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Abstract

We construct geometrically compactified moduli spaces of Kähler–Einstein Fano mani-
folds.
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§1. Introduction

In this paper, we construct compactified moduli algebraic spaces of Fano manifolds

which have Kähler–Einstein metrics or equivalently (thanks to [CDS], [Tia2], com-

bined with [Ber], [Mab1], [Mab2]) are K-polystable, partially solving the (precise)

conjecture in [OSS] formulated by C. Spotti, S. Sun and the present author. The

K-stability was originally introduced by G. Tian [Tia1] and formulated in a purely

algebraic way by S. Donaldson [Don0]. Brief explanations of the definition and the

statement of the recent theorem on equivalence with existence of Kähler–Einstein

metrics are given at the beginning of Section 2 and Subsection 3.2.

Roughly speaking, the main result of this paper is:

Theorem 1.1 (Algebro-geometric statement, over C). For any positive inte-

ger n, there is a “canonical” algebraic compactification M̄ of the moduli space M of

K-polystable smooth Fano manifolds of dimension n, whose boundary parametrises

K-polystable (Kawamata-log-terminal Q-Gorenstein smoothable) Q-Fano varieties

of the same dimension.
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More precisely, the compactification M̄ is an algebraic space in the sense

of Artin [Art]. For more details, see (Section 2 and) Theorem 2.3. We further

expect the compactification to be a projective scheme, following the idea of Fujiki–

Schumacher [FS]. See the precise formulation in [OSS, Subsections 3.4, 6.2] or our

Section 2 (which follows [OSS]).

The corresponding complex differential-geometric (roughest) restatement of

Theorem 1.1 is the following.

Theorem 1.2 (Differential-geometric restatement). The Gromov–Hausdorff com-

pactification of the moduli space of Kähler–Einstein (smooth) Fano manifolds has

a structure of compact Hausdorff Moishezon analytic space.

This compactification statement extends that of the explicit 2-dimensional

case in [OSS], which was previously proved in the case of complete intersection of

two quadric 3-folds (i.e. degree 4 del Pezzo surfaces) in the old work of Mabuchi–

Mukai [MM] much before the introduction of K-stability.

This contrasts with the “canonically polarised” case (i.e. of ample canonical

class), an idea which (for dimensions higher than 1) goes back to Shepherd-Barron

[SB]. This case was systematically studied by Kollár–Shepherd-Barron [KSB] for

surfaces, extended by Alexeev to higher dimensions [Ale], and now being accom-

plished with technical details (a book by Professor Kollár [Kol] with all the details

is expected to appear). In honor of the main contributors to the construction, that

theory is often named Kollár–Shepherd-Barron–Alexeev, or briefly “KSBA”.

The novelty in our case is that all the varieties parametrised are normal (even

Kawamata-log-terminal), hence irreducible, while KSBA degenerations are usually

non-normal, as even the simplest case of stable curve [DM] can have up to 3g − 3

components.

However, those two moduli compactifications can be seen from a unified point

of view, as examples of moduli of K-(semi)stable varieties, since the semi-log-

canonical varieties of ample canonical class are also K-stable by [Od1] (“K-moduli”,

cf. e.g. [Od0, Section 5], [Spo, Chapter 1]). Inspired by the breakthroughs [DS] and

[Spo], in [OSS, Conjecture 6.2], a precise formulation of the K-moduli conjecture

for Fano varieties case is worked out, and we will quickly review a part of this in

the next section.

A key technical result may be of independent interest. Namely, we will estab-

lish the following deformation picture. The (easier) half of the following statement

is proved in [OSS], and the rest essentially depends on [LWX1], [SSY], which in

turn use the idea of Donaldson’s continuity method [CDS], [Tia2]. Our statement

is as follows, but we again leave the detailed statement to Theorem 3.2.
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Theorem 1.3. If a Kähler–Einstein Q-Fano variety X is Q-Gorenstein smooth-

able, then in a local Q-Gorenstein (Kuranishi) deformation space of X, which we

denote by Def(X), the existence of a Kähler–Einstein metric on the correspond-

ing Q-Fano variety is equivalent to the GIT polystability of the Aut(X)-action

on Def(X).

As already mentioned, we have already proved in [OSS, Lemma 3.6] that the

classical GIT polystability of points corresponds to Kähler–Einstein Q-Fano vari-

eties, which is the easier half of Theorem 1.3. This extends the picture of [Tia1],

[Don1] for the commonly studied “Mukai-Umemura 3-fold” case, and the general

result by Székelyhidi [Sze] which depends on the infinite-dimensional implicit func-

tion theorem. Our proof essentially depends on the recent developments for one-

parameter deformations in [LWX1] and [SSY]. We expect that the Q-Gorenstein

smoothability condition is unnecessary but we do not know how to argue in that

generality, using current technologies. See also the list of related questions for

future research in the final section.

Actually many of the main technical ingredients of the proof are already

present in previous papers [DS], [Spo], [Od2], [OSS] and recent [SSY], [LWX1],

and this paper does not claim elaboration of essentially new ideas.

§2. Precise formulation of K-moduli

In this section, we give a precise formulation of K-moduli. First, recall that the

K-stability of a Q-Fano variety X is, roughly speaking, defined as positivity of

all the Donaldson–Futaki invariants (a variant of the GIT weight) associated to

every one-parameter isotrivial degeneration of X. We will be more precise later in

Subsection 3.2. The recent developments show the following.

Theorem 2.1 ([CDS], [Tia2] for smooth X, [SSY] for singular X). For any

Q-Gorenstein smoothable klt Q-Fano variety X, the existence of a Kähler–Einstein

metric is equivalent to the K-polystability of X.

For the definition of Kähler–Einstein metrics on singular klt (Kawamata-log-

terminal) Q-Fano varieties, we refer to [Ber] or [SSY] for instance.

Now we explain our precise statement of the K-moduli existence, partially

recalling [OSS]. The details on the local deformation picture will only be given in

the final section (Theorem 3.2).

For partial self-containedness and convenience of the readers, we recall the

notion of KE moduli stack, introduced for algebraically oriented people. We also

note that in [OSS], the notion of KE analytic moduli spaces (for analytic oriented
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people) was introduced as well. For the general theory of algebraic stacks, we refer

to textbooks such as [LM].

For those who are not familiar with the stack language, we note that an

algebraic stack (appearing here) is more or less an algebraic scheme (such as Hilbert

scheme, Chow variety) attached with “glueing data” which identifies points on the

scheme which “parametrise the same objects”. Artin stack is the most general

category of algebraic stack, allowing “non-discrete automorphism groups” of the

parametrised objects, while Deligne–Mumford stack is, roughly speaking, for those

objects with only discrete automorphism groups. The point of introducing the

stack language here is, more or less, to make the statement most precise with the

information on flat families of Fano varieties (in connection with Kähler–Einstein

metrics).

Definition 2.2 ([OSS, Definition 3.13]). A moduli algebraic (Artin) stack M̄ of

a Q-Gorenstein family of Q-Fano varieties is called a KE moduli stack if:

(i) There is a categorical moduli algebraic space M̄ .

(ii) There is an étale covering {[Ui/Gi]i} of M̄ where Ui is an affine algebraic

scheme and Gi is some reductive algebraic group, on which there is some

Gi-equivariant Q-Gorenstein flat family of Q-Fano varieties.

(iii) Closed Gi-orbits in Ui parametrise Q-Gorenstein smoothable Kähler–Einstein

Q-Fano varieties via the families of (ii), and via the canonical map ϕi : Ui →
M̄ , each such orbit maps to a closed point of M̄ and every closed point of M̄

can be obtained in this manner for some i.

We call the coarse algebraic space M̄ of (i) a KE moduli space. If it is an algebraic

variety, we also call it a KE moduli variety.

Recall that M̄ being the coarse moduli algebraic space of the Artin stack M̄
means that there is a morphism M̄ → M̄ and it is universal among the morphisms

from M̄ to algebraic spaces. In our case, thanks to conditions (ii) and (iii), M̄ is

also set-theoretically “nice”, i.e. bijectively corrsponds to Kähler–Einstein Q-Fano

varieties.

For the definition of more differential-geometric “KE analytic moduli space”,

we refer to [OSS, Definitions 3.14, 3.15] since we do not use this notion in this

paper and moreover it naturally follows from our construction that M̄ satisfies the

defining conditions of this notion.

In this paper, we prove Conjecture 6.2 of [OSS] in the Q-Gorenstein smooth-

able case, i.e. we compactify the moduli of smooth Fano manifolds.
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Theorem 2.3 (Refined statement of existence of K-moduli). Fix the dimension

of Q-Fano varieties under study to be n. There is a KE moduli stack M̄GH, in the

sense of [OSS]. In particular, M̄GH has a coarse moduli algebraic space M̄ as a

proper separated algebraic space, and M̄GH is good in the sense of Alper [Alp].

Then from the Gromov–Hausdorff compactification MGH (in the sense of [DS],

[OSS]), which is a priori just a compact Hausdorff metric space, there is a hom-

eomorphism
Φ: M̄GH → M̄

such that [X] and Φ([X]) parametrise isomorphic Q-Fano varieties for any

[X] ∈ M̄GH.

We remark that the above “Gromov–Hausdorff” is in the refined sense, that

is, with respect to complex (algebraic) structures as defined and explained in [DS],

[SSY] etc.

§3. Proof of the main theorems

§3.1. Affine étale slice in the Hilbert scheme

We begin the proof of our Main Theorem 2.3, which will be completed at the end

of Subsection 3.3. In the current subsection, we construct an affine slice around

[X] inside an appropriate Hilbert scheme, where X is the Q-Fano variety under

study. In the next subsection, using that slice, we formulate and prove the local

deformation picture of Kähler–Einstein metrics.

We fix the dimension n of the Fano varieties under study, and consider a finite

disjoint union of components of the Hilbert scheme, which we denote by Hilb,

which includes all smooth Kähler–Einstein Fano manifolds of dimension n and

their Gromov–Hausdorff limits. Such finite type Hilb exists thanks to the recent

breakthrough result by Donaldson–Sun [DS] and the “classical” boundedness result

by Kollár–Miyaoka–Mori [KMM]. In [DS], it is even proved that we can assume

that both the Kähler–Einstein Fano manifolds and their Gromov–Hausdorff limits

are all m-pluri-anticanonically embedded inside PN with some uniform exponent

m and N = h0(−mKX) − 1. We work in this setting so that our construction a

priori depends on m but we expect it does not (see Remark 3.5).

We define HilbKE to be the set which parametrises all m-pluri-anticanonically

embedded Kähler–Einstein Q-Fano varieties. Obviously HilbKE is an SL(N + 1)-

invariant (equivalently, PGL(N+1)-invariant) subset of Hilb but note that it does

not have a scheme structure in general. In fact, as we will show in Subsection

3.3 without using the results of this subsection, HilbKE is a constructible subset

in Hilb. So from now on, we replace Hilb by the Zariski closure of HilbKE so that
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we can assume that HilbKE is dense inside Hilb. From now on, we work inside this

replaced Hilb.

Take any point [X] ∈ HilbKE. From [CDS, III, Theorem 4], an extension of

Matsushima’s theorem [Mat], we know that the automorphism group Aut(X) is a

reductive algebraic group. Note that Aut(X) is the isotropy (stabiliser) subgroup

of the natural PGL-action on Hilb. Thus the isotropy subgroup of the SL-action

on Hilb, which we denote by Ãut(X), is a central extension of Aut(X) by µN+1,

the finite group of (N + 1)-th roots of unity isomorphic to Z/(N + 1)Z which acts

trivially on Hilb. The reason why we think also the SL-action and not only the

PGL-action is sometimes needed is to make the action available at the level of the

vector space H0(X,−mKX), i.e. the cone over the projective space PN .

Also let us recall that Hilb ⊂ P∗(V ) with some SL-representation V from the

construction of the Hilbert scheme by Grothendieck. (Here P∗ denotes covariant

projectivisation unlike in Grothendieck’s notation.) Noting that [X] corresponds

to an Ãut(X)-invariant one-dimensional vector space Cv ⊂ V , we can decompose

Ãut(X)’s linear representation as V = Cv⊕V ′ where V ′ is also Ãut(X)-invariant.

(We are grateful to Jarod Alper for the clarification of this.) It is possible since

we know Ãut(X) is reductive. Then we can take an Aut(X)-invariant open subset

U[X] as Hilb\P∗(V ′). It is also affine since P∗(V ′) is an ample divisor of the original

projective space P∗(V ).

Note that this open neighborhood U[X] of [X] is only Aut(X)-invariant (or

equivalently Ãut(X)-invariant), but not necessarily SL-invariant. However, the

affineness of U[X] enables us to apply the following techniques of taking étale slice

mainly due to [Luna] (also known as Luna’s “étale slice theorem”, cf. [Dre, 5.3]). We

include a short outline of the proof for the readers’ convenience, partially because

we slightly extend the original theorem of [Luna]; basically, the argument below

is from the nice exposition [Dre] of Luna’s theory [Luna]. First we can easily con-

struct a closed immersion of U[X] into an Aut(X)-acted smooth affine space Ũ[X]

(cf. e.g. [Dre, Lemma 5.2]) with the same embedded dimension of [X] ∈ U[X]. Then

to prove an étale slice theorem of [Luna] (cf., e.g., [Dre, Lemma 5.1]), it is shown

that there is an Aut(X)-equivariant affine regular map ϕ : Ũ[X] → (T[X]U[X]) which

is étale at [X]. This again depends on the reductiveness of Aut(X). We use this

equivariant map as follows.

We decompose the Aut(X)-representation T[X]U[X] as T[X](SL(N + 1)[X] ∩
U[X])⊕N with some Aut(X)-invariant vector subspace N . Then we define V[X] :=

ϕ−1N ∩ U[X] ⊂ U[X], which is an Aut(X)-invariant locally closed affine subset of

Hilb including [X]. Then V[X] ⊂ U[X] is an étale slice in the sense of [Luna, Dre],

in particular [V[X]/Aut(X)] → [U[X]/PGL] is an étale morphism (between two

quotient stacks). We omit more details and the rest of the proof of this known fact

since it follows easily from the proof of [Dre, Theorem 5.3] or [AK, Subsection 2.2].
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§3.2. K-stability via the CM line bundle

Before proceeding, we briefly recall the fundamental relation between K-stability

and the CM line bundle ([FS, PT]), which we regard as a definition of K-stability

in this paper.

The CM line bundle, in our setting, is a certain SL-equivariant line bundle

λCM on Hilb ([FS], [PT], [FR]). As the actual construction is a little complicated

and we do not need it in this paper, we omit the details and refer to [FR].

In our setting, for a given positive integer parameter m, the K(m)-stability of

Q-Fano varieties means the following (as in [Od2], just following [Don0]).

Definition 3.1. As in the previous subsection, suppose that a (klt) Q-Fano va-

riety X is such that −mKX is a very ample line bundle (m ∈ Z>0). Then the

Q-Fano variety X (more precisely, (X,−KX)) is said to be K(m)-stable if for any

non-trivial one-parameter subgroup f : C∗ → SL(H0(−mKX)), minus the weight

of λCM|limt→0(f(t)[X]) (called the Donaldson–Futaki invariant associated to f) is

positive. The one-parameter degeneration of X along f(C∗) · [X] ⊂ Hilb is called

a test configuration by [Don0].

Similarly, X is said to be K(m)-semistable (resp. K(m)-polystable) if all the

Donaldson–Futaki invariants are non-negative (resp. X is semistable and the

Donaldson–Futaki invariant of f is positive, or equivalently the orbit closure

f(C∗) · [X] ⊂ Hilb is contained in the SL-orbit of X; such a degeneration is called

a product test configuration).

X is said to be K-stable (resp. K-semistable, K-polystable) if it is K(m)-

stable (resp. K(m)-semistable, K(m)-polystable) for all sufficiently divisible positive

integer m.

§3.3. Local GIT polystability

In this subsection, we apply [OSS, Lemma 3.6] to the Aut(X)-action on the affine

étale slice V[X] and see that

the points corresponding to some Kähler–Einstein Q-Fano varieties are

GIT polystable in V[X] with respect to the Aut(X)-action;

we denote the polystable locus in V[X] as V ps
[X]. The following theorem shows that

the converse to [OSS, Lemma 3.6] also holds in appropriate sense; this will be

crucial for us later on.

Theorem 3.2 (Local deformation picture of KE Fano varieties). For small

enough affine étale slice V[X], i.e. after shrinking V[X] to an Aut(X)-invariant
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open affine neighborhood of [X] if necessary, we have

V ps
[X] = V[X] ∩HilbKE.

Recall that V ps
[X] denotes the GIT polystable locus of the affine slice V[X] in the

Hilbert scheme, with respect to the Aut(X)-action.

This roughly says that, étale locally, the existence of Kähler–Einstein metrics

on Q-Fano varieties is equivalent to the classical GIT polystability, at least in the

Q-Gorenstein smoothable case (we expect this is so in the non-smoothable case as

well). Note that the above statement is about the “local” deformation picture in

the sense that we need to shrink V[X] in general. Otherwise the statement is false

and indeed the proof requires that shrinking.

This refines [Tia1, Section 7], [Don1, Subsection 5.3] which treated Mukai–

Umemura (Fano) 3-folds, the Q-Fano varieties case of [Sze] and of course [OSS,

Lemma 3.6]. We expect that this will be a fundamental tool in the further study

of Kähler–Einstein metrics on Q-Fano varieties.

Proof of Theorem 3.2. The inclusion V[X] ∩ HilbKE ⊂ V ps
[X] is exactly (a special

case of) [OSS, Lemma 3.6] and here is the argument for the other inclusion, i.e.

V ps
[X] ⊂ V[X] ∩HilbKE.

We prove that this holds once we replace V[X] with a small enough affine Aut(X)-

invariant slice if necessary.

Note that the difference V ps
[X] \ (V[X] ∩HilbKE) is constructible since both V ps

[X]

and V[X] ∩HilbKE are constructible subsets. The constructibility of the polystable

locus is a standard fact in geometric invariant theory. We now explain how to

show the constructibility of V[X] ∩HilbKE ⊂ V[X]. Indeed, from [SSY, Theorem 1],

we know the equivalence of K-polystability and existence of Kähler–Einstein met-

rics for Q-Gorenstein smoothable Fano varieties in general. Moreover, combining

[CDS, esp. II, Theorem 1, and III, Theorem 2], [SSY, 4.2.2] and the arguments

of [Od2, esp. (2.4-8)], we know that it is also equivalent to the quantised “K(m)-

polystability” in the above sense of Subsection 3.2 for sufficiently divisible uniform

m � 0, i.e. we can bound the exponent m for testing K-(poly)stability. For the

readers’ convenience, we recall from [Od2, esp. (2.4-8)] that the main point of

the uniform bound m was the uniform positive lower bounds of (small) angles of

conical Kähler–Einstein metrics on all the Q-Fano varieties parametrised in Hilb.

Then the proof of the constructibility of the K(m)-polystable locus inside Hilb

follows from the arguments in [Od2, esp. (2.10-12)] with the additional but simple

concern about whether the test configurations are of product type or not.
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For contradiction, suppose that for any small enough affine Aut(X)-invariant

slice V[X] of [X], we have V ps
[X] 6= V[X] ∩HilbKE.

Then we have an irreducible locally closed subvariety W inside V ps
[X] \

(V[X]∩HilbKE) whose closure meets [X], and we take a sequence Pi in W converg-

ing to [X]. Otherwise, we can shrink V[X] to make it satisfy V ps
[X] = V[X] ∩HilbKE.

Now we fix our slice V[X].

We take any SL-equivariant compactification of the algebraic group SL (such

as in [DP], or apply [Sum]), denote it by S̄L and consider the rational map

ϕ : V[X] × S̄L 99K Hilb induced by the SL-action. Here V[X] denotes the Zariski

closure of V[X] inside Hilb. Then we take an SL-equivariant resolution of indeter-

minacy of ϕ,

ϕ̃ : T → Hilb.

So T is a certain SL-equivariant blow up of V[X]×S̄L along some ideal co-supported

on V[X] × (S̄L \ SL). Via the morphism from T to Hilb, we can regard T as a

parameter space of Fano varieties and their degenerations.

Then, for the sequence Pi ∈ W ⊂ V[X] ' V[X] × {e} ⊂ T (i = 1, 2, . . . )

which converges to [X] ∈ V[X], we take sequences Pi,j ∈ V[X] ' V[X] × {e} ⊂ T

(j = 1, 2, . . . ) for each i (= 1, 2, . . . ) which parametrise smooth Kähler–Einstein

Fano manifolds Xi,j and converge to Pi when j goes to infinity.

Thanks to [DS], we know that (by taking subsequences) the Gromov–

Hausdorff limit of Xi,j with Kähler–Einstein metrics exists as another Kähler–

Einstein Q-Fano variety Yi. Furthermore, from their construction as a limit inside

the Hilbert scheme (cf. [DS, Theorem 1.2]), we know that there is a sequence of

elements of SL which we denote by φi,j such that limj→∞ φi,j(Pi,j) represents a

point Qi which parametrises the (m-th pluri-anticanonically embedded) Kähler–

Einstein Fano variety Yi, for each fixed i. By the standard diagonal argument,

it also follows from [DS] that limGH
i→∞ Yi exists (limit in the (refined) Gromov–

Hausdorff sense as in [DS]) as yet another Kähler–Einstein Q-Fano variety Y where

the corresponding point will be denoted by Q ∈ Hilb. As the blow up morphism

T → V[X] × S̄L is (topologically) a proper morphism, we can take all these points

in T .

Our general idea is to apply the (recently obtained) separatedness theorem to

the two “degenerations” of Xi,j to [X] and [Y ] = Q ∈ T , both of which parametrise

Kähler–Einstein Q-Fano varieties. To lend precision to this idea, we proceed to

some more algebro-geometric arguments.

Let T o be the (open dense) subset of T which is the preimage of SL ⊂ S̄L.

Also set ∂T := T \ T o. Consider some general affine curve C ⊂ T which passes

through Q and intersects ∂T ∪ (V ps
[X] \ (V[X] ∩HilbKE)) only at the point {Q}.
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On the other hand, take the natural retraction r : T o → V[X] induced by

SL→ {e} where e ∈ SL is the unit of SL, and partially complete C ′0 := r(C \{Q})
naturally to C ′ with i : C ' C ′. Note that from the construction, r also naturally

extends to a morphism

r̃ : T → Hilb

from the whole T . Then from our construction, the image i(Q) is nothing but the

original [X] ∈ Hilb. We can see this as follows. Since i should preserve the image of

r̃, we have r̃(i(Q)) = r̃(Q) and r̃(Q) = r̃(limi→∞(Qi)) = r̃(limi→∞(limj→∞(Pi,j))

= limi→∞(r̃(Pi)) = [X]. The last equality follows from our construction of Pi.

(Here all the limits are taken in the usual analytic topology.)

The crucial result we now need is the following. Although we do not have any

contribution on it in this paper, we recall the result as we need a comment (on

how to combine [LWX1], [SSY], [CDS]) on the proof to make things rigorous. I

thank S. Sun for the mathematical clarification of this point.

Theorem 3.3 ([LWX1, Thm. 1.1 of v1]+[SSY, Thm. 1.1], [CDS]). Let X and Y
be two Q-Gorenstein flat deformations of Kähler–Einstein Q-Fano varieties over

a smooth curve C 3 0. Suppose that Xt ∼= Yt for t 6= 0 and further that these are

all smooth (i.e. generically smooth). If X0 and Y0 are both K-polystable, then they

are isomorphic Q-Fano varieties.

This follows from the combination of [LWX1, v1] and [SSY, Theorem 1.1].

Note that for separatedness, [SSY, Corollary 1.2] has to assume that X0 and Y0

have discrete automorphism groups, while [LWX1, Remark 6.11] needs to assume

that X0 and Y0 have reductive automorphism groups. But from [SSY, Theorem 1.1]

we know both X0 and Y0 admit KE metrics, so satisfy the reductivity assumption

of [LWX1, v1] by [CDS, III, Theorem 4]. (The author had once attempted to

prove this separatedness with Professor Richard Thomas, but the arguments had

a technical gap.)

We apply the theorem above to the two families of Q-Fano varieties corre-

sponding to C ⊂ T and C ′ ⊂ T . Then we can show that Q is in the SL-orbit of

[X] ∈ Hilb, hence in T o in particular. Recall that Q was defined as the limit of Qi.

Hence for i� 0, Qi is also in T o. Then by [OSS, Lemma 3.6], i(Qi) ∈ V[X], which

is well-defined, is GIT polystable with respect to the action of Aut(X).

Then we get a contradiction from the general geometric invariant theory

[Mum] since i(Qi) and Pi are both GIT polystable, while being the limits of se-

quences which parametrise the same polystable point. This completes the proof.
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Proposition 3.4. Let X be an arbitrary Q-Gorenstein smoothable Kähler–

Einstein Q-Fano variety and denote the corresponding point in the Hilbert scheme

as [X] which represents an m-pluri-anticanonically embedding of X. Then there is

a small enough affine Aut(X)-invariant slice V[X] of the natural PGL-action on

Hilb such that an open neighborhood (in the analytic topology) of ¯[X] in the GIT

(categorical) quotient V[X]//Aut(X) naturally maps homeomorphically to M̄GH

(which eventually becomes an étale algebraic morphism with the algebraic struc-

ture on the latter).

Analytically speaking, this is equivalent to saying that there is an open subset

W of [X] in V[X] and an analytically open neighborhood N of [X] ∈ M̄GH such

that there is a natural homeomorphism

N → (W ∩ V ps
[X])/Aut(X),

preserving the Q-Fano varieties being parametrised.

Proof. The continuity from N to (W ∩V ps
[X])/SL follows from Donaldson–Sun [DS,

(proof of) Theorem 1.2]. The quotient space HilbKE/SL satisfies the Hausdorff

axiom due to the separatedness Theorem 3.3 proved by [LWX1]+[SSY], while

M̄GH is compact by the Gromov compactness theorem. It is a general theorem

that a continuous bijection from a compact topological space (now M̄GH) to a

Hausdorff space (now HilbKE/SL) is automatically a homeomorphism.

Summarising the above discussions, we conclude the proof of our main theo-

rem 2.3, the moduli construction, as follows.

Proof of Theorem 2.3. For each [Xi] ∈ HilbKE, i.e. Xi is a smooth Kähler–

Einstein Fano n-dimensional manifold or a Gromov–Hausdorff limit of such mani-

folds (hence a Q-Fano variety with Kähler–Einstein metric by [DS]), consider V[Xi]

constructed in Subsection 3.1. We replace V[Xi] by its open Aut(Xi)-invariant open

neighborhood, if necessary, to make it satisfy the requirement in Theorem 3.2.

Note that for each Xi, PGL ·V[Xi] is a Zariski open subset in Hilb. This

follows from the fact that since we constructed V[Xi] ⊂ U[Xi] as an étale slice,

PGL×Aut(Xi)V[Xi] → Hilb is an étale morphism, so in particular an open mor-

phism. Thus by quasi-compactness of Hilb, we only need finitely many sets

PGL ·V[Xi] to cover HilbKE.

We note that ϕi : [V[Xi]/Aut(Xi)]→ [Hilb/PGL] is an étale morphism between

two quotient stacks, since again the morphism PGL×Aut(Xi)V[Xi] → U[Xi] ⊂ Hilb

is strongly étale (in the sense of [Dre, Subsection 1.1]). Note that it is a priori

not necessarily an open immersion (of algebraic stacks) because the slice V[Xi] is

just an étale slice. Glueing together [V[Xi]/Aut(Xi)] via ϕis, which is by definition
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possible inside [Hilb/PGL], we obtain [W/PGL] with W =
⋃
i PGL ·V[Xi] ⊂ Hilb,

a moduli Artin stack which we denote as M̄. Furthermore, as the property [Dre,

Subsection 1.1(ii)] of the étale slice V[Xi] (cf. also [Dre, 5.3]) shows, the categorical

quotients V[Xi]/Aut(Xi) glue together to form a coarse moduli algebraic space M̄

of the Artin stack M̄.

The fact that it is a KE moduli stack in the sense of Definition 2.2 ([OSS])

now follows from Theorem 3.2. Indeed, condition (iii) of Definition 2.2 is exactly

the statement of Theorem 3.2, and we have proved condition (i) above. The re-

maining (ii), which says that the flat family on V[Xi] is Q-Gorenstein flat (once

we shrink V[Xi] enough), can be easily checked as follows (see also [OSS, (2.4)]

for essentially the same arguments). Actually in general if we have a point [X] in

Hilb corresponding to some normal variety X, its deformation parametrised in a

neighborhood in Hilb is automatically Q-Gorenstein. We denote the locus of Hilb

which parametrises normal varieties as Hilbnormal ⊂ Hilb; as is well known, that is

automatically an open subset. We denote its subset which parametrises singular

(but normal) varieties as Hilbnormal.singular. Let us take a log resolution of singu-

larities of the pair (Hilbnormal,Hilbnormal.singular) after Hironaka as f : S → Hilb,

so that f−1(Hilbnormal.singular) is a (simple normal crossing) Cartier divisor Σ of S.

Then we have a flat projective family π : (X ,OX (1))→ S and

(1) OX (1)|X\π−1(Σ) ∼(S\Σ) O(X\π−1(Σ))(−mKX\π−1(Σ)).

This implies that there are Weil divisors D,D′ of X with OX (D) = OX (1),

OX (D′) = OX (−mKX ) (the latter is only a reflexive sheaf), and with D − D′

supported on π−1(Σ). But any (a priori Weil) divisor supported on the central

fiber is a pull back of a (Cartier) divisor of S supported on Σ since all the fibers

of π are irreducible now. Hence, we get O(1) ∼C O(−mKX ).

Furthermore, the subset Hilbklt of Hilbnormal.singular which parametrises

(Kawamata-)log-terminal varieties is a Zariski open subset, which follows from

the arguments of [AH, Appendix A] (even easier, since we only treat normal va-

rieties). In particular, V[Xi] only parametrises Q-Fano varieties, since each variety

parametrised in V[Xi] has some isotrivial degeneration to a variety parametrised

in V ps
[Xi]

, which is automatically a Q-Fano variety. Summarising, we have proved

assertion (ii) of Definition 2.2.

The topological space structure part is proved in Proposition 3.4. Indeed,

Proposition 3.4 shows that the Gromov–Hausdorff compactification M̄GH is hom-

eomorphic to the coarse moduli space M̄ constructed above. In particular, M̄

satisfies the Hausdorff second axiom (essentially follows from [CDS]+[LWX1](v1)+

[SSY], cf. Theorem 3.3). This completes the proof of Theorem 2.3.
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Remark 3.5 (added in revision, 20th March 2015). Our constructions of the

moduli stacks M̄ and their coarse moduli spaces M̄ a priori depend on the positive

integer parameter m (recall that we consider the m-th pluri-anticanonical polari-

sation of the Q-Fano varieties). However, we strongly believe that they actually do

not depend on the sufficiently divisible m. Indeed, we can prove this under the fol-

lowing two hypotheses. To the best of the author’s knowledge (as of March, 2015)

full proofs of the hypotheses below are not available yet, although the 2nd revision

of [LWX1] has partial affirmative results (cf. Section 7 there) in this direction.

(i) The K-semistability is an open condition for any Q-Gorenstein flat projective

family of Q-Fano (Q-Gorenstein smoothable) varieties.

(ii) Any (Q-Gorenstein smoothable) K-semistable Q-Fano variety, say X, has a

test configuration whose central fibre is a KE Q-Fano variety Y (which is

K-polystable by [Ber]).

Our proof of the desired m-independence of our moduli M̄ and M̄ , under the

above hypotheses, is simple, as follows. The hypotheses imply that W coincides

exactly with the (open) locus of Q-Gorenstein smoothable K-semistable Q-Fano

varieties, which we denote as Hilbsss. We prove this as follows. Recall that each

Q-Fano variety corresponding to a point of W isotrivially degenerates to a KE

Q-Fano variety parametrised in HilbKE by our Theorem 3.2 and standard GIT.

That fact, combined with (i), implies W ⊂ Hilbsss. On the other hand, (ii) and

[DS] (especially their uniform bound of “k”) imply Hilbsss ⊂W straightforwardly.

Thus our KE moduli stack M̄, which is isomorphic to the quotient stack [W/PGL]

whose definition involved m, is exactly the moduli Artin stack of Q-Gorenstein flat

projective families of K-semistable Q-Gorenstein smoothable Q-Fano varieties of

dimension n. It is this universality which automatically implies that the moduli

stacks M̄ do not depend on m. In particular, their coarse moduli spaces M̄ do not

depend on m either.

We also make a brief remark about the relation with the 2nd version of

[LWX1]: the moduli space constructed there is the semi-normalisation of the re-

duced subscheme of our moduli.

§4. Future work

We list some interesting problems on the K-moduli of Fano varieties, possibly with

personal bias. Most of them (perhaps except Question 2) are natural and being

shared among the community of this subject; we just write them down for the

record.

Question 1. How about concrete examples of Q-Fano varieties?
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As far as we know, the only fully settled case appears in [MM], [OSS] which

handle (Q-Gorenstein smoothable) del Pezzo surfaces. W suppose that [OSS,

Lemma 3.6] and our Theorem 3.2 will be one of the key tools for this direction. For

example, the author is tempted to expect that many of the standard GIT moduli

spaces of hypersurfaces, such as cubic 3-folds and 4-folds ([All], [Laza], [Yok1],

[Yok2]), are examples of our K-moduli spaces (cf. [OSS, Theorem 3.4 and Subsec-

tion 4.2]). This last prediction is partially inspired by discussions with Julius Ross.

Question 2. How to construct the Gromov–Hausdorff limit of Kähler–Einstein

Fano manifolds (and the K-moduli) in a purely algebraic way?

It is natural to expect that the (refined) GH limit, in the sense of [DS], [OSS]

etc., is simply equivalent to the K-polystable limit and so, partially in view of

[LX], [Od2, last section] (etc.), characterised by the minimality of the degree of

(a family version of) the Donaldson–Futaki invariant. And we further expect that

the construction will essentially need the idea and theory of the Minimal Model

Program.

Question 3. How about non-smoothable Q-Fano varieties?

This is a much more general case, morally about the moduli space all of

whose members parametrise singular (log-terminal) Q-Fano varieties. At this mo-

ment, our paper and [SSY], [LWX1] etc. all heavily depend on the (Q-Gorenstein)

smoothability of Fano varieties considered, in order to apply [CDS], [Tia2] which

are for smooth Fano manifolds. But many algebraically oriented people agree that

it is natural to expect completely the same picture for general Q-Fano varieties.

Question 4. What about the projectivity of our moduli space?

The expectation is that the “descended” Q-line bundle from the CM line

bundle [FS], [PT], explained (with the proof of descending) at the end of [OSS],

will be ample on the coarse compact moduli space M̄ , ensuring the projectivity.

The expectation is based on the general Weil–Petersson metrics as in [FS]. Indeed,

by [FS], any compact analytic subset of the coarse moduli space of smooth KE Fano

manifolds with discrete automorphism groups (constructed in [Od2]) is projective.

However, in the general case, there are two main technical difficulties: the presence

of non-discrete automorphism groups (involving K-semistable varieties) and the

log-terminal singularities.

(Added in revision, March, 2015: Two and a half months after the first

manuscript of this paper appeared, [LWX2] announced a partial progress along

this line, claiming the quasi-projectivity of the open locus M of M̄ .)
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