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The Sixth Painlevé Transcendents and the
Associated Schlesinger Equation

by

Shun SHIMOMURA

Abstract

For the Schlesinger equation associated with the sixth Painlevé equation (PVI) near the
critical point, we present families of solutions expanded into convergent series with ma-
trix coefficients. These families yield four basic solutions of (PVI) in Guzzetti’s table
describing the critical behaviours of the sixth Painlevé transcendents; two of the basic
solutions are of complex power type, and two are of logarithmic type. Consequently, the
convergence of the logarithmic solutions is verified. Furthermore we obtain more infor-
mation on these basic solutions as well as on inverse logarithmic solutions. For complex
power solutions, examining related inverse oscillatory ones, we discuss sequences of zeros
and poles, non-decaying exponential oscillation and the analytic continuation around the
critical point, and show the spiral distribution of poles conjectured by Guzzetti.
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81. Introduction

For the sixth Painlevé equation
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with «, 8,7,0 € C, Guzzetti [9] provided the tables of the critical behaviours of
solutions as well as the parametric connection formulas, which are expected to

give a complete description of the behaviours of the sixth Painlevé transcendents
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as nonlinear special functions and to be of great use in applications to a variety
of problems in mathematics and mathematical physics. All the types of solutions
near z = 0 listed in [9, Table 1] are derived through birational transformations
from four basic solutions, two of which are of complex power type,

n

oo
y(z) = x(cl,_l(ax”)fl + c10 + ax”) + Z z" Z Cnm (az?)™,

n=2 m=-—n

y(a) = a(dp +az™) + Y a" Y €, (ax™)"
n=2 m=0

with
1 1
c10 = @(02 +05—03), e = 167((60 —0,)* = %) (6o +0,)* — 0?),
0o
CIlO = 90 Zt 0z7 08 = (00 iew)27

and two are of logarithmic type,

0z — 03 2, 08 S g2 L g2
y(gj):g}( 1 (CH_lng)_'_g%_g%)_"zx P,(logx;a) if 05 # 0z,

n=2

y(z) = z(a + 6y log x) + Z " P, (logx; a) if 62 = 62
n=2

Here a and o are integration constants; 6 and 6, are numbers such that 82 = —2,
62 =1 —26; and P,(&;a) (n > 2) are polynomials in &.

The basic complex power solutions are represented by convergent series, which
were obtained from the result in [5] combined with [8] (see also [12], [17]). Their
convergence was proved in [5] by solving integral equations for the elliptic repre-
sentation of (PVI) by successive approximations. As described in [8, §7], the inner
sums Y v Cpm(az?)™ are given by direct substitution into (PVI), and the de-
termination of ¢, is based on an overdetermined system of recursive relations,
that is, for each n it is necessary to check the compatibility of more than 2n + 1
relations on c¢p,. On the other hand, the leading terms of the basic logarithmic
solutions were found in [6], [7] by applying a matching procedure to a Fuchsian
system related to (PVI) through isomonodromy deformation (see also [12, (1.9)']).
The polynomials P, (&;a) are computed by direct substitution into (PVI), and in
this case as well, the system of recursive relations is overdetermined. The conver-
gence of the series for the logarithmic solutions, however, has not been proved, and
no reference is made to deg P,(§;a) in the generic case except for a conjectural
discussion in [10, §3] related to the pole distribution of solutions of (PVI) with

(o, 8,7,0) = ((2u—1)%/2,0,0,1/2).
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As applications of the convergent series representations for complex power
solutions Guzzetti [8], [9], [10] derived oscillatory or inverse oscillatory behaviours
and studied in detail sequences of poles accumulating at x = 0 asymptotically along
rays. Furthermore the analytic continuation of complex power solutions around
x = 0 was clarified through monodromy data in [4] and [5], which suggested the
spiral distribution of poles.

Equation (PVI) is equivalent to the Schlesinger equation that is a deforma-
tion equation for the Fuchsian system mentioned above. For the Schlesinger equa-
tions corresponding to general Fuchsian systems, under a certain restriction on the
eigenvalues of related matrices, Sato, Miwa and Jimbo [16] presented asymptotic
estimates for solutions as well as their asymptotic expansions (for asymptotic es-
timates in a more general case see [4]). These estimates were used in the study
of (PVI) (cf. [4], [5], [8], [12]). This fact suggests the possibility of deriving the
formulas in Guzzetti’s table by solving the Schlesinger equation that is equivalent
to (PVI).

In view of the importance of the basic solutions, it is necessary to verify the
convergence of the expansions in the logarithmic case as well. In the derivation
of the series expansions of both types, it is preferable to avoid the use of overde-
termined systems of recursive relations if possible, since it is not easy to check
compatibility. In this paper we construct families of solutions of the Schlesinger
equation associated with (PVI) expanded into convergent series with matrix co-
efficients, whose expressions are different from the asymptotic expansions in [16],
and we derive the basic solutions of (PVI) without dealing with overdetermined
recusive relations. Consequently, the convergence of the logarithmic solutions is
shown, and more information on the expansions is obtained; for example, we may
fix the bound of deg P, (§;a), which enables us to get more detailed expressions
for inverse logarithmic solutions including the Chazy solutions [14].

Our results on the solutions of the Schlesinger equation and on the basic so-
lutions of (PVI) are stated in Section 2.1. The inverse logarithmic solutions in
Corollary 2.5 follow from the basic logarithmic ones. In Section 2.2, for complex
power solutions, using the representations of them and of related inverse oscillatory
ones, we observe how they behave and get results describing sequences of zeros and
poles, non-decaying exponential oscillation and the analytic continuation around
x = 0. We discuss the analytic continuation by matching, which shows the spi-
ral distribution of poles conjectured by Guzzetti [4], [5]. In Section 3 we describe
a relation between (PVI) and the Schlesinger equation in our case (for isomon-
odromy deformation related to (PVI) see, for example, [2], [4], [5], [13], [14]). The
convergent solutions of the Schlesinger equation are constructed in Section 5 by
iteration on a certain kind of rings of formal or convergent series with matrix co-
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efficients, which are defined in Section 4. In our argument, which is similar to that
in [17], we define a suitable norm in each ring, and, instead of the contour integral,
consider an operator acting in it that assigns the formal primitive function of a
related series. The final section is devoted to the derivation of the basic solutions
of (PVI).

Throughout this paper we use the following symbols:

(1) for a ring A, M>(A) is the ring of 2 x 2 matrices C = (C;;) with C;; € A
(1,5 = 1,2), and GLy(A) := {C € My(A); C™' € My(A)};
(2) I, J, A, A_ denote the matrices

10 10 0 1 0 0
O O A N

(3) R(C\ {0}) denotes the universal covering of C\ {0};
(4) Cy:= C[lo,0z,01,000,0L, (8,) = (00,0s,01,05) (cf. (2.2), (2.3));

(5) the following are rings of formal series ® (cf. Section 4):

[~

n

Ch(kt)"log™t, Cy, € My(Cy),

M

o (0]

3
I
=
3
Il
o

]

(S

I
1M
M- 107

C:Z,("it)n logm t, Cfn € M, ((C9)a

GV

&

I
[M]8

Cp (st)"t°™,  Cl € My(Cy(o)),

3
I
3
I

—-n

&t (op): @ Cy (kt)"t7o™, Cy € My(Cy(oy)),

ol
M=

n 0

I
3
Il

and £(D), &(D(X)), 8T (D(0g)) denote the subrings consisting of ® such that
[|®]] < oo in the domains D, D(X), D(oy), respectively.

82. Results
§2.1. Solutions of the Schlesinger equation and (PVI)

The Schlesinger equation

dA dA, T
== =[Ay, Ao), T2 =[Ag, As] — (A1, Ay,
dx dx 1—=x
(2.1) A
Lo % j4,, A,

xdm 1—=x
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where Ag, A, A1 are 2 x 2 unknown matrices, controls the isomonodromy defor-
mation of a Fuchsian system that will be mentioned in the next section, and is
equivalent to (PVI) under certain conditions.

Let 6g, 0., 61, 0. be complex parameters such that

(22) a=(0—12/2, —-B=03/2, y=07/2, 1/2-6=02/2, 0. #0,
where «, 3, 7, 0 are the coefficients of (PVI), and set

(23) CO = C[e()vo:wolaaooae 1}

o -
For a given number by > 0, suppose that (0,) := (0o, 0,01, 0 ) satisfies
(2.4) 0] + 02| + 101 + [0 | + 10| < bo.

Suppose that Ag, Az, Ay € Ma(Cylo,071]), T € GL2(Cylo,071]) and A := Ag+A,
have the properties:

(P.1) the eigenvalues of Ay, A,, A1 are +600/2, £6,./2, +60, /2, respectively;
(P.2) T-AT = (0/2)J;
(P3) Ao+ Ay + A1 =—(0/2)J.

Then we have

Theorem 2.1. (1) Let Xg be a bounded domain such that
Yo CC\Sy with Sy:={c<-1}U{0}u{ec>1}CR

and dist(Xg, So) > 0. Then (2.1) admits a two-parameter family of solutions
{(Ao(a,p, ), As(0, p,x), A1 (0, p,x)); (0, p) € Zg x (C\ {0})}

given by the convergent series

Ao(o, p,z) = (pz7)Me (Ao + Z 211§ (o, px”)) (px®) e,

n=1

Ag(o,p,z) = (pz”)A/g (Am + Z "I (o, pz”)) (px")fA/”7
n=1

Ai(o,p,z) =AM + Z "I} (o, px)

n=1
with .
H:L(O—a g) = Z Can(o-)gma Olnm(o—) € MQ(C9(U))

m=—n
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(¢ = 0,2,1), which are holomorphic in (o,p,x) € Q(Xo,e0) C g x (C\ {0}) x
R(C\ {0}). Here

(o, £0) := U {(o,0)} x Qs p(<0),
(0.0 €S0 % (C\{0})

Qo p(g0) = {2 € R(C\ {0}); |2| < €0, |2(pz7)| < €0, |2(p2”)~"| < &0},

g0 = €0(2o, bo) being a sufficiently small positive number depending only on X
and by.
(2) If (T7*AoT)21 vanishes at

oc=0p€Xy =C\({o<-1}UZ),
then (2.1) admits a one-parameter family of solutions

{(Ao(00, p, ), Az(00, p, ), A1(00, p,x)); p € C}

given by the representations above restricted to o = og whose inner sums satisfy
I (00,&) = >0 o Ot (00)€™ and, for =0, ,

n+1
MO (00, )70 =Y Ch(00)e™, €M = Cf(09) + CF (00)8,
m=0

with C" (0) € M3(Cgy(00)) (n > 0). For v =0,z,1, A, (00, p,z) are holomorphic
in (p,x) € Q(gg) C Cx R(C\ {0}), where

Qeo) == (J{r} x Q(c0),

peC
Qp(e0) :={z € R(C\{0}); |z| < eo, [a(pz”®)| < &0},

g0 = €o(o0,bp) being a sufficiently small positive number depending only on og
and by.

Remark 2.1. The poles of each entry of C7, (o) belong to Q \ {0 < |o] < 1}.

Remark 2.2. By (P.2) each entry of Ag(o,p,x), A.(0,p,x) and A;(o,p,x) is a
power series in z and (p2z?)*!, in particular, (A (0o, 0, z), A (00,0, ), A1 (00,0, z))
is a Taylor series solution convergent for |z| < .

Suppose that Ag, Ay, A1 € M3y(Cy), T € GL2(Cy) and A = Ag + A, have the
properties (P.1), (P.3) above and

(P.2)) T-'AT = A.

Then we have logarithmic solutions.
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Theorem 2.2. System (2.1) admits a one-parameter family of solutions

{(Ao(p, x),Az(p,aj)7A1(p,$>); pE R(C \ {0})}

given by the convergent series
Aolp pr) (Ko + Z 2" T15" (log(p)) ) () 2,
A pr) (As + Z 2T (l0g(p) ) (p) 2,

M) = s + 3 2T (log(pa))

n=1
with
™€) =Y Ciné™,  Cin € Ma(Co)

(t = 0,z,1), which are holomorphic in (p,x) € Q*(g9,O0) C R(C\ {0})%. Here

0 (e0,00) = |J  {p} x (0, O0),

PER(C\{0})

(0, 00) = { € R(C\ {0}); |pa] < co, [2(px) V%] < eo, [ara(pz)] < O},

O being a given positive number and g9 = £0(0Og,bo) a sufficiently small positive

number depending only on ©q and by. Furthermore, if (T 'AqT)21 = 0, then
I3 (§) = 3250 Cim€™ and, for v =0,z,

n+1
eAfn*n e~ Z C*” mo MEA e = CL*(? + Cljklog’

with C* € My(Cy) (n > 0).

From these solutions of the Schlesinger equation depending on suitably chosen

matrices Ag, Ay, A1 (cf. Lemmas 6.1 and 6.2), we obtain the following theorems

n (PVI), in which %o, 4, Q(Zg,¢), Q(e) and Q*(e,0g) are as in Theorems 2.1
and 2.2.

Theorem 2.3. (1) Equation (PVI) admits a two-parameter family of solutions
{y(o,p,x); (0,p) € Lg x (C\ {0})} given by the convergent series

y(o, p,x ZxR (o, px?)
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which is holomorphic in (o, p,x) € Q(Xg,&0), €0 = €0(X0,bo) being a sufficiently
small positive number depending only on ¥y and by. Here

n

Ru(0,6)= 3 en(0)e™, (o) € Colo),

m=—n

in particular,

Rif0,€) =& 53 (0% + 63— 62) + 1o (B — 02)7 = o) (B0 + 62)7 — 07)E ™.

1604
(2) If 03 = (0o £ 0,)? and if o9 € X4, then (PVI) admits a one-parameter
family of solutions {y4 (oo, p,x); p € C} given by the convergent series

n

y-‘r(o'oapa .13) = anRn(GOapxUO)a Rn(0-07£) = Z C:Ln(o'())gmv
n=1

m=0
which is holomorphic in (p,z) € Qed), e = e (00,bo) being a sufficiently small

positive number depending only on og and bg.

As will be shown in Section 2.2, the series expansions given above allow for a
variety of behaviours of y(o, p, z) and y4(og, p, x).

Theorem 2.4. Equation (PVI) has a one-parameter family of solutions {yo(p, x);
p € R(C\ {0})} given by the convergent series

yo(p,x) = Y _ " Py(log(px)),

n=1

which is holomorphic in (p,z) € Q*(),00), ) = €)(O0,bo) being a sufficiently
small positive number depending only on ©¢y and by. Here

2n
P(§)= Y anem, e,
m=0

in particular,
Pi(§) = 3(07 — 05)€% £ o€,
If 02 = 03, then P, (&) = Y. _ ciné™ for every n > 1.

m=0"m

Remark 2.3. In Theorems 2.3 and 2.4, Cy(0) and Cy may be replaced by Qg(o)
and Qy, respectively, where Qp := Q[fo, 0., 01, 00, 03], because the entries of the
matrices in Lemmas 6.1 and 6.2 belong to Qg (o).
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Remark 2.4. Each solution as a double series converges absolutely and uni-
formly on every compact set contained in the corresponding domain. For ex-
ample Y 7 S |c (o)] |z |(pz)™| for y(o, p, x) converges uniformly on ev-
ery compact set contained in Q(Xg, &p).

Remark 2.5. The solutions y(o, p, z), y+ (00, p,z) and yo(p,z) agree with the
basic solutions [9, (36)], [9, (41)] and [9, (48), (44)], respectively.

Remark 2.6. Theorem 2.3 gives the Taylor series solution y4 (09,0, ) as well,
which agrees with [9, (42)].

Remark 2.7. (1) If 62 = 62, then P,(¢) may be written as P, (&) = Pn(£600€)
with P, (€) € Cy[€] for (6,) satisfying (2.4) (cf. Remark 6.2), so that yo(p, z) admits
another expression of the form

go(a,x) = Z 2" P, (a + 0y log ),

n=1

a being an integration constant. Hence, under the condition 6, = 6y = 0, this
yields the Taylor series solution go(a, z)|gy=0 = Dy Pn(a)|oy=o 2™, which agrees
with [9, (46)].

(2) If 62 # 62, setting p = e®exp(F200/(02 — 02)) we have P;(log(pz)) =
(02 —63)(a+logx)?/4 — 0%/(02 — 62) as in [9, (48)].

Remark 2.8. The logarithmic solution with §2 = 62 as well as those with 6,, &6,
Z[9, (43)] derived through birational transformations may also be obtained from
the polynomial Hamiltonian system

dy/dx = OHVI/QZ, dZ/dl‘ = —3HVI/8?J7
where
1
Hyp = —— -1 — 2
VIS ) (y(y — Dy —x)2

— (Bo(y — D)y — 2) + Ory(y — ) + (0. — Vy(y — 1))z + 0;(y — z)),
0y = 1((B0+ 0. + 61 — 1) —02)  (see [15], [11]).

As a corollary of Theorem 2.4 we obtain inverse logarithmic solutions includ-
ing the Chazy solutions (cf. [9, (60), (64)], [1], [3], [14]) by using the birational
transformation [15]

(25)  Oo0u—1, 0,01, 010, OO+ 1,  ylr)—a/y(z).
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Corollary 2.5. Instead of (2.4), suppose that |0o|+ |0x|+|01] + 00| + (00 +1) 71|
< by, where by is a given positive number. Then (PVI) admits a one-parameter

inverse

family of solutions {y; (p,x); p € R(C\{0})} given by the convergent series
e (p,w) = Y 2" Qu(log(px)),
n=0

which is holomorphic in (p,z) € Q*(20,0q), &0 = £0(O0, by) being a sufficiently
small positive number depending only on g and by. Here Q,(£) (n > 0) are
functions with the properties:

(i) if 3 # (6o — 1)%, then
Qu(&) =2 ane™, @ e Chl(07 — (000 — 1)*) 7],
m=0

with Cz := Clby, 0, 01,0, (0o + 1)7'], which are holomorphic for |§| > &x, in

particular,
I 40 — 1)€Y
Qo(§) = 9% — (0o — 1)2 (1 + 9% — (0o — 1)2> ’

€ being a sufficiently large positive number independent of n;
(ii) if 01 = £(0oc — 1) #£ 0, then

2n
Qu(&) =1 ane™, & e Cyl(fe — )71,
m=0

in particular, Qo(§) = ££71 /(0o — 1).
§2.2. Behaviours of y(o, p,z) and y (0o, p, z)

As shown in [4], [5], [9], a complex power solution has a dominant term that changes
according to the integration constant o. Let us examine the behaviours of y(o, p, x)
and y4 (09, p, x) in Theorem 2.3. If Imo = 0, then, in Q, ,(¢0), y(o, p, ) ~ p'T?
if -1 <0 <0,and y(o,p,2) ~cti(o)p tat=7if 0 <o <1andct (o) #D0.

In what follows we suppose that Imo # 0, and observe y(o, p, z) along the
curve

[(ro,w): (1+Reo—w)log|z| —Imo -argz = rg
with 0 < w < 2, ry € R, which was considered in [4], [5]. This is a ray tending

tox =0if 1+ Reoc —w = 0, and a spiral curve if 1 + Reoc — w # 0. Note that
|z1F7| = ero|z|@, [2177| = e~"0|x|2~% along I'(rg,w).
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2.2.1. Dominant terms. For each w # 0,1,2, y(o,p,x) along I'(rp,w) has a
dominant term.

Proposition 2.6. For every ro € R, along T'(ro,w), y(o,p,z) ~ px'T7 if 0 <
w< 1, and y(o,p,x) ~cty(o)p™ 2t if 1 <w <2 andcl (o) #D0.

2.2.2. Trigonometric oscillation. Suppose that w = 1. Let ¢ and p be fixed.
Along T'(rg, 1),

27 = e" exp(i(Imo) ' (|o*log [z| — ro Reo)).

Then R (o, pz7) has three balanced terms, and is written in the form R (o, pz?) =
pr~"(a® — & )(a° — &) with
1
+_ ek 2 2
= = 9 - 9 + .
F =60 = (02~ (o o))
Let us write y(o, p, #) = 2Ry (0, px°) + 22 R, (x) or

p " Yy(o,p,x) = p a7 R0, px°) 4+ p et TR, (2)

— (07 — &)@ — &) + p R, ().
For any z, € I'(rg,1), if |z — 2| < |z«|/2, then |z7]|, |x=7] = O(1), and hence
R, (z) = O(1), the implied constants being independent of x,. The last estimate

may be verified by using [c?,(0)| < €™ with some ¢ > 0, which follows from
absolute convergence (cf. Remark 2.4).

Simple zeros. Suppose that 6y # 0, and that & # 0. Then &5 — & # 0. Take
ro =1y = 1o (0,p) such that exp(ry) = |§, |, and set u_ = p_(o,p) = argé .
Then

27 — & = —2iexp((ologx +ry +in_)/2)sin((iclogx + p_ —iry )/2).
On I'(ry, 1) this is written in the form
2iexp(ry +i(2Imo) " (|o[*log|z| — ry Reo + p_Imo))
x sin((2Imo) ! (Jo|*log|z| — 75 Reo — p_Imo)).

This implies that 7 — {; admits a sequence {z,},en C I'(ry, 1) of simple zeros
given by

lo|*log|z,| — rg Reo — u_Imo = —27v|Imo].
It is easy to see that |z,41| = exp(—27|o|~2[lmo|)|x,|. By the fact mentioned
above, |[p~tz' TR, (z)| < My|z,| if |z — x| < |z,]/2, where My is a positive
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number independent of v. Let D, (M) be the disc |z — z,| < M|xz,|?, where the
constant M independent of v will be fixed later. On D, (M),

27 =& =oa] z —x,)(1+ O(Ma,)),
7 — & =& — &5+ ox? Nz —2,)(1 +O(Mz,))
= (& — &)1 +0(Mz,))

as long as M|z, | < 1/2. Hence, on D, (M), Ry (o, px”) admits no zeros other than
x, if |x,| is sufficiently small. Furthermore, on the circle 9D, (M),

(27 — &) (27 = &) = Mlolexp(ry )lég — & | |2 |(1 + O(Mzy)).

Take M such that M|o|exp(ry )&y — &1 | = 2Mp. Then |(27 — &) (27 — &5)| >
lp~ta1t R, (z)| on D, (M), provided that |z, | is sufficiently small, since we have
|z — x| < |z,|/2 on D,(M) if M|z,| < 1/2. By Rouché’s theorem there exists
only one simple zero z, of y(o,p,x) in the interior of 9D, (M), which satisfies

|z, — 2| = O(|z,,|?) if |z, | is sufficiently small. Thus we have

Proposition 2.7. If 6y # 0 and §Oi %+ 0, then y(o,p,x) admits a sequence
{z, }oen of simple zeros such that

lo|?log |z, | — 75 Reo — p_Imo ~ —27v|Imo]|
and dist(z,,T(rg, 1)) = O(|z, ).

Similarly, for (rg, py) = (1 (0, p), 1 (9, p)) satisfying exp(rg) = &5, py =
arg &4, we have

Proposition 2.8. If 6y # 0 and §0i # 0, then y(o,p,x) admits a sequence
{zF Y} en of simple zeros, different from {z },en, such that

lo|?log |z} | —rd Reo — py Imo ~ —27v|Im o]
and dist(z}, T(rg, 1)) = O(|zF]?).

Using (2.5) we may obtain inverse oscillatory solutions admitting sequences
of poles (cf. Section 2.2.4).

Remark 2.9. In the plane R? 3 (log|z|, arg z), the lines representing I'(ry , 1) and
['(rg, 1) run parallel to each other. Hence, if Re o # 0, the sequences {x}, },en and
{z] },en lie asymptotically along the respective spiral curves that are congruent.
If Reo = 0, they accumulate at x = 0 asymptotically along the respective rays,
and the corresponding pole sequences were studied in [10].
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Double zeros. If 6y = 0 and if & = &)(0,p) = (40%p)~1(02 — 02) # 0, then
Ry(0, px?) = pz=7(2° — £J)? vanishes at z, € ['(rJ, 1) such that

lo|?log|2,| — r) Reo — poImo = —27v|Im o],
which is a double zero, where r§ = ri(c,p) and g = puo(o,p) are given by

exp(rd) = &3], po = arg&). Every zero of solutions of (PVI) is double if 6y = 0,
which is checked by a straightforward computation. Using this fact, by the same
argument as above, we have

Proposition 2.9. If0y = 0 and &) # 0, then y(o, p, ) admits a sequence {z%},en
of double zeros such that

lo|?log || — 1) Reo — poImo ~ —27v|Im o]
and dist(z%,T(rd,1)) = O(|22|?).

2.2.3. Non-decaying exponential oscillation. Suppose that w = 0. In this
case y(o, p,z) along I'(rg,0) is not asymptotic to xRy (o, pz?). Let 19 € R be a
given number, and let p be such that [pz!*7| = |ple™ < &y. Then

27 = e exp(i(Imo) ' ((Jo|* + 2Reo + 1) log |z| — ro(1 + Re 0)))

along I'(rg,0). Since
2" Ro(0,p2%) =Y ch_i(0)p" I (@)l = G(0)p" (x1F)" + O(a),

y(o, p, ) is asymptotic to the sum of non-decaying exponential oscillatory terms.

Proposition 2.10. If |p|e™ = |pz1t7] is sufficiently small, then, along T'(rg,0),

ylo.p,z) =Y (o) (pe™) (o, o, 2)" + O(x)

n=1
with
n(o, 79, z) = exp(i(Imo) ' ((|o]* + 2Re o + 1) log |z| — ro(1 + Re0))).
Along TI'(rg, 2) we have a solution of the same type.

2.2.4. Analytic continuation around z = 0 and inverse oscillation. Let
o and p be generic values. By matching we discuss the analytic continuation of
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y(o, p,z) beyond the region | J_,, . I'(r0,w). Denote I'(rg,w) by I'(ro,w),, indi-
cating the dependence on . By Proposition 2.6, along I'(rg,w),,

(2.6) y(o,p,x) ~ px'™ if0<w<1,
(2.7) y(o,p,x) ~ct(o)p~te' ™ if 1l <w < 2andc' (o) #0.
To y(o, p,z) and c' (o) we apply the substitution
(00; Hza 017 aoo) — (000 - 17 917 Hza 00 + 1)7
and denote the results by (o, p,z) and é' (o), respectively. Then y.. (G, 5, x) :=
x/4(&, p,x) also solves (PVI) (cf. (2.5)), and along I'(rg, @)s,
(2.8) Yoo (5, Py ) ~ pta™? if0<@<1,
(2.9) Yoo (7, py ) ~ &1 (5) 1pa®  if 1 <@ < 2and & (6) #0.

For this solution we observe inverse oscillatory behaviours derived from Proposi-
tions 2.7 through 2.9.

Proposition 2.11. (1) Suppose that 0, # 1 and ¢ ,(5) # 0. Then yoo (7, p, )
admits sequences {x°~ }, en and {2}, en of simple poles such that

ooi|_7,

5] log |22 ©%tRed — pImé ~ —27v|Im G|

and dist(z3°F, T(rg*®,1)5) = O(|a°%|?), where r°% = r8°%(5,p) and p =
uX (6, p) are given by
exp(rg™®) = [(46°p) (6] — (oo — 1 £5)?)],
W = arg(46%) (0% — (0o — 145)2)).

(2) Suppose that 0o, =1 and é*1(G) # 0. Then yoo (5, p, x) admits a sequence
{25} e of double poles such that

512 log |25 — r&° Red — p® Im 6 ~ —27v|Im &
v 0 0

and dist(2520, T(15, 1)5) = O(|a3°[2), where rg® =rg(3, 5) and pi® = e (&, p)

are given by
exp(rg’) = [(452p) 1 (67 — %)I,  pg® = arg((45°p) 1 (67 — %))
By (2.6) and Remark 2.4, say along I'(rg,w), with 0 < w < 1,
y(o,p,x) = pr'*7(1+0(1),  @y'(o,p,2) = pz' 7 (1 + 0 + o(1)).

The uniqueness of a solution behaving like this is verified by using an equation
describing (PVTI) locally (see Appendix). Let us consider matching (2.6) with (2.9).
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By the definition of I'(rp,w),, we have the relation I'(ro,w + 1)p41 = I'(ro,w)s-
Observing that yoo(1 + 0,p,2) ~ ¢Ly(o + 1)71pzt*o along T'(ro,1 + w)14e if
0 < w < 1, we have y(0, p,7) = Yoo (1 + 0, p, ) if ¢ (0 + 1)71p = p. Since both
sides are analytic in (o, p, x), we have

y(0,p,2) = Yoo (1 + 0,5, (0 + 1)p, ).
More generally, for every v € Z, observing that
I(ro,w)e =T (ro,w —20)g—2, = T'(ro,w — 20 + 1) 5241,
from (2.6) through (2.9) we derive the following:

Proposition 2.12. For every v € Z and every ro € R, along I'(rg,w)e,

(02 ) {px12l’+” if 2U<w<2v+1,
Yo —z2v,p,x) ~ 1

(o —=2v)p et if v+l <w<2w+2

as long as ¢t (o0 —2v) # 0, and

plav—i=o if 0—1<w< 2y,

Yoo(o — 20+ 1,p, ) ~
io—2v+ D) ppm e f oy <w< w1

as long as ¢ (0 —2v + 1) # 0.

Then by matching we obtain the following relations, which combined with
Proposition 2.12 enable us to find the analytic continuation of y(o,p,z) or
Yoo (0, p, z) around x = 0.

Proposition 2.13. For any v € Z,

y(o —2v,0,2) = Yoo (o — 20 + 1,4 (0 — 2v + 1)p, 1),

y(o —2u,ct (0 — 20)p, ) = yoolo — 2v — 1, p, ),

y(lo —2v,p,2) =y(o — 20+ 2,6 (0 — 20+ 1)t (0 — 2v + 2)p, ),
Yoo(0 =20+ 1,c' (0 —20)E (0 — 204+ 1)p, ) = Yoo (o — 20 — 1, p, )

as long as ct (---), & (--+) in each relation do not vanish.

For y(o, p, z) along I'(rg,0), or I'(rg,2)s, a non-decaying exponential oscilla-

tion is observed as in Proposition 2.10, provided that pe™ or (pe™)~!

is sufficiently
small, that is, I'(r0,0) or I'(rg,2), enters Q, ,(£0). By the relations above with
v = 0, sequences of poles appear asymptotically along F(Tg,O)U = F(rg, 1)yy1 or

U(rh,2), = D(rh, 1)s_1, where 7§ € {rg°™, 75+, 75°0} is given in Proposition 2.11
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with 6 = 0 + 1 or ¢ — 1, on which the condition for the non-decaying exponen-
tial oscillation is violated. Further pole sequences as well as zero sequences are
obtained from Proposition 2.13 as long as ¢ (0 +v), & (0 +v) # 0. These pole
sequences are situated as conjectured in [4], [5].

2.2.5. On y, (09, p,z). The solution yy (09, p, x) may also be observed along
To(ro,w): (1 +Reop—w)loglz| —Imoy - argz = rg

if Imog # 0, on which |z190| = e™|z|¥, where 19 € R, w > 0. Suppose that
03 4+ 63 — 62 £ 0. For every ro € R, along T'g(ro,w),

pxltoo ifo<w<1,
b+(00. ) ~ {(208)1(03 +602 -0z ifw>1.
Suppose that w = 1. Let r§ = (00, p) and p. = ps (09, p) be such that
exp(rg) = [~ (205p) (0 + 05 — )|,y = arg(—(205p) ™ (05 + 65 — 62)).
Then y4 (0o, p, ) admits a sequence {z%},cn of simple zeros such that

loo|? log 25| — 78 Re og — s Im oy ~ —27v[Im o

and dist(z}, To(r5, 1)) = O(|x%|?). If w = 0, for p such that |[pz!To0| = |ple™ < &,
y+(00,0,%) = Y ci(a0)(pe™)"n(00,m0,x)" + O(x)
n=1

along T'g(rg,0). Note that ¢! (o) = 0. If 5 satisfies &L, (609) = 0, Im & # 0 and
58 + (00 — 1)? — 07 # 0, where ¢ (o) is as in Section 2.2.4, then (2.5) yields an
inverse oscillatory solution Yoo+ (G0, p, ) such that, along I'g(rg, ®)s,

(Go..2) pla=o0 ifo<w<1,

Yoo4-(00, P, ) ~ o o

h 263(63 + (0o — 1)2 — 02)71 if @ > 1.

Furthermore it admits a sequence {x3°*}, cn of simple poles such that
|50|2 log |2;°"| — r5°* Redg — pe° Im g ~ —27v|Im 69|

and dist (3%, To(r§°*, 1)5,) = O(|x2°*|?), where

exp(ri®™) = |~ (2635) 7 (53 + (o — 1)> — 62)],
15 = arg(—(2635) (32 + (6 — 1) — 63)).
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§3. Isomonodromy deformation, the Schlesinger equation and (PVI)
If (Ag(z), Az(x), A1(x)) is a solution of (2.1) such that

(i) the eigenvalues of Ag(z), A, (), Ai(x) are +00/2, +0,. /2, £61 /2, respectively,
(i) Ao(z) + Az(z) + A1(x) = —(0/2)J,

then the Fuchsian system

(3.1) ay <A0($> n Ay () n A1<x))y

dx A A—x  A—1

admits a fundamental matrix solution whose monodromy remains invariant under
a small variation of the deformation parameter x, and

_ $A0($)12
SC(Ao(x) + Al (l’))lg — A1(fﬂ)12

solves (PVI) with (o, 8,7, ¢) satisfying (2.2). As guaranteed by the following propo-

y(z)

sition, our solutions of (2.1) satisfy (i) and (ii), and in solving (PVI) we rely on
this fact (see Section 6).

Proposition 3.1. The solution (Ag(z), Az (x), A1(x)) of (2.1) given by Theorem
2.1 or 2.2 satisfies (i) and (ii) above, and the corresponding system (3.1) has the
isomonodromy property.

Proof. Suppose that (Ag(x), Az(z), A1(z)) is as in, say, Theorem 2.2. By Theo-
rem 2.2,

Ag(z) + Az (z) + A ()

= (p2)" (Ao + Ay + O(|zlog?(p)|)) (p) ™ + Ay + O(|z1og? (p)|)

= Ao+ Ay + Ay + O(|zlog (pz)]) = —(00/2)T + O(|z[*/?)
as x — 0 through Q7 (e, Op). From (2.1) it follows that (d/dz)(A¢(x) + As(x) +
Ai(z)) = 0. Hence Ap(z) + Az(z) + A1(z) = —(00/2)J, which is property (ii).
Fix (p,x0) € Q*(e0,00) and consider the Pfaffian system

B dA d(\ —z) dA—1)

(3.2) dY = <A0(:17) Y + Az (x) pp + Ai(z) 1 Y

for (z,)) € {z € Q(c0,00); | — 0| < g5} x P!, where e = f(z0,p) < |20|/2
is a sufficiently small positive number. System (3.2) is completely integrable since
(Ao(z), Az(z), A1(x)) solves (2.1). Let Y(x, ) be a fundamental matrix solution
of (3.2) such that, for |z — x| < £,

Y (2, \) = (I + 0N )N 0=/ \B  around \ = oo
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with Ay, denoting e A if O € N, e A_ if =0, € N, and 0 if 0, & Z, where
€00 € C (cf. [18]). As (d/dz)tr A,(z) = 0 and tr A,(z) = O(|zlog*(px)|), we have
trA,(x) =0 (t = 0,2,1). Let £0°/2 be the eigenvalues of A,(xg). Then, by [18],
Y (x, A) behaves as follows:

Go(x)(I + O(A))A(QB/Q)J)\AOFO around A = 0,

Go(2)(I + O\ —2))(A —2)@/DT(\ — 2)2+T,  around A = z,

Gi(x) T+ 0\ =1)A=DE/DT (A1) T around A =1
for |x — xg| < g}, with connection matrices I'g, I';,, T’y independent of x. Here, for
each ¢ € {0,z,1}, G,(z) is an invertible matrix holomorphic for |x — zg| < &f, and
A, denotes €, A if 0¥ € NU{0}, e, A_ if —0Y € N, and 0if §° ¢ Z, where ¢, € C. This
fact implies that the monodromy with respect to Y (z, A) as a solution of (3.1) does
not depend on the deformation parameter x. The local behaviour around A = 0
gives

—1 24 -1 ~1 ~1

AT Ao(z) +0(1) = ﬁ(xa AY (2, A)77 = A" Go(z)V(A)Go(x)

with

V(A = (I+0MW)((63/2)] + A%/DT AN~ /D7) (1 + O(N)) + O (),
whose residue is
Ag(z) = Go(2)(80/2)JGo(x) ™" or  Go(x)((60/2)] + Ao)Go(x) ™,

which implies that the eigenvalues of Ag(x) are £63/2. Combining this fact with
(pz)~2Ag(x)(pz)* = Ao + O(|zlog?(pz)|), we find 6] = 6. Similarly we show
that the eigenvalues of A, (x) and A;(z) are £0,/2 and +6, /2, respectively, which
completes the proof. O

84. Rings of matrix series
84.1. Logarithmic type

Let € be the ring of formal series of the form

co  2n

o=k t)=»_ > Chn(st)"log™t, Cp, € My(Cy),

n=1m=0

with the parameter x # 0. For ® € € as above define the norm of ® by

co  2n
@[ = | @[1(k, ) == D > [Cml |t|" e[/,
n=1m=0
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where ||C7|| denotes the standard norm of the matrix C» such that ||C| =
|Cllmae = maxi— 2{|Cia| + [Cial}. Then [C(1)" log™ lmar = I|C lmar "] log ]
<N C |mat |KE[? =™/ = ||C(kt)™ log™ t| if [logt| < |t|~/*. For simplicity we use
the common symbol ||-|| provided it causes no confusion. Let D C (C\{0})xR(C\{0})
be a domain such that [logt| < [t|~/* for every (k,t) € D, and let

£(D) :={® ¢ g |®]| < oo for (k,t) € D and for (6,) satistying (2.4)}.
Throughout this section we suppose that (6,) satisfies (2.4).

Proposition 4.1. (1) If ® € £(D), then, for each (0,), ® = ®(k,t) is holomor-
phic in (k,t) € D, and satisfies ||P(k, t)||mat < [|P]|(k, ).

(2) ||®]] =0 if and only if ® = 0.

(3) Let @,9 € £(D). Then ® + U, d¥ € £(D), and

1@+ Wl < |2 + (]}, [|PW] < [ ||w]-

If C € Ms(Cy) (respectively, ¢ € Cyp), then CP,PC € £(D) (respectively,
c® € £(D)), and

[Ce|, [|eC] < IC][[|@]  (respectively, [|c®|| = [c] [|®]])-

(4) Let @ € £(D), and let p(1) = Y o0y pnT™ with ¢, € C. If |p|(|xt]) :=
Yoneo lnl |Kt[" < 00 in D, then p(kt)® € £(D) and [lp(rt)®|| < [¢|(|xt])]|2]-

Proof. Suppose that ®(k,t) = > ", 272::0 Cm (kt)"log™t € £(D). For any (&, 1)
in D, we may choose a neighbourhood Dy C D of (i,t), a point (kg,tg) € D\ Dy,
and a positive number e, in such a way that |xt| < (1 —e,)|kotol, [t| < (1 —e4)l|to]
for every (k,t) € Dg. Since ||®||(ko,to) < 0o, we have ||C™ || = O(|roto|"|to|™/*),
the implied constant being independent of n and m. Hence

1O (k)™ 10g™ tllmar < |Co | [t [t]~/* = O((|xit| /|sotol)™ (Jt]/[to])~"/*)
=0((1 )" ™) = 0((1 —e)"?)

in Dy, which implies the holomorphic nature and the inequality in (1). The re-
maining assertions are easily checked. O

Proposition 4.2. Suppose that each @, € £(D) consists of summands with n>v,
and that, for each (8,), > o, |®,|| < 0o in D. Then ®>* =37 &, € £(D), and
[l < 32021 12w -

Proof. Write ®, =7 ZZL:O Cn (kt)™log™t with C7' € M3(Cy). Then each
entry of the triple series > °2 > Zi?:o Cn. (kt)" log™t converges absolutely
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in D, and hence it is possible to rearrange the summands. Thus we have

oo 2n n
=" C(kt)"log™t, Ot i=Y  Clh, € My(Cy),
n=1m=0 v=1

which satisfies ||®°|| < 377 ||®,|| < co in D and &> € £(D). This completes
the proof. O

Note that the primitive function of t~1(xt)" log™ t is

)" -1 —1)™m!
(st)" <logmt— mlogm*lt—i— m(m —1) )logm”t— st Emmt )
n n

n2 nm
Taking this fact into account, we set

Z|C(kt)" log™ ]
1) 1 m72t_ . (_1)mm|>

" —
:C(M(logmt_mlogmle(mg og 4
n n n nm

for (m,n) € (NU{0}) x N and C' € M>(Cy), which induces a linear operator
I: £ — £ Form < 2n,

|IZ[C(kt)"™ log™ ]|
=l |t <|t|_m/4 n @|t|—(m—1)/4 n ’rn’(m72)|t|—(m—2)/4 T m)
n n n

< NCI It o740+ 20 -2t
< NCIwt" |74 (1 = 2047 < 2 C [wt]"|t] 7™ = 2||C (k)" log™ ]

if [t| < 27% and if (k,t) € D. Thus we have
Proposition 4.3. Suppose that ® € £(D). Then

(i) Z[®] € £(D), (i) [IZ[®]] < 2l@f,  (iii) t(d/dt)Z[®] = P,
provided that |t| < 278 for every (k,t) € D.

In what follows we suppose that [t| < 278 for every (k,t) € D.

Lemma 4.4. Let A€ Ms(Cy) and T € GL2(Cy) satisfy (P.2'), that is, T-1AT=A.
Then, for every ® € £(D) U My(Cy), we have kt - tFAPtEA € £(D) and

st - £FADEER|| < 2| T 2T 2wt [¢] 2|
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Proof. If C € M3(Cy), then
wt - tFACHED = ptTtFAT oTHEA T
= wtT(I F Alogt) T 'CT(I + Alogt)T™*
= kt(C £ [C,TAT logt — TAT'CTAT log?t) € £(D).
Furthermore, for (k,t) € D,
It - FACER < (IO [t | (1 + 2 TINT =+ ITIPNT P 2)
<O |t el 2T P IT 21+ (e
<2\ TIPNTHP |t [ 2]C-

For the series ® = >0 S°2" O (kt)" log™ t € £(D), writing

m=0
co  2n
Kt tTABEEN = 3 N =R (k) log™ ¢t
n=1m=0

with
EEn — gt tFACT A
= kt(C], £ [C1, TAT '|logt — TAT'CILTAT ' log’t) € £(D),

and using the inequality in the matrix case, we find

co  2n

It - £ FAREEA < S =R I (s8)" Log™ ¢

n=1m=0

co  2n
<O 2ATIPIT P I e O st e

n=1m=0

= 2|\ TIPIT Pt 6] 22|,
which implies the lemma. O

Lemma 4.5. Suppose that A € M3(Cy) and T € GL2(Cy) satisfy (P.2'), and that
O, € £(D) U Ms(Cy). Then

tA [kt - Aot~ AUEA € £(D),

1t~ ATt - £ Dt~ WA | < 100[\T 17|71 st [t 2| @) ||
The same relation and estimate are valid for t—“T[ktdtAWt—A A,
Proof. Write the primitive function of t~1(kt)" log™ ¢ in the form (kt)"l,(m,t)/n
with

m(m — 1) log™ 2t — - + (_1)mm!.

o m m m—1
ln(m,t) :=1log™t — ; log t+ 3 o
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Suppose that ®, ¥ € £(D) U M3(Cy) are the monomials
O =C(kt)"log™t, U=C(kt)" log™t, C,C e M(C),
where n > 0, m < 2n, n’ > 0, m’ < 2n'. Since
Kt - tADt™AT = (C + [A, Cllogt — ACAlog? t)C (kt)" ' log™ t,
we have

I[kt - tA B2 U]

t n+1 ~
_ (;l — (Claga (7,0) 4 [A, Clia (7 -+ 1,8) — ACAIz 1 (7 4 2,)) .

where m = n +n/, m = m +m’'. Hence

0Tt 2o ud = U0 oy ags
n+1 ™
with
Corm(t) =t 2(Clya (M, t) + [A, Oy (M4 1,8) — AC Al (M + 2, 1)) t2
= Clz1(m,t) + [A, Clxa1(t) — ACAxa(t),
where

X1 (t) = lﬁ+1(m+ 1,t) — lﬁ.’.l(ﬁ, t) logt
m+1 m - (m+1m mim—1) 1
= (- — 1 t — m
<n+1+n+1>0g +<<n+1>2 mez )8 T
Xa(t) = lap1 (M + 2,t) — 21 (M + 1, 1) log t + L g1 (M, ) log> t
:<(m+2)(m+1) (m+1)m  m(m—1)

—9 log™ t + .-
@+ 1)2 @02 @i ) og A

and m < 2n. This together with Lemma 4.4 implies
t=A [kt - 2Ot A UD€ &(D).
Usingm+2 <2n+2=2(m+ 1), we have

a1 (77, 6)] <[] 774 (L 204 4 2212 ) < 27T
D ()] < 2087742+ 220t 282 ) < 8Je T
x2(t)] < Al 77422 4+ 28 202 ) < 320t T
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for [t| < 278, so that ||(kt)"C = (t)|| < 50[|C| |st["|t|~™/%. This combined with
|kt-t=2Ct2|| < 2||C|||st| [t|~*/2, which follows from Lemma 4.4 with T' = I, gives

1t~ ATkt - 2t~ 2 W) | < 100 C [[C]f [t e /42
= 100]st] [£] /|| ]| || w]].
By (P.2'),
tAL[kt - A Bt AORY = TH ATkt - AT OTE AT I OTIAT

which yields the conclusion of the lemma for the monomial case. For the series ® =
Do O () log™t, O =57, ™ (k)" log™ ‘te £(D) U My(Cy), observing

n,m m

that
T .= t*AI[mt-tA(Z C (kt)" log™ ) (Z (k)™ log™ t)}t’\

=3 ATkt N (O ()" log™ t)t—AC;g, (k)" log™ ] ",

n,mn’ m’

we have

10 < 7 ST ALkt -t (O () log™ 1A Cm, (1) log™ t]tY]|

n,mn’,m/’
< 100(| T\ NT = st [¢] 1/QZ:IIC" | st [t~/ Z O | [t ]~ /4
<100(| T[T~ |t Itl_l/QH‘PII [ w]].
Thus we obtain the lemma. O

Remark 4.1. In the case where ®, ¥ € cu M5(Cy) as well we may show the
relations st -t FAGEEA = AT [kt 1A Ot AUNA AL [kt DA Wt —AtA € £ by the same
arguments as in the proofs of Lemmas 4.4 and 4.5.

Let £* be the subring of [y consisting of formal series of the form

-E2e

Lemma 4.6. If &, xt¥ (respectively, xt®,¥) € E*, then wt - tAT[t= A QWA )2,
Tkt®T] € £, where A is a matriz as in Lemma 4.5.

log t, C,:ln € MQ(CQ)

ﬁM:

Proof. Let ® = C(xt)"log™t and ¥ = C(kt)"' ~? logm/ t be given monomials such
that @, kt¥ € £*, wheren > 1, m <n,n’ > 1, m’ <n'. By the same argument as
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in the proof of Lemma 4.5 we have
Kt AT A OWEA A

= S Gl () — (A, O (1) — ACCAT (1)) € 87,

n—1
where
log™ ¢
T1(t) = Ly (M + l,t)—lﬁ_l(m,t)logtzfﬁg_l Foen
- _ __ _ 9 2log™ t
XQ(t) :lﬁfl(m—’_Q,t) —2lﬁ,1(m+1,t) logt—l—lﬁ,l(mﬂf)log t= (7 1)2 SN
.
nm=n-+n">2 m=m-+m' <7 From this the lemma follows. O

84.2. Complex power type

Let & be the ring of formal series of the form

=00k, t)=> Y Cr(st)t™, Cp=Ch(o) € My(Cy(0)),
n=1m=—n

with the additional parameter o # 0, and set, for ® € S as above,

@] = [ @[|(0, k. 8) =Y > [IComll [t [£7]™.
n=1m=-—n

Let ¥ be a domain such that ¥ C C\ {0}. For a domain D(X) C £ x (C\ {0}) x
R(C\ {0}), let

S(D(X)) == {® € &; ||®|| < oo for (0, k,t) € D(T) and for (6,) satisfying (2.4)}.

Proposition 4.7. (1) If ® € &(D(X)), then, for each (0,), & = P(o,k,t) is
holomorphic in (o, k,t) € D(X), and satisfies | P (o, &, t)||mat < || @] (o, &, 1).

(2) ||®|| =0 if and only if ® = 0.

(3) Let @,¥ € S(D(X)). Then & + ¥, 2V € S(D(X)), and

1@+ W < [[@f + W, [P <[Pl

If C € My(Cy(0)) (respectively, ¢ € Cq(0)) satisfies ||C|| < oo (respectively,
le] < o) for o € &, then CP,dC € &(D(X)) (respectively, c® € &(D(X))),
and

[Ce[l, [eC] < [ICI[{[®]l  (respectively, [lc®|| = |c[ [|®]])-
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(4) Let @ € S(D(X)), and let p(1) = D07 s pnt™ with ¢, € C. If |p|(|xt]) =
S0 o lenl |6t < 00 in D(X), then o(kt)® € S(D(X)) and
le(st) @[l < |l (Ist]) ]| 2]-

Proof. Suppose that ®(o,k,t) => 2 > _ CP(kt)"t™ € &(D(X)). For any
(6,k%,t) € D(X), we may choose a neighbourhood Dy C D(X) of (7, &,t), a point
(00, ko, to) € D(X) \ Do, and a positive number &, in such a way that |kt!=7] <
(1 — &) |woty |, [t7] < (1 — .)|t5°| for every (o,#,t) € Dy, since the mapping
(k,0,t) = (K, kt1=7,17) is biholomorphic. Observing that

(oo} n
[®l(a, 5, t) Z Z IChl Ist™ee ™ =D > IOl st o[ 7+,

n=1m=-n n=1m=-n
from ||®||(c0, Ko, to) < 00, We obtain ||[CZ || = O(|kotg 70|~ ™[t3°|~™™). Hence
ICT It [7]™ = O((Ist* =7 |/ moto = )" (1£7]/1£5° )" +™)
=0((1—e)™™™) =0((1 —e)")
in Dg, which implies the first assertion. O

Proposition 4.8. Suppose that each ®, € S(D(X)) consists of summands with
n > v, and that, for each (6,), >0, |®,| < 0o in D(X). Then &> =37 &, €
&(D(X)), and [|2%] < 3707, |20

For (m,n) € Z x N and C € M3(Cy(0)), set

Z[C(kt)™"t7™] :== C(kt)"to™,

n—+om

which is the primitive function of t~*C(kt)"t°™. This induces a linear operator
Z: 6 — 6. Let ¥y be as in Theorem 2.1.

Proposition 4.9. If ® € &(D(Xy)), then

(i) Z[®] € 6(D(X0)),  (il) [|Z[®]]| < Lol|®ll,  (iii) ¢(d/dt)Z[®] = @,
where Lg is a positive constant depending only on Y.
Proof. Set dg := dist(Xg,Sg) > 0. Suppose that o € Xg. If 1 < |m| < n, then

In + om| = |m||o + n/m| > dy. Hence, for ® = > >° S Cn(kt)"t7™ €
S(D(%0)),

izle)l =3 Z Hml Lt < max(1,1/do} 0],

nlm*n

which implies the proposition. O



442 S. SHIMOMURA

Lemma 4.10. Let A € My(Cylo,071]) and T € GL2(Cylo,071]) satisfy (P.2),
that is, T"YAT = (0/2)J. Suppose that ® € &(D(Xg)) U M2(Cq(c)), and that
|®|| < oo for each (8,) and for o € Sy if ® € My(Cy(c)). Then kt - tFADIEA ¢
&(D(%0)), and
st - eFAREEN| < 2 TP T P |t (1£7] + £ )] @]l-
Proof. If ® = C € M(Cy(c)), then
Kkt - tTACEA = Tt/ 1ot/ I p-1

— WtT (T_lcT)ll (T_lcT)12t¥U
B (TﬁlcT)gltia (TﬁlcT)gg

Hence, for (o, k,t) € D(Xg),

) 7! e &(D(%)).

st - eFACEN < TNTHTCT st (1 + [7] + [677])
< 2T Istl(1e7] + [ DIC-

For the series ® =07/ S™" _  C"(kt)"t°™ € &(D(Xy)), writing

m=—n
o0 n
gt TR =N TN T EE ()
n=1m=-—n

with 257 = st - tFACT T2 and using the inequality in the matrix case, we obtain
the lemma. O

Lemma 4.11. Let A € My(Cy[o,071]) and T € GLo(Cy[o,071]) satisfy (P.2).
Suppose that ®, ¥ € &S(D(Zg)) U Ma(Cy(o)), and that ||| (respectively, |¥|)
< oo for each (0,) and for o € Eg if ® (respectively, V) € My(Cy(0)). Then
t=AZ[kt - Aot AU € S(D(X0)), and

[t ALt -t @t AW | < Lol| TP TP st (187 + [t~ l1@ ] 1]l
where Lo is a positive constant depending only on o. The same relation and
estimate are valid for t = T[rktDt* Wt—Ath,
Proof. Consider the case where ® = C(kt)"t°™, ¥ = C(kt)" t°™ with C,C €
M5(Cy(0)), n >0, |m| <n,n >0, |m/| <n'. Observing that

L0120 gp—(o/2ag _ [ Cralt)Fetmsm) Oyt golmtm TN
Czl(lit)n—i_n to(m+m'—1) 022(,it)n+n o (m+m”) )

we have
T .= t*("/z)"I[nt . t(ff/?)Jq)t*(U/Q)J\p}t(U/Q)J

_ C:L’n’,m,m’ o t_(U/Q)J(é(ﬁt)7l+n/tg(7n+7n/))t(U/Q)J
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with

*
n,n’ ,m,m’

_ Ciu(n+n"+1+ao(m+m'))t Cio(n+n"+1+o(m+m' +1))71
T\ Caun+n +1+o(m+m —1)71 Cum+n +1+om+m))~?

satistying [|C;; ./ |l < max{1,1/do}||C]|, where dy = dist(2o, Sp). By Lemma

4.10 this gives T € &(D(Xp)). Furthermore, by Lemma 4.10,
I < 205 o | I (1£7] 4 £ DIC ity g )|
< 2max{1,1/do}|C|| ||| [st]™ ™ e ™" (4] + [¢7))
= 2max{1, 1/do}|wt|([t7] + [t~7]) |2 | W],
which leads to the desired estimate in the monomial case. For given series ® =

Do O ()7 U =57, O™, (k)" 7™ € &(D(Z0)) U My (Cy(0)), we can
derive the conclusion by the same argument as in the proof of Lemma 4.5. O

Suppose that oo € X4, where X is as in Theorem 2.1. Let é+(00) be the
ring of formal series of the form

d = ®(0g, K, 1) Z Z O™ (kt)™7°™,  C™ € My(Cg(op)).

n=1m=0

For a domain D(cg) C (C\ {0}) x R(C\ {0}), let &F(D(0p)) be the subring
consisting of ® € &1 (0y) such that

[} = [[®[l(o0, %, t) Z Z G [s2]™ 270 ™ < oo

n=1m=0

for (k,t) € D(op) and for (,) satisfying (2.4). Then &*(D(0¢)) with the norm
thus defined has properties analogous to those of &(D(X)). For example, if
® € &T(D(0g)), then ® = ®(0y, K, t) is holomorphic in (x,t) € D(0g), and satisfies

[®(00, %, t)llmat < [|®[|(00, K, 1)
In this case as well we define Z[-] by Z[C(kt)"t7°™] = (n + oom) ™' C (kt)"t70™.
Proposition 4.12. If ® € G (D(0y)), then
(i) Z[®] € " (D(00)), (i) [|IZ[®]] < L{[l®],  (iii) t(d/dt)Z[®] = @,
where Lg is a positive constant depending only on oy.

Proof. Set dg := dist({oo},{c < =1} UZ) > 0. If 1 < m < n, then |n + oogm| =
m|oo 4+ n/m| > df, from which the proposition follows. O
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For a formal series of the form
oo n+2

©=>" > Cp(st)"t7™,  Cp € My(Coloy)),

n=1m=-—1

which does not necessarily belong to é+(ao), we may extend the operator Z[-] in

such a way that
oo n42

I e

n=1m=-—1
as long as n+ oom # 0 for (m,n) satisfying n > 1, =1 < m < n+ 2. Furthermore,
if

oo n+2

=3 Y eIl e

n=1m=-1
converges uniformly in a domain, then t(d/dt) [®] = ®. For such an extension
of Z[-] we have

Lemma 4.13. Suppose that oo € Xy N{Reo > 1}, and that A € Mg((Cg[ao,Uo_l])
and T € GLQ((C@[UQ,UO_I]) satisfy (P.2) with o = og. If ®,ktV (respectively,
Kt®, W) € &1 (D(0y)), then
wt - AU € 1 (D(0y)),
it - AT WA < LTI IT @) e
(respectively, < L | T|*| 7|12 || st || || @),
where INJS' is a positive constant depending only on oy.

Remark 4.2. In general t~2®WtA has the form 32°° S € (14)470™ with

m=—1

C € M5(Cy(op)), which does not necessarily belong to @3"‘(00).

Proof of Lemma, 4.13. For the monomials ®=C(xt)"t°°™ and W =C'(xt)" ~1to0m",
where C,C € M5(Cy(0p)),n>1,0<m<n,n >1,0<m’ <n/, we have

100/ gpgloo/na _ [ CralstyrHr=tgrolmamD O (st ~tgoolmtm'=1)
C;l(lit)"Jrn —1y00(m+m’+1) C;Q(Ht)nJrn —1400(m+m’)

with C* = (C};) = CC. Under the condition o € ¥4 N{Reo > 1}, for all (m,n),
(m/,n’) as above,
(n+n"—1)+oo(m+m)|,[(n+n" —1)+oo(m+m'£1)| >dj >0,
where d = min{1,dd } with di = dist({o0}, {0 < -1} UZ). Then
it - 100/ DI T[4 (00/20 g0/ T )= (00/2)T _ e (st g0 (metm')

n,n’,m,m’

with



THE SIXTH PAINLEVE TRANSCENDENTS 445
*%k
n,n’ m,m/’
_( CHi(n+n/ —140o(m+m/))! CH(n+n' —1+o9(m+m' —1))7 !
“\Cs(n+n —1+ogm+m +1)7t Ch(n+n' —14+09(m+m'))~!

satistying |, || < ||C*||/dg < || ||l /ds. Using wt¥ = C(kt)™ t70™' . we

!’
n,n’ ,mm

arrive at the conclusion in the monomial case. For series we can verify the lemma
by the same argument as in the proof of Lemma 4.5. O

Remark 4.3. For formal series in & and in é*(ao) the same conclusions as in
Lemmas 4.10, 4.11 and 4.13 are valid except for the inequalities. For example, if
® € G U My(Cy(0)), then xt - tFAPtTA € & for A as in Lemma 4.10.

85. Proofs of Theorems 2.1 and 2.2
85.1. Schlesinger equation

Instead of (2.1) itself we consider the system

e, Aol 4 g, 4, - (4, 4,),
dt dt 1— kKt
(5.1)
e g, )
p = 1_ at xy411],

which is obtained by putting = st in (2.1). As will be seen, « is essentially one
of the integration constants of solutions of (2.1).

Proposition 5.1. Let Ay, A;, Ay and A = Ag + A, be matrices such that Ay +
A+ A=A+ A = —(0/2)J. Under the supposition

Ao+ A, + A = —(900/2)J,
the change of unknown matrices
A = Ao+ Uy, 72N =M, +U,, Ai=AN+T1,

transforms (5.1) into

dU,

thO = —[tAULN, Ao + U],

dU. Kt
5.2 t—2 = —[t7AULEN, Ay 4+ U] — —— [t MM + UM Ay + U,
(62 #0E = A A+ U] - A+ D A+ T

dUl Kt A —A

at 1_m[ Az + Us) 1+ Uil

Proof. Set By =t~ Apt" and B, =t~ A t". Then, by (5.1),

14Bo _ -a (#{jt ~ Ao+ AOA)tA = =M ([Aq, Ao] — [A, Ag))EM.
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If Ag+ Ay + A1 = —(0%/2)J = A + Ay, the right-hand member becomes
[t (A, — At 72 Agth) = [t (A — Ag — AtD, Bo] = [t (A1 — A, By).

Thus we obtain

dB

td—to = [t (A — A, Bo),

dB, —A A KE A4 A
5.3 =[t7MAy — ADEY, B,] — t=M A th B,
(5.3) o = (= AN By - o [T A ]

dAl Kt A _A

R HAB A Al

dt Tt 1

which is equivalent to (5.1) under the supposition Ag + A, + A1 = —(00/2)J.
Substitution of By = Ag + Uy, B, = Ay + U,, Ay = Ay + U yields system
(5.2). O

85.2. Proof of Theorem 2.2
The main part of the proof of Theorem 2.2 is solving (5.2) near ¢t = 0.

5.2.1. Iteration. Let Ag, Ay, A1 € M2(Cp), T € GL2(Cp) and A = Ay + A, be
matrices with the properties (P.1), (P.2"), (P.3). If, for Uy, U,,U; € £(D), the
right-hand members of system (5.2) also belong to £(D) and if the system of
relations

Kt
1— kwt
(5.4) Uy = —Z[[t  Ust", Ao + Up)],

Ur=-1 [t (Ap 4+ U )t ™ Ay + Ul]:|

Kt

T [t~ A+ U Ay + U]

Uy = —Z[[t AUt Ay + U] — I{

holds, then (Uy,U,,U;) solves (5.2), where Z[-] is the operator defined in Sec-
tion 4.1. We would like to construct such series by iteration. Define the sequence
(U7, U2",0f") € (8)% v = 0} by

v =ul” =ul® =0,

1% t 1%
U1(+1: [111 tAA—FU(V) AA —|—U()]:|,
(5.5) Uty = I[r"U“’“’tA Ao + UM,
Ugg,,_._l _ I[ V+1)tA A +U(1/)]]

-7 A (v+1) tA A, (v)
U A, U
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Note that the right-hand members of the last two relations contain t*AUl(VH)tA.
This procedure is possible, since at each step the series on which Z[-] acts belong
to £. Indeed, we have

Proposition 5.2. UI(V), t_AUl(V)tA7 Uéy), UQEV) et for every v > 0.

Proof. Suppose that the conclusion is valid for every integer up to v. Using
kt-tAA D = kit - THAT ATt AT € € and Remark 4.1, we have U(”H e L.
Furthermore, by Remark 4.1,

Kt

AU — AT | -
1-k

t([tAA A A = [Ay, AU A

+ [ AN UD + UM UMD | € §.
Hence
Ut = —z [ U A + U] € 8,

and similarly UGEVH) € €. Thus we obtain the proposition. O

In the next step we show that, for a suitable domain D, the sequence of formal
series thus defined is contained in £(D)? and converges in it. Let ©g be a given
positive number, and let D(g,0y) C (C\ {0}) x R(C\ {0}) be the domain defined
by

D(e,0p) : U {k} x {|t| <&, |st-t71?| <&, |argt| < Op}.
KEC\{0}

Suppose that (6,) satisfies (2.4) with by > 0. We choose £ = £(6¢) < 278 so small
that every (k,t) € D(g,0y) satisfies [logt| < [t|71/4. Note that |xt| < £%/2 for
(k,t) € D(e,0y), and >~ o |kt|" = 1/(1 — |kt|) < 2. Since

v = IL — [tAA t=2 Ay]| € £(D(e,09)),

by Lemma 4.5 we have t*AUl(l)tA € £(D(e,©9)), so that Uél), e £(D(e, 09)).
By Lemma 4.4, in D(g,0y),

|ktAg ||, ||stAL]], || st - A Agt =2, || st - t =2 AL Y| <% |/<;t| |t|=1/2,

1 _ 1 1
(5.6) OO, 1A TOr ), [P, v < 2 Sl 1/2
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Here the constant cg may be chosen in such a way that
1+ [[Ao|l + Az + [|[A1]] < co.

Suppose that, for 1 < j < v,

(5.7) U AU U U9 € £(D(e, 89)),
and
(5.8) U AT NOS N NTD|| < 2e0lnt] [6]22,

which are known to be valid for j = 1. Then, by (5.5) and Lemma 4.5,
(59) AU Ut

1 v
B Ht_AI[ e AR N VN

+ R[N Ay + U Dy A T — U{”‘”})] tA

< 2-2-100||T|PIT P st [¢] /2 (UL — LD A + 11U
v— v v—1
+ (A + =D — o))
_ _ v v— v v—1
<400 TP N3 1wt [t~ 2eo(1 + 26) (JUS) — ULV + (U = U=
< 500||T|12|| T~ PPeo|wt] [t~/ (JUX — U&=V + (U — UV
in D(e,0p). By Lemma 4.4,
it - 2 (UY) — UL < 2| TN 2 |t [t~ V2 U — U&=,
it - AU DM < 2| TYRT 2 e o2 U8 D)
< ||T|PIT ol ] |t /2,
and hence

oy — ot
<22 2(|st - A UL — UL (AL + U5
+ (It - A AN+ (|t - UL O - )
< S@TIPNT= P st] (12U — UL - (co + 2c0e)
+ (co/d+ |TIPIT = Peo) st [¢] 722 - JJUL — U=V
< 20| TP T |Peol st [t ~/2 (UL — UL + o — U =)).
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Using (5.9), we obtain
o+ — U
= |Z[E 2 O = U, Ao + U+ A0 o8 — oY)
<42 @ = U (Aol + TS + AU Us — o =)
< 4(500| T[] TP colco + 2coe) + 2¢0)|kt] [t 72/?
x (U7 = U DN+ 10 = ufr=9) + ju”) — o~V
< 2500||T|12|T = [Pc st |t ~1/2
< (|Ug” = UV + luf = U= + U = o=V,
Furthermore
oD — U
= |Z[t WY = UM A, + UD) + A o) — oY

t v v
! Hf[l (Y - Ot A+ UL

[N A+ UM U - Ui”“])} H

<4l @ = UM+ 1T + AT A - o)
+8([e U~ ("))tAH(HmfA 1+ [t [US])
+ ([t - At + |t AU UL - D)
<4t MUY UM (o + 2008 + 2(cos /4 + 26062))
+ 4(2c0 + 2(co/4 + 2c0¢))|kt] [t| T2 UW — U
< Seo| MUY = US| + 1260wt |t ~V2[UY — UL
< 2600||T|P |17t [t ~/2 (UL — U&=+ Uf” = UV,
In each evaluation above, we have used |st|[t|~1/2 < & < 278, |st| < €3/2 < 2712

and 1/(1—|st|) < 2. The constants ||T|| and ||T~!|| depend only on (6,) satisfying
(2.4) with by > 0. Thus we have the following:

Proposition 5.3. If (5.7) and (5.8) are wvalid for 1 < j < v, then U1(V+1),
t*AUl(V-i_l)tA,Uéy—H)7 U™ are in £(D(g,09)), and
T = UP|| < Kolst| [t~ 72U — U@ + luf” - o=V,
=AU — U < Kolsst [t~ (|US) — <”—1>|| + (U = o,
[US Y = US| < Kolst| [t 7/2([U) — U&= + U — UV
+U§” = U,
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[UL*D — UL < Kol [t (JU = UL+ 037 = 03"V,
where Ky > ¢q is a positive constant depending only on ©¢ and bg.
This fact leads us to

Proposition 5.4. For everyv > 1,

i) U 2 U, Ul U € £(D(eo, ©0)),

@) (U] e 2O U NN < 2¢0] w2 8712,
(i) U — U™V < (4K |kt| [t|7Y2)Y for v = 0,,1,
(iv) [[EAOY) = U < (K|t [¢]71/2),

where ¢ is a sufficiently small positive number depending only on ©y and by.

Proof. We verify assertions (i) through (iv) by induction on v; they are valid for
v =1 by (5.6). Suppose that they are valid for every integer up to v. Set

= 30 U U+ O - o)

v=0,z,1

for j > 1. Then, by Proposition 5.3 and (5.6), u") < co|wt|[t|~*/? and wU+D) <
4K |kt [t|71/?u) for 1 < j < v. Hence

(510)  u < @Rost] 72 < (4Kost] 177
for 1 < j <wv, and we have

v+1 v v+1 — v+1
US| 4+ UV 4 (U8 D) + 2o

= 7 - —1/2\j5,,(1) CO"‘iﬂ |t| 12 —1/2
< E 1< E 4Ky |kt| |t 7 <——m—7F7—<2 t| |t
< s 1u 7j 0( 0|K) || | ) u =7 o < C()|I<L H ‘

for (k,t) € D(eg, ©p), provided that 1 — 4Kpeo > 1/2. Thus (i) and (ii) are valid
for v+ 1, and (5.10) with j = v implies (iii) and (iv) for v + 1. This completes the
proof. O

Remark 5.1. By (iii) and (iv) of Proposition 5.4, the coefficients of the terms
(k)" log™ t in U or =AU A are fixed if v > n.

By Proposition 5.4, lim, UL(”) (¢ = 0,z,1) and lim,_, t’AUl(”)tA exist
and belong to £(D(go, Op)). Moreover these series satisfy the relations in (5.4).
Thus we have

Proposition 5.5. The triple (U§°,US°, Us®) = liml,_,oo(UéV)7 U, Ulu)) satisfies
U, U, U, t=AUXt" € £(D(g0,00)) and solves system (5.2).



THE SIXTH PAINLEVE TRANSCENDENTS 451

Recall the subring £ C £ consisting of S o Ol (kt)" log™ t with
Oﬁ@ e M, (Cg)

Proposition 5.6. If A = Ag + A, and T satisfy (P.2") and if (T~'A¢T)2; = 0,
then kt - tAUSt kit - tAUSt 1 U € £*.

Proof. Write (5.5) in the form
U(O) Z(O) Z(o) -0

Uty = —I[

t[tAA A4 Z0) A+ U{”)]],

Rt Z§ T = —kt AT AMUE Y A At 28 e
Rkt ZWHD = —pt AT [ AUPTY AN + 20N A

)

A Kt

— m&-t"I[t—
1— kt

(A1 + U(VH) AL A _,'_Za(:u)}tA]t—A
where Z{") = tAUt=A, 20 = AU TE (T2 T )91 = (T-1A,T)gy = 0,
then st - t*Agt ™ = ktTAT ATt 2T, Kt - t* Ayt~ € £*. Using Lemma 4.6,
we can verify by induction on v that UIV)7 /-@tZéV), /fthEV) e £* for every v. This
fact combined with Remark 5.1 leads us to the proposition. O

5.2.2. Completion of the proof of Theorem 2.2. System (5.2) is derived
from (5.1) under the supposition Ay + Az + A1 = —(00/2)J. We need to verify
that

(5.11) (A, A%, A7) = (B (Ao + U2 M (A + U, Ay + UP)
with (U§°, U, U®) obtained above solves (5.1). Set Bf = Ag + U® = t~ M At
and B = A, + U =t=2A*t?. Since (B, BX, A}) satisfies (5.3),

G A = (B B = (v (54 B+ [0 ]

Kt

= A ([t‘A(Al — ANtM B + BX] — t[t_AA’{tA, B!]+ A, BS + B;;])r"

1—k

=[A — A7, Ap + A7 - 2 [A1 A Byt 4 [A, A+ A7)
dA*

dt’

11—k
— (A4 Ay — AL AL+ ATt

that is,

t&(A* FATFAD) = A+ Ay — AT AL+ AT
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Set X := Af + A% + A} + (65/2)J. Then, by (P.3),

dX
tﬁ =A+A A X —AT+AM+A=[A+A - AL X]=[A-U, X],

which can be written in the form

d
(5.12) t%(t_AXtA) = —[tTAUR AXEN.

Recall that t=AU®t* € £(D(gg,0y)) and note that
tAXEN =t MAG+ AL F AT - AN — A = U+ U+t 2Utr € £(D(e0, 09)).

From (5.12) it follows that

t% (tAX T[T Upet A X)) =0,
which implies

tAXEN + T AU, A XN = C € My(Cy).
Since the left-hand member belongs to £(D(eg, 0Og)), we have C = 0, so that

tAXEY = —T [T A X
By Proposition 5.4, [[t2Ut*|| < 2co|rt| [t|~/2. Observing that
[ AXEY = ||z [ AUt e A XN ||
< AATEN | X < Seolnt] 172 A X EY

we deduce X = Aj+ A% + AT + (0/2)J = 0. Then

dAg d A, A A, 485
=t—(t"Bit =t |t

g gt Bt dt

=t ([t (A — AR, By] + (A, Byt

= [Al +A - AT7tABE;t_A] = [AZ; +A::7A(§] = [A;’?AS]’

+ [A,B;])M

which means that (5.11) satisfies the first equation of system (5.1). Similarly for
the remaining equations of (5.1) we may check the corresponding facts.

We substitute xt = x and ¢t = pz into (5.11) to obtain a family of solutions
as in Theorem 2.2. If (T71A¢T)2; = 0, then t*A,t=* = A, + [TAT1 A,]logt
(¢ = 0,z), and, by Proposition 5.6, kt(Af — tAAgt™), kt(AX — tAA D), AT — Ay
are in £*. Hence dege®A,e 28 < 1, deg eI (&)e ™ < n+1 (1 = 0,2) and
degIT3™ (&) < m. This completes the proof of Theorem 2.2.
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85.3. Proof of Theorem 2.1

Let Ag, Az, Ay € Ma(Cylo,071)), T € GL2(Cylo,071]) and A = Ag + A, satisfy
(P.1) through (P.3). To prove Theorem 2.1(1), we construct a solution of (5.2)
corresponding to these matrices. Let {(UOU), éu),Ul(V)) € (6)% v > 0} be the
sequence given by a recursive system of the form (5.5) with the operator Z[-]
defined in Section 4.2. Then it has the following property, which is verified by
using the formal series versions of Lemmas 4.10 and 4.11 (cf. Remark 4.3).

Proposition 5.7. Ul(V), t_AUl(V)tA7 Uéy), UQE”) €6 for every v > 0.

Let ¥ be as in Theorem 2.1 and suppose that (,) satisfies (2.4) with by > 0.
We would like to show the convergence of the sequence in a domain D(Xg,e) C
Yo x (C\ {0}) x R(C\ {0}) of the form
D(Xy,¢e) := U {(0,r)} x {|kt| < e, |kt||t7| < e, |kt|[t77] < e}
(0,k)€Z0 % (C\{0})

Using Lemma 4.11, we may show
v 2 e UV UM € &(D(So, ),
and, for (o,k,t) € D(Xg,¢e),
[t A ], [|stA |, |t - 2 Mgt ™M), [t - ¢~ Mgt < %Olmfl(lt"l +1t77),
[ AT T TP < Lt o]+ 1),

where ¢y > 1+ ||Ao|| + ||Az|l + ||A1]| is a constant depending only on ¥ and by.
Arguments parallel to those in Section 5.2.1 by the use of the lemmas of Section 4.2
lead us to

Proposition 5.8. For every v > 1,
(i) UM =2uWes Ul Ul e &(D(%0,e0)),
(i) UL, e AT NUSN US| < 28]t (27| + [,
(i) UL = U8V < (Kolstl([t7] + [£71)” for e = 0,,1,
(iv) t=MUY = U0 < (Kolst|(t7] + [t )7,
where Ko > ¢ and ¢ are constants depending only on ¥y and by.
This yields the solution (Ug®, U, Us®) = limy, 00 (U, U, UMY of (5.2)
such that Uge, U, U, t=AUPHY € &(D(Xo,0)). In the corresponding solu-

tion of (5.1) we set Kt = x and t” = pz° to obtain a family of solutions as in
Theorem 2.1(1).
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To show the second half of Theorem 2.1, we consider (U(g”), w) Ul(”)) given
by the recursive system of the form (5.5) with Ag, A,, A1, A € Ma(Cy[og, o5 ']) for
o0 € Sy Then 2" = t*Ut=2, 2 = AUt and U satisfy

Ul =z =z =y,
v t — 14
o = _ILf,ﬁ[tAAxt Atz A+ U )]} :
wtZS T = —kt AT [MUTTY A At 28N,
Rt ZWHD = —pt AU AN + 20N A

Kt

—kt-tAT [tA At UMY A A Zg(c”)]tA} A,

— Kt
By the supposition (T7'AgT)s; = 0, the matrices t*Agt™ and t*A,t=" with
A =T(0p/2)JT~! do not contain the term t=7°, so xt - t*Agt =, kt - tA At~ are
in & (oy).

Let us consider the case where og € ¥, N {Reo > 1}. For such ¢, we show
the convergence of the sequence {(xktZ", ktZ{"), U")}. To do so, set

D*(oo,e) = |J {r} x {st] <&, [st] [t°] < e} € (C\{0}) x R(C\ {0}).
reEC\{0}

By Lemma, 4.13, Ul(l)7 m‘Z(()l), wtzZt € &t (D" (09,¢)), and for (k,t) € DT (09, €),

+
st ot - 4Rt~ st - £ At < a1+ J270]),

+
1 1 C p
(5.13) 101 st 25Vl st 20 < =t 1+ [e0)),
where cg > 1+ ||A1]| is a constant depending only on oy and by. We suppose, for
J=v,
(5.14) U9 ktz8) ktz0) e &1 (DT (00,e)),
(5.15) 101 1t 12 < 26 |t (1 + 117

with the convention Ul(j) = m‘Z(()j) = /itZg(Cj) = 0 for j < 0. These are valid for
7 < 1. The recursive relations above give

v v t - v -
gy _ ) _ g ﬁ([tAAwt Ay g g _ =)

+[ZW -z A+ UMY
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wt(Z5 = 280y = —kt AT (U U At + 2]
+U, 267 - Zg T ),
kt(ZD — 20 = —gt AT (U = UYLt 4 2]
+ [Ul(y); Zc(cl/) _ ZJ(:D—l)])tA]t—A
_A Kt

— it TN (U - U A 4 2]

+ U,z — ZE=I)) e A
Using Proposition 4.12, we derive

v+1 v — v v v—1
(5.16) U — U < 4L (st At + ZO) | o) — oY)
v—1 v v—
+ ([ + U DD st (28 — Z&=D)))
< 12L ef (It + [ DU = U V| + (w20 = Z&= D))

if € < 1/2. Furthermore, by Lemma 4.13,
(5.17)  |wt(Z8 Y = Z0)| < 2LEITIP T

_ v v+1 v v v v—1
x (st Aot + ZI) UL = UP )+ 10| 1st(28 = 2§~ D)))

T R —1¢ o v+1 v v v—1
<GLTIPIT Y Ped mt| (1 + [t (IUTY = UP) + Ist(287 — 28 ),

and
(5.18)  [lst(Z8 Y = ZI)| < 0L | TIP|T 1 Peg
o v+1 v v v—
x| (L4 [ (10 = U7 + [lst( 28 = 287 D))).
In the last inequality we replace v by v — 1 to obtain

(5.19)  |xt(Z) — zY))|
o v v—1 v— v—
< K{|wt|(1+ [t ) (U = UV + |lst(28~Y — 22y

xT

with K" = 20Ld || T2 1T~ ||?cd . Inequality (5.16) combined with (5.19) gives

(5.20) Ut — Ul
< KF|rt|(1+ [t ) (U = U8V + |lwt(20~D = Z&=2)))

x
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with some constant K, > ¢ . Substituting this into (5.17) and (5.18), we have

(5:21)  |lst(Z5") = 207)| < K|t (1 + [e°0))
v v—1 v v—1 v— v—
x (077 = OV + st 25" = 25|+ st(Z D = 287 D)]),
(5.22)  |Iwt(Z8 Y = Z0)|| < K |kt (1 + [t7°))
v v—1 v v— (v— v—
x (07" = U Pl st 28 = 287D+ st 2 = 27 D)])
with some constant K. ;‘ > CE)". Put
V= 0y U
+ 18825 = 25 D) + It(Z28) = Z97D)| + |st(Z87 = 207D
By (5.13), v") < ¢ |wt|(14[t7°]). From inequalities (5.19) through (5.22) we derive
D < K|kt (1+ [t70 )oY for every j < v with some constant K > g, which
is valid under the suppositions (5.14) and (5.15). By the same argument as in the
proof of Proposition 5.4 we have
Proposition 5.9. Under the supposition oy € ¥4 N{Reo > 1}, for everyv > 1,
() UM stz ktZ") € &*+(D*(00,20)),
(i) WU, st 2 st 2| < 26 |t (1 + [t70)),
(iii) U = OV lst(28) = 28| < (K [st| (L [E0])” for o =0,
where Kgr > car and €y are constants depending only on oy and by.
This proposition implies (Us°, ktZ§°, ktZ°) := lim,,ﬁoo(Uly)7 thé”), fftZg(CV))
€& (DT (00,20))? if o €X N{Re o >1}. Denote by (U°(a,t), U (a,t), U (0, 1))
the solution of (5.2) for o € 3¢ constructed in the proof of Theorem 2.1(1). We

may suppose that 3o N (XL N{Reo > 1}) # 0. If op € Zo N (E4+ N{Reo > 1}),
then

(5.23)  (UX(00, 1), Kt - tAUS (00, )t ™A, Kt - tA U (00, 1)t ™)
= (U, ktZ5°, ktZ°) € &1 (D 1 (00, 20))3,
since both triples come from the same sequence defined by the recursive system of

the form (5.5). By Lemma 4.10, (U{® (0, t), rt-tAUSe (0, 1)t =, kt-tAUP (0, )t71) €
S&(D(Xo,20))%, and we write

=33 T,

n=1m=-n

Kt - AU (o, t)t Z Z e, )"t (L=0,x)

n=1m=-—n
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with 7, (0),T7,(0) € M2(Cy(o)). Note that oy is algebraic in (0,). By (5.23)
we find that Ty, (00), %, (00), T'T,,(c0) = 0 for —n < m < 0 as functions of
(0,), and (5.23) as a function of (k,t,(6,)) can be continued analytically as long
as 0p € Lo U (X1 N{Reo > 1}). Then
(M Aot ™ + Z5° M At ™A + Z2° Ay + UT)
= (t* (Ao + Us®(00, )t~ 1 (Ag + U (00, )t~ %, Ay + U (00, 1))
with (79, kt) = (px?°, z) solves (2.1) for every op € 3o U (X4 N{Rec > 1}). For

each gp € X1 N{Rec < 1} we may choose Xy such that Xy 3 0¢, and hence we
obtain the solution as in Theorem 2.1 for o9 € ¥..

86. Proofs of Theorems 2.3, 2.4 and Corollary 2.5
For o # 0, [5, Lemma A.2] with r = s = 1 gives

Lemma 6.1. The matrices

(s +62 — 1 B
AO_T(lGaz((HO +ZC;)(2 o?)(o? —)(90—91:)2) 410(93—93—02))11 17
AmT< 1 ﬁ(g L 02— 02) L 2>T17
1857 (00 +602)% — 0*)((6o — 02)* — 0%) 4 (63 — 02 — 0?)
AZ( 1 Ff%_fz 202) 2 1 2 ! 2 2 >,
robr (0 01)2 — 62)(02 — (0 — 02)?) (02 — 63 + 02.)
Al:( 1 ﬁ;z—f%—@?ﬁ) 2 2 1 2_12 2>7
1oz (0 +601)* = 02)((0 — 01)* = 0%,) 5 (07 + 035, —0?)

1 1
T =
(@muo T 02— 0) (o — ) 9%))
have the properties (P.1) through (P.3).
Using [6, Proposition 2, Jordan case] with » = 0 or —6, we have

Lemma 6.2. The matrices

+600/2 0 . F6o/2 1 “1
A=T T A, =T T,
’ ((98 —02)/4 3F90/2) ’ ((93 —03)/4  £6p/2

1 (92 _ 92 ) 1
A= 2 o; 2 1 (p2 K
— 1oz (01 = 0%)° - (05 — 0%)
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A (@(o%w;) ~1 >

o (02— 02 (03 4 62)

1 0
T —
.
have the properties (P.1), (P.2"), (P.3).

Remark 6.1. It is also possible to choose more general matrices

A= ( ﬁ(a%—ego) 1_(9%_920)7:>

1 2 2 \2 1 2 2
~ T ame—onn (01 —0x)” 1 (05 — 01)
A — g (67 + 02) —1 4 (02— 02)F
1= 1 e 1 ,
im0 —0%) w07 +0%)

1 107
T— ) .
(4900(1—(9%—02@)7:) (0% -0 1 >

§6.1. Derivation of Theorem 2.3

Let Ag, Az, Ay and T be as in Lemma 6.1. For the solution with ¢ € ¥ in
Theorem 2.1, xAq(0, p,x), A, (0,p,x), A1(o,p,x) — A1 can be written in the
form > 0° an Y AR (0)(pz?)™ with A? (o) € My(Cy(o)) (v = 0,2,1). If
we substitute (pz?,x) = (17, xt), they become, respectively, st - t* (Ao + US)t™A,
Kkt -t (Ay + UXNEA, U € &(D(g,0)) with US®, US®, U as in the proof of
Theorem 2.1 in Section 5.3, and, by Proposition 5.8 and Lemma 4.10,

st - % (Ao + UG, 1t -t (Mg + UZ )M, U] < & lwtl (187] + £,

where ¢ is a positive constant depending only on ¥ and by. Hence, taking g so
small that g9 < (16¢5) ! again if necessary, for (o, p, x) satisfying

(6.1) 2| <o, fa(pa?) <eo, z(pa”) T < eo

we deduce that each entry of zAg(o,p, ), tAz(0,p,x) and Ay(o,p,x) — A1 as
a double series converges absolutely, and the sum of the absolute values of the
summands in each double series does not exceed 1/8. Recall that

_ 96140(07 P 33)12
x(Ao(o, p,x) + A1(o, p, )12 — A1(o, p, )12

y(x)

solves (PVI). By the fact mentioned above, the denominator is given by
1 — aden(0, p, ) With agen(o,p,z) = >0 ja™ > al(o)(pz®)™, al (o) €
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Co(o) such that >_0°  |z|[* >0 |al(o)]|pz?|™ < 1/2 for (o,p,z) satisfy-
ing (6.1). Substituting the series agen(o, p,z) into (1 — agen(o,p,x))~t = 1 +
Y721 den(0, p, )7 and rearranging the summands, we obtain the product of con-

vergent series

n

y(@) = 2 Ao(o, )iz (143 2™ 3 an (o) (o)),

Here a), (o) € Cy(0o), because each agen (0, p, )’ consists of summands with n > j.
By Lemma 6.1, the leading term of xAg (o, p, x) is

Q:(pl,a)A/aAO(pgscr)fA/o' _ IT(pIJ)J/QTflAOT(pxa)fJ/QTfl

=T i(az + 05— 02) px® 1
17 (02%) 1 (0 + 02) = ) (0 = (B0 — 0,)%) (6203 —0%)) "

whose (1, 2)-entry is

px 1 2 2 2
m(‘awaz(” Tl )=

s (0 0 = ) (0 = 07 = ) () ).

We replace the integration constant p by —op to obtain y(o, p,x) as in Theorem
2.3 with &g = gg inf,ex, min{|o|, |o| 71} > 0. If 07 = (6p + 0,)?, then (T~ AgT)2;
vanishes at o = ¢, and zAy (00, p, z), Az (00, p, ), A1(00, p, ) — A1 admit rep-
resentations Y oo ™ > " _ A" (00)(px?°)™ (v = 0,,1). Hence the second half
of the theorem immediately follows.

§6.2. Derivation of Theorem 2.4

For the solution in Theorem 2.2, x Ag(p, x), xAz(p, z), A1(p, ) — Ay can be written
in the form Y >  z" 23::0 A% log™ (px) with A% € My(Cy) (1 = 0,2,1). By
Lemma 6.2 the leading term of xAg(p,x) is

w(p) Ao (pr) ™™ = 2T (p2) AT~ AgT(pz) AT

+0,/2 0 At
=T (5 sa ) 09T

whose (1, 2)-entry is
2 (F0o log(px) + (63 — 65) log® (pz)).

If 2 = 02, then (T~1AgT)21 = 0, and xAg(p, x), 2A.(p,x), A1(p,x) — A1 admit
representations Y o 2" > " _ A% log™ (pz) (1 = 0,,1). Using these facts, we
obtain Theorem 2.4.
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Remark 6.2. If §2 = 62, then, by Lemma 6.2,

tAAotiA —T <i90/2 :Feo 10gt> Tﬁl,

A A :Fo()/? 1:|:9010gt 1
P At —T( 0 +0y/2 T

With these expressions in mind, observing the recursive relations in the proof of
Proposition 5.6 and noting the logarithmic terms in the proof of Lemma 4.6, we
can verify that, for (5.11) solving (5.1), the series xtA§(¢), xtA%(t), A (t) — Ay
can be written in the form Y07, >" _ A*" (kt)"(0g logt)™ with A" € My(Cy)
(t=0,z,1).

§6.3. Derivation of Corollary 2.5

Suppose that 62 # 63. Then from Theorem 2.4 it follows that

v (L+ Flalog*(pr), log(px))) ! 1

WD T gkl 09T Rg 27O

with F, (&) = £2FDP, 11 (€) € Cgl¢ '] and Fy(o0) = (02 — 62)/4. Since yo(p, x)
converges absolutely in 9*(gg, Op), we have ¢ = O((go/2)~™) for every (m,n)
such that 0 < m < 2n. Hence the function £ 2Fy(&)~1(1+ F(%,£))~! with

jo%s) o 2(n+1)
Fy(OF(#,€) =Y a"Fu(§) =) Y cprtlgngCnth=m
n=1 n=1 m=0
is holomorphic in (&, &) such that |Z| < Zo, |£] > s, where Z is sufficiently small
and &, is sufficiently large. Replacing (6, 0x,01,0) by (0oo — 1,61,0,,600 + 1),
we derive the inverse logarithmic solution as in the corollary under the condition
02 # (0o — 1)2. If 02 = 02 # 0, then

Yo(p, ) log(px) Fo(log(p)) 7 G

with F,(€) = &=tV P, 1 (€) € Cg[¢ "] and Fy(€) = +6y, which yields the desired
solution under the condition 61 = +(6 — 1) # 0.

z (1 + F(xlog(px),log(px))) ! F(z,€) = 1 i;ﬁ"ﬁ &)

86.4. Remark on the choice of Ay and A,

Let (Ag, Ay, A, A1, T) be as in Lemma 6.1. Set T := Tr//2 and A, := rAoA 7=/
(1 =0,z) with r € C\{0}. Then (Ao, A,, A, Ay, T) also satisfies (P.1) through (P.3).
In discussing the relation between integration constants and monodromy data
of the related Fuchsian system, such a choice of matrices is made (see [12],
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[4], [5]). Let (Ag, A,, A1) be the solution given by Theorem 2.1 corresponding
to (Ao, Ay, A, Ay, T) with p = 1. We set

1210 = xA([\o + Uo)x_A, A, = l‘A(A$ + U$).Z‘_A, 1211 =A+ Ul.

By Proposition 5.1, (UO, U,, Ul) satisfies

dU - _ -
xﬂ = —[z7 A0 2™, Ay + U],
dx
U, - N .
z CZ; = At A + O] - T A (A + D)t R+ T
dU T - -
xd—; = JC[:UA(AQc + Uz ™ Ay + T4

Since 2MA, 72 = (r1/72)A A, (rV/72) =D (L = 0,z), the triple
(Uo, Uz, Ul) = (TﬁA/UUQT'A/U, TﬁA/oﬁITA/U, Ul)

solves (5.2) with kK = r=1/9 t = r'/2. Then A, = (r'/7z) (A, + U,)(r'/72)~>
(¢ = 0, z), which implies (Ag, A, A1) = (Ag(o,r, ), Ap(0, 7, 2), A1 (0, 7, ).

For (Ag, Ay, A, A1, T) asin Lemma 6.2, (Ag, Ay, A, Ay, T) with A, = e™A,e ™
(1t = 0,z), T = Te™ also satisfies (P.1), (P.2’), (P.3). Then the solution given
by Theorem 2.2 corresponding to (Ag, Ay, A, A1, T) with p = 1 coincides with
(Ao(e", ), Az (e", ), A1 (e", z)).

Appendix

Let 0,p € C\ {0} and rg,w € R be such that Imo # 0, 0 < w < 1. Then
|pz1t7| = O(|z|*) along the curve I'(rg, w), : (1+Reoc—w) log |z|—Imo-argz = ro.
Let y(x) be a solution of (PVI) such that

(A1) yle) = e 714 0(1)),  ay(2) = pr' T (L+ o+ o(1))

as x — 0 along I'(rg,w),. By y = (e*/2 + e %/2)72 = e=%(1 + e~*)=2, (PVI) is
changed into

z(zu') = fo(z,e ™, ze) + fi(x,e ", ze") (xu') + foz,e ", ze®) (zu')?

(v = du/dz), where f;(z,&,n) (j = 0,1,2) are holomorphic for |z|, |¢],|n| < 1/4
and satisfy f;(0,0,0) =0 (cf. [17, Proposition 5.1]). The further transformation

u=—(1+0o)logz—logp—v, zu' =-1+0)—az0

leads us to
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(A.2) z(zv') = folz, prltoe’, p~lz=% ")
— fi(z, pxtToev, p ) (1 + o 4 av')
+ folz, prtoe?, p7teT%e V) (1 4+ o + x0')?
= Fy(z, px' ™7, p7 2™ + F(x, px* ™t p~ e ™ v, a0).

Here Fy(x,&,m) and F(x,&,n,v,w) are holomorphic for |z|,|£],|n| < 1/(8e) and
[v], |w] < 1, and satisfy

(A3)  Fo(z,&n) = O(z| + [¢] + [nl),
(Ad4)  F(z,&n,0,w) — F(z,§n,0,w) = O(|z] + [¢] + ) (|0 — v| + [0 — w])

whenever |vl, |w|,|?|, |@w| < 1. Let v(z) be the solution of (A.2) corresponding
to y(z). Along I'(rg,w).,

e”(x)(l + psr:””’e”(gﬁ))f2 = e”(‘r)(l + O(|a:|‘*’)e”(x))72 =1+o0(1),

2px1+aev(a¢) )

/

w),v(x)
O(|z|“)e w)) =1+40+o(l),

- (1+a+xv’(w))<1+ 1+ O(|z[«)er@

since zy'/y = —(1 — 2¢7%/(1 + e*))zu’. Then we have v(z),zv'(z) = o(1) as
x — 0 along I'(rg,w),. Observing that |pz1 7|, [p~ 1277 = O(|z|“ + |z|'~*) along
I'(rg,w), and using v(x),zv'(z) = o(1), we deduce that v(x) satisfies the system
of integral equations

dt
xv' (z) = / (Fo(t, pt"7, p7 7)) + F(t,pt1+f’,p—1t—“,v(t),tv’(t)))?

[(z)

at ds

v(x):/ / (Fo(t, pt 7, p=77) 4 Pt pttF7, p7 177, 0(t), 00/ (1)) 5
r(@) Jo(s) s

with I'(x) C I'(rg,w), joining 0 to z. Suppose that vi(z) and va(z) solve this
system and set ¢(z) = Supyep(y (Jv2(t) — vi(t)| + [tvy(t) — tv1(¢)]). Then using
(A.3) and (A.4) we derive ¢(z) = O(|z|“ + |z|'~)¢(z), and hence ¢(z) = 0. This
implies the uniqueness of v(z), from which that of y(z) follows. The uniqueness

140

under the condition y(x) ~ px only may be proved by using the Riemann-—

Hilbert correspondence [4, Proposition in §4], [5, Proposition A.1].
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