(S//p)
ψ
//

ψ̄

**
A∗ ⊗H∗(S//p) quo

// A∗ ⊗H∗(S//p)/J

is an isomorphism, where the second and third terms are extended left comodules.

Here H∗(S//p)/J is a free graded commutative algebra since the generators Xs and

Ys are amongst the generators of the free graded commutative algebra H∗(S//p).

There is a subalgebra P∗ ⊆ H∗(S//p) which is identified with Fp ⊗ H∗(S//p)/J
under the isomorphism ψ̄, i.e., ψ̄P∗ = Fp ⊗ H∗(S//p)/J . A standard argument

shows the spectrum S//p is equivalent to a wedge of suspensions of HFp. As

we saw in the 2-primary case, this leads to a proof of Steinberger’s result [7,

Theorem III.4.1].
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