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Abstract

Projective cotangent bundles of complex manifolds are the local models of complex con-
tact manifolds. Such bundles are quantized by the algebra of microdifferential operators
(a localization of the algebra of differential operators on the base manifold).

Kashiwara proved that any complex contact manifold X is quantized by a canonical
microdifferential algebroid (a linear stack locally equivalent to an algebra of microdifferen-
tial operators). Besides the canonical one, there can be other microdifferential algebroids
on X. Our aim is to classify them. More precisely, let Y be the symplectification of X.
We prove that Morita (resp. equivalence) classes of microdifferential algebroids on X
are described by H2(Y ;C×). We also show that any linear stack locally equivalent to a
stack of microdifferential modules is in fact a stack of modules over a microdifferential
algebroid.

To obtain these results we use techniques of microlocal calculus, non-abelian coho-
mology and Morita theory for linear stacks.
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Introduction

In recent years there has been a lot of interest in the study of the deformation-

quantizations of complex/algebraic symplectic manifolds, or more generally Pois-

son manifolds (see for example [26, 35, 4, 33, 9, 5, 23, 41]). We are interested here

in the study of (non-formal) quantizations of complex contact manifolds, which
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are locally modeled on the algebra of microdifferential operators of [37], as ini-

tiated by Kashiwara [17] (we refer to [35, 20, 10] for the relations between such

quantizations and deformation-quantizations).

Let us describe such quantizations in some more detail.

Let X be a complex contact manifold. By the Darboux theorem, a local model

of X is an open subset of the projective cotangent bundle P ∗M of a complex

manifold M . Let EP∗M be the sheaf of microdifferential operators on P ∗M (a

localization of the algebra of differential operators on M). A microdifferential

algebra (E-algebra, for short) on X is a sheaf of C-algebras locally isomorphic

to EP∗M .

To quantize X in the strict sense means to endow it with an E-algebra. (The

relation between quantization and microdifferential operators is classical, see for

example [2, 34] for details.) This might not be possible in general. However, Kashi-

wara [17] proved that X is endowed with a canonical E-algebroid EX . This means

the following. To an algebra A one associates the linear category with one object

and elements of A as its endomorphisms. Similarly, to a sheaf of algebras on X one

associates a linear stack. An E-algebroid on X is a C-linear stack locally equiva-

lent to one associated with an E-algebra. In this sense, a quantization of X is the

datum of an E-algebroid on X.

Having to deal with an algebroid instead of an algebra is not very restrictive.

For example, it makes sense to consider coherent modules over an E-algebroid,

and in particular regular modules along complex involutive subvarieties of X. The

Lagrangian case is of particular interest, since these modules are the counterpart

of microlocal perverse sheaves in the Riemann–Hilbert correspondence (see [17,

39, 12, 13]). A very interesting example of non-coherent module is the (twisted)

sheaf of microfunctions along a totally real, I-symplectic Lagrangian submanifold

(see [17, §4]).

A natural problem is to classify E-algebroids on X.

The canonical E-algebroid EX is endowed with an anti-involution, correspond-

ing to the operation of taking the formal adjoint of microdifferential operators. It

is also endowed with a natural order filtration, and its associated graded algebroid

is trivial. It is shown in [32] that EX is unique among such E-algebroids.

Equivalence classes of filtered E-algebroids with trivial graded (but not nec-

essarily endowed with an anti-involution) are classified in [34].

In this paper, we classify arbitrary E-algebroids on X. These include in par-

ticular filtered E-algebroids whose associated graded is non-trivial (what would be

called twisted quantizations of X in the terminology of [4, 41]).

We also classify stacks of twisted E-modules, i.e. stacks locally equivalent to

the stack of modules over an E-algebra. These are the most general stacks where
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the notion of microdifferential modules makes sense. Roughly, they are obtained

by patching sheaves of E-algebras through Morita equivalences.

More precisely, in Theorems 5.2.3 and 5.4.3, and Corollary 5.4.2, we prove the

following results:

(i) Two E-algebroids are equivalent if and only if they are Morita equivalent,

i.e. their stacks of modules are equivalent.

(ii) Any stack of twisted E-modules is globally equivalent to the stack of modules

over an E-algebroid.

(iii) The set of equivalence classes (resp. Morita classes) of E-algebroids is canon-

ically isomorphic to H2(Y ;C×Y ) for Y the symplectification of X.

(iv) The group of invertible EX -bimodules is isomorphic to H1(Y ;C×Y ).

We also give explicit realizations of the isomorphisms in (iii) and (iv).

To obtain our results, we use techniques of microlocal calculus, non-abelian

cohomology and Morita theory for linear stacks.

The content of this paper is as follows.

In Section 1 we collect, without proofs, the main facts of non-abelian cohomol-

ogy we need to prove our results. Note that cohomology with values in non-abelian

groups was already used in [2] to classify E-algebras, and cohomology with values

in 2-groups is used in [33, 34] for the classification of algebroids.

In Section 2 we give the basics of the theory of algebroids.

In Section 3 we detail Morita theory for linear stacks. In particular, the notion

of Picard good stacks allows us to recover results of [27]. Morita theory for linear

categories is developed in [29, 31]. The case of stacks of modules over sheaves of

algebras is discussed in [22] (see also [11]).

In Section 4 we recall some results from the theory of microdifferential oper-

ators. In particular, we provide a detailed proof of an unpublished result, due to

Kashiwara, on the structure of invertible bimodules (see Theorem 4.3.5 below).

This allows us to prove the key Theorem 4.3.6.

In Section 5 we prove our main classification results, as (i)–(iv) above.

In the Appendix we recall the cocycle description of algebroids and functors

between them.

For symplectic manifolds, or more generally for Poisson manifolds, some re-

sults related to ours have appeared in the literature: on a complex symplectic man-

ifold, deformation quantization algebroids with anti-involution and trivial graded

were classified up to equivalence in [33] (see also [4, 5] for the possibly twisted case),

whereas Morita-type results for deformation quantization algebras were obtained

in [6, 8, 7] for real Poisson manifolds, and in [40] in the algebraic setting.
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Convention

In this text, when dealing with categories and stacks, we will not mention any

smallness condition (with respect to a given universe), leaving to the reader the

task to make it precise when necessary.

§1. Non-abelian cohomology

We are interested in classifying E-algebroids and stacks of twisted E-modules.

Thanks to the existence of a canonical E-algebroid, this amounts to classifying

stacks locally equivalent to a given one. To this end, we recall here some techniques

of cohomology with values in a stack of 2-groups.

The classical reference for stacks is [15]. A quick introduction can be found

in [11] and [22, Chapter 19].

For stacks of 2-groups we refer to [3] (where the term gr-stack is used instead)

and to [14, §1.4] for the strictly commutative case. See also [1] for an explicit

description in terms of crossed modules. We follow the presentation of [33].

Let X be a topological space (or a site).

§1.1. Stacks

A prestack C on X is a lax presheaf of categories. It is lax in the sense that for a

chain of three open subsets W ⊂ V ⊂ U the restriction functor ·|W : C(U) −→ C(W )

coincides with the composition C(U)
·|V−−→ C(V )

·|W−−→ C(W ) only up to an invertible

transformation (such transformations need to satisfy a natural cocycle condition

for chains of four open subsets).

For γ, γ′ ∈ C(U), denote by HomC(γ, γ′) the presheaf on U given by U ⊃
V 7→ HomC(V )(γ|V , γ′|V ). One says that C is a separated prestack if HomC(γ, γ′)

is a sheaf for any γ, γ′. A stack on X is a separated prestack satisfying a natural

descent condition, analogous to that for sheaves.

Given a stack C, we denote by π0(C) the sheaf associated to the presheaf

X ⊃ U 7→ {isomorphism classes of objects in C(U)}, and by Fct(C,C′), for an-

other stack C′, the stack whose objects on U ⊂ X are functors from C|U to C′|U
and whose morphisms are transformations.

Let ϕ : Y −→ X be a continuous map (or a morphism of sites). For D a stack

on Y and C a stack on X, we denote by ϕ∗D and ϕ−1C the stack-theoretical direct

and inverse images, respectively. Recall that ϕ−1C is the stack on Y associated to

the separated prestack ϕ+C, defined on an open subset V ⊂ Y by the category

Ob(ϕ+C(V )) =
⊔

U⊃ϕ(V )
U open

Ob(C(U)),

Homϕ+C(V )(γU , γU ′) = Γ (V ;ϕ−1HomC(γU |U∩U ′ , γU ′ |U∩U ′)).
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One checks that there is a natural equivalence (in fact, a 2-adjunction)

(1.1.1) ϕ∗Fct(ϕ
−1C,D)≈ Fct(C, ϕ∗D).

Hence there are adjunction functors

C −→ ϕ∗ϕ
−1C, ϕ−1ϕ∗D −→ D.

By using the first adjunction, one gets an isomorphism of sheaves

(1.1.2) ϕ−1π0(C)
∼−→ π0(ϕ−1C).

§1.2. Stacks of 2-groups

Let C be a stack on X. Denote by Aut(C) the substack of Fct(C,C) whose objects

are the auto-equivalences of C, and whose morphisms are the invertible transfor-

mations. For U = {Ui}i∈I an open cover of X, set

Uij = Ui ∩ Uj , Uijk = Ui ∩ Uj ∩ Uk, etc.

Proposition A.1.1 for Ci = C′i = C|Ui describes how to patch objects and mor-

phisms of Aut(C). With notation as in Proposition A.1.1, let H1(U ;Aut(C)) be

the pointed set of equivalence classes of pairs (fij , aijk)ijk∈I satisfying the cocycle

condition (A.1.1), modulo the coboundary relation given by pairs (gi, bij)ij∈J sat-

isfying (A.1.2). As we recall in Remark A.1.2, an open cover V finer than U induces

a well defined map H1(U ;Aut(C)) −→ H1(V;Aut(C)). Hence one sets

(1.2.1) H1(X;Aut(C)) = lim−→
U
H1(U ;Aut(C)).

Proposition A.1.1 immediately yields

Corollary 1.2.1. The pointed set H1(X;Aut(C)) is isomorphic to the pointed set

of equivalence classes of stacks locally equivalent to C.

Let us recall how to make the construction (1.2.1) functorial.

A 2-group (also called a gr -category in [3, 1]) is a category endowed with a

group structure both on morphisms and on objects. More precisely, a category

G is a 2-group if it is a groupoid (i.e. all morphisms are invertible) and it has

a structure (G,⊗,1) of monoidal category such that each object γ ∈ G has a

chosen (right) inverse. Functors of 2-groups and transformations between them

are monoidal functors and monoidal transformations, respectively.

A stack G is called a stack of 2-groups (a gr -stack in [3, 1]) if its categories

of sections are 2-groups, its restrictions are functors of 2-groups and its transfor-

mations between restriction functors are monoidal. Functors of stacks of 2-groups

are functors of monoidal stacks.
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Recall that one sets π1(G) = HomG(1,1). Both π0(G) and π1(G) are sheaves of

groups, the latter being necessarily commutative. Any functor of stacks of 2-groups

induces a group homomorphism at the level of π1 and π0.

Example 1.2.2. For G a sheaf of groups, denote by G[0] the stack obtained by

trivially enriching G with identity arrows, and by G[1] the stack of right G-torsors.

Then G[0] is a stack of 2-groups, and G[1] is a stack of 2-groups if and only if G is

commutative.

Another example of stack of 2-groups is given by Aut(C) for a stack C. Let G

be a stack of 2-groups and U an open cover of X. One can extend as follows the

construction (1.2.1), where one should read “⊗” instead of “◦” in all diagrams in

Appendix A.1.

A 1-cocycle with values in G is a pair (γij , aijk)ijk∈I with γij ∈ G(Uij)

and aijk ∈ HomG(Uijk)(γik, γij ⊗ γjk) satisfying (A.1.1). Two such 1-cocycles

(γij , aijk)ijk∈I and (γ′ij , a
′
ijk)ijk∈I are cohomologous if there is a pair (δi, bij)ij∈I

with δi ∈ G(Ui) and bij ∈ HomG(Uij)
(γ′ij ⊗ δj , δi ⊗ γij) satisfying (A.1.2).

The first cohomology pointed set of G on X is given by

H1(X;G) = lim−→
U
H1(U ;G),

where H1(U ;G) denotes the pointed set of equivalence classes of 1-cocycles on U ,

modulo the relation of being cohomologous. One can also define the cohomology

in degree 0 and −1. This construction is functorial in the sense that short exact

sequences of 2-groups induce long exact cohomology sequences (in a sense to be

made precise). In particular, equivalent 2-groups have isomorphic cohomology.

With notation as in Example 1.2.2 one has

(1.2.2) H1(X;G[i]) ' H1+i(X;G) for i = 0, 1,

where G is assumed to be abelian if i = 1. Here, the pointed set H1(X;G) is defined

via Čech cohomology and H2(X;G) is computed using hypercoverings.

§1.3. Crossed modules

A crossed module is the data

G• = (G−1 d−→ G0, δ)

of a complex of sheaves of groups and of a left action δ of G0 on G−1 such that for

any f ∈ G0 and a ∈ G−1,

d ◦ δ(f) = Ad(f) ◦ d, δ(d(a)) = Ad(a),
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where Ad(a)(b) = aba−1. A morphism of crossed modules is a morphism of com-

plexes of sheaves of groups compatible with the left actions.

There is a functorial way of associating to a crossed module a stack of 2-groups

as follows. For G• a crossed module one denotes by [G•] the stack of 2-groups asso-

ciated to the separated prestack whose objects on U ⊂ X are sections f ∈ G0(U)

and whose morphisms f −→ f ′ are sections a ∈ G−1(U) satisfying f ′ = d(a)f . Then

[G•] is a stack of 2-groups, with monoidal structure given by f ⊗ g = fg at the

level of objects and by a ⊗ b = aδ(f)(b) at the level of morphisms, for a : f −→ f ′

and b : g −→ g′.

One checks that there are isomorphisms of groups

πi([G•]) ' H−i(G•), i = 0, 1,

and, with notation and conventions as in Example 1.2.2, equivalences of stacks of

2-groups [
G[i]
]
≈G[i], i = 0, 1,

where the structure of crossed module on the complex G[i] (obtained by placing G
in −i position) is the trivial one.

§1.4. Strictly abelian crossed modules

Denote by D[−1,0](ZX) the full subcategory of the derived category of sheaves of

abelian groups whose objects have cohomology concentrated in degree −1 and 0.

Consider a complex of abelian groups F• ∈ C[−1,0](ZX) as a crossed module with

trivial left action. Then the functor F• 7→ [F•] factorizes through D[−1,0](ZX),

and

(1.4.1) H1(X;F•) = H1(X; [F•]).

Let ψ : X −→ Y be a continuous map (or a morphism of sites). The inverse

and direct image of stacks of 2-groups are again stacks of 2-groups, and

(1.4.2) ψ−1[G•]≈ [ψ−1G•], ψ∗[F•]≈ [τ≤0Rψ∗F•],

where τ≤0 is the truncation functor. In particular, for a sheaf of abelian groups F ,

(1.4.3) πi(ψ∗(F [1])) ' R1−iψ∗F , i = 0, 1.

§2. Algebroids

Mitchell [30] showed how algebras can be replaced by linear categories. Similarly,

sheaves of algebras can be replaced by linear stacks. An algebroid is a linear stack

locally equivalent to an algebra. This notion, already implicit in [17], was intro-
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duced in [26] and developed in [12] (see also [23, §2.1] and [10]). It is the linear

analogue of the notion of gerbe from [15]: an algebroid is to a gerbe as an algebra

is to a group.

Let X be a topological space (or a site), and R a sheaf of commutative rings

on X.

§2.1. Linear stacks

A stack C on X is called R-linear (R-stack, for short) if for any γ, γ′ ∈ C(U)

the sheaf HomC(γ, γ′) is endowed with an R|U -module structure compatible with

composition. In particular, EndC(γ) has an R|U -algebra structure with product

given by composition. A functor between R-linear stacks is called R-linear (or an

R-functor, for short) if it is R-linear at the level of morphisms, while no linearity

conditions are required on transformations.

One says that two R-stacks are equivalent if they are equivalent through an

R-functor. This implies that the quasi-inverse is also an R-functor. We denote

by ≈R this equivalence relation.

The center Z(C) of an R-stack C is the sheaf of endo-transformations of the

identity functor idC. It has a natural structure of sheaf of commutative R-algebras.

Note that a stack C is R-linear if and only if it is Z-linear and its center is an

R-algebra.

If C is an R-stack, then its opposite stack Cop is again R-linear. For D an-

other R-stack, FctR(C,D) denotes the full substack of Fct(C,D) whose objects are

R-functors, and is itself an R-stack. The tensor product C ⊗R D is the R-stack

associated with the prestack U 7→ C(U) ⊗R(U) D(U) whose objects are pairs in

C(U)× D(U), with morphisms

HomC(U)⊗
R(U)

D(U)((γ, δ), (γ
′, δ′)) = HomC(U)(γ, γ

′)⊗R(U) HomD(U)(δ, δ
′).

Lemma 2.1.1. If R is an S-algebra and E an S-stack, then

FctS(C⊗R D,E)≈R FctR(C,FctS(D,E)).

(This is in fact a 2-adjunction.)

Let ϕ : Y −→ X be a continuous map (or a morphism of sites). Then ϕ−1C is

ϕ−1R-linear and there is a ϕ−1R-equivalence

ϕ−1(C⊗R D)≈ϕ−1C⊗ϕ−1R ϕ
−1D.

If E is a ϕ−1R-stack, then ϕ∗E is R-linear and there is an R-functor

(2.1.1) ϕ∗E⊗R ϕ∗F −→ ϕ∗(E⊗ϕ−1R F).
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§2.2. Modules over a linear stack

Denote by Mod(R) the category of R-modules and by Mod(R) the corresponding

R-stack given by U 7→ Mod(R|U ).

For C an R-stack, the R-stack of (left) C-modules is defined by

(2.2.1) Mod(C) = FctR(C,Mod(R)).

(It follows from Lemma 2.3.4 that this definition does not depend on the base

ring.)

The contravariant 2-functor Mod(·) is defined as follows. On objects, it is

given by (2.2.1). Consider the diagram

C

f′

77⇓ d
f
''
D

N // Mod(R),

where f, f ′ and N are R-functors, and d is a transformation. To the R-functor

f : C −→ D one associates the R-functor

Mod(f) : Mod(D) −→ Mod(C), N 7→ N ◦ f,

and to the transformation d : f −→ f ′ one associates the transformation

Mod(d) : Mod(f) −→ Mod(f ′)

such that Mod(d)(N ) = idN • d is the morphism associated to N ∈ Mod(D), where

• denotes the horizontal composition of transformations. In other words, for γ ∈ C

one has Mod(d)(N )(γ) = N (d(γ)) as morphisms from N (f(γ)) to N (f ′(γ)) in

Mod(R). We use the notation

(2.2.2) f(·) = Mod(f).

§2.3. Algebras as stacks

Let A be a sheaf of R-algebras. Denote by Aop the opposite algebra, by Mod(A)

the R-stack of left A-modules and by HomA(·, ·) = HomMod(A)(·, ·) the internal

hom-functor.

Denote by A+ the full substack of Mod(Aop) whose objects are locally free

right A-modules of rank one. For any N ∈ A+(U) there is an R|U -algebra isomor-

phism EndA+(N ) ' A|U . Note that the stack A+ has a canonical global object

given by A itself with its structure of right A-module. In particular, the sheaf

π0(A+) is the singleton-valued constant sheaf.

For f : A −→ B an R-algebra morphism, denote by f+ : A+ −→ B+ the R-func-

tor induced by the extension of scalars (·)⊗A B. We thus have a functor between
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the stack of R-algebras and that of R-stacks

(·)+ : R-AlgX −→ R-StkX .

Remark 2.3.1. Let A“+” be the separated prestack U 7→ A(U)+, where A(U)+

denotes the R(U)-category with one object and sections of A(U) as its endo-

morphisms. By the Yoneda lemma (see §3.1), the stack associated to A“+” is

R-equivalent to A+.

The stack R-StkX is naturally upgraded to a 2-stack by considering transfor-

mations of functors. Note that for any two R-algebras A and B on U ⊂ X and

any R-functor f : A+ −→ B+ there exist a cover U = {Ui}i∈I of U and morphisms

of R-algebras fi : A|Ui −→ B|Ui such that f|Ui ' f+
i .

Definition 2.3.2. One says that an R-stack C is equivalent to an R-algebra A if

C≈R A+.

In Proposition 2.6.2 we characterize the condition of equivalence between

algebras.

Recall that a stack C is non-empty if it has at least one global object, and

it is locally connected by isomorphisms if any two objects γ, γ′ ∈ C(U) are locally

isomorphic. If C is R-linear, this amounts to the sheaf HomC(γ, γ′) being a locally

free EndC(γ′)-module of rank one.

Lemma 2.3.3. An R-stack C is equivalent to an R-algebra if and only if it is

non-empty and locally connected by isomorphisms.

Proof. One implication is clear. Suppose that C is non-empty and let γ ∈ C(X).

Then the fully faithful functor EndC(γ)+ −→ C is an equivalence if and only if C is

locally connected by isomorphisms.

Let C be an R-stack. For N ∈ R+ and γ ∈ C, one defines N ⊗R γ ∈ C as the

representative of N ⊗R HomC(·, γ) ∈ Mod(Cop). Then one has R-equivalences

R+ ⊗R C≈R C, (N , γ) 7→ N ⊗R γ,
C≈R FctR(R+,C), γ 7→ (·)⊗R γ.

Lemma 2.3.4. The definition (2.2.1) of stack of C-modules does not depend on

the base ring R.

Proof. It follows from Lemma 2.1.1 for S = ZX , D = R+ and E = Mod(ZX) that

FctR(C,Mod(R))≈R FctZX (C,Mod(ZX)),

where we use the equivalence FctZX (R+,Mod(ZX))≈R Mod(R).
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§2.4. Compatibility

Let A and B be two R-algebras, and ϕ : Y −→ X a continuous map (or a morphism

of sites). There are an R-algebra isomorphism

Z(A)
∼−→ Z(A+), a 7→ (N −→ N , n 7→ an),

and R-equivalences

(A+)op ≈R (Aop)+, N 7→ HomAop(N ,A),

Mod(A)≈R Mod(A+), M 7→ (·)⊗AM,

A+ ⊗R B
+ ≈R (A⊗R B)+, (N ,Q) 7→ N ⊗R Q,

ϕ−1A+ ≈R (ϕ−1A)+, N 7→ ϕ−1N .

For f, f ′ : A −→ B two R-algebra morphisms, the sections on U ⊂ X of the

sheaf HomFctR(A+,B+)(f
+, f ′+) are given by

(2.4.1) {b ∈ B(U) : bf(a) = f ′(a)b for each a ∈ A(V ) and V ⊂ U},

with composition of transformations given by the product in B.

For N a left B-module, with notation (2.2.2) we set

(2.4.2) fN = f+N ,

the associated left A-module. By (2.4.1), the morphism of A-modules associated

to a transformation b : f+ −→ f ′+ is given by

fN −→ f ′N , n 7→ bn.

§2.5. Algebroids

Recall from Lemma 2.3.3 that an R-stack is equivalent to an R-algebra if and only

if it is non-empty and is locally connected by isomorphisms.

Definition 2.5.1. An R-algebroid is an R-stack which is locally non-empty and

locally connected by isomorphisms.

In other words, an R-algebroid is an R-stack A which is locally equivalent to

an algebra. It is globally an algebra if and only if it has a global object.1 Note also

that an R-stack is an R-algebroid if and only if its substack with the same objects

and only invertible morphisms is a gerbe.

The stack Mod(A) is an example of stack of twisted sheaves, i.e. it is a

stack locally equivalent to a stack of modules over an algebra (see [22, 11]). A

1If the category A(U) has a zero object for U ⊂ X, then A|U ≈ 0+, where 0 denotes the ring
with 1 = 0. In particular, except for the case 0+, algebroids are not stacks of additive categories.
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cocyclic description of algebroids and of their modules is recalled in Appendix A.2

and A.3.

Note that the existence of an R-functor R+ −→ A is equivalent to the existence

of a global object for A. In this case there is a forgetful functor

Mod(A) −→ Mod(R).

Lemma 2.5.2. An R-stack C on X is an algebroid if and only if π0(C) ' {pt}X ,

the singleton-valued constant sheaf.

It follows from (1.1.2) that inverse images of algebroids are algebroids.

Let C be an R-stack. Then for any R-algebroid A one has

π0(A⊗R C) ' π0(C).

In particular, the tensor product of algebroids is an algebroid.

Definition 2.5.3. (i) Let A be an R-algebra. An R-twisted form of A is an

R-algebroid locally R-equivalent to A.

(ii) An invertible R-algebroid is an R-twisted form of R.

Note that any R-functor between invertible R-algebroids is an equivalence,

since it is locally isomorphic to the identity functor of R+.

If C is an invertible R-algebroid, then R ∼−→ Z(C) and for any R-stack D there

is an R-equivalence

Cop ⊗R D≈R FctR(C,D), (γ, δ) 7→ HomC(γ, ·)⊗R δ.

In particular, the set of R-equivalence classes of invertible R-algebroids is a group,

with multiplication given by ⊗R and inverse given by (·)op.

For anR-stack C, denote by AutR(C) the full substack of Aut(C) whose objects

are R-equivalences. By Corollary 1.2.1, the cohomology H1(X;AutR(A+)) classi-

fies R-equivalence classes of R-twisted forms of A. In terms of crossed modules

(cf. Section 1.3), one has

(2.5.1) AutR(A+)≈ [(A× Ad−−→ AutR-AlgX (A), δ)],

where δ(f)(a) = f(a) and Ad(a)(b) = aba−1. In particular, AutR(R+) ≈R×[1]

and (1.2.2) implies

Lemma 2.5.4. The group of R-equivalence classes of invertible R-algebroids is

isomorphic to H2(X;R×).

§2.6. Inner forms

Let A be a central R-algebra, i.e. Z(A) = R. (If A is not central, the following

discussion still holds on replacing R with Z(A).)
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Denote by Inn(A) the sheaf-theoretical image of the group morphism

Ad: A× −→ AutR-AlgX (A). Its sections are the inner automorphisms of A, i.e. au-

tomorphisms locally of the form Ad(a) for some a ∈ A×. Recall that an R-algebra

B is called an inner form of A if there exists an open cover {Ui}i∈I of X and ring

isomorphisms fi : A|Ui −→ B|Ui such that f−1
j fi ∈ Inn(A|Uij ).

Examples of inner forms are given by Azumaya algebras and rings of twisted

differential operators (see for example [11] for more details).

Let B be an R-algebra. Denote by EA,B ⊂ FctR(A+,B+) the full substack of

R-equivalences. Note that Eop
A,B ≈R EB,A.

Lemma 2.6.1. B is an inner form of A if and only if EA,B is an R-algebroid.

Proof. Since R-equivalences A+ ≈−→ B+ are locally given by R-algebra isomor-

phisms A ∼−→ B, it follows that EA,B is locally non-empty if and only if B is locally

isomorphic to A.

Let f, f ′ : A −→ B be R-algebra isomorphisms. Setting a = f−1(b) in (2.4.1),

the invertible transformations from f+ to f ′+ are given by

{a ∈ A× : f−1f ′ = Ad(a)},

hence EA,B is an R-algebroid if and only if B is an inner form of A.

Since EndEA,B(f+) = R, if B is an inner form of A it follows that EA,B
is an invertible R-algebroid and EA,B ⊗R A+ ≈R B+. In particular, one gets an

equivalence of stacks of 2-groups AutR(A+)≈AutR(B+).

Consider the non-abelian exact sequence

H1(X;A×)
b−→ H1(X; Inn(A))

c−→ H2(X;R×)

induced by the short exact sequence

1 −→ R× −→ A× Ad−−→ Inn(A) −→ 1.

For B an inner form of A and P a locally free Aop-module of rank one, denote by

[B] and [P] the associated cohomology classes in H1(X; Inn(A)) and H1(X;A×)

respectively. Then b[P] = [EndAop(P)] and c([B]) = [EA,B].

Proposition 2.6.2. The following conditions are equivalent:

(i) The stacks A+ and B+ are R-equivalent.

(ii) There exists a locally free Aop-module P of rank one such that B'EndAop(P).

(iii) B is an inner form of A and c([B]) = 1.
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Proof. (i)⇒(ii).2 Let g : B+−→A+ be anR-equivalence. Recall that B+⊂Mod(Bop)

is the substack of locally free modules of rank one. Let β be the canonical global

object of B+, and set P = g(β). Then B is isomorphic to EndAop(P).

(ii)⇒(iii). B is clearly an inner form of A and P has a structure of Aop ⊗R
B-module by the isomorphism B ∼−→ EndAop(P). Then (·)⊗BP gives a global object

of EB,A and c([B]) = [Eop
B,A] = 1.

(i)⇐(iii). By Lemma 2.6.1, c([B]) = 1 if and only if EA,B has a global object.

§3. Morita theory for linear stacks

Morita theory classically deals with modules over algebras. It is extended to mod-

ules over linear categories in [29, 31] and to stacks of modules over sheaves of

algebras in [22, Chapter 19] (see also [11]). Here, we summarize these extensions

by considering stacks of modules over linear stacks, and in particular over alge-

broids.

Let X be a topological space (or a site), and R a sheaf of commutative rings

on X.

§3.1. Yoneda embedding

Recall that a category is called (co)complete if it admits small (co)limits. A pre-

stack C on X is called (co)complete if the categories C(U) are (co)complete for

each U ⊂ X, and the restriction functors commute with (co)limits.

A prestack C on X is called a proper stack (see [21, 36]) if it is separated,

cocomplete, and if for each inclusion of open subsets v : V ↪→ U , the restriction

functor C(v) = (·)|V admits a fully faithful left adjoint

v! : C(V ) −→ C(U),

called zero-extension, such that for a diagram of open inclusions

V ∩W v′ //

w′

��

W

w
��

V
v // U

the natural transformation v′! ◦ C(w′) −→ C(w) ◦ v! is an isomorphism.

Lemma 3.1.1. Let C be a proper stack. For γ ∈ C(V ) and γ′ ∈ C(U) there is an

isomorphism of R|U -modules

v∗HomC|V (γ, γ′|V ) ' HomC|U (v!γ, γ
′).

2The equivalence between (i) and (ii) can also be deduced from Corollary 3.3.8.
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Recall that proper stacks are stacks.

Lemma 3.1.2. For any R-stack C, the R-stack Mod(C) is proper and complete.

Proof. Recall first that Mod(R) is complete and cocomplete. It is also proper. In

fact, for v : V ↪→ U an open inclusion, the restriction functor of Mod(R) coincides

with the sheaf-theoretical pull-back v−1. This admits the direct image functor v∗
as right adjoint, and the zero-extension functor v! as a left adjoint.

The statement follows, as Mod(C) = FctR(C,Mod(R)) inherits the prop-

erties and structures of Mod(R). For example, for v : V ↪→ U an inclusion of

open subsets, the functor v! : Mod(C|V ) −→ Mod(C|U ) is given by (v!M)(γ) =

u!(M(γ|V ∩W )), where M : C|V −→ Mod(R|V ) is a C|V -module, W ⊂ U is an open

subset, γ ∈ C(W ), and u : V ∩W −→ U is the embedding.

Let C be an R-stack. The (linear) Yoneda embedding is the full and faithful

R-functor

(3.1.1) YC : Cop −→ Mod(C), γ 7→ HomC(γ, ·),

whose essential image are the functors C −→ Mod(R) which are representable. In

analogy with the case C = A+ for A an R-algebra, a module M∈ Mod(C) which

is representable is called locally free of rank one.

As in the classical case, the full faithfulness of (3.1.1) follows from

Lemma 3.1.3. For M∈ Mod(C) there is an isomorphism of C-modules

M(·) ' HomMod(C)(YC(·),M).

Let C be an R-stack. We use the notation

(3.1.2) C ∈ Mod(Cop ⊗R C)

for the canonical object HomC(·, ·). This corresponds to the Yoneda embedding YC

via the equivalence induced by Lemma 2.1.1

Mod(Cop ⊗R C)≈R FctR(Cop,Mod(C)).

If C = A+, the object in (3.1.2) coincides with A, considered as a bimodule over

itself. If C is an invertible R-algebroid, then Cop⊗R C≈RR+ and C is isomorphic

to R as a bimodule over itself.

Lemma 3.1.4. For C an R-stack, there is a natural isomorphism of R-algebras

Z(C) ' Z(Mod(C)).
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Proof. Recall that the 2-functor Mod(·) defines a morphism of R-algebras Z(C) −→
Z(Mod(C)), sending a transformation d of idC to the transformation of idMod(C)

whose morphism associated to N ∈ Mod(C) is idN • d. (Here • denotes the hori-

zontal composition of transformations). Hence we get a commutative diagram

Z(C) // Z(Mod(C))

· • idYC

��
Z(Cop)

idYC
• ·
// EndFctR(Cop,Mod(C))(YC)

where idYC
• · is an isomorphism, since (3.1.1) is fully faithful, and · • idYC

is injec-

tive, since by Lemma 3.1.3 a transformation c of idMod(C) is completely determined

by c • idYC
.

§3.2. Operations

Let C be an R-stack. As for modules over a sheaf of algebras, there is a natural

R-functor

(3.2.1) ⊗C : Mod(Cop)⊗R Mod(C) −→ Mod(R).

This is discussed in [31] when X is reduced to a point. In order to explain how

this extends to stacks, we need some preparation.

Denote by C/X the Grothendieck construction associated with C. Recall that

objects of C/X are pairs (u, γ) with u : U −→ X an open inclusion, and γ ∈ C(U).

Morphisms c : (u, γ) −→ (u′, γ′) are defined only if U ′ ⊂ U , and in that case are given

by morphisms γ|U ′ −→ γ′ in C(U ′). For c′ : (u′, γ′) −→ (u′′, γ′′) another morphism,

the composition3 is given by c′ ◦ c|U ′′ .

Notation 3.2.1. Let C be a category. We denote by Mor◦C the category whose

objects are morphisms c : γ −→ γ′ in C and whose morphisms c −→ d are pairs (e, e′)

of morphisms in C such that c = e′ ◦ d ◦ e. This is visualised by the diagram

γ
c //

e

��

γ′

δ
d // δ′

e′

OO

The following lemma is a stack-theoretical analogue of [22, Lemma 2.1.15].

3Here we denote for short by c|U′′ the composite γ|U′′ ←−∼ γ|U′ |U′′
c|U′′−−−→ γ′|U′′ .
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Lemma 3.2.2. Let M,N ∈ Mod(C). Then

(i) the assignment

((u, γ)
c−→ (u′, γ′)) 7→ HomR(u∗M(γ), u′∗N (γ′))

defines a functor (Mor◦ C/X)op −→ Mod(R);

(ii) there is an isomorphism in Mod(R)

(3.2.2) HomMod(C)(M,N ) ' lim←−
((u,γ)

c−→(u′,γ′))∈Mor◦ C/X

HomR(u∗M(γ), u′∗N (γ′)).

Proof. (i) Let us check that a morphism (e, e′) in Mor◦ C/X, visualised by the

diagrams

U U ′oo

��
V

OO

V ′oo

(u, γ)
c //

e

��

(u′, γ′)

(v, δ)
d // (v′, δ′)

e′

OO

induces a morphism in Mod(R)

(3.2.3) HomR(v∗M(δ), v′∗N (δ′)) −→ HomR(u∗M(γ), u′∗N (γ′)).

Consider the inclusions of open subsets

X U
uoo

V

v

bb
i

OO

The morphism e : γ|V −→ δ induces a morphism

u∗M(γ) −→ u∗i∗i
−1M(γ) ' v∗M(γ|V ) −→ v∗M(δ).

Similarly, e′ : δ′|U ′ −→ γ′ induces a morphism v′∗N (δ′) −→ u′∗N (γ′). Then (3.2.3) is

obtained by left and right composition with these morphisms.

(ii) It is enough to prove that the natural morphism in Mod(R(X))

HomMod(C)(M,N ) −→ lim←−
c∈Mor◦ C/X

HomR|U′ (M(γ|U ′),N (γ′))

' lim←−
c∈Mor◦ C/X

HomR(u∗M(γ), u′∗N (γ′))

is an isomorphism. The proof of this fact follows the argument for [22, Lemma

2.1.15].
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For M∈ Mod(C) and P ∈ Mod(Cop), similarly to the above, the assignment

((u, γ)
c−→ (u′, γ′)) 7→ u′!P(γ′)⊗R u∗M(γ)

defines a functor Mor◦ C/X −→ Mod(R) and we set

(3.2.4) P ⊗CM = lim−→
((u,γ)

c−→(u′,γ′))∈Mor◦ C/X

u′!P(γ′)⊗R u∗M(γ).

For A an R-algebra and C = A+, this is the usual tensor product of M ∈
Mod(A) and P ∈ Mod(Aop). For example, when X is reduced to a point, this

amounts to presenting P ⊗AN as the quotient of
⊕

a∈A P ⊗RN by the subgroup

generated by the elements (p⊗m)a−(p⊗am)1 and (p⊗m)a−(pa⊗m)1 for a ∈ A,

p ∈ P and m ∈M. (The subscripts indicate the direct summand to which the ele-

ments belong. These generators correspond to the morphisms (a, 1), (1, a) : a −→ 1

in Mor◦A+.)

Lemma 3.2.3. P ⊗CM is a representative of the functor

HomMod(C)(M,HomR(P, ·)) : Mod(R) −→ Mod(R),

where, for any L ∈ Mod(R), we denote by HomR(P,L) the C-module

HomR(P(·),L).

Proof. By Lemma 3.2.2, for any L ∈ Mod(R) there are isomorphisms

HomMod(C)(M,HomR(P,L))

' lim←−
c∈Mor◦ C/X

HomR
(
u∗M(γ), u′∗HomR|U′ (P(γ′),L|U ′)

)
' lim←−
c∈Mor◦ C/X

HomR
(
u∗M(γ),HomR(u′!P(γ′),L)

)
' lim←−
c∈Mor◦ C/X

HomR
(
u′!P(γ′)⊗R u∗M(γ),L

)
' HomR

(
lim−→

c∈Mor◦ C/X

u′!P(γ′)⊗R u∗M(γ),L
)

= HomR(P ⊗CM,L).

Uniqueness of representatives implies the functoriality of the assignment

(P,M) 7→ P ⊗CM. We have thus defined the functor (3.2.1).

As for modules over a sheaf of algebras, let us use the shorthand notation

(3.2.5) HomC(·, ·) : Mod(C)op ⊗R Mod(C) −→ Mod(R)

for the internal hom-functor HomMod(C)(·, ·).
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Notation 3.2.4. We use the same notation

HomC : Mod(C⊗R Dop)op ⊗R Mod(C⊗R E) −→ Mod(D⊗R E),

⊗C : Mod(Cop ⊗R D)⊗R Mod(C⊗R E) −→ Mod(D⊗R E)

for the R-functors obtained by “picking up operators” (in the sense of [30, p. 15])

from the R-functors (3.2.5) and (3.2.1).

These functors satisfy the relations (3.2.2) and (3.2.4). For example, let P ∈
Mod(Cop ⊗R D) and M ∈ Mod(C ⊗R E). Consider them as functors P : Cop −→
Mod(D) and M : C −→ Mod(E). Then P ⊗CM satisfies (3.2.4), where the opera-

tions u′! and u! are those of the proper stacks Mod(D) and Mod(E), respectively,

and the tensor product is the natural functor

⊗R : Mod(D)⊗R Mod(E) −→ Mod(D⊗R E).

The standard formulas concerning the usual hom-functor and tensor product

hold. For example,

Lemma 3.2.5. For M ∈ Mod(Cop ⊗R D), N ∈ Mod(C ⊗R E), and P ∈
Mod(D⊗R F), there is an isomorphism in Mod(Eop ⊗R F)

HomD(M⊗C N ,P) ' HomC(N ,HomD(M,P)).

Recall the notation C ∈ Mod(Cop ⊗R C) in (3.1.2). By Lemma 3.1.3 the

functors HomC(C, ·), and hence also C⊗C (·), are isomorphic to the identity.

Using (3.2.4) with P = C, we get

Lemma 3.2.6. For M∈ Mod(C) there is an isomorphism in Mod(C)

M' lim−→
((u,γ)

c−→(u′,γ′))∈Mor◦ C/X

u′!YC(γ′)⊗R u∗M(γ).

§3.3. Morita equivalence

Let us discuss how classical Morita theory extends to linear stacks.

Let C and D be R-stacks. Denote by FctrR(Mod(C),Mod(D)) the stack of

R-functors admitting a right adjoint. The Eilenberg–Watts theorem for R-stacks

holds:

Theorem 3.3.1. (i) The R-functor

Mod(Cop ⊗R D) −→ FctrR(Mod(C),Mod(D)), P 7→ P ⊗C (·),

is an equivalence.

(ii) For P ∈ Mod(Cop⊗RD) and Q ∈ Mod(Dop⊗R E) one has an isomorphism in

FctrR(Mod(C),Mod(E))

(Q⊗D P)⊗C (·) ' (Q⊗D (·)) ◦ (P ⊗C (·)).
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Given an R-functor h : Mod(C) −→ Mod(D), we will use the same notation h

for the induced R-functor, obtained by “picking up operators”,

Mod(Cop ⊗R C) −→ Mod(Cop ⊗R D).

Proof. (i) Let us show that h 7→ h(C) is a quasi-inverse to the functor in the

statement.

Since P ' P ⊗C C, we only have to prove that h
∼−→ h(C)⊗C (·). Let M be in

Mod(C). Since h has a right adjoint, it commutes with direct limits, proper direct

images, and tensor products with R-modules. Hence we have

h(M) ' h
(

lim−→
c∈Mor◦ C/X

u′!YC(γ′)⊗R u∗M(γ)
)
' lim−→
c∈Mor◦ C/X

u′!h(YC(γ′))⊗R u∗M(γ)

' lim−→
c∈Mor◦ C/X

u′!h(C)(γ′, ·)⊗R u∗M(γ) = h(C)⊗CM,

where the first isomorphism follows from Lemma 3.2.6 and we use the fact that

h ◦ YC identifies with h(C) via the equivalence induced by Lemma 2.1.1.

(ii) By (i), the statement amounts to the isomorphism in Mod(Cop ⊗R E)

(Q⊗D P)⊗C C ' Q⊗D (P ⊗C C).

Remark 3.3.2. Denoting by FctlR(Mod(C),Mod(D)) the stack of R-functors ad-

mitting a left adjoint, one similarly gets an R-equivalence

Mod(Cop ⊗R D) −→ FctlR(Mod(D),Mod(C))op, P 7→ HomD(P, ·),

and the corresponding commutative diagram as in Theorem 3.3.1(ii). These con-

structions are interchanged by the R-equivalence

FctrR(Mod(C),Mod(D))≈R FctlR(Mod(D),Mod(C))op

sending a functor to its adjoint.

Definition 3.3.3. (i) One says that Q ∈ Mod(Dop ⊗R C) is an inverse of P ∈
Mod(Cop⊗RD) if there are isomorphisms of C⊗RCop- and D⊗RDop-modules,

respectively,

Q⊗D P ' C, P ⊗C Q ' D.

(ii) An object P ∈ Mod(Cop ⊗R D) is called invertible if it has an inverse.

One proves (see e.g. [22, §19.5]) that P is invertible if and only if one of the

following equivalent conditions is satisfied:

(i) HomD(P,D) is an inverse of P;

(ii) the functor P ⊗C (·) : Mod(C) −→ Mod(D) is an R-equivalence.

(iii) the functor HomCop(P, ·) : Mod(Cop) −→ Mod(Dop) is an R-equivalence.
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Notation 3.3.4. For anyR-functor f : C −→ C′, we denote by EndC′(f) theR-stack

associated to the separated prestack whose objects on U ⊂ X are those of C(U)

and Hom(γ, γ′) = HomC′(U)(f(γ), f(γ′)).

Note that if f is fully faithful, then the natural R-functor C −→ EndC′(f)

induced by f is an equivalence. In particular, identifying C ∈ Mod(Cop ⊗R C)

with the Yoneda embedding YC : Cop −→ Mod(C), one has Cop ≈R EndMod(C)(C).

Moreover, considering P ∈ Mod(Cop ⊗R D) as a functor Cop −→ Mod(D), the

condition of P being invertible is further equivalent to

(iv) P is a faithfully flat4 D-module locally of finite presentation5 and Cop ≈R
EndMod(D)(P);

(v) P is D-progenerator6 locally of finite type and Cop ≈R EndMod(D)(P).

By reversing the role of Cop and D, one gets dual equivalent conditions.

Theorem 3.3.5 (Morita). An R-functor h : Mod(C) −→ Mod(D) is an equivalence

if and only if P = h(C) is an invertible (Cop ⊗R D)-module. Moreover, one has

h ' P ⊗C (·).

Definition 3.3.6. Two R-stacks C and D are Morita R-equivalent if their stacks

of modules Mod(C) and Mod(D) are R-equivalent.

Hence C and D are Morita R-equivalent if and only if there exists an invertible

(Cop ⊗R D)-module.

Let us say that P ∈ Mod(Cop ⊗R D) ≈R FctR(D,Mod(Cop)) is locally free of

rank one over Cop if for any δ ∈ D the Cop-module P(δ) is locally free of rank one,

that is, the functor P(δ) : Cop −→ Mod(R) is representable.

Recall from (2.2.2) that f(·) : Mod(C) −→ Mod(D) denotes the functor associ-

ated to an R-functor f : D −→ C.

Proposition 3.3.7. The R-functor

(3.3.1) FctR(D,C) −→ Mod(Cop ⊗R D), f 7→ fC,

is fully faithful and induces an equivalence with the full substack of locally free

modules of rank one over Cop.

Proof. (i) The functor in the statement equals YCop ◦ ·. This is fully faithful, since

YCop is fully faithful.

4P is a faithfully flat D-module if the functor (·)⊗D P is faithful and exact.
5P is a D-module of finite presentation if the functor HomD(P, ·) commutes with small

filtrant colimits.
6P is D-progenerator if the functor HomD(P, ·) is faithful and exact.
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(ii) Assume that P ∈ Mod(Cop ⊗R D) is a locally free module of rank one

over Cop. Then P ' fC, where f : D −→ C is the functor associating to δ ∈ D the

representative of P(δ).

Corollary 3.3.8. Two R-stacks C and D are R-equivalent if and only if there

exists P ∈ Mod(Cop⊗RD) which is invertible and locally free of rank one over Cop.

In particular, two algebroids A and B are R-equivalent if and only if there

exists an invertible (Aop⊗RB)-module P which is locally free of rank one over Aop.

These conditions on P are equivalent to P being bi-invertible in the sense of [23,

Corollary 2.1.10].

Remark 3.3.9. If C ≈R A+ and D ≈R B+, the functor B+ −→ A+ associated to

an Aop⊗R B-module P locally free of rank one over Aop is f = (·)⊗B P. Note that

any local isomorphism h : A ∼−→ P of right A-modules defines a local R-algebra

morphism (isomorphism if P invertible)

(3.3.2) f : B −→ EndAop(P)
Ad(h−1)−−−−−→ EndAop(A) ' A

(the first arrow is induced by the B-module structure of P), for which h : fA
∼−→ P

is an isomorphism of Aop ⊗R B-modules and f ' f+. If h is given by a 7→ ua for a

local generator u of the right A-module P, then f(b) = a for a such that ua = bu.

§3.4. Picard good stacks

We will use the notation

Ce = Cop ⊗R C.

Definition 3.4.1. An R-stack C is Picard good if all invertible Ce-modules are

locally free of rank one over Cop (or, equivalently, over C). An R-algebra A is

Picard good if it is so as an R-stack.

For A = R, one recovers [11, Definition 4.2].

Since the condition of being Picard good is local, an algebroid is Picard good

if and only if so are the algebras that locally represent it.

Recall from (v) in Section 3.3 that invertible bimodules are projective as right

(or left) modules. It follows that examples of Picard good rings are projective-free

rings, and in particular local rings. Note however that Picard good does not imply

projective-free (see Remark 4.3.3).

Denote by Inv(Ce) the substack of Mod(Ce) whose objects are invertible

Ce-modules and whose morphisms are only those morphisms which are invertible.

Then ⊗C induces on Inv(Ce) a natural structure of stack of 2-groups, and (3.3.1)
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gives a fully faithful functor of stacks of 2-groups

(3.4.1) AutR(C)op ↪→ Inv(Ce), f 7→ fC.

Here, for G a stack of 2-groups, Gop denotes the stack of 2-groups with the same

groupoid structure as G and with reversed monoidal structure.

Set

OutR(C) = π0(AutR(C)), PicR(C) = π0(Inv(Ce)).

Then (3.4.1) induces an injective homomorphism of groups

(3.4.2) OutR(C)op ↪→ PicR(C).

Note that from (2.5.1) it follows that Out(A+) = AutR(A)/ Inn(A), the sheaf of

outer automorphisms of A.

Proposition 3.4.2. Let C be an R-stack. Then the following are equivalent:

(i) C is Picard good;

(ii) (3.4.1) is an equivalence;

(iii) (3.4.2) is an isomorphism.

Proof. The equivalence between (i) and (ii) follows from Proposition 3.3.7, whereas

that between (ii) and (iii) follows from the fact that a functor of stacks C −→ C′ is

essentially surjective if and only if the induced morphism of sheaves π0(C) −→ π0(C′)

is surjective.

Proposition 3.4.3. Let C be a Picard good R-stack.

(i) Let D be an R-stack locally equivalent to C. Then C and D are Morita R-equiv-

alent if and only if they are R-equivalent.

(ii) Let M be an R-stack locally R-equivalent to Mod(C). Then M≈RMod(D) for

an R-stack D locally R-equivalent to C.

Proof. (i) By Theorem 3.3.5, there is an equivalence of stacks of 2-groups

Inv(Ce)
≈−→ AutR(Mod(C)), P 7→ P ⊗C (·).

We thus have a (quasi-)commutative diagram

Inv(Ce)
≈

// AutR(Mod(C))

AutR(C)op

1 Q

bb

+ � m

88

where m is induced by the functor Mod(·). It follows from Proposition 3.4.2 that

C is Picard good if and only if m is an equivalence.
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Let EquivR(·, ·) denote the stack of R-equivalences, with invertible transfor-

mations as morphisms. Consider the functor

EquivR(C,D) −→ EquivR(Mod(D),Mod(C))

induced by the 2-functor Mod(·). Since D is locally equivalent to C, this locally

reduces to the functor m above. It is thus locally, hence globally, an equivalence.

(ii) Let E ⊂ M be the full substack of objects γ with the property that for

any local R-equivalence h : M
≈−→ Mod(C), the C-module h(γ) is locally free of

rank one. Since C is Picard good, the R-stack E is locally non-empty and locally

R-equivalent to Cop. Set D = Eop. Then the R-functor

M −→ Mod(D), δ 7→ HomM(·, δ),

is locally, hence globally, an equivalence.

If C is an invertible R-algebroid, then it is Picard good if and only if R is,

and one has equivalences of stacks of 2-groups

(3.4.3) R×[1]
≈−→ Inv(R)≈ Inv(Ce), P 7→ R×R× P.

(Recall that R×[1] denotes the stack of R×-torsors.) Moreover, in this situation

the stack D in (ii) above is R-equivalent via γ 7→ HomM(γ, ·) to the full substack

of FctR(M,Mod(R)) whose objects are equivalences.

Examples of stacks as in Proposition 3.4.3(ii) arise from deformations of cate-

gories of modules as discussed in [28]. In particular, Proposition 3.4.3 applies when

C is (equivalent to) the structure sheaf of a ringed space. We thus recover results

of [27].

§4. Microdifferential operators

We collect here some results from the theory of microdifferential operators of [37]

(see also [38, 16, 18]). The statements about the automorphisms of the sheaf of

microdifferential operators are well known. Since we lack a reference for the proofs,

we give them here.

§4.1. Microdifferential operators

Let M be an n-dimensional complex manifold, T ∗M its cotangent bundle and

Ṫ ∗M ⊂ T ∗M the open subset obtained by removing the zero-section.

Denote by EṪ∗M the sheaf of microdifferential operators on Ṫ ∗M . Recall that

EṪ∗M is a sheaf of central C-algebras endowed with a Z-filtration by the order of
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the operators, and one has

Gr EṪ∗M '
⊕
m∈Z
OṪ∗M (m),

where OṪ∗M (m) is the subsheaf of OṪ∗M of holomorphic functions homogeneous

of degree m.

For λ ∈ C, denote by EṪ∗M (λ) the sheaf of microdifferential operators of

order at most λ. In a local coordinate system (x) on M , with associated symplectic

coordinates (x; ξ) on Ṫ ∗M , a section P ∈ Γ (V ; EṪ∗M (λ)) is determined by its total

symbol, which is a formal series

tot(P ) =

∞∑
j=0

pλ−j(x, ξ)

with pλ−j ∈ Γ (V ;OṪ∗M ) homogeneous of degree λ− j, satisfying suitable growth

conditions in j. If Q is a section of EṪ∗M (µ), then PQ ∈ EṪ∗M (λ + µ) has total

symbol given by the Leibniz formula

tot(PQ) =
∑
α∈Nn

1

α!
∂αξ tot(P )∂αx tot(Q).

Set

E [λ]

Ṫ∗M
=
⋃
n∈Z
EṪ∗M (λ+ n),

where [λ] is the class of λ in C/Z, and denote by

σλ : EṪ∗M (λ) −→ OṪ∗M (λ) and σ : E [λ]

Ṫ∗M
−→ OṪ∗M

the symbol of order λ and the principal symbol, respectively, where σ(P ) = σµ(P )

for P ∈ EṪ∗M (µ)\EṪ∗M (µ−1). Note that E [λ]

Ṫ∗M
is a bimodule over EṪ∗M = E [0]

Ṫ∗M

and for any P ∈ EṪ∗M (λ) and Q ∈ EṪ∗M (µ) one has

σλ+µ(PQ) = σλ(P )σµ(Q).

Recall that a microdifferential operator is invertible at p ∈ Ṫ ∗M if and only if its

principal symbol does not vanish at p.

§4.2. Automorphisms of EṪ∗M
Lemma 4.2.1. Any C-algebra automorphism of EṪ∗M is filtered and symbol pre-

serving.

Proof. Let f be a C-algebra automorphism of EṪ∗M . Define the spectrum of P ∈
Γ (V ; EṪ∗M ) as

Σ(P ) : V −→ P(C), p 7→ {a ∈ C : a− P is not invertible at p},
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where P(C) denotes the set of subsets of C. Note that Σ(P ) = Σ(f(P )). Set for

short

Em = EṪ∗M (m) \ EṪ∗M (m− 1).

Recall that P is invertible if and only if its principal symbol does not vanish.

(i) If P ∈ E0 and its principal symbol is not locally constant, then Σ(P )(p) =

{σ(P )(p)}. Since Σ(P ) = Σ(f(P )), it follows that f(P ) ∈ E0 and σ(P ) = σ(f(P )).

(ii) Let P ∈ E0 have locally constant principal symbol. For any Q ∈ EṪ∗M (0)\
σ−1

0 (CṪ∗M ) one has

σ0(P )σ0(Q) = σ0(PQ) = σ0(f(PQ)) = σ(f(P ))σ0(f(Q)) = σ(f(P ))σ0(Q)

where the second equality follows from (i). One deduces σ(f(P )) = σ0(P ), so that

in particular f(P ) ∈ E0.

(iii) Pick an operator D ∈ E1 invertible at p, and let d be the order of f(D).

Then f(D)m is an invertible operator of order dm and one has

f(Em) = f(DmE0) = f(D)mf(E0) = f(D)mE0 = Edm.

Since f is an automorphism of EṪ∗M \ {0} =
⊔
m∈Z Em, it follows that d = ±1.

Thus f either preserves or reverses the order. Note that if an operator P satisfies

σ(P )(p) = 0, then Σ(P )(p) = C if and only if P has positive order. Hence, f

preserves the order.

(iv) We have proved that f is filtered and preserves the symbol of operators

in E0. As Em = DmE0, to show that f is symbol preserving it is enough to check

that σ1(D) = σ1(f(D)).

Let (x; ξ) be a local system of symplectic coordinates at p. Identifying xi with

the operator in E0 whose total symbol is xi, one has

∂ξiσ1(D) = {xi, σ1(D)} = {σ0(xi), σ1(D)} = σ0([xi, D])

= σ0(f([xi, D])) = σ0([f(xi), f(D)]) = {σ0(f(xi)), σ1(f(D))}
= {xi, σ1(f(D))} = ∂ξiσ1f((D)) for i = 1, . . . , n,

so that

σ1(D) = σ1(f(D)) + ϕ(x),

and one takes the homogeneous component of degree 1.

Proposition 4.2.2. Any C-algebra automorphism of EṪ∗M is locally of the form

Ad(P ) for some λ ∈ C and some invertible P ∈ EṪ∗M (λ).

Proof. Identify Ṫ ∗M× Ṫ ∗M to an open subset of T ∗(M×M). Let (x) be a system

of local coordinates on M , and denote by (x, y) the coordinates on M ×M . For
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Q ∈ EṪ∗M , denote by Qx and Qy its pull-backs to EṪ∗M×Ṫ∗M by the first and

second projection, respectively.

Let f : EṪ∗M −→ EṪ∗M be a C-algebra automorphism. By Lemma 4.2.1, f

is filtered and symbol preserving. Denote by L the EṪ∗M×Ṫ∗M -module with one

generator u and relations

(xi − f(yi))u = (∂xi − f(∂yi))u = 0 for i = 1, . . . , n.

Then the image f(Q) of Q ∈ EṪ∗M is characterized by the relation

(4.2.1) f(Q)y u = Q∗x u in L,

where Q∗ denotes the adjoint operator, and (L, u) is a simple module along the

conormal bundle to the diagonal ∆ in T ∗(M×M) (see [18]). Denote by C∆ the sheaf

of complex microfunctions along the conormal bundle to ∆. By [18, Theorem 8.21],

there exist λ ∈ C and an isomorphism

ϕ : E [λ]

Ṫ∗M×Ṫ∗M ⊗EṪ∗M×Ṫ∗M C∆
∼−→ L

such that ϕ(Py ⊗ δ∆) = u for some invertible P ∈ EṪ∗M (λ). One then has

PyQyP
−1
y u = PyQyP

−1
y ϕ(Py ⊗ δ∆) = ϕ(PyQy ⊗ δ∆) = ϕ(Q∗xP

∗
x ⊗ δ∆)

= Q∗xϕ(P ∗x ⊗ δ∆) = Q∗xϕ(Py ⊗ δ∆) = Q∗xu.

It follows by (4.2.1) that f = Ad(P ).

§4.3. Invertible E-bimodules

Denote by P ∗M the projective cotangent bundle of M and by γ : Ṫ ∗M −→ P ∗M

the projection. Set

EP∗M = γ∗EṪ∗M .

This is a sheaf of C-algebras endowed with a Z-filtration such that Gr EP∗M '⊕
m∈ZOP∗M (m), where one sets OP∗M (m) = γ∗OṪ∗M (m). Note that EṪ∗M is

constant along the fibers of γ. Since these are connected, the adjunction morphism

gives an isomorphism

γ−1EP∗M
∼−→ EṪ∗M .

Lemma 4.3.1. Let Z ⊂ Ṫ ∗M be a closed conic analytic subset. Then

HjRΓZEṪ∗M = 0 for j < codimṪ∗M Z.

Proof. Setting W = γ(Z), we have RΓZEṪ∗M ' γ−1RΓWEP∗M . We thus have

to show that HjRΓWEP∗M = 0 for j < codimP∗M W . Identify EP∗M with the

sheaf C∆ of complex microfunctions along the conormal bundle to the diagonal in
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P ∗ = P ∗(M ×M). By quantized contact transformations, C∆ can be further iden-

tified with the sheaf of complex microfunctions CS along the conormal bundle to a

hypersurface S ⊂ P ∗. One has CS ' OS ⊕H1
[S]OP∗ ' O

⊕Z
S . Hence HjRΓWCS = 0

for j < codimSW .

Proposition 4.3.2. Let M be a coherent torsion-free EṪ∗M -module. Then M is

locally free outside a closed conic analytic 2-codimensional subset.

Proof. We will reduce to the analogous statement for O-modules, which is well-

known (see [25, Corollary 5.15]).

Set for short E = EṪ∗M , E(0) = EṪ∗M (0) and O(0) = OṪ∗M (0). A coherent

E(0)-submodule L ⊂M such that EL =M is called a lattice.

(a) M has a torsion-free lattice L. In fact, let F be a lattice in M∗ =

HomE(M, E). Then F∗ = HomE(0)(F , E(0)) ⊂ HomE(M∗, E) =M∗∗ and EF∗ =

M∗∗, i.e. F∗ is a lattice in M∗∗. Then L = F∗ ∩M is a lattice in M. Since F∗

is reflexive (that is, F∗ −→ (F∗)∗∗ is an isomorphism), F∗ is torsion-free, and so is

its submodule L.

(b) The coherent O(0)-module L = L/L(−1) is torsion-free. In fact, consider

the exact sequence

0 −→ E(−1) −→ E(0)
σ0−→ O(0) −→ 0.

Then O(0) ⊗E(0) L ' L. Hence (L)∗ = HomO(0)(L,O(0)) ' HomO(0)(O(0) ⊗E(0)

L,O(0)) ' HomE(0)(L,O(0)). The exact sequence

0 −→ HomE(0)(L, E(−1)) −→ HomE(0)(L, E(0)) −→ HomE(0)(L,O(0))

thus reads

0 −→ L∗(−1) −→ L∗ −→ (L)∗.

Hence L∗ ⊂ (L)∗. Then L ⊂ L∗∗ ⊂ (L∗)∗ ∼−→ (L∗)∗∗∗, so that L is torsion-free.

(c) Since L is torsion-free, it is locally free outside a closed conic analytic

2-codimensional subset S. Hence the same holds true for L by the Nakayama

lemma. Thus M = EL is also locally free outside S.

Remark 4.3.3. Since projective EṪ∗M -modules are torsion-free, it follows that

EṪ∗M is (coherent) projective-free if dimM = 1. This is no more true if dimM > 1.

Set

Ee
Ṫ∗M

= Eop

Ṫ∗M
⊗C EṪ∗M .

Note that, for [λ], [µ] ∈ C/Z the morphism of Ee
Ṫ∗M

-modules

E [λ]

Ṫ∗M
⊗EṪ∗M E

[µ]

Ṫ∗M
−→ E [λ+µ]

Ṫ∗M
, P ⊗Q 7→ PQ,
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is an isomorphism. In particular, E [λ]

Ṫ∗M
is an invertible Ee

Ṫ∗M
-module. Moreover,

if P ∈ EṪ∗M (λ) has non-vanishing symbol on V ⊂ Ṫ ∗M , there is an isomorphism

of EeV -modules (where we use notation (2.4.2))

(4.3.1) Ad(P−1)EV
∼−→ E [λ]

V , Q 7→ PQ.

Lemma 4.3.4. For [λ], [µ] ∈ C/Z, one has

HomEe
Ṫ∗M

(E [λ]

Ṫ∗M
, E [µ]

Ṫ∗M
) =

{
CṪ∗M for [λ] = [µ],

0 otherwise.

Proof. The problem is local and we take a system (x) = (x1, . . . , xn) of local

coordinates in V ⊂ Ṫ ∗M such that ∂1 is invertible in V . By (4.3.1),

HomEeV (E [λ]
V , E [µ]

V ) ' HomEeV (Ad(∂−λ1 )EV ,Ad(∂−µ1 )EV )

' {P ∈ EV : P∂−λ1 Q∂λ1 = ∂−µ1 Q∂µ1 P, ∀Q ∈ EV }.

Assume that there exists P 6= 0 as above. Taking for Q the operators ∂1, xi
and ∂i, respectively, we deduce that [P, ∂1] = [P, xi] = [P, ∂i] = 0 for i = 2, . . . , n.

It follows that P only depends on ∂1. Noting that [∂λ1 , x1] = λ∂λ−1
1 and taking

Q = x1, we get

[x1, P ] = (µ− λ)P∂−1
1 .

Write P =
∑
j≤m cj∂

j
1 with ci ∈ C and cm 6= 0. Then the above equality gives

m = µ− λ and cj = 0 for j < m.

The following result was communicated to us by Masaki Kashiwara (refer

to [24] for related results).

Theorem 4.3.5. Any invertible Ee
Ṫ∗M

-module is isomorphic to L ⊗C E
[λ]

Ṫ∗M
for

some local system of rank one L and some locally constant C/Z-valued function [λ].

Proof. Set for short E = EṪ∗M . Let P be an invertible Ee-module. It is enough to

show that P is locally isomorphic to E [λ] for some locally constant function [λ]. In

fact, it will follow from Lemma 4.3.4 that L = HomEe(E [λ],P) is a local system of

rank one and L⊗C E [λ] ∼−→ P.

(a) Since P is invertible, the underlying E-module •P is projective locally of

finite presentation by (iv) and (v) in Section 3.3, and hence coherent torsion-free.

By Proposition 4.3.2, •P is locally free outside a closed analytic 2-codimensional

subset Z. As P is invertible, its rank is one.

(b) Suppose that •P is free of rank one. Then there exists [λ] such that

P [−λ] = P ⊗Ee E [−λ] admits a regular generator, i.e. a generator u of •P [−λ] such
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that Pu = uP for any P ∈ E . Indeed, let t be a generator of •P and let f : E ∼−→ E
be the C-algebra isomorphism as in (3.3.2): f(P ) = Q for Q such that tP = Qt.

By Proposition 4.2.2, f is locally of the form Ad(P ) for some λ ∈ C and P ∈ E(λ)

with never vanishing symbol. Then u = tP−1 is a regular generator of P [−λ].

Let V be a contractible open neighborhood of a point in Z. We are left to

show that if •P is locally free of rank one on V \ Z, then •P [−λ] has a regular

generator on V . It will follow that P|V ' E [λ]
V .

(c) Since local regular generators u of P [−λ] are unique up to multiplicative

constants, Cu ⊂ P [−λ] defines a local system of rank one on V \ Z. As V \ Z
is simply connected, such a local system is constant. Thus P [−λ] has a regular

generator u on V \ Z.

Consider the distinguished triangle

RΓZP [−λ] −→ P [−λ] −→ RΓV \ZP [−λ] +1−−→

Since P [−λ] is invertible, •P [−λ] is flat by (iv) in Section 3.3, so that

RΓZ(V ;P [−λ]) ' RΓ (V ;RΓZE ⊗E P
[−λ]).

By Lemma 4.3.1 one gets HjRΓZ(V ;P [−λ]) = 0 for j = 0, 1. It follows that

Γ (V ;P [−λ])
∼−→ Γ (V \Z;P [−λ]), hence the generator u of •P [−λ] on V \Z extends

uniquely to V .

In particular, since any E [λ]

Ṫ∗M
is a locally free right EṪ∗M -module of rank one

by (4.3.1), it follows that the C-algebra EṪ∗M is Picard good.

Recall that the projection γ : Ṫ ∗M −→ P ∗M is a principal C×-bundle.

Theorem 4.3.6. The C-algebra EP∗M is Picard good.

Proof. Let us prove that any invertible EeP∗M -module P is locally free of rank one

as right EP∗M -module.

Since this is a local problem, we may restrict to a contractible open subset

U ⊂ P ∗M , so that γ−1(U) ' U ×C×. The Eeγ−1(U)-module γ−1P being invertible,

by Theorem 4.3.5 one gets

P ∼−→ γ∗γ
−1P ' γ∗(L⊗C E

[λ]
γ−1(U))

for some [λ] ∈ C/Z and some local system of rank one L on γ−1(U) with mon-

odromy e−2πiλ on C×.

By restricting to U ′ ⊂ U , we may assume that there exists an invertible

operator D of order 1. This defines an isomorphism of right EU ′ -modules

EU ′
∼−→ γ∗(L⊗C E

[λ]
γ−1(U ′)), Q 7→ DλQ.
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Note that, given a local system L of rank one and [λ] ∈ C/Z, one has

γ∗(L ⊗C E
[λ]

Ṫ∗M
) 6= 0 if and only if the monodromy of L along the fiber of γ is

given by e−2πiλ. In particular, γ∗E [λ]

Ṫ∗M
= 0 for any [λ] 6= 0.

§5. Microdifferential algebroids

Here we state and prove our results on classification of E-algebroids on a contact

manifold.

§5.1. Contact manifolds

Let X be a complex manifold of odd dimension, say 2n − 1. Denote by OX the

sheaf of holomorphic functions and by Ω1
X the sheaf of holomorphic 1-forms. A

structure of (complex) contact manifold on X is the assignment of a holomorphic

principal C×-bundle γ : Y −→ X, called symplectification, and of a holomorphic

one-form α ∈ Γ (Y ; Ω1
Y ), called a contact form, such that ω = dα is symplectic

(i.e. ωn vanishes nowhere) and iθα = 0, Lθα = α. Here, θ denotes the infinitesimal

generator of the action of C× on Y , iθ the contraction and Lθ the Lie derivative.

One may consider α as a global section of Ω1
X ⊗OX OX(1), where OX(1) denotes

the dual of the sheaf of sections of the line bundle C×C× Y .

Let M be a complex manifold of dimension n. Then P ∗M has a natural

contact structure given by the Liouville one-form on Ṫ ∗M and by the projection

γ : Ṫ ∗M −→ P ∗M . By the Darboux theorem, P ∗M is a local model for a contact

manifold X, meaning that there are an open cover {Ui}i∈I of X and contact

embeddings (i.e. embeddings preserving the contact forms) ji : Ui ↪→ P ∗M for any

i ∈ I.

A fundamental result of [37] asserts that contact transformations (i.e. biholo-

morphisms preserving the contact forms) can be locally quantized. This means

the following. Let N be another complex manifold of dimension n, U ⊂ P ∗M

and V ⊂ P ∗N open subsets and χ : U −→ V a contact transformation. Then any

x ∈ U has an open neighborhood U ′ such that there is a C-algebra isomorphism

χ−1(EP∗N |χ(U ′))
∼−→ EP∗M |U ′ .

Definition 5.1.1. An E-algebra on a contact manifold X is a sheaf A of C-al-

gebras such that there are an open cover {Ui}i∈I of X, contact embeddings

ji : Ui ↪→ P ∗M and C-algebra isomorphisms A|Ui ' j−1
i EP∗M for any i ∈ I.

Given an E-algebra A, the C-algebra γ−1A on Y satisfies γ−1A|γ−1(Ui) '
j̃−1
i EṪ∗M for j̃i : γ

−1(Ui) −→ Ṫ ∗M a homogeneous symplectic transformation

lifting ji : Ui ↪→ P ∗M . Note that Proposition 4.2.2 implies that the invertible

γ−1Ae-module (γ−1A)[λ] is well defined for any [λ] ∈ C/Z.
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To quantize X in the strict sense means to endow it with an E-algebra

(see [2, 34]). This might not be possible in general. However, as we now recall,

Kashiwara [17] proved that X is endowed with a canonical E-algebroid.

§5.2. Microdifferential algebroids

Definition 5.2.1. (i) An E-algebroid on X is a C-algebroid A such that for every

open subset U ⊂ X and any object α ∈ A(U), the C-algebra EndA(α) is an

E-algebra on U .

(ii) A stack of twisted E-modules on X is a C-stack M such that there are an open

cover {Ui}i∈I of X, E-algebras Ei on Ui and equivalences M|Ui ≈C Mod(Ei) for

any i ∈ I.

Note that a C-stack A is an E-algebroid if and only if there are an open cover

{Ui}i∈I of X, E-algebras Ei on Ui and equivalences A|Ui ≈C E
+
i for any i ∈ I. In

particular, Mod(A) is a stack of twisted E-modules.

Kashiwara’s construction of the canonical E-algebroid on X was performed by

patching data as explained in Appendix A.2 (see [10] for a more intrinsic construc-

tion). More precisely, in [17] he proved the existence of an open cover U = {Ui}i∈I
of X, of E-algebras Ei on Ui, of isomorphisms of C-algebras fij : Ej −→ Ei on Uij
and of sections aijk ∈ Γ (Uijk; Ei(0)×), satisfying the cocycle condition

(5.2.1)

{
fijfjk = Ad(aijk)fik,

aijkaikl = fij(ajkl)aijl.

By Proposition A.2.1(i), this implies

Theorem 5.2.2 ([17]). Any complex contact manifold X is endowed with a

canonical E-algebroid EX .

It follows that a C-stack on X is an E-algebroid (resp. a stack of twisted

E-modules) if and only if it is locally C-equivalent to EX (resp. to Mod(EX)). In

particular, if X = P ∗M then EP∗M is C-equivalent to EP∗M , and E-algebroids are

C-twisted forms of EP∗M .

Recall that an algebroid is Picard good if and only if so are the algebras

that locally represent it. Hence, by Theorem 4.3.6 one gets that any E-algebroid,

and in particular EX , is Picard good. From Proposition 3.4.3, we thus deduce the

following

Theorem 5.2.3. (i) Two E-algebroids are C-equivalent if and only if they are

Morita equivalent.

(ii) Any stack of twisted E-modules is C-equivalent to the stack of modules over

an E-algebroid.
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To classify E-algebroids, we thus need to compute the first cohomology with

value in the stack of 2-groups AutC(EX)≈Inv(EeX)op, where we set EeX = Eop
X ⊗CEX .

§5.3. Geometry of γ : Y −→ X

Lemma 5.3.1. For M an abelian group, there is a distinguished triangle

MX −→ Rγ∗MY −→MX [−1]
+1−−→

Proof. As the complex Rγ∗MY is concentrated in degrees [0, 1], by truncation it

is enough to prove the isomorphism

(5.3.1) HiRγ∗MY 'MX for i = 0, 1.

For i = 0 it is induced by the adjunction morphism MX −→ Rγ∗MY .

Set SY = Y/R>0 and consider γ as the composite of p : Y −→ SY and q : SY −→
X, which are principal bundles for the groups R>0 and S1, respectively. Note that

Rp∗MY 'MSY , so that Rγ∗MY ' Rq∗MSY ' Rq!MSY . The infinitesimal gener-

ator θ of the action of C× on Y induces a trivialization of the relative orientation

sheaf orSY/X . Hence q!MX ' MSY [1]. Then the isomorphism (5.3.1) for i = 1 is

induced by the adjunction morphism Rq!MSY ' Rq!q
!MX [−1] −→MX [−1].

Let M = C×. The induced long exact cohomology sequence gives

H1(Y ;C×)
µ1−→ H0(X;C×)

δ−→ H2(X;C×)
γ#

−−→ H2(Y ;C×)
µ2−→ H1(X;C×).

We can represent elements of H0 by locally constant C×-valued functions, elements

of H1 by isomorphism classes of local systems of rank one, and elements of H2 by

C-equivalence classes of invertible C-algebroids (see Lemma 2.5.4). Let us describe

the above sequence in these terms (see also [15, Chapitre V, §§3.1, 3.2]), where we

use the notation [ · ] for both isomorphism and C-equivalence classes.

For L a local system of rank one on Y , µ1([L]) is the locally constant function

on X giving the monodromy of L along the fibers of γ.

Recall that C+
Y denotes the stack of local systems of rank one on Y .

Lemma 5.3.2. (i) There is a group isomorphism π0(γ∗C+
Y ) ' C×X , where the

group structure on the left-hand side is induced by ⊗C.

(ii) If D is a C-stack on Y , then π0(γ∗D) is a C×X-sheaf (i.e., it is endowed with

a C×X-action).

(iii) If T is an invertible CY -algebroid, then π0(γ∗T) is a C×X-torsor.

Proof. (i) Recall that C×Y [1] denotes the stack of C×Y -torsors. The functor

C×Y [1] −→ C+
Y , P 7→ C×C× P,
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defines a group isomorphism π0(γ∗C+
Y ) ' π0(γ∗(C×Y [1])). By (1.4.3), the latter is

isomorphic to R1γ∗C×Y , hence to C×X by Lemma 5.3.1.

(ii) By using (2.1.1), one gets a C-functor

γ∗C+
Y ⊗C γ∗D −→ γ∗D, (L, δ) 7→ L⊗C δ.

This defines an action of π0(γ∗C+
Y ) ' C×X on π0(γ∗D).

(iii) Since R2γ∗C×Y = 0, the stack γ∗T is locally C-equivalent to γ∗C+
Y . Hence

π0(γ∗T) is a C×X -torsor by (i) and (ii).

Notation 5.3.3. Let C be a C-stack on X. For s a global section of π0(C), we

denote by Cs the full substack of C whose objects c satisfy [c] = s in π0(C).

Note that Cs is a C-algebroid, since π0(Cs) = {s}X . It is locally C-equivalent

to the algebra EndC(c) for any local representative c of s.

For m ∈ H0(X;C×) ' Γ (X;π0(γ∗C+
Y )), one has

δ(m) = [(γ∗C+
Y )m].

Here, (γ∗C+
Y )m is identified with the CX -algebroid of local systems L ∈ γ∗C+

Y

with µ1([L]) = m. In particular, for m = 1 the CX -algebroid (γ∗C+
Y )1 is equivalent

to C+
X via the adjunction functor C+

X −→ γ∗C+
Y . Moreover, one has a decomposition

γ∗C+
Y ≈C

∐
m∈C×X

(γ∗C+
Y )m.

For S an invertible CX -algebroid, γ#([S]) = [γ−1S].

Proposition 5.3.4. For T an invertible CY -algebroid, µ2([T]) is the class of the

local system of rank one C×C× π0(γ∗T).

Proof. By Lemma 5.3.2(iii), π0(γ∗T) is a C×X -torsor. It follows that C×C× π0(γ∗T)

is a local system of rank one on X.

Choose an open covering {Ui} ofX in such a way that T is described, by means

of Proposition A.1.1(i), by the data (C+
Vi
, (·)⊗CMji, aijk), where Vi = γ−1(Ui) and

Mji are local systems of rank one on Vij . Then C ×C× π0(γ∗T) is represented by

the 1-cocycle {µ1([Mji])} with values in C×, which gives a Čech representative of

the class µ2([T]).

§5.4. Classification results

Set

EY = γ−1EX , EeY = Eop
Y ⊗C EY ≈ γ−1(EeX).

Note that EY can be described by patching the C-algebras γ−1Ei along the pull-

back on Y of the data (5.2.1).
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For [λ] ∈ C/Z, the algebroid version of the invertible bimodule E [λ]

Ṫ∗M
is the

EeY -module

E
[λ]
Y ∈ FctCY (EY ,EY ) ⊂ Mod(EeY )

locally defined by (·)⊗EṪ∗M E
[λ]

Ṫ∗M
(cp. Proposition 3.3.7).

Consider the direct image functor, obtained by using (1.1.1),

γ∗ : γ∗Mod(EeY ) −→ Mod(EeX)

and recall the morphism H1(Y ;C×)
µ1−→ H0(X;C×) ' H0(X;C/Z) from §5.3.

Theorem 5.4.1. The functor

(5.4.1) γ∗Inv(CY ) −→ Inv(EeX), L 7→ γ∗(L⊗C E
µ1(L∗)
Y ),

is an equivalence of stacks of 2-groups.

Proof. (a) A priori, γ∗(L⊗C E
µ1(L∗)
Y ) is an object of Mod(EeX). It is locally, hence

globally, invertible with inverse given by γ∗(L
∗ ⊗C E

µ1(L)
Y ).

(b) The sheaf CY is sent to EX , since γ∗(EY ) ' EX as EeX -modules. Moreover,

the natural morphism

γ∗(L⊗C E
µ1(L∗)
Y )⊗EX γ∗(L

′ ⊗C E
µ1(L′∗)
Y ) −→ γ∗(L⊗C L

′∗ ⊗C E
µ1(L∗)+µ1(L′∗)
Y )

is locally, hence globally, an isomorphism. Hence (5.4.1) is monoidal.

(c) For an invertible EeX -module P, define its exponent as the unique locally

constant C/Z-valued function ε(P) on X such that γ−1P is locally isomorphic to

E
ε(P)
Y (this is well-defined by Theorem 4.3.5). Then ε(γ∗(L⊗C E

µ1(L∗)
Y )) = µ1(L∗),

and by using Lemma 4.3.4 one finds that the functor

P 7→ HomEeY
(E
ε(P)
Y , γ−1P)

is a quasi-inverse of (5.4.1).

Let Pic(EX) denote the set of isomorphism class of invertible EeX -modules,

endowed with the group structure induced by ⊗EX .

Corollary 5.4.2. There is a group isomorphism Pic(EX) ' H1(Y ;C×Y ).

Theorem 5.4.3. The set of C-equivalence classes (resp. Morita classes) of E-al-

gebroids is canonically isomorphic, as a pointed set, to H2(Y ;C×Y ).

Proof. Since EX is Picard good, by Theorem 5.4.1 and Proposition 3.4.2 there is

an equivalence of stacks of 2-groups

AutC(EX)≈ γ∗Inv(CY )op.
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The right-hand term is equivalent to γ∗Inv(CY ) by the functor L 7→ L∗. Since CY
is Picard good, from (3.4.3) and by using (1.4.2) one gets an equivalence of stacks

of 2-groups
γ∗Inv(CY )≈ [Rγ∗C

×
Y [1]].

It then follows from (1.4.1) that

(5.4.2) H1(X;AutC(EX)) ' H2(Y ;C×Y ).

We end by giving a realization of isomorphism (5.4.2).

First, let us explain how to twist EY by a local system of rank one L on X,

obtaining a C-algebroid ELY on Y locally C-equivalent to EY .

Choose an open covering {Ui} of X in such a way that L is represented

by a 1-cocycle {[λij ]} with values in C/Z. Set Vi = γ−1(Ui) and consider the

data (EVi , (·) ⊗EVij E
[λij ]
Vij

,mijk), where mijk denotes the invertible transformation

induced by the canonical isomorphism of EeVijk -modules

E
[λij ]
Vijk
⊗EVijk E

[λjk]
Vijk

∼−→ E
[λik]
Vijk

.

Then ELY is the C-stack on Y obtained from these data by Proposition A.1.1(i).

Note that (ELY )op ≈C EL
∗

Y and ELY ≈C EY if L is trivial.

Denote by L× the C×X -torsor associated to L and recall from Lemma 5.3.2

that π0(γ∗E
L
Y ) is endowed with a C×X -action.

Lemma 5.4.4. π0(γ∗E
L
Y ) ' L× ×C× π0(γ∗EY ) as C×X-sheaves.

Proof. Let {[λij ]} be a 1-cocycle with values in C/Z representing L on an open

covering {Ui} of X. Then γ∗E
L
Y |Ui ≈C γ∗EY |Ui and the associated glueing C-equiv-

alences γ∗EY |Uij −→ γ∗EY |Uij are given by (·)⊗EVij E
[λij ]
Vij

, where Vi = γ−1(Ui). We

thus get isomorphisms of C×-sheaves π0(γ∗E
L
Y )|Ui ' π0(γ∗EY )|Ui , with associated

glueing automorphisms of π0(γ∗EY )|Uij given by multiplication by e2πiλij . This

follows from the commutative diagram of stacks of 2-groups

C/ZX [0]

��

' // C×X [0]

��
γ∗AutC(EY )

π0 // Aut(π0(γ∗EY ))[0]

where the left-hand vertical arrow is the functor [λ] 7→ (·)⊗EY E
[λ]
Y and the right-

hand one is the C×-action. Hence π0(γ∗E
L
Y ) is isomorphic to π0(γ∗EY ) twisted by

the C×X -torsor L×.

Let T be an invertible CY -algebroid. Following Proposition 5.3.4, we denote

by µ2(T) the local system of rank one on X associated to the C×X -torsor π0(γ∗T).
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Lemma 5.4.5. π0(γ∗(T⊗C E
µ2(Top)
Y )) ' π0(γ∗EY ) as C×X-sheaves.

Proof. By using the functor (2.1.1), one gets a morphism

π0(γ∗T)× π0(γ∗E
µ2(Top)
Y ) −→ π0(γ∗(T⊗C E

µ2(Top)
Y ))

which is C×-equivariant on each term. Hence it factors through π0(γ∗T) ×C×

π0(γ∗E
µ2(Top)
Y ). By Lemma 5.4.5, this is isomorphic to π0(γ∗EY ), since π0(γ∗T

op)

is isomorphic to the C×X -torsor opposite to π0(γ∗T). It follows that we have a

morphism

π0(γ∗EY ) −→ π0(γ∗(T⊗C E
µ2(Top)
Y ))

of C×X -sheaves, which is locally, hence globally, an isomorphism.

Corollary 5.4.6. π0(γ∗(T⊗C E
µ2(Top)
Y )) has a canonical global section.

Proof. The adjunction functor EX −→ γ∗EY defines a morphism π0(EX) −→
π0(γ∗EY ). Since π0(EX) is the singleton-valued constant sheaf, this gives a global

section of π0(γ∗EY ), hence of π0(γ∗(T⊗C E
µ2(Top)
Y )) by Lemma 5.4.5.

Denote by can the canonical global section of π0(γ∗(T⊗C E
µ2(Top)
Y )). Then the

inverse of the isomorphism (5.4.2) is realized as

[T] 7→ [(γ∗(T⊗C E
µ2(Top)
Y ))can ],

where [ · ] denotes the C-equivalence class and we use Notation 5.3.3.

Assume that T = γ−1S for S an invertible CX -algebroid. Since µ2(γ−1Sop) is

trivial and EY = γ−1EX , the above isomorphism reduces to

[γ−1S] 7→ [(γ∗γ
−1(S⊗C EX))can ] = [S⊗C EX ],

the latter being the class of the “twist” of EX by S.

Remark 5.4.7. Replacing EX by an E-algebroid in the previous construction,

one gets an action of H2(Y ;C×Y ) on the set of C-equivalence classes (resp. Morita

classes) of E-algebroids. In such a way, the latter becomes an H2(Y ;C×Y )-torsor

and the canonical isomorphism (5.4.2) is obtained by choosing the C-equivalence

class of EX as base point.

Appendix. Cocycles

For the reader’s convenience, we recall here the descent conditions for stacks, and

detail the case of algebroids. This is parallel to the case of gerbes. These results

are well known and can be found for example in [15, 3, 17] (see also [26, 11, 35,

12, 4, 41]).
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Let X be a topological space (or a site), and R a sheaf of commutative rings

on X. If U = {Ui}i∈I is an open cover of X, we set Uij = Ui∩Uj , Uijk = Ui∩Uj∩Uk
etc. We use the notation • for the horizontal composition of transformations.

A.1. Glueing of stacks

Let us recall here how to recover R-stacks, R-functors and transformations from

collections of local data.

Proposition A.1.1. Let U = {Ui}i∈I be an open cover of X.

(i) Consider the descent datum (Ci, fij , aijk)ijk∈I , that is, Ci are R-stacks on Ui,

fij : Cj −→ Ci are R-equivalences on Uij and aijk : fik −→ fij ◦ fjk are invertible

transformations on Uijk such that

(A.1.1)

fij ◦ fjk ◦ fkl fik ◦ fkl
aijk•idfkl

oo

fij ◦ fjl

idfij
•ajkl

OO

fil

aikl

OO

aijloo

commutes.

Then there exists anR-stack C on X endowed withR-equivalences fi : C|Ui−→Ci
and invertible transformations aij : fi −→ fij ◦ fj on Uij such that

fij ◦ fjk ◦ fk fij ◦ fj
idfij

•ajk
oo

fik ◦ fk

ajkl•idfk

OO

fi

aij

OO

aikoo

commutes.

The R-stack C is unique up to an R-equivalence unique up to a unique invert-

ible transformation.

(ii) Let C be as above, and let C′ be associated with the descent datum

(C′i, f
′
ij , a

′
ijk)ijk∈I . Consider the descent datum (gi, bij)ij∈I , that is, gi : Ci −→

C′i are R-functors on Ui and bij : f ′ij◦gj −→ gi◦fij are invertible transformations

on Uij such that

(A.1.2)

gi ◦ fij ◦ fjk gi ◦ fik
idgi
•aijk

oo

f ′ij ◦ gj ◦ fjk

bij•idfjk

OO

f ′ij ◦ f ′jk ◦ gk
idf′
ij
•bjk

oo f ′ik ◦ gk

bik

gg

a′ijk•idgkoo

commutes.

Then there exists an R-functor g : C −→ C′ endowed with invertible transfor-

mations bi : f
′
i ◦ g −→ gi ◦ fi on Ui such that
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gi ◦ fij ◦ fj gi ◦ fi
idgi
•aij

oo

f ′ij ◦ gj ◦ fj

bij•idfj

OO

f ′ij ◦ f ′j ◦ g
idf′
ij
•bj

oo f ′i ◦ g

bi

ee

a′ij•idgoo

commutes.

The R-functor g : C −→ C′ is unique up to a unique invertible transformation.

(iii) Let g : C −→ C′ be as above, and let g′ : C −→ C′ be the R-functor associated

with the descent datum (g′i, b
′
ij)ij∈I . Consider the descent datum (di)i∈I , that

is, di : gi −→ g′i are transformations on Ui such that

(A.1.3)

gi ◦ fij

di•idfij

��

f ′ij ◦ gjbij

oo

idf′
ij
•dj

��
g′i ◦ fij f ′ij ◦ g′j

b′ijoo

commutes.

Then there exists a unique transformation d : g −→ g′ such that d|Ui = di.

Remark A.1.2. Let V = {Vi}i∈J be open cover of X finer than U , and choose

a refinement map ρ : J −→ I (that is, Vi ⊂ Uρ(i) for any i ∈ J). Let D =

(Ci, fij , aijk)ijk∈I be a descent datum defined on U and set

C̃i = Cρ(i)|Vi , f̃ij = fρ(i)ρ(j)|Vij , ãijk = aρ(i)ρ(j)ρ(k)|Vijk .

Then ρ−1D = (C̃i, f̃ij , ãijk)ijk∈J is a descent datum on V which defines an R-stack

R-equivalent to that associated to D.

Let ρ′ : J −→ I be another refinement map and ρ′−1D = (C̃′i, f̃
′
ij , ã

′
ijk)ijk∈J the

associated descent datum on V. Set

gi = fρ′(i)ρ(i)|Vi , bij = (aρ′(i)ρ′(j)ρ(i)|Vij • idf̃ij
)−1 ◦ (idf̃′ij

•aρ′(j)ρ(i)ρ(j)|Vij ).

Then (gi, bij)ij∈J is a descent datum as in (ii) and, since the gi are equivalences,

it defines an R-equivalence between the R-stacks associated to ρ−1D and ρ′−1D.

A.2. Algebroid cocycles

We give here a description of R-algebroids and R-functors between them in terms

of R-algebras and R-algebra morphisms.

Let A be an R-algebroid on X. By definition, there exists an open cover

{Ui}i∈I of X such that A|Ui is non-empty. For αi ∈ A(Ui) and Ai = EndA(αi),

there are R-equivalences fi : A|Ui −→ A+
i . Choose quasi-inverses f−1

i and invertible

transformations id −→ f−1
j ◦ fj . Set fij := fi ◦ f−1

j : A+
j −→ A

+
i on Uij . On Uijk there

are invertible transformations aijk : fik −→ fij ◦ fjk induced by id −→ f−1
j ◦ fj . On

Uijkl one checks that the diagram (A.1.1) commutes. By Proposition A.1.1(i), the
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data (Ai, fij , aijk)i,j,k∈I are enough to reconstruct A, in the sense that the stack

obtained by glueing these data is R-equivalent to A.

The R-equivalence fij : A+
j −→ A+

i on Uij is locally induced by R-algebra

isomorphisms. There thus exist an open cover {Uαij}α∈A of Uij such that fij =

(fαij)
+ on Uαij for fαij : Aj −→ Ai isomorphisms of R-algebras. On triple intersections

Uαβγijk = Uαij ∩ U
β
ik ∩ U

γ
jk, the invertible transformations aijk : (fβik)+ −→ (fαijf

γ
jk)+

are given by invertible sections aαβγijk ∈ Ai(U
αβγ
ijk ) such that fαijf

γ
jk = Ad(aαβγijk )fβik.

(Recall that we set Ad(a)(b) = aba−1.) On quadruple intersections Uαβγδεϕijkl =

Uαβγijk ∩Uαδεijl ∩U
βδϕ
ikl ∩U

γεϕ
jkl , the commutative diagram (A.1.1) is equivalent to the

equality aαβγijk a
βδϕ
ikl = fαij(a

γεϕ
jkl )aαδεijl .

One can treat in the same manner R-functors and transformations. We sum-

marize the results in the next proposition. However, as indices of hypercovers are

quite cumbersome, we will not write them explicitly anymore. Instead, we will

assume that

(A.2.1) open covers of X are cofinal among hypercovers.

This is the case, for example, of paracompact spaces.

Proposition A.2.1. Assume (A.2.1). Let {Ui}i∈I be a sufficiently fine open cover

of X.

(i) Any R-algebroid A can be reconstructed from a non-abelian cocycle

(Ai, fij , aijk)i,j,k∈I , that is, Ai are R-algebras on Ui, fij : Aj |Uij −→ Ai|Uij
are R-algebra isomorphisms and aijk ∈ Ai(Uijk) are invertible sections such

that

(A.2.2)

{
fijfjk = Ad(aijk)fik in HomR-AlgX (Ak,Ai)(Uijk),

aijkaikl = fij(ajkl)aijl in Ai(Uijkl).

(ii) Let A be as above, and let A′ be an R-algebroid constructed from the non-

abelian cocycle (A′i, f ′ij , a′ijk)i,j,k∈I . Any R-functor g : A −→ A′ can be recon-

structed from a non-abelian cocycle (gi, bij)i,j∈I , that is, gi : Ai −→ A′i are

R-algebra morphisms and bij ∈ A′i(Uij) are invertible sections such that

(A.2.3)

{
gifij = Ad(bij)f

′
ijgj in HomR-AlgX (Aj ,A′i)(Uij),

gi(aijk)bik = bijf
′
ij(bjk)a′ijk in A′i(Uijk).

(iii) Let g : A −→ A′ be as above, and let g′ : A −→ A′ be constructed from the non-

abelian cocycle (g′i, b
′
ij)i,j∈I . Any transformation of R-functors d : g −→ g′ can

be reconstructed from a non-abelian cocycle (di)i∈I , that is, di ∈ A′i(Ui) are
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sections such that

(A.2.4) dibij = b′ijf
′
ij(dj) in A′i(Uij).

In particular, two non-abelian cocycles

(Ai, fij , aijk)i,j,k∈I , (A′i, f ′ij , a′ijk)i,j,k∈I

are associated to R-equivalent R-algebroids if and only if, up to refinements, there

exists a non-abelian cocycle (gi, bij)i,j∈I satisfying (A.2.3) with gi isomorphisms

of R-algebras.

Vice versa, let A be as in Proposition A.2.1(i). For i, j ∈ I let A′i be R|Ui-al-

gebras, gi : Ai −→ A′i isomorphisms of R-algebras and bij ∈ A′i(Uij) invertible

sections. Then the non-abelian cocycle (A′i, f ′ij , a′ijk)i,j,k∈I defined by (A.2.3) is

associated to an R-algebroid R-equivalent to A.

Remark A.2.2. Let (Ai, fij , aijk)i,j,k∈I be a non-abelian cocycle associated to

an R-algebroid A. Then (A.2.2) implies the relations

fii = Ad(aiii), aiij = aiii, aijj = fij(ajji), for any i, j ∈ I.

Setting A′i = Ai, gi = idAi , and bij = aiji in (A.2.3), we get

f ′ij = Ad(a−1
iji )fij , a′ijk = f ′ij(a

−1
jkjajki).

Thus, the non-abelian cocycle (A′i, f ′ij , a′ijk)i,j,k∈I is associated to an R-algebroid

R-equivalent to A, and it satisfies the relations

f ′ii = idAi , a′iij = a′ijj = 1,

of a normalized cocycle in the sense of [3].

A.3. Module cocycles

Let A be the R-algebroid described over the open cover {Ui}i∈I of X by the non-

abelian cocycle (Ai, fij , aijk)i,j,k∈I . The stack of (left) A-modules Mod(A) is then

described as in Proposition A.1.1(i) by the family

(Mod(Ai), Mod(f+
ji ), Mod(akji))i,j,k∈I

(note the inversion of indices due to the fact that Mod(·) is contravariant). By

Morita theory, the functor Mod(f+
ji ) = fji(·) is isomorphic to Pij ⊗Aj (·) for the

invertible Ai ⊗R A
op
j -module Pij = fjiAj . We thus recover the description of

twisted sheaves given in [19] (see also [17, 11, 13]).
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Proposition A.3.1. Let A be as above. An object of Mod(A) is described by a

family (Mi, ϕij)i,j∈I , whereMi ∈ Mod(Ai) and ϕij ∈ HomAi(fjiMj |Uij ,Mi|Uij )
are isomorphisms such that for any u ∈Mk one has

ϕij(ϕjk(u)) = ϕik(a−1
kjiu).

Proof. Let C be an R-stack as in Proposition A.1.1(i). The statement follows by

noticing that objects of C(X) are described by data

(αi, aij)i,j∈I ,

where αi ∈ Ci(Ui) and aij : fij(αj) −→ αi are isomorphisms in Ci(Uij) such that

aij ◦ fij(ajk) = aik ◦ a−1
ijk(αk)

as isomorphisms fijfjk(αk)
∼−→ αi in Ci(Uijk).
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