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Uniform Resolvent Estimates for Magnetic
Schrödinger Operators in a 2D Exterior Domain

and their Applications to Related
Evolution Equations

by

Kiyoshi Mochizuki and Hideo Nakazawa

Abstract

We consider the magnetic Schrödinger operator in an exterior domain Ω ⊂ R2 with star-
shaped boundary with respect to the origin. We prove uniform resolvent estimates under
suitable decay and smallness conditions on the magnetic field and external potential.
The results are then used to obtain smoothing properties for the corresponding evolution
equations.

2010 Mathematics Subject Classification: Primary 35Q40; Secondary 81Q10.
Keywords: magnetic Schrödinger operator, smoothing property.

§1. Introduction and results

Let Ω be an exterior domain in R2 with a star-shaped complement with respect to

the origin and smooth boundary ∂Ω. In this paper we consider in Ω the magnetic

Schrödinger equation

(1.1) −
2∑
j=1

{∂j + ibj(x)}2u+ c(x)u− κ2u = f(x), x ∈ Ω,

with Dirichlet boundary condition

(1.2) u(x, κ) = 0, x ∈ ∂Ω.
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Here ∂j = ∂/∂xj (j = 1, 2), i =
√
−1, κ ∈ Π± = {κ ∈ C; ±Reκ > 0, Imκ > 0},

bj(x) are real valued C1-functions of x ∈ Ω = Ω ∪ ∂Ω, c(x) is a real valued

continuous function of x ∈ Ω and f ∈ L2(Ω). Moreover, b(x) = (b1(x), b2(x))

represents a magnetic potential. Thus the magnetic field is defined by its rotation,

∇× b(x) = ∂1b2(x)− ∂2b1(x).

We set ∇ = (∂1, ∂2), ∇b = ∇ + ib(x), ∆b = ∇b · ∇b, r = |x|, x̃ = x/r and

∂r = x̃ · ∇. The inner product and norm of L2(Ω) are defined by

(f, g) =

∫
f(x)g(x) dx and ‖f‖ =

√
(f, f).

Here
∫
dx denotes integration over Ω. Moreover, for t > 0 we set

Ωt = {x ∈ Ω; |x| < t} and St = {x ∈ Ω; |x| = t}.

Now we define an operator L acting in L2(Ω) as follows:

(1.3)

{
Lu = −∆bu+ c(x)u for u ∈ D(L),

D(L) = {u ∈ L2(Ω) ∩H2
loc(Ω); (−∆b + c)u ∈ L2, u|∂Ω = 0}.

Here Hj(Ω) (j = 1, 2, . . . ) are the usual Sobolev spaces on Ω and H2
loc(Ω) is the

space of functions that are H2 on each compact set of Ω.

As is well known, if c ∈ L2(Ω), then L is a lower semibounded selfadjoint

operator in L2(Ω) (see e.g. Mochizuki [13]). Moreover, if

(1.4) max{|∇ × b(x)|, |c(x)|} = o(r−1) as r →∞

then the essential spectrum of L fills the whole nonnegative half-line [0,∞) (see

Aliev–Eyvazov [1]).

The selfadjointness of L shows that its resolvent R(κ2) = (L−κ2)−1 is defined

for each κ ∈ Π±, and u = R(κ2)f gives a unique L2-solution of the exterior problem

(1.1), (1.2).

In the following we exclude the case Ω = R2 and assume that

(A0) there exists r0 > 0 such that min{|x|; x ∈ ∂Ω} > r0.

Now the main purpose of this paper is to show the following theorem for the

solution u = R(κ2)f .

Theorem 1. Assume that (A0) holds and

(A1) {|∇ × b(x)|2 + |c(x)|2}1/2 ≤ ε0
r2(1 + log r/r0)2

in Ω,

where 0 < ε0 < 1/(4
√

21) and we mean log r/r0 = log(r/r0).



Uniform Resolvent Estimates 321

(i) For each κ ∈ Π±, we have

(1.5)

∫
(Imκr + 1)

|u|2

r2(1 + log r/r0)2
dx ≤ C1

∫
r2(1 + log r/r0)2|f |2 dx

with C1 = (2
√

21)2/(1− (4
√

21 ε0)2). Moreover, if we define the vector function

(1.6) θ(x, κ) = ∇bu+ x̃

(
1

2r
− iκ

)
u,

then for each κ ∈ Π±,

(1.7)

∫
(Imκr + 1)

|θ|2

(4 + log r/r0)2
dx ≤ C2

∫
r2(1 + log r/r0)2|f |2 dx

where C2 = C2(ε0) ≤ 2 + 2(1 + ε20)C1.

(ii) Let µ(r) be a smooth, positive L1-function of r ≥ r0 satisfying also

(1.8) 2rµ′(r) ≤ µ(r) and µ(r) ≤ C3

(4 + log r/r0)2

for some C3 > 0. Then for each κ ∈ Π±,

(1.9)

∫
µ(r){|∇bu|2 + |κu|2} dx ≤ C4

∫
{r2(1 + log r/r0)2 + µ(r)−1}|f(x)|2 dx

with C4 = max{2C3C2, 4‖µ‖2L1}, where ‖µ‖L1 =
∫∞
r0
µ(t) dt.

Remark 1. (1) The function θ(x, κ) is used to define radiation conditions for the

solution u(x, κ) (see [13]), and (1.7) asserts their uniform estimates in κ ∈ Π±.

(2) We can choose µ(r) = r−2(1 + log r/r0)−2. In this case (1.8) holds with

C3 = (4/r0)2.

Remark 2. Theorem 1(i) implies that the operator L is nonnegative and 0 is not

an eigenvalue of L. The above two assertions can also be proved directly. Note

that

lim inf
t→∞

Re

∫
St

(x̃ · ∇u)u dS ≤ 0

for u ∈ D(L) (see [15]). Then a direct proof follows from the identity

Re

∫
Ωt

{−∇b · ∇bu+ c(x)u}u dx =

∫
Ωt

{|∇bu|2 + c(x)|u|2} dx−Re

∫
St

(x̃ · ∇u)u dS

combined with the modified Hardy inequality (Lemma 4) of §3 and the requirement

c(x) ≥ −ε0r−2(1 + log r/r0)−2 with ε0 < 1/4.
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As a corollary of Theorem 1, we are able to obtain space-time weighted esti-

mates (smoothing properties, cf. Kato [8]) for the Schrödinger evolution equation

(1.10) i
∂u

∂t
− Lu = 0, u(0) = f ∈ L2(Ω),

and for the relativistic Schrödinger evolution equation

(1.11) i
∂u

∂t
−
√
L+m2 u = 0, u(0) = f ∈ L2(Ω),

with m ≥ 0. Note that the smoothing effects for (1.11) give those for the Klein–

Gordon equation (m > 0) or the wave equation (m = 0) in the energy space.

Theorem 2. Assume that (A0) and (A1) hold.

(i) The solution operator e−itL to (1.10) satisfies

(1.12)

∣∣∣∣∫ ±∞
0

∥∥∥∥r−1(1 + log r/r0)−1

∫ t

0

e−i(t−τ)Lh(τ) dτ

∥∥∥∥2

dt

∣∣∣∣
≤ C1

∣∣∣∣∫ ±∞
0

‖r(1 + log r/r0)h(t)‖2 dt
∣∣∣∣

for every h(t) satisfying r(1 + log r/r0)h(t) ∈ L2(R× Ω), and

(1.13)

∣∣∣∣∫ ±∞
0

‖r−1(1 + log r/r0)−1e−itLf‖2 dt
∣∣∣∣ ≤ 2

√
C1 ‖f‖2

for f ∈ L2(Ω). Here ‖ · ‖ means the norm of L2(Ω).

(ii) The solution operator e−it
√
L+m to (1.11) satisfies

(1.14)

∣∣∣∣∫ ±∞
0

‖r−1(1 + log r/r0)−1e−it
√
L+m2

f‖2 dt
∣∣∣∣ ≤ 8

√
m2C1 + 2C4 ‖f‖2

for f ∈ L2(Ω). Here to determine C4 we have chosen µ(r) = r−2(1 + log r/r0)−2.

For space dimension n ≥ 3, Theorems 1 and 2 have been proved by Mochizuki

[14], [15] with weight r−1(1 + log r/r0)−1 in (A1) replaced by r−1 for problems in

both an exterior domain and the whole space Rn. In case n = 2 some partial

results have been obtained by Nakazawa [14], but without the resolvent estimate

being given clearly in the duality form with weight r−1(1 + log r/r0)−1. To show

(1.5) it is crucial to obtain a Hardy type inequality corresponding to the functions

θ(x, κ) (see Proposition 3 and Lemma 3 below). In case n ≥ 3 the inequality is not

so far from the original Hardy inequality, and reads (see [15, Lemma 9])∫
(n− 2)2

4r2
|u|2 dx ≤

∫ {
|x̃ · θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx.
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In [15] the proof of Theorem 1(i) is done by combining this with another inequality

for the solution u = R(κ2)f which corresponds to Lemma 2 below. In case n = 2

the above inequality does not work since the left side vanishes identically. Moreover,

the definiteness of the integrand |x̃ · θ|2 − 1
4r2 |u|

2 is not guaranteed. So, we need a

delicate calculation to modify it. As a result, the function

η(r) =
1

2r(1 + log r/r0)

is adopted to be a suitable weight satisfying the inequality∫
η2|u|2 dx ≤ C

∫ (
Imκr +

1

2
− ε̃r2η2

){
|x̃ · θ|2 − 1

4r2
|u|2
}
dx

with C = C(ε̃) > 0 for small ε̃ > 0 (see Lemmas 2 and 3). The above weight is the

same as the one for the Hardy inequality in an exterior domain of R2 (Remark 3

of §3). Note that the standard Hardy inequality does not in general hold in the

whole space R2 (see e.g. Solomyak [19], Kobayashi–Misawa [10]).

Theorem 1(i) shows the L2-smoothness of r−1(1 + log r/r0)−1. Apart from

[14], [15], the corresponding results have been studied by Kato–Yajima [9] (see

also Kuroda [11], Watanabe [20]), where the operator in question is the Laplace

operator L0 = −∆ in Rn (n ≥ 3). Fourier transformation methods are used there,

and the results are summarized for n ≥ 2 as follows:

‖r−αLβ0 (L0 − κ2)−1r−αf‖ ≤ C|κ|2(α+β−1)‖f‖,

where α ∈ (1/2, n/2) and β ∈ [−α, 1 − α] (Yafaev [21, Proposition 7.1.11]). Note

that the right side is never bounded when n = 2 and β = 0. More explicitly,

the asymptotic expansions of the resolvent (−∆ − κ2)−1 as κ → 0 have been

well studied in suitable weighted L2-spaces (see Murata [16], Yajima [23], Jensen–

Nenciu [7]), and in case n = 2 a logarithmic singularity log κ appears in the leading

term. Thus, the uniform estimates of Theorem 1(i) are not expected to hold for

two-dimensional whole space problems.

We should mention here that when a suitable non-trivial magnetic field is

introduced, one can expect some improvement of the above situation. In fact, the

Hardy inequality in Remark 3 is known to hold without the unpleasant logarithmic

factor for such a magnetic Laplacian −∆b in the whole R2 (Laptev–Weidl [12]).

So, there is some possibility to develop a new low-energy estimate of (−∆b−κ2)−1.

In this paper, however, we do not enter into this problem. Our assumption (A1)

requires only the smallness of the magnetic field, and it does not exclude the zero

magnetic field ∇× b(x) ≡ 0.

For the exterior problem, Fourier transformation methods are not applicable,

and in general it becomes difficult to know clearly the κ dependence of the resol-
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vent kernel. It seems that, especially when n = 2, there are no results showing the

resolvent expansions around zero and/or high energies. Resolvent estimates are

mainly developed in connection with the study of the principle of limiting absorp-

tion. So, the results are restricted to κ in a compact domain in Π±\{0} (e.g., [13],

Reed–Simon [18]).

Results similar to Theorem 2 have been studied by many authors in con-

nection with local smoothing properties (see, e.g., Kato–Yajima [9], Yajima [22],

Ben-Artzi [2], Cuccagna–Schirmer [3], D’Ancona–Fanelli [4], Erdogan–Goldberg–

Schlag [5] and Georgiev–Stefanov–Tarulli [6]). Note that these works are also re-

stricted to the case of space dimension n ≥ 3, and the vector potential b(x) itself

is required to be small and to decay sufficiently fast (the smallness is not required

in [5]). On the other hand, no such requirement appears in our case, but the

smallness of the magnetic field ∇× b(x) is required. It seems difficult to remove it

without any decay conditions on b(x).

The rest of this paper is organized as follows. Theorems 1 and 2 are proved

in §3 and §4, respectively. In §2 we prepare three propositions which are essential

in proving Theorem 1.

§2. Preliminaries

The first two propositions are quadratic identities for a solution u of problem (1.1),

(1.2).

We multiply (1.1) by −iκu to obtain

(2.1) ∇ · {(∇bu)iκu} − iκ{|∇bu|2 + c(x)|u|2 − κ2|u|2} = −fiκu,

and integrate the real part of this equation over Ωt (t > r0). By the boundary

condition (1.2),

Re

∫
Ωt

∇ · {(∇bu)iκu} dx = Re

∫
St

(x̃ · ∇bu)iκu dS

=
1

2

∫
St

{−|∇bu− iκx̃u|2 + |∇bu|2 + |κu|2} dS,

and it follows that

(2.2)
1

2

∫
St

{−|∇bu− iκu|2 + |∇bu|2 + |κu|2} dS

+ Imκ

∫
Ωt

(|∇bu|2 + c|u|2 + |κu|2) dx = −Re

∫
Ωt

fiκu dx.
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Here

−|∇bu− iκx̃u|2 = −
∣∣∣∣∇bu+ x̃

(
1

2r
− iκ

)
u

∣∣∣∣2 +
1

4r2
|u|2 +Imκ

1

r
|u|2 +∇·

{
1

2r
x̃|u|2

}
.

The following proposition is a direct consequence of (2.2) multiplied by µ(t) and

integrated over (r0,∞).

Proposition 1. Let u = R(κ2)f . Then

1

2

∫ {(
Imκ

µ

r
+

µ

4r2
− µ′

2r

)
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx

+ Imκ

∫ ∞
r0

µ(t) dt

∫
Ωt

{
|∇bu|2 + c(x)|u|2 + |κu|2

}
dx

=
1

2

∫
µ|θ|2 dx− Re

∫ ∞
r0

µ(t) dt

∫
Ωt

fiκu dx,

where θ = ∇bu+ x̃
(

1
2r − iκ

)
u.

Next we set v = e−iκrr1/2u, g = e−iκrr1/2f and rewrite (1.1) as follows:

(2.3) −∇b · ∇bv +

(
−2iκ+

1

r

)
x̃ · ∇bv +

(
c− 1

4r2

)
v = g.

Let φ = φ(r) = e−2 Imκrr−1ϕ(r), where ϕ(r) is a smooth, positive function of

r > 0. We multiply (2.3) by φx̃ · ∇bv. Note that

−∇b · ∇bvφx̃ · ∇bv = −∇ · {∇bvφx̃ · ∇bv}+ (∇φ · ∇bv)x̃ · ∇bv

+ φ∇bv · ∇b(x̃ · ∇bv).

In the last term of the right side we use the identity

(∂j + ibj){x̃k(∂k + ibk)v} = x̃k(∂k + ibk){(∂j + ibj)v}

+
δjk − x̃j x̃k

r
(∂k + ibk)v + ix̃k(∂jbk − ∂kbj)v.

Then it follows that

Re{φ∇bv · ∇b(x̃ · ∇bv)} =
1

2
∇ · {φx̃|∇bv|2} −

(
φ′

2
+

φ

2r

)
|∇bv|2

+
φ

r
(|∇bv|2 − |x̃ · ∇bv|2)− φRe{(x̃×∇bv)(∇× ib)v},

and we finally obtain
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(2.4) − Re∇ · {(φ∇bv)x̃ · ∇bv}+ φ′|x̃ · ∇bv|2 +
1

2
∇ · {φx̃|∇bv|2}

−
(
φ′

2
+

φ

2r

)
|∇bv|2 +

φ

r
(|∇bv|2 − |x̃ · ∇bv|2)

− φRe{(x̃×∇bv)(∇× ib)v}+ φ

(
2 Imκ+

1

r

)
|x̃ · ∇bv|2

+ Reφ

{(
c− 1

4r2

)
vx̃ · ∇bv

}
= Reφ{gx̃ · ∇bv}.

Note here ∇bv = e−iκrr1/2θ, and

φ′(r) = φ(r)

(
−2 Imκ− 1

r
+
ϕ′

ϕ

)
,

−Re

{
φ

4r2
vx̃ · ∇bv

}
= −1

2
∇ ·
{
ϕ

4r2
x̃|u|2

}
+ ϕ

(
− Imκ− 1

r
+
ϕ′

2ϕ

)
1

4r2
|u|2.

Substituting these relations to (2.4) and integrating both sides over Ωt, we obtain

Proposition 2. Let u = R(κ2)f . Then for t large,

−
∫
St

ϕ

{
|x̃ ·θ|2− 1

2
|θ|2 +

1

8r2
|u|2
}
dS−

∫
∂Ω

ϕ

{
(ν ·∇u)(x̃ ·∇u)− 1

2
(ν · x̃)|∇u|2

}
dS

+

∫
Ωt

ϕ

[
−
(

1

r
− ϕ′

ϕ

)
|x̃ · θ|2 +

(
Imκ+

1

r
− ϕ′

2ϕ

){
|θ|2 − 1

4r2
|u|2
}

+ Re{−(∇× ib)ux̃× θ + cux̃ · θ}
]
dx = Re

∫
Ωt

ϕf x̃ · θ dx,

where ν = ν(x) is the outer unit normal to the boundary ∂Ω.

Let H1
0,b = H1

0,b(Ω) denote the completion of C∞0 (Ω) with respect to the norm

‖u‖2H1
b

=

∫
{|u(x)|2 + |∇bu(x)|2} dx.

Obviously D(L) ⊂ H1
0,b.

Proposition 3. Let η = η(r) and ξ = ξ(r) be smooth, positive functions of r ≥ 0,

and let t be large. Then for each u ∈ H1
0,b,∫

Ωt

ξ

{
|x̃ · θ|2 − 1

4r2
|u|2
}
dx =

∫
Ωt

ξ|x̃ · ∇bu− iκu− ηu|2 dx

+

∫
St

ξ

(
1

2r
+ η

)
|u|2 dS −

∫
Ωt

ξ′
(

1

2r
+ η

)
|u|2 dx

+

∫
Ωt

ξ

{
2 Imκ

(
1

2r
+ η

)
|u|2 −

(
1

r
η + η′ + η2

)
|u|2
}
dx.
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Proof. Note that

|x̃ · θ|2 =

∣∣∣∣x̃ · ∇bu+
1

2r
u− iκu− ηu+ ηu

∣∣∣∣2
= |x̃ · ∇bu− iκu− ηu|2 +∇ ·

{
x̃

(
1

2r
+ η

)
|u|2
}

+ 2 Imκ

(
1

2r
+ η

)
|u|2 +

1

4r2
|u|2 −

(
1

r
η + η′ + η2

)
|u|2.

Multiplying by ξ(r) and integrating over Ωt, we deduce the desired identity since

u|∂Ω = 0.

§3. Proof of Theorem 1

In this section we shall prove Theorem 1 by a series of lemmas for the solution

u = R(κ2)f of (1.1), (1.2).

Lemma 1. Let ϕ = ϕ(r) be a positive increasing function of r > r0 satisfying

(3.1)
ϕ′(r)

ϕ(r)
≤ 1

r
.

Then∫
ϕ

{(
Imκ+

ϕ′

2ϕ

)
|θ|2 −

(
Imκ+

1

r
− ϕ′

2ϕ

)
1

4r2
|u|2
}
dx

≤
∫
ϕ{|f |+ (|∇ × b|2 + |c|2)1/2|u|}|θ| dx.

Proof. In Proposition 2 we let t→∞. Then since ϕ(r) = O(r) as r →∞, we have

lim inf
t→∞

∫
St

ϕ

{
|x̃ · θ|2 − 1

2
|θ|2 +

1

8r2
|u|2
}
dS = 0.

On the other hand, since ∇u = (ν ·∇u)ν on ∂Ω, the starshapedness of ∂Ω implies

that∫
∂Ω

ϕ

{
−(ν · ∇u)(x̃ · ∇u) +

1

2
(ν · x̃)|∇u|2

}
dS = −1

2

∫
∂Ω

ϕ(ν · x̃)|ν · ∇u|2 dS ≥ 0.

Thus, the desired inequality follows if we note that(
1

r
− ϕ′

ϕ

)
{|θ|2 − |x̃ · θ|2} ≥ 0,

|−(∇× ib)ux̃× θ + cu x̃ · θ| ≤ (|∇ × b|2 + |c|2)1/2|u| |θ|.
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Lemma 2. For any ε > 0,∫ (
Imκr +

1

2
− 2ε

(1 + log r/r0)2

){
|θ|2 − 1

4r2
|u|2
}
dx

≤ 1

4ε

∫
r2(1 + log r/r0)2|f |2 dx+

(
ε20
ε

+ 2ε

)∫
|u|2

4r2(1 + log r/r0)2
dx.

Proof. We choose ϕ = r in Lemma 1 and use the Schwarz inequality. Then noting

(A1), we have

∫ (
Imκr +

1

2

){
|θ|2 − 1

4r2
|u|2
}
dx

≤
∫ {

r2(1 + log r/r0)2|f |2

4ε
+

ε20|u|2

4εr2(1 + log r/r0)2

}
dx

+

∫
2ε

(1 + log r/r0)2

{
|θ|2 − 1

4r2
|u|2
}
dx+

∫
2ε|u|2

4r2(1 + log r/r0)2
dx,

which proves the lemma.

Lemma 3. Let u ∈ H1
0,b. Then for each 0 < ε < 1/38,

∫ (
Imκr +

1

2
− 19ε

)
|u|2

4r2(1 + log r/r0)2
dx

≤
∫ (

Imκr +
1

2
− 2ε

(1 + log r/r0)2

){
|x̃ · θ|2 − 1

4r2
|u|2
}
dx.

Proof. We choose

η(r) =
1

2r(1 + log r/r0)
, ξ(r) = Imκr +

1

2
− 2ε

(1 + log r/r0)2

in Proposition 3. Obviously

lim inf
t→∞

∫
St

ξ

(
1

2r
+ η

)
|u|2 dS = 0.

Moreover, by definition ξ(r) > 0 when r > r0 and

1

r
η + η′ + η2 =

−1

4r2(1 + log r/r0)2
.

Thus, the identity of Proposition 3 implies
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Imκr +

1

2
− 2ε

(1 + log r/r0)2

){
|x̃ · θ|2 − 1

4r2
|u|2
}
dx

≥
∫ (

Imκr +
1

2
− 2ε

(1 + log r/r0)2

)
×
{

2 Imκ

(
1

2r
+ η

)
|u|2 +

1

4r2(1 + log r/r0)2
|u|2
}
dx

−
∫ (

Imκ+
4ε

r(1 + log r/r0)3

)(
1

2r
+ η

)
|u|2 dx

=

∫ (
Imκr +

1

2
− 2ε

(1 + log r/r0)2

)
|u|2

4r2(1 + log r/r0)2
dx

+

∫ (
2(Imκ)2r − 4 Imκε

(1 + log r/r0)2
− 4ε

r(1 + log r/r0)3

)(
1

2r
+ η

)
|u|2 dx.

Since

2(Imκ)2r − 4 Imκε

(1 + log r/r0)2
≥ −2ε2

r(1 + log r/r0)4

and 0 < 1/2r + η ≤ 1/r, noting

1

2
− 2ε− 8ε2 − 16ε ≥ 1

2
− 19ε,

we deduce the desired inequality.

Proof of Theorem 1(i). Combining Lemmas 2 and 3 we have, for 0 < ε < 1/38,

(3.2)

∫ (
Imκr +

1

2
− 19ε

)
|u|2

4r2(1 + log r/r0)2
dx

≤ 1

4ε

∫
r2(1 + log r/r0)2|f |2 dx+

(
ε20
ε

+ 2ε

)∫
|u|2

4r2(1 + log r/r0)2
dx.

Here we require ε further to satisfy

(3.3)
1

2
− 19ε− ε20

ε
− 2ε > 0,

or equivalently

ε20 < ε

(
1

2
− 21ε

)
= −21

(
ε− 1

84

)2

+
1

336
.

This is possible if ε0 < 1/(4
√

21). In this case, we can choose ε = 1/84 in (3.3).

Then since
1

4ε

(
1

2
− 21ε− ε20

4ε

)−1

=
(2
√

21)2

1− (4
√

21 ε0)2
,

the desired inequality (1.5) follows from (3.2).
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To show (1.7) we return to the inequality of Lemma 1 choosing ϕ =

r/(4 + log r/r0)2. Concerning its left side, it follows from (1.5) that

(3.4)

∫
ϕ

(
Imκ+

1

r
− ϕ′

2ϕ

)
|u|2

4r2
dx ≤

∫
(Imκr + 1)

|u|2

4r2(1 + log r/r0)2
dx

≤ 1

4
C1

∫
r2(1 + log r/r0)2|f |2 dx.

Moreover, since 1/r − ϕ′/ϕ ≥ 0 and

ϕ

(
Imκ+

ϕ′

2ϕ

)
= ϕ

(
Imκ+

1

2r
− 1

r(4 + log r/r0)

)
≥ ϕ

(
Imκ+

1

4r

)
,

it follows that

(3.5)

∫
ϕ

(
Imκ+

ϕ′

2ϕ

)
|θ|2 dx ≥

∫ (
Imκr +

1

4

)
|θ|2

(4 + log r/r0)2
dx.

On the other hand, by the Schwarz inequality the right side of the inequality of

Lemma 1 is estimated as

(3.6)

∫
r

(4 + log r/r0)2

{
|f |+ (|∇ × b|2 + |c|2)1/2|u|

}
|θ| dx

≤ 1

4ε

1

42

∫ {
r2|f |2 + ε20

|u|2

r2(1 + log r/r0)4

}
dx+ 2ε

∫
|θ|2

(4 + log r/r0)2
dx.

Thus, applying (1.5) once more, from Lemma 1 and (3.4)–(3.6) we obtain∫ (
Imκr +

1

4
− 2ε

)
|θ|2

(4 + log r/r0)2
dx ≤ 1

4
C1

∫
r2(1 + log r/r0)2|f |2 dx

+
1

43ε

{∫
r2|f |2 dx+ ε20C1

∫
r2(1 + log r/r0)2|f |2 dx

}
≤ 1

4

{
C1 +

1

42ε
(1 + ε20C1)

}∫
r2(1 + log r/r0)2|f |2 dx,

which proves the inequality (1.7) if we choose ε = 1/16.

To proceed to the proof of Theorem 1(ii), we require one more lemma.

Lemma 4. For each u ∈ H1
0,b and t > r0 we have∫

Ωt

|u|2

4r2(1 + log r/r0)2
dx ≤

∫
Ωt

|x̃ · ∇bu|2 dx.
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Proof. In the identity

|x̃ · ∇bu|2 =

∣∣∣∣x̃ · ∇bu− u

2r(1 + log r/r0)

∣∣∣∣2 − |u|2

4r2(1 + log r/r0)2

+ 2 Re

{
x̃ · ∇bu

u

2r(1 + log r/r0)

}
,

the last term on the right can be rewritten as

∇ ·
{
x̃

|u|2

2r(1 + log r/r0)

}
+

|u|2

2r2(1 + log r/r0)2
.

Integrate both sides over Ωt. Then the assertion follows from the identity∫
Ωt

|x̃ · ∇bu|2 dx =

∫
Ωt

∣∣∣∣x̃ · ∇bu− u

2r(1 + log r/r0)

∣∣∣∣2 dx
+

∫
St

|u|2

2r(1 + log r/r0)
dS +

∫
Ωt

|u|2

4r2(1 + log r/r0)2
dx.

Remark 3. The above lemma gives a modification of the standard Hardy in-

equality ∫
|u|2

4r2(1 + log r/r0)2
dx ≤

∫
|x̃ · ∇u|2 dx

in an exterior domain.

Proof of Theorem 1(ii). We return to the identity of Proposition 1. By (A1),

c(x) ≥ −1

4r2(1 + log r/r0)2
.

Then from Lemma 4 we have

Imκ

∫ ∞
r0

µdr

∫
Ωr

{|∇bu|2 + c(x)|u|2 + |κu|2} dx ≥ 0,

and

1

2

∫ {(
Imκ

µ

r
+

µ

4r2
− µ′

2r

)
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx

≤ 1

2

∫
µ|θ|2 dx+

∫ ∞
r0

µ(t) dt

∫
Ωt

|f(x)| |iκu| dx.

By condition (1.8) on µ(t), this inequality reduces to

1

2

∫
µ
(
|∇bu|2 + |κu|2

)
dx ≤ 1

2
C3

∫
|θ|2

(4 + log r/r0)2
dx+ ‖µ‖L1

∫
|f | |iκu| dx.
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Thus, the desired inequality (1.9) is concluded if we note (1.7) and

‖µ‖L1

∫
|f | |iκu| dx ≤ ‖µ‖2L1

∫
µ−1|f |2 dx+

1

4

∫
µ|κu|2 dx.

§4. Proof of Theorem 2

The following proposition summarizes abstract results which allow us to employ

the resolvent estimate for a selfadjoint operator to obtain a space-time weighted

estimate for the associated evolution equation. For the proof of the proposition

see, e.g., [14], [18].

Let Λ be a selfadjoint operator in a Hilbert space H, and for z ∈ C \ R let

R(z) be the resolvent of Λ. Suppose that A is a densely defined, closed operator

from H to another Hilbert space H1.

Proposition 4. Assume that there exists C > 0 such that

(4.1) sup
z/∈R
‖AR(z)A∗f‖H1

<
√
C ‖f‖H1

for f ∈ D(A∗). Then∣∣∣∣∫ ±∞
0

∥∥∥∥∫ t

0

Ae−i(t−τ)ΛA∗g(τ) dτ

∥∥∥∥2

H1

dt

∣∣∣∣ ≤ C∣∣∣∣∫ ±∞
0

‖g(t)‖2H1
dt

∣∣∣∣,(4.2)

sup
t∈R±

∥∥∥∥∫ t

0

eiτΛA∗g(τ) dτ

∥∥∥∥2

H
≤ 2
√
C

∣∣∣∣∫ ±∞
0

‖g(t)‖2H1
dt

∣∣∣∣(4.3)

for each g ∈ L2(R;D(A∗)), and

(4.4)

∣∣∣∣∫ ±∞
0

‖Ae−itΛf‖2H1
dt

∣∣∣∣ ≤ 2
√
C ‖f‖2H

for each f ∈ H.

Proof of Theorem 2(i). Set Λ = L, H = H1 = L2 and A = r−1(1 + log r/r0)−1

(multiplication operator). Then A∗ = A and R(z) = R(z), and if we let z = κ2,

then it follows from Theorem 1(i) that

‖AR(z)A∗f‖ = ‖r−1(1 + log r/r0)−1R(z)A∗f‖

≤
√
C1 ‖r(1 + log r/r0)A∗f‖ =

√
C1 ‖f‖.
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Thus, estimates (4.2) and (4.3) hold, and can be written as∣∣∣∣∫ ±∞
0

∥∥∥∥r−1(1 + log r/r0)−1

∫ t

0

e−i(t−τ)Lh(τ) dτ

∥∥∥∥2

dt

∣∣∣∣
≤ C1

∣∣∣∣∫ ±∞
0

‖r(1 + log r/r0)h(t)‖2 dt
∣∣∣∣,∣∣∣∣∫ ±∞

0

‖r−1(1 + log r/r0)−1e−itLf‖2 dt
∣∣∣∣ ≤ 2

√
C1 ‖f‖2,

where h(t) = r−1(log(1 + log r/r0)−1g(t) and f ∈ L2(Ω). By the limit procedure

the first inequality is continuously extended to h(t) satisfying r(1+log r/r0)h(t) ∈
L2(R× Ω), as desired.

To show Theorem 2(ii) we consider the Klein–Gordon equation

i∂tu = Λu, u(t) = {w(t), ∂tw(t)}, Λ =

(
0 i

−i(L+m2) 0

)
in the energy space H = Ḣ1

b × L2, where Ḣ1
b is the completion of C∞0 (Ω) in the

norm

‖f1‖2Ḣ1
b

=
1

2

∫
{|∇bf1|2 + (c(x) +m2)|f1|2} dx.

Then Λ with domain

D(Λ) = {f1 ∈ Ḣ1
b ; ∆bf1 ∈ L2} × {f2 ∈ Ḣ1

b ∩ L2}

forms a selfadjoint operator in H, and its resolvent is given by

R(z) = (L+m2 − z2)−1

(
z i

−i(L+m2) z

)
.

Let A : H → H1 = L2 be defined by

Af = r−1(1 + log r/r0)−1
√
L+m2 f1 for f = {f1, f2} ∈ H.

Then the adjoint operator A∗ is given by

A∗g = {2
√
L+m2

−1
r−1(1 + log r/r0)−1g, 0} for g ∈ L2.

Proof of Theorem 2(ii). By definition

(4.5) AR(z)A∗g = 2r−1 log(1 + log r/r0)−1

× z(L+m2 − z2)−1r−1(1 + log r/r0)−1g
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for g ∈ D(A∗). Then since∫
|r−1(1 + log r/r0)−1z(L+m2 − z2)−1f |2 dx

≤ m2

∫
r−2(1 + log r/r0)−2|(L+m2 − z2)−1f |2 dx

+

∫
r−2(1 + log r/r0)−2|−m2 + z2| |(L+m2 − z2)−1f |2 dx,

using (1.5) and (1.9) with µ = r−2(1 + log r/r0)−2 of Theorem 1, we obtain

‖AR(z)A∗g‖ ≤ 2
√
m2C1 + 2C4 ‖g‖.

We return to Proposition 4 with this inequality. Let w(t) be the first component

of the solution e−itΛf . Then (4.4) shows that∣∣∣∣∫ ±∞
0

‖Ae−itΛf‖2 dt
∣∣∣∣ =

∣∣∣∣∫ ±∞
0

‖r−1(1 + log r/r0)−1
√
L+m2 w(t)‖2 dt

∣∣∣∣
≤ 4
√
m2C1 + 2C4 ‖f‖2H.

Since

w(t) = cos(t
√
L+m2)f1 +

√
L+m2

−1
sin(t

√
L+m2)f2,

choosing f = {
√
L+m2

−1
g, 0} and f = {0, g} for g ∈ L2, we obtain∣∣∣∣∫ ±∞

0

‖r−1(1 + log r/r0)−1 cos(t
√
L+m2)g‖2 dt

∣∣∣∣ ≤ 2
√
m2C1 + 2C4 ‖g‖2

and∣∣∣∣∫ ±∞
0

‖r−1(1 + log r/r0)−1 sin(t
√
L+m2)g‖2 dt

∣∣∣∣ ≤ 2
√
m2C1 + 2C4 ‖g‖2,

respectively. These inequalities imply assertion (ii).
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