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The Sixth Painlevé Transcendents and the
Associated Schlesinger Equation

by

Shun Shimomura

Abstract

For the Schlesinger equation associated with the sixth Painlevé equation (PVI) near the
critical point, we present families of solutions expanded into convergent series with ma-
trix coefficients. These families yield four basic solutions of (PVI) in Guzzetti’s table
describing the critical behaviours of the sixth Painlevé transcendents; two of the basic
solutions are of complex power type, and two are of logarithmic type. Consequently, the
convergence of the logarithmic solutions is verified. Furthermore we obtain more infor-
mation on these basic solutions as well as on inverse logarithmic solutions. For complex
power solutions, examining related inverse oscillatory ones, we discuss sequences of zeros
and poles, non-decaying exponential oscillation and the analytic continuation around the
critical point, and show the spiral distribution of poles conjectured by Guzzetti.
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§1. Introduction

For the sixth Painlevé equation
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with α, β, γ, δ ∈ C, Guzzetti [9] provided the tables of the critical behaviours of

solutions as well as the parametric connection formulas, which are expected to

give a complete description of the behaviours of the sixth Painlevé transcendents
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as nonlinear special functions and to be of great use in applications to a variety

of problems in mathematics and mathematical physics. All the types of solutions

near x = 0 listed in [9, Table 1] are derived through birational transformations

from four basic solutions, two of which are of complex power type,

y(x) = x
(
c1,−1(axσ)−1 + c10 + axσ

)
+

∞∑
n=2

xn
n∑

m=−n
cnm(axσ)m,

y(x) = x(c′10 + axσ0) +

∞∑
n=2

xn
n∑

m=0

c′nm(axσ0)m

with

c10 =
1

2σ2
(σ2 + θ2

0 − θ2
x), c1,−1 =

1

16σ4
((θ0 − θx)2 − σ2)((θ0 + θx)2 − σ2),

c′10 =
θ0

θ0 ± θx
, σ2

0 = (θ0 ± θx)2,

and two are of logarithmic type,

y(x) = x

(
θ2
x − θ2

0

4
(a+ log x)2 +

θ2
0

θ2
0 − θ2

x

)
+

∞∑
n=2

xnPn(log x; a) if θ2
0 6= θ2

x,

y(x) = x(a± θ0 log x) +

∞∑
n=2

xnPn(log x; a) if θ2
0 = θ2

x.

Here a and σ are integration constants; θ0 and θx are numbers such that θ2
0 = −2β,

θ2
x = 1− 2δ; and Pn(ξ; a) (n ≥ 2) are polynomials in ξ.

The basic complex power solutions are represented by convergent series, which

were obtained from the result in [5] combined with [8] (see also [12], [17]). Their

convergence was proved in [5] by solving integral equations for the elliptic repre-

sentation of (PVI) by successive approximations. As described in [8, §7], the inner

sums
∑n
m=−n cnm(axσ)m are given by direct substitution into (PVI), and the de-

termination of cnm is based on an overdetermined system of recursive relations,

that is, for each n it is necessary to check the compatibility of more than 2n + 1

relations on cnm. On the other hand, the leading terms of the basic logarithmic

solutions were found in [6], [7] by applying a matching procedure to a Fuchsian

system related to (PVI) through isomonodromy deformation (see also [12, (1.9)′]).

The polynomials Pn(ξ; a) are computed by direct substitution into (PVI), and in

this case as well, the system of recursive relations is overdetermined. The conver-

gence of the series for the logarithmic solutions, however, has not been proved, and

no reference is made to degPn(ξ; a) in the generic case except for a conjectural

discussion in [10, §3] related to the pole distribution of solutions of (PVI) with

(α, β, γ, δ) = ((2µ− 1)2/2, 0, 0, 1/2).
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As applications of the convergent series representations for complex power

solutions Guzzetti [8], [9], [10] derived oscillatory or inverse oscillatory behaviours

and studied in detail sequences of poles accumulating at x = 0 asymptotically along

rays. Furthermore the analytic continuation of complex power solutions around

x = 0 was clarified through monodromy data in [4] and [5], which suggested the

spiral distribution of poles.

Equation (PVI) is equivalent to the Schlesinger equation that is a deforma-

tion equation for the Fuchsian system mentioned above. For the Schlesinger equa-

tions corresponding to general Fuchsian systems, under a certain restriction on the

eigenvalues of related matrices, Sato, Miwa and Jimbo [16] presented asymptotic

estimates for solutions as well as their asymptotic expansions (for asymptotic es-

timates in a more general case see [4]). These estimates were used in the study

of (PVI) (cf. [4], [5], [8], [12]). This fact suggests the possibility of deriving the

formulas in Guzzetti’s table by solving the Schlesinger equation that is equivalent

to (PVI).

In view of the importance of the basic solutions, it is necessary to verify the

convergence of the expansions in the logarithmic case as well. In the derivation

of the series expansions of both types, it is preferable to avoid the use of overde-

termined systems of recursive relations if possible, since it is not easy to check

compatibility. In this paper we construct families of solutions of the Schlesinger

equation associated with (PVI) expanded into convergent series with matrix co-

efficients, whose expressions are different from the asymptotic expansions in [16],

and we derive the basic solutions of (PVI) without dealing with overdetermined

recusive relations. Consequently, the convergence of the logarithmic solutions is

shown, and more information on the expansions is obtained; for example, we may

fix the bound of degPn(ξ; a), which enables us to get more detailed expressions

for inverse logarithmic solutions including the Chazy solutions [14].

Our results on the solutions of the Schlesinger equation and on the basic so-

lutions of (PVI) are stated in Section 2.1. The inverse logarithmic solutions in

Corollary 2.5 follow from the basic logarithmic ones. In Section 2.2, for complex

power solutions, using the representations of them and of related inverse oscillatory

ones, we observe how they behave and get results describing sequences of zeros and

poles, non-decaying exponential oscillation and the analytic continuation around

x = 0. We discuss the analytic continuation by matching, which shows the spi-

ral distribution of poles conjectured by Guzzetti [4], [5]. In Section 3 we describe

a relation between (PVI) and the Schlesinger equation in our case (for isomon-

odromy deformation related to (PVI) see, for example, [2], [4], [5], [13], [14]). The

convergent solutions of the Schlesinger equation are constructed in Section 5 by

iteration on a certain kind of rings of formal or convergent series with matrix co-
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efficients, which are defined in Section 4. In our argument, which is similar to that

in [17], we define a suitable norm in each ring, and, instead of the contour integral,

consider an operator acting in it that assigns the formal primitive function of a

related series. The final section is devoted to the derivation of the basic solutions

of (PVI).

Throughout this paper we use the following symbols:

(1) for a ring A, M2(A) is the ring of 2 × 2 matrices C = (Cij) with Cij ∈ A
(i, j = 1, 2), and GL2(A) := {C ∈M2(A); C−1 ∈M2(A)};

(2) I, J , ∆, ∆− denote the matrices

I =

(
1 0
0 1

)
, J =

(
1 0
0 −1

)
, ∆ =

(
0 1
0 0

)
, ∆− =

(
0 0
1 0

)
;

(3) R(C \ {0}) denotes the universal covering of C \ {0};
(4) Cθ := C[θ0, θx, θ1, θ∞, θ

−1
∞ ], (θι) := (θ0, θx, θ1, θ∞) (cf. (2.2), (2.3));

(5) the following are rings of formal series Φ (cf. Section 4):

L̂ : Φ =

∞∑
n=1

2n∑
m=0

Cnm(κt)n logm t, Cnm ∈M2(Cθ),

L̂∗ : Φ =

∞∑
n=1

n∑
m=0

Cnm(κt)n logm t, Cnm ∈M2(Cθ),

Ŝ : Φ =

∞∑
n=1

n∑
m=−n

Cnm(κt)ntσm, Cnm ∈M2(Cθ(σ)),

Ŝ+(σ0) : Φ =

∞∑
n=1

n∑
m=0

Cnm(κt)ntσ0m, Cnm ∈M2(Cθ(σ0)),

and L(D), S(D(Σ)), S+(D(σ0)) denote the subrings consisting of Φ such that

‖Φ‖ <∞ in the domains D, D(Σ), D(σ0), respectively.

§2. Results

§2.1. Solutions of the Schlesinger equation and (PVI)

The Schlesinger equation

x
dA0

dx
= [Ax, A0], x

dAx
dx

= [A0, Ax]− x

1− x
[A1, Ax],

x
dA1

dx
= − x

1− x
[Ax, A1],

(2.1)



The Sixth Painlevé Transcendents 421

where A0, Ax, A1 are 2× 2 unknown matrices, controls the isomonodromy defor-

mation of a Fuchsian system that will be mentioned in the next section, and is

equivalent to (PVI) under certain conditions.

Let θ0, θx, θ1, θ∞ be complex parameters such that

(2.2) α = (θ∞−1)2/2, −β = θ2
0/2, γ = θ2

1/2, 1/2−δ = θ2
x/2, θ∞ 6= 0,

where α, β, γ, δ are the coefficients of (PVI), and set

(2.3) Cθ := C[θ0, θx, θ1, θ∞, θ
−1
∞ ].

For a given number b0 > 0, suppose that (θι) := (θ0, θx, θ1, θ∞) satisfies

(2.4) |θ0|+ |θx|+ |θ1|+ |θ∞|+ |θ−1
∞ | < b0.

Suppose that Λ0, Λx, Λ1 ∈M2(Cθ[σ, σ−1]), T ∈ GL2(Cθ[σ, σ−1]) and Λ := Λ0+Λx
have the properties:

(P.1) the eigenvalues of Λ0, Λx, Λ1 are ±θ0/2, ±θx/2, ±θ1/2, respectively;

(P.2) T−1ΛT = (σ/2)J ;

(P.3) Λ0 + Λx + Λ1 = −(θ∞/2)J.

Then we have

Theorem 2.1. (1) Let Σ0 be a bounded domain such that

Σ0 ⊂ C \ S0 with S0 := {σ ≤ −1} ∪ {0} ∪ {σ ≥ 1} ⊂ R

and dist(Σ0, S0) > 0. Then (2.1) admits a two-parameter family of solutions{
(A0(σ, ρ, x), Ax(σ, ρ, x), A1(σ, ρ, x)); (σ, ρ) ∈ Σ0 × (C \ {0})

}
given by the convergent series

A0(σ, ρ, x) = (ρxσ)Λ/σ
(

Λ0 +

∞∑
n=1

xnΠn
0 (σ, ρxσ)

)
(ρxσ)−Λ/σ,

Ax(σ, ρ, x) = (ρxσ)Λ/σ
(

Λx +

∞∑
n=1

xnΠn
x(σ, ρxσ)

)
(ρxσ)−Λ/σ,

A1(σ, ρ, x) = Λ1 +

∞∑
n=1

xnΠn
1 (σ, ρxσ)

with

Πn
ι (σ, ξ) =

n∑
m=−n

Cnιm(σ)ξm, Cnιm(σ) ∈M2(Cθ(σ))
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(ι = 0, x, 1), which are holomorphic in (σ, ρ, x) ∈ Ω(Σ0, ε0) ⊂ Σ0 × (C \ {0}) ×
R(C \ {0}). Here

Ω(Σ0, ε0) :=
⋃

(σ,ρ)∈Σ0×(C\{0})

{(σ, ρ)} × Ωσ,ρ(ε0),

Ωσ,ρ(ε0) :=
{
x ∈ R(C \ {0}); |x| < ε0, |x(ρxσ)| < ε0, |x(ρxσ)−1| < ε0

}
,

ε0 = ε0(Σ0, b0) being a sufficiently small positive number depending only on Σ0

and b0.

(2) If (T−1Λ0T )21 vanishes at

σ = σ0 ∈ Σ+ := C \ ({σ ≤ −1} ∪ Z),

then (2.1) admits a one-parameter family of solutions

{(A0(σ0, ρ, x), Ax(σ0, ρ, x), A1(σ0, ρ, x)); ρ ∈ C}

given by the representations above restricted to σ = σ0 whose inner sums satisfy

Πn
1 (σ0, ξ) =

∑n
m=0 C

n
1m(σ0)ξm and, for ι = 0, x,

ξΛ/σ0Πn
ι (σ0, ξ)ξ

−Λ/σ0 =

n+1∑
m=0

C̃nιm(σ0)ξm, ξΛ/σ0Λιξ
−Λ/σ0 = C̃0

ι0(σ0) + C̃0
ι1(σ0)ξ,

with C̃nιm(σ0) ∈ M2(Cθ(σ0)) (n ≥ 0). For ι = 0, x, 1, Aι(σ0, ρ, x) are holomorphic

in (ρ, x) ∈ Ω(ε0) ⊂ C×R(C \ {0}), where

Ω(ε0) :=
⋃
ρ∈C
{ρ} × Ωρ(ε0),

Ωρ(ε0) := {x ∈ R(C \ {0}); |x| < ε0, |x(ρxσ0)| < ε0},

ε0 = ε0(σ0, b0) being a sufficiently small positive number depending only on σ0

and b0.

Remark 2.1. The poles of each entry of Cnιm(σ) belong to Q \ {0 < |σ| < 1}.

Remark 2.2. By (P.2) each entry of A0(σ, ρ, x), Ax(σ, ρ, x) and A1(σ, ρ, x) is a

power series in x and (ρxσ)±1, in particular, (A0(σ0, 0, x), Ax(σ0, 0, x), A1(σ0, 0, x))

is a Taylor series solution convergent for |x| < ε0.

Suppose that Λ0,Λx,Λ1 ∈ M2(Cθ), T ∈ GL2(Cθ) and Λ = Λ0 + Λx have the

properties (P.1), (P.3) above and

(P.2′) T−1ΛT = ∆.

Then we have logarithmic solutions.
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Theorem 2.2. System (2.1) admits a one-parameter family of solutions{
(A0(ρ, x), Ax(ρ, x), A1(ρ, x)); ρ ∈ R(C \ {0})

}
given by the convergent series

A0(ρ, x) = (ρx)Λ
(

Λ0 +

∞∑
n=1

xnΠ∗n0 (log(ρx))
)

(ρx)−Λ,

Ax(ρ, x) = (ρx)Λ
(

Λx +

∞∑
n=1

xnΠ∗nx (log(ρx))
)

(ρx)−Λ,

A1(ρ, x) = Λ1 +

∞∑
n=1

xnΠ∗n1 (log(ρx))

with

Π∗nι (ξ) =

2n∑
m=0

C∗nιmξ
m, C∗nιm ∈M2(Cθ)

(ι = 0, x, 1), which are holomorphic in (ρ, x) ∈ Ω∗(ε0,Θ0) ⊂ R(C \ {0})2. Here

Ω∗(ε0,Θ0) :=
⋃

ρ∈R(C\{0})

{ρ} × Ω∗ρ(ε0,Θ0),

Ω∗ρ(ε0,Θ0) :=
{
x ∈ R(C \ {0}); |ρx| < ε0, |x(ρx)−1/2| < ε0, |arg(ρx)| < Θ0

}
,

Θ0 being a given positive number and ε0 = ε0(Θ0, b0) a sufficiently small positive

number depending only on Θ0 and b0. Furthermore, if (T−1Λ0T )21 = 0, then

Π∗n1 (ξ) =
∑n
m=0 C

∗n
1mξ

m and, for ι = 0, x,

eΛξΠ∗nι (ξ)e−Λξ =

n+1∑
m=0

C̃∗nιmξ
m, eΛξΛιe

−Λξ = C̃∗0ι0 + C̃∗0ι1 ξ,

with C̃∗nιm ∈M2(Cθ) (n ≥ 0).

From these solutions of the Schlesinger equation depending on suitably chosen

matrices Λ0, Λx, Λ1 (cf. Lemmas 6.1 and 6.2), we obtain the following theorems

on (PVI), in which Σ0, Σ+, Ω(Σ0, ε), Ω(ε) and Ω∗(ε,Θ0) are as in Theorems 2.1

and 2.2.

Theorem 2.3. (1) Equation (PVI) admits a two-parameter family of solutions

{y(σ, ρ, x); (σ, ρ) ∈ Σ0 × (C \ {0})} given by the convergent series

y(σ, ρ, x) =

∞∑
n=1

xnRn(σ, ρxσ),



424 S. Shimomura

which is holomorphic in (σ, ρ, x) ∈ Ω(Σ0, ε̂0), ε̂0 = ε̂0(Σ0, b0) being a sufficiently

small positive number depending only on Σ0 and b0. Here

Rn(σ, ξ) =

n∑
m=−n

cnm(σ)ξm, cnm(σ) ∈ Cθ(σ),

in particular,

R1(σ, ξ) = ξ +
1

2σ2
(σ2 + θ2

0 − θ2
x) +

1

16σ4
((θ0 − θx)2 − σ2)((θ0 + θx)2 − σ2)ξ−1.

(2) If σ2
0 = (θ0 ± θx)2 and if σ0 ∈ Σ+, then (PVI) admits a one-parameter

family of solutions {y+(σ0, ρ, x); ρ ∈ C} given by the convergent series

y+(σ0, ρ, x) =

∞∑
n=1

xnRn(σ0, ρx
σ0), Rn(σ0, ξ) =

n∑
m=0

cnm(σ0)ξm,

which is holomorphic in (ρ, x) ∈ Ω(ε+
0 ), ε+

0 = ε+
0 (σ0, b0) being a sufficiently small

positive number depending only on σ0 and b0.

As will be shown in Section 2.2, the series expansions given above allow for a

variety of behaviours of y(σ, ρ, x) and y+(σ0, ρ, x).

Theorem 2.4. Equation (PVI) has a one-parameter family of solutions {y0(ρ, x);

ρ ∈ R(C \ {0})} given by the convergent series

y0(ρ, x) =

∞∑
n=1

xnPn(log(ρx)),

which is holomorphic in (ρ, x) ∈ Ω∗(ε0
0,Θ0), ε0

0 = ε0
0(Θ0, b0) being a sufficiently

small positive number depending only on Θ0 and b0. Here

Pn(ξ) =

2n∑
m=0

c∗nm ξm, c∗nm ∈ Cθ,

in particular,

P1(ξ) = 1
4 (θ2

x − θ2
0)ξ2 ± θ0ξ.

If θ2
x = θ2

0, then Pn(ξ) =
∑n
m=0 c

∗n
m ξm for every n ≥ 1.

Remark 2.3. In Theorems 2.3 and 2.4, Cθ(σ) and Cθ may be replaced by Qθ(σ)

and Qθ, respectively, where Qθ := Q[θ0, θx, θ1, θ∞, θ
−1
∞ ], because the entries of the

matrices in Lemmas 6.1 and 6.2 belong to Qθ(σ).
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Remark 2.4. Each solution as a double series converges absolutely and uni-

formly on every compact set contained in the corresponding domain. For ex-

ample
∑∞
n=1

∑n
m=−n |cnm(σ)| |xn| |(ρxσ)m| for y(σ, ρ, x) converges uniformly on ev-

ery compact set contained in Ω(Σ0, ε̂0).

Remark 2.5. The solutions y(σ, ρ, x), y+(σ0, ρ, x) and y0(ρ, x) agree with the

basic solutions [9, (36)], [9, (41)] and [9, (48), (44)], respectively.

Remark 2.6. Theorem 2.3 gives the Taylor series solution y+(σ0, 0, x) as well,

which agrees with [9, (42)].

Remark 2.7. (1) If θ2
x = θ2

0, then Pn(ξ) may be written as Pn(ξ) = P̃n(±θ0ξ)

with P̃n(ξ̃) ∈ Cθ[ξ̃] for (θι) satisfying (2.4) (cf. Remark 6.2), so that y0(ρ, x) admits

another expression of the form

ỹ0(a, x) =

∞∑
n=1

xnP̃n(a± θ0 log x),

a being an integration constant. Hence, under the condition θx = θ0 = 0, this

yields the Taylor series solution ỹ0(a, x)|θ0=0 =
∑∞
n=1 P̃n(a)|θ0=0 x

n, which agrees

with [9, (46)].

(2) If θ2
x 6= θ2

0, setting ρ = ea exp(∓2θ0/(θ
2
x − θ2

0)) we have P1(log(ρx)) =

(θ2
x − θ2

0)(a+ log x)2/4− θ2
0/(θ

2
x − θ2

0) as in [9, (48)].

Remark 2.8. The logarithmic solution with θ2
x = θ2

0 as well as those with θx±θ0

∈ Z [9, (43)] derived through birational transformations may also be obtained from

the polynomial Hamiltonian system

dy/dx = ∂HVI/∂z, dz/dx = −∂HVI/∂y,

where

HVI =
1

x(x− 1)

(
y(y − 1)(y − x)z2

− (θ0(y − 1)(y − x) + θ1y(y − x) + (θx − 1)y(y − 1))z + θ](y − x)
)
,

θ] = 1
4 ((θ0 + θx + θ1 − 1)2 − θ2

∞) (see [15], [11]).

As a corollary of Theorem 2.4 we obtain inverse logarithmic solutions includ-

ing the Chazy solutions (cf. [9, (60), (64)], [1], [3], [14]) by using the birational

transformation [15]

(2.5) θ0 7→ θ∞ − 1, θx 7→ θ1, θ1 7→ θx, θ∞ 7→ θ0 + 1, y(x) 7→ x/y(x).
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Corollary 2.5. Instead of (2.4), suppose that |θ0|+ |θx|+ |θ1|+ |θ∞|+ |(θ0 +1)−1|
< b̃0, where b̃0 is a given positive number. Then (PVI) admits a one-parameter

family of solutions {yinverse
0 (ρ, x); ρ ∈ R(C \ {0})} given by the convergent series

yinverse
0 (ρ, x) =

∞∑
n=0

xnQn(log(ρx)),

which is holomorphic in (ρ, x) ∈ Ω∗(ε̃0,Θ0), ε̃0 = ε̃0(Θ0, b̃0) being a sufficiently

small positive number depending only on Θ0 and b̃0. Here Qn(ξ) (n ≥ 0) are

functions with the properties:

(i) if θ2
1 6= (θ∞ − 1)2, then

Qn(ξ) = ξ2n−2
∞∑
m=0

c̃nmξ
−m, c̃nm ∈ Cθ̃[(θ

2
1 − (θ∞ − 1)2)−1],

with Cθ̃ := C[θ0, θx, θ1, θ∞, (θ0 + 1)−1], which are holomorphic for |ξ| > ξ∞, in

particular,

Q0(ξ) =
4ξ−2

θ2
1 − (θ∞ − 1)2

(
1± 4(θ∞ − 1)ξ−1

θ2
1 − (θ∞ − 1)2

)−1

,

ξ∞ being a sufficiently large positive number independent of n;

(ii) if θ1 = ±(θ∞ − 1) 6= 0, then

Qn(ξ) = ξn−1
2n∑
m=0

c̃nmξ
−m, c̃nm ∈ Cθ̃[(θ∞ − 1)−1],

in particular, Q0(ξ) = ±ξ−1/(θ∞ − 1).

§2.2. Behaviours of y(σ, ρ, x) and y+(σ0, ρ, x)

As shown in [4], [5], [9], a complex power solution has a dominant term that changes

according to the integration constant σ. Let us examine the behaviours of y(σ, ρ, x)

and y+(σ0, ρ, x) in Theorem 2.3. If Imσ = 0, then, in Ωσ,ρ(ε̂0), y(σ, ρ, x) ∼ ρx1+σ

if −1 < σ < 0, and y(σ, ρ, x) ∼ c1−1(σ)ρ−1x1−σ if 0 < σ < 1 and c1−1(σ) 6= 0.

In what follows we suppose that Imσ 6= 0, and observe y(σ, ρ, x) along the

curve

Γ(r0, ω) : (1 + Reσ − ω) log |x| − Imσ · arg x = r0

with 0 ≤ ω ≤ 2, r0 ∈ R, which was considered in [4], [5]. This is a ray tending

to x = 0 if 1 + Reσ − ω = 0, and a spiral curve if 1 + Reσ − ω 6= 0. Note that

|x1+σ| = er0 |x|ω, |x1−σ| = e−r0 |x|2−ω along Γ(r0, ω).
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2.2.1. Dominant terms. For each ω 6= 0, 1, 2, y(σ, ρ, x) along Γ(r0, ω) has a

dominant term.

Proposition 2.6. For every r0 ∈ R, along Γ(r0, ω), y(σ, ρ, x) ∼ ρx1+σ if 0 <

ω < 1, and y(σ, ρ, x) ∼ c1−1(σ)ρ−1x1−σ if 1 < ω < 2 and c1−1(σ) 6= 0.

2.2.2. Trigonometric oscillation. Suppose that ω = 1. Let σ and ρ be fixed.

Along Γ(r0, 1),

xσ = er0 exp
(
i(Imσ)−1(|σ|2 log |x| − r0 Reσ)

)
.

Then R1(σ, ρxσ) has three balanced terms, and is written in the form R1(σ, ρxσ) =

ρx−σ(xσ − ξ−0 )(xσ − ξ+
0 ) with

ξ±0 = ξ±0 (σ, ρ) :=
1

4σ2ρ
(θ2
x − (θ0 ± σ)2).

Let us write y(σ, ρ, x) = xR1(σ, ρxσ) + x2R∗(x) or

ρ−1xσ−1y(σ, ρ, x) = ρ−1xσR1(σ, ρxσ) + ρ−1x1+σR∗(x)

= (xσ − ξ−0 )(xσ − ξ+
0 ) + ρ−1x1+σR∗(x).

For any x∗ ∈ Γ(r0, 1), if |x − x∗| < |x∗|/2, then |xσ|, |x−σ| = O(1), and hence

R∗(x) = O(1), the implied constants being independent of x∗. The last estimate

may be verified by using |cnm(σ)| ≤ ε−n with some ε > 0, which follows from

absolute convergence (cf. Remark 2.4).

Simple zeros. Suppose that θ0 6= 0, and that ξ±0 6= 0. Then ξ−0 − ξ
+
0 6= 0. Take

r0 = r−0 = r−0 (σ, ρ) such that exp(r−0 ) = |ξ−0 |, and set µ− = µ−(σ, ρ) = arg ξ−0 .

Then

xσ − ξ−0 = −2i exp
(
(σ log x+ r−0 + iµ−)/2

)
sin
(
(iσ log x+ µ− − ir−0 )/2

)
.

On Γ(r−0 , 1) this is written in the form

2i exp
(
r−0 + i(2 Imσ)−1(|σ|2 log |x| − r−0 Reσ + µ− Imσ)

)
× sin

(
(2 Imσ)−1(|σ|2 log |x| − r−0 Reσ − µ− Imσ)

)
.

This implies that xσ − ξ−0 admits a sequence {xν}ν∈N ⊂ Γ(r−0 , 1) of simple zeros

given by

|σ|2 log |xν | − r−0 Reσ − µ− Imσ = −2πν|Imσ|.

It is easy to see that |xν+1| = exp(−2π|σ|−2|Imσ|)|xν |. By the fact mentioned

above, |ρ−1x1+σR∗(x)| ≤ M0|xν | if |x − xν | < |xν |/2, where M0 is a positive



428 S. Shimomura

number independent of ν. Let Dν(M) be the disc |x − xν | ≤ M |xν |2, where the

constant M independent of ν will be fixed later. On Dν(M),

xσ − ξ−0 = σxσ−1
ν (x− xν)(1 +O(Mxν)),

xσ − ξ+
0 = ξ−0 − ξ

+
0 + σxσ−1

ν (x− xν)(1 +O(Mxν))

= (ξ−0 − ξ
+
0 )(1 +O(Mxν))

as long as M |xν | < 1/2. Hence, on Dν(M), R1(σ, ρxσ) admits no zeros other than

xν if |xν | is sufficiently small. Furthermore, on the circle ∂Dν(M),

|(xσ − ξ−0 )(xσ − ξ+
0 )| = M |σ| exp(r−0 )|ξ−0 − ξ

+
0 | |xν |(1 +O(Mxν)).

Take M such that M |σ| exp(r−0 )|ξ−0 − ξ
+
0 | = 2M0. Then |(xσ − ξ−0 )(xσ − ξ+

0 )| >
|ρ−1x1+σR∗(x)| on ∂Dν(M), provided that |xν | is sufficiently small, since we have

|x − xν | < |xν |/2 on Dν(M) if M |xν | < 1/2. By Rouché’s theorem there exists

only one simple zero x−ν of y(σ, ρ, x) in the interior of ∂Dν(M), which satisfies

|x−ν − xν | = O(|xν |2) if |xν | is sufficiently small. Thus we have

Proposition 2.7. If θ0 6= 0 and ξ±0 6= 0, then y(σ, ρ, x) admits a sequence

{x−ν }ν∈N of simple zeros such that

|σ|2 log |x−ν | − r−0 Reσ − µ− Imσ ∼ −2πν|Imσ|

and dist(x−ν ,Γ(r−0 , 1)) = O(|x−ν |2).

Similarly, for (r+
0 , µ+) = (r+

0 (σ, ρ), µ+(σ, ρ)) satisfying exp(r+
0 ) = |ξ+

0 |, µ+ =

arg ξ+
0 , we have

Proposition 2.8. If θ0 6= 0 and ξ±0 6= 0, then y(σ, ρ, x) admits a sequence

{x+
ν }ν∈N of simple zeros, different from {x−ν }ν∈N, such that

|σ|2 log |x+
ν | − r+

0 Reσ − µ+ Imσ ∼ −2πν|Imσ|

and dist(x+
ν ,Γ(r+

0 , 1)) = O(|x+
ν |2).

Using (2.5) we may obtain inverse oscillatory solutions admitting sequences

of poles (cf. Section 2.2.4).

Remark 2.9. In the plane R2 3 (log |x|, arg x), the lines representing Γ(r−0 , 1) and

Γ(r+
0 , 1) run parallel to each other. Hence, if Reσ 6= 0, the sequences {x−ν }ν∈N and

{x+
ν }ν∈N lie asymptotically along the respective spiral curves that are congruent.

If Reσ = 0, they accumulate at x = 0 asymptotically along the respective rays,

and the corresponding pole sequences were studied in [10].
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Double zeros. If θ0 = 0 and if ξ0
0 = ξ0

0(σ, ρ) = (4σ2ρ)−1(θ2
x − σ2) 6= 0, then

R1(σ, ρxσ) = ρx−σ(xσ − ξ0
0)2 vanishes at xν ∈ Γ(r0

0, 1) such that

|σ|2 log |xν | − r0
0 Reσ − µ0 Imσ = −2πν|Imσ|,

which is a double zero, where r0
0 = r0

0(σ, ρ) and µ0 = µ0(σ, ρ) are given by

exp(r0
0) = |ξ0

0 |, µ0 = arg ξ0
0 . Every zero of solutions of (PVI) is double if θ0 = 0,

which is checked by a straightforward computation. Using this fact, by the same

argument as above, we have

Proposition 2.9. If θ0 = 0 and ξ0
0 6= 0, then y(σ, ρ, x) admits a sequence {x0

ν}ν∈N
of double zeros such that

|σ|2 log |x0
ν | − r0

0 Reσ − µ0 Imσ ∼ −2πν|Imσ|

and dist(x0
ν ,Γ(r0

0, 1)) = O(|x0
ν |2).

2.2.3. Non-decaying exponential oscillation. Suppose that ω = 0. In this

case y(σ, ρ, x) along Γ(r0, 0) is not asymptotic to xR1(σ, ρxσ). Let r0 ∈ R be a

given number, and let ρ be such that |ρx1+σ| = |ρ|er0 < ε̂0. Then

x1+σ = er0 exp
(
i(Imσ)−1((|σ|2 + 2 Reσ + 1) log |x| − r0(1 + Reσ))

)
along Γ(r0, 0). Since

xnRn(σ, ρxσ) =

2n∑
j=0

cnn−j(σ)ρn−j(x1+σ)n−jxj = cnn(σ)ρn(x1+σ)n +O(x),

y(σ, ρ, x) is asymptotic to the sum of non-decaying exponential oscillatory terms.

Proposition 2.10. If |ρ|er0 = |ρx1+σ| is sufficiently small, then, along Γ(r0, 0),

y(σ, ρ, x) =

∞∑
n=1

cnn(σ)(ρer0)nη(σ, r0, x)n +O(x)

with

η(σ, r0, x) = exp
(
i(Imσ)−1((|σ|2 + 2 Reσ + 1) log |x| − r0(1 + Reσ))

)
.

Along Γ(r0, 2) we have a solution of the same type.

2.2.4. Analytic continuation around x = 0 and inverse oscillation. Let

σ and ρ be generic values. By matching we discuss the analytic continuation of



430 S. Shimomura

y(σ, ρ, x) beyond the region
⋃

0<ω<2 Γ(r0, ω). Denote Γ(r0, ω) by Γ(r0, ω)σ, indi-

cating the dependence on σ. By Proposition 2.6, along Γ(r0, ω)σ,

y(σ, ρ, x) ∼ ρx1+σ if 0 < ω < 1,(2.6)

y(σ, ρ, x) ∼ c1−1(σ)ρ−1x1−σ if 1 < ω < 2 and c1−1(σ) 6= 0.(2.7)

To y(σ, ρ, x) and c1−1(σ) we apply the substitution

(θ0, θx, θ1, θ∞) 7→ (θ∞ − 1, θ1, θx, θ0 + 1),

and denote the results by ỹ(σ, ρ, x) and c̃1−1(σ), respectively. Then y∞(σ̃, ρ̃, x) :=

x/ỹ(σ̃, ρ̃, x) also solves (PVI) (cf. (2.5)), and along Γ(r0, ω̃)σ̃,

y∞(σ̃, ρ̃, x) ∼ ρ̃−1x−σ̃ if 0 < ω̃ < 1,(2.8)

y∞(σ̃, ρ̃, x) ∼ c̃1−1(σ̃)−1ρ̃xσ̃ if 1 < ω̃ < 2 and c̃1−1(σ̃) 6= 0.(2.9)

For this solution we observe inverse oscillatory behaviours derived from Proposi-

tions 2.7 through 2.9.

Proposition 2.11. (1) Suppose that θ∞ 6= 1 and c̃1−1(σ̃) 6= 0. Then y∞(σ̃, ρ̃, x)

admits sequences {x∞−ν }ν∈N and {x∞+
ν }ν∈N of simple poles such that

|σ̃|2 log |x∞±ν | − r∞±0 Re σ̃ − µ∞± Im σ̃ ∼ −2πν|Im σ̃|

and dist(x∞±ν ,Γ(r∞±0 , 1)σ̃) = O(|x∞±ν |2), where r∞±0 = r∞±0 (σ̃, ρ̃) and µ∞± =

µ∞± (σ̃, ρ̃) are given by

exp(r∞±0 ) = |(4σ̃2ρ̃)−1(θ2
1 − (θ∞ − 1± σ̃)2)|,

µ∞± = arg((4σ̃2ρ̃)−1(θ2
1 − (θ∞ − 1± σ̃)2)).

(2) Suppose that θ∞ = 1 and c̃1−1(σ̃) 6= 0. Then y∞(σ̃, ρ̃, x) admits a sequence

{x∞0
ν }ν∈N of double poles such that

|σ̃|2 log |x∞0
ν | − r∞0

0 Re σ̃ − µ∞0 Im σ̃ ∼ −2πν|Im σ̃|

and dist(x∞0
ν ,Γ(r∞0

0 , 1)σ̃)=O(|x∞0
ν |2), where r∞0

0 =r∞0
0 (σ̃, ρ̃) and µ∞0 =µ∞0 (σ̃, ρ̃)

are given by

exp(r∞0
0 ) = |(4σ̃2ρ̃)−1(θ2

1 − σ̃2)|, µ∞0 = arg((4σ̃2ρ̃)−1(θ2
1 − σ̃2)).

By (2.6) and Remark 2.4, say along Γ(r0, ω)σ with 0 < ω < 1,

y(σ, ρ, x) = ρx1+σ(1 + o(1)), xy′(σ, ρ, x) = ρx1+σ(1 + σ + o(1)).

The uniqueness of a solution behaving like this is verified by using an equation

describing (PVI) locally (see Appendix). Let us consider matching (2.6) with (2.9).
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By the definition of Γ(r0, ω)σ, we have the relation Γ(r0, ω + 1)σ+1 = Γ(r0, ω)σ.

Observing that y∞(1 + σ, ρ̃, x) ∼ c̃1−1(σ + 1)−1ρ̃x1+σ along Γ(r0, 1 + ω)1+σ if

0 < ω < 1, we have y(σ, ρ, x) = y∞(1 + σ, ρ̃, x) if c̃1−1(σ + 1)−1ρ̃ = ρ. Since both

sides are analytic in (σ, ρ, x), we have

y(σ, ρ, x) ≡ y∞(1 + σ, c̃1−1(σ + 1)ρ, x).

More generally, for every ν ∈ Z, observing that

Γ(r0, ω)σ = Γ(r0, ω − 2ν)σ−2ν = Γ(r0, ω − 2ν + 1)σ−2ν+1,

from (2.6) through (2.9) we derive the following:

Proposition 2.12. For every ν ∈ Z and every r0 ∈ R, along Γ(r0, ω)σ,

y(σ − 2ν, ρ, x) ∼

{
ρx1−2ν+σ if 2ν < ω < 2ν + 1,

c1−1(σ − 2ν)ρ−1x1+2ν−σ if 2ν + 1 < ω < 2ν + 2

as long as c1−1(σ − 2ν) 6= 0, and

y∞(σ − 2ν + 1, ρ̃, x) ∼

{
ρ̃−1x2ν−1−σ if 2ν − 1 < ω < 2ν,

c̃1−1(σ − 2ν + 1)−1ρ̃x−2ν+1+σ if 2ν < ω < 2ν + 1

as long as c̃1−1(σ − 2ν + 1) 6= 0.

Then by matching we obtain the following relations, which combined with

Proposition 2.12 enable us to find the analytic continuation of y(σ, ρ, x) or

y∞(σ, ρ, x) around x = 0.

Proposition 2.13. For any ν ∈ Z,

y(σ − 2ν, ρ, x) ≡ y∞(σ − 2ν + 1, c̃1−1(σ − 2ν + 1)ρ, x),

y(σ − 2ν, c1−1(σ − 2ν)ρ, x) ≡ y∞(σ − 2ν − 1, ρ, x),

y(σ − 2ν, ρ, x) ≡ y(σ − 2ν + 2, c̃1−1(σ − 2ν + 1)c1−1(σ − 2ν + 2)ρ, x),

y∞(σ − 2ν + 1, c1−1(σ − 2ν)c̃1−1(σ − 2ν + 1)ρ, x) ≡ y∞(σ − 2ν − 1, ρ, x)

as long as c1−1(· · · ), c̃1−1(· · · ) in each relation do not vanish.

For y(σ, ρ, x) along Γ(r0, 0)σ or Γ(r0, 2)σ, a non-decaying exponential oscilla-

tion is observed as in Proposition 2.10, provided that ρer0 or (ρer0)−1 is sufficiently

small, that is, Γ(r0, 0)σ or Γ(r0, 2)σ enters Ωσ,ρ(ε̂0). By the relations above with

ν = 0, sequences of poles appear asymptotically along Γ(r]0, 0)σ = Γ(r]0, 1)σ+1 or

Γ(r]0, 2)σ = Γ(r]0, 1)σ−1, where r]0 ∈ {r
∞−
0 , r∞+

0 , r∞0
0 } is given in Proposition 2.11
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with σ̃ = σ + 1 or σ − 1, on which the condition for the non-decaying exponen-

tial oscillation is violated. Further pole sequences as well as zero sequences are

obtained from Proposition 2.13 as long as c1−1(σ + ν), c̃1−1(σ + ν) 6= 0. These pole

sequences are situated as conjectured in [4], [5].

2.2.5. On y+(σ0, ρ, x). The solution y+(σ0, ρ, x) may also be observed along

Γ0(r0, ω) : (1 + Reσ0 − ω) log |x| − Imσ0 · arg x = r0

if Imσ0 6= 0, on which |x1+σ0 | = er0 |x|ω, where r0 ∈ R, ω ≥ 0. Suppose that

σ2
0 + θ2

0 − θ2
x 6= 0. For every r0 ∈ R, along Γ0(r0, ω),

y+(σ0, ρ, x) ∼

{
ρx1+σ0 if 0 < ω < 1,

(2σ2
0)−1(σ2

0 + θ2
0 − θ2

x)x if ω > 1.

Suppose that ω = 1. Let r∗0 = r∗0(σ0, ρ) and µ∗ = µ∗(σ0, ρ) be such that

exp(r∗0) = |−(2σ2
0ρ)−1(σ2

0 + θ2
0 − θ2

x)|, µ∗ = arg(−(2σ2
0ρ)−1(σ2

0 + θ2
0 − θ2

x)).

Then y+(σ0, ρ, x) admits a sequence {x∗ν}ν∈N of simple zeros such that

|σ0|2 log |x∗ν | − r∗0 Reσ0 − µ∗ Imσ0 ∼ −2πν|Imσ0|

and dist(x∗ν ,Γ0(r∗0 , 1)) = O(|x∗ν |2). If ω = 0, for ρ such that |ρx1+σ0 | = |ρ|er0 < ε+
0 ,

y+(σ0, ρ, x) =

∞∑
n=1

cnn(σ0)(ρer0)nη(σ0, r0, x)n +O(x)

along Γ0(r0, 0). Note that c1−1(σ0) = 0. If σ̃0 satisfies c̃1−1(σ̃0) = 0, Im σ̃0 6= 0 and

σ̃2
0 + (θ∞ − 1)2 − θ2

1 6= 0, where c̃1−1(σ) is as in Section 2.2.4, then (2.5) yields an

inverse oscillatory solution y∞+(σ̃0, ρ̃, x) such that, along Γ0(r0, ω̃)σ̃0

y∞+(σ̃0, ρ̃, x) ∼

{
ρ̃−1x−σ̃0 if 0 < ω̃ < 1,

2σ̃2
0(σ̃2

0 + (θ∞ − 1)2 − θ2
1)−1 if ω̃ > 1.

Furthermore it admits a sequence {x∞∗ν }ν∈N of simple poles such that

|σ̃0|2 log |x∞∗ν | − r∞∗0 Re σ̃0 − µ∞∗ Im σ̃0 ∼ −2πν|Im σ̃0|

and dist(x∞∗ν ,Γ0(r∞∗0 , 1)σ̃0) = O(|x∞∗ν |2), where

exp(r∞∗0 ) = |−(2σ̃2
0 ρ̃)−1(σ̃2

0 + (θ∞ − 1)2 − θ2
1)|,

µ∞∗ = arg(−(2σ̃2
0 ρ̃)−1(σ̃2

0 + (θ∞ − 1)2 − θ2
1)).
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§3. Isomonodromy deformation, the Schlesinger equation and (PVI)

If (A0(x), Ax(x), A1(x)) is a solution of (2.1) such that

(i) the eigenvalues of A0(x), Ax(x), A1(x) are ±θ0/2, ±θx/2, ±θ1/2, respectively,

(ii) A0(x) +Ax(x) +A1(x) ≡ −(θ∞/2)J,

then the Fuchsian system

(3.1)
dY

dλ
=

(
A0(x)

λ
+
Ax(x)

λ− x
+
A1(x)

λ− 1

)
Y

admits a fundamental matrix solution whose monodromy remains invariant under

a small variation of the deformation parameter x, and

y(x) =
xA0(x)12

x(A0(x) +A1(x))12 −A1(x)12

solves (PVI) with (α, β, γ, δ) satisfying (2.2). As guaranteed by the following propo-

sition, our solutions of (2.1) satisfy (i) and (ii), and in solving (PVI) we rely on

this fact (see Section 6).

Proposition 3.1. The solution (A0(x), Ax(x), A1(x)) of (2.1) given by Theorem

2.1 or 2.2 satisfies (i) and (ii) above, and the corresponding system (3.1) has the

isomonodromy property.

Proof. Suppose that (A0(x), Ax(x), A1(x)) is as in, say, Theorem 2.2. By Theo-

rem 2.2,

A0(x) +Ax(x) +A1(x)

= (ρx)Λ
(
Λ0 + Λx +O(|x log2(ρx)|)

)
(ρx)−Λ + Λ1 +O(|x log2(ρx)|)

= Λ0 + Λx + Λ1 +O(|x log4(ρx)|) = −(θ∞/2)J +O(|x|1/2)

as x → 0 through Ω∗ρ(ε0,Θ0). From (2.1) it follows that (d/dx)(A0(x) + Ax(x) +

A1(x)) ≡ 0. Hence A0(x) + Ax(x) + A1(x) ≡ −(θ∞/2)J , which is property (ii).

Fix (ρ, x0) ∈ Ω∗(ε0,Θ0) and consider the Pfaffian system

(3.2) dY =

(
A0(x)

dλ

λ
+Ax(x)

d(λ− x)

λ− x
+A1(x)

d(λ− 1)

λ− 1

)
Y

for (x, λ) ∈ {x ∈ Ω∗ρ(ε0,Θ0); |x − x0| < ε′0} × P1, where ε′0 = ε′0(x0, ρ) < |x0|/2
is a sufficiently small positive number. System (3.2) is completely integrable since

(A0(x), Ax(x), A1(x)) solves (2.1). Let Y (x, λ) be a fundamental matrix solution

of (3.2) such that, for |x− x0| < ε′0,

Y (x, λ) = (I +O(λ−1))λ−(θ∞/2)Jλ∆∞ around λ =∞
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with ∆∞ denoting ε∞∆ if θ∞ ∈ N, ε∞∆− if −θ∞ ∈ N, and 0 if θ∞ 6∈ Z, where

ε∞ ∈ C (cf. [18]). As (d/dx) trAι(x) ≡ 0 and trAι(x) = O(|x log4(ρx)|), we have

trAι(x) ≡ 0 (ι = 0, x, 1). Let ±θ0
ι /2 be the eigenvalues of Aι(x0). Then, by [18],

Y (x, λ) behaves as follows:

G0(x)(I +O(λ))λ(θ00/2)Jλ∆0Γ0 around λ = 0,

Gx(x)(I +O(λ− x))(λ− x)(θ0x/2)J(λ− x)∆xΓx around λ = x,

G1(x)(I +O(λ− 1))(λ− 1)(θ01/2)J(λ− 1)∆1Γ1 around λ = 1

for |x− x0| < ε′0 with connection matrices Γ0, Γx, Γ1 independent of x. Here, for

each ι ∈ {0, x, 1}, Gι(x) is an invertible matrix holomorphic for |x− x0| < ε′0, and

∆ι denotes ει∆ if θ0
ι ∈ N∪{0}, ει∆− if −θ0

ι ∈ N, and 0 if θ0
ι 6∈ Z, where ει ∈ C. This

fact implies that the monodromy with respect to Y (x, λ) as a solution of (3.1) does

not depend on the deformation parameter x. The local behaviour around λ = 0

gives

λ−1A0(x) +O(1) =
∂Y

∂λ
(x, λ)Y (x, λ)−1 = λ−1G0(x)V (λ)G0(x)−1

with

V (λ) = (I +O(λ))
(
(θ0

0/2)J + λ(θ00/2)J∆0λ
−(θ00/2)J

)
(I +O(λ)) +O(λ),

whose residue is

A0(x) = G0(x)(θ0
0/2)JG0(x)−1 or G0(x)((θ0

0/2)J + ∆0)G0(x)−1,

which implies that the eigenvalues of A0(x) are ±θ0
0/2. Combining this fact with

(ρx)−ΛA0(x)(ρx)Λ = Λ0 + O(|x log2(ρx)|), we find θ0
0 = θ0. Similarly we show

that the eigenvalues of Ax(x) and A1(x) are ±θx/2 and ±θ1/2, respectively, which

completes the proof.

§4. Rings of matrix series

§4.1. Logarithmic type

Let L̂ be the ring of formal series of the form

Φ = Φ(κ, t) =

∞∑
n=1

2n∑
m=0

Cnm(κt)n logm t, Cnm ∈M2(Cθ),

with the parameter κ 6= 0. For Φ ∈ L̂ as above define the norm of Φ by

‖Φ‖ = ‖Φ‖(κ, t) :=

∞∑
n=1

2n∑
m=0

‖Cnm‖ |κt|n|t|−m/4,



The Sixth Painlevé Transcendents 435

where ‖Cnm‖ denotes the standard norm of the matrix Cnm such that ‖C‖ =

‖C‖mat = maxi=1,2{|Ci1|+ |Ci2|}. Then ‖C(κt)n logm t‖mat = ‖C‖mat|κt|n|log t|m

≤ ‖C‖mat|κt|n|t|−m/4 = ‖C(κt)n logm t‖ if |log t| ≤ |t|−1/4. For simplicity we use

the common symbol ‖·‖provided it causes no confusion. LetD⊂(C\{0})×R(C\{0})
be a domain such that |log t| ≤ |t|−1/4 for every (κ, t) ∈ D, and let

L(D) := {Φ ∈ L̂; ‖Φ‖ <∞ for (κ, t) ∈ D and for (θι) satisfying (2.4)}.

Throughout this section we suppose that (θι) satisfies (2.4).

Proposition 4.1. (1) If Φ ∈ L(D), then, for each (θι), Φ = Φ(κ, t) is holomor-

phic in (κ, t) ∈ D, and satisfies ‖Φ(κ, t)‖mat ≤ ‖Φ‖(κ, t).
(2) ‖Φ‖ ≡ 0 if and only if Φ ≡ 0.

(3) Let Φ,Ψ ∈ L(D). Then Φ + Ψ,ΦΨ ∈ L(D), and

‖Φ + Ψ‖ ≤ ‖Φ‖+ ‖Ψ‖, ‖ΦΨ‖ ≤ ‖Φ‖ ‖Ψ‖.

If C ∈ M2(Cθ) (respectively, c ∈ Cθ), then CΦ,ΦC ∈ L(D) (respectively,

cΦ ∈ L(D)), and

‖CΦ‖, ‖ΦC‖ ≤ ‖C‖ ‖Φ‖ (respectively, ‖cΦ‖ = |c| ‖Φ‖).

(4) Let Φ ∈ L(D), and let ϕ(τ) =
∑∞
n=0 ϕnτ

n with ϕn ∈ C. If |ϕ|(|κt|) :=∑∞
n=0 |ϕn| |κt|n <∞ in D, then ϕ(κt)Φ ∈ L(D) and ‖ϕ(κt)Φ‖ ≤ |ϕ|(|κt|)‖Φ‖.

Proof. Suppose that Φ(κ, t) =
∑∞
n=1

∑2n
m=0 C

n
m(κt)n logm t ∈ L(D). For any (κ̃, t̃)

in D, we may choose a neighbourhood D0 ⊂ D of (κ̃, t̃), a point (κ0, t0) ∈ D \D0,

and a positive number ε∗ in such a way that |κt| ≤ (1− ε∗)|κ0t0|, |t| ≤ (1− ε∗)|t0|
for every (κ, t) ∈ D0. Since ‖Φ‖(κ0, t0) <∞, we have ‖Cnm‖ = O(|κ0t0|−n|t0|m/4),

the implied constant being independent of n and m. Hence

‖Cnm(κt)n logm t‖mat ≤ ‖Cnm‖ |κt|n|t|−m/4 = O((|κt|/|κ0t0|)n(|t|/|t0|)−m/4)

= O((1− ε∗)n−m/4) = O((1− ε∗)n/2)

in D0, which implies the holomorphic nature and the inequality in (1). The re-

maining assertions are easily checked.

Proposition 4.2. Suppose that each Φν ∈L(D) consists of summands with n≥ν,
and that, for each (θι),

∑∞
ν=1 ‖Φν‖ <∞ in D. Then Φ∞ =

∑∞
ν=1 Φν ∈ L(D), and

‖Φ∞‖ ≤
∑∞
ν=1 ‖Φν‖.

Proof. Write Φν =
∑∞
n=ν

∑2n
m=0 C

n
νm(κt)n logm t with Cnνm ∈M2(Cθ). Then each

entry of the triple series
∑∞
ν=1

∑∞
n=ν

∑2n
m=0 C

n
νm(κt)n logm t converges absolutely
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in D, and hence it is possible to rearrange the summands. Thus we have

Φ∞ =

∞∑
n=1

2n∑
m=0

C∞nm (κt)n logm t, C∞nm :=

n∑
ν=1

Cnνm ∈M2(Cθ),

which satisfies ‖Φ∞‖ ≤
∑∞
ν=1 ‖Φν‖ < ∞ in D and Φ∞ ∈ L(D). This completes

the proof.

Note that the primitive function of t−1(κt)n logm t is

(κt)n

n

(
logm t− m

n
logm−1 t+

m(m− 1)

n2
logm−2 t− · · ·+ (−1)mm!

nm

)
.

Taking this fact into account, we set

I[C(κt)n logm t]

:= C
(κt)n

n

(
logm t− m

n
logm−1 t+

m(m− 1)

n2
logm−2 t− · · ·+ (−1)mm!

nm

)
for (m,n) ∈ (N ∪ {0}) × N and C ∈ M2(Cθ), which induces a linear operator

I : L̂→ L̂. For m ≤ 2n,

‖I[C(κt)n logm t]‖

= ‖C‖ |κt|
n

n

(
|t|−m/4 +

m

n
|t|−(m−1)/4 +

m(m− 1)

n2
|t|−(m−2)/4 + · · ·+ m!

nm

)
≤ ‖C‖ |κt|n|t|−m/4(1 + 2|t|1/4 + · · ·+ 2m|t|m/4)

≤ ‖C‖ |κt|n|t|−m/4(1− 2|t|1/4)−1 ≤ 2‖C‖ |κt|n|t|−m/4 = 2‖C(κt)n logm t‖

if |t| < 2−8 and if (κ, t) ∈ D. Thus we have

Proposition 4.3. Suppose that Φ ∈ L(D). Then

(i) I[Φ] ∈ L(D), (ii) ‖I[Φ]‖ ≤ 2‖Φ‖, (iii) t(d/dt)I[Φ] = Φ,

provided that |t| < 2−8 for every (κ, t) ∈ D.

In what follows we suppose that |t| < 2−8 for every (κ, t) ∈ D.

Lemma 4.4. Let Λ∈M2(Cθ) and T ∈GL2(Cθ) satisfy (P.2′), that is, T−1ΛT =∆.

Then, for every Φ ∈ L(D) ∪M2(Cθ), we have κt · t∓ΛΦt±Λ ∈ L(D) and

‖κt · t∓ΛΦt±Λ‖ ≤ 2‖T‖2‖T−1‖2|κt| |t|−1/2‖Φ‖.
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Proof. If C ∈M2(Cθ), then

κt · t∓ΛCt±Λ = κtT t∓∆T−1CTt±∆T−1

= κtT (I ∓∆ log t)T−1CT (I ±∆ log t)T−1

= κt(C ± [C, T∆T−1] log t− T∆T−1CT∆T−1 log2 t) ∈ L(D).

Furthermore, for (κ, t) ∈ D,

‖κt · t∓ΛCt±Λ‖ ≤ ‖C‖ |κt|
(
1 + 2‖T‖ ‖T−1‖ |t|−1/4 + ‖T‖2‖T−1‖2|t|−1/2

)
≤ ‖C‖ |κt| |t|−1/2‖T‖2‖T−1‖2(1 + |t|1/4)2

≤ 2‖T‖2‖T−1‖2|κt| |t|−1/2‖C‖.

For the series Φ =
∑∞
n=1

∑2n
m=0 C

n
m(κt)n logm t ∈ L(D), writing

κt · t∓ΛΦt±Λ =

∞∑
n=1

2n∑
m=0

Ξ±,nm (κt)n logm t

with

Ξ±,nm = κt · t∓ΛCnmt
±Λ

= κt
(
Cnm ± [Cnm, T∆T−1] log t− T∆T−1CnmT∆T−1 log2 t

)
∈ L(D),

and using the inequality in the matrix case, we find

‖κt · t∓ΛΦt±Λ‖ ≤
∞∑
n=1

2n∑
m=0

‖Ξ±,nm ‖ ‖I(κt)n logm t‖

≤
∞∑
n=1

2n∑
m=0

2‖T‖2‖T−1‖2|κt| |t|−1/2‖Cnm‖ |κt|n|t|−m/4

= 2‖T‖2‖T−1‖2|κt| |t|−1/2‖Φ‖,

which implies the lemma.

Lemma 4.5. Suppose that Λ ∈M2(Cθ) and T ∈ GL2(Cθ) satisfy (P.2′), and that

Φ,Ψ ∈ L(D) ∪M2(Cθ). Then

t−ΛI[κt · tΛΦt−ΛΨ]tΛ ∈ L(D),

‖t−ΛI[κt · tΛΦt−ΛΨ]tΛ‖ ≤ 100‖T‖3‖T−1‖3|κt| |t|−1/2‖Φ‖ ‖Ψ‖.

The same relation and estimate are valid for t−ΛI[κtΦtΛΨt−Λ]tΛ.

Proof. Write the primitive function of t−1(κt)n logm t in the form (κt)nln(m, t)/n

with

ln(m, t) := logm t− m

n
logm−1 t+

m(m− 1)

n2
logm−2 t− · · ·+ (−1)mm!

nm
.
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Suppose that Φ,Ψ ∈ L(D) ∪M2(Cθ) are the monomials

Φ = C(κt)n logm t, Ψ = C̃(κt)n
′
logm

′
t, C, C̃ ∈M2(Cθ),

where n ≥ 0, m ≤ 2n, n′ ≥ 0, m′ ≤ 2n′. Since

κt · t∆Φt−∆Ψ = (C + [∆, C] log t−∆C∆ log2 t)C̃(κt)n+1 logm t,

we have

I[κt · t∆Φt−∆Ψ]

=
(κt)n+1

n+ 1

(
Cln+1(m, t) + [∆, C]ln+1(m+ 1, t)−∆C∆ln+1(m+ 2, t)

)
C̃,

where n = n+ n′, m = m+m′. Hence

t−∆I[κt · t∆Φt−∆Ψ]t∆ =
(κt)n

n+ 1
C∗n,m(t)κt · t−∆C̃t∆

with

C∗n,m(t) = t−∆
(
Cln+1(m, t) + [∆, C]ln+1(m+ 1, t)−∆C∆ln+1(m+ 2, t)

)
t∆

= Cln+1(m, t) + [∆, C]χ1(t)−∆C∆χ2(t),

where

χ1(t) = ln+1(m+ 1, t)− ln+1(m, t) log t

=

(
−m+ 1

n+ 1
+

m

n+ 1

)
logm t+

(
(m+ 1)m

(n+ 1)2
− m(m− 1)

(n+ 1)2

)
logm−1 t+ · · · ,

χ2(t) = ln+1(m+ 2, t)− 2ln+1(m+ 1, t) log t+ ln+1(m, t) log2 t

=

(
(m+ 2)(m+ 1)

(n+ 1)2
− 2

(m+ 1)m

(n+ 1)2
+
m(m− 1)

(n+ 1)2

)
logm t+ · · · ,

and m ≤ 2n. This together with Lemma 4.4 implies

t−∆I[κt · t∆Φt−∆Ψ]t∆ ∈ L(D).

Using m+ 2 ≤ 2n+ 2 = 2(n+ 1), we have

|ln+1(m, t)| ≤ |t|−m/4(1 + 2|t|1/4 + 22|t|1/2 + · · · ) ≤ 2|t|−m/4,
|χ1(t)| ≤ 2|t|−m/4(2 + 22|t|1/4 + 23|t|1/2 + · · · ) ≤ 8|t|−m/4,
|χ2(t)| ≤ 4|t|−m/4(22 + 23|t|1/4 + 24|t|1/2 + · · · ) ≤ 32|t|−m/4
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for |t| < 2−8, so that ‖(κt)nC∗n,m(t)‖ ≤ 50‖C‖ |κt|n|t|−m/4. This combined with

‖κt ·t−∆C̃t∆‖ ≤ 2‖C̃‖ |κt| |t|−1/2, which follows from Lemma 4.4 with T = I, gives

‖t−∆I[κt · t∆Φt−∆Ψ]t∆‖ ≤ 100‖C‖ ‖C̃‖ |κt|n+1|t|−m/4−1/2

= 100|κt| |t|−1/2‖Φ‖ ‖Ψ‖.

By (P.2′),

t−ΛI[κt · tΛΦt−ΛΨ]tΛ = Tt−∆I[κt · t∆T−1ΦTt−∆T−1ΨT ]t∆T−1,

which yields the conclusion of the lemma for the monomial case. For the series Φ =∑
n,m C

n
m(κt)n logm t, Ψ =

∑
n′,m′ C̃n

′

m′(κt)n
′
logm

′
t ∈ L(D) ∪M2(Cθ), observing

that

Υ := t−ΛI
[
κt · tΛ

(∑
n,m

Cnm(κt)n logm t
)
t−Λ
(∑
n′,m′

C̃n
′

m′(κt)n
′
logm

′
t
)]
tΛ

=
∑
n,m

∑
n′,m′

t−ΛI
[
κt · tΛ(Cnm(κt)n logm t)t−ΛC̃n

′

m′(κt)n
′
logm

′
t
]
tΛ,

we have

‖Υ‖ ≤
∑
n,m

∑
n′,m′

∥∥t−ΛI
[
κt · tΛ(Cnm(κt)n logm t)t−ΛC̃n

′

m′(κt)n
′
logm

′
t
]
tΛ
∥∥

≤ 100‖T‖3‖T−1‖3|κt| |t|−1/2
∑
n,m

‖Cnm‖ |κt|n|t|−m/4
∑
n′,m′

‖Cn
′

m′‖ |κt|n
′
|t|−m

′/4

≤100‖T‖3‖T−1‖3|κt| |t|−1/2‖Φ‖ ‖Ψ‖.

Thus we obtain the lemma.

Remark 4.1. In the case where Φ,Ψ ∈ L̂ ∪M2(Cθ) as well we may show the

relations κt · t∓ΛΦt±Λ, t−ΛI[κt · tΛΦt−ΛΨ]tΛ, t−ΛI[κtΦtΛΨt−Λ]tΛ ∈ L̂ by the same

arguments as in the proofs of Lemmas 4.4 and 4.5.

Let L̂∗ be the subring of L̂ consisting of formal series of the form

Φ =

∞∑
n=1

n∑
m=0

Cnm(κt)n logm t, Cnm ∈M2(Cθ).

Lemma 4.6. If Φ, κtΨ (respectively, κtΦ,Ψ) ∈ L̂∗, then κt · tΛI[t−ΛΦΨtΛ]t−Λ,

I[κtΦΨ] ∈ L̂∗, where Λ is a matrix as in Lemma 4.5.

Proof. Let Φ = C(κt)n logm t and Ψ = C̃(κt)n
′−1 logm

′
t be given monomials such

that Φ, κtΨ ∈ L̂∗, where n ≥ 1, m ≤ n, n′ ≥ 1, m′ ≤ n′. By the same argument as
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in the proof of Lemma 4.5 we have

κt · t∆I[t−∆ΦΨt∆]t−∆

=
(κt)n

n− 1

(
CC̃ln−1(m, t)− [∆, CC̃]χ̃1(t)−∆CC̃∆χ̃2(t)

)
∈ L̂∗,

where

χ̃1(t) = ln−1(m+ 1, t)− ln−1(m, t) log t = − logm t

n− 1
+ · · · ,

χ̃2(t) = ln−1(m+ 2, t)− 2ln−1(m+ 1, t) log t+ ln−1(m, t) log2 t =
2 logm t

(n− 1)2
+ · · · ,

n = n+ n′ ≥ 2, m = m+m′ ≤ n. From this the lemma follows.

§4.2. Complex power type

Let Ŝ be the ring of formal series of the form

Φ = Φ(σ, κ, t) =

∞∑
n=1

n∑
m=−n

Cnm(κt)ntσm, Cnm = Cnm(σ) ∈M2(Cθ(σ)),

with the additional parameter σ 6= 0, and set, for Φ ∈ Ŝ as above,

‖Φ‖ = ‖Φ‖(σ, κ, t) :=

∞∑
n=1

n∑
m=−n

‖Cnm‖ |κt|n|tσ|m.

Let Σ be a domain such that Σ ⊂ C \ {0}. For a domain D(Σ) ⊂ Σ× (C \ {0})×
R(C \ {0}), let

S(D(Σ)) := {Φ ∈ Ŝ; ‖Φ‖<∞ for (σ, κ, t) ∈ D(Σ) and for (θι) satisfying (2.4)}.

Proposition 4.7. (1) If Φ ∈ S(D(Σ)), then, for each (θι), Φ = Φ(σ, κ, t) is

holomorphic in (σ, κ, t) ∈ D(Σ), and satisfies ‖Φ(σ, κ, t)‖mat ≤ ‖Φ‖(σ, κ, t).

(2) ‖Φ‖ ≡ 0 if and only if Φ ≡ 0.

(3) Let Φ,Ψ ∈ S(D(Σ)). Then Φ + Ψ,ΦΨ ∈ S(D(Σ)), and

‖Φ + Ψ‖ ≤ ‖Φ‖+ ‖Ψ‖, ‖ΦΨ‖ ≤ ‖Φ‖ ‖Ψ‖.

If C ∈ M2(Cθ(σ)) (respectively, c ∈ Cθ(σ)) satisfies ‖C‖ < ∞ (respectively,

|c| < ∞) for σ ∈ Σ, then CΦ,ΦC ∈ S(D(Σ)) (respectively, cΦ ∈ S(D(Σ))),

and

‖CΦ‖, ‖ΦC‖ ≤ ‖C‖ ‖Φ‖ (respectively, ‖cΦ‖ = |c| ‖Φ‖).
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(4) Let Φ ∈ S(D(Σ)), and let ϕ(τ) =
∑∞
n=0 ϕnτ

n with ϕn ∈ C. If |ϕ|(|κt|) =∑∞
n=0 |ϕn| |κt|n <∞ in D(Σ), then ϕ(κt)Φ ∈ S(D(Σ)) and

‖ϕ(κt)Φ‖ ≤ |ϕ|(|κt|)‖Φ‖.

Proof. Suppose that Φ(σ, κ, t) =
∑∞
n=1

∑n
m=−n C

n
m(κt)ntσm ∈ S(D(Σ)). For any

(σ̃, κ̃, t̃) ∈ D(Σ), we may choose a neighbourhood D0 ⊂ D(Σ) of (σ̃, κ̃, t̃), a point

(σ0, κ0, t0) ∈ D(Σ) \ D0, and a positive number ε∗ in such a way that |κt1−σ| ≤
(1 − ε∗)|κ0t

1−σ0
0 |, |tσ| ≤ (1 − ε∗)|tσ0

0 | for every (σ, κ, t) ∈ D0, since the mapping

(κ, σ, t) 7→ (κ, κt1−σ, tσ) is biholomorphic. Observing that

‖Φ‖(σ, κ, t) =

∞∑
n=1

n∑
m=−n

‖Cnm‖ |κt|n|tσ|m =

∞∑
n=1

n∑
m=−n

‖Cnm‖ |κt1−σ|n|tσ|n+m,

from ‖Φ‖(σ0, κ0, t0) <∞, we obtain ‖Cnm‖ = O(|κ0t
1−σ0
0 |−n|tσ0

0 |−n−m). Hence

‖Cnm‖ |κt|n|tσ|m = O((|κt1−σ|/|κ0t
1−σ0
0 |)n(|tσ|/|tσ0

0 |)n+m)

= O((1− ε∗)2n+m) = O((1− ε∗)n)

in D0, which implies the first assertion.

Proposition 4.8. Suppose that each Φν ∈ S(D(Σ)) consists of summands with

n ≥ ν, and that, for each (θι),
∑∞
ν=1 ‖Φν‖ <∞ in D(Σ). Then Φ∞ =

∑∞
ν=1 Φν ∈

S(D(Σ)), and ‖Φ∞‖ ≤
∑∞
ν=1 ‖Φν‖.

For (m,n) ∈ Z× N and C ∈M2(Cθ(σ)), set

I[C(κt)ntσm] :=
1

n+ σm
C(κt)ntσm,

which is the primitive function of t−1C(κt)ntσm. This induces a linear operator

I : Ŝ→ Ŝ. Let Σ0 be as in Theorem 2.1.

Proposition 4.9. If Φ ∈ S(D(Σ0)), then

(i) I[Φ] ∈ S(D(Σ0)), (ii) ‖I[Φ]‖ ≤ L0‖Φ‖, (iii) t(d/dt)I[Φ] = Φ,

where L0 is a positive constant depending only on Σ0.

Proof. Set d0 := dist(Σ0, S0) > 0. Suppose that σ ∈ Σ0. If 1 ≤ |m| ≤ n, then

|n + σm| = |m| |σ + n/m| ≥ d0. Hence, for Φ =
∑∞
n=1

∑n
m=−n C

n
m(κt)ntσm ∈

S(D(Σ0)),

‖I[Φ]‖ =

∞∑
n=1

n∑
m=−n

‖Cnm‖
|n+ σm|

|κt|n|tσ|m ≤ max{1, 1/d0}‖Φ‖,

which implies the proposition.
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Lemma 4.10. Let Λ ∈ M2(Cθ[σ, σ−1]) and T ∈ GL2(Cθ[σ, σ−1]) satisfy (P.2),

that is, T−1ΛT = (σ/2)J. Suppose that Φ ∈ S(D(Σ0)) ∪ M2(Cθ(σ)), and that

‖Φ‖ < ∞ for each (θι) and for σ ∈ Σ0 if Φ ∈ M2(Cθ(σ)). Then κt · t∓ΛΦt±Λ ∈
S(D(Σ0)), and

‖κt · t∓ΛΦt±Λ‖ ≤ 2‖T‖2‖T−1‖2|κt|(|tσ|+ |t−σ|)‖Φ‖.

Proof. If Φ = C ∈M2(Cθ(σ)), then

κt · t∓ΛCt±Λ = κtT t∓(σ/2)JT−1CTt±(σ/2)JT−1

= κtT

(
(T−1CT )11 (T−1CT )12t

∓σ

(T−1CT )21t
±σ (T−1CT )22

)
T−1 ∈ S(D(Σ0)).

Hence, for (σ, κ, t) ∈ D(Σ0),

‖κt · t∓ΛCt±Λ‖ ≤ ‖T‖‖T−1‖ ‖T−1CT‖ |κt|(1 + |tσ|+ |t−σ|)
≤ 2‖T‖2‖T−1‖2|κt|(|tσ|+ |t−σ|)‖C‖.

For the series Φ =
∑∞
n=1

∑n
m=−n C

n
m(κt)ntσm ∈ S(D(Σ0)), writing

κt · t∓ΛΦt±Λ =

∞∑
n=1

n∑
m=−n

Ξ±,nm (κt)ntσm

with Ξ±,nm = κt · t∓ΛCnmt
±Λ and using the inequality in the matrix case, we obtain

the lemma.

Lemma 4.11. Let Λ ∈ M2(Cθ[σ, σ−1]) and T ∈ GL2(Cθ[σ, σ−1]) satisfy (P.2).

Suppose that Φ,Ψ ∈ S(D(Σ0)) ∪ M2(Cθ(σ)), and that ‖Φ‖ (respectively, ‖Ψ‖)
< ∞ for each (θι) and for σ ∈ Σ0 if Φ (respectively, Ψ) ∈ M2(Cθ(σ)). Then

t−ΛI[κt · tΛΦt−ΛΨ]tΛ ∈ S(D(Σ0)), and

‖t−ΛI[κt · tΛΦt−ΛΨ]tΛ‖ ≤ L̃0‖T‖3‖T−1‖3|κt|(|tσ|+ |t−σ|)‖Φ‖ ‖Ψ‖,

where L̃0 is a positive constant depending only on Σ0. The same relation and

estimate are valid for t−ΛI[κtΦtΛΨt−Λ]tΛ.

Proof. Consider the case where Φ = C(κt)ntσm, Ψ = C̃(κt)n
′
tσm

′
with C, C̃ ∈

M2(Cθ(σ)), n ≥ 0, |m| ≤ n, n′ ≥ 0, |m′| ≤ n′. Observing that

t(σ/2)JΦt−(σ/2)JΨ =

(
C11(κt)n+n′

tσ(m+m′) C12(κt)n+n′
tσ(m+m′+1)

C21(κt)n+n′
tσ(m+m′−1) C22(κt)n+n′

tσ(m+m′)

)
C̃,

we have

Υ := t−(σ/2)JI[κt · t(σ/2)JΦt−(σ/2)JΨ]t(σ/2)J

= C∗n,n′,m,m′ κt · t−(σ/2)J(C̃(κt)n+n′
tσ(m+m′))t(σ/2)J
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with

C∗n,n′,m,m′

=

(
C11(n+ n′ + 1 + σ(m+m′))−1 C12(n+ n′ + 1 + σ(m+m′ + 1))−1

C21(n+ n′ + 1 + σ(m+m′ − 1))−1 C22(n+ n′ + 1 + σ(m+m′))−1

)
satisfying ‖C∗n,n′,m,m′‖ ≤ max{1, 1/d0}‖C‖, where d0 = dist(Σ0, S0). By Lemma

4.10 this gives Υ ∈ S(D(Σ0)). Furthermore, by Lemma 4.10,

‖Υ‖ ≤ 2‖C∗n,n′,m,m′‖ |κt|(|tσ|+ |t−σ|)‖C̃(κt)n+n′
tσ(m+m′)‖

≤ 2 max{1, 1/d0}‖C‖ ‖C̃‖ |κt|n+n′+1|tσ|m+m′
(|tσ|+ |t−σ|)

= 2 max{1, 1/d0}|κt|(|tσ|+ |t−σ|) ‖Φ‖ ‖Ψ‖,

which leads to the desired estimate in the monomial case. For given series Φ =∑
n,m C

n
m(κt)ntσm,Ψ =

∑
n′,m′ C̃n

′

m′(κt)n
′
tσm

′ ∈ S(D(Σ0)) ∪M2(Cθ(σ)), we can

derive the conclusion by the same argument as in the proof of Lemma 4.5.

Suppose that σ0 ∈ Σ+, where Σ+ is as in Theorem 2.1. Let Ŝ+(σ0) be the

ring of formal series of the form

Φ = Φ(σ0, κ, t) =

∞∑
n=1

n∑
m=0

Cnm(κt)ntσ0m, Cnm ∈M2(Cθ(σ0)).

For a domain D(σ0) ⊂ (C \ {0}) × R(C \ {0}), let S+(D(σ0)) be the subring

consisting of Φ ∈ Ŝ+(σ0) such that

‖Φ‖ = ‖Φ‖(σ0, κ, t) :=

∞∑
n=1

n∑
m=0

‖Cnm‖ |κt|n|tσ0 |m <∞

for (κ, t) ∈ D(σ0) and for (θι) satisfying (2.4). Then S+(D(σ0)) with the norm

thus defined has properties analogous to those of S(D(Σ)). For example, if

Φ ∈ S+(D(σ0)), then Φ = Φ(σ0, κ, t) is holomorphic in (κ, t) ∈ D(σ0), and satisfies

‖Φ(σ0, κ, t)‖mat ≤ ‖Φ‖(σ0, κ, t).

In this case as well we define I[·] by I[C(κt)ntσ0m] = (n+ σ0m)−1C(κt)ntσ0m.

Proposition 4.12. If Φ ∈ S+(D(σ0)), then

(i) I[Φ] ∈ S+(D(σ0)), (ii) ‖I[Φ]‖ ≤ L+
0 ‖Φ‖, (iii) t(d/dt)I[Φ] = Φ,

where L+
0 is a positive constant depending only on σ0.

Proof. Set d+
0 := dist({σ0}, {σ ≤ −1} ∪ Z) > 0. If 1 ≤ m ≤ n, then |n + σ0m| =

m|σ0 + n/m| ≥ d+
0 , from which the proposition follows.
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For a formal series of the form

Φ =

∞∑
n=1

n+2∑
m=−1

Cnm(κt)ntσ0m, Cnm ∈M2(Cθ(σ0)),

which does not necessarily belong to Ŝ+(σ0), we may extend the operator I[·] in

such a way that

I[Φ] =

∞∑
n=1

n+2∑
m=−1

1

n+ σ0m
Cnm(κt)ntσ0m

as long as n+σ0m 6= 0 for (m,n) satisfying n ≥ 1, −1 ≤ m ≤ n+ 2. Furthermore,

if

‖I[Φ]‖ =

∞∑
n=1

n+2∑
m=−1

1

|n+ σ0m|
‖Cnm‖ |κt|n|tσ0 |m

converges uniformly in a domain, then t(d/dt)I[Φ] = Φ. For such an extension

of I[·] we have

Lemma 4.13. Suppose that σ0 ∈ Σ+∩{Reσ > 1}, and that Λ ∈M2(Cθ[σ0, σ
−1
0 ])

and T ∈ GL2(Cθ[σ0, σ
−1
0 ]) satisfy (P.2) with σ = σ0. If Φ, κtΨ (respectively,

κtΦ,Ψ) ∈ S+(D(σ0)), then

κt · tΛI[t−ΛΦΨtΛ]t−Λ ∈ S+(D(σ0)),

‖κt · tΛI[t−ΛΦΨtΛ]t−Λ‖ ≤ L̃+
0 ‖T‖3‖T−1‖3‖Φ‖ ‖κtΨ‖

(respectively, ≤ L̃+
0 ‖T‖3‖T−1‖3‖κtΦ‖ ‖Ψ‖),

where L̃+
0 is a positive constant depending only on σ0.

Remark 4.2. In general t−ΛΦΨtΛ has the form
∑∞
n=1

∑n+2
m=−1 C

n
m(κt)ntσ0m with

Cnm ∈M2(Cθ(σ0)), which does not necessarily belong to Ŝ+(σ0).

Proof of Lemma 4.13. For the monomials Φ=C(κt)ntσ0m and Ψ= C̃(κt)n
′−1tσ0m

′
,

where C, C̃ ∈M2(Cθ(σ0)), n ≥ 1, 0 ≤ m ≤ n, n′ ≥ 1, 0 ≤ m′ ≤ n′, we have

t−(σ0/2)JΦΨt(σ0/2)J =

(
C∗11(κt)n+n′−1tσ0(m+m′) C∗12(κt)n+n′−1tσ0(m+m′−1)

C∗21(κt)n+n′−1tσ0(m+m′+1) C∗22(κt)n+n′−1tσ0(m+m′)

)
with C∗ = (C∗ij) = CC̃. Under the condition σ0 ∈ Σ+ ∩ {Reσ > 1}, for all (m,n),

(m′, n′) as above,

|(n+ n′ − 1) + σ0(m+m′)|, |(n+ n′ − 1) + σ0(m+m′ ± 1)| ≥ d∗0 > 0,

where d∗0 = min{1, d+
0 } with d+

0 = dist({σ0}, {σ ≤ −1} ∪ Z). Then

κt · t(σ0/2)JI[t−(σ0/2)JΦΨt(σ0/2)J ]t−(σ0/2)J = C∗∗n,n′,m,m′(κt)n+n′
tσ0(m+m′)

with
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C∗∗n,n′,m,m′

=

(
C∗11(n+ n′ − 1 + σ0(m+m′))−1 C∗12(n+ n′ − 1 + σ0(m+m′ − 1))−1

C∗21(n+ n′ − 1 + σ0(m+m′ + 1))−1 C∗22(n+ n′ − 1 + σ0(m+m′))−1

)
satisfying ‖C∗∗n,n′,m,m′‖ ≤ ‖C∗‖/d∗0 ≤ ‖C‖ ‖C̃‖/d∗0. Using κtΨ = C̃(κt)n

′
tσ0m

′
, we

arrive at the conclusion in the monomial case. For series we can verify the lemma

by the same argument as in the proof of Lemma 4.5.

Remark 4.3. For formal series in Ŝ and in Ŝ+(σ0) the same conclusions as in

Lemmas 4.10, 4.11 and 4.13 are valid except for the inequalities. For example, if

Φ ∈ Ŝ ∪M2(Cθ(σ)), then κt · t∓ΛΦt±Λ ∈ Ŝ for Λ as in Lemma 4.10.

§5. Proofs of Theorems 2.1 and 2.2

§5.1. Schlesinger equation

Instead of (2.1) itself we consider the system

t
dA0

dt
= [Ax, A0], t

dAx
dt

= [A0, Ax]− κt

1− κt
[A1, Ax],

t
dA1

dt
= − κt

1− κt
[Ax, A1],

(5.1)

which is obtained by putting x = κt in (2.1). As will be seen, κ is essentially one

of the integration constants of solutions of (2.1).

Proposition 5.1. Let Λ0, Λx, Λ1 and Λ = Λ0 + Λx be matrices such that Λ0 +

Λx + Λ1 = Λ + Λ1 = −(θ∞/2)J. Under the supposition

A0 +Ax +A1 ≡ −(θ∞/2)J,

the change of unknown matrices

t−ΛA0t
Λ = Λ0 + U0, t−ΛAxt

Λ = Λx + Ux, A1 = Λ1 + U1

transforms (5.1) into

t
dU0

dt
= −[t−ΛU1t

Λ,Λ0 + U0],

t
dUx
dt

= −[t−ΛU1t
Λ,Λx + Ux]− κt

1− κt
[t−Λ(Λ1 + U1)tΛ,Λx + Ux],

t
dU1

dt
= − κt

1− κt
[tΛ(Λx + Ux)t−Λ,Λ1 + U1].

(5.2)

Proof. Set B0 = t−ΛA0t
Λ and Bx = t−ΛAxt

Λ. Then, by (5.1),

t
dB0

dt
= t−Λ

(
t
dA0

dt
− ΛA0 +A0Λ

)
tΛ = t−Λ([Ax, A0]− [Λ, A0])tΛ.
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If A0 +Ax +A1 ≡ −(σ∞/2)J = Λ + Λ1, the right-hand member becomes

[t−Λ(Ax − Λ)tΛ, t−ΛA0t
Λ] = [t−Λ(Λ1 −A0 −A1)tΛ, B0] = [t−Λ(Λ1 −A1)tΛ, B0].

Thus we obtain

t
dB0

dt
= [t−Λ(Λ1 −A1)tΛ, B0],

t
dBx
dt

= [t−Λ(Λ1 −A1)tΛ, Bx]− κt

1− κt
[t−ΛA1t

Λ, Bx],

t
dA1

dt
= − κt

1− κt
[tΛBxt

−Λ, A1],

(5.3)

which is equivalent to (5.1) under the supposition A0 + Ax + A1 ≡ −(σ∞/2)J.

Substitution of B0 = Λ0 + U0, Bx = Λx + Ux, A1 = Λ1 + U1 yields system

(5.2).

§5.2. Proof of Theorem 2.2

The main part of the proof of Theorem 2.2 is solving (5.2) near t = 0.

5.2.1. Iteration. Let Λ0,Λx,Λ1 ∈ M2(Cθ), T ∈ GL2(Cθ) and Λ = Λ0 + Λx be

matrices with the properties (P.1), (P.2′), (P.3). If, for U0, Ux, U1 ∈ L(D), the

right-hand members of system (5.2) also belong to L(D) and if the system of

relations

U1 = −I
[

κt

1− κt
[tΛ(Λx + Ux)t−Λ,Λ1 + U1]

]
,

U0 = −I
[
[t−ΛU1t

Λ,Λ0 + U0]
]
,

Ux = −I
[
[t−ΛU1t

Λ,Λx + Ux]
]
− I

[
κt

1− κt
[t−Λ(Λ1 + U1)tΛ,Λx + Ux]

](5.4)

holds, then (U0, Ux, U1) solves (5.2), where I[·] is the operator defined in Sec-

tion 4.1. We would like to construct such series by iteration. Define the sequence

{(U (ν)
0 , U

(ν)
x , U

(ν)
1 ) ∈ (L̂)3; ν ≥ 0} by

U
(0)
1 = U

(0)
0 = U (0)

x ≡ 0,

U
(ν+1)
1 = −I

[
κt

1− κt
[tΛ(Λx + U (ν)

x )t−Λ,Λ1 + U
(ν)
1 ]

]
,

U
(ν+1)
0 = −I

[
[t−ΛU

(ν+1)
1 tΛ,Λ0 + U

(ν)
0 ]
]
,

U (ν+1)
x = −I

[
[t−ΛU

(ν+1)
1 tΛ,Λx + U (ν)

x ]
]

− I
[

κt

1− κt
[t−Λ(Λ1 + U

(ν+1)
1 )tΛ,Λx + U (ν)

x ]

]
.

(5.5)
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Note that the right-hand members of the last two relations contain t−ΛU
(ν+1)
1 tΛ.

This procedure is possible, since at each step the series on which I[·] acts belong

to L̂. Indeed, we have

Proposition 5.2. U
(ν)
1 , t−ΛU

(ν)
1 tΛ, U

(ν)
0 , U

(ν)
x ∈ L̂ for every ν ≥ 0.

Proof. Suppose that the conclusion is valid for every integer up to ν. Using

κt · tΛΛxt
−Λ = κt ·Tt∆T−1ΛxTt

−∆T−1 ∈ L̂ and Remark 4.1, we have U
(ν+1)
1 ∈ L̂.

Furthermore, by Remark 4.1,

t−ΛU
(ν+1)
1 tΛ = t−ΛI

[
− κt

1− κt
([tΛΛxt

−Λ,Λ1]− [Λ1, t
ΛU (ν)

x t−Λ]

+ [tΛΛxt
−Λ, U

(ν)
1 ] + [tΛU (ν)

x t−Λ, U
(ν)
1 ])

]
tΛ ∈ L̂.

Hence

U
(ν+1)
0 = −I

[
[t−ΛU

(ν+1)
1 tΛ,Λ0 + U

(ν)
0 ]
]
∈ L̂,

and similarly U
(ν+1)
x ∈ L̂. Thus we obtain the proposition.

In the next step we show that, for a suitable domain D, the sequence of formal

series thus defined is contained in L(D)3 and converges in it. Let Θ0 be a given

positive number, and let D(ε,Θ0) ⊂ (C \ {0})×R(C \ {0}) be the domain defined

by

D(ε,Θ0) :=
⋃

κ∈C\{0}

{κ} × {|t| < ε, |κt · t−1/2| < ε, |arg t| < Θ0}.

Suppose that (θι) satisfies (2.4) with b0 > 0. We choose ε = ε(Θ0) < 2−8 so small

that every (κ, t) ∈ D(ε,Θ0) satisfies |log t| ≤ |t|−1/4. Note that |κt| < ε3/2 for

(κ, t) ∈ D(ε,Θ0), and
∑∞
n=0 |κt|n = 1/(1− |κt|) < 2. Since

U
(1)
1 = −I

[
κt

1− κt
[tΛΛxt

−Λ,Λ1]

]
∈ L(D(ε,Θ0)),

by Lemma 4.5 we have t−ΛU
(1)
1 tΛ ∈ L(D(ε,Θ0)), so that U

(1)
0 , U

(1)
x ∈ L(D(ε,Θ0)).

By Lemma 4.4, in D(ε,Θ0),

(5.6)

‖κtΛx‖, ‖κtΛ1‖, ‖κt · tΛΛxt
−Λ‖, ‖κt · t−ΛΛ1t

Λ‖ ≤ c0
4
|κt| |t|−1/2,

‖U (1)
1 ‖, ‖t−ΛU

(1)
1 tΛ‖, ‖U (1)

0 ‖, ‖U (1)
x ‖ ≤

c0
4
|κt| |t|−1/2.
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Here the constant c0 may be chosen in such a way that

1 + ‖Λ0‖+ ‖Λx‖+ ‖Λ1‖ ≤ c0.

Suppose that, for 1 ≤ j ≤ ν,

(5.7) U
(j)
1 , t−ΛU

(j)
1 tΛ, U

(j)
0 , U (j)

x ∈ L(D(ε,Θ0)),

and

(5.8) ‖U (j)
1 ‖, ‖t−ΛU

(j)
1 tΛ‖, ‖U (j)

0 ‖, ‖U (j)
x ‖ ≤ 2c0|κt| |t|−1/2,

which are known to be valid for j = 1. Then, by (5.5) and Lemma 4.5,

(5.9) ‖t−Λ(U
(ν+1)
1 − U (ν)

1 )tΛ‖

=

∥∥∥∥t−ΛI
[

1

1− κt
(
κt[tΛ(U (ν)

x − U (ν−1)
x )t−Λ,Λ1 + U

(ν)
1 ]

+ κt[tΛ(Λx + U (ν−1)
x )t−Λ, U

(ν)
1 − U (ν−1)

1 ]
)]
tΛ
∥∥∥∥

≤ 2 · 2 · 100‖T‖3‖T−1‖3|κt| |t|−1/2
(
‖U (ν)

x − U (ν−1)
x ‖(‖Λ1‖+ ‖U (ν)

1 ‖)

+ (‖Λx‖+ ‖U (ν−1)
x ‖)‖U (ν)

1 − U (ν−1)
1 ‖

)
≤ 400‖T‖3‖T−1‖3|κt| |t|−1/2c0(1 + 2ε)(‖U (ν)

x − U (ν−1)
x ‖+ ‖U (ν)

1 − U (ν−1)
1 ‖)

≤ 500‖T‖3‖T−1‖3c0|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖)

in D(ε,Θ0). By Lemma 4.4,

‖κt · tΛ(U (ν)
x − U (ν−1)

x )t−Λ‖ ≤ 2‖T‖2‖T−1‖2|κt| |t|−1/2‖U (ν)
x − U (ν−1)

x ‖,
‖κt · tΛU (ν−1)

x t−Λ‖ ≤ 2‖T‖2‖T−1‖2|κt| |t|−1/2‖U (ν−1)
x ‖

≤ ‖T‖2‖T−1‖2c0|κt| |t|−1/2,

and hence

‖U (ν+1)
1 − U (ν)

1 ‖
≤ 2 · 2 · 2

(
‖κt · tΛ(U (ν)

x − U (ν−1)
x )t−Λ‖(‖Λ1‖+ ‖U (ν)

1 ‖)

+ (‖κt · tΛΛxt
−Λ‖+ ‖κt · tΛU (ν−1)

x t−Λ‖)‖U (ν)
1 − U (ν−1)

1 ‖
)

≤ 8
(
2‖T‖2‖T−1‖2|κt| |t|−1/2‖U (ν)

x − U (ν−1)
x ‖ · (c0 + 2c0ε)

+ (c0/4 + ‖T‖2‖T−1‖2c0)|κt| |t|−1/2 · ‖U (ν)
1 − U (ν−1)

1 ‖
)

≤ 20‖T‖2‖T−1‖2c0|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖).
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Using (5.9), we obtain

‖U (ν+1)
0 − U (ν)

0 ‖
=
∥∥I[[t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ,Λ0 + U
(ν)
0 ] + [t−ΛU

(ν)
1 tΛ, U

(ν)
0 − U (ν−1)

0 ]
]∥∥

≤ 4
(
‖t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ‖(‖Λ0‖+ ‖U (ν)
0 ‖) + ‖t−ΛU

(ν)
1 tΛ‖ ‖U (ν)

0 − U (ν−1)
0 ‖

)
≤ 4(500‖T‖3‖T−1‖3c0(c0 + 2c0ε) + 2c0)|κt| |t|−1/2

× (‖U (ν)
0 − U (ν−1)

0 ‖+ ‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖)
≤ 2500‖T‖3‖T−1‖3c20|κt| |t|−1/2

× (‖U (ν)
0 − U (ν−1)

0 ‖+ ‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖).

Furthermore

‖U (ν+1)
x − U (ν)

x ‖
=
∥∥I[[t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ,Λx + U (ν)
x ] + [t−ΛU

(ν)
1 tΛ, U (ν)

x − U (ν−1)
x ]

]∥∥
+

∥∥∥∥I[ κt

1− κt
(
[t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ,Λx + U (ν)
x ]

+ [t−Λ(Λ1 + U
(ν)
1 )tΛ, U (ν)

x − U (ν−1)
x ]

)]∥∥∥∥
≤ 4
(
‖t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ‖(‖Λx‖+ ‖U (ν)
x ‖) + ‖t−ΛU

(ν)
1 tΛ‖‖U (ν)

x − U (ν−1)
x ‖

)
+ 8
(
‖t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ‖(‖κtΛx‖+ |κt| ‖U (ν)
x ‖)

+ (‖κt · t−ΛΛ1t
Λ‖+ |κt| ‖t−ΛU

(ν)
1 tΛ‖)‖U (ν)

x − U (ν−1)
x ‖

)
≤ 4‖t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ‖(c0 + 2c0ε+ 2(c0ε/4 + 2c0ε
2))

+ 4(2c0 + 2(c0/4 + 2c0ε))|κt| |t|−1/2‖U (ν)
x − U (ν−1)

x ‖
≤ 5c0‖t−Λ(U

(ν+1)
1 − U (ν)

1 )tΛ‖+ 12c0|κt| |t|−1/2‖U (ν)
x − U (ν−1)

x ‖

≤ 2600‖T‖3‖T−1‖3c20|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖).

In each evaluation above, we have used |κt| |t|−1/2 < ε < 2−8, |κt| < ε3/2 < 2−12

and 1/(1−|κt|) < 2. The constants ‖T‖ and ‖T−1‖ depend only on (θι) satisfying

(2.4) with b0 > 0. Thus we have the following:

Proposition 5.3. If (5.7) and (5.8) are valid for 1 ≤ j ≤ ν, then U
(ν+1)
1 ,

t−ΛU
(ν+1)
1 tΛ, U

(ν+1)
0 , U

(ν+1)
x are in L(D(ε,Θ0)), and

‖U (ν+1)
1 − U (ν)

1 ‖ ≤ K0|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖),

‖t−Λ(U
(ν+1)
1 − U (ν)

1 )tΛ‖ ≤ K0|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖),

‖U (ν+1)
0 − U (ν)

0 ‖ ≤ K0|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖
+ ‖U (ν)

0 − U (ν−1)
0 ‖),
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‖U (ν+1)
x − U (ν)

x ‖ ≤ K0|κt| |t|−1/2(‖U (ν)
x − U (ν−1)

x ‖+ ‖U (ν)
1 − U (ν−1)

1 ‖),

where K0 > c0 is a positive constant depending only on Θ0 and b0.

This fact leads us to

Proposition 5.4. For every ν ≥ 1,

(i) U
(ν)
1 , t−ΛU

(ν)
1 tΛ, U

(ν)
0 , U

(ν)
x ∈ L(D(ε0,Θ0)),

(ii) ‖U (ν)
1 ‖, ‖t−ΛU

(ν)
1 tΛ‖, ‖U (ν)

0 ‖, ‖U
(ν)
x ‖ ≤ 2c0|κt| |t|−1/2,

(iii) ‖U (ν)
ι − U (ν−1)

ι ‖ ≤ (4K0|κt| |t|−1/2)ν for ι = 0, x, 1,

(iv) ‖t−Λ(U
(ν)
1 − U (ν−1)

1 )tΛ‖ ≤ (4K0|κt| |t|−1/2)ν ,

where ε0 is a sufficiently small positive number depending only on Θ0 and b0.

Proof. We verify assertions (i) through (iv) by induction on ν; they are valid for

ν = 1 by (5.6). Suppose that they are valid for every integer up to ν. Set

u(j) :=
∑

ι=0,x,1

‖U (j)
ι − U (j−1)

ι ‖+ ‖t−Λ(U
(j)
1 − U (j−1)

1 )tΛ‖

for j ≥ 1. Then, by Proposition 5.3 and (5.6), u(1) ≤ c0|κt| |t|−1/2 and u(j+1) ≤
4K0|κt| |t|−1/2u(j) for 1 ≤ j ≤ ν. Hence

(5.10) u(j+1) ≤ (4K0|κt| |t|−1/2)ju(1) ≤ (4K0|κt| |t|−1/2)j+1

for 1 ≤ j ≤ ν, and we have

‖U (ν+1)
0 ‖+ ‖U (ν+1)

x ‖+ ‖U (ν+1)
1 ‖+ ‖t−ΛU

(ν+1)
1 tΛ‖

≤
ν+1∑
j=1

u(j) ≤
ν∑
j=0

(4K0|κt| |t|−1/2)ju(1) ≤ c0|κt| |t|−1/2

1− 4K0ε0
≤ 2c0|κt| |t|−1/2

for (κ, t) ∈ D(ε0,Θ0), provided that 1 − 4K0ε0 > 1/2. Thus (i) and (ii) are valid

for ν + 1, and (5.10) with j = ν implies (iii) and (iv) for ν + 1. This completes the

proof.

Remark 5.1. By (iii) and (iv) of Proposition 5.4, the coefficients of the terms

(κt)n logm t in U
(ν)
ι or t−ΛU

(ν)
1 tΛ are fixed if ν ≥ n.

By Proposition 5.4, limν→∞ U
(ν)
ι (ι = 0, x, 1) and limν→∞ t−ΛU

(ν)
1 tΛ exist

and belong to L(D(ε0,Θ0)). Moreover these series satisfy the relations in (5.4).

Thus we have

Proposition 5.5. The triple (U∞0 , U∞x , U∞1 ) = limν→∞(U
(ν)
0 , U

(ν)
x , U

(ν)
1 ) satisfies

U∞0 , U∞x , U∞1 , t−ΛU∞1 tΛ ∈ L(D(ε0,Θ0)) and solves system (5.2).
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Recall the subring L̂∗ ⊂ L̂ consisting of
∑∞
n=1

∑n
m=0 C

n
m(κt)n logm t with

Cnm ∈M2(Cθ).

Proposition 5.6. If Λ = Λ0 + Λx and T satisfy (P.2′) and if (T−1Λ0T )21 = 0,

then κt · tΛU∞0 t−Λ, κt · tΛU∞x t−Λ, U∞1 ∈ L̂∗.

Proof. Write (5.5) in the form

U
(0)
1 = Z

(0)
0 = Z(0)

x ≡ 0,

U
(ν+1)
1 = −I

[
κt

1− κt
[tΛΛxt

−Λ + Z(ν)
x ,Λ1 + U

(ν)
1 ]

]
,

κtZ
(ν+1)
0 = −κt · tΛI

[
t−Λ[U

(ν+1)
1 , tΛΛ0t

−Λ + Z
(ν)
0 ]tΛ

]
t−Λ,

κtZ(ν+1)
x = −κt · tΛI

[
t−Λ[U

(ν+1)
1 , tΛΛxt

−Λ + Z(ν)
x ]tΛ

]
t−Λ

− κt · tΛI
[
t−Λ κt

1− κt
[Λ1 + U

(ν+1)
1 , tΛΛxt

−Λ + Z(ν)
x ]tΛ

]
t−Λ,

where Z
(ν)
0 = tΛU

(ν)
0 t−Λ, Z

(ν)
x = tΛU

(ν)
x t−Λ. If (T−1Λ0T )21 = (T−1ΛxT )21 = 0,

then κt · tΛΛ0t
−Λ = κtT t∆T−1Λ0Tt

−∆T−1, κt · tΛΛxt
−Λ ∈ L̂∗. Using Lemma 4.6,

we can verify by induction on ν that U
(ν)
1 , κtZ

(ν)
0 , κtZ

(ν)
x ∈ L̂∗ for every ν. This

fact combined with Remark 5.1 leads us to the proposition.

5.2.2. Completion of the proof of Theorem 2.2. System (5.2) is derived

from (5.1) under the supposition A0 + Ax + A1 ≡ −(θ∞/2)J . We need to verify

that

(5.11) (A∗0, A
∗
x, A

∗
1) =

(
tΛ(Λ0 + U∞0 )t−Λ, tΛ(Λx + U∞x )t−Λ,Λ1 + U∞1

)
with (U∞0 , U∞x , U∞1 ) obtained above solves (5.1). Set B∗0 = Λ0 + U∞0 = t−ΛA∗0t

Λ

and B∗x = Λx + U∞x = t−ΛA∗xt
Λ. Since (B∗0 , B

∗
x, A

∗
1) satisfies (5.3),

t
d

dt
(A∗0 +A∗x) = t

d

dt
(tΛ(B∗0 +B∗x)t−Λ) = tΛ

(
t
d

dt
(B∗0 +B∗x) + [Λ, B∗0 +B∗x]

)
t−Λ

= tΛ
(

[t−Λ(Λ1 −A∗1)tΛ, B∗0 +B∗x]− κt

1− κt
[t−ΛA∗1t

Λ, B∗x] + [Λ, B∗0 +B∗x]

)
t−Λ

= [Λ1 −A∗1, A∗0 +A∗x]− κt

1− κt
[A∗1, t

ΛB∗xt
−Λ] + [Λ, A∗0 +A∗x]

= [Λ + Λ1 −A∗1, A∗0 +A∗x]− tdA
∗
1

dt
,

that is,

t
d

dt
(A∗0 +A∗x +A∗1) = [Λ + Λ1 −A∗1, A∗0 +A∗x].
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Set X := A∗0 +A∗x +A∗1 + (θ∞/2)J. Then, by (P.3),

t
dX

dt
= [Λ + Λ1 −A∗1, X −A∗1 + Λ1 + Λ] = [Λ + Λ1 −A∗1, X] = [Λ− U∞1 , X],

which can be written in the form

(5.12) t
d

dt
(t−ΛXtΛ) = −[t−ΛU∞1 tΛ, t−ΛXtΛ].

Recall that t−ΛU∞1 tΛ ∈ L(D(ε0,Θ0)) and note that

t−ΛXtΛ = t−Λ(A∗0 +A∗x+A∗1−Λ1)tΛ−Λ = U∞0 +U∞x + t−ΛU∞1 tΛ ∈ L(D(ε0,Θ0)).

From (5.12) it follows that

t
d

dt

(
t−ΛXtΛ + I

[
[t−ΛU∞1 tΛ, t−ΛXtΛ]

])
= 0,

which implies

t−ΛXtΛ + I
[
[t−ΛU∞1 tΛ, t−ΛXtΛ]

]
≡ C ∈M2(Cθ).

Since the left-hand member belongs to L(D(ε0,Θ0)), we have C ≡ 0, so that

t−ΛXtΛ = −I
[
[t−ΛU∞1 tΛ, t−ΛXtΛ]

]
.

By Proposition 5.4, ‖t−ΛU∞1 tΛ‖ ≤ 2c0|κt| |t|−1/2. Observing that

‖t−ΛXtΛ‖ =
∥∥I[[t−ΛU∞1 tΛ, t−ΛXtΛ]

]∥∥
≤ 4‖t−ΛU∞1 tΛ‖ ‖t−ΛXtΛ‖ ≤ 8c0|κt| |t|−1/2‖t−ΛXtΛ‖,

we deduce X = A∗0 +A∗x +A∗1 + (θ∞/2)J ≡ 0. Then

t
dA∗0
dt

= t
d

dt
(tΛB∗0 t

−Λ) = tΛ
(
t
dB∗0
dt

+ [Λ, B∗0 ]

)
t−Λ

= tΛ([t−Λ(Λ1 −A∗1)tΛ, B∗0 ] + [Λ, B∗0 ])t−Λ

= [Λ1 + Λ−A∗1, tΛB∗0 t−Λ] = [A∗0 +A∗x, A
∗
0] = [A∗x, A

∗
0],

which means that (5.11) satisfies the first equation of system (5.1). Similarly for

the remaining equations of (5.1) we may check the corresponding facts.

We substitute κt = x and t = ρx into (5.11) to obtain a family of solutions

as in Theorem 2.2. If (T−1Λ0T )21 = 0, then tΛΛιt
−Λ = Λι + [T∆T−1,Λι] log t

(ι = 0, x), and, by Proposition 5.6, κt(A∗0 − tΛΛ0t
−Λ), κt(A∗x − tΛΛxt

−Λ), A∗1 −Λ1

are in L̂∗. Hence deg eΛξΛιe
−Λξ ≤ 1, deg eΛξΠ∗nι (ξ)e−Λξ ≤ n + 1 (ι = 0, x) and

deg Π∗n1 (ξ) ≤ n. This completes the proof of Theorem 2.2.
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§5.3. Proof of Theorem 2.1

Let Λ0,Λx,Λ1 ∈ M2(Cθ[σ, σ−1]), T ∈ GL2(Cθ[σ, σ−1]) and Λ = Λ0 + Λx satisfy

(P.1) through (P.3). To prove Theorem 2.1(1), we construct a solution of (5.2)

corresponding to these matrices. Let {(U (ν)
0 , U

(ν)
x , U

(ν)
1 ) ∈ (Ŝ)3; ν ≥ 0} be the

sequence given by a recursive system of the form (5.5) with the operator I[·]
defined in Section 4.2. Then it has the following property, which is verified by

using the formal series versions of Lemmas 4.10 and 4.11 (cf. Remark 4.3).

Proposition 5.7. U
(ν)
1 , t−ΛU

(ν)
1 tΛ, U

(ν)
0 , U

(ν)
x ∈ Ŝ for every ν ≥ 0.

Let Σ0 be as in Theorem 2.1 and suppose that (θι) satisfies (2.4) with b0 > 0.

We would like to show the convergence of the sequence in a domain D(Σ0, ε) ⊂
Σ0 × (C \ {0})×R(C \ {0}) of the form

D(Σ0, ε) :=
⋃

(σ,κ)∈Σ0×(C\{0})

{(σ, κ)} × {|κt| < ε, |κt| |tσ| < ε, |κt| |t−σ| < ε}.

Using Lemma 4.11, we may show

U
(1)
1 , t−ΛU

(1)
1 tΛ, U

(1)
0 , U (1)

x ∈ S(D(Σ0, ε)),

and, for (σ, κ, t) ∈ D(Σ0, ε),

‖κtΛx‖, ‖κtΛ1‖, ‖κt · tΛΛxt
−Λ‖, ‖κt · t−ΛΛ1t

Λ‖ ≤ c̃0
4
|κt|(|tσ|+ |t−σ|),

‖U (1)
1 ‖, ‖t−ΛU

(1)
1 tΛ‖, ‖U (1)

0 ‖, ‖U (1)
x ‖ ≤

c̃0
4
|κt|(|tσ|+ |t−σ|),

where c̃0 ≥ 1 + ‖Λ0‖ + ‖Λx‖ + ‖Λ1‖ is a constant depending only on Σ0 and b0.

Arguments parallel to those in Section 5.2.1 by the use of the lemmas of Section 4.2

lead us to

Proposition 5.8. For every ν ≥ 1,

(i) U
(ν)
1 , t−ΛU

(ν)
1 tΛ, U

(ν)
0 , U

(ν)
x ∈ S(D(Σ0, ε0)),

(ii) ‖U (ν)
1 ‖, ‖t−ΛU

(ν)
1 tΛ‖, ‖U (ν)

0 ‖, ‖U
(ν)
x ‖ ≤ 2c̃0|κt|(|tσ|+ |t−σ|),

(iii) ‖U (ν)
ι − U (ν−1)

ι ‖ ≤ (K̃0|κt|(|tσ|+ |t−σ|))ν for ι = 0, x, 1,

(iv) ‖t−Λ(U
(ν)
1 − U (ν−1)

1 )tΛ‖ ≤ (K̃0|κt|(|tσ|+ |t−σ|))ν ,

where K̃0 > c̃0 and ε0 are constants depending only on Σ0 and b0.

This yields the solution (U∞0 , U∞x , U∞1 ) = limν→∞(U
(ν)
0 , U

(ν)
x , U

(ν)
1 ) of (5.2)

such that U∞0 , U∞x , U∞1 , t−ΛU∞1 tΛ ∈ S(D(Σ0, ε0)). In the corresponding solu-

tion of (5.1) we set κt = x and tσ = ρxσ to obtain a family of solutions as in

Theorem 2.1(1).
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To show the second half of Theorem 2.1, we consider (U
(ν)
0 , U

(ν)
x , U

(ν)
1 ) given

by the recursive system of the form (5.5) with Λ0,Λx,Λ1,Λ ∈M2(Cθ[σ0, σ
−1
0 ]) for

σ0 ∈ Σ+. Then Z
(ν)
0 = tΛU

(ν)
0 t−Λ, Z

(ν)
x = tΛU

(ν)
x t−Λ and U

(ν)
1 satisfy

U
(0)
1 = Z

(0)
0 = Z(0)

x ≡ 0,

U
(ν+1)
1 = −I

[
κt

1− κt
[tΛΛxt

−Λ + Z(ν)
x ,Λ1 + U

(ν)
1 ]

]
,

κtZ
(ν+1)
0 = −κt · tΛI

[
t−Λ[U

(ν+1)
1 , tΛΛ0t

−Λ + Z
(ν)
0 ]tΛ

]
t−Λ,

κtZ(ν+1)
x = −κt · tΛI

[
t−Λ[U

(ν+1)
1 , tΛΛxt

−Λ + Z(ν)
x ]tΛ

]
t−Λ

− κt · tΛI
[
t−Λ κt

1− κt
[Λ1 + U

(ν+1)
1 , tΛΛxt

−Λ + Z(ν)
x ]tΛ

]
t−Λ.

By the supposition (T−1Λ0T )21 = 0, the matrices tΛΛ0t
−Λ and tΛΛxt

−Λ with

Λ = T (σ0/2)JT−1 do not contain the term t−σ0 , so κt · tΛΛ0t
−Λ, κt · tΛΛxt

−Λ are

in Ŝ+(σ0).

Let us consider the case where σ0 ∈ Σ+ ∩ {Reσ > 1}. For such σ0, we show

the convergence of the sequence {(κtZ(ν)
0 , κtZ

(ν)
x , U

(ν)
1 )}. To do so, set

D+(σ0, ε) :=
⋃

κ∈C\{0}

{κ} × {|κt| < ε, |κt| |tσ0 | < ε} ⊂ (C \ {0})×R(C \ {0}).

By Lemma 4.13, U
(1)
1 , κtZ

(1)
0 , κtZ

(1)
x ∈ S+(D+(σ0, ε)), and for (κ, t) ∈ D+(σ0, ε),

‖κtΛ1‖, ‖κt · tΛΛ0t
−Λ‖, ‖κt · tΛΛxt

−Λ‖ ≤ c+0
4
|κt|(1 + |tσ0 |),

‖U (1)
1 ‖, ‖κtZ

(1)
0 ‖, ‖κtZ(1)

x ‖ ≤
c+0
4
|κt|(1 + |tσ0 |),(5.13)

where c+0 ≥ 1 + ‖Λ1‖ is a constant depending only on σ0 and b0. We suppose, for

j ≤ ν,

U
(j)
1 , κtZ

(j)
0 , κtZ(j)

x ∈ S+(D+(σ0, ε)),(5.14)

‖U (j)
1 ‖, ‖κtZ

(j)
0 ‖, ‖κtZ(j)

x ‖ ≤ 2c+0 |κt|(1 + |tσ0 |)(5.15)

with the convention U
(j)
1 = κtZ

(j)
0 = κtZ

(j)
x = 0 for j ≤ 0. These are valid for

j ≤ 1. The recursive relations above give

U
(ν+1)
1 − U (ν)

1 = −I
[

κt

1− κt
(
[tΛΛxt

−Λ + Z(ν)
x , U

(ν)
1 − U (ν−1)

1 ]

+ [Z(ν)
x − Z(ν−1)

x ,Λ1 + U
(ν−1)
1 ]

)]
,



The Sixth Painlevé Transcendents 455

κt(Z
(ν+1)
0 − Z(ν)

0 ) = −κt · tΛI
[
t−Λ
(
[U

(ν+1)
1 − U (ν)

1 , tΛΛ0t
−Λ + Z

(ν)
0 ]

+ [U
(ν)
1 , Z

(ν)
0 − Z(ν−1)

0 ]
)
tΛ
]
t−Λ,

κt(Z(ν+1)
x − Z(ν)

x ) = −κt · tΛI
[
t−Λ
(
[U

(ν+1)
1 − U (ν)

1 , tΛΛxt
−Λ + Z(ν)

x ]

+ [U
(ν)
1 , Z(ν)

x − Z(ν−1)
x ]

)
tΛ
]
t−Λ

− κt · tΛI
[
t−Λ κt

1− κt
(
[U

(ν+1)
1 − U (ν)

1 , tΛΛxt
−Λ + Z(ν)

x ]

+ [U
(ν)
1 , Z(ν)

x − Z(ν−1)
x ]

)
tΛ
]
t−Λ.

Using Proposition 4.12, we derive

(5.16) ‖U (ν+1)
1 − U (ν)

1 ‖ ≤ 4L+
0

(
‖κt(tΛΛxt

−Λ + Z(ν)
x )‖ ‖U (ν)

1 − U (ν−1)
1 ‖

+ (‖Λ1‖+ ‖U (ν−1)
1 ‖)‖κt(Z(ν)

x − Z(ν−1)
x )‖

)
≤ 12L+

0 c
+
0

(
|κt|(1 + |tσ0 |)‖U (ν)

1 − U (ν−1)
1 ‖+ ‖κt(Z(ν)

x − Z(ν−1)
x )‖

)
if ε < 1/2. Furthermore, by Lemma 4.13,

(5.17) ‖κt(Z(ν+1)
0 − Z(ν)

0 )‖ ≤ 2L̃+
0 ‖T‖3‖T−1‖3

×
(
‖κt(tΛΛ0t

−Λ + Z
(ν)
0 )‖ ‖U (ν+1)

1 − U (ν)
1 ‖+ ‖U (ν)

1 ‖ ‖κt(Z
(ν)
0 − Z(ν−1)

0 )‖
)

≤ 6L̃+
0 ‖T‖3‖T−1‖3c+0 |κt|(1 + |tσ0 |)

(
‖U (ν+1)

1 − U (ν)
1 ‖+ ‖κt(Z(ν)

0 − Z(ν−1)
0 )‖

)
,

and

(5.18) ‖κt(Z(ν+1)
x − Z(ν)

x )‖ ≤ 20L̃+
0 ‖T‖3‖T−1‖3c+0

× |κt|(1 + |tσ0 |)
(
‖U (ν+1)

1 − U (ν)
1 ‖+ ‖κt(Z(ν)

x − Z(ν−1)
x )‖

)
.

In the last inequality we replace ν by ν − 1 to obtain

(5.19) ‖κt(Z(ν)
x − Z(ν−1)

x )‖

≤ K+
1 |κt|(1 + |tσ0 |)

(
‖U (ν)

1 − U (ν−1)
1 ‖+ ‖κt(Z(ν−1)

x − Z(ν−2)
x )‖

)
with K+

1 = 20L̃+
0 ‖T‖3‖T−1‖3c+0 . Inequality (5.16) combined with (5.19) gives

(5.20) ‖U (ν+1)
1 − U (ν)

1 ‖

≤ K+
2 |κt|(1 + |tσ0 |)

(
‖U (ν)

1 − U (ν−1)
1 ‖+ ‖κt(Z(ν−1)

x − Z(ν−2)
x )‖

)
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with some constant K+
2 ≥ c

+
0 . Substituting this into (5.17) and (5.18), we have

(5.21) ‖κt(Z(ν+1)
0 − Z(ν)

0 )‖ ≤ K+
3 |κt|(1 + |tσ0 |)

×
(
‖U (ν)

1 − U (ν−1)
1 ‖+ ‖κt(Z(ν)

0 − Z(ν−1)
0 )‖+ ‖κt(Z(ν−1)

x − Z(ν−2)
x )‖

)
,

(5.22) ‖κt(Z(ν+1)
x − Z(ν)

x )‖ ≤ K+
3 |κt|(1 + |tσ0 |)

×
(
‖U (ν)

1 − U (ν−1)
1 ‖+ ‖κt(Z(ν)

x − Z(ν−1)
x )‖+ ‖κt(Z(ν−1)

x − Z(ν−2)
x )‖

)
with some constant K+

3 ≥ c
+
0 . Put

v(j) := ‖U (j)
1 − U (j−1)

1 ‖

+ ‖κt(Z(j)
0 − Z(j−1)

0 )‖+ ‖κt(Z(j)
x − Z(j−1)

x )‖+ ‖κt(Z(j−1)
x − Z(j−2)

x )‖.

By (5.13), v(1) ≤ c+0 |κt|(1+|tσ0 |). From inequalities (5.19) through (5.22) we derive

v(j+1) ≤ K+
0 |κt|(1 + |tσ0 |)v(j) for every j ≤ ν with some constant K+

0 ≥ c
+
0 , which

is valid under the suppositions (5.14) and (5.15). By the same argument as in the

proof of Proposition 5.4 we have

Proposition 5.9. Under the supposition σ0 ∈ Σ+ ∩ {Reσ > 1}, for every ν ≥ 1,

(i) U
(ν)
1 , κtZ

(ν)
0 , κtZ

(ν)
x ∈ S+(D+(σ0, ε0)),

(ii) ‖U (ν)
1 ‖, ‖κtZ

(ν)
0 ‖, ‖κtZ

(ν)
x ‖ ≤ 2c+0 |κt|(1 + |tσ0 |),

(iii) ‖U (ν)
1 − U (ν−1)

1 ‖, ‖κt(Z(ν)
ι − Z(ν−1)

ι )‖ ≤ (K+
0 |κt|(1 + |tσ0 |))ν for ι = 0, x,

where K+
0 > c+0 and ε0 are constants depending only on σ0 and b0.

This proposition implies (U∞1 , κtZ∞0 , κtZ∞x ) := limν→∞(U
(ν)
1 , κtZ

(ν)
0 , κtZ

(ν)
x )

∈S+(D+(σ0, ε0))3 if σ0∈Σ+∩{Reσ>1}.Denote by (U∞1 (σ, t), U∞0 (σ, t), U∞x (σ, t))

the solution of (5.2) for σ ∈ Σ0 constructed in the proof of Theorem 2.1(1). We

may suppose that Σ0 ∩ (Σ+ ∩ {Reσ > 1}) 6= ∅. If σ0 ∈ Σ0 ∩ (Σ+ ∩ {Reσ > 1}),
then

(5.23) (U∞1 (σ0, t), κt · tΛU∞0 (σ0, t)t
−Λ, κt · tΛU∞x (σ0, t)t

−Λ)

≡ (U∞1 , κtZ∞0 , κtZ∞x ) ∈ S+(D+(σ0, ε0))3,

since both triples come from the same sequence defined by the recursive system of

the form (5.5). By Lemma 4.10, (U∞1 (σ, t), κt·tΛU∞0 (σ, t)t−Λ, κt·tΛU∞x (σ, t)t−Λ) ∈
S(D(Σ0, ε0))3, and we write

U∞1 (σ, t) =

∞∑
n=1

n∑
m=−n

Γn1m(σ)(κt)ntσm,

κt · tΛU∞ι (σ, t)t−Λ =

∞∑
n=1

n∑
m=−n

Γnιm(σ)(κt)ntσm (ι = 0, x)
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with Γn1m(σ),Γnιm(σ) ∈ M2(Cθ(σ)). Note that σ0 is algebraic in (θι). By (5.23)

we find that Γn0m(σ0),Γnxm(σ0), Γn1m(σ0) ≡ 0 for −n ≤ m < 0 as functions of

(θι), and (5.23) as a function of (κ, t, (θι)) can be continued analytically as long

as σ0 ∈ Σ0 ∪ (Σ+ ∩ {Reσ > 1}). Then

(tΛΛ0t
−Λ + Z∞0 , tΛΛxt

−Λ + Z∞x ,Λ1 + U∞1 )

= (tΛ(Λ0 + U∞0 (σ0, t))t
−Λ, tΛ(Λx + U∞x (σ0, t))t

−Λ,Λ1 + U∞1 (σ0, t))

with (tσ0 , κt) = (ρxσ0 , x) solves (2.1) for every σ0 ∈ Σ0 ∪ (Σ+ ∩ {Reσ > 1}). For

each σ0 ∈ Σ+ ∩ {Reσ ≤ 1} we may choose Σ0 such that Σ0 3 σ0, and hence we

obtain the solution as in Theorem 2.1 for σ0 ∈ Σ+.

§6. Proofs of Theorems 2.3, 2.4 and Corollary 2.5

For σ 6= 0, [5, Lemma A.2] with r = s = 1 gives

Lemma 6.1. The matrices

Λ0 = T

(
1

4σ (σ2 + θ2
0 − θ2

x) 1
1

16σ2 ((θ0 + θx)2 − σ2)(σ2 − (θ0 − θx)2) 1
4σ (θ2

x − θ2
0 − σ2)

)
T−1,

Λx = T

(
1

4σ (σ2 + θ2
x − θ2

0) −1
1

16σ2 ((θ0 + θx)2 − σ2)((θ0 − θx)2 − σ2) 1
4σ (θ2

0 − θ2
x − σ2)

)
T−1,

Λ =

(
1

4θ∞
(θ2

1 − θ2
∞ − σ2) 1

1
16θ2∞

((σ + θ1)2 − θ2
∞)(θ2

∞ − (σ − θ1)2) 1
4θ∞

(σ2 − θ2
1 + θ2

∞)

)
,

Λ1 =

(
1

4θ∞
(σ2 − θ2

1 − θ2
∞) −1

1
16θ2∞

((σ + θ1)2 − θ2
∞)((σ − θ1)2 − θ2

∞) 1
4θ∞

(θ2
1 + θ2

∞ − σ2)

)
,

T =

(
1 1

1
4θ∞

((σ + θ∞)2 − θ2
1) 1

4θ∞
((σ − θ∞)2 − θ2

1)

)

have the properties (P.1) through (P.3).

Using [6, Proposition 2, Jordan case] with r = 0 or −θ0, we have

Lemma 6.2. The matrices

Λ0 = T

(
±θ0/2 0

(θ2
0 − θ2

x)/4 ∓θ0/2

)
T−1, Λx = T

(
∓θ0/2 1

(θ2
x − θ2

0)/4 ±θ0/2

)
T−1,

Λ =

(
1

4θ∞
(θ2

1 − θ2
∞) 1

− 1
16θ2∞

(θ2
1 − θ2

∞)2 1
4θ∞

(θ2
∞ − θ2

1)

)
,
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Λ1 =

(
− 1

4θ∞
(θ2

1 + θ2
∞) −1

1
16θ2∞

(θ2
1 − θ2

∞)2 1
4θ∞

(θ2
1 + θ2

∞)

)
,

T =

(
1 0

1
4θ∞

(θ2
∞ − θ2

1) 1

)

have the properties (P.1), (P.2′), (P.3).

Remark 6.1. It is also possible to choose more general matrices

Λ =

(
1

4θ∞
(θ2

1 − θ2
∞) 1− (θ2

1 − θ2
∞)r̃

− 1
16θ2∞(1−(θ21−θ2∞)r̃)

(θ2
1 − θ2

∞)2 1
4θ∞

(θ2
∞ − θ2

1)

)
,

Λ1 =

(
− 1

4θ∞
(θ2

1 + θ2
∞) −1 + (θ2

1 − θ2
∞)r̃

1
16θ2∞(1−(θ21−θ2∞)r̃)

(θ2
1 − θ2

∞)2 1
4θ∞

(θ2
1 + θ2

∞)

)
,

T =

(
1 4θ∞r̃

1
4θ∞(1−(θ21−θ2∞)r̃)

(θ2
∞ − θ2

1) 1

)
.

§6.1. Derivation of Theorem 2.3

Let Λ0, Λx, Λ1 and T be as in Lemma 6.1. For the solution with σ ∈ Σ0 in

Theorem 2.1, xA0(σ, ρ, x), xAx(σ, ρ, x), A1(σ, ρ, x) − Λ1 can be written in the

form
∑∞
n=1 x

n
∑n
m=−nA

n
ιm(σ)(ρxσ)m with Anιm(σ) ∈ M2(Cθ(σ)) (ι = 0, x, 1). If

we substitute (ρxσ, x) = (tσ, κt), they become, respectively, κt · tΛ(Λ0 + U∞0 )t−Λ,

κt · tΛ(Λx + U∞x )t−Λ, U∞1 ∈ S(D(Σ0, ε0)) with U∞0 , U∞x , U∞1 as in the proof of

Theorem 2.1 in Section 5.3, and, by Proposition 5.8 and Lemma 4.10,

‖κt · tΛ(Λ0 + U∞0 )t−Λ‖, ‖κt · tΛ(Λx + U∞x )t−Λ‖, ‖U∞1 ‖ ≤ c̃∗0|κt|(|tσ|+ |t−σ|),

where c̃∗0 is a positive constant depending only on Σ0 and b0. Hence, taking ε0 so

small that ε0 < (16c̃∗0)−1 again if necessary, for (σ, ρ, x) satisfying

(6.1) |x| < ε0, |x(ρxσ)| < ε0, |x(ρxσ)−1| < ε0

we deduce that each entry of xA0(σ, ρ, x), xAx(σ, ρ, x) and A1(σ, ρ, x) − Λ1 as

a double series converges absolutely, and the sum of the absolute values of the

summands in each double series does not exceed 1/8. Recall that

y(x) =
xA0(σ, ρ, x)12

x(A0(σ, ρ, x) +A1(σ, ρ, x))12 −A1(σ, ρ, x)12

solves (PVI). By the fact mentioned above, the denominator is given by

1 − aden(σ, ρ, x) with aden(σ, ρ, x) =
∑∞
n=1 x

n
∑n
m=−n a

n
m(σ)(ρxσ)m, anm(σ) ∈
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Cθ(σ) such that
∑∞
n=1 |x|n

∑n
m=−n |anm(σ)| |ρxσ|m < 1/2 for (σ, ρ, x) satisfy-

ing (6.1). Substituting the series aden(σ, ρ, x) into (1 − aden(σ, ρ, x))−1 = 1 +∑∞
j=1 aden(σ, ρ, x)j and rearranging the summands, we obtain the product of con-

vergent series

y(x) = xA0(σ, ρ, x)12

(
1 +

∞∑
n=1

xn
n∑

m=−n
ãnm(σ)(ρxσ)m

)
.

Here ãnm(σ) ∈ Cθ(σ), because each aden(σ, ρ, x)j consists of summands with n ≥ j.
By Lemma 6.1, the leading term of xA0(σ, ρ, x) is

x(ρxσ)Λ/σΛ0(ρxσ)−Λ/σ = xT (ρxσ)J/2T−1Λ0T (ρxσ)−J/2T−1

= xT

(
1

4σ (σ2 + θ2
0 − θ2

x) ρxσ

1
16σ2 (ρxσ)−1((θ0 + θx)2 − σ2)(σ2 − (θ0 − θx)2) 1

4σ (θ2
x − θ2

0 − σ2)

)
T−1,

whose (1, 2)-entry is

x

(
−ρx

σ

σ
+

1

2σ2
(σ2 + θ2

0 − θ2
x)− 1

16σ3
((θ0 + θx)2 − σ2)((θ0 − θx)2 − σ2)(ρxσ)−1

)
.

We replace the integration constant ρ by −σρ to obtain y(σ, ρ, x) as in Theorem

2.3 with ε̂0 = ε0 infσ∈Σ0
min{|σ|, |σ|−1} > 0. If σ2

0 = (θ0 ± θx)2, then (T−1Λ0T )21

vanishes at σ = σ0, and xA0(σ0, ρ, x), xAx(σ0, ρ, x), A1(σ0, ρ, x) − Λ1 admit rep-

resentations
∑∞
n=1 x

n
∑n
m=0A

n
ιm(σ0)(ρxσ0)m (ι = 0, x, 1). Hence the second half

of the theorem immediately follows.

§6.2. Derivation of Theorem 2.4

For the solution in Theorem 2.2, xA0(ρ, x), xAx(ρ, x), A1(ρ, x)−Λ1 can be written

in the form
∑∞
n=1 x

n
∑2n
m=0A

0n
ιm logm(ρx) with A0n

ιm ∈ M2(Cθ) (ι = 0, x, 1). By

Lemma 6.2 the leading term of xA0(ρ, x) is

x(ρx)ΛΛ0(ρx)−Λ = xT (ρx)∆T−1Λ0T (ρx)−∆T−1

= xT (ρx)∆

(
±θ0/2 0

(θ2
0 − θ2

x)/4 ∓θ0/2

)
(ρx)−∆T−1,

whose (1, 2)-entry is

x
(
∓θ0 log(ρx) + 1

4 (θ2
x − θ2

0) log2(ρx)
)
.

If θ2
0 = θ2

x, then (T−1Λ0T )21 = 0, and xA0(ρ, x), xAx(ρ, x), A1(ρ, x) − Λ1 admit

representations
∑∞
n=1 x

n
∑n
m=0A

0n
ιm logm(ρx) (ι = 0, x, 1). Using these facts, we

obtain Theorem 2.4.
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Remark 6.2. If θ2
0 = θ2

x, then, by Lemma 6.2,

tΛΛ0t
−Λ = T

(
±θ0/2 ∓θ0 log t

0 ∓θ0/2

)
T−1,

tΛΛxt
−Λ = T

(
∓θ0/2 1± θ0 log t

0 ±θ0/2

)
T−1.

With these expressions in mind, observing the recursive relations in the proof of

Proposition 5.6 and noting the logarithmic terms in the proof of Lemma 4.6, we

can verify that, for (5.11) solving (5.1), the series κtA∗0(t), κtA∗x(t), A∗1(t) − Λ1

can be written in the form
∑∞
n=1

∑n
m=0A

∗n
ιm(κt)n(θ0 log t)m with A∗nιm ∈ M2(Cθ)

(ι = 0, x, 1).

§6.3. Derivation of Corollary 2.5

Suppose that θ2
x 6= θ2

0. Then from Theorem 2.4 it follows that

x

y0(ρ, x)
=

(1 + F (x log2(ρx), log(ρx)))−1

log2(ρx)F0(log(ρx))
, F (x̃, ξ) =

1

F0(ξ)

∞∑
n=1

x̃nFn(ξ)

with Fn(ξ) = ξ−2(n+1)Pn+1(ξ) ∈ Cθ[ξ−1] and F0(∞) = (θ2
x − θ2

0)/4. Since y0(ρ, x)

converges absolutely in Ω∗(ε0,Θ0), we have c∗nm = O((ε0/2)−n) for every (m,n)

such that 0 ≤ m ≤ 2n. Hence the function ξ−2F0(ξ)−1(1 + F (x̃, ξ))−1 with

F0(ξ)F (x̃, ξ) =

∞∑
n=1

x̃nFn(ξ) =

∞∑
n=1

2(n+1)∑
m=0

c∗(n+1)
m x̃nξ−(2(n+1)−m)

is holomorphic in (x̃, ξ) such that |x̃| < x̃0, |ξ| > ξ∞, where x̃0 is sufficiently small

and ξ∞ is sufficiently large. Replacing (θ0, θx, θ1, θ∞) by (θ∞ − 1, θ1, θx, θ0 + 1),

we derive the inverse logarithmic solution as in the corollary under the condition

θ2
1 6= (θ∞ − 1)2. If θ2

x = θ2
0 6= 0, then

x

y0(ρ, x)
=

(1 + F̃ (x log(ρx), log(ρx)))−1

log(ρx)F̃0(log(ρx))
, F̃ (x̃, ξ) =

1

F̃0(ξ)

∞∑
n=1

x̃nF̃n(ξ)

with F̃n(ξ) = ξ−(n+1)Pn+1(ξ) ∈ Cθ[ξ−1] and F̃0(ξ) ≡ ±θ0, which yields the desired

solution under the condition θ1 = ±(θ∞ − 1) 6= 0.

§6.4. Remark on the choice of Λ0 and Λx

Let (Λ0,Λx,Λ,Λ1, T ) be as in Lemma 6.1. Set T̃ := TrJ/2 and Λ̃ι := rΛ/σΛιr
−Λ/σ

(ι = 0, x) with r ∈ C\{0}. Then (Λ̃0, Λ̃x,Λ,Λ1, T̃ ) also satisfies (P.1) through (P.3).

In discussing the relation between integration constants and monodromy data

of the related Fuchsian system, such a choice of matrices is made (see [12],
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[4], [5]). Let (Ã0, Ãx, Ã1) be the solution given by Theorem 2.1 corresponding

to (Λ̃0, Λ̃x,Λ,Λ1, T̃ ) with ρ = 1. We set

Ã0 = xΛ(Λ̃0 + Ũ0)x−Λ, Ãx = xΛ(Λ̃x + Ũx)x−Λ, Ã1 = Λ1 + Ũ1.

By Proposition 5.1, (Ũ0, Ũx, Ũ1) satisfies

x
dŨ0

dx
= −[x−ΛŨ1x

Λ, Λ̃0 + Ũ0],

x
dŨx
dx

= −[x−ΛŨ1x
Λ, Λ̃x + Ũx]− x

1− x
[x−Λ(Λ1 + Ũ1)xΛ, Λ̃x + Ũx],

x
dŨ1

dx
= − x

1− x
[xΛ(Λ̃x + Ũx)x−Λ,Λ1 + Ũ1].

Since xΛΛ̃ιx
−Λ = (r1/σx)ΛΛι(r

1/σx)−Λ (ι = 0, x), the triple

(U0, Ux, U1) = (r−Λ/σŨ0r
Λ/σ, r−Λ/σŨxr

Λ/σ, Ũ1)

solves (5.2) with κ = r−1/σ, t = r1/σx. Then Ãι = (r1/σx)Λ(Λι + Uι)(r
1/σx)−Λ

(ι = 0, x), which implies (Ã0, Ãx, Ã1) ≡ (A0(σ, r, x), Ax(σ, r, x), A1(σ, r, x)).

For (Λ0,Λx,Λ,Λ1, T ) as in Lemma 6.2, (Λ̃0, Λ̃x,Λ,Λ1, T̃ ) with Λ̃ι = erΛΛιe
−rΛ

(ι = 0, x), T̃ = Ter∆ also satisfies (P.1), (P.2′), (P.3). Then the solution given

by Theorem 2.2 corresponding to (Λ̃0, Λ̃x,Λ,Λ1, T̃ ) with ρ = 1 coincides with

(A0(er, x), Ax(er, x), A1(er, x)).

Appendix

Let σ, ρ ∈ C \ {0} and r0, ω ∈ R be such that Imσ 6= 0, 0 < ω < 1. Then

|ρx1+σ| = O(|x|ω) along the curve Γ(r0, ω)σ : (1+Reσ−ω) log |x|−Imσ·arg x = r0.

Let y(x) be a solution of (PVI) such that

(A.1) y(x) = ρx1+σ(1 + o(1)), xy′(x) = ρx1+σ(1 + σ + o(1))

as x → 0 along Γ(r0, ω)σ. By y = (eu/2 + e−u/2)−2 = e−u(1 + e−u)−2, (PVI) is

changed into

x(xu′)′ = f0(x, e−u, xeu) + f1(x, e−u, xeu)(xu′) + f2(x, e−u, xeu)(xu′)2

(u′ = du/dx), where fj(x, ξ, η) (j = 0, 1, 2) are holomorphic for |x|, |ξ|, |η| < 1/4

and satisfy fj(0, 0, 0) = 0 (cf. [17, Proposition 5.1]). The further transformation

u = −(1 + σ) log x− log ρ− v, xu′ = −(1 + σ)− xv′

leads us to
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x(xv′)′ = f0(x, ρx1+σev, ρ−1x−σe−v)(A.2)

− f1(x, ρx1+σev, ρ−1x−σe−v)(1 + σ + xv′)

+ f2(x, ρx1+σev, ρ−1x−σe−v)(1 + σ + xv′)2

= F0(x, ρx1+σ, ρ−1x−σ) + F (x, ρx1+σ, ρ−1x−σ, v, xv′).

Here F0(x, ξ, η) and F (x, ξ, η, v, w) are holomorphic for |x|, |ξ|, |η| < 1/(8e) and

|v|, |w| < 1, and satisfy

F0(x, ξ, η) = O(|x|+ |ξ|+ |η|),(A.3)

F (x, ξ, η, ṽ, w̃)− F (x, ξ, η, v, w) = O(|x|+ |ξ|+ |η|)(|ṽ − v|+ |w̃ − w|)(A.4)

whenever |v|, |w|, |ṽ|, |w̃| < 1. Let v(x) be the solution of (A.2) corresponding

to y(x). Along Γ(r0, ω)σ,

ev(x)(1 + ρx1+σev(x))−2 = ev(x)(1 +O(|x|ω)ev(x))−2 = 1 + o(1),

(1 + σ + xv′(x))

(
1− 2ρx1+σev(x)

1 + ρx1+σev(x)

)
= (1 + σ + xv′(x))

(
1 +

O(|x|ω)ev(x)

1 +O(|x|ω)ev(x)

)
= 1 + σ + o(1),

since xy′/y = −(1 − 2e−u/(1 + e−u))xu′. Then we have v(x), xv′(x) = o(1) as

x→ 0 along Γ(r0, ω)σ. Observing that |ρx1+σ|, |ρ−1x−σ| = O(|x|ω + |x|1−ω) along

Γ(r0, ω)σ and using v(x), xv′(x) = o(1), we deduce that v(x) satisfies the system

of integral equations

xv′(x) =

∫
Γ(x)

(
F0(t, ρt1+σ, ρ−1t−σ) + F (t, ρt1+σ, ρ−1t−σ, v(t), tv′(t))

)dt
t
,

v(x) =

∫
Γ(x)

∫
Γ(s)

(
F0(t, ρt1+σ, ρ−1t−σ) + F (t, ρt1+σ, ρ−1t−σ, v(t), tv′(t))

)dt
t

ds

s

with Γ(x) ⊂ Γ(r0, ω)σ joining 0 to x. Suppose that v1(x) and v2(x) solve this

system and set φ(x) := supt∈Γ(x)(|v2(t) − v1(t)| + |tv′2(t) − tv′1(t)|). Then using

(A.3) and (A.4) we derive φ(x) = O(|x|ω + |x|1−ω)φ(x), and hence φ(x) ≡ 0. This

implies the uniqueness of v(x), from which that of y(x) follows. The uniqueness

under the condition y(x) ∼ ρx1+σ only may be proved by using the Riemann–

Hilbert correspondence [4, Proposition in §4], [5, Proposition A.1].
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