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Structures and Dimensions of Vector Valued
Jacobi Forms of Degree Two

by

Tomoyoshi Ibukiyama

Abstract

We give a complete characterization of vector valued holomorphic Jacobi forms of degree
two of index one in the sense of Ziegler by the Taylor expansion and vector valued Siegel
modular forms of various weights. By this characterization, we also give explicit dimension
formulas for spaces of vector valued holomorphic Jacobi forms of index one of degree two,
using those for vector valued Siegel modular forms and a certain surjectivity theorem on
the Witt operator (the restriction operator to the diagonals). Our characterization also
gives a concrete way to give the plus subspace of the space of Siegel modular forms of
half-integral weight.
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§1. Introduction

We consider the space J(k,j),1(ΓJ2 ) of holomorphic Jacobi forms of degree 2 of index

1 of weight detk Symj , where Symj is the symmetric tensor representation of GL(2)

of degree j. The Jacobi forms are holomorphic functions f(τ, z) on H2×C2 which

satisfy certain automorphy under the Jacobi modular group ΓJ2 (of level one),

where H2 is the Siegel upper half-space of degree two. To characterize this space,

we use the Taylor expansion of f(τ, z) along z = 0. A Jacobi form f of index one is

an even function with respect to z and when f is of degree two, we can show that it

is determined by the Taylor coefficients up to degree 2. We denote by Ak,j(Γ2) the

space of Siegel modular forms of weight detk Symj of the Siegel modular group Γ2.

Roughly speaking, we obtain a linear mapping from Taylor coefficients of f(τ, z) up

to degree two into the space Ak,j(Γ2)×Ak,j+2(Γ2)×Ak+1,j(Γ2)×Ak,j−2(Γ2), and

we can show that the space J(k,j),1(ΓJ2 ) is isomorphic to the image of this mapping.
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Belonging to this image is described as the condition that some part vanishes under

the restriction to the diagonal of τ ∈ H2, which leads to explicit dimension formulas

when k is not too small. R. Tsushima gave conjectural dimension formulas for

spaces of Jacobi forms of degree two in [20] including more general cases, and in

the above case, our formula completely coincides with his conjecture. This formula

also gives the dimensions of the plus subspaces of Siegel modular forms of half-

integral weight of degree two of good parity, since the spaces of holomorphic Jacobi

forms are isomorphic to such spaces, with character or without character according

to the parity of k. The results of this paper were used in [12]. Some part of this

paper can be generalized to higher degrees without much difficulty, but we would

like to treat them on a different occasion.

The paper is organized as follows. After reviewing the definitions and easy

properties of Jacobi forms and Siegel modular forms in Section 2, we construct

a mapping from the Taylor coefficients of holomorphic Jacobi forms to a sum of

vector valued Siegel modular forms in Section 3 (Theorem 3.5). This is similar to

the results in [3] and [10], but much more complicated since the relation to the

theory of differential operators on Siegel modular forms is not clear and there are

no ready-made differential operators as in [8] that we can use to construct the

mapping in this case. In Section 4 (Theorem 4.1), we give a characterization of

the image of this mapping by using the Witt operator (that is, restriction to the

diagonals of H2). In Section 5, by using Theorem 4.1, we first give formulas for

the dimensions of spaces of vector valued Jacobi forms in terms of those of vector

valued Siegel modular forms and elliptic modular forms for k ≥ 8 (Theorem 5.3)

and then give explicit generating functions of the dimensions (Theorem 5.6). We

explain the relation to Siegel modular forms of half-integral weight and also give

remarks on small weights. Finally we give numerical tables of the dimensions of

spaces of Jacobi forms or Jacobi cusp forms for several small k and j.

§2. Definitions and easy properties

We denote by Sp(n,R) the real symplectic group of matrix size 2n:

Sp(n,R) = {g ∈ GL(2n,R); tgJg = J},

where J =
(

0 −1n
1n 0

)
and 1n is the n × n unit matrix. We put Γn = Sp(n,R) ∩

M2n(Z). We denote by Hn the Siegel upper half-space of degree n. We fix a (finite-

dimensional) rational representation ρ of GL(n,C) and let V be the representation

space of ρ. For any holomorphic function F : Hn → V and g =
(
a b
c d

)
∈ Sp(n,R),

we write

(F |ρ[g])(τ) = ρ(cτ + d)−1F (gτ) (τ ∈ Hn).
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The function F is called a Siegel modular form of weight ρ if F |ρ[γ] = F for any

γ ∈ Γn (with extra boundedness condition at cusps if n = 1). We define the Siegel

Φ-operator by

(ΦF )(τ1) = lim
t→∞

F

(
τ1 0

0 it

)
,

where τ1 ∈ Hn−1 and t ∈ R, i =
√
−1. We say that F is a cusp form if Φ(F ) = 0.

We denote by Aρ(Γn) and Sρ(Γn) the spaces of Siegel modular forms and Siegel

cusp forms of weight ρ, respectively. We denote by Symj the symmetric tensor

representation of GL(n,C) of degree j. If ρ = detk Symj , we write Aρ(Γn) =

Ak,j(Γn) and Sρ(Γn) = Sk,j(Γn). We note that when n = 2, we have Ak,j(Γ2) = 0

if j is odd and Ak,j(Γ2) = Sk,j(Γ2) if k is odd.

Next, we identify Sp(n,R) as a subgroup of Sp(n+ 1,R) by mapping

g =

(
a b

c d

)
∈ Sp(n,R) to


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 ∈ Sp(n+ 1,R).

For λ, µ ∈ Rn and κ ∈ R, we define an element [(λ, µ), κ] ∈ Sp(n+ 1,R) by

[(λ, µ), κ] =


1n 0 0 tµ

λ 1 µ κ

0 0 1n − tλ

0 0 0 1

 .

The elements [(λ, µ), κ] form a subgroup Hn(R) of Sp(n+1,R), called the Heisen-

berg group. For any integer n ≥ 1, we define the real Jacobi group GJn(R) as the

subgroup of Sp(n+ 1,R) defined by

GJ(R) = {g · [(λ, µ), κ]; g ∈ Sp(n,R), λ, µ ∈ Rn, κ ∈ R} .

This is a semidirect product of Sp(n,R) and Hn(R). Again, let (ρ, V ) be an ir-

reducible rational representation of GL(n,C). For any V -valued function f(τ, z) :

Hn × Cn → V , any g =
(
a b
c d

)
∈ Sp(n,R) ⊂ GJ(R), any [(λ, µ), κ] ∈ Hn(R), and

any fixed integer m ≥ 1, we write

f |ρ,m[g] = em(−z(cτ + d)−1c tz)ρ(cτ + d)−1f(gτ, z(cτ + d)−1),

f |m|[(λ, µ), κ] = em(λτ tλ+ 2λ tz + µ tλ+ κ)f(τ, z + λτ + µ),

where we write em(x) = e(mx) and e(x) = exp(2πix) for any x. This gives an

action of GJ(R). We write Hn(Z) = Hn(R) ∩M2n+2(Z). We set ΓJn = GJ(R) ∩
M2n+2(Z) = Γn ·Hn(Z) ⊂ G(R)J and call it the Jacobi modular group of degree n.
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When n ≥ 2, we say that a V -valued holomorphic function f(τ, z) : Hn×Cn → V

is a Jacobi form of weight ρ, index m and degree n if

f |ρ,m[γ] = f for all γ ∈ Γn ⊂ ΓJn,(2.1)

f |m[(λ, µ), κ] = f for all [(λ, µ), κ] ∈ Hn(Z).(2.2)

By this condition of automorphy, we have the Fourier expansion of the form

f(τ, z) =
∑

(N,r)∈L∗
n×Zn

C(N, r)e(tr(Nτ))e(r tz)

where L∗n is the set of n × n half-integral symmetric matrices. When n = 1,

for the definition of Jacobi forms, we need an extra condition that C(N, r) = 0

unless 4mN − trr is positive semidefinite, which is satisfied automatically if n ≥ 2

(see Ziegler [22]). We say that f is a Jacobi cusp form if C(N, r) = 0 unless

4mN − trr is positive definite. We denote by Jρ,m(ΓJn) and Jcusp
ρ,m (ΓJn) the space of

Jacobi forms and Jacobi cusp forms respectively. When ρ = detk Symj , we write

Jρ,m = J(k,j),m. When n = 2, we identify the representation space of Symj with

the space Vj = C[u1, u2]j of homogeneous polynomials P (u1, u2) in u1 and u2 of

degree j and realize Symj by P (u1, u2) 7→ P ((u1, u2)A) for A ∈ GL(2,C).

In order to characterize a Jacobi cusp form of index one, we introduce the

Jacobi–Siegel Φ-operator ΦJ as in [2] as follows. For any f ∈ Jρ,m(ΓJn) we define

(ΦJf)(τ1, z1) = lim
t→∞

f

((
τ1 0

0 it

)
, (z1, 0)

)
,

where τ1 ∈ Hn−1 and z1 ∈ Cn−1.

We give several easy properties when the index m is 1.

Proposition 2.1. Assume that a Jacobi form f ∈ Jρ,1(ΓJn) is of index m = 1.

Then we have the following properties:

(a) The Fourier coefficient C(N, r) of f depends only on 4N − trr. In particular,

f is an even function with respect to z, that is, f(τ,−z) = f(τ, z).

(b) If ρ(−1n) = −1 · idV , then Jρ,1(ΓJn) = 0. In particular, if n = 2 and ρ =

detk Symj and j is odd, then Jρ,1(ΓJ2 ) = J(k,j),1(ΓJ2 ) = 0.

(c) A Jacobi form f ∈ Jρ,1(ΓJn) is a cusp form if and only if ΦJ(f) = 0.

(d) When n = 2 and ρ = detk Symj, regarding f as a homogeneous polynomial in

u = (u1, u2) with holomorphic coefficients, we have ΦJ(f) = φ(τ1, z1)uj1 with

a Jacobi form φ(τ1, z1) of weight k + j of index one and degree one. When

j > 0, φ(τ1, z1) is a Jacobi cusp form.
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Proof. Although (a) is well known, we give the proof for completeness. If 4N1 −
tr1r1 = 4N2 − tr2r2 for Ni ∈ L∗n and ri ∈ Zn, then comparing the diagonal

components, we see that the squares of the i-th components of r1 and r2 are

congruent modulo 4 for each i, so r1 ≡ r2 mod 2. So we write r2 = r1 + 2λ with

λ ∈ Z and then N1 = N2 − tλλ − (tr1λ + tλr1)/2. We apply the condition of

automorphy (2.2) for this λ. We have∑
N,r

C(N, r)e(tr(Nτ))e(−λτ tλ− 2λ tz)e(r tz) =
∑
N,r

C(N, r)e(tr(Nτ))e(r t(z + λτ))

Here by the relation between N1 and N2 above, we easily see that

e(tr(N2 − tλλ)τ)e((r2 − 2λ) tz) = e(tr(N1τ))e(r1
t(z + λτ)).

So we have C(N1, r1) = C(N2, r2). By (a), we often write the Fourier coeffi-

cients C(N, r) as C(4N − trr). By the action of −12n, we see that f(τ,−z) =

ρ(−1n)f(τ, z) for f ∈ Jρ,1(ΓJn), but since f is even in z by (a), we have Jρ,1(ΓJn) = 0

if ρ(−1n) = −1 · idV . This proves (b).

We now prove (c) and (d). Since f is of index one, we write the Fourier

expansion as

f(τ, z) =
∑

N,r∈L∗
n×Zn

C(4N − trr)e(tr(Nτ))e(trz).

We write

N =

(
N1 n0/2
tn0/2 n2

)
and r = (r1, r2), where N1 ∈ L∗n−1 and r1 ∈ Zn−1. We assume that 4N − trr

is positive semidefinite from now on. Then n2 ≥ 0, and if n2 = 0, then r2 = 0,

r = (r1, 0) and n0 = 0. So we have

4N − trr =

(
4N1 − tr1r1 0

0 0

)
in this case. The terms such that n2 > 0 obviously disappear under ΦJ by defini-

tion. If we assume that n2 = 0, then 4N − trr is not positive definite, and if we

assume that f is a cusp form, then C(N, r) = 0. Hence ΦJ(f) = 0. Conversely, if

ΦJ(f) = 0, then C(N, r) = C(4N − trr) = 0 if n2 = 0. Now we must show that

C(N, r) = 0 always when det(4N − trr) = 0 even if n0 6= 0. By automorphy (2.1)

for
(
U 0
0 tU−1

)
∈ Γn with U ∈ GL(n,Z), we have f(Uτ tU, z tU) = ρ(tU)f(τ, z).

This means that

(2.3) C(4N − trr) = ρ(tU)C(tU(4N − trr)U).
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Now if det(4N − trr) = 0 (i.e. if 4N − trr is positive semidefinite but not positive

definite), then we have a non-zero vector v ∈ Zn such that (4N− trr)v = 0 and we

may assume that the greatest common divisor of the components of v is 1. Then

there exists an element U ∈ SL(n,Z) whose n-th column is v. For this U , the last

column of tU(4N − trr)U is also zero. This means that the (n, n) component of
tU(4N − trr)U is zero. So C(tU(4N − trr)U) = 0 and hence C(4N − trr) = 0

for all N and r such that det(4N − trr) = 0. By definition, this means that f is a

cusp form. This proves (c).

Now we prove (d). For f ∈ J(k,j),1(ΓJ2 ) and τ = (τij) ∈ H2, z = (z1, z2) ∈ C2,

we have

ΦJ(f)(τ11, z1) =
∑
n,r∈Z

4n−r2≥0

C

(
4n− r2 0

0 0

)
e(nτ11)e(rz1).

In (2.3), we put U =
(
1 0
x 1

)
with x ∈ Z. Then

tU

(
4n− r2 0

0 0

)
U =

(
4n− r2 0

0 0

)
,

hence

Symj

(
1 x

0 1

)
C

(
4n− r2 0

0 0

)
= C

(
4n− r2 0

0 0

)
.

So, if we write C
(
4n−r2 0

0 0

)
=
∑j
i=0 ciu

j−i
1 ui2 ∈ C[u1, u2]j , then

j∑
i=0

ciu
j−i
1 ui2 =

j∑
i=0

ciu
j−i
1 (u1x+ u2)i

for any x ∈ Z. Comparing the coefficients of uj−l1 ul2 for l 6= j, we see that∑j
i=l

(
i
l

)
cix

i−l = cl. So taking x 6= 0, we see inductively that ci = 0 if i ≥ 1.

Hence we can write ΦJ(f) = φ(τ11, z1)uj1. It is clear that φ ∈ Jk+j,1(ΓJ1 ) since

ΦJ(f) inherits the automorphic property of f . If we write

φ(τ11, z1) =
∑
n,r

cφ(4n− r2)e(nτ11)e(rz1),

then this is a cusp form if and only if cφ(0) = 0, since it is of index one (see [3]).

If we denote by O2 the 2 × 2 zero matrix and apply (2.3) for O2 and U =
(
1 x
0 1

)
with 0 6= x ∈ Z, then since tUO2U = O2, we see that in the polynomial C(O2) in

u = (u1, u2), all the coefficients except that of uj2 should vanish. Since cφ(0) is the

coefficient of uj1 in C(O2), we have cφ(0) = 0 if j > 0. Hence φ(τ11, z) is a cusp

form if j > 0.
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Next we explain the theta expansion restricting to the case when n = 2 and

m = 1. For any ν ∈ (Z/2Z)2, we define

ϑν(τ, z) =
∑
p∈Z2

e

((
p+

ν

2

)
τ
t(
p+

ν

2

)
+ 2

(
p+

ν

2

)
tz

)
.

Then it is well known that for each f ∈ J(k,j),1(ΓJ2 ) there exist Vj-valued holomor-

phic functions cij(τ) (0 ≤ i, j ≤ 1) uniquely determined by f such that

(2.4) f(τ, z) =

c00(τ)ϑ00(τ, z) + c01(τ)ϑ01(τ, z) + c10(τ)ϑ10(τ, z) + c11(τ)ϑ11(τ, z).

We call this the theta expansion. On the other hand, write the Taylor expansion

of f along z = 0 as

f(τ, z) = f0(τ) + f20(τ)z21 + f11(τ)z1z2 + f02(τ)z22 +O(z4).

Here O(z4) means a series of z1, z2 such that the lowest total degree is not less

than 4. We note that the Taylor coefficients f0(τ) etc. are Vj-valued, so we often

write f0(τ) = f0(τ, u) and so on when we emphasize that f0 is a polynomial in

u = (u1, u2) with holomorphic coefficients.

Lemma 2.2. The linear mapping from f ∈ J(k,j),1(ΓJ2 ) to (f0, f20, f11, f02) (the

Taylor coefficients of f of degree up to two) is injective.

Proof. We prove this by showing that the coefficients cij(τ) of the theta expansion

(2.4) are uniquely determined by these Taylor coefficients. We set ϑν(τ) = ϑν(τ, 0).

We write ∂ij = 1
2πi

∂
∂τij

. Then we have the following well known relation:

1

(2πi)2
∂2ϑν
∂zi∂zj

∣∣∣∣
z=0

= 2(1 + δij)∂ijϑν(τ).

Hence if we write

(2.5) Θ(τ) =


ϑ00(τ) ϑ01(τ) ϑ10(τ) ϑ11(τ)

∂11ϑ00(τ) ∂11ϑ01(τ) ∂11ϑ10(τ) ∂11ϑ11(τ)

∂12ϑ00(τ) ∂12ϑ01(τ) ∂12ϑ10(τ) ∂12ϑ11(τ)

∂22ϑ00(τ) ∂22ϑ01(τ) ∂22ϑ10(τ) ∂22ϑ11(τ)

 ,

then using the theta expansion and the Taylor expansion, we obtain

(2.6) Θ(τ)


c00(τ)

c01(τ)

c10(τ)

c11(τ)

 =


f0(τ)

1
2(2πi)2 f20(τ)

1
2(2πi)2 f11(τ)

1
2(2πi)2 f02(τ)

 .
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As was shown in [10, p. 591], det(Θ(τ)) is the non-zero cusp form χ5 of weight 5

of Γ2 with sign character sgn : Sp(2,F2) ∼= S6 → S6/A6
∼= {±1} where S6 and A6

are the symmetric and alternating groups on six letters. So the solution of the

linear equation (2.6) is unique.

Our next task is to describe the image of this mapping. We will do this in the

following sections.

§3. A mapping to Siegel modular forms

We construct a certain mapping from Jacobi forms to Siegel modular forms using

the Taylor coefficients. In this section, we take the index m ≥ 1 arbitrary. Iden-

tifying the representation space of Symj with Vj = C[u1, u2]j , we write f(τ, z) ∈
J(k,j),m(ΓJ2 ) as f(τ, u, z) to emphasize that this is a polynomial in u. Then the

condition (2.1) of automorphy with respect to Γ2 can be written as

(3.1) f(γτ, u(cτ + d)−1, z(cτ + d)−1)

= det(cτ + d)kem(z(cτ + d)−1c tz)f(τ, u, z)

for any γ =
(
a b
c d

)
∈ Γ2. We write the Taylor expansion of f as in the last section.

By comparing the constant term of the Taylor expansion of both sides of (3.1), it

is clear that f0 = f0(τ, u) ∈ Ak,j(Γ2) and

f0(γτ, u(cτ + d)−1) = det(cτ + d)kf0(τ, u).

We would like to describe the coefficients f20, f11, f02 by Siegel modular forms.

For the sake of simplicity, we write

f2(τ, z, u) =
1

2(2πi)2
(
f20(τ, u)z21 + f11(τ, u)z1z2 + f02(τ, u)z22

)
.

Then f2 can be regarded as a Wj,2-valued holomorphic function where

Wj,2 = C[u1, u2]j ⊗ (Cz21 + Cz1z2 + Cz22),

which is identical to the space of polynomials in u = (u1, u2) and z = (z1, z2) of

degree j and of degree 2 respectively. We can define a natural action of GL(2,C)

on Wj,2 by P (u, z) 7→ P (uA, zA) for P ∈ Wj,2 and A ∈ GL(2,C). We assume

that j is even. If j = 0, the space W0,2 is isomorphic to Sym2 and irreducible.

When j ≥ 2, the action of GL(2,C) on Wj,2 is not irreducible, and the irreducible

decomposition is given by

Wj,2
∼= Symj+2⊕det Symj ⊕det2 Symj−2 .
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Assume for the moment that f0 = 0. Then comparing the degree two terms of the

Taylor expansion of (3.1) along z = 0, it is easy to see that

f2
(
gτ, u(cτ + d)−1, z(cτ + d)−1

)
= det(cτ + d)kf2(τ, u, z).

This means that f2 can be regarded as an element of Ak,j+2(Γ2) ⊕ Ak+1,j(Γ2) ⊕
Ak+2,j−2(Γ2) if f0 = 0. So it is natural to expect that f2 is close to an element of

Ak,j+2(Γ2)⊕Ak+1,j(Γ2)⊕Ak+2,j−2(Γ2) even when f0 6= 0. In fact, if we adjust f2
to ξ2 by means of some derivatives of f0, then we can really prove that ξ2 has the

desired property. We will see how to do the adjustment below.

First we prepare some notation. For any function h(x1, x2) of x = (x1, x2),

we define a column vector gradx(h) by

gradx(h) =
t( ∂h

∂x1
,
∂h

∂x2

)
.

We write u = (u1, u2) and z = (z1, z2). We fix any Vj-valued holomorphic function

F (τ, u) and write F (τ, u) =
∑j
i=0 φi(τ)uj−i1 ui2. For this fixed F , we write

(3.2) F1(τ, u, z) = z · gradu(F )

=

j∑
i=0

φi(τ)[(j − i)uj−i−11 ui2z1 + iuj−i1 ui−12 z2],

(3.3) F2(τ, u, z) = z · gradu(F1)

=

j∑
i=0

φi(τ)[(j − i)(j − i− 1)uj−2−i1 ui2z
2
1

+ 2i(j − i)uj−1−i1 ui−12 z1z2 + i(i− 1)zuj−i1 ui−22 z22 ],

where the dot · is the usual matrix multiplication.

Lemma 3.1. Assume that F = F (τ, u) ∈ Ak,j(Γ2). Then for l = 1, 2, and for

any γ =
(
a b
c d

)
∈ Γ2, we have

Fl(γτ, u(cτ + d)−1, z(cτ + d)−1) = det(cτ + d)kFl(τ, u, z).

Proof. We have F (γτ, u) = det(cτ + d)kF (τ, u(cτ + d)) by the assumption. It is

obvious that z · gradu(F (γτ, u)) = z · (graduF )(γτ, u) = F1(γτ, u, z). By the chain

rule, we can show that

z · gradu(F (τ, u(cτ + d))) = z(cτ + d)(graduF )(τ, u(cτ + d)),

which is equal to F1(τ, u(cτ +d), z(cτ +d)) by definition. This proves the assertion

for F1. Repeating the same calculation for F2, we have the result for F2.
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For later use, we give some formulas (for general n) on differential operators.

For general n, we write the components of τ ∈ Hn as τ = (τij)1≤i,j≤n. We write

∂

∂τ
=

(
1 + δij

2

∂

∂τij

)
1≤i,j≤n

and
∂f

∂τ
=

(
1 + δij

2

∂f

∂τij

)
1≤i,j≤n

,

where f is a holomorphic function f(τ) on Hn. For any complex vectors x =

(x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn independent of τ , we define the differential

operator ∂τ [x, y] by

∂τ [x, y] = x
∂

∂τ
ty =

∑
1≤i≤j≤n

xiyj + xjyi
2

· ∂

∂τij
.

Obviously we have ∂τ [x, y] = ∂τ [y, x].

Lemma 3.2. For x, y ∈ Cn, τ ∈ Hn, g =
(
a b
c d

)
∈ Sp(n,R) and a holomorphic

function f(τ) on Hn, we have

∂τ [x, y] det(cτ + d) = det(cτ + d)× x(cτ + d)−1c ty,(3.4)

∂τ [x, y](det(cτ + d)−k) = −k det(cτ + d)−kx(cτ + d)−1c ty,(3.5)

∂τ [x, y]((cτ + d)−1) = −(cτ + d)−1c
txy + tyx

2
(cτ + d)−1,(3.6)

∂τ [x, y](gτ) = t(cτ + d)−1
txy + tyx

2
(cτ + d)−1,(3.7)

∂τ [x, y](f(gτ)) = x(cτ + d)−1
(
∂f

∂τ
(gτ)

)
t(cτ + d)−1 ty.(3.8)

We omit the proof, since these can be easily proved by matrix calculations.

Now we come back to the case n = 2. For k 6= 1, we set

α1 =
1

2πi

(2− 4j + j2 − 4k + 3jk + 2k2)m

2(k − 1)(k + j)(2k + j − 2)
,

α2 =
1

2πi

−(j + k − 2)m

(k − 1)(k + j)(2k + j − 2)
,

α3 =
1

2πi

m

2(k − 1)(k + j)(2k + j − 2)
.

When k = 1, we set α1 = α2 = α3 = 0. We fix f ∈ J(k,j),m(ΓJ2 ) and for the

constant term f0 of f , we set F (τ, u) = f0(τ, u). We define

ξ2(τ, u, z) = f2(τ, u, z)− α1∂τ [z, z]F − α2∂τ [u, z]F1 − α3∂τ [u, u]F2.

Proposition 3.3. Notation being as above, for any γ =
(
a b
c d

)
∈ Γ2, we have

ξ2(γτ, u(cτ + d)−1, z(cτ + d)−1) = det(cτ + d)kξ2(τ, u, z).
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First we will show the following proposition.

Proposition 3.4. Defining F1 and F2 for any F = F (τ, u) ∈ Ak,j(Γ2) as before

by (3.2) and (3.3), we have

(3.9) (∂τ [z, z]F )(gτ, u(cτ + d)−1, z(cτ + d)−1)−det(cτ + d)k(∂τ [z, z]F )(τ, u, z)

= det(cτ + d)k[k(z(cτ + d)−1c tz)F (τ, u) + (u(cτ + d)−1c tz)F1(τ, u, z)],

(3.10) (∂τ [z, u]F1)(gτ, u(cτ+d)−1, z(cτ+d)−1)−det(cτ+d)k(∂τ [z, u]F1)(τ, u, z)

= det(cτ + d)k
[
j

2
(z(cτ + d)−1c tz)F (τ, u)

+

(
k +

j

2

)
(z(cτ + d)−1c tu)F1(τ, u, z) +

1

2
(u(cτ + d)−1c tu)F2(τ, u, z)

]
,

(3.11) (∂τ [u, u]F2)(gτ, u(cτ+d)−1, z(cτ+d)−1)−det(cτ+d)k(∂τ [u, u]F2)(τ, u, z)

= det(cτ + d)k[2(j − 1)(z(cτ + d)−1c tu)F1(τ, u, z)

+ (k + j − 2)(u(cτ + d)−1c tu)F2(τ, u, z)].

Proof. We consider a general function G(τ, u, z) which is holomorphic in τ and a

polynomial in u and z. We assume that

(3.12) G(gτ, u(cτ + d)−1, z(cτ + d)−1) = det(cτ + d)kG(τ, u, z).

We make operators ∂τ [x, y] for (x, y) = (z, z), (u, z) and (u, u) act on both sides

of (3.12). The action on RHS is given by

∂τ [x, y](det(cτ + d)k)G(τ, u, z) + det(cτ + d)k(∂τ [x, y]G)(τ, u, z)

= k det(cτ + d)k(x(cτ + d)−1c ty)G(τ, u, z) + det(cτ + d)k(∂τ [x, y]G)(τ, u, z).

Next we check the action on LHS. We write ∂τ [x, y]G as (∂τ [x, y]G)(τ, u, z, x, y)

for a moment since this depends on x and y. (Later we will set x, y to be z or u

but this does not matter.) By the formula (3.8), the action of ∂τ [x, y] on the gτ

part of LHS is given by

(∂τ [x, y]G)(gτ, u(cτ + d)−1, z(cτ + d)−1, x(cτ + d)−1, y(cτ + d)−1).

If we replace x or y by u or z, we can write this part for (x, y) = (z, z), (x, y) =

(u, z), (x, y) = (u, u) as

(∂τ [z, z]G)(gτ, u(cτ + d)−1, z(cτ + d)−1),

(∂τ [u, z]G)(gτ, u(cτ + d)−1, z(cτ + d)−1),

(∂τ [u, u]G)(gτ, u(cτ + d)−1, z(cτ + d)−1).
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Now we consider the action on the u part and the z part of LHS. By the chain

rule, the action on u(cτ + d)−1 is given by

u∂τ [x, y]((cτ + d)−1)(graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1).

By (3.6), this is equal to

− 1
2u(cτ + d)−1c(txy + tyx)(cτ + d)−1(graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1).

If (x, y) = (z, z), then this is equal to

−(u(cτ + d)−1c tz)(z(cτ + d)−1)(graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1)

= −(u(cτ + d)−1c tz)(z · graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1).

If (x, y) = (u, z), then this is equal to

− 1

2
(u(cτ + d)−1c tu)(z(cτ + d)−1)(graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1)

− 1

2
(u(cτ + d)c tz)(u(cτ + d)−1)(graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1)

= −1

2
(u(cτ + d)−1c tu)(z · graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1)

− 1

2
(u(cτ + d)c tz)(u · graduG)((gτ, u(cτ + d)−1, z(cτ + d)−1).

If (x, y) = (u, u), then this is equal to

−(u(cτ + d)−1c tu)(u(cτ + d)−1)(graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1)

= −(u(cτ + d)−1c tz)(u · graduG)(gτ, u(cτ + d)−1, z(cτ + d)−1).

In the same way, the action on the z(cτ+d)−1 part is given as follows. For (x, y) =

(z, z), we have

−(z(cτ + d)−1c tz)(z · gradzG)(gτ, u(cτ + d)−1, z(cτ + d)−1).

For (x, y) = (u, z), we have

−1

2
(z(cτ + d)−1c tz)(u · gradzG)(gτ, u(cτ + d)−1, z(cτ + d)−1)

− 1

2
(z(cτ + d)−1c tu)(z · gradzG)(gτ, u(cτ + d)−1, z(cτ + d)−1).

For (x, y) = (u, u), we have

−(z(cτ + d)−1c tu)(u · gradzG)(gτ, u(cτ + d)−1, z(cτ + d)−1).
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Now, by definition, z · (graduF ) = F1 and z · (graduF1) = F2. If P is any homoge-

neous polynomial of degree j in u and of degree l in z, then u · graduP = jP and

z · gradzP = lP as is well known. So if F = f0(τ, u) ∈ Ak,j(Γ2), then for l = 1, 2,

we have

u · graduFl = (j − l)Fl, z · gradzFl = lFl.

Moreover,

u · gradz(F2) = 2z1

(
u1
∂2F

∂u21
+ u2

∂2F

∂u1∂u2

)
+ 2z2

(
u1

∂2F

∂u1∂u2
+ u2

∂2F

∂u22

)
= 2(j − 1)

(
z1
∂F

∂u1
+ z2

∂F

∂u2

)
= 2(j − 1)F1.

By applying the formula for general G to the case G = F , F1 and F2 and using

the above relations and Lemma 3.1, Proposition 3.4 is now obvious.

Proof of Proposition 3.3. First we assume that k = 1. We see that A1,j(Γ2) = 0

for any j ≥ 0 since any Jacobi form of SL(2,Z) of weight 1 of any index is zero by

[17] and so the coefficient of uj2, and hence all coefficients of uj−i1 ui2 in elements of

A1,j(Γ2) are zero. Hence we need not adjust at all and f2 itself is automorphic.

Now assume that k ≥ 2. Since f(τ, u, z) ∈ J(k,j),m(ΓJ2 ), for any γ =
(
a b
c d

)
∈ Γ2

we have

f(γτ, u(cτ + d)−1, z(cτ + d)−1) = det(cτ + d)kem(z(cτ + d)−1c tz)f(τ, u, z).

Comparing the order two terms of the Taylor expansion of both sides along z = 0,

we have

2(2πi)2f2(γτ, u(cτ + d)−1, z(cτ + d)−1)

= (2πim)(z(cτ + d)−1c tz) det(cτ + d)kf0(τ, u) + 2(2πi)2 det(cτ + d)kf2(τ, u, z).

By Proposition 3.4, for F = f0 we see that

(3.13)

α1

(
(∂τ [z, z]F )(γτ, u(cτ + d)−1, z(cτ + d)−1)−det(cτ + d)k(∂τ [z, z]F )(τ, u, z)

)
+α2

(
(∂τ [u, z]F1)(γτ, u(cτ + d)−1, z(cτ + d)−1)− det(cτ + d)k(∂τ [u, z]F1)(τ, u, z)

)
+α3

(
(∂τ [u, u]F2)(γτ, u(cτ + d)−1, z(cτ + d)−1)−det(cτ + d)k(∂τ [u, u]F2)(τ, u, z)

)
= (2(2πi)2)−1(2πim)(z(cτ + d)−1c tz) det(cτ + d)kF (τ, u).

Hence we have the assertion.

Now to write ξ2(τ, u, z) more concretely using elements of Ak,j+2(Γ2) ⊕
Ak+1,j(Γ2) ⊕ Ak+2,j−2(Γ2), we give the irreducible decomposition of Vj,2 more
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concretely. In order to specify the basis of the decomposition, we note the fol-

lowing fact. Let P (u, z) be a polynomial in u = (u1, u2) and z = (z1, z2) and

A =
(
a11 a12
a21 a22

)
∈ GL(2,C). Set z · gradu(P (u, z)) = P1(u, z). Then we have

z · gradu[P (uA, zA)] = z1

(
∂P

∂u1
(uA, zA)a11 +

∂P

∂u2
(uA, zA)a12

)
+ z2

(
∂P

∂u1
(uA, zA)a21 +

∂P

∂u2
(uA, zA)a22

)
= (a11z1 + a21z2)

∂P

∂u1
(uA, zA) + (a12z1 + a22z2)

∂P

∂u2
(uA, zA)

= P1(uA, zA).

So assume that P (i)(u, z) is a basis over C of some representation space of GL(2,C)

by the action defined by P (i)(uA, zA). Then the space spanned by z ·gradu(P (i)) is

also invariant and the representation matrix of A with respect to P (i) is the same

as the one with respect to P
(i)
1 . For example, for the basis uj−i1 ui2 (0 ≤ i ≤ j) of

the representation Symj , we can take

(j − i)uj−i−11 ui2z1 + iuj−i1 ui−12 z2

(0 ≤ i ≤ j) as an equivalent basis. In the same way, for the basis uj+2−i
1 ui2 of the

representation space of Symj+2, we can take

(j+ 2− i)(j+ 1− i)uj−i1 ui2z
2
1 + 2(j+ 2− i)iuj+1−i

1 ui−12 z1z2 + i(i− 1)uj+2−i
1 ui−22 z22

as an equivalent basis by taking z · gradu twice. On the other hand, for P (u, z) =

(z1u2 − u1z2)l, we have P (uA, zA) = det(A)lP (u, z). For any element A(τ, u) =∑j+2
i=0 ai(τ)uj+2−i

1 ui2 ∈ Ak,j+2(Γ2) and B(τ, u) =
∑j
i=0 bi(τ)uj−i1 uj2 ∈ Ak+1,j(Γ2),

we write

(3.14) A(τ, u, z) =

j+2∑
i=0

[
(j + 2− i)(j + 1− i)uj−i1 ui2z

2
1

+ 2i(j + 2− i)uj+1−i
1 ui−12 z1z2 + i(i− 1)uj+2−i

1 ui−22 z22
]
ai(τ),

(3.15) B(τ, u, z) =

j∑
i=0

[juj−1−i1 ui2z1 + iuj−i1 ui−12 z2]bi(τ).

If we define ξ2 for any f ∈ J(k,j),m(Γ2) as before, we have

ξ2(τ, u, z) = A(τ, u, z) + (u1z2 − u2z1)B(τ, u, z) + (u1z2 − u2z1)2C(τ, u)

with A(τ, u)∈Ak,j+2(Γ2), B(τ, u)∈Ak+1,j(Γ2) and C(τ, u) =
∑j−2
i=0 ci(τ)uj−2−i1 ui2

∈ Ak+2,j−2(Γ2).
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Theorem 3.5. There exists a linear mapping from J(k,j),m(ΓJ2 ) to Ak,j(Γ2) ⊕
Ak,j+2(Γ2)⊕Ak+1,j(Γ2)⊕Ak,j−2(Γ2) defined by

f(τ, u, z) 7→ (f0(τ, u), A(τ, u), B(τ, u), C(τ, u))

where A(τ, u) ∈ Ak,j+2(Γ2), B(τ, u) ∈ Ak,j(Γ2), C(τ, u) ∈ Ak+2,j−2(Γ2) are

uniquely determined by the decomposition

ξ2(τ, u, z) = A(τ, u, z) + (u1z2 − u2z1)B(τ, u, z) + (u1z2 − u2z1)2C(τ, u).

If m = 1, then this mapping is injective, and in particular, f ∈ J(k,j),1(ΓJ2 ) is

a Jacobi cusp form if and only if its image under this mapping is in Sk,j(Γ2) ⊕
Sk,j+2(Γ2)⊕Ak+1,j(Γ2)⊕Ak+2,j−2(Γ2).

Proof. Only the claim on Jacobi cusp forms has not been proved yet. For f ∈
J(k,j),1(ΓJ2 ), we have ΦJ(f) ∈ Jk+j,1(ΓJ1 )uj1 and we know that Jk+j,1(ΓJ1 ) is deter-

mined by the Taylor coefficients up to degree two, as is shown in [3]. So we check

the coefficients of uj1 and uj1z
2
1 in ΦJ(f) . By definition, denoting by Φ the usual

Siegel Φ operator, the coefficient of uj1 in ΦJ(f) is Φ(f0), and that of uj1z
2
1 is

2(2πi)2
(
α1Φ

(
∂φ0
∂τ11

)
+ α2jΦ

(
∂φ0
∂τ11

)
+ α3j(j − 1)Φ

(
∂φ0
∂τ11

))
+ (j + 2)(j + 1)Φ(a0(τ)),

where we write f0 =
∑j
i=0 φi(τ)uj−i1 ui2 and A(τ, u) =

∑j+2
i=0 ai(τ)uj+2−i

1 ui2 as

before. If f is a cusp form, then Φ(f0) = 0, hence Φ(φ0) = 0 and this also means

that Φ
(
∂φ0

∂τ11

)
= 0. So we also have Φ(a0(τ)) = 0 and this means Φ(A(τ, u)) = 0

(see [1]). Conversely, if f0 ∈ Sk,j(Γ2) and A(τ, u) ∈ Sk,j+2(Γ2), then Φ(f0) = 0 (so

Φ
(
∂φ0

∂τ11

)
= 0), and Φ(a0(τ)) = 0, so ΦJ(f) = 0. So f is a cusp form.

§4. Characterization of the image

In this section, we assume that the index of the Jacobi forms we consider is always

one. For any function h(τ) on H2, we define the Witt operator W by

(Wh)(τ11, τ22) = h

(
τ11 0

0 τ22

)
.

We first consider some necessary condition on the Taylor coefficients of f ∈
J(k,j),1(ΓJ2 ). Notation being as before. we always have

W (f11) = 0.
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The reason is as follows. The Taylor coefficients satisfy the linear equation (2.6).

We see directly from the definition that for any ν ∈ (Z/2Z)2, ϑν(τ) is an even

function with respect to τ12. (Indeed, if we write ν = (ν1, ν2) and p = (p1, p2) in the

definition of ϑν(τ) = ϑν(τ, 0), the change of τ12 to −τ12 is equivalent to changing

p1+ν1/2 to p′1+ν1/2 with p′1 = −(p1+ν1).) This means that W (∂12ϑν(τ)) = 0, so

the third row of Θ(τ) is all zero under W . On RHS, this means that W (f11) = 0.

We see that this condition is also sufficient for the existence of f ∈ J(k,j),1(ΓJ2 ) for

a given set (f0, f20, f11, f02). When j = 0, this is explained already in [10], so here

we assume that j ≥ 2. The more precise statement is as follows.

We assume j ≥ 2. We take f0(τ, z) ∈ Ak,j(Γ2), A(τ, u) ∈ Ak,j+2(Γ2),B(τ, u) ∈
Ak+1,j(Γ2), C(τ, u) ∈ Ak+2,j−2(Γ2). Sometimes we also write F = f0 and for

this F , we define F1, F2 by (3.2), (3.3) (we use F to avoid the slightly confusing

notation (f0)1, (f0)2). We also define A(τ, u, z) and B(τ, u, z) by (3.14), (3.15).

We set

ξ2(τ, u, z) = A(τ, u, z) + (u1z2 − u2z1)B(τ, u, z) + (u1z2 − u2z1)2C(τ, u),(4.1)

f2(τ, u, z) = ξ2(τ, u, z) + α1(∂τ [z, z]F )(τ, u, z)(4.2)

+ α2(∂τ [u, z]F1)(τ, u, z) + α3(∂τ [u, u]F2)(τ, u, z).

Then f2 is a polynomial in z of degree two and we write it as

(4.3) f2(τ, u, z) =
1

2(2πi)2
(f20(τ, u)z21 + f11(τ, u)z1z2 + f02(τ, u)z22).

Theorem 4.1. Notation being as above, the functions (f0, f20, f11, f02) are the

Taylor coefficients of some f(τ, u, z) ∈ J(k,j),1(ΓJ2 ) such that

f(τ, u, z) = f0(τ, u) + 2(2πi)2f2(τ, u, z) +O(z4)

if and only if W (f11) = 0.

Proof. We have already seen the “only if” part, so we prove the converse. For

the given functions f0, f20, f11, f02 in the theorem, we define cij(τ) = cij(τ, u)

(0 ≤ i, j ≤ 1) as the unique solution of (2.6) and define

f(τ, u, z) =
∑

ν∈(Z/2Z)2
cν(τ, u)ϑν(τ, z).

This is an even function of z since ϑν(τ, z) are so. We will show that f(τ, u, z)

is the Jacobi form we want. By definition, the functions cν(τ) are meromorphic,

but we must show that they are holomorphic. First we show that the cν(τ) are

holomorphic on the standard fundamental domain F of Γ2 in H2. Let Θ(τ) be

as in (2.5) and denote by Bij the (i, j)-cofactor of Θ(τ), i.e. (−1)i+j times the
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determinant of the 3 × 3 matrix obtained by deleting the i-th row and the j-th

column of Θ(τ). Then W (Bij) = 0 if i 6= 3 since the third row of W (Θ(τ)) is zero.

Then by the assumption that W (f11) = 0, we have

W

(
B1if0 +

1

2(2πi)2
(B2if20 +B3if11 +B4if02)

)
=
W (B3i)W (f11)

2(2πi)2
= 0.

So every component of the vector obtained by the cofactor matrix of Θ(τ) times
t(f0, f20/2(2πi)2, f11/2(2πi)2, f02/2(2πi)2) is zero under W , and hence each cij(τ)

is obtained by dividing the function which vanishes underW by det(Θ(τ)) = χ5(τ).

But it is known that on the fundamental domain F , χ5 has a zero at τ12 = 0 of

order one and no other zeros (see [5]). Hence the cν(τ) are holomorphic on F and

f(τ, u, z) is holomorphic on F × C2.

Now we show that f(τ, u, z) satisfies conditions (2.1) and (2.2) of automorphy.

Since ϑν(τ, z) satisfies (2.2), and since (2.2) is a property of a function of z, the

function f(τ, u, z) also satisfies (2.2). Next we check (2.1). For γ =
(
a b
c d

)
∈ Γ2, we

consider the Taylor expansion along z = 0 of

f |(k,j),1[γ] = det(cτ + d)−ke(−z(cτ + d)−1c tz)f(γτ, u(cτ + d)−1, z(cτ + d)−1).

Since f = f0 + 2(2πi)2f2(τ, u, z) +O(z4), we have

f |(k,j),1[γ] = e(−z(cτ + d)−1c tz)(f0|(k,j)[γ])

+2(2πi)2e(−z(cτ+d)−1c tz) det(cτ+d)−kf2(γτ, u(cτ+d)−1, z(cτ+d)−1)+O(z4).

The constant term of this expansion is

f0|(k,j)[γ] = f0.

The order two part of f |(k,j),1[γ] is given by

−(2πi)(z(cτ + d)−1c tz)f0(τ, u)

+ 2(2πi)2 det(cτ + d)−kf2(γτ, u(cτ + d)−1, z(cτ + d)−1).

For any polynomial h(τ, u, z) in u and z with coefficients holomorphic in τ , we

write

(h|k[γ])(τ, u, z) = det(cτ + d)−kh(γτ, u(cτ + d)−1, z(cτ + d)−1).

Then, writing F = f0, we have

f2|k[γ] = ξ2|k[γ] + α1(∂τ [z, z]F )|k[γ] + α2(∂τ [u, z]F1)|k[γ] + α3(∂τ [u, u]F2)|k[γ].
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By (3.13) and the definition of ξ2, this is equal to

ξ2 + α1(∂τ [z, z]F1) + α2(∂[u, z]F2) + α3(∂τ [u, u]F2) +
1

2(2πi)
(z(cτ + d)−1c tz)F

= f2(τ, u, z) +
1

2(2πi)
(z(cτ + d)−1c tz)f0(τ, u),

and hence

(4.4) 2(2πi)2f2|k[γ]− (2πi)(z(cτ + d)−1c tz)f0(τ, u) = 2(2πi)2f2(τ, u, z).

This means that the Taylor expansion of f |(k,j),1[γ] up to order two is

f0(τ, u) + 2(2πi)2f2(τ, u, z).

That is, up to order two, the Taylor expansion of f(τ, u, z) is the same as that of

(f |(k,j),1)[γ]. Now, we fix a branch of det(cτ + d)1/2 and for any function h(τ, z)

and any odd l ∈ Z, we define

h|l/2[γ] = e(−z(cτ + d)−1c tz)(det(cτ + d)1/2)−lh(γτ, z(cτ + d)−1).

It is well known that for any γ ∈ Γ2 there exists a matrix R(γ) ∈ GL(4, (C)

depending on γ and the choice of the branch such that
(ϑ00|1/2[γ])(τ, z)

(ϑ01|1/2[γ])(τ, z)

(ϑ10|1/2[γ])(τ, z)

(ϑ11|1/2[γ])(τ, z)

 = R(γ)


ϑ00(τ, z)

ϑ01(τ, z)

ϑ10(τ, z)

ϑ11(τ, z)


(for example, see [10, pp. 588–589]). So we have

f |(k,j),1[γ] =
∑

ν∈(Z/2Z)2
cγν(τ, u)ϑν(τ, z)

for some meromorphic function cγν(τ, u). Since the cγν(τ, u) are determined only by

the Taylor coefficients of f |(k,j),1[γ] up to degree two and since these coefficients

are equal to those of f , cγν(τ, u) = cν(τ, u) and hence f |(k,j),1[γ] = f . For any

τ ∈ H2, take γ ∈ Γ2 such that γτ ∈ F . Then since

f(τ, u, z) = e(−z(cτ + d)−1c tz) det(cτ + d)−kf(γτ, u(cτ + d)−1, z(cτ + d)−1),

f is holomorphic on the whole space of (τ, z) ∈ H2 × C2. So f ∈ J(k,j),1(ΓJ2 ).
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§5. Dimension formulas

§5.1. The image of the mapping and dimensions

Now, we consider the general case. We must see what the condition W (f11) = 0

exactly means in terms of Siegel modular forms. For given forms

f0(τ, u) = F (τ, u) =

j∑
i=0

φi(τ)uj−i1 ui2 ∈ Ak,j(Γ2),

A(τ, u) =

j+2∑
i=0

ai(τ)uj+2−i
1 ui1 ∈ Ak,j+2(Γ2),

B(τ, u) =

j∑
i=0

bi(τ)uj−i1 ui2 ∈ Ak+1,j(Γ2),

C(τ, u) =

j−2∑
i=0

ci(τ)uj−2−i1 ui2 ∈ Ak+2,j−2(Γ2),

we define ξ2 by (4.1), f2 by (4.2) and f11 by (4.3) as before. Then the coefficient

in z1z2 of ξ2 is given by

(5.1)

j∑
i=0

[2(i+ 1)(j + 1− i)ai+1(τ) + (j − 2i)bi(τ)− 2ci−1(τ)]uj−i1 u2,

where we set c−1(τ) = cj−1(τ) = 0. The coefficient of z1z2 in ∂τ [z, z]F is

(5.2)

j∑
i=0

∂φi
∂τ12

uj−i1 ui2,

that in ∂τ [u, z]F1 is

(5.3)

j∑
i=0

uj−i1 ui2

[
j

2

∂φi
∂τ12

+ (i+ 1)
∂φi+1

∂τ11
+ (j + 1− i)∂φi−1

∂τ22

]
,

where we set φ−1 = φj+1 = 0, and that in ∂τ [u, u]F2 is

(5.4)

j∑
i=0

[
2(i+ 1)(j− i− 1)

∂φi+1

∂τ11
+ 2i(j− i) ∂φi

∂τ12
+ 2(i− 1)(j− i+ 1)

∂φi−1
∂τ22

]
.

To write down f11 briefly, we prepare some notation. For 0 ≤ i ≤ j, we define

h∗i (τ) = α1
∂φi
∂τ12

+ α2

(
j

2

∂φi
∂τ12

+ (i+ 1)
∂φi+1

∂τ11
+ (j + 1− i)∂φi−1

τ22

)
+ α3

(
2(i+ 1)(j − i− 1)

∂φi
∂τ11

+ 2i(j − i) ∂φi
∂τ12

+ 2(j − i)(j − i+ 1)
∂φi−1
∂τ22

)
,
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or more concretely

h∗i (τ) = (k + i− 1)(k + j − i− 1)
∂φi
∂τ12

(5.5)

− (k + i− 1)(i+ 1)
∂φi+1

∂τ11
− (j − i+ 1)(k + j − i− 1)

∂φi−1
∂τ22

.

If we write the coefficient of z1z2 in f2 as

(5.6)
1

2(2πi)2
f11(τ, u) =

j∑
i=0

hi(τ)uj−i1 ui2,

then by definition,

(5.7) hi(τ) = h∗i (τ) + 2(i+ 1)(j + 1− i)ai+1(τ) + (j − 2i)bi(τ)− 2ci−1(τ).

In order to see the image W (f11) or W (hi) more concretely, we review the prop-

erties of the Witt operator on vector valued Siegel modular forms Ak,j(Γ2) and

also on f11. First we define the candidate for the image space of W as in [14]. The

function h(τ11, τ22) on H1×H1 which is an elliptic modular form of weight k1 with

respect to τ11 and of weight k2 with respect to τ22 is identified with an element in

Ak1(Γ1)⊗Ak2(Γ1). We will understand such tensor spaces in this sense. For even

k ≥ 4 we denote by Ek the Eisenstein series of Γ1 of weight k and we set Ek = 0

for any other k. For even j ≥ 2, define

Vk,j =
{ j∑
i=0

hi(τ11, τ22)uj−i1 ui2; hi(τ11, τ22) ∈ Sk+j−i(Γ1)⊗ Sk+i(Γ1),

hi(τ22, τ11) = (−1)khj−i(τ11, τ22) (i = 0, . . . , j)
}
,

Ek,j = {h(τ11)Ek(τ22)uj1 + Ek(τ11)h(τ22)uj2; h(τ) ∈ Sk+j(Γ1)},
Ṽk,j = Vk,j + Ek,j .

When j = 0, we define

Ṽk,0 = {h(τ11, τ22) ∈ Ak(Γ1)⊗Ak(Γ1); h(τ11, τ22) = h(τ22, τ11)},

that is, the space of symmetric tensors of Ak(Γ1), and define Vk,0 to be the subspace

consisting of the symmetric tensors of cusp forms. For F =
∑∞
i=0 φi(τ)uj−i1 ui2 ∈

Ak,j(Γ2), we have W (F ) ∈ Ṽk,j , and F is a cusp form if and only if W (F ) ∈
Vk,j (see [1] and [14]). More concretely, the elements W (φi) have the following

properties for j ≥ 2:

W (φ0)(τ11, τ22) = (−1)kW (φj)(τ22, τ11) ∈ Sk+j(Γ1)⊗Ak(Γ1),

W (φi) ∈ Sk+j−i(Γ1)⊗ Sk+i(Γ1) (1 ≤ i ≤ j − 1),

W (φj−i)(τ22, τ11) = (−1)kW (φi)(τ11, τ22) (0 ≤ i ≤ j).
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For F ∈ Ak,j(Γ2), we have F ∈ Sk,j(Γ2) if and only if W (φ0) ∈ Sk+j(Γ1)×Sk(Γ1).

Since there is no elliptic modular form of odd weight, we have W (φi) = 0 if k + i

is odd. Moreover, we can see by the action of

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
that φi(τ) is an even

(resp. odd) function of τ12 if i+ k is even (resp. odd). So if i ≡ k mod 2, then

W

(
∂φi
∂τ12

)
= 0,

and if i ≡ k + 1 mod 2, then

W

(
∂φi
∂τ11

)
= W

(
∂φi
∂τ22

)
= 0.

We quote the following theorem which is later applied to obtain the dimension of

J(k,j),1(ΓJ2 ).

Theorem 5.1 ([14]). For any integer k ≥ 10 and any even integer j ≥ 0, we have

W (Ak,j(Γ2)) = Ṽk,j and W (Sk,j(Γ2)) = Vk,j .

We can also see that W (f11) or W (hi) has a similar property, as is shown in

the following lemma, though f11 itself is not a Siegel modular form in general.

Lemma 5.2. We have

W (hi)(τ11, τ22) ∈ Ak+1+j−i(Γ1)×Ak+1+i(Γ1) for i = 0, . . . , j,

W (hi)(τ22, τ11) = (−1)kW (hj−i)(τ11, τ22).

Proof. For γi =
(
ai bi
ci di

)
∈ Γ1 (i = 1, 2), the action of the element

ι(γ1, γ2) =


a1 0 b1 0

0 a2 0 b2
c1 0 d1 0

0 c2 0 d2

 ∈ Γ2

on
((

τ11 0
0 τ22

)
, u, z

)
yields((

γ1(τ11) 0

0 γ2(τ22)

)
, ((ciτii + di)

−1zi)i=1,2, ((ciτii + di)
−1ui)i=1,2

)
.

So z1z2 is mapped to (c1τ11 + d1)−1(c2τ22 + d2)−1z1z2. We apply (4.4) for

γ = ι(γ1, γ2). Then the term z(cτ + d)−1c tz becomes c1(c1τ11 + d1)−1z21 +

c2(c2τ22 +d2)−1z22 and does not contain the term z1z2. Comparing the coefficients

of z1z2 in f2|k[ι(γ1, γ2)] and f2, we have

(Wf11)((γ1τ11, γ2τ22), ((ciτii + di)
−1ui)i=1,2)

= (c1τ11 + d1)k+1(c2τ22 + d2)k+1(Wf11)(τ11, τ22, u).
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So W (hi) is modular of weight k+ 1 + j − i for τ11 and of weight k+ 1 + i for τ22.

In the same way, if we make the element

γ =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


act on f2, then the term z(cτ + d)−1c tz in (4.4) is zero since c = 0 for this γ. So

we have

f2

((
τ22 τ12
τ12 τ11

)
, (u2, u1), (z2, z1)

)
= (−1)kf2(τ, (u1, u2), (z1, z2)).

Comparing the coefficients of z1z2, we obtain the assertion for (Whi)(τ22, τ11).

Now, we can also show that W (h∗i ) ∈ Ak+1+j−i(Γ1) ⊗ Ak+1+i(Γ1). It is not

difficult to show this directly from the definition using the automorphy of f0(τ, u).

But here we have an alternative indirect proof since we have already shown that

W (ai+1), W (bi), W (ci−1), W (hi) belong to Ak+1+j−i(Γ1) ⊗ Ak+1+i(Γ1) and by

definition h∗i is a linear combination of these forms. We note that the Fourier

expansion of W
(
∂φi

∂τ12

)
is divisible by e(τ11)e(τ22). Indeed, if we write the Fourier

expansion of φi as φi(τ) =
∑
N∈L∗

2
c(N)e(tr(Nτ)), then

∂φi
∂τ12

= 2πi
∑
N∈L∗

2

n12c(N)e(tr(Nτ))

where n12 is the (1, 2) component of each N . The terms with n12 = 0 vanish,

and if n12 6= 0, then since N is positive semidefinite, both diagonal components

of N must be positive. So W
(
∂φi

∂τ12

)
is divisible by e(τ11)e(τ22). It is obvious that

W
(
∂φi

∂τ11

)
and W

(
∂φi

∂τ22

)
are divisible by e(τ11)e(τ22) for 1 ≤ i ≤ j−1 since W (φi) are

in the tensor product of cusp form spaces for these i . The same is true for W
(
∂φ0

∂τ22

)
and W

( ∂φj

∂τ11

)
if j ≥ 2, since for example, we have φ0 ∈ Sk+1+j(Γ1)⊗Ak+1(Γ1), and

∂φ0

∂τ22
means that we are taking derivatives of its component in Ak+1(Γ1). These

arguments do not work for W
(
∂φ0

∂τ11

)
and W

( ∂φj

∂τ22

)
, but in h∗i (τ), no such term

appears. Hence, as a whole, W (h∗i (τ)) belongs to tensor products of cusp form

spaces if j ≥ 2.

Theorem 5.3. Assume that j is even and j ≥ 2. When k is even with k ≥ 8, we

have

dim J(k,j),1(ΓJ2 ) = dimAk,j(Γ2) + dimAk,j+2(Γ2) + dimAk+1,j(Γ2)

+ dimAk+2,j−2(Γ2)− dim Ṽk+2,j−2.

When k is odd with k ≥ 9, we have
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dim J(k,j),1(ΓJ2 )

= dimAk,j(Γ2) + dimAk,j+2(Γ2) + dimAk+1,j(Γ2) + dimAk+2,j−2(Γ2)

− dimVk+2,j−2 − dimSk+1+j(Γ1)× dimAk+1(Γ1).

Proof. For f0(τ, u) =
∑j
i=0 φi(τ)uj−i1 ui2 ∈ Ak,j(Γ2), we define h∗i by (5.5). Since

W
(
∂φi

∂τ11

)
(τ11, τ22) = (−1)kW

(∂φj−i

∂τ22

)
(τ22, τ11), we see directly from the definition

that (Wh∗i )(τ22, τ11) = (−1)k(Wh∗j−i)(τ11, τ22). First we assume that k is even.

Notation being as before, for 0 ≤ i ≤ j and for fixed f0 and

A(τ, u) =

j+2∑
i=0

ai(τ)uj+2−i
1 ui2 ∈ Ak,j+2(Γ2),

B(τ, u) =

j∑
i=0

bi(τ)uj+1−i
1 ui2 ∈ Ak+1,j(Γ2),

we set
h′i(τ) = h∗i (τ) + 2(i+ 1)(j + 1− i)ai+1(τ) + (j − 2i)bi(τ).

For a choice of C(τ, u) =
∑j−2
i=0 ci(τ)uj−2−i1 ui2 ∈ Ak+2,j−2(Γ2), we have hi(τ) =

h′i(τ)− 2ci−1(τ) by definition with c−1 = cj−1 = 0. We will show that there exists

C(τ, u) ∈ Ak+2,j−2(Γ2) such that W (hi) = 0 for all i with 0 ≤ i ≤ j. We show

that W (h′0) = W (h′j) = 0 for any choice of f0, A and B. Since k is even, W (a1)

and W (b0) are in tensor products of modular form spaces of odd weights so we

have W (a1) = W (b0) = 0. We also have W
(
∂φ0

∂τ12

)
= W

(
∂φ1

∂τ11

)
= 0, so W (h′0) = 0.

Hence also W (h′j) = 0. Thus W (h′i) ∈ Sk+1+j−i(Γ1) ⊗ Sk+1+i(Γ1) for any i with

0 ≤ i ≤ j. In the definition of h′i, the coefficient (i+ 1)(j+ 1− i) is unchanged and

(j−2i) becomes −(j−2i) if we replace i by j− i. Since W (aj+2−(i+1))(τ22, τ11) =

(−1)kW (ai+1)(τ11, τ22) and W (bj−i)(τ22, τ11) = (−1)k+1W (bi)(τ11, τ22), we have

W (h′i)(τ22, τ11) = (−1)kW (h′j−i)(τ11, τ22). Since (−1)k = (−1)k+2, W (h′0) =

W (h′j) = 0, and W (h′i+1)(τ22, τ11) = (−1)kW (h′j−1−i)(τ11, τ22), we have

j∑
i=0

W (h′i)u
j−i
1 ui2 =

j−2∑
i=0

W (h′i+1)uj−1−i1 ui+1
2 ∈ u1u2Vk+2,j−2.

By Theorem 5.1, we have W (Ak+2,j−2(Γ2))u1u2 = u1u2Vk+2,j−2 if k ≥ 8, and

in this case there exists an element C(τ, u) ∈ Ak+2,j−2(Γ2) such that W (h′i) =

2W (ci−1) for all i with 1 ≤ i ≤ j − 1. If we define hi and f11 for these choices,

then we have W (f11) = 0. The choice of such C is up to the kernel of W . But for

k ≥ 8, by Theorem 5.1 we have

dim Ker(W |Ak+2,j−2(Γ2)) = dimAk+2,j−2(Γ2)− dim Ṽk+2,j−2

= dimSk+2,j−2(Γ2)− dimVk+2,j−2.
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So we have the assertion of the theorem. (Actually the form C chosen above should

be a cusp form, but this does not matter because of the last equality above.)

Next we assume that k is odd. By our assumption k ≥ 9, we note that

W (Ak+1,j(Γ2)) = Ṽk+1,j and W (Ak+2,j−2(Γ2)) = Ṽk+2,j−2. Now fix arbitrary

f0(τ, u) ∈ Ak,j(Γ2) and A(τ, u) ∈ Ak,j+2(Γ2). We define h∗i for f0 by (5.5). In

this case, W (h∗0) and W (a1) are not zero in general. But there exists B(τ, u) ∈
Ak+1,j(Γ2) such that W (h∗0 + 2(j + 1)a1(τ) + jb0(τ)) = 0. Such a B is given up to

the subspace of Ak+1,j(Γ2) of dimension

dimAk+1,j(Γ2)− dimSk+1+j(Γ1)× dimAk+1(Γ1).

(Note that actually, b0 so chosen satisfies W (b0) ∈ Sk+1+j(Γ1) × Sk+1(Γ1), but

this does not matter as before since the image of W (Ak+1,j(Γ2)) by W itself

contains Sk+1+j(Γ1) × Ak+1(Γ1) and we are subtracting this.) Now, after fixing

f0, A and B as above, we can choose C(τ, u) ∈ Ak+2,j−2(Γ2) such that W (hi) = 0

for 1 ≤ i ≤ j − 1. Such a C is determined up to a subspace of dimension

dimAk+2,j−2(Γ2)− dim Ṽk+2,j−2.

Here since k is odd, we have Ṽk+2,j−2 = Vk+2,j−2. So the whole dimension is

dim J(k,j),1(ΓJ2 ) = dimAk,j(Γ2) + dimAk,j+2(Γ2) + dimAk+1,j(Γ2)

− dimSk+1+j(Γ1)× dimAk+1(Γ2) + dimAk+2,j−2(Γ2)− dimVk+2,j−2.

This proves the theorem.

Remark 5.4. Although the coefficient of uj1 in Ṽk+1,j is in Sk+1+j(Γ1)×Ak+1(Γ2),

dim Ṽk+1,j and dimVk+2,j−2 + dimSk+1+j(Γ1)× dimAk+1(Γ2) are different. The

reason is that the parity of k is different, so the conditions determining W (bj/2)

and W (cj/2−1) in Sk+1+j/2(Γ1) × Sk+1+j/2(Γ1) are different. Since (−1)k+1 = 1

and (−1)k+2 = −1 if k is odd, the former is symmetric and the latter is alternating.

So we have

(5.8) dimVk+2,j−2 + dimSk+1+j(Γ1)× dimAk+1(Γ1)

= dim Ṽk+1,j − dimSk+1+j/2(Γ1).

Remark 5.5. When j = 0, the dimension formula has already been known for

any k (see [19], [10]). We have

(5.9) dimJ(k,0),1(ΓJ2 ) = dimAk(Γ2)+dimAk,2(Γ2)−

{
0 if k is even,

dimVk,2 if k is odd.
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We note that if k is odd, then Ak(Γ2) = Sk(Γ2), Ak,2(Γ2) = Sk,2(Γ2) and dimVk,2
= dimSk+1(Γ1)(dimSk+1(Γ1) − 1)/2. Now apparently the formula for the scalar

valued case j = 0 is very different from the formula for j > 0. But the formula

for dimAk,j(Γ2) is given by a sum of contributions of various conjugacy classes of

Γ2 in the Selberg trace formula, each of which is a polynomial function of k and j

on the set {(k, j); (k, j) ≡ (a1, a2) mod 12} for any fixed (a1, a2). So we can define

dimAk+2,−2(Γ2) by replacing k by k + 2 and j by −2 formally in this formula. If

we do so, then in this sense we can show that

dimAk+1,0(Γ2) + dimAk+2,−2(Γ2) = 0.

More precisely, we have a formula dimAk,j(Γ2) =
∑12
i=1Hi(k, j) +

∑10
l=1 Il(k, j),

where Hi(k, j) is the contribution of semisimple conjugacy classes and Il(k, j) is

that of non-semisimple conjugacy classes for a fixed principal polynomial for each

i and l (see [18], [21], or [13]). Then by direct calculation, we see Hi(k + 1, 0) +

Hi(k + 2,−2) = Il(k + 1, 0) + Il(k + 2,−2) = 0 for all i, l with 1 ≤ i ≤ 12,

1 ≤ l ≤ 10.

§5.2. Generating functions of the dimensions

Now we will calculate the dimensions more explicitly. Since it seems that the

dimension formula for k < 3 might be very different in nature, we only consider

the case k ≥ 3. The case j = 0 is known. Writing J(k,0),1(ΓJ2 ) = Jk,1(ΓJ2 ), the

generating function of the dimensions is given by

∞∑
k=1

Jk,1(ΓJ2 )tk =
t4 + t6 + t10 + t12 + t21 + t27 + t29 + t35

(1− t4)(1− t6)(1− t10)(1− t12)

(see [19] and [10, p. 596]). For j ≥ 2, we have the following theorem. We denote by

dk,j the coefficient of tksj in the infinite series expansion of the following rational

function fjacobi(t, s) of t and s along t = s = 0:

(5.10) fjacobi(t, s) =
feven(t, s)+fodd(t, s)

(1− t4)(1− t6)2(1− t10)(1−s4)(1−s6)(1−s10)(1−s12)
,

where feven(t, s) and fodd(t, s) will be given below.

Then we have

Theorem 5.6. (1) Assume that k ≥ 8 and j ≥ 2. Then

dim Jcusp
(k,j),1(ΓJ2 ) = dk,j .

(2) For j = 2, 4 and 6, this is true for all k > 0.
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Here we set

feven(t, s) = t4(t4 + t6 + t8 + t10 +2t12 + t14 + t16− t20− t22)s2

+ t4(t4 +2t6 +3t8 +3t10 +2t12 + t14− t18− t20)s4

+ t4(t4 +3t6 +4t8 +2t10− t14−2t16− t18 + t20 + t22)s6

+ t4(t2 + t4 +2t6 + t8 + t10− t12−2t14−3t16− t18 + t20 + t22 + t24)s8

+ t4(t2 + t4 + t6− t12−2t14−2t16−2t18 + t22 + t24)s10

+ t4(t2 +2t4 +2t6− t8−4t10−4t12−2t14−2t16− t18 + t20 +2t22)s12

+ t4(t2 + t4−3t8−6t10−7t12−5t14−3t16 + t18 +3t20 +2t22)s14

+ t4(t2 + t4−2t6−5t8−6t10−6t12−5t14− t16 +3t18 +2t20)s16

+ t4(1+ t2−4t6−5t8−3t10− t12 +2t16 + t18− t20− t22)s18

+ t4(1+ t2−2t6−2t8−2t10 + t14 +3t16 +2t18− t22− t24)s20

+ t4(−t10− t12 + t16 +2t18 + t20)s22

+ t4(1− t4−2t6 +2t10 +2t12 + t14 +2t16 +2t18− t22)s24

+ t4(1− t4− t6 + t8 +3t10 +3t12 +3t14 +2t16− t20)s26

+ t4(t6 + t8 + t10 +2t12 +2t14− t18 + t20 + t22)s28

+ t4(−1+ t4 +2t6− t10− t12− t14− t16 + t18 +2t20 + t22)s30

+ t4(−t6− t8− t10− t12 + t16 + t18)s32,

fodd(t, s) = t3(t10 +2t12 + t14 + t18 + t20)s2

+ t3(t6 + t8 +2t10 +2t12 +2t14 + t16 + t18)s4

+ t3(t4 +2t6 +2t8 + t10 + t12 +2t14 + t16− t18− t20)s6

+ t3(t4 +3t6 +3t8 + t10− t12− t14− t16−2t18− t20)s8

+ t3(t4 +2t6 +3t8 + t10− t12−3t14−2t16−2t18− t20)s10

+ t3(t2 +2t4 + t6 + t8−2t12−4t14−4t16−2t18 + t22)s12

+ t3(t2 +2t4 + t6−3t10−5t12−5t14−4t16−4t18− t20 + t22 + t24)s14

+ t3(t2 + t4−2t8−4t10−5t12−5t14−4t16−3t18 + t22 +2t24)s16

+ t3(t2− t6−3t8−3t10−4t12−5t14−2t16 +2t18 +3t20 + t22 + t24)s18

+ t3(t2 + t4− t6−4t8−4t10−2t12− t14 +4t18 +4t20 +2t22)s20

+ t3(−2t8−2t10− t12 + t14 + t18 +2t20 +2t22 + t24)s22

+ t3(−2t8−2t10 +2t14 +3t16 +3t18 +2t20)s24

+ t3(−t8 + t12 +2t14 +3t16 +4t18 +2t20− t24)s26

+ t3(t8 + t10 + t12 + t14 +2t16 +2t18 + t20− t24)s28

+ t3(t8 + t10 + t12 + t14− t18− t20)s30

+ t3(1− t4−2t6 + t10 + t12 + t14 + t16− t18−2t20− t22)s32.
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We will prove Theorem 5.6 in the rest of this section, based on Theorem 5.3

and (5.8). We assume that j ≥ 2 and even, and k ≥ 3. For this calculation, we

use the already known formulas for dimAk,j(Γ2) ([18]) and formulas for dimVk,j
derived from classical formulas. We prove everything by using generating functions,

since this is more appealing for future use than just comparing formulas term by

term. To change the known formulas to generating functions is a routine but a

tedious work. We explain some part of the calculations below.

First we start from generating functions related to elliptic modular forms, such

as Vk,j . Note that the coefficient of (u1u2)j/2 in elements of Vk,j is a symmetric

tensor if k is even and an alternating tensor if k is odd. Also the coefficient of ui1u
j−i
2

is determined by the coefficient of uj−i1 ui2. So we have the following formula for

even j ≥ 2. When k is even and j ≥ 4, we have

dimVk+2,j−2 =
1

2

j−2∑
i=0

dimSk+j−i(Γ1)× dimSk+2+i(Γ1) +
1

2
dimSk+1+j/2(Γ1),

dim Ṽk+2,j−2 = dimVk+2,j−2 + dimSk+j(Γ1).

When k is odd, we have

dimVk+1,j =
1

2

j∑
i=0

dimSk+1+j−i(Γ1)× dimSk+1+i(Γ1) +
1

2
dimSk+1+j/2(Γ1),

dim Ṽk+1,j = dimVk+1,j + dimSk+1+j(Γ1).

For even k ≥ 0, we have

dimSk(Γ1) =
k − 1

12
+

1

4
(−1)k/2 +

1

3
[1, 0,−1; 3]k −

1

2
+ δk2,

where δk2 is the Kronecker delta and [i0, i1, i2; 3]k means iν if k ≡ ν mod 3. So,

the generating functions of dimensions of Ṽk,j can be in principle calculated from

this formula for j ≥ 2. On the other hand, if j = 0, then it is well known that

∞∑
k=0

Ṽk,0t
k =

1

(1− t4)(1− t6)(1− t12)
,

so for k ≥ 4, we have

∞∑
k≥4

dim Ṽk,0t
k =

t4 + t6 − t10 + t12 − t16 − t18 + t22

(1− t4)(1− t6)(1− t12)
.

Then the really necessary formula for even k ≥ 4 with j ≥ 2 is
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(5.11)
∑

k≥4, k: even, j≥2

dim(Ṽk+2,j−2)tksj

=
fwitteven(t, s)

(1− t4)(1− t6)(1− t12)(1− s2)(1− s6)(1− s8)(1− s12)
.

where

fwitteven = t4(1 + t2 + t6− t8− t12− t14 + t20)s2

+ t4(−1− t2 + t4− t6 + t8 + t10 + 2t12 + t14− t16− t20)s4

+ t4(t2 + t6− t10− t12 + t16)s6 + t4(−2t2− t4− t6 + 2t8 + t10 + t12 + t14− t20)s8

+ t4(−1 + 2t2 + t4− 2t8− t10− t14 + t20)s10 + t4(2− t2− 2t4 + t8− 2t12 + t16)s12

+ t4(−1 + t4− t6− t8 + t12− t16)s14

+ t4(1 + t2 + t6− t8− t10− 2t12− t14 + t20)s16

+ t4(−t2− t6 + t10 + t12− t16)s18 + t4(−1 + 2t2 + t4 + t6− t8− t10− t14)s20

+ t4(2− t2− t4− t6 + t8 + t10− t12 + t18)s22

+ t4(−2 + t4 + t6 + 2t12 + t14− t18− t20)s24

+ t4(1− t4− t6 + t8− t12 + t16 + t18)s26 + t4(−1− t2 + t6 + t12 + t14− t18)s28

+ t4(1 + t2− t6− t8− t12− t14 + t18 + t20)s30.

To calculate the necessary quantities for odd k, we have for example∑
k≥3, k: odd
j≥2, j: even

dimSk+1+j/2(Γ1)tksj =
fmid(t, s)

(1− t4)(1− t6)(1− s8)(1− s12)
,

where

fmid(t, s) = t9s4 + t7s8 + (t5 − t9)s12 + (t3 − t7 − t9)s16 − t11s20.

Then we have∑
k≥3, k: odd
j≥2, j: even

(dim Ṽk+1,j − dimSk+1+j/2(Γ1))tksj

=
fwittodd(t, s)

(1− t4)(1− t6)(1− t12)(1− s2)(1− s6)(1− s8)(1− s12)
,

where we set

fwittodd(t, s) = t3(t6 + t12 + t14− t18)s2 + t3(t4− t6 + t8− t12− t14 + 2t18)s4

+ t3(t2− t4 + t10 + t12− t18)s6 + t3(1− t2− t10− 2t12 + t16 + t18)s8

+ t3(−1 + t2− t8 + t10 + t12− t14− t16− t18)s10

+ t3(1− t2− t10− t12 + t14)s12
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+ t3(−1 + t4− t8− t14− t16)s14 + t3(t2− t4 + t12− t18)s16

+ t3(−t2 + t4− t10− t12 + t18)s18 + t3(t2− t4 + t10 + t12− t18)s20

+ t3(1− t2 + t8− t10− t12 + t14 + t16 + t18)s22

+ t3(−1 + t2 + t4− t8 + t10 + t12− t14− t16 + t20)s24

+ t3(1− t4− t6 + t8− t12 + t16 + t18)s26− t11s28.

Finally we give the generating function of dimAk,j(Γ2) for k ≥ 3. This is based

on the formula for dimSk,j(Γ2) for k ≥ 5 in [18] by Tsushima. I was informed that

the same formula was proved for k = 4 by C. Faber and for k = 3 by D. Petersen.

We have Ak,j(Γ2) = Sk,j(Γ2) for odd k. For even k, by using the surjectivity of

the Siegel Φ operator in [1], [16] for k ≥ 6 and in [14] for k = 4, we can calculate

the difference from Ak,j(Γ2). For j ≥ 2, it is dimSk+j(Γ1) and for j = 0 it is

dimAk(Γ1). Considering all these, we have the following formula:

(5.12)

∞∑
k=3

∞∑
j=0

dimAk,j(Γ2)tksj

=
fevensiegel(t, s) + foddsiegel(t, s)

(1− t4)(1− t6)(1− t10)(1− t12)(1− s6)(1− s8)(1− s10)(1− s12)
,

where

foddsiegel(t, s) = t35 + (t21 + t23 + t27 + t29− t33)s2 + (t15 + t17 + t19 + t21 + t23)s4

+ (t11 + t13 + t15 + t17 + t19 + t21 + t23− t35)s6

+ (t9 + t11 + t13 + 2t15 + 2t17 + t19− t21− t27− t29 + t33− t35)s8

+ (t9 + t11 + t13 + 2t15 + 2t17 + t19− t21− t23−2t27−2t29 + t33− t35)s10

+ (t7 + 2t9 + 2t11 + t13− t19−3t21−3t23− t27− t29 + t33− t35)s12

+ (t7 + t9 + t11 + t13− t17−2t19−3t21−4t23− t25−2t27− t29 + t33 + t35)s14

+ (t7 + t9 + t11 + t13−2t15−3t17−4t19−3t21−4t23−2t25 + t29 + t31 + t35)s16

+ (t5 + t7− t11− t13−3t15−4t17−3t19−2t21−2t23− t25 + t27 + t29 + 2t35)s18

+ (t5 + t7− t9− t11− t13−3t15−5t17−4t19− t25 + 2t27 + 3t29 + t31− t33 + t35)s20

+ (−t11−2t13−2t15−2t17−2t19− t21 + t23 + 2t27 + 2t29 + t31 + t35)s22

+ (t5− t9−2t11−2t13− t15−2t17− t19 + 2t21 + 4t23

+ t25 + 2t27 + 2t29 + t31− t33− t35)s24

+ (−t11− t13 + t21 + 3t23 + t25 + t27 + t29 + t31− t35)s26

+ (−t11− t13 + t15 + t17 + t19 + t21 + 3t23 + 2t25− t35)s28

+ (t15 + t17 + t19 + t21 + t23 + t25− t35)s30 + (t17 + 2t19 + t21 + t25− t29− t31)s32

+ (t11 + t13− t23)s34 + (t3− t7− t9− t15 + t17 + 2t19 + t21− t23− t29− t31 + t35)s36
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and

fevensiegel(t, s)

= 1 + (t10 + t14 + 2t16 + t18− t20− t26− t28 + t32)s2 + (t8 + t10 + t12 + t14 + t16)s4

+ (−1 + t6 + t8 + t10 + t12 + t14 + t16 + t18)s6

+ (−1 + t4 + t8 + t10 + 2t12− t16 + t20 + t26 + t28− t32)s8

+ (−1 + t6 + t12 + t14− t16 + 2t20− t24 + t28− t32)s10

+ (−1 + t4 + t6− t10 + t12− t14− 3t16− 2t18 + t20 + t26 + t28− t32)s12

+ (1− t8− t10− t12− t14− 2t16− t18− t22− t24)s14

+ (1− t10− 2t12− 2t14− t16− 2t18− 3t20− t22− t28 + t32)s16

+ (2− t4− t6− 2t12− 2t18− 4t20− 2t22− t24− 2t26− t28 + t30 + 2t32)s18

+ (1− t4 + t8 + t10− 2t12− t14 + t16− 2t18− 5t20− 2t22− t26− t28 + t30 + 2t32)s20

+ (1− t4− t6 + t8 + t10 + t14 + 2t16− t18− 4t20

− 2t22− t24− 2t26− t28 + t30 + 2t32 + t34)s22

+ (−1 + t6 + t8 + t10− t18− t20 + t28 + t30)s24

+ (−1 + t8 + t10 + 2t12− t22 + t26 + t28 + t34)s26

+ (−1 + t4 + t6− t8 + t12− 2t16 + t18 + 3t20 + t22 + t26 + 2t28− t32)s28

+ (−1 + t4 + t12− t14− t16 + 2t20 + t22 + t24 + 2t26 + t28− t32)s30

+ (t4 + t6− t8− 2t10− t12− 2t16 + 3t20 + 3t22 + t24 + t26 + t28− t32− t34)s32

+ (−t14 + t24 + t26)s34 + (1− t10− 2t12 + 2t22 + t24− t34)s36.

Proof of Theorem 5.6. By using the generating functions given above, the gener-

ating function for dim J(k,j),1(ΓJ2 ) is obtained for k ≥ 8 for any j ≥ 2 by Theorem

5.3. If k is odd, then Jcusp
(k,j),1(ΓJ2 ) = J(k,j),1(ΓJ2 ). If k is even and k ≥ 6 and j ≥ 2,

then

(5.13) dim Jcusp
(k,j),1(ΓJ2 ) = dim J(k,j),1(Γ2)− dim Jcusp

k+j,1(Γ1).

Here

(5.14)

∞∑
k≥2, j≥2
k, j: even

dim Jcusp
k+j,1(ΓJ1 )tksj =

t8s2 + (t6 − t8)s4 + (t4 − t6)s6 − t10s8

(1− t2)(1− t6)(1− s2)(1− s6)
.

By using this, we obtain the generating function of dim Jcusp
(k,j),1(ΓJ2 ). Assertion (2)

for small j will be proved in Proposition 5.10 in the next section.

Remark 5.7. Of course we can give the generating function of dim J(k,j),1(ΓJ2 ) ,

including non-cusp forms, as explained above. But we omit it here, since the result
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is lengthy and the only necessary calculation is to add (5.14) to the generating

function for cusp forms, which everyone can do.

Remark 5.8. The above value dk,j coincides with Tsushima’s conjecture in [20]

on dimensions for all k ≥ 3 and j ≥ 2, so we proved his conjecture for k ≥ 8 for

index one. His conjecture includes the case of any indices and also the case of skew

holomorphic Jacobi forms. We do not know the module structures in such cases

in general, but see [10] for the case m = 2, j = 0.

Finally we recall the relation between Jacobi forms of index one and Siegel

modular forms of half-integral weight. Let χ be the character Γ
(2)
0 (4) given

by
( −4
det(D)

)
or the trivial character. Let A+

k−1/2,j(Γ
(2)
0 (4), χ) be the plus sub-

space of Ak−1/2,j(Γ
(2)
0 (4), χ) (see for example [9] or [12] for the definition). Let

S+
k−1/2,j(Γ

(2)
0 (4), χ) be the subspace of cusp forms. Since we know that

J(k,j),1(ΓJ2 ) ∼=

{
A+
k−1/2,j(Γ

(2)
0 (4)) if k is even,

A+
k−1/2,j(Γ

(2)
0 (4), ψ) if k is odd,

(5.15)

Jcusp
(k,j),1(ΓJ2 ) ∼=

{
S+
k−1/2,j(Γ

(2)
0 (4)) if k is even,

S+
k−1/2,j(Γ

(2)
0 (4), ψ) if k is odd,

we have the following corollary.

Corollary 5.9. For arbitrary even j ≥ 0, the dimensions of A+
k−1/2,j(Γ

(2)
0 (4)) and

S+
k−1/2,j(Γ

(2)
0 (4)) for even k and of A+

k−1/2,j(Γ
(2)
0 (4), ψ) and S+

k−1/2,j(Γ
(2)
0 (4), ψ)

for odd k are given explicitly by Theorem 5.6 and (5.13) for k ≥ 8.

§5.3. Remarks on small j

When j = 2, j = 4 or j = 6, we have dim J(k,j),1(ΓJ2 ) = dk,j also for all k with

k ≤ 7.

Proposition 5.10. The dimension of Jk,j(Γ
J
2 ) for each k ≤ 7 and j ≤ 6 is given

in the following table:

j\k 0 1 2 3 4 5 6 7

2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1 0

6 0 0 0 0 1 0 1 1

and this coincides with dk,j defined in Theorem 5.6.
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Proof. We have the following table of dimensions:

k 0 1 2 3 4 5 6 7 8 9

dimAk 0 0 0 0 1 0 1 0 1 0

dimAk,2 0 0 0 0 0 0 0 0 0 0

dimAk,4 0 0 0 0 0 0 0 0 1 0

dimAk,6 0 0 0 0 0 0 1 0 1 0

dimAk,8 0 0 0 0 1 0 0 0 2 1

(see [11] for small k). If we set

a[k, j] = dimAk,j(Γ2) + dimAk,j+2(Γ2) + dimAk+1,j(Γ2) + dimAk+2,j−2(Γ2),

then among (k, j) with k ≤ 7 and j ≤ 6, only the following cases are non-zero:

a[2, 2] = 1, a[4, 2] = 1, a[6, 2] = 1, a[6, 4] = 1, a[7, 4] = 1, a[4, 6] = 1, a[5, 6] = 1,

a[6, 6] = 2, a[7, 6] = 1. For j = 2, the dimension 1 comes from Ak+2,0(Γ2) in the

Taylor expansion for k = 2, 4, 6. This is the “C” part of ξ2 in the Taylor expansion

and we need W (C) = 0. But no image of the Eisenstein series of weight 4, 6, 8

under the Witt operator vanishes, so we have no corresponding Jacobi forms.

For (k, j) = (6, 4), if we take A(τ, u) =
∑6
i=0 ai(τ)u6−i1 ui2 ∈ A6,6(Γ2), we have

W (a2) ∈ S10(Γ1)⊕ S8(Γ1) = 0, so the condition is satisfied and dimJ6,4(ΓJ2 ) = 1.

For (k, j) = (7, 4), we have A8,4(Γ2) 6= 0. This is an Eisenstein series of Klingen

type and its image under the Witt operator does not vanish, so J7,4(ΓJ2 ) = 0.

For (k, j) = (4, 6), A4,8(Γ2) 6= 0. By checking the weight S4+6−i(Γ1) ⊗ S4+i(Γ1),

the Witt operator vanishes for every coefficient of u8−i1 ui2 with i 6= 0, 8, so the

vanishing condition is satisfied and we have dim J4,6(ΓJ2 ) = 1. For (k, j) = (5, 6),

A6,6(Γ2) 6= 0. This is its Klingen-type Eisenstein series and its image under W

does not vanish, so J5,6(Γ2) = 0. For (k, j) = (6, 6), we have dimA6,6(Γ2) = 1 and

dimA8,4(Γ2) = 1. It is easy to see that the Witt map on A8,4(Γ2) is surjective with

kernel is zero. Hence, adjusting the Witt image coming from A6,6(Γ2) by A8,4(Γ2),

we have dim J6,6(ΓJ2 ) = 1. For (k, j) = (7, 6), the Taylor coefficient comes from

A8,6(Γ2). The image of the Witt operator is zero because V8,6 = 0. So there exists

a Jacobi form.

For the readers’ convenience, we write down the generating functions for j = 2

explicitly below. The other cases can be also easily read off from the general

generating function (5.10).

∞∑
k=1

dim J(k,2),1(ΓJ2 )tk =
2t8 + 2t10 + t12 + t16

(1− t4)(1− t6)2(1− t10)
+
t13 + 2t15 + t17 + t21 + t23

(1− t4)(1− t6)2(1− t10)
,
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∞∑
k=2: even

dim Jcusp
(k,2),1(ΓJ2 )tk =

t8 + t10 + t12 + t14 + 2t16 + t18 + t20− t24− t26

(1− t4)(1− t6)2(1− t10)
.

Note that if k is odd, then any Jacobi form is a cusp form, so we need not

give the dimensions of cusp forms separately. Several explicit examples of Jacobi

forms in J(k,2),1(ΓJ2 ) have been given in [12].

Finally we give the numerical tables of dimensions for several small k and j.

Table 1. dim J(k,j),1(ΓJ2 ). (The values for k ≤ 7 are conjectural for j ≥ 8.)

j\k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 1 0 1 0 1 0 3 0 3 0 4 0 7 0 7 0 9 1

2 0 0 0 0 0 2 0 2 0 3 1 6 2 8 2 10 4 16 7

4 0 0 0 1 0 2 1 3 1 6 3 9 5 12 7 18 11 24 16

6 0 1 0 1 1 3 2 6 3 9 6 13 10 20 14 26 20 35 28

8 0 1 0 2 1 5 4 8 5 12 10 20 16 27 21 36 31 50 43

10 0 1 0 3 2 6 5 10 8 17 14 25 22 35 30 48 43 64 58

12 0 2 1 4 4 9 8 16 13 23 22 34 32 49 44 64 60 84 80

14 0 2 1 5 5 12 11 19 17 29 28 44 42 60 56 79 77 106 102

16 0 2 2 7 7 15 15 24 23 38 37 55 54 74 73 100 98 130 128

18 0 4 3 9 10 19 20 32 31 47 48 68 69 94 92 122 123 158 159

20 0 4 4 12 13 24 26 39 39 58 60 84 86 113 113 147 150 191 194

32 1 12 18 37 46 71 82 111 121 160 175 221 238 290 306 370 391 465 489

Table 2. dim Jcusp
(k,j),1(ΓJ2 ). (The values for k ≤ 6 are conjectural for j ≥ 8.) For odd

k we have dim Jcusp
(k,j),1(ΓJ2 ) = dim J(k,j),1(ΓJ2 ).

j\k 4 6 8 10 12 14 16 18 20

0 0 0 0 1 1 2 4 4 6

2 0 0 1 1 2 4 6 8 13

4 0 0 1 2 4 7 10 15 21

6 0 0 2 4 7 11 17 23 32

8 0 1 3 6 10 17 24 33 46

10 0 1 4 8 14 22 32 44 60

j\k 4 6 8 10 12 14 16 18 20

12 0 2 7 13 20 31 45 60 80

14 0 3 9 16 26 40 56 75 101

16 0 4 12 21 34 51 70 95 125

18 1 6 16 28 43 64 89 117 153

20 1 9 20 35 54 79 108 142 185

32 7 32 65 105 154 214 283 363 457
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