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Spectral Properties of the Linearized Semigroup
of the Compressible Navier—Stokes Equation on a
Periodic Layer

by

Yoshiyuki KAGEI and Naoki MAKIO

Abstract

The linearized problem for the compressible Navier—Stokes equation around a given con-
stant state is considered in a periodic layer of R™ with n > 2, and spectral properties of
the linearized semigroup are investigated. It is shown that the linearized operator gener-
ates a Co-semigroup in L? over the periodic layer and the time-asymptotic leading part
of the semigroup is given by a Cp-semigroup generated by an n — 1-dimensional elliptic
operator with constant coefficients that are determined by solutions of a Stokes system
over the basic period domain.
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§1. Introduction

This paper is concerned with the initial boundary value problem for the following
compressible Navier—Stokes equation in a periodic layer €:

Op + div(pu) =0,

p(Ow +v-Vv) — pAv — (p+ p')Vdive + V(P(p)) = 0,
v|on = 0,

(p,v)|t=0 = (po,vo).

(1.1)
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Here p = p(z,t) and v = "(v'(x,t),...,v"(z,t)) denote the unknown density and
velocity, respectively, at time ¢ and position z; () is a periodic layer defined by

Q:={z=(2/,2,); 2 €R" ", w1 (/) < zp <wa(2)},

where wy and ws are nonconstant and smooth functions of 2’ satisfying the period-

icity conditions w; (2 + Z—:e;) =w;(2') (j=1,2; k=1,...,n—1) with constants

k
ar > 0and e} := 1(0,...,1,...,0) € R" %y and ' are the viscosity coefficients
that are constants satisfying

2
n>0, Euﬂt’zo;

P is the pressure for which we assume that P is a smooth function of p that
satisfies

P'(ps) >0

for a given positive constant p,. Here and in what follows, - stands for transpo-
sition.

We are interested in the large time behavior of solutions to (1.1) around the
constant equilibrium u, = "(p,,0). To establish a detailed asymptotic description
of large time behavior, we study the spectral properties of the linearized semigroup
for (1.1) around us as a first step of our analysis.

The system of equations for the perturbation is written as

0y + ydivw = f9,
Ow — vAw — vV divw + vV = f,
U}|BQ :Oa

uli—o = up = (¢o, wo).

(1.2)

Here u = (¢, w) with ¢ := p%(p — ps) and w = %v denotes the (scaled) pertur-
bation from us := "(ps,0); v, 7 and 7 are parameters given by

B pt
v U= . =P (ps);

o P

and fO and f denote the nonlinearities

10 = —ydiv(gw),

_ ¢
fi= 1+¢

3 1 _ Pl(p)
{W1+ 5 V(P 0) - w}.

{vAw + oV divw} —yw - Vw
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Large time behavior of solutions to the compressible Navier—Stokes equations
has been extensively studied since the pioneering works by Matsumura—Nishida
[16, 17, 18]. See, e.g., [5, 10, 11, 13, 14, 15, 20] and references therein. In [7, 8, 9],
the stability of us was studied when the underlying domain is an n-dimensional
infinite layer

R % (0,1) = {z = (2/,2,); 2’ = (w1,...,2y—1) ER" 1 0 < 2, <1}

It was proved that u, is stable under sufficiently small initial perturbations and
the L2 norm of the perturbation decays in the order of ¢t~("~1/% as t — 0.
Furthermore, it was shown that the perturbation behaves like a solution of an
n — 1-dimensional heat equation.

In this paper we extend the results on the asymptotic behavior of the linearized
semigroup for (1.2) obtained in [7, 8] to the case of the periodic layer Q. We will
prove that the linearized semigroup behaves as t — oo like a semigroup generated
by an n— 1-dimensional elliptic operator with constant coefficients. More precisely,
we consider the linear problem

(1.3) Ou+ Lu=0,  uli=o = uo,

where u = (¢, w) is the unknown; ugp = '(¢o, wo) is a given initial datum; and L
is the operator of the form

I .- 0 v div
. W —vA —Vdiv)’

It is shown that — L generates a contraction Co-semigroup e~* on L?(2) and et
is decomposed as
et =T 4 e (T - T0).

Here [ is the identity operator and II is a bounded projection on L?(Q2); moreover,
lle™* Tug| L2 () < C(1+ )" ug|| 1@,
le™ (I = Mo | 2 () < Ce™|luo| L2(0
and
(1.4) ||e_tLHuO — [e_tHO'()]U(O) ||L2(Q) < Ct_(n_l)/4_1/2||U0||L1(Q),

where 3 is a positive constant; and e *# is the Cy-semigroup in L?(R"~!) gener-
ated by the operator —H where

2 n—1

gl
Ho:=—— E 40,0z, 0.
> Oz, Og,

ij=1
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Here (a;;) is a positive definite symmetric matrix with constant components; and
oo and u(®) are given by

wa(z”)
oo 1= <l / do(x',zn) drn, 6 :=T(1,0),

0=
|Qper‘ 1(x’)

where ()¢, is the basic period domain given by

Qper :={z = (2", 2,); 2’ € Q, wi(2') < 2, < wa(z')}

with the basic period cell Q = H}:ll [—7/cj,m/a;). Here and in what follows, for
a bounded domain D, |D| denotes the volume of D. We note that the matrix (a;;)
is given by

(Vw(i), Vw(j)>L2(Qpcr)v

aij :

Qe
where w®) = w®) (2’ 2,) (k =1,...,n — 1) are functions Q-periodic in 2’ satis-
fying the following Stokes system:

divw®) =0,
—AwF) + Volk) = ¢,

w(k)|rn:w1 (z),wa(z’) — 0

k

for some ¢p(*) = ¢(*) (2 x,,) Q-periodic in 2’, where ey, := '(0,...,1,...,0) € R™.
Here and in what follows, we say that a function f(z') is Q-periodic if f(a’'+ Z—fe;-)
— f(2) for all 2’ €R"L and j=1,...,n — 1, where &, =7(0,...,1,...,0) €R"L.

We will prove our results as follows. In the case of infinite layers analyzed in
[7, 8, 9], the spectral properties of the linearized semigroup were investigated by
using the Fourier transform in 2/ € R"~!. In the case of the periodic layer €2, the
Fourier transform does not work well any longer; instead, we employ the Bloch
wave decomposition which transforms the linearized problem (1.3) on € to the
problem Oiu 4+ Lyu = 0 on Que under Q-periodic boundary conditions in a'.
Here L,/ is the linear operator obtained by replacing the partial derivatives 0,
(j=1,...,n—=1) in L by 0., + in; with parameter " = (91,...,17,-1) € Q%,
where Q* is the dual cell defined by Q* := H?:—ll[—aj/Q,aj/Q).

When || < 1, the operator L, can be regarded as a perturbation of Ly; and
analytic perturbation theory is applied to show that

p(—Ly) D {ReA > —pFo} \ {\y} for some By >0,
o(=Ly ) N{IAl < Bo/2} = { Ay},

where
2 n—1

Y
Ay == > aiming +O(n'1*)

ij=1
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as 7 — 0. It then follows that this part of e 'L behaves as in (1.4). As for the
remaining part of 1, we establish some estimates for a modified Stokes system
(see Section 4.3); and based on the established estimates we prove by an energy
method that if || > r¢ (7 € Q*), then

p(=L,) D {ReA > —p1} for some 1 > 0,

and hence this part of e7* decays exponentially. We note that we consider the
linearized operator L as an operator on L? as in [6], in contrast to [7, 8] where the
underlying space is H' x L2. The L? setting will be useful for the stability analysis
of stationary flows with nonzero velocity fields.

This paper is organized as follows. In Section 2 we introduce some notation,
function spaces and state some properties of the Bloch wave decomposition. In
Section 3 we state the main result of this paper. The proof of the main result is
given in Sections 4-5. In Section 6 we give an outline of the proof of a lemma used
in Section 4.3.

§2. Preliminaries

In this section we introduce the notation, function spaces and operators which will
be used in this paper.

For a domain D and 1 < p < oo, the Lebesgue space over D is denoted by
LP(D) and its norm is denoted by || - ||1r(p). The symbol W?(D) stands for the
Ith order L Sobolev space and its norm is denoted by || - [|yy1.r(py. When p = 2,
we denote W'?(D) by H'(D) and its norm is denoted by|| - || i (p). We denote by
Cl(D) the set of all C! functions whose support is compact in D. The completion
of CL(D) in WhP(D) is denoted by WhP(D). In particular, we write HA(D) for
Wi2(D).

We simply denote by LP(D) the set of all vector fields W = T(w!,...,w")
on D whose components w’ (j = 1,...,n) belong to LP(D) and the norm is also
denoted by || - ||r»(p) if no confusion can occur. Similarly, the symbols W?(D)
and H'(D) are also used for vector fields.

For u = "(¢,w) with ¢ € WFP(D) and w = T(w',...,w") € Wh4(D), we
define the norm [|u|y«.»(pyxwt.a(p) by

HUHW’“J’(D)XWL‘I(D) = H¢||Ww(D) + ”w”W’ﬂ‘I(D)-

We define the sets Q, Q*, Qper, Lj+ (=1,...,n—1) and X,, as follows:

n—1 n—1

Q= H[—?T/Oéi,ﬂ'/ai), Q* = H[—ai/Z,ai/Q),

i=1 i=1
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Qper = {1‘ = (xlvxn); ' € Q7 wl(x,) <xTp < LUQ(.Z‘/)},
Y+ ={2 € Qper; ¥j = £7/0vj},
Y, ={ze€edd 2 €Q, z, =w;2'), j=1,2}.

In the case D = Qpe, we simply write LP(Qper) as LP, and likewise,
WEP(Qper), H (Qper) as WEP H!, respectively. Similarly, the norms are also ab-
breviated to || - ||z, || - [lww.», and, in particular, we write || - ||, for || - [|zr(q,..)-

The inner product of L?(D) is defined by
(F9)iw) = [ f@i@de,  fge D),

When D = Q,;, we abbreviate it to (f,g). The dual space of H}(D) is denoted
by H~1(D), and the pairing between H~!(D) and H{(D) is written as [-,]. For
[ € L?(Qper), its mean value over {2, is denoted by [f], i.e.,

11 = (£,1) |Qper| / RIS

Nxy,...,2y_1) € R*"L The
partial derivatives of a function u are denoted by 0., 0.,0,, and so on.

We often write z € Q as @ = '(2/,2,), 2/ =

We will work in spaces of functions Q-periodic in z’, and so we introduce
the function spaces Lper(Qper), C’ggr( pe,) (Ofiy per( per)s Hrl)er(Qper)7 H(l),per(Qper)
defined by

LIQ)er(Qper = {u|gpcr7 ue L. (Q), (;v + Qle;,xn) = (2, z,),

(2, 2,) €Q,1<j<n-—1},
Coor(Qper) = {u|®, ue C(Q), u(2' + 2—”63,:1071) = (2, z,),

(2',20) €Q, 1< <n—1},

Coper(Qper) := {u € Ce(Qper) 5 u = 0 in a neighborhood of 92},
Hécr(Qpcr) := the closure of C22,(Qper) in H' (Qper),
Hé,per(Qper) := the closure of C§%,.,(Qper) in HY (Qper)-

Observe that L2, (Qper) can be identified with L?(Qpe,), and that

per
H o (Qper) = {u € H (Qper); Duls, =00uls,,, 1<j<n—1,[8] <1-1},

per
HO,pcr(QPCT) - {’LL € Hpcr(QPCT); Uz, = 0}

We also set

Li per(Qpel‘) - {f € Lper( per) [[.f]] - O}
Hi,per(QpeY) I—‘[]g)er(Q ) N L2 (Qper)-

*,per
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For € R"™! we denote
i ="(n',0) e R",
and V, and A, are defined by
Vy =V+ig and A, :=V, - V,,
respectively.

We next introduce some operators. We denote by Py and P the following
(n+1) x (n+ 1) diagonal matrices:

Py := diag(1,0,...,0), P =diag(0,1,...,1).

Note that Pou="(¢,0) and Pu="(0,w) for u="(¢,w) with w="(w, ..., w,).

We denote the kernel and range of an operator A by Ker A and R(A), respec-
tively.

For a function f = f(z') (z' € R"™!), we denote its Fourier transform by f
or F[f]:

F&) = FlAE) = / fla)e ' da! (¢ e RMT).
Rrn—1

The inverse Fourier transform F~! is defined by

FHAG) = (2m)~ Y / )€ de (2 e R™Y).
Rn—1
We next introduce the Bloch wave decomposition. Let S(R"~1) denote the

Schwartz space on R" 1.

Definition 2.1. We define the operator T by setting, for ¢ € S(R*~1), 2’ € R* 1,
and ' € R" 1

21  (Te)(n)

n—1

. 1 N / 12 iz@:ll ijdjiE]’
- (27T)("_1)/2|Q|1/2 Z 90(77 + Z ijéjej> el =

(K1, kn_1)€Z"—1 j=1

n—1
1 2 —in (' n—1) 2m
T Q2 > <P<x’+sz”e;>e @+ L),
Q7] (I1,..0slp—1)€Z" 1 j=1 Q;

We also define the operator U as follows. For a function p(z’,7') € C*° (R~ I1xR"~1)
such that ¢(z',n') is @Q-periodic in ' and gp(x’,n’)ei”,‘x, is Q*-periodic in 7', we
define, for / € R,

(2:2) UE) = urza

. i
—wzjej-a: (

/ oz’ n)e " diy.
Q*

Note that ¢(z,7" + a;e}) = p(z',7')e j=1,...,n—=1).



344 Y. KAGEI AND N. MAKIO

The operators T and U have the following properties. See, e.g., [21, 22] for
the details.

Proposition 2.2. (i) (Ty)(«',n') is Q-periodic in x' and (Tp)(2',n')e * is
Q*-periodic in 1.

(ii) T can be uniquely extended to an isometric operator from L?*(R"~!) to
12(Q% I2(Q)).

(iii) U is the inverse operator of T.

(iv) Let ¢ be Q-periodic in . Then T () = VT ().

(v) T(0z;0) = (Og;+inj) T (j = 1,...,n—1) and T defines an isomorphism from
H'(R™ ') to L*(Q*; H)...(Q)). (Here H],..(Q) denotes the space of Q-periodic
functions belonging to H'(Q), as in the case of H}..(Qper).)

We next consider T as an operator acting on functions in H'(€2). Let y = ®(z)
be the transformation

Yy =z, Y= ! )(mn—wl(x’)).

wa () — wq (2

Then @ is a diffeomorphism from €2 to R"~! x (0,1) and ® transforms Q-periodic
functions on €2 to those on R"~1 x (0, 1). We denote the inverse transform of ® by ¥
and we define the operators ®* and ¥* by [®*u](x) = u(P(x)) and [T*u](y) =
u(¥(y)). Then ®* is an isomorphism from H'(Q) to H'(R"~! x (0, 1)), and likewise
from Héer(Qper) to H}l)er(Q x (0,1)), where H}l)er(Q % (0,1)) denotes the space of
Q-periodic functions belonging to H'(Q x (0,1)).

It is not difficult to see that Proposition 2.2 holds with H!(R"~!) replaced by
HY(R" 1 x (0,1)), and likewise with Hllm(Q) replaced by Hll)cr(Q x (0,1)). It then
follows that ®*T%* is an isomorphism from H'(Q) to L*(Q*; H}..(Qper)). Using
the second expression of T' in Definition 2.1 and the periodicity of w; (j = 1,2),
one can see that ®*TVU*y = Tu for functions u on (). Therefore, we will write
O*TU*y as Tu if no confusion can occur.

§3. Main results

In this section we state the main results of this paper.
Let us consider the linear problem

(3.1) du+Lu=0, u= "(¢w).

Here L is the operator on L%(Q) given by

0 di
(3.2) L::( Tavo )
WV  —vA —-oVdiv
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with domain
(3.3) D(L) = {u= "(¢,w) € L*(Q); w € H}(Q), Lu € L*(Q)} .
Our main issue is to investigate the spectral properties of the semigroup gen-
erated by —L.
Theorem 3.1. The operator —L generates a contraction Co-semigroup e~*F on
L?(Q), and
le™ P uoll2@) < luollrz)  (uo € L*(5)).

The semigroup e ** has the following properties.

Theorem 3.2. There is a bounded projection I1 : L?(Q) — L*(Q) with TIL C LII
and e~ = e7tLTI, and the following estimates hold uniformly for t > 0 and
up € LY(Q) N L2(Q):

(i) lle™"Tull 20y < C(1+ 1)~V 4 ugl| L1 (0

(i) [le™* (I = )uor2(0) < Ce PHlugllp2(q),
(iii) ||e_tLHu0 - [e_tHoo}u(O)HLz(Q) < Ct_("_l)/4_1/2||u0||L1(Q).

ere B 1s a positive constant; e~ " is the Cy-semigroup in - enerate
Here 8 is a p ;e is the Co-semigroup in L*(R"™1) g d by
the operator —H defined by

2 n—1

g
Ho :=—— 470z, 0z, D(H
o Vijzzlaj 0z,0 (0 € D(H))
with domain D(H) = H*(R"1); and o9 and u'®) are given as follows:
wa(z")
0y = <l bo(x', ) dey, 6@ = T(1,0).
|Qpcr| w1 (')
Here the matriz (a;;) satisfies
n—1
> aiti&s > role'? (€ = (&, 1) ERMTY
ij=1

with a constant kg >0 independent of &'. Furthermore, a;; = (Vuw®, Vw(j))Lz(Qper)
with T(¢*) w®) (k =1,...,n—1) satisfying the following Stokes system in Qper:
divw® =0,

—Aw®) + Vo) = ¢,

w(k)|2j’+ — w(k)|2j,_7 ¢(k)|2j,+ — ¢(k)|2j,_7 w(k)|2n =0,

[6*] =0

for some ).

(3.4)
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The proof of Theorem 3.2 will be given in Sections 4 and 5. To prove Theorem

3.2, we will consider the resolvent problem Au + Lyu = f on L2, (Qper) with

parameter 7' € Q*. In the case of || < ry for some small rg > 0, we regard
L, as a perturbation of Ly and apply analytic perturbation theory to study the
spectrum of —L,,. For n/ € Q* with || > 7, we establish estimates for a modified

Stokes system and apply an energy method. Based on the analysis of —L,/, we

give a proof of Theorem 3.2.
§4. Spectral properties of L,/
In this section we investigate the spectral properties of L.
84.1. Formulation
Let us consider the resolvent problem for (3.1),
(4.1) A+ Lu=f, weD(L).

Here A € C is a resolvent parameter.
Applying U* to (4.1), we have

(4.2) A+ P L) ¥ u=V*f inR"* x(0,1).
Here U* L is the differential operator of the form
\I]*L _ < ) 0 - Z;:l l{?(y/’ yn)ay] ) )
Zj:l 15y, Yn)Oy, Zj,k:l 13y (Y, Yn)Oy, Oy, + Zj:l 1oy, Yn )0y,

with some llj;q and lg;’qk (p,q = 1,2) Q-periodic in y'. We next apply T to (4.2). It
then follows from Proposition 2.2(i), (iv) and (v) that (4.2) is transformed into
the following problem on @ x (0,1):

(4.3) A+ L)TE* u=TY*f (' €Q")
with @-periodic boundary condition in y'. Applying ®* to (4.3) we arrive at
(4.4) A+ L) Tu=Tf on Qpe

with the dual parameter ' € Q*, where L,/ is the operator on L? (Qper) of the

per
form

) 0 YV
U O N AL
’}/ ,,]/ % n/ % n/ 77,

with domain

D(Ln’) ={u= T(¢7 w) € L (Qper); Lyu e L (Qper), w € H&,per<QP€r)}'

per per
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It is not difficult to see that D(L,/) = D(Lg) for all n € Q* and that L,/ is a

closed operator on L2, (Qper)-

If X € p(—L,y), then, by (4.4), u can be written as
u=U(N+ Ly) 'Tf.

Therefore, to investigate the resolvent of —L, we will consider the problem
for —L,y:

(4.5) Au+ Lyu=f, wue D(Ly).

Before going further, we also introduce the adjoint operator of L. We define

L*, = < 0 _’YTVW/ )
K —AVy  —vAy =V, TV,

with domain

D(Ly) ={u="(¢,w) € L}

per

(Qper); L:;’U' € L2 (Qper)> w e Hol,per(QpeT)}'

per

One can see that D(L;,) = D(Lg) for all ' € Q* and that L, is the adjoint
operator of L,y.

§4.2. The case || < rg

In this subsection we consider (4.5) with || < r( for some sufficiently small r¢ > 0.
It is convenient to write

n—1 n—1
1 2
Ly = Lo+ 3o ngL5" + 37 ngmeL ),
J=1 Jik=1

where
( 0 ~div
L0::: ~ . )
YV  —vA —oVdiv

LW = z< 0 v'e; > L® .= <0 0 >
J ve; —2v0,; — ve;div fﬂV(Tej) ’ ik 0 vérl, Jrl?ejTek

with I,, being the n x n identity matrix. We also set

n—1 n—1
1 2
My =Y L + 37 mym L),
j=1 jik=1

namely,

A{ - < 0 iVTﬁl )
TNy v(|')? - 2 V) — v (V +4if) —ioV i)
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Similarly, we write

n—1 n—1
* * 1)* 2) %
Ly = Ly+ Y miLy" + 37 mmeL )",
i=1 k=1

0 —~ydiv
-4V  —vA —©Vdiv)’
J —ve; —2w0,, —ve;div—iV('e;))’

@« _ (0 0
L.k = T .
J 0 I/(;jkln +ve; e

We begin with the resolvent estimates for the case ' = 0 which imply the
—tLg

where

L

generation of a contraction semigroup e
In what follows we write X := L2_ (Qper) for simplicity of notation.

Proposition 4.1. We have {\;Re A > 0} C p(—Lo), and if Re A > 0, then

1

1 ~
1A+ Lo) " fll2 < < lIfll2 VPO + Lo) ™ fl2 < Wﬂf\\z'

~ ReA

The same conclusion holds for the adjoint operator L.
Proof. Let Re A > 0. Since
(4.6) Re (A + Lo)u,u) = v||Vw|]3 + 7||div w3 + Re Al|ulf3,

we see that if (A4 Lo)u = 0, then uw = 0, and so A+ Ly is injective when Re A > 0.
Observe also that if Re A > 0, then

1
(47) Jull2 < = IO+ Lo)ulz
1
4. <——||[(A+ L .
(43) IVl < & goyyal+ Lol

It follows from (4.7) that R(A+ L) is a closed subspace of X. We note that these
inequalities also hold with Lo replaced by L. Let v € R(A + Lg)*. Then, since
(A + Lo)u,v) = 0 for all u € D(Lg), we see that v € D(L§) and (A + L§)v = 0.
This, together with (4.7) with Lo replaced by L§, implies that v = 0. We thus
conclude that R(A 4 Lg) = X, that is, A 4+ Lg is surjective. O

The following estimates show that —L,  also generates a contraction semi-
group.
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Proposition 4.2. We have {\; Re A > 0} C p(—L,y) and the following estimates
hold for Re A > 0:

_ 1
IO+ L) Flla < s
- C 1 1
—1
9B+ L) s = o (i + oy 1

The same conclusion holds for the adjoint operator Ly,.
Proof. We have
Re (A + Ly )u, u) = Re Au]|3 + v[|Vywlf3 + 7]V, - w]]3.
It then follows that if Re A > 0, then
1
< — / .
Julls < o IO+ Ly Jull
We also have
Re (A + Ly )u, u) > v|| Vw3 + (Re A — O)|ulf3

for a constant C' > 0 uniformly for ' € Q*. Therefore, we deduce that

1 1
IVl < 1O+ Lyulllula + Cllull < € (g5 + fagss ) IO+ Tl

which gives

C 1 1
Vel < 2o (s + oo )1+ Lol

As in the proof of Proposition 4.1, one can now obtain the desired results. O

We next show that A = 0 is a simple eigenvalue of —Lj.

Proposition 4.3. There exists a constant Sy > 0 such that p(—Lo) D {\ # 0;
ReX > —fo}. Furthermore, A = 0 is a simple eigenvalue of —Lg, and for X\ # 0
satisfying Re A > —f,
1
(A+ Lo) ™' f = SO 4 551~ 1),
and the following estimates hold uniformly for A satisfying Re A > —fy:

C ~ C
Sy(I—11©) < — , VPSy\(I -1 <— .
IS\ -T)flle < gymglfller IVBS\I =)l < sz Il
Here TIO) is the eigenprojection for the eigenvalue A = 0 defined by

N0y = (u,u @)@ = [g]u?,  u=T(¢,w),
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where

u® = T(1,0), w®* .= ! 7(1,0),
|Qper

and Sy is the operator defined by
Sy = [(I —TO)(\+ Lo)(I — TIO)] 7L,

The same conclusion holds with Lo, Sx, II(©) replaced by L, S%, HO* respectively
where

S = [(I —TIOYN 4+ L5 11O~ TO% = (u, u©)u 0,

We give a proof of Proposition 4.3 for Ly only since the case of L§ can be
treated similarly. For the proof, we prepare the following two lemmas.

Lemma 4.4. We have Ker Ly = span{u(®} and TI°) is a bounded projection on
L2(Qper) with MO X = Ker Ly and IV Ly C LeII(®) = 0.

Proof. Let Lou = 0. It then follows from (4.6) that Vw = 0, and hence V¢ = 0.
This implies that w = 0 and ¢ = const. This shows that Ker Ly = span{u(®}.
Clearly, II(®) is a bounded projection onto Ker Ly. For u = T(¢,w), we have
LTIy = T(0,4V[¢]) = 0. On the other hand, for u € D(Ly), we have II(?) Lyu =
[y divw]u® = 0. We thus conclude that TI(%) Ly ¢ LII®) = 0. O

Lemma 4.5. We have p(—Lo|_nw)x) D {\;ReX > —fo} with a positive con-
stant By, and the estimates for Sy in Proposition 4.3 hold true.

Proof. We set A := —Lo|(;_i0)x- Let us consider Au+ Au = f. It is known that
there exists a bounded linear operator B : L2(Qper) = Hp por(Qper) such that for
any g € L? . (Qper) we have div Bg = g and |[VBgllz < collg]|2 for some constant
co > 0. See [1, 2, 4] for the details.

We follow the argument in [6]. We introduce a new inner product

(u1,u2)) := (u1,u2) — 6{ (w1, Bo2) + (Be1,w2)}

for u; = T(¢;,w;) (j = 1,2) with a constant § > 0 to be determined later. This
pairing ((u1,us2)) defines an inner product on L? | (Qper) X L*(Qper) if 6 > 0 is
sufficiently small. In fact, using the Poincaré inequality ||wl|ls < ¢1]|Vwl|2, we see

that there exists a constant C > 0 such that
(u,w) = [Jull3 = 6{(w, Bp) + (Bo,w)} > (1 = dcoen)||ull3

and ((u,u)) < (1+ dcger)||ul|3. Therefore, ((+,-) is an inner product and the norm
it defines is equivalent to the norm || - |[2 if 0 > 0 is taken sufficiently small.
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We denote Au = "(Aju, Asu). Note that prer Ajudr = 0. We see that
(Au,w) = (Lou,u) — 5{( Ao, B6) + (B(Ayw), w)}
> |9l + v wlf + 3516l - 6] (22 423 9t + v wi )
> VlIVwl + 57lldivewl; + 57413
if § > 0 is taken suitably small. Therefore, we have

(1= deoer) Re Aullz + 5v[ V|3 + 57|ldivw]3 + 50v]|4]l3 < Re (f,u)
< Ol fll2llull2-
Setting £y = W min{éw, ﬁ} we find by the Poincaré inequality that
(Re A+ fo)llullz < C|[f]2-

We thus conclude that if Re A 4+ 8y > 0, then

C
d ||V < .
Julls < g gl and [Vl € oo I
These estimates, together with Proposition 4.1, yield the desired results. O

We are now in a position to prove Proposition 4.3.

Proof of Proposition 4.3. We define
Xo:=TYX and X;:=I-09)X
By Lemma 4.4, we have X = Xo® X1 and p(—Lo|x,) = {\; A # 0}. This, together
with Lemma 4.5, shows that {\ # 0; Re A > —8y} C p(—Lo),
(Ot Lo) ™' f = O 4 855(1 11O,
and S, satisfies the desired estimates. O
We next derive the resolvent estimates for —L,, with |r/| < 7.

Theorem 4.6. There exists a constant ro > 0 such that if B’ € Q* satisfies
[7'| < 1o, then
Y= {NRed = =380/4} N4 Al = Bo/2} C p(=Ly),

and the following estimates hold uniformly for A € ¥y

A+ L)~ VB + L)~ 2 <

C
Yo < o )\+5 Il f1l2, Wllﬂb.

The same conclusion holds with L, replaced by Ly,
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Proof. Let A € ;. By Proposition 4.3, we see that
(4.9) 1A+ Zo) ™! fll2 + [IVE(A + Lo) ! fll2 < i1l fl2

uniformly for A € ¥;. Here C is a constant depending only on Sy. It then follows
that

(4.10) 1L ullz < C{llwlls + [IVwllz + 6ll2} < CCLIA + Lo)ullz,
(4.11) 1L ullz < Cllwllz < COLI(A+ Lo)ull2
uniformly for A € ¥ and v € D(Lg). We thus obtain
1My (A + Lo) ™ flla < COLl L Ifl2 (A€ D)
uniformly for A € ¥; and f € X. Therefore, if rg > 0 is a constant satisfying

ro < CLCﬁ then X\ € p(—L,y) for |n'| <ry and

(=DM (My (A + Lo)™H)Y,

hgE

A+ L,,/)_1 = A+ Lo !

2
Il

0

c Nt
Ly) ' flla € 5= D IMy (A + Lo) MY
A+ L) f”2_Re>\+BoN:0” w(A+Lo) |l Hf||2_R)\+6 1£112-

Similarly,

C
W”f”z

The case of Ly, can be proved similarly. O

IVEO+ Ly) " fll2 <

We now show that o(—L, ) N{\; |A| < By/2} consists of a simple eigenvalue
whose real part is negative and of order O(|n/|?) as ' — 0.

Theorem 4.7. There exists a constant ro > 0 such that if 1| < ro, then o(—L,y)
NA{A; A < Bo/2} = {\y}. Here Ny is a simple eigenvalue that satisfies
2
Ay = =—x() +O(0'*)  (nf =0),

where

1 j k
)= Y agmyme, agy = 0 (Vi vul").
per

dk=1

Here wgk) (k=1,...,n—1) satisfy the Stokes system (3.4) for some (bgk), and
k(n') > ko|n'|? with some constant kg > 0. As a result,

Ko 7
Re)\nlg—3 I'|?.

14
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Remark 4.8. A similar result holds for Ly, with simple eigenvalue A}, = Ay

Remark 4.9. Since \,y — 0 as ' — 0, we see that for any 3 € (0, 80/2), there
exists a constant r = r(f8) > 0 such that if |n/| < 7(8), then [\y| < § and
{AMRe X > =3B80/4} N {A; [A| > B} C p(—Lyy).

Proof of Theorem 4.7. In view of Proposition 4.3, (4.10) and (4.11), we can apply
analytic perturbation theory to see that o(—L, ) N {A; |A| < Bo/2} consists of a
simple eigenvalue, say \,, for sufficiently small 7, and that A, is expanded as

n—1 n—1

A= DA+ 37 AP + 00’ 1?)
=0 k=0

with

0 ._ (1),,(0) , (0)x
A7 == (L IMCURACY ),
MNP = 3@ + L) ) + LS + LV SLY )l ).
Here S = Sy|a=o. See, e.g., [12, Chap. VII], [21, Chap. XII].
Let us compute )\5-1). Since (u,u(9*) = [¢] for u = T(¢,w) and L;-l)u(o) =
0,ive;), we have A§1) =0.

As for )\ﬁ), since Lﬁ)u(o) = 0, we have [[L;i)u(o)]] = 0. Furthermore,

Kt

((L;DSLQ) + L;l)SL,(cl))u(O)m(O)*) _ (L§-”SL,§”u‘O>,u(O)*) _ [Lgl)SLS)u(O)]]~

1
2

We compute [[L;l)SLS)u(O)]]. Set uy = (¢, wy) = SL,(:)uO. Then w4 is a solution
of

Louy = (1= TO)LPu® = L, [¢1] =0,

that is,

ydivw; =0,

—vAwy + Vo = iyey,

wils; , =wils, , é1ls,, =dls, ., wils, =0, [¢] =0.
Lemma 4.5 implies that for each k = 1,...,n — 1, there exists a unique solution

i = T3 5*)) of this system. Let ul™ = ("), w!*) be the unique solution
of (3.4). Then ¢§’“> = iqﬁgk) and wg’“) = %wgk), and hence

~(k k
L(-l)SL(l)u(O):i( 0 Ve, )( ( )) :_f(ej cw! )).
J k ve; —2v0,, — ve;div—iV(Te;) )\l v *
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It then follows that

2
i k
)‘ﬁ) = [[L§'1)SL1(<1)“(0)]] = —7[[%‘ “’§ )]]

2 2
y - g 271 —_—
= ——lAwy + V67 - wi?] = —— e (Vuy”, V).

Let us show that the matrix ((ngj), Vw(k))) _, is positive definite. We first

observe that wgl), .. wgn D are linearly independent In fact, suppose that w; =
Z] 1 cjw?) = 0. Then ¢; = Z] 1 cj(blj) satisfies V¢ = Z;le c;je;. Therefore,
¢1 can be written as ¢; = ¢+ ijl c;jz; with some constant c. Since ¢; is Q-
periodic in 2’ = (21, ...,2,—1) and [¢1] =0, we see that c=¢; =--- =¢,,—1 = 0.
We thus conclude that wgl), . w§n Y are linearly independent.

Set V := span{wgl), . wgn 2 } and take an orthonormal basis {f1,..., fn_1}

of V' as a subspace of H(}’per(ﬂper) with respect to the inner product (w, v)H1 =

(Vw, Vv). Then wg ™) can be written as w( m _ o 1 bk fr form =1,. -1,
and thus (wgl),.. wﬁ" 2 ) = (f1,.-., fn-1)B, where B = (bl,...,bn_l) With
b = (b, bmn—1). It then follows that by,...,b,_1 are linearly indepen-
dent. We have (Vw§m)7 ngl)) = (wY”), w(l)) 1 = (BB*)y. Since BB* is pos-

Ope

itive definite, so is the matrix ((ngm), Vw(l))) i 2. It then follows that there is
a constant kg > 0 such that

n—1

2 2
7 v * g

> N ngie = §: m (Vi mgme = =B P < <o [
jok=1 perl v v

for all n’ € R"~1. Therefore, there exists ro > 0 such that if || < rg, then

Re ), < —2 %WP.

O
2

Let II, be the eigenprojection for the eigenvalue A, . Since Hn/e;,w = e/\"’tl'[n/,
we have the following estimate.

Theorem 4.10. If || < rg, then
B
et ug — e T uglla < Ce™ 2t |ug 2.

Theorem 4.10 follows from Theorems 4.6 and 4.7. See, e.g., [3, Chap. V,
Theorem 1.11], [24].

We close this subsection with estimates for the eigenprojections Il and I,
for the eigenvalues A,y and Ay, (= Ay) of —L,y and —Ly,, respectively.
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Theorem 4.11. For any nonnegative integer k, there exists a constant ri > 0
such that the following estimates hold uniformly for |n'| < rg:

(1) Ty ull g < Cllully-
(i) (I =T )ull e < Cln'| [Jullz

The same conclusion holds with 1L, replaced by I17,.

Proof. By Theorem 4.6 we have

1 1
0, = —/ A+ L) tdy, I = — A+ L:)"ta
L w:ﬁo/z( ! 72w iz 2 !

Furthermore, u,, = I,yu(®) and uy, = H;‘I,u(o)* are eigenfunctions of —L,, and

—Lj;, for the eigenvalues A,/ and )\f,, = Ay, respectively; and
(/LL7 'U/:;/)

Uy’
(un”u;') "

Hn/u =

Note that un,‘n,zo = H(O)u(o) — u(o) and u;‘;/‘n,zo — H(O)*u(o)* — U(O)*.
In view of (4.9)-(4.11), we see that (A4 L,/ )~" can be expanded as

n—1
A+ Ly) P =\N+Lo) ™ = (A + Lo) ™ Z njL§.1)(A +Lo) t + Ry (M)

j=1

and
IRy (N fll2 < CI'Pllfllzs - IVPRy (M) fll2 < Cln' 1?1 £l2

uniformly for || < rg and |A| = Bo/2. We write

n—1

1
_ ., (0) / . , —17(1) —1,,(0)
Upr = U + — ni(AN+ Lo) T L (A+ Log) " u d\
n 271 ‘M:BO/Q( ; J( ) J ( ) )
1
+ — Ry (M)u'® dx

2 Jia=p0/2
n—1
=4 4 Z njug»l) +u?.
j=1
Using (4.9)—(4.11), we have

5 2 + VP52 < C, - [[u® o + [VEu® > < Cly' 2

J
Similarly,

n—1
* * 1)* *
Uy = uO* 4 Z njug " pu® ,
Jj=1
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with estimates
{2 o+ VEG < €, 1@ + [VBa* |y < Cly'[2.
It then follows that

(s upr) = (u(o),u(o)*) + (uy — u(o),uf’,) + (u(o),uf], - u(o)*) >1-Clnf| >1/2

for |n’| < rog with rg > 0 replaced by a smaller one if necessary.

If we had the estimates |[uy/||oc < C and [|0gu, |l < C, then it would fol-
low that |07 ullz < Cllulliljup lloc 05wy [l2 < Cllulli. So we will deduce the
estimates for u, and u;,, in other words, for (A + L)~ 'u® and ()\—l—LfI,)*lu(O)*.

In the remainder of the proof we only consider (A + L,/ ) tu(® since (X +
L;,)*lu(o)* can be estimated similarly. We also observe that the integral path of
Uy = 5 fl/\|:ﬁo/2()\ + L,y)"*u(® dX can be deformed into {|\| = B} C p(—Ly).

We claim the following

Proposition 4.12. Let m be a nonnegative integer. Then there exist constants
rm > 0 and By, > 0 such that if || < vy and B /2 < || < B, then we have
A+ L) € HF (Qper) x (HIF2 0 HY o) (Qper), and

per
JO+ L) s s < C
uniformly for |n'| < rm and B /2 < [N < B
To prove Proposition 4.12, we employ the following lemma.

Lemma 4.13. Let m be a nonnegative integer. Then there exists Bm > 0 such
that if [\ < B, then Sxf € HIEL(Qper) x (HIH2 N HY o) (Qper) for any f €
H™M L (Qper) x HZ (Qper), and

*,per per
1S3 fllam+1scgm+e < C|| fllgrm+1x prm
uniformly for X\ with |\ < Bm.
The proof of Lemma 4.13 will be given later.

Proof of Proposition 4.12. We argue by induction on m. We denote u :=
(A + L) 'u®. By Theorems 4.6 and 4.7, we have |ul|p2xm: < C uniformly
for |n'| <rg and Fy/4 < |A| < Bp/2 with rg replaced by a smaller one if necessary.

We write (A 4+ Lo)u = u® — M,u and decompose u = '(¢p,w) as u =
[6]u® + up, where IOy = [¢]u® and u; = (I — 1)y, Then

[61= s (1=l 0]}, O+ LoJus = —(Myus + [G]Myu® — IO M),
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It then follows that
1

(412) 1=

{1 +amoflwll2} < C
uniformly for || < ro and 81/2 < || < 1 with 81 > 0 to be determined later.
On the other hand, we have

([ My uy + [[‘M]Mn'u(o) - H(O)an’“HHle2 < Cllullzzxm <C

uniformly for |n'| < rg and By/4 < |A\| < Bo/2. It then follows from Remark 4.9 and
Lemma 4.13 that, with a suitable choice of r1, 1 > 0, the estimate ||u1|| g1 x gz < C
holds uniformly for || < r; and $1/2 < |A| < fBy. This, together with (4.12),
proves Proposition 4.12 for m = 0.

Assume that the proposition holds for m = k. We will show that it holds for
m = k + 1. By the inductive assumption, we have

([ Myrur + [[d’]]Mn’u(O) - H(O)Mn'u||Hk+2ka+1 < Cllullgresr sz < C

uniformly for || <7y and 8;/2 < |A| < Bk. It then follows from Remark 4.9 and
Lemma 4.13 that ||ug| gr+exmgres < C uniformly for |n'| < rgpq and Bry1/2 <
|A| < Br4+1. Combining this with (4.12), we conclude that the proposition holds
form=Fk+ 1. O

We now continue the proof of Theorem 4.11. Let m be a nonnegative integer.
By Proposition 4.12, we see that
()‘ + Ln/)ilu(O) € H;Jnejl(Qper) X (H;ij n Hé,per)(Qper)7

1A+ L) @ | s scpgme < C

uniformly for || < r,, and |A| = B,,. Deforming the integral path into {|A| = S},
we deduce that u,, € Hm+1(Qper) X Hm+2(Qper) and

per per

1
21

(4.13) uHH:‘ / <A+Ln/>1u<o>dAH <c
|)‘|:/87n/2

Hm+1x Fm+2

Taking m = k—1, we have ||02u, ||2 < C for |a| < kand || < rp. Similarly we can
obtain (4.13) with u, replaced by uy,, and hence [juy, [l < Clluy||gm/241 < C.
It then follows that

10z Ty ulle < Cllug [loo 107 w2 flully < Cllulls-

This proves (i).
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Let us next consider (ii). We write I, u — IOy as

1
I,yu — My = (* - 1) (u, u®*)u
un/,un,)
1 * *
oy L = 7))
=1+ 1>
As for I, we have
(e ) = 1] = (g — ul, ) + (@O, up —u7))]
< Cflluy — ulVl2 + [luz, — w72}
Since
1 o0
, 0 — _— by L—l —1NM/)\ L_lN(O)d)\
w5 [ L) 30 Il (0 20) N

we have |lu, —u(® ]2 < C7/|, and likewise [y — u(9*||y < C|n|. We thus obtain
105 1ull2 < Clay'[(u, u'*)05u @) < Ol full1 " e 105wV |oe < Cl'| [[ullr-
As for Iy, we have
195§ (ay Yy — (@)}l
= | (u, upy — u(o)*)ﬁgun/ + (u,u(o)*)aﬁ(un, — U(O))HQ
< lullaffugy = w8 oo 105wy [l + [laalla 1t [loo 105 (e = u ) 2
< Cllull{llugy = w'% | gt g s+ g = 0 ] ge -

Since || Myl grsgr-1 < C'| ||ul|gre-1x g, with the aid of Lemma 4.13 we see
that

1A+ Lo) ™ [Myr (A + Lo) ™ 1N i < (Clay Y
uniformly for 7’| < ry and |A| = Si. Taking 7, > 0 smaller if necessary, we obtain
wy — u® || gx < C|n'|. Similarly, we can obtain lupr — O gpnsz1 < Cl'). Tt
then follows that ||0%1z]l2 < C|n/| |Ju||1 for |a| < k. We thus conclude that

105 (I — T )ullz < Cl'| [u]s
for |a| < k. O

In the remainder of this subsection we prove Lemma 4.13.

Proof of Lemma 4.13. We set % := Sy f. Then
Lot = f — A,
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which is regarded as an inhomogeneous Stokes system. This can be solved for %
if || is suitably small. In fact, let f € H™ L (Qper) X H™ (Qper). Then, for each

*,per per
0 € HI (Qper) X (HIFP OV HG ep) (Qper), there exists a unique 4@ € HIH(Qper) X
(HJ5P 0 Hg er)(Qper) such that Low = f — Ao and

|‘a||H771+1XHm+2 S O|>\| ||'D||H7n+1 ><Hm+2 + C||f||Hm+1 X Hm™ -

See, e.g., [23, Chap. III, Theorem 1.5.3]. This estimate shows that the map o — @
is a contraction on H %1 (Qper) X (HIH? 0 Hj o) (Qper) when [N < B, with

*,per per

suitably small 3,,. O

§4.3. The case || > rg

In this subsection we investigate the spectrum of —L,, for ' € Q* with |n'| > r.
We have already shown in Proposition 4.2 that — L, generates a contraction semi-
group e *Fv . We will show that e *F» has an exponential decay estimate, uni-
formly for o' € Q* with |n'| > ro.

We first introduce an inner product of Hj ., (Qper) in terms of V.

Proposition 4.14. Let ' € Q*. Then (V,yw, V,yv) defines an inner product in
H§ per(Qper). Furthermore, ||V, wllz is equivalent to ||w|| g1 for w € Hj por(Qper),
and the estimate

CHwllm < [IVywll2 < Cllwl g

holds uniformly for /' € Q* and w € H{ ,o(Qper)-

Proof. 1t suffices to show that |V, w|3 = (V,w, V,yw) is equivalent to |w||%:
for w € H o (Qper)- Let w € Hf oy (Qper). Then by the Poincaré inequality,

[wl| g < ClIVwlla < C' (V5 w3400, w]3)? = C'|Vywla < C"||w]|g. O
Before going further, we introduce some notation. We denote
A 7] .
Vi = Vit

Here V' denotes the gradient with respect to 2’ = (x1,...,2,_1) € R"71. We note
that A, =V, -V, + 97 . We define

Dy (w) := v||[Vywl|3+7( Vi -wl = v|Vywl3+v]0s, w3 +2]V; - w' + 05, w" 3.
In what follows we denote the projection I — IT(®) by II;:
I =1 -1,

Recall that Xy = IO X and X; = II; X.
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To study problem (4.5) for ' € @* with |n'| > r¢, we decompose u into its
H©)-part and II;-part in X, namely,

(4.14) uw=ou® +uy,

where o = (u,u(?*) = [¢] € C, «(® = T(1,0) and u; = "(¢1,w1) € X;. We note
that

(4.15) 6] = 0.

It is easy to see that problem (4.5) reduces to

{Aa +iy[ii - wi] = [£°,

4.16
( ) At + Lyug — H(O)Mn/ul + M,y (O'U(O)) = f1,

where o € C, u; = "(¢1,w1) € D(L,y) N Xy and f = I f := T(f), f1) € X;. We
observe that
TOMuy = iy[i7 - wi]u®, My (ou®) = T(0,ivij o).
We begin with the following
Proposition 4.15. We have
(4.17) ReA(|of2 + [us[?) + Dy (w1) = Re{[f]& + (f1,u1)}-
Proof. Multiplying the first equation of (4.16) by &, we get
Nol? + il - w7 = [£°]a.

Taking the inner product of the second equation of (4.16) with uy, we have

Allurlf + (Lo, ur) + (Myy (00, un) = (T Myur, un) = (fr, w).
We add these two equations to obtain

Ao + udl3) + (Lyui,ur) + iy[7 - wi]e
+ (Myy (0u®), uy) — (MO My, uy) = [fO]7 + (f1,u1).

Since Re (Lyyui,ur) = Dy (wq) and
Re {i7[ii' - 1] + (M, (ou®),u1)} = Re {2i Tm (i - w1]7)} = 0,

and
(MO Myur,ur) = ([ - wi], ¢1) = iv[i7 - wi][$,] =0,

we obtain the desired conclusion. O
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For later use, we next derive an estimate for Aw;.
Proposition 4.16. We have
(4.18)  ReADy (w1) + AP w3 < CLIANZ + llwill3 + L1 + [Vrwn [13}-
Proof. We write the second equation of (4.16) as

(4.19) Apy + vy divy wy = f7,
(4.20) Awy — VAn'wl — ﬂvn/(vn/ . wl) + 'Yvn’ ¢1 4+ Z"}/O'ﬁl = f'1.

Here we define

div,y w =V, -w — i7" - w].
We take the inner product of (4.20) with Aw;. Then the real part of the resulting
equation yields

IAP[[wi ][5 +Re X Dy (wr) = Re {yA\(¢1, Vo - wn) — idyo [ - il + A(f1,w1)}-
Equation (4.19) gives ¢ = %f{) — ¥ div,y wy, and hence
(4.21) Re |A|?||w1 |5 + Re X D,y (wy)

= Re ﬂ(fOV w)—EQ(d' v — izyo[i - wi] + A(fi

= N1 Vi - wn) = 37 (divy wy, Vi ws) = idyo[ o] + Alfy, wn) -

By the first equation of (4.16), we have o = $[f°] — %’[[77’, w1 ]. Therefore,

) X g D) P
R.H.S. of (4.21) = Re{’y/\(ff,vn/ -wl)—xqﬂ(dlvn/ wi, Vi -wl)—mx[[fo]][[n’-wl]]

By .
- I P+ A}
< D2l + CLITy w3 + 11 + 17213 + 1/l fll3}

for any € > 0, where C' is a positive constant independent of e. Taking € suitably
small, we see that

AP (w5 + Re X Dy (w1) < Co{l[f1ll3 + L) + IV wr[I5} O
We next derive a coercive estimate for o.

Proposition 4.17. We have
2

(4.22)  ReMo]? + %m'maﬁ

< CLA+ 1/l PYIFTP + A5 + AP w13 + Dy (wi)},

where co is a positive constant independent of v, v and ' € Q*.
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To prove Proposition 4.17, we prepare several lemmas.

Lemma 4.18. Let f® € L2 | .(Qper) and let fe H; 0 (Qper). Then there exists a

unique T((b, w) € L2 per(Qper) X H&per(ﬂper) satisfying

div,y w = f9,
(4.23) ~Ayw+Vyd=f,

¢|Zj,+ = (ZS‘E]‘,f? w‘zj,+ = w|2j,77 w|2n =0.
Furthermore,

Ill2 + 1V wllz < CLU Nl + 11F 1 i 0, -

Lemma 4.18 can be proved in a similar manner to [23, Chap. III, proof of

per

Theorem 1.4.1]. An outline of the proof of Lemma 4.18 will be given in Section 6.
Setting f© = 0 and f = e;, in Lemma 4.18, we have the following

Lemma 4.19. Let T((;Sg%,lm/,wgl,z a) € L2 her(Qper) X Hg por(Qper) e the pair of
functions satisfying

div,y wgl,gn =0,
(4.24)  —Aywl) |+ Vol = e,

1 1
D1k ls, . = Okl s w;y,zmdz“ = wiz,n/\zj,,, W1k, |2

Then there exists a constant C > 0 such that
i) M+ ll68h e <O (k=1,...,n—1)
uniformly for n’ € Q* with |n'| > ro.

Lemma 4.20. For each k = 1,...,n— 1, let ((;5§1,)c e llk ) € LF per(Qper) X
H&per(ﬂper) be the pair of functions satisfying (4.24). Then wg z e wﬁ)l Loy
are linearly independent.

Proof. Let w := clw&),n, 4+t e 1w§17)171 o =0. It then follows from (4.24)
that V¢ = 27;11 c;e;. Here ¢ := cl(zﬁ(lli gttt Cn71¢§2,17n,~. Since || > ro,
there exists j such that n; # 0. For this n;, since (9, + in;)¢ = c;, we have
0z, (€M) = ¢;e™i% . This implies that there exists a function a(i;) (2, =
(1,...,%j-1,%j41,...,2n—1)) such that

. ~ Cs .

T — qFs I iz

€ ¢) Cl(.r_]) + an € )
that is,

: c
=a(x;)e” "% 4 L
3 = aliy) 2
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Since ¢ is Q-periodic in 2/, we see that a(&;) is Q-periodic and a(&;)e e~ i(m/ag)n;

a(d;)e! /@i Since 0 < ‘773| < a;/2, we have a(#;) = 0, and hence, ¢ = ¢;/(in;).
But, since [[qSﬂ = 0, we have ¢; = 0, and so 6 = 0. This implies that ijl cje; =
We thus conclude that ¢; =0 (j =1,...,n—1).

[:J.C’\/H

We are now in a position to prove Proposition 4.17.

Proof of Proposition 4.17. We multiply the first equation of (4.16) by & and take
the real part of the resulting equation to obtain

(4.25) Re\|o|? + Re{iy[7 - wi]a} = Re {[f°]7}-

Let us estimate Re{ivy[} - w1]a} on the left-hand side of (4.25). To do so, we
decompose w; in the following way. In (4.19) and (4.20) we decompose ¢1 and w;
as follows:

o =" +67,  w=w’ +u?

where T( g ), wgl)) and ( gz), wi )) satisfy the following systems:

diVn/ wg ) = O’
1 1 1Yo ~
(4.26) -A /wg : ng& )= -7,
) ) ; . 1
¢§ [, = ¢(1 )\zj,_, w§ )|Ej,+ =Wy )|2 wg )lzn =0,
1
[¢i"] =0
and
vy div,y “’1 f1 A1,
(4.27) —vA ’w§2)+W 37 = fi - /\w1+ﬂv (Vo - wi1),
) ) ] v
¢g )lzj'Jr o 1 ‘ZJ -7 U}§ )|Ej,+ = wl |Eg _> w1y )|Z = 07
[¢2] = o.

Let us estimate i[[f]“wgl)]]. We see from (4.26) that T(gbgl), wgl)) can be written

(1) . n—1 v
1 vy ¢1
(U}§ )) v k=1 wg Jkom!

. 1 e 1 1
Since [11,,/] = 0, we see that 0—%[[n’-w§,;1n]][[¢1kn]]—( [ w1k ] Ok )
which implies that (w1 fes Vi ¢1 ) = —(divy w1 & n/7¢1 i) = 0. Taking this

as
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into account, we have

—

ST~ 1 ’y '

il - w§ )]] =7 Z njnk(w§,1)'7n”ek)
jok=1

n—1

Y 1 1
=0 Z 77j77k(w§,j)‘717/,_A /wg ,Z o T Vi (bl ey /)
jk=1

1
= 70 Z 1511k (V ’wllln”v wg J)m’)'

7,k=1
Let {fi---»fa—1,} be an orthonormal basis of span{wgl) P~ in
1 .
H&per(ﬂper). Then wi,zm, can be written as wl ,“7 = Zm 1bkmn Sy, and

therefore

(V) Vpwi) ) =" bty (Vo s Vo Frar) = (B By )

I,m

Here B,y is the (n—1) x (n—1) matrix given by B, := (bjkm/)?gil. Note that B,y
is nonsingular since {wglll n,}z;ll are linearly independent by Lemma 4.20. Thus

B,y By, is positive definite for each 7', and

(4.28) il - wiV] = *U|B*/77 2,
(4.29) By [P > caln/|?
uniformly for ' € Q* with |n'| > ro. Here ¢y is the number given by

Co = inf C2y

n'EQ*, [n'[>ro
with
cay := min{; A is an eigenvalue of B, B;,} > 0.
Let us show that ¢o > 0. To do so, we first show that, for each j k =

_ (1) - . ey s
L...,n=1,bjk,y = (Vyw g Vﬂ’ka,n') is continuous in 7’. Once this is shown,

then, by the continuity of the eigenvalue with respect to the components of a ma-
trix, we will have ¢y > 0.

We define ugll)m : (qbgl,)C o glkn) Then ugl)w, is in D(Lg) N X; and
(Lo + 14 My)ul) . = fi with fi 5 := (0, ex). By Lemma 4.18, Lo +II; M, has
a bounded inverse (Lo + II; M,,)~" on X; and

(4.30) (Lo + T My )~ fllp2 s < C|fll2
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uniformly for ' € Q* and f € X;. On the other hand, we see from (4.10) and
(4.11) that
Ty (M — My )ullz < CIH|[[(Lo + Ty My Jull2

for u € D(Lo) N X; and A’ € R"~! with |h’| < 1. This, together with (4.30),
implies that for each fixed f € Xy, (Lo 4+ II1M,,)~!f is analytic in ' € Q*
in L2 o, (Qper) X Hg por(Qper). Since ugll)c y = (Lo + I M,y )~ f1 5, we find that

*,per

(OO i - 1 _ 1) 1)
Wy o 18 analytic in ' € Q* in Ho,per(Qper)~ Thus b, = (Vn/wl,j,n/v V,,/ka,n,)
is continuous in 7', and hence the eigenvalues of B,y By, are continuous in 7. Since
Ca,yy is positive for each " and is continuous in 1’, we deduce that

Coy = C2mp > 0.

inf
n'€Q*, |n'|>ro

By (4.28) and (4.29),
2 2
. ~ )7 = Y * — g
Ro il i1} = Re{ LB/ oo | > ca i Plol.
As for Re{iv[7 - w§2)]]6}, by Proposition 4.14, we have

2
o 2)7 ¥ Cv 9
Re {ir[i7 - wi?]o} < e/ Plof + == | V,ywi?|3

for all € > 0 with C' > 0 independent of €. On the other hand, using Lemma 4.18,
we see from (4.27) that

2 . ; -
IV wi? 2 < C{lldivyy wallz + | fi = Awr + 7V (Vo w1) | ot o, 0}
< C{Dy (w1) + [ Mws ||z + [| fi ]2},
and hence
7? 2, C s
Re{in[ii’ - uno} < e—~lof” + —{ D (w1) + [|Mwrllz + [ f1]]2}-
Taking € = %CQ, we arrive at

37

Re)\|a|2—|—4 ”

o2 > < Cs{| LNl 1] + 1 F113 + AP [[wil|2 + Dy (w1},
which yields
2
Re o2 + 21y /o)
v
< Co{(L+ L/l P)ILIR + 1A1E + N lws |3+ Dy (wi)}. D

We now establish the resolvent estimate for —L,, with || > rq.
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Theorem 4.21. Let ' € Q* satisfy |n'| > ro. Then there exists a constant 3, > 0
such that {\;Re X > —B1} C p(—L,/) and if Re A > —f1, then

~ c
A+ L) " fllz + VPO + Ly ) 7 fll2 < WWH%

The same conclusion holds with L, replaced by Ly,

Proof. Set Elu] = (1 + ba)|o|* + |lu1||3 + b1 D,y (w1) with constants by, by > 0 to
be determined later. It suffices to show that

Re A+5 = ALIP + IA21E + 203D

Consider (4.17) + (4.18) x by. Then taking b; > 0 suitably small, we have

Elu] <

ReX(|o? + [[ur |3 + by Dy (w1)) + § Dy (wr) + by A s |13
< C{I Mol + (2, o0l + LAl + LTI
We next consider (4.22) x by + (4.31). Then with a suitably small b, > 0, we have

(4.31)

bs ¢
(@32)  ReAE[u]+ 3Dy (wn) + AR+ 2 O 2ol
< U+ WIS 108,60 + LA
Since "(¢1,w1) € L2 o, (Qper) X Hj por(Qper) and

—Apwi + Vi (261) = Lfi — Lwy — 0V, (V- wr) +ivoii'},
diVn’ w1 = %{f{) - AQSl}u

we see from Lemma 4.18 that
2 v : o Lz 110 2
(4.33)  lonllz < 3 [divey wallz + 51 Allz + 5 A w2
]72 ,.YZ
+ 9Ty 00y 0,0+ S Plol? )
(v+ ) : 1
< C{HV w3+ p] I + — APllwill3 + 17 Plo]? -
72 Y
We consider (4.33) x bz + (4.32). Taking b3 > 0 suitably small, we have

b b
Re AB[u] + 3D, () + A a3 + 2 onl + 22 2y 2o
< O+ WIS + LR + 1A 8-+ D600
b -
< 2lgul + O+ 1/ PN+ 1713+ 1113},
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and hence

1 b1 9 b3 2 b2c272 N2 12
ReAB[u] + 1 Dy (w1) + -\ un 3+ 21615 + 52 Lpof o]

< C{(L+ 1/l P)ILFOTP + 1203 + I A3

Using the Poincaré inequality, we have =D,/ (w1) + 2¢1(3 + 220/ 2|0]? >
B1E[u] for some constant 8; = 51(rg) > 0. We thus obtain

(Re A+ B1) Efu] + 15 Dy (w1) < C{ILFN1” + L2113 + 117213}
for o with |n/| > ro. O

We have already shown in Proposition 4.2 that —L, generates a contrac-

—th/

tion semigroup e~ ‘Y. Theorem 4.21 implies that e decays exponentially for

n' € Q* with || > ro.
Theorem 4.22. The estimate

lle™ 0" ugll2 < Ce™ 2 ugll3
holds uniformly for n' € Q* satisfying |n'| > ro.

This follows from Theorem 4.21 and [3, Chap. V, Theorem 1.11].

85. Proof of Theorems 3.1 and 3.2
In this section we give proofs of Theorems 3.1 and 3.2.
Proof of Theorem 3.1. As in the proof of Proposition 4.1, one can show that
{X ReA >0} C p(—L) and if Re A > 0, then

1
I+ L) fllzzg) < w1 llz2 ()
(5.1) Re A

~ B 1
IVPA + L) fllr2(0) < WHJCHLQ(Q)-

Therefore, — L generates a contraction semigroup e ** on L?(Q). O
Proof of Theorem 3.2. We set

Lo || <o,

IT := UXOHU/Ta XO(n,) = {0 ‘77/| > 1o

It then follows from Proposition 2.2 that II? = II. Furthermore, by Theorem 4.7,

e lug = UXoe_tL"/Hn/Tuo = UXoe’\"’tHn/Tuo.
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Since
sup [|Tuoll1 < ClluollLr (e,
"I,GQ*

we see from Theorems 4.7 and 4.11 that

lle™" TTug ||2L2(Q)

K 2 ’
<C Ixoe™ 7 Ty Tuo |3 dif” < C e B VI, Tug |5 dnf
n'eQ* In’|<ro

<C e~ BT T2 ay < Ot~ D2 lug||1 31 -
[n’|<ro

On the other hand,
e~ Muolfiaey <€ [ dif ol oy < Cllualts o
To
We thus obtain

le ™ Tug || 20y < C(L+ )"V ug | 11(q).

This proves (i) of Theorem 3. 2
As for the estimate for e 7*#(I — IT)ug, we write it as

e (I — Mug = Uxope v (I — IL,)T + U(1 — xo)e —tLyp
=Uxo(e 0 — M ILNT + U(1 — xo)e "' T.
It follows from Theorems 4.10 and 4.22 that
lle™ (I — M)uo|| 12y < Ce P |ullL2(a),

where 8 = 1 min{fy, 81}. This proves (ii) of Theorem 3.2.
Let us prove (iii) of Theorem 3.2. We write

tLHuo []XQBM7 tH(O)TUO + UXoe 't (H ’ - (0))TUO = Jl + J2.

For ¢/ = (l1,...,ln—1) € Z" 1, we denote Qper = {(x + Zn ! QWf] e;,zn);
(2 zp) € Qper}. By the definition of T', we have

O7u, = [ [ (o), ds [l

per

- |Qper‘ |Q |1/2 Z /Q

el per, ¢/

e~ dx] u©

1 - 1
_ —in’-x 0) _
ml IR [ o d””]“ TR ERIE

Go(n)u?,
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where

Q [t
oo(z') = / ¢o(z', ) dxy,.
‘Qper | wi (x”)

It then follows that

1 1y .y _
— / xoeM tag(n)elm dn’} ul® = [e"H oy (2)]u® + Jl(l) + JI(Q).
Q*

JF[@@

Here
2 PN
S = F 7 (0 = Ve T G ()u ),
2 1 , —ﬁn Ve~ in' -z’
& = {(Qﬂn_l /Q ot — e TG o) i |,
By the Plancherel Theorem,

— 2 Ny
17132 0y < dIFH(xo = Ve 7 G5 Fe s,
_ 2 Ny
= (2m) "V d| (xo — Ve 7G| Fa gy

with d 1= max, cpn—1{wa(z’') — wi (')} > 0. Since supp(xo — 1) = {|n'| > ro}, we
see that

2 g o 7727“2
1(xo = 1)e™ 7 )taoH%?(R"—l) <Ot (D2 °t||¢o|\%1(9)7

and hence )
—(n— _2t 2
17192 < Ot/ 370 g | 11 -

As for J1(2), we have
1
At — e = (4 k(o)) / =IO 1t g
0

Since A,y = -z k(n") + O(]n'|?), we obtain

174

At — =R < Olyf e BT < Oyl BT,
and hence
2 kg A2 )2 . 2
1P ey <C [ I PeF TPy (sup jma0r)])

[n’|<ro 7' €Rn—1

< Ct= DR g1 g -
Concerning Jy, we see from Theorem 4.11 that
121 22() < Cllxoe* *(TLy = T Tug|| 2@+ 22(@per))
< Clxolr e [ Tuollr [ o gy < CLA )™V lug]| 1 0

We thus obtain the desired estimate. O
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§6. Outline of proof of Lemma 4.18

In this section we outline the proof of Lemma 4.18. We only give several lemmas
necessary for the proof since Lemma 4.18 can be proved by an argument similar to
the proof of [23, Chap. III, Theorem 1.4.1], where the proof for the Stokes system
(i.e., 7’ =0) is given.

We begin with

Lemma 6.1. For u € L*(Qper),

lullz < CUIVoull gyt ey + 1l iyt (000 -

This can be proved in a similar manner to [19, Chap. 3, Lemma 7.1]. (Cf. [23,
Chap. II, Lemma 1.1.3].)

Lemma 6.2. Foru € L? _ (Qper),

*,per

[ull2 < C1lIVyullg=1q,.) < CrC2]lull2.

per

This follows from Lemma 6.1 as in [23, Chap. II, proof of Lemma 1.5.4].

Lemma 6.3. (i) For every g € L2 ,..(Qper), there exists w € Hy o (Qper) such
that

divyw =g, [[Vywll2 < Cllgl2.
(ii) For every f € H o (Qper) satisfying

per
[fw] =0 for allw € Hj o (Qper) with divyy w =0,

there exists a unique p € L2 . (Qper) such that

*,per

Vap =1 lpll2 < Clfll o

per)”
One can prove this by using Lemma 6.2 as in [23, Chap. II, proof of Lemma

2.1.1].
We define
H&,U(Qper) ={we H&,per(Qper)5 divyy w = 0}
Lemma 6.4. For every f € H&;er
satisfying

(Qper), there exists a unique w € Hy ,(Qper)
(vn/w7 vnlv) = [fa U}
Jor allv € Hy ,(Qper), and

IVywllz < Cllfllgp @

per)”
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Furthermore, there exists a unique ¢ € L2 o (Qper) such that

—An/w — f = —Vn/d)
and

[6ll2 < Cllf gt

This can be proved in a similar manner to [23, Chap. III, proof of Theorem

per)”

1.3.1].
Lemma 4.18 now follows from Lemmas 6.3 and 6.4 as in [23, Chap. III, proof
of Theorem 1.4.1]. O
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