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Haagerup Approximation Property
for Arbitrary von Neumann Algebras

by

Rui Okayasu and Reiji Tomatsu

Abstract

We attempt presenting a notion of the Haagerup approximation property for an arbitrary
von Neumann algebra by using its standard form. We also prove the expected heredity
results for this property.
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§1. Introduction

In the remarkable paper [Ha2], U. Haagerup proves that the reduced C∗-algebra of

the non-amenable free group Fd has Grothendieck’s metric approximation prop-

erty. He actually shows that there exists a sequence of normalized positive definite

functions ϕn on Fd such that

(a) ϕn(s)→ 1 for every s ∈ Fd;
(b) ϕn vanishes at infinity for every n.

It is known that many classes of locally compact second countable groups possess

such sequences, where pointwise convergence to 1 is replaced by uniform conver-

gence on compact subsets, and it is called the Haagerup approximation property.

See the book [C+] for more details.

In [Ch], M. Choda observes that a countable discrete group Γ has the Haagerup

approximation property if and only if its group von Neumann algebra L(Γ) admits

a sequence of normal contractive completely positive maps Φn on L(Γ) such that
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(A) Φn → idL(Γ) in the point-ultraweak topology;

(B) τ ◦ Φn ≤ τ and Φn extends to a compact operator Tn on `2(Γ) for every n,

which is given by

Tn(xξτ ) = Φn(x)ξτ for x ∈ L(Γ),

where τ denotes the canonical tracial state on L(Γ). After her work, many authors

studied the Haagerup approximation property, including F. Boca [Bo], A. Connes

and V. Jones [CJ], P. Jolissaint [Jo] and S. Popa [Po]. However, it is defined

only for a finite von Neumann algebra. In the case of a non-finite von Neumann

algebra, one runs into the problem of how to describe vanishing at infinity in (b)

or compactness in (B) for a completely positive map.

After the systematic study of one-parameter families of convex cones in the

Hilbert space on which a von Neumann algebra acts with a distinguished cyclic

and separating vector by H. Araki [Ar], and the independent work by Connes

[Co1], Haagerup [Ha1] proved that any von Neumann algebra is isomorphic to a

von Neumann algebra M on a Hilbert space H such that there exists a conjugate-

linear isometric involution J on H and a self-dual positive cone P in H with the

following properties:

(i) JMJ = M ′;

(ii) Jξ = ξ for any ξ ∈ P ;

(iii) aJaJP ⊂ P for any a ∈M ;

(iv) JcJ = c∗ for any c ∈ Z(M) := M ∩M ′.

Such a quadruple (M,H, J, P ) is called a standard form of the von Neumann

algebra M .

Let Mn denote the n × n complex matrices. Then M ⊗Mn operates in its

standard form on H ⊗Mn with the self-dual positive cone P (n), where P (1) = P .

The partial order on H ⊗Mn induced by P (n) turns H into the matrix ordered

Hilbert space in the sense of M. D. Choi and E. G. Effros [CE]. Thus we will say

that an operator T on H is completely positive if (T ⊗ idn)P (n) ⊂ P (n) for all

n ≥ 1. So an arbitrary von Neumann algebra M is defined to have the Haagerup

approximation property if the identity of H can be approximated in the strong

operator topology by contractive completely positive compact operators.

The Haagerup approximation property is also defined in other ways for a

non-finite von Neumann algebra. One definition is the following: A σ-finite von

Neumann algebra M with a faithful normal state ϕ is said to have the Haagerup

approximation property for ϕ if there exists a net of unital completely positive

ϕ-preserving normal maps Φn on M such that
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(A′) Φn → idM in the point-ultraweak topology;

(B′) the following implementing operators Tn on Hϕ are contractive and compact:

Tn(xξϕ) = Φn(x)ξϕ for x ∈M.

However we wonder whether this definition sufficiently captures the property of

the corresponding compact operator Tn in (B) in the case where M is finite. More

precisely, one of our main results is the following (Theorem 4.9):

Theorem A. Let M be a σ-finite von Neumann algebra with a faithful normal

state ϕ. Then M has the Haagerup approximation property if and only if there

exists a net of normal contractive completely positive maps Φn on M such that

(A′) Φn → idM in the point-ultraweak topology;

(B′′) the operators Tn on Hϕ are contractive and compact, where

Tn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈M.

In [To], A. M. Torpe gives a characterization of semidiscrete von Neumann

algebras in terms of matrix ordered Hilbert spaces: a von Neumann algebra M is

semidiscrete if and only if the identity of the Hilbert space H with respect to its

standard form can be approximated in the strong operator topology by completely

positive contractions of finite rank. A similar characterization of semidiscrete von

Neumann algebras is also given by M. Junge, Z.-J. Ruan and Q. Xu [JRX] in terms

of non-commutative Lp-spaces. In particular, the non-commutative L2-spaces be-

come standard forms, and hence their result is a generalization of Torpe’s charac-

terization of semidiscrete von Neumann algebras. Therefore it immediately follows

that injectivity implies the Haagerup approximation property in our sense.

The Haagerup approximation property has various stabilities. Among them,

we will prove the following result (Theorem 5.9):

Theorem B. Let N ⊂ M be an inclusion of von Neumann algebras. Suppose

that there exists a norm one projection from M onto N . If M has the Haagerup

approximation property, then so does N .

In [CS], M. Caspers and A. Skalski independently introduce the notion of the

Haagerup approximation property. Our formulation actually coincides with theirs

because in either case, the Haagerup approximation property is preserved under

taking crossed products by R-actions. (See Remark 5.8.)

This paper is organized as follows: In Section 2, the basic notions are reviewed

and we introduce the Haagerup approximation property for a von Neumann al-

gebra. In Section 3, we study some permanence properties such as reduced von
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Neumann algebras, tensor products, the commutant and the direct sums. In Sec-

tion 4, we consider the case where M is a σ-finite von Neumann algebra with a

faithful normal state ϕ; we present the proof of Theorem A; and we discuss the

free product of von Neumann algebras and examples. In Section 5, we study the

crossed product of a von Neumann algebra by a locally compact group. We show

that a von Neumann algebra has the Haagerup approximation property if and

only if so does its core von Neumann algebra. Finally, the proof of Theorem B is

presented.

§2. Definition

We first fix the notation and recall basic facts. Let M be a von Neumann algebra.

We denote by Msa and M+ the sets of all self-adjoint elements and all positive

elements inM , respectively. We also denote byM∗ andM+
∗ the spaces of all normal

linear functionals and all positive normal linear functionals on M , respectively.

Let us recall the definition of a standard form of a von Neumann algebra as

given by Haagerup [Ha1].

Definition 2.1. Let be M be a von Neumann algebra, H a Hilbert space on

which M acts, J a conjugate-linear isometry on H with J2 = 1H , and P ⊂ H a

closed convex cone which is self-dual, i.e.,

P = {ξ ∈ H | 〈ξ, η〉 ≥ 0 for η ∈ P}.

Then the quadruple (M,H, J, P ) is called a standard form if

(i) JMJ = M ′;

(ii) Jξ = ξ for any ξ ∈ P ;

(iii) xJxJP ⊂ P for any x ∈M ;

(iv) JcJ = c∗ for any c ∈ Z(M) := M ∩M ′.

Remark 2.2. Recently, Ando and Haagerup [AH, Lemma 3.19] proved that con-

dition (iv) in the above definition can actually be dropped.

By the work of Araki [Ar], every functional ϕ ∈M+
∗ is represented as ϕ = ωξϕ

by a unique vector ξϕ ∈ P , where

ωξϕ(x) = 〈xξϕ, ξϕ〉 for x ∈M.

Moreover the Araki–Powers–Størmer inequality holds:

‖ξϕ − ξψ‖2 ≤ ‖ϕ− ψ‖ ≤ ‖ξϕ − ξψ‖ ‖ξϕ + ξψ‖ for ϕ,ψ ∈M∗.



Haagerup Approximation Property 571

A vector ξ ∈ H is said to be self-adjoint if Jξ = ξ. We denote by Hsa the set

of all self-adjoint vectors in H. For ξ, η ∈ Hsa, we will write ξ ≥ η if ξ − η ∈ P .

Note that for ξ ∈ Hsa there exist unique vectors ξ+, ξ− ∈ P such that ξ = ξ+− ξ−
and 〈ξ+, ξ−〉 = 0.

We next show that a faithful normal semifinite (f.n.s.) weight gives a standard

form. We refer to the book of Takesaki [Ta2] for details.

Let ϕ be an f.n.s. weight on a von Neumann algebra M and let

nϕ := {x ∈M | ϕ(x∗x) <∞}.

Then Hϕ is the completion of nϕ with respect to the norm

‖x‖2ϕ := ϕ(x∗x) for x ∈ nϕ.

We write the canonical injection Λϕ : nϕ → Hϕ. Then

Aϕ := Λϕ(nϕ ∩ n∗ϕ)

is an achieved left Hilbert algebra with the multiplication

Λϕ(x) · Λϕ(x) := Λϕ(xy) for x ∈ nϕ ∩ n∗ϕ

and the involution

Λϕ(x)] := Λϕ(x∗) for x ∈ nϕ ∩ n∗ϕ.

Let πϕ be the corresponding representation of M on Hϕ. We always identify M

with πϕ(M).

Let Sϕ be the closure of the conjugate-linear operator ξ 7→ ξ] on Hϕ; it has

the polar decomposition

Sϕ = Jϕ∆1/2
ϕ ,

where Jϕ is the modular conjugation and ∆ϕ is the modular operator. Then we

have a self-dual positive cone

Pϕ := {ξ(Jϕξ) | ξ ∈ Aϕ} ⊂ Hϕ.

Note that Pϕ is given by the closure of the set of Λϕ(xσϕi/2(x)∗), where x ∈ Aϕ is

entire with respect to the modular automorphism group σϕt := Ad ∆it
ϕ |M .

Therefore the quadruple (M,Hϕ, Jϕ, Pϕ) is a standard form. A standard form

is, in fact, unique up to a spatial isomorphism, and so it is independent of the

choice of an f.n.s. weight ϕ.

Theorem 2.3 ([Ha1, Theorem 2.3]). Let (M1, H1, J1, P1) and (M2, H2, J2, P2) be

two standard forms and let π : M1 → M2 be an isomorphism. Then there exists a

unique unitary u : H1 → H2 such that
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(1) π(x) = uxu∗ for any x ∈M1;

(2) J2 = uJ1u
∗;

(3) P2 = uP1.

Let us consider the n × n matrix algebra Mn with the normalized trace trn.

If we define the inner product on Mn by

〈x, y〉 := trn(y∗x) for x, y ∈Mn,

then Mn can also be regarded as a Hilbert space. Moreover Mn is an achieved left

Hilbert algebra such that the modular operator is the identity operator on Mn

and the modular conjugation is the canonical involution Jtrn : x 7→ x∗. Hence the

quadruple (Mn,Mn, Jtrn ,M+
n ) is a standard form.

Let (M,H, J, P ) be a standard form and consider the von Neumann algebra

Mn(M) := M ⊗Mn on Mn(H) := H ⊗Mn. If we consider an f.n.s. weight ϕ⊗ trn
on M ⊗Mn for a fixed f.n.s. weight ϕ on M , then we can give a standard form of

Mn(M) as mentioned before. However we give a standard form without using an

f.n.s. weight. The following definition is given by Miura and Tomiyama [MT].

Definition 2.4 ([MT, Definition 2.1]). Let (M,H, J, P ) be a standard form and

n ∈ N. A matrix [ξi,j ] ∈Mn(H) is said to be positive if

n∑
i,j=1

xiJxjJξi,j ∈ P for all x1, . . . , xn ∈M.

We denote by P (n) the set of all positive matrices [ξi,j ] in Mn(H).

Proposition 2.5 ([MT, Proposition 2.4], [SW1, Lemma 1.1]). Let (M,H, J, P )

be a standard form and n ∈ N. Then (Mn(M),Mn(H), J (n), P (n)) is a standard

form, where J (n) := J ⊗ Jtrn .

Definition 2.6. Let (M1, H1, J1, P1) and (M2, H2, J2, P2) be two standard forms.

We will say that a bounded linear (or conjugate-linear) operator T : H1 → H2 is

n-positive if

T (n)P
(n)
1 ⊂ P (n)

2 ,

where T (n) : Mn(H1)→Mn(H2) is defined by T (n)([ξi,j ]) := [Tξi,j ].

Moreover we will say that T is completely positive (c.p.) if T is n-positive for

any n ∈ N.

We are now ready to give our definition of the Haagerup approximation prop-

erty for a von Neumann algebra.
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Definition 2.7. A W∗-algebra M has the Haagerup approximation property

(HAP) if there exists a standard form (M,H, J, P ) and a net of contractive com-

pletely positive (c.c.p.) compact operators Tn on H such that Tn → 1H in the

strong topology.

From this definition, it is clear that if a von Neumann algebraM2 is isomorphic

toM1 which has the HAP, then so doesM2. Moreover the property does not depend

on the choice of a standard form. Indeed, let (M1, H1, J1, P1) and (M2, H2, J2, P2)

be two standard forms of von Neumann algebras, and π : M1 →M2 be an isomor-

phism. By Theorem 2.3, there is a unitary u : H1 → H2 such that π(x) = uxu∗ for

x ∈ M1, J2 = uJ1u
∗, and P2 = uP1. Let T 1

n be a net of c.c.p. compact operators

on H1 as in the previous definition. Then one can easily check that T 2
n := uT 1

nu
∗

gives a desired net of c.c.p. compact operators on H2.

Remark 2.8. A notion of the HAP can also be defined for a matrix ordered

Hilbert space in the sense of Choi and Effros [CE]. However, in this paper we only

consider the case of a standard form of a von Neumann algebra.

In [To], Torpe gives a characterization of semidiscrete von Neumann algebras

in terms of standard forms. In [JRX], Junge, Ruan and Xu also give a similar char-

acterization of semidiscrete von Neumann algebras in terms of non-commutative

Lp-spaces for 1 ≤ p < ∞. In particular, in the case where p = 2, the non-

commutative L2-space gives a standard form. Hence their result is a generalization

of Torpe’s characterization. As a corollary, injectivity implies the HAP.

Theorem 2.9 ([To, Theorem 2.1], [JRX, Theorem 3.2]). Let (M,H, J, P ) be a

standard form. Then the following are equivalent:

(1) M is semidiscrete.

(2) There exists a net of c.c.p. finite rank operators Tn on H such that Tn → 1H
in the strong topology.

Corollary 2.10. If a von Neumann algebra M is injective, then M has the HAP.

Remark 2.11. Unfortunately, Torpe’s paper [To] is unpublished. However, the

implication (1)⇒(2) is proved by L. M. Schmitt [Sc] with Torpe’s techniques. We

also comment on her proof of the other implication in Remark 4.10.

§3. Permanence properties

In this section, we study various permanence properties of the Haagerup approxi-

mation property.
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§3.1. Reduction

We first recall the following result in [Ha1].

Lemma 3.1 ([Ha1, Corollary 2.5, Lemma 2.6]). Let (M,H, J, P ) be a standard

form of a von Neumann algebra and q a projection of the form q = pJpJ , where

p ∈M is a projection. Then

(1) the induction pap 7→ qxq is an isomorphism from pMp onto qMq;

(2) the quadruple (qMq, qH, qJq, qP ) is a standard form.

Let (M,H, J, P ) be a standard form and p ∈ M be a projection with q :=

pJpJ . We write Mq := qMq, Hq := qH, Jq := qJq and Pq := qP , respectively. On

the one hand, we have a standard form

(Mn(Mq),Mn(Hq), J
(n)
q , P (n)

q ).

Notice that (Mn(M),Mn(H), J (n), P (n)) is a standard form. Set p(n) := p⊗ 1n ∈
Mn(M) and q(n) := p(n)J (n)p(n)J (n). Then

q(n) := p(n)J (n)p(n)J (n) = q ⊗ 1n.

On the other hand, by Lemma 3.1, we have a standard form

(q(n)Mn(M)q(n), q(n)Mn(H), q(n)J (n)q(n), q(n)P (n)).

Note that Mn(Mq) = q(n)Mn(M)q(n), Mn(Hq) = q(n)Mn(H) and J
(n)
q =

q(n)J (n)q(n). Moreover two standard forms, in fact, coincide.

Lemma 3.2. In the above setting, P
(n)
q = q(n)P (n).

Proof. Let [ξi,j ] ∈ P (n). For any x1, . . . , xn ∈M , we have

n∑
i,j=1

(qxiq)(qJq)(qxjq)(qJq)(qξi,j) = q

n∑
i,j=1

(pxip)J(pxjp)Jξi,j ∈ qP.

Hence [qξi,j ] ∈ P (n)
q . Therefore q(n)P (n) ⊂ P (n)

q .

To show the other inclusion, let ξ ∈ P (n)
q . Then ωξ ∈Mn(Mq)

+
∗ . Since q(n)P (n)

is a self-dual cone of a standard form of Mn(Mq), there exists η ∈ q(n)P (n) such

that ωξ = ωη in Mn(Mq)
+
∗ . By the discussion above, we also have η ∈ P (n)

q . By

the uniqueness of ξ, we have ξ = η ∈ q(n)P (n). Therefore P
(n)
q = q(n)P (n).

Lemma 3.3. For x ∈M , xJxJ is a c.p. operator.

Proof. For [ξi,j ] ∈ P (n), we have

[xJxJξi,j ] = (x⊗ 1n)(J ⊗ Jtrn)(x⊗ 1n)(J ⊗ Jtrn)[ξi,j ] ∈ P (n).
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Theorem 3.4. Let (M,H, J, P ) be a standard form and p ∈M a projection with

q := pJpJ . If M has the HAP, then so does qMq. In particular, pMp also has

the HAP.

Proof. Since M has the HAP, there exists a net of c.c.p. compact operators Tn
on H such that Tn → 1H in the strong topology. Then Sn := qTnq gives a desired

net for qMq by Lemma 3.3. By Lemma 3.1, pMp is isomorphic to qMq. Hence

pMp also has the HAP.

Proposition 3.5. Let (M,H, J, P ) be a standard form and (pn) an increasing net

of projections of M such that pn → 1H in the strong operator topology. If pnMpn
has the HAP for all n, then so does M .

Proof. Let qn := pnJpnJ . By Lemma 3.1, qnMqn has the HAP for all n. Let F be

a finite subset of H and ε > 0. Since qn → 1 in the strong topology, there exists

nF such that

‖qnF ξ − ξ‖ < ε/2 for ξ ∈ F.
Since qnFMqnF has the HAP, there exists a c.c.p. compact operator T on qnFH

such that

‖T (qnF ξ)− qnF ξ‖ < ε/2 for ξ ∈ F.
Now we define a c.c.p. compact operator S := TqnF on H. Since

‖Sξ − ξ‖ ≤ ‖T (qnF ξ)− qnF ξ‖+ ‖qnF ξ − ξ‖ < ε for ξ ∈ F,

it follows that M has the HAP.

§3.2. Norm one projection

Secondly, we consider an inclusion of von Neumann algebras, N ⊂ M and study

when N inherits the HAP from M . One answer will be presented in Theorem 5.9,

which states that it is so when there exists a norm one projection from M onto N .

In the following, let us prove this assuming normality.

Theorem 3.6. Let N ⊂ M be an inclusion of von Neumann algebras. Suppose

that there exists a normal conditional expectation from M onto N . If M has

the HAP, then so does N .

Proof. Let E : M → N be a normal conditional expectation. Take an increasing

net of σ-finite projections pn in N such that pn → 1 in the strong topology. Then

we have a normal conditional expectation En : pnMpn → pnNpn, which is given

by En(pnxpn) := E(pnxpn) = pnE(x)pn for x ∈ M . By Theorem 3.4, pnMpn has

the HAP. Thanks to Proposition 3.5, N has the HAP if each pnNpn does. Hence

we may and do assume that N is σ-finite.
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Suppose that E is faithful. Let ψ be a faithful normal state on N . Then

ϕ := ψ ◦ E ∈ M+
∗ is also faithful. The projection E from Hϕ onto Kϕ := Nξϕ is

given by E(xξϕ) = E(x)ξϕ for x ∈M .

Thanks to [Ta2, IX, §4, Theorem 4.2], the modular operator ∆ϕ and E com-

mute. Thus it turns out that E : Hϕ → Kϕ is a c.p. operator, where we regard Kϕ

as the GNS Hilbert space of N with respect to ψ. Moreover the inclusion operator

V : Kϕ → Hϕ is also a c.p. operator. Let Tn be a net of c.c.p. compact operators

for M such that Tn → 1H in the strong topology. Then ETnV gives a net of c.c.p.

compact operators such that ETnV → 1K in the strong topology, that is, N has

the HAP.

If E is not faithful, there exists a projection e ∈M ∩N ′ such that the central

support of e in N ′ is the identity and {x ∈M | E(x∗x) = 0} = M(1−e). Moreover

we obtain a faithful normal conditional expectation E ′ : eMe → Ne, given by

E ′(x) = E(x)e for x ∈ eMe. By Theorem 3.4, eMe has the HAP, and so does Ne

by our discussion above. Let x ∈ N . Then E(xe) = x, which implies that E is an

isomorphism from Ne onto N , and N has the HAP.

§3.3. Tensor product and commutant

Next we show the following theorem on tensor products.

Theorem 3.7. Let M1 and M2 be von Neumann algebras. Then M1 and M2 have

the HAP if and only if so does M1 ⊗M2.

To prove this, we recall several results from [MT, SW1, SW2]. Let (M1, H1,

J1, P1) and (M2, H2, J2, P2) be two standard forms of von Neumann algebras. For

ζ ∈ H1 ⊗H2, we define a bounded conjugate-linear map r(ζ) : H1 → H2 by

r(ζ)(ξ) := (ξ∗ ⊗ 1)ζ for ξ ∈ H1.

Definition 3.8 ([MT, Definition 2.7]). For n ∈ N, the set of all elements ζ ∈
H1 ⊗H2 such that r(ζ) is a c.p. map from H1 to H2 is denoted by P1 ⊗̂ P2.

Theorem 3.9 ([MT, Theorem 2.8], [SW2, Theorem 1]). The cone P1 ⊗̂ P2 con-

tains P1 ⊗ P2 and is the self-dual cone in H1 ⊗H2 such that (M1 ⊗M2, H1 ⊗H2,

J1 ⊗ J2, P1 ⊗̂ P2) is a standard form.

Corollary 3.10 ([MT, Corollary 2.9]). The cone P1 ⊗̂ P2 coincides with the clo-

sure of { n∑
i,j=1

ξi,j ⊗ ηi,j
∣∣∣ n ∈ N, [ξi,j ] ∈ P (n)

1 , [ηi,j ] ∈ P (n)
2

}
.
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Under the identification Mn(M1⊗M2) = M1⊗Mn(M2) and Mn(H1⊗H2) =

H1 ⊗ Mn(H2), the self-dual positive cone P1 ⊗̂ P
(n)
2 gives a standard form of

Mn(M1 ⊗M2) by [SW1, Corollary 2.3].

Lemma 3.11. If T1 and T2 are c.p. operators on H1 and H2, respectively, then

T1 ⊗ T2 is a c.p. operator on H1 ⊗H2.

Proof. Since T1 and T2 are c.p. operators, it suffices to show that T1⊗T2 is positive.

Let ζ ∈ P1 ⊗̂ P2. By Corollary 3.10, we may assume that

ζ =

n∑
i,j=1

ξi,j ⊗ ηi,j ,

where n ∈ N, [ξi,j ] ∈ P (n)
1 , [ηi,j ] ∈ P (n)

2 . Then

(T1 ⊗ T2)ζ =

n∑
i,j=1

T1ξi,j ⊗ T2ηi,j ,

which belongs to P1 ⊗̂ P2 by Corollary 3.10.

Proof of Theorem 3.7. We show the “only if” part. Since Mi has the HAP, there

exists a net of c.c.p. compact operators T in on Hi such that T in → 1Hi in the strong

topology for i = 1, 2. Then by Lemma 3.11, Tn := T 1
n ⊗ T 2

n gives the desired net

of c.c.p. compact operators on H1 ⊗H2. The “if” part follows from Theorem 3.6

with slice maps determined by states.

The proof of the following theorem is inspired by [HT, Theorem 2.8].

Theorem 3.12. If M has the HAP, then M ′ has the HAP.

Proof. Since a representation of a von Neumann algebra consists of an amplifica-

tion, an induction and a spatial isomorphism, it suffices to prove the statement

for N = M ⊗ 1K or Q = Mp′ for a projection p′ ∈ M ′, where K denotes a

Hilbert space. Taking the commutants of these, we obtain N ′ = M ′ ⊗ B(K) or

Q′ = p′M ′p′. They have the HAP by Theorems 3.4 and 3.7.

Corollary 3.13. Let M be a von Neumann algebra and p ∈ M be a projection

with central support 1 in M . The von Neumann algebra M has the HAP if and

only if pMp has the HAP. In particular, a factor M has the HAP if and only if a

corner of M has the HAP.

Proof. The “only if” part is nothing but Theorem 3.4. Conversely, suppose that

pMp has the HAP. Then by Theorem 3.12, (pMp)′ = M ′p has the HAP. Since
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the central support of p in M ′ equals 1, the induction M ′ 3 x 7→ xp ∈ M ′p is an

isomorphism. Thus M ′ has the HAP, and so does M again by Theorem 3.12.

§3.4. Direct sum

Finally, we consider the direct sum of von Neumann algebras.

Theorem 3.14. Let (Mi)i∈I be a family of von Neumann algebras. Then
⊕

i∈IMi

has the HAP if and only if Mi has the HAP for all i ∈ I.

Proof. We write M :=
⊕

i∈IMi. If M has the HAP, then Mi has the HAP by

Theorem 3.4.

Conversely, let (Mi, Hi, Ji, Pi) be a standard form for i ∈ I. We denote

H :=
⊕
i∈I

Hi, J :=
⊕
i∈I

Ji, P :=
⊕
i∈I

Pi.

Then (M,H, J, P ) is a standard form. Let F be a subset of I, and Ti be a c.c.p.

compact operator on Hi for i ∈ I. Then we define a c.c.p. compact operator TF
on H by

TF :=
(⊕
i∈F

Ti

)
pFJpFJ,

where pF is the projection of M onto
⊕

i∈F Mi.

Let ε > 0 and ξ1, . . . , ξm ∈ H. We denote ξk =
⊕

i∈I ξ
k
i with ξki ∈ Hi for

1 ≤ k ≤ m. Since ‖ξk‖2 =
∑
i∈I ‖ξki ‖2 < ∞, there is a finite subset F ⊂ I such

that ∑
i 6∈F

‖ξki ‖2 <
ε

2
for 1 ≤ k ≤ m.

For each i ∈ F , since Mi has the HAP, there exists a c.c.p. compact operator Ti
on Hi such that

‖Tiξki − ξki ‖2 <
ε

2|F |
for 1 ≤ k ≤ m.

Then

‖TF ξk − ξk‖2 =
∑
i∈F
‖Tiξki − ξki ‖2 +

∑
i6∈F

‖ξki ‖2 < ε.

Corollary 3.15. Let π be a normal ∗-homomorphism from M into N . Then M

has the HAP if and only if π(M) and kerπ have the HAP.

Proof. Take a central projection z ∈ M such that kerπ = Mz and M(1 − z)

is isomorphic to π(M). Since M = Mz ⊕M(1 − z), the corollary follows from

Theorem 3.14.
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§4. σ-finite von Neumann algebras

Let M be a σ-finite von Neumann algebra with a faithful state ϕ ∈ M+
∗ . We

denote by (πϕ, Hϕ, ξϕ) the GNS construction of (M,ϕ). We always identify M

with πϕ(M). We also denote by ∆ϕ and Jϕ the modular operator and the modular

conjugation, respectively. Denote by Pϕ the norm closure of the cone ∆
1/4
ϕ M+ξϕ

in Hϕ. Then (M,Hϕ, Jϕ, Pϕ) is a standard form.

§4.1. Construction of completely positive maps

Let (M,H, J, P ) be a standard form and ξ0 ∈ P be a cyclic and separating vector.

Then we denote by ∆ξ0 the associated modular operator. Note that the associated

modular conjugation equals J by [Ha1, Lemma 2.9].

Lemma 4.1 (cf. [Co1, Theorem 2.7], [AHW, Lemma 4.8]). Let (M,H, J, P ) be a

standard form of a σ-finite von Neumann algebra M . Let ξ0 ∈ P be a cyclic and

separating vector. Then the map Θξ0 : M → H defined by

Θξ0(x) := ∆
1/4
ξ0
xξ0 for x ∈M

induces an order isomorphism between {x ∈ Msa | −c1 ≤ x ≤ c1} and Kξ0 :=

{ξ ∈ Hsa | −cξ0 ≤ ξ ≤ cξ0} for each c > 0. Moreover Θξ0 is σ(M,M∗)-σ(H,H)

continuous.

Proof. The first part of the lemma is proved in [AHW, Lemma 4.8]. We need to

show that Θξ0 is σ(M,M∗)-σ(H,H) continuous. Since

∆
1/4
ξ0
xξ0 = (∆

1/4
ξ0

+ ∆
−1/4
ξ0

)−1(xξ0 + Jξ0x
∗ξ0)

and (∆
1/4
ξ0

+ ∆
−1/4
ξ0

)−1 is bounded, the conclusion follows.

Lemma 4.2. Let (M,H, J, P ) be a standard form and ξ ∈ P . Then

(1) fξ : H → C, ζ 7→ 〈ζ, ξ〉, is a c.p. operator;

(2) gξ : C→ H, z 7→ zξ, is a c.p. operator.

Proof. (1) For [ξi,j ] ∈ P (n), we have

f
(n)
ξ ([ξi,j ]) = [fξ(ξi,j)] = [〈ξi,j , ξ〉].

This is a positive matrix. Indeed, if z1, . . . , zn ∈ C, then

n∑
i,j=1

〈ξi,j , ξ〉zizj =
〈 n∑
i,j=1

ziJzjJξi,j , ξ
〉
≥ 0.
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(2) Let [zi,j ] ∈ M+
n . Take [wi,j ] ∈ Mn so that zi,j =

∑n
k=1 wi,kwj,k. Then

g
(n)
ξ ([zi,j ]) = [zi,jξ] belongs to P (n). Indeed, for x1, . . . , xn ∈ M , putting yk :=∑n
i=1 xiwi,k, we have

n∑
i,j=1

xiJxjJzi,jξ =

n∑
k=1

ykJykJξ ∈ P.

Lemma 4.3. Suppose that there exists a net of c.p. operators Sn on Hϕ such that

Sn → 1Hϕ in the strong topology. Then there exists a net of c.p. operators S′n on

Hϕ satisfying the following:

(1) S′n → 1Hϕ in the strong topology;

(2) S′n − Sn has rank one for all n;

(3) ‖S′n − Sn‖ → 0;

(4) S′nξϕ is cyclic and separating for all n.

In particular, if M has the HAP, then there exists a net of c.c.p. compact opera-

tors Tn on Hϕ such that Tn → 1Hϕ in the strong topology and Tnξϕ is cyclic and

separating for all n.

Proof. Let (Sn) be a net of c.p. operators on Hϕ such that Sn → 1Hϕ in the strong

topology. Set ηn := Snξϕ ∈ Pϕ. Then we define ξn := ηn + (ηn − ξϕ)− ∈ Pϕ. Since

ξn − ξϕ = ηn + (ηn − ξϕ)− − ξϕ = (ηn − ξϕ)+ ∈ Pϕ,

we have ξn ≥ ξϕ. For any η ∈ Pϕ, if 〈ξn, η〉 = 0, then 〈ξϕ, η〉 = 0, and thus η = 0.

By [Co1, Lemma 4.3], ξn is cyclic and separating.

Now we define a bounded operator S′n on Hϕ by

S′nξ := Snξ + 〈ξ, ξϕ〉(ξn − ηn) for ξ ∈ Hϕ.

By Lemma 4.2, S′n is a c.p. operator. Note that S′n − Sn has rank one and

S′nξϕ = Snξϕ + 〈ξϕ, ξϕ〉(ξn − ηn) = ξn.

Since

‖ξn − ηn‖ = ‖(ηn − ξϕ)−‖ ≤ ‖ηn − ξϕ‖ = ‖Snξϕ − ξϕ‖ → 0,

we have ‖S′nξ − ξ‖ → 0 for any ξ ∈ Hϕ, and ‖S′n − Sn‖ → 0.

If M has the HAP, then we may assume that the above operators Sn are

compact with ‖Sn‖ ≤ 1. Let ξ ∈ Hϕ with ‖ξ‖ = 1. Since ‖Sn‖ ≤ 1, we obtain

0 ≤ 1− ‖Sn‖ ≤ ‖ξ‖ − ‖Snξ‖ ≤ ‖ξ − Snξ‖ → 0.

Hence ‖Sn‖ → 1, and thus ‖S′n‖ → 1. Then Tn := ‖S′n‖−1S′n is a c.c.p. compact

operator such that Tn → idHϕ in the strong topology, and Tnξϕ is cyclic and

separating.
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Lemma 4.4 (cf. [Ar, Theorem 10]). Let (M,H, J, P ) be a standard form and

ξ0 ∈ P be a cyclic and separating vector. If (ξn) is a net of cyclic and separating

vectors in P such that ξn → ξ0, then f(∆ξn)→ f(∆ξ0) in the strong topology for

any f ∈ C0[0,∞). In particular (∆
1/4
ξn

+ ∆
−1/4
ξn

)−1 → (∆
1/4
ξ0

+ ∆
−1/4
ξ0

)−1 in the

strong topology.

Lemma 4.5 (cf. [Wo, Theorem 1.1]). Let (M,H, J, P ) be a standard form and

ξ0 ∈ P be a cyclic and separating vector. Let C > 0 and s be a positive sesquilinear

form on M ×M such that s(x, y) ≥ 0 and s(x, 1) ≤ Cωξ0(x) for x, y ∈M+. Then

s(x, x) ≤ C‖∆1/4
ξ0
xξ0‖2 for x ∈M.

Lemma 4.6. Let (M,H, J, P ) be a standard form and η0 ∈ P be a cyclic and

separating vector. Then for x, y ∈M+, one has

0 ≤ 〈∆1/4
η0 xη0,∆

1/4
η0 yη0〉 ≤ ‖y‖〈xη0, η0〉.

Proof. Set y′ := JyJ ∈M ′. Then

〈∆1/4
η0 xη0,∆

1/4
η0 bη〉 = 〈∆1/2

η0 xη0, yη0〉 = 〈Jy′η0, J∆1/2
η0 xη〉

= 〈JyJη0, xη0〉 = 〈xy′η0, η0〉.

Since xy′ is positive and xy′ = x1/2y′x1/2 ≤ ‖y′‖x = ‖y‖x, we are done.

By applying the above lemmas, we can produce a c.p. operator from a c.p.

map.

Proposition 4.7. Let (M,H, J, P ) be a standard form of a σ-finite von Neumann

algebra M with cyclic and separating vectors ξ0, η0 ∈ P . Let Φ be a c.p. map on M

such that ωη0 ◦ Φ ≤ Cωξ0 for some C > 0. Then there exists a c.p. operator T

on H with ‖T‖ ≤ (C‖Φ‖)1/2 such that

T (∆
1/4
ξ0
xξ0) = ∆1/4

η0 Φ(x)η0 for x ∈M.

Proof. We define a positive sesquilinear sΦ on M ×M by

sΦ(x, y) := 〈∆1/4
η0 Φ(x)η0,∆

1/4
η0 Φ(y)η0〉 for x, y ∈M.

Note that the corresponding modular operators ∆ξ0 and ∆η0 may not coincide.

However, by [Ha1, Lemma 2.9], we have P = Pξ0 = Pη0 and J = Jξ0 = Jη0 because

ξ0, η0 ∈ P . Then one can easily check that

sΦ(x, y) ≥ 0 for x, y ∈M+.
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Moreover for x ∈M+, by Lemma 4.6, we have

sΦ(x, 1) = 〈∆1/4
η0 Φ(x)η0,∆

1/4
η0 Φ(1)η0〉 ≤ ‖Φ(1)‖〈Φ(x)η0, η0〉 ≤ C‖Φ‖ωξ0(x).

By Lemma 4.5, we obtain

sΦ(x, x) = ‖∆1/4
η0 Φ(x)η0‖2 ≤ C‖Φ‖ ‖∆1/4

ξ0
xξ0‖2 for x ∈M.

Hence there exists a bounded operator T on H with ‖T‖ ≤ (C‖Φ‖)1/2 and with

T (∆
1/4
ξ0
xξ0) = ∆1/4

η0 Φ(x)η0 for x ∈M.

Finally we show that T is a c.p. operator. Let (ei,j) be a system of matrix units

for Mn. For [xi,j ] ∈Mn(M)+, we have

(T ⊗ idn)(∆
1/4
ξ0
⊗ idn)

( n∑
i,j=1

xi,j ⊗ ei,j
)

(ξ0 ⊗ 1n) =

n∑
i,j=1

T (∆
1/4
ξ0
xi,jξ0)⊗ ei,j

=

n∑
i,j=1

∆1/4
η0 Φ(xi,j)η0 ⊗ ei,j .

Since Φ is a c.p. map, [Φ(xi,j)] ∈Mn(M)+. Hence T is a c.p. operator.

In Lemma 4.8 and Theorem 4.9 below, we deal with possibly non-contractive

c.p. operators. So, we use the symbol S for a not necessarily contractive c.p. op-

erator. Similarly, we employ the symbol Ψ for a not necessarily contractive c.p.

map.

Lemma 4.8. Let M be a σ-finite von Neumann algebra with a faithful state

ϕ ∈ M+
∗ . Suppose that there exists a net of compact c.p. operators Sn on Hϕ

such that Sn → 1Hϕ in the strong topology and supn ‖Sn‖ <∞. Then there exists

a net of normal c.c.p. maps Φ̃m on M and compact c.p. operators S̃m on Hϕ (over

a new directed set) such that

• Φ̃m → idM in the point-ultraweak topology;

• supn ‖S̃m‖ <∞;

• S̃m(∆
1/4
ϕ xξϕ) = ∆

1/4
ϕ Φ̃m(x)ξϕ for x ∈M .

Proof. Let Sn be as stated above. By Lemma 4.3, we may and do assume that

ξn := Snξϕ is cyclic and separating by taking sufficiently large n so that ‖Sn‖
is uniformly bounded. Let Θξϕ and Θξn be the maps given in Lemma 4.1. Let

x ∈ Msa. Take c > 0 so that −c1 ≤ x ≤ c1. Then −cξϕ ≤ ∆
1/4
ϕ xξϕ ≤ cξϕ.

Applying Sn to this inequality, we obtain −cξn ≤ Sn∆
1/4
ϕ xξϕ ≤ cξn, because Sn is
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positive. In view of Lemma 4.1, the operator Θ−1
ξn

(Sn∆
1/4
ϕ xξϕ) in M is well-defined.

Hence we can define a linear map Φn : M →M by

Φn = Θ−1
ξn
◦ Sn ◦Θξϕ .

In other words,

Sn(∆1/4
ϕ xξϕ) = ∆

1/4
ξn

Φn(x)ξn for x ∈M.

It is easy to check that Φn is a normal unital completely positive (u.c.p.) map.

Step 1. We will show that Φn → idM in the point-ultraweak topology.

Since normal functionals of the form ωy′ξϕ with y′ ∈M ′ span a dense subspace

in M∗, it suffices to show that

(4.1) 〈Φn(x)ξϕ, y
′ξϕ〉 → 〈xξϕ, y′ξϕ〉 for x ∈M, y′ ∈M ′sa.

To prove this, we first claim that

(4.2) ‖∆1/4
ξn

Φn(x)ξn −∆1/4
ϕ xξϕ‖ → 0.

Indeed, since Sn → 1Hϕ in the strong topology, we have

‖Sn(∆1/4
ϕ xξϕ)−∆1/4

ϕ xξϕ‖ → 0.

Hence our claim (4.2) follows.

Secondly we claim that

(4.3) ‖∆−1/4
ξn

y′ξn −∆−1/4
ϕ y′ξϕ‖ → 0.

Indeed, if we set y := Jy′J ∈Msa, then (4.3) is equivalent to

‖∆1/4
ξn
yξn −∆1/4

ϕ yξϕ‖ → 0.

Since

∆1/4
ϕ yξϕ = (J + 1)(∆1/4

ϕ + ∆−1/4
ϕ )−1yξϕ

and

∆
1/4
ξn
yξn = (J + 1)(∆

1/4
ξn

+ ∆
−1/4
ξn

)−1yξn,

our claim (4.3) is also equivalent to

‖(∆1/4
ξn

+ ∆
−1/4
ξn

)−1yξn − (∆1/4
ϕ + ∆−1/4

ϕ )−1yξϕ‖ → 0.

However, this easily follows from Lemma 4.4 and ‖ξn − ξϕ‖ → 0.

Thus to prove (4.1), it suffices to show that

〈Φn(x)ξn, y
′ξn〉 → 〈xξϕ, y′ξϕ〉,
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because ‖ξn − ξϕ‖ → 0. By (4.3), there is a constant Cy′ > 0 and n0 such that

‖∆−1/4
ξn

y′ξn‖ ≤ Cy′ for all n ≥ n0.

By using (4.2) and (4.3), we have

|〈Φn(x)ξn, y
′ξn〉 − 〈xξϕ, y′ξϕ〉|

= |〈∆1/4
ξn

Φn(x)ξn,∆
−1/4
ξn

y′ξn〉 − 〈∆1/4
ϕ xξϕ,∆

−1/4
ϕ y′ξϕ〉|

≤ |〈∆1/4
ξn

Φn(x)ξn −∆1/4
ϕ xξϕ,∆

−1/4
ξn

y′ξn〉|+ |〈∆1/4
ϕ xξϕ,∆

−1/4
ξn

y′ξn −∆−1/4
ϕ y′ξϕ〉|

≤ Cy′‖∆1/4
ξn

Φn(x)ξn −∆1/4
ϕ xξϕ‖+ ‖∆1/4

ϕ xξϕ‖‖∆−1/4
ξn

y′ξn −∆−1/4
ϕ y′ξϕ‖ → 0.

This is our claim (4.1), that is, Φn → idM in the point-ultraweak topology.

Step 2. We will make a small perturbation of Φn.

Set ϕn := ωξn ∈ M+
∗ . Since ‖ξn − ξϕ‖ → 0, we have ‖ϕn − ϕ‖ → 0 by the

Araki–Powers–Størmer inequality. If we set ψn := ϕ + (ϕ− ϕn)−, then ϕn ≤ ψn.

Thanks to Sakai’s Radon–Nikodym theorem [Sa, Theorem 1.24.3], there exists

hn ∈ M with 0 ≤ hn ≤ 1 such that ϕn(x) = ψn(hnxhn) for x ∈ M . We define a

c.p. map Ψn : M →M by

Ψn(x) := hnxhn + (ϕ− ϕn)−(hnxhn)1 for x ∈M.

Note that ‖ψn − ϕ‖ = ‖(ϕ− ϕn)−‖ ≤ ‖ϕ− ϕn‖ → 0. Since

ϕ(1− h2
n) ≤ ψn(1− h2

n) = ψn(1)− ϕn(1) = ‖ψn − ϕn‖
≤ ‖ψn − ϕ‖+ ‖ϕn − ϕ‖ → 0,

we have (1− h2
n)1/2 → 0 in the strong topology. Moreover since

‖(1− hn)ξ‖2 = 〈(1− hn)2ξ, ξ〉 ≤ 〈(1− h2
n)ξ, ξ〉 = ‖(1− h2

n)1/2ξ‖ for ξ ∈ Hϕ,

we have hn → 1 in the strong topology. Consequently, for x ∈ M , we have

hnxhn → x in the strong topology. Therefore Ψn → idM in the point-ultraweak

topology. Since

Ψn(1) = h2
n + (ϕ− ϕn)−(h2

n)1 ≤ 1 + ‖ϕ− ϕn‖ =: Cn → 1,

a c.p. map Φ′n := Ψn/Cn is contractive and such that Φ′n → idM in the point-

ultraweak topology.

Moreover for x ∈M+ we have

ϕ ◦ Φ′n(x) =
1

Cn
ϕ(Ψn(x)) =

1

Cn
ψn(hnxhn) =

1

Cn
ϕn(x) ≤ ϕn(x).
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By Proposition 4.7, there exists a c.c.p. operator T ′n on Hϕ with

T ′n(∆1/4
n xξn) = ∆1/4

ϕ Φ′n(x)ξϕ for x ∈M.

Since Φ′n → idM in the point-ultraweak topology, T ′n → 1Hϕ in the weak topology.

Now we define a normal c.c.p. map Φ̃n := Φ′n ◦ Φn on M and a c.p. compact

operator S̃n := T ′nSn on Hϕ, which satisfies supn ‖S̃n‖ <∞. Then we have

S̃n(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φ̃n(x)ξϕ for x ∈M.

We first claim that S̃n → 1Hϕ in the weak topology. Indeed, for ξ, η ∈ Hϕ,

|〈S̃nξ, η〉 − 〈ξ, η〉| = |〈T ′nSnξ, η〉 − 〈ξ, η〉| ≤ |〈T ′nSnξ − T ′nξ, η〉|+ |〈T ′nξ − ξ, η〉|
≤ ‖Snξ − ξ‖ ‖η‖+ |〈T ′nξ − ξ, η〉| → 0.

Next we claim that Φ̃n → idM in the point-ultraweak topology. It suffices to

show that

〈Φ̃n(x)ξϕ, y
′ξϕ〉 → 〈xξϕ, y′ξϕ〉 for x ∈M,y′ ∈M ′.

Indeed,

〈Φ̃n(x)ξϕ, y
′ξϕ〉 = 〈∆1/4

ϕ Φ̃n(x)ξϕ,∆
−1/4
ϕ y′ξϕ〉 = 〈Tn(∆1/4

ϕ xξϕ),∆−1/4
ϕ y′ξϕ〉

→ 〈∆1/4
ϕ xξϕ,∆

−1/4
ϕ y′ξϕ〉 = 〈xξϕ, y′ξϕ〉.

Finally, by taking suitable convex combinations, we can obtain c.p. compact

operators S̃m on Hϕ and normal c.c.p. maps Φ̃m on M so that S̃m → 1Hϕ in the

strong topology, supm ‖S̃m‖ <∞, Φ̃m → idM in the point-ultraweak topology and

S̃m(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φ̃m(x)ξϕ for x ∈M.

Now we are ready to prove the main theorem of this section.

Theorem 4.9. Let M be a σ-finite von Neumann algebra with a faithful state

ϕ ∈M+
∗ . Then the following statements are equivalent:

(1) M has the HAP.

(2) There exists a net of compact c.p. operators Sn on Hϕ such that Sn → 1Hϕ in

the strong topology and supn ‖Sn‖ <∞.

(3) There exists a net of normal c.c.p. maps Φn on M such that

(i) ϕ ◦ Φn ≤ ϕ for all n;

(ii) Φn → idM in the point-ultraweak topology;

(iii) the associated c.c.p. operators Tn on Hϕ are compact and Tn → 1Hϕ in

the strong topology, where

Tn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈M.
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Proof. The implications (1)⇒(2) and (3)⇒(1) are trivial.

(2)⇒(3). Let us take Φ̃m and S̃n as in the previous lemma. We will modify

the normal c.c.p. maps Φ̃m so that ϕ ◦ Φ̃m ≤ ϕ.

We define χm : M∗ → M∗ by χm(ω) := ω ◦ Φ̃m for ω ∈ M∗. By a convexity

argument, we may assume that ‖χm(ω)− ω‖ → 0 for ω ∈ M∗. Set ϕm := χm(ϕ).

Note that ‖ϕm − ϕ‖ → 0. Since Φ̃m(1) → 1 in the ultraweak topology, we may

also assume that ϕm(1) 6= 0. Since

ψm := ϕm + (ϕm − ϕ)− ≥ ϕ,

by Sakai’s Radon–Nikodym theorem there is hm ∈M with 0 ≤ hm ≤ 1 such that

ϕ(x) = ψm(hmxhm) for x ∈M . Then we define a normal c.p. map Ψm on M by

Ψm(x) := hmxhm +
1

ϕm(1)
(ϕm − ϕ)−(hmxhm)1 for x ∈M.

Note that

ϕm ◦Ψm(x) = ϕm(hmxhm) +
1

ϕm(1)
(ϕm − ϕ)−(hmxhm)ϕm(1)

= ψn(hnxhn) = ϕ(x).

Since

ϕ(1− h2
m) ≤ ψm(1− h2

m) = ψm(1)− ϕ(1) = ‖ψm − ϕ‖
≤ ‖ϕm − ϕ‖+ ‖(ϕm − ϕ)−‖ → 0,

we have hm → 1 in the strong topology. Hence hmxhm → x in the strong topology

for x ∈M . Moreover, since

‖(ϕm − ϕ)−(hmxhm)‖ ≤ ‖ϕm − ϕ‖ ‖x‖ → 0 for x ∈M,

we have Ψm → idM in the point-ultraweak topology.

Note that

Ψm(1) = h2
m +

1

ϕm(1)
(ϕm − ϕ)−(h2

m)

≤ 1 +
1

ϕm(1)
ψm(h2

m) = 1 +
1

ϕm(1)
=: Cm → 1,

and for x ∈M+,

ϕ ◦Ψm(x) = ϕ(hmxhm) +
1

ϕm(1)
(ϕm − ϕ)−(hmxhm)

≤ Cmψm(hmxhm) = Cmϕ(x).
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By Proposition 4.7, we obtain a c.p. operator Sm on Hϕ with ‖Sm‖ ≤ Cm such

that

Sm(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Ψm(x)ξϕ for x ∈M.

We may and do assume that supm ‖Sm‖ ≤ supm Cm <∞. Notice that Sm → 1Hϕ
in the weak topology, because Ψm → idM in the point-ultraweak topology.

Finally we define a normal c.p. map Ψ′m := Φ̃m◦Ψm on M and a c.p. compact

operator S′m := S̃mSm on Hϕ. Then ϕ ◦Ψ′m = ϕ and

S′m(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Ψ′m(x)ξϕ for x ∈M.

Moreover for ω ∈M∗, we have

|〈Ψ′m(x)− x, ω〉| ≤ |〈Ψm(x), χm(ω)− ω〉|+ |〈Ψm(x)− x, ω〉|
≤ Cm‖x‖ ‖χm(ω)− ω‖+ |〈Ψm(x)− x, ω〉| → 0.

Therefore Ψ′m → idM in the point-ultraweak topology, and thus S′m → 1Hϕ in the

weak topology, because supm ‖S′m‖ <∞.

Note that

Ψ′m(1) = Φm(h2
m) +

1

ϕm(1)
(ϕm − ϕ)−(h2

m)Φm(1) ≤ 1 +
‖ϕm − ϕ‖
ϕm(1)

=: C ′m → 1.

We define a normal c.c.p. map Φm on M by Φm := Ψ′m/C
′
m.

Note that ϕ ◦ Φm ≤ ϕ and Φm → idM in the point-ultraweak topology. By

Proposition 4.7, we have a c.c.p. operator Tm on Hϕ given by

Tm(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φm(x)ξϕ for x ∈M.

Then Tm = S′m/C
′
m is compact and Tm → 1Hϕ in the weak topology. By the

convexity argument, we may and do assume that Φn → idM in the point-ultraweak

topology, Tn → 1Hϕ in the strong topology and, moreover, ϕ ◦ Φn ≤ ϕ and

Tn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈M.

Remark 4.10. The proof of Theorem 4.9 is essentially based on the one of [To].

The proof above can also be applied to show Theorem 2.9. Also note that we

have proved the existence of c.c.p. maps Φn such that ϕ ◦ Φn = λnϕ for some

0 < λn ≤ 1. In particular, Φn is faithful.

§4.2. Commutativity of c.c.p. operators with modular groups

In this subsection, we study the Haagerup approximation property such that the

approximating c.c.p. compact operators commute with a modular group.
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Definition 4.11. Let M be a von Neumann algebra with a f.n.s. weight ϕ. We

will say that M has the ϕ-Haagerup approximation property (ϕ-HAP) if the c.c.p.

compact operators Tn of Definition 2.7 moreover commute with ∆it
ϕ for all t ∈ R.

In this case, we can take unital ϕ-preserving Φn’s as shown below.

Theorem 4.12. Let M be a σ-finite von Neumann algebra with a faithful state

ϕ ∈M+
∗ . If M has the ϕ-HAP, then there exist a net of c.c.p. compact operators Tn

on Hϕ with Tn → 1Hϕ in the strong topology, and a net of normal u.c.p. maps Φn
on M with Φn → idM in the point-ultraweak topology such that

(1) ϕ ◦ Φn = ϕ for all n;

(2) Tn(∆
1/4
ϕ xξϕ) = ∆

1/4
ϕ Φn(x)ξϕ for x ∈M for all n.

Proof. Suppose that M has the ϕ-HAP. Recall the proof of Theorem 4.9. We let

the starting Tn commute with ∆it
ϕ for all t ∈ R. Then it is not so difficult to check

that the final Φn commutes with σϕt for all t ∈ R. So, we have Tn and Φn as stated

in Theorem 4.9 and they commute with the modular group. Thus we have c.c.p.

compact operators Tn on Hϕ and normal c.c.p. maps Φn on M such that

• Tn(∆
1/4
ϕ xξϕ) = ∆

1/4
ϕ Φn(x)ξϕ for all x ∈M ;

• σϕt ◦ Φn = Φn ◦ σϕt for all t ∈ R.

We will make a small perturbation of Φn so that its perturbation is unital.

Set ϕn := ϕ ◦ Φn. Then ϕn ◦ σϕt = ϕn for t ∈ R. By [PT, Thereom 5.12], there

exists hn ∈Mϕ with 0 ≤ hn ≤ 1 such that ϕn(x) = ϕ(hnx) for x ∈M , where Mϕ

denotes the centralizer of ϕ,

Mϕ := {x ∈M | xϕ = ϕx} = {x ∈M | σϕt (x) = x for t ∈ R}.

Note that ϕn(1) = ϕ(hn). We may assume that hn 6= 1. We set

xn :=
1

ϕ(1− hn)
(1− Φn(1)) and yn := 1− hn.

Next we define a normal c.p. map Φn on M by

Φn(x) := Φn(x) + ϕ(ynx)xn for x ∈M.

Then ϕ ◦ Φn = ϕ. By Proposition 4.7, we obtain a c.p. operator Sn on Mϕ with

Sn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈M.

Note that Sn is compact, because

Sn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ = ∆1/4
ϕ Φn(x)ξϕ + ϕ(ynx)∆1/4

ϕ xnξϕ

= Tn(∆1/4
ϕ xξϕ) + ϕ(ynx)∆1/4

ϕ xnξϕ,



Haagerup Approximation Property 589

Moreover

Φn(1) = Φn(1) + ϕ(yn)xn = Φn(1) + ϕ(1− hn)
1

ϕ(1− hn)
(1− Φn(1)) = 1.

Finally since yn ∈Mϕ, we have

0 ≤ Ψn(x)− Φn(x) = ϕ(ynx)xn ≤ ‖x‖ϕ(yn)xn = ‖x‖(1− Φn(1)) for x ∈M+

Therefore Ψn → idM in the point-ultraweak topology.

Theorem 4.13. Let (M1, ϕ1) and (M2, ϕ2) be two σ-finite von Neumann algebras

with faithful normal states. If Mi has the ϕi-HAP, i = 1, 2, then the free product

(M1, ϕ1) ? (M2, ϕ2) has the ϕ1 ? ϕ2-HAP.

Proof. The proof is essentially given in [Bo, Proposition 3.9]. We will give a sketch.

Assume that for i = 1, 2, there exists a net of normal u.c.p. maps Φin on M

such that ϕi ◦ Φin = ϕi and Φin → idMi in the point-ultraweak topology. The

corresponding c.c.p. compact operators T in on Hϕi are defined by

T in(∆1/4
ϕi xξϕi) = ∆1/4

ϕi Φin(x)ξϕi for x ∈Mi.

Set (M,ϕ) := (M1, ϕ1) ? (M2, ϕ2). Then we obtain normal u.c.p. maps Φn :=

Φ1
n ?Φ2

n such that ϕ ◦Φn = ϕ and Φn commutes with σϕ. We write H◦ϕi := kerϕi
for i = 1, 2. Since T in = 1⊕(T in)◦ on Hϕi = Cξϕi⊕H◦ϕi , we can define Tn := T 1

n ?T
2
n

on (H, ξ) := (Hϕ1
, ξϕ1

) ? (Hϕ2
, ξϕ2

) by

Tnξ = ξ,

Tn(ξi1 ⊗ · · · ⊗ ξin) = (T i1n )◦ξi1 ⊗ · · · ⊗ (T inn )◦ξin for i1 6= · · · 6= in.

Then each Tn is the c.c.p. compact operator corresponding to Φn, and Tn → 1H
in the strong topology.

Remark 4.14. Let M be a σ-finite von Neumann algebra with a faithful state

ϕ ∈M+
∗ . Suppose that M has the HAP for ϕ in the sense of [D+, Definition 6.3],

i.e., there exist a net of ϕ-preserving normal u.c.p. maps Φn on M with Φn → idM
in the point-ultraweak topology, and a net of compact contractions Tn on Hϕ with

Tn → 1Hϕ in the strong topology such that

Tn(xξϕ) = Φn(x)ξϕ for x ∈M.

If the above normal u.c.p. normal maps Φn satisfy

σϕt ◦ Φn = Φn ◦ σϕt for all t ∈ R,
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then M has the ϕ-HAP in our sense. Indeed, for x ∈ M+, as in [Ta2, VIII, §2,

Lemma 2.3], we set

xγ :=

√
γ

π

∫
R

exp(−γt2)σϕt (x) dt.

Then xγ is entire for γ > 0. Hence

Tn(∆1/4
ϕ xγξϕ) = Tn(σϕ−i/4(xγ)ξϕ) = Φn(σϕ−i/4(xγ))ξϕ

= σϕ−i/4(Φn(xγ))ξϕ = ∆1/4
ϕ Φn(xγ)ξϕ.

Since xγ → x in the ultraweak topology as γ →∞, and

∆1/4
ϕ (xγξϕ − xξϕ) = (Jϕ + 1)(∆1/4

ϕ + ∆−1/4
ϕ )−1(xγξϕ − xξϕ),

we have

Tn(∆1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈M.

Therefore the above compact contraction Tn is, in fact, a c.p. operator on Hϕ, and

thus M has the ϕ-HAP.

The following result states that the combination of the HAP and the existence

of an almost periodic state ϕ implies ϕ-HAP.

Theorem 4.15. Let M be a σ-finite von Neumann algebra with the HAP. If there

exists a faithful almost periodic state ϕ ∈M+
∗ , then M has the ϕ-HAP.

Proof. Thanks to [Co2], there exist a compact group G, an action σ : G→ Aut(M)

and a continuous group homomorphism ρ : R→ G such that σϕt = σρ(t) for t ∈ R
and ρ has dense range. Let U : G→ B(Hϕ) be the associated unitary representation

which implements σ. Note that UgP = P and JϕUg = UgJϕ. Hence, Ug is a c.p.

unitary operator.

Let (Tn) be a net of c.c.p. compact operators such that Tn → 1Hϕ in the

strong topology. We set

T̃n :=

∫
G

UgTnU
∗
g dg.

Then T̃n belongs to K(Hϕ) because the compactness of T implies the norm conti-

nuity of the map G 3 g 7→ UgTnU
∗
g ∈ K(Hϕ). It is clear that T̃n is contractive and

commuting with ∆it
ϕ = Uρ(t) for all t ∈ R. We will show the complete positivity
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of T̃n. Let [ξi,j ] ∈ P (m), m ∈ N. Take x1, . . . , xm ∈M . Then we have

m∑
i,j=1

xiJϕxjJϕT̃nξi,j =

∫
G

dg

m∑
i,j=1

xiJϕxjJϕUgTnU
∗
g ξi,j

=

∫
G

dg Ug

m∑
i,j=1

σg−1(xi)Jϕσg−1(xj)JϕTnU
∗
g ξi,j .

Since TnU
∗
g is a c.p. operator, σg−1(xi)Jϕσg−1(xj)JϕTnU

∗
g ξi,j ∈ P for each g ∈ G,

and the integral above belongs to P . Hence T̃n is a c.p. operator.

We will check that T̃n → 1Hϕ in the strong topology. Let ξ ∈ Hϕ. Then the

set K := {U∗g ξ | g ∈ G} is norm compact, and Tn → 1Hϕ uniformly on K in the

strong topology. Thus we are done.

Corollary 4.16. Let M be a σ-finite von Neumann algebra with the HAP. If there

exists a faithful almost periodic state ϕ ∈ M+
∗ , then there exists a net of normal

u.c.p. maps Φn on M such that

(1) ϕ ◦ Φn = ϕ for all n;

(2) Φn ◦ σϕt = σϕt ◦ Φn for all t ∈ R;

(3) Φn → idM in the point-ultraweak topology;

(4) the associated operator Tn on Hϕ is compact, where

Tn(xξϕ) = Φn(x)ξϕ for x ∈M.

Example 4.17. The following examples have the HAP for ϕ in the sense of [D+,

Definition 6.3]. All known examples so far have the ϕ-HAP.

• the free Araki–Woods factors [HR];

• the free quantum groups [DCFY];

• the duals of quantum permutation groups [Br1];

• the duals of Wang’s quantum automorphism groups [Br2];

• the duals of quantum reflection groups [Le].

Remark 4.18. The Haar state h on a compact quantum group G is almost pe-

riodic. Thus if L∞(G), the function algebra on G, has the HAP, then L∞(G) has

the h-HAP.

§5. Crossed products

Let G be a locally compact group and α an action of G on a von Neumann

algebra M . Our main result in this section is the following.
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Theorem 5.1. If M oα G has the HAP, then so does M .

To prove this, we may and do assume that M is properly infinite by studying

the tensor product B(`2)⊗M and the action id⊗α. Let β be the bidual action of

α on M ⊗ B(L2(G)). Then β has an invariant weight and β is cocycle conjugate

to α ⊗ id. Thus we may and do assume that there exists a weight ϕ on M such

that ϕ ◦ αt = ϕ for all t ∈ G.

Let N := M oα G be the von Neumann algebra generated by the copy of M ,

πα(M), and the copy of G, λα(G), as defined below:

(πα(x)ξ)(s) = αs−1(x)ξ(s), (λα(t)ξ)(s) = ξ(t−1s)

for x ∈M , s, t ∈ G and ξ ∈ Hϕ ⊗ L2(G).

Let ϕ̂ be the dual weight of ϕ. Then for all x ∈ nϕ and f ∈ Cc(G), we obtain

ϕ̂((λα(f)πα(x))∗λα(f)πα(x)) = ϕ(x∗x)

∫
G

|f(t)|2 dt.

Hence a := λα(f)πα(x) ∈ nϕ̂ and ‖Λϕ̂(a)‖ = ‖Λϕ(x)‖ϕ‖f‖2. Actually, it is known

that there exists a surjective isometry from Hϕ̂ onto Hϕ ⊗ L2(G) which maps

Λϕ̂(a) to Λϕ(x)⊗ f . Thus we will regard Hϕ̂ = Hϕ ⊗ L2(G) and

Λϕ̂(λα(f)πα(x)) = Λϕ(x)⊗ f for x ∈ nϕ, f ∈ L2(G).

Note that ϕ is α-invariant, and λα(t) is fixed by σϕ̂, that is, C ⊗ L(G) =

{λα(t) | t ∈ G}′′ is contained in the centralizer Nϕ̂. The following formulae are

frequently used:

σϕ̂t (πα(x)) = πα(σϕt (x)), σϕ̂t (λα(f)) = λα(f)

for all t ∈ R, x ∈M and f ∈ L1(G).

Denote by ∆G the modular function of G. In the following, dt denotes a left

invariant Haar measure on G. Then L1(G) is a Banach ∗-algebra equipped with

the convolution product and the involution defined as follows:

(f ∗ g)(t) :=

∫
G

f(s)g(s−1t) ds, f∗(t) := ∆G(t−1)f(t−1)

for f, g ∈ L1(G) and t ∈ G. We further recall the following useful formulae:

d(st) = dt, d(ts) = ∆G(s)dt, d(t−1) = ∆G(t−1)dt.

For g ∈ Cc(G), let us introduce a map Rg : Hϕ → Hϕ̂ satisfying

RgΛϕ(x) := Λϕ̂(λα(g)πα(x)λα(g)∗) for x ∈ nϕ.
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This map is bounded since

Λϕ̂(λα(g)πα(x)λα(g)∗) = Jϕ̂λ
α(g)Jϕ̂Λϕ̂(λα(g)πα(x)) = Jϕ̂λ

α(g)Jϕ̂(Λϕ(x)⊗ g),

and ‖Rg‖ ≤ ‖g‖1‖g‖2. We will improve this estimate as follows.

Lemma 5.2. Let g ∈ Cc(G). Then

(1) Rg is a c.p. operator;

(2) ‖Rg‖ ≤ ‖∆−1/2
G · (g∗ ∗ g)‖2.

Proof. (1) Let x ∈ mϕ be an entire element with respect to σϕ. Then xJϕΛϕ(x) =

Λϕ(xσϕi/2(x)∗), and

RgxJϕΛϕ(x) = RgΛϕ(xσϕi/2(x)∗) = Λϕ̂(λα(g)πα(xσϕi/2(x)∗)λα(g)∗)

= Λϕ̂(λα(g)πα(x) · σϕ̂i/2(λα(g)πα(x))∗)

= λα(g)πα(x)Jϕ̂Λϕ̂(λα(g)πα(x)),

which belongs to Pϕ̂. Thus RgPϕ ⊂ Pϕ̂.

Consider the action α⊗ idn on M ⊗Mn for n ≥ 1. Let R̃g : Hψ → Hψ̂ be the

map as defined above, where ψ := ϕ⊗ trn. We have proved that R̃g is positive. By

the natural identification Hψ = Hϕ⊗Mn and ψ̂ = ϕ̂⊗ trn, the map R̃g = Rg⊗ idn
is positive. Hence Rg is n-positive for all n.

(2) Let x ∈ nϕ. Then

πα(x)λα(g)∗ = πα(x)λα(g∗) = πα(x)

∫
G

g∗(t)λα(t) dt

=

∫
G

g∗(t)λα(t)πα(αt−1(x)) dt.

Since λα(g)λα(t) = ∆G(t−1)λα(gt−1), where gt−1(s) := g(st−1), we have

λα(g)πα(x)λα(g)∗ =

∫
G

∆G(t−1)g∗(t)λα(gt−1)πα(αt−1(x)) dt.

Then

RgΛϕ(x) =

∫
G

∆G(t−1)g∗(t) Λϕ(αt−1(x))⊗ gt−1 dt

=

∫
G

g∗(t−1) Λϕ(αt(x))⊗ gt dt.
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Hence for y ∈ nϕ, we obtain

〈RgΛϕ(x), RgΛϕ(y)〉 =

∫
G×G

g∗(t−1)g∗(s−1)〈Λϕ(αt(x))⊗ gt,Λϕ(αs(y))⊗ gs〉 ds dt

=

∫
G×G

g∗(t−1)g∗(s−1)ϕ(y∗αs−1t(x))〈gs−1t, g〉 ds dt

=

∫
G×G

g∗(t−1s−1)g∗(s−1)ϕ(y∗αt(x))〈gt, g〉 ds dt.

Since∫
G

g∗(t−1s−1)g∗(s−1) ds =

∫
G

g∗(t−1s)g∗(s)∆G(s−1) ds

=

∫
G

∆G(t−1) ·∆G(t−1s)−1g∗(t−1s)g∗(s) ds

=

∫
G

∆G(t−1) · (g∗)∗(s−1t)g∗(s) ds = ∆G(t−1)(g∗ ∗ g)(t),

and 〈gt, g〉 = (g∗ ∗ g)(t), we have

〈RgΛϕ(x), RgΛϕ(y)〉 =

∫
G

∆G(t−1)|g∗ ∗ g(t)|2ϕ(y∗αt(x)) dt.

This implies that

(5.1) R∗gRgΛϕ(x) =

∫
G

∆G(t−1)|g∗ ∗ g(t)|2 Λϕ(αt(x)) dt,

and so

‖R∗gRg‖ ≤
∫
G

∆G(t−1)|g∗ ∗ g(t)|2 dt = ‖∆−1/2
G · (g∗ ∗ g)‖22.

Remark 5.3. If there exists a non-zero x ∈ nϕ ∩ Mα, then the equality (5.1)

implies ‖Rg‖ = ‖∆−1/2
G · (g∗ ∗ g)‖2.

Now let U be the collection of all compact neighborhoods of the neutral ele-

ment e ∈ G. We equip U with the structure of a directed set with U ≤ V if and

only if V ⊂ U for U, V ∈ U .

For each U ∈ U , take a non-zero gU ∈ Cc(G) such that supp gU ⊂ U . Now let

kU (t) := ‖∆−1/2
G · (g∗U ∗ gU )‖−2

2 ∆G(t−1)|(g∗U ∗ gU )(t)|2 for t ∈ G.

Note that g∗U ∗ gU is non-zero since so is gU .

The following lemma is a direct consequence of the definition.
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Lemma 5.4. The function kU has the following properties:

• kU (t) ≥ 0 for all t ∈ G;

• supp kU ⊂ U−1U ;

•
∫
G
kU (t) dt = 1.

In particular, for any continuous function f on G,

lim
U

∫
G

kU (t)f(t) dt = f(e).

Lemma 5.5. Let RgU be as before. Then

(1) SU := ‖∆−1/2
G · (g∗U ∗ gU )‖−1

2 RgU is a c.c.p. operator from Hϕ into Hϕ̂;

(2) S∗USU → 1Hϕ in the strong topology of B(Hϕ).

Proof. (1) It is clear from Lemma 5.2 that SU is a c.c.p. operator.

(2) Let x ∈ nϕ. By (5.1), we have

‖S∗USUΛϕ(x)− Λϕ(x)‖ ≤
∫
G

kU (t)‖Λϕ(αt(x))− Λϕ(x)‖ dt.

Applying Lemma 5.4 to f(t) := ‖Λϕ(αt(x))− Λϕ(x)‖, we are done.

Proof of Theorem 5.1. Let F be the collection of all finite sets contained in nϕ. It

is trivial that {Λϕ(x) | x ∈ F}F∈F forms a net of finite sets in Hϕ whose union

over F ∈ F is dense in Hϕ.

Let F ∈ F be a non-empty set. Employing Lemma 5.5, we can take UF ∈ U
so that

(5.2) ‖S∗UF SUF Λϕ(x)− Λϕ(x)‖ < 1/|F | for x ∈ F.

Next, let Tγ be a net of c.c.p. compact operators on Hϕ̂ such that Tγ → 1 in

the strong topology of B(Hϕ̂). Then we can find γF such that

(5.3) ‖TγF SUF Λϕ(x)− SUF Λϕ(x)‖ < 1/|F | for x ∈ F.

Now set T̃F := S∗UF TγF SUF . Then T̃F is a c.c.p. compact operator on Hϕ, and

by (5.2) and (5.3), we have

‖T̃FΛϕ(x)− Λϕ(x)‖ < 2/|F | for all x, y ∈ F, F ∈ F .

This implies that T̃F → 1Hϕ in the strong topology.

Corollary 5.6. Let G be a locally compact abelian group and α an action on a

von Neumann algebra. Then M has the HAP if and only if so does M oα G.
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Proof. The “if” part is nothing but Theorem 5.1. To prove the “only if” part,

suppose that M has the HAP. Then so does M ⊗ B(L2(G)) by Corollary and

Theorem 3.7. The Takesaki duality states that M ⊗ B(L2(G)) is isomorphic to

(M oα G) oα̂ Ĝ. Hence M oα G has the HAP by Theorem 5.1.

It is well-known that the crossed product M oσϕ R does not depend on the

choice of the f.n.s. weight ϕ. So, we denote it by M̃ and call it the core of M . The

reader is referred to [FT], [Ta2] for the cores.

Corollary 5.7. Let M be a von Neumann algebra and M̃ the core. Then M has

the HAP if and only if so does M̃ .

Remark 5.8. M. Caspers and A. Skalski independently introduced the notion of

the Haagerup approximation property for arbitrary von Neumann algebras in their

setting. One may wonder whether the two definitions differ or not. Actually, these

formulations are equivalent as shown below though we give an indirect proof using

cores. In either way, a von Neumann algebra has the HAP if and only if so does its

core. (See [CS, Corollary 5.10, Theorem 6.6].) Thus we may and do assume that

M is finite or of type II∞. If M is of type II∞, then M has a finite projection e

with central support 1. Considering the corner eMe, we may and do assume that

M is finite. (See [CS, Lemma 4.1, Proposition 5.9].) Then it is fairly trivial that

our definition coincides with [CS, Definition 3.1] for a faithful normal tracial state

by Theorem 4.9.

As an application of Corollary 5.7, we will prove the following result, which

generalizes Theorem 3.6.

Theorem 5.9. Let N ⊂ M be an inclusion of von Neumann algebras. Suppose

that there exists a norm one projection from M onto N . If M has the HAP, then

so does N .

To prove this, we may assume that N and M are properly infinite by consid-

ering N ⊗ B(`2) ⊂ M ⊗ B(`2) if necessary. Let M̃ be the core of M , which has

the HAP by Corollary 5.7. Note that there exists a norm one projection from M̃

onto M , obtained by averaging the dual action on M̃ . Thus we may assume that

M is semifinite. Let N = Q oθ R be a continuous decomposition of N for some

R-action θ on a semifinite von Neumann algebra Q. By Corollary 5.6, it suffices

to prove that Q has the HAP.

Therefore we may assume that N and M are semifinite. Let p ∈ N be a finite

projection with central support 1 in N . By Corollary 3.13, our task is reduced

to proving that pNp has the HAP. So, we may assume that N is finite and also

σ-finite by the usual reduction argument with Proposition 3.5.
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In the following discussion, τN and τM denote a faithful normal tracial state

on N and a f.n.s. tracial weight on M , respectively. Thanks to [Ha3, Theorem 5.1],

there exists a unique f.n.s. operator valued weight T from M onto N such that

τM = τN ◦ T .

Recall the following lemma [A-D, Lemma 3.7] originally due to Connes (see

[Co2, p. 102]).

Lemma 5.10. Let N and M be as in Theorem 5.9. Then for any δ > 0 and a

finite subset F ⊂ N , there exists a normal state ϕ on M such that

‖ϕ|N − τN‖N∗ < δ,(5.4)

‖aϕ− ϕa‖M∗ < δ for all a ∈ F.(5.5)

In the following, we will use the notations

|x|τM := τM (|x|), ‖x‖τM := τM (x∗x)1/2 for x ∈M,

as well as the notations | · |τN and ‖ · ‖τN . An important fact is that they satisfy

the triangle inequality by the tracial property.

Lemma 5.11. Let N and M be as in Theorem 5.9. Then for any ε > 0 and a

finite subset F ⊂ N , there exists b ∈ nτM ∩M+ and a projection e ∈ N such that

• τM (b2) ≤ 1;

• (1− ε)e ≤ T (b2) ≤ (1 + ε)e;

• τN (1− e) < ε;

• ‖ΛτM (ab)− ΛτM (ba)‖ < ε for all a ∈ F .

Proof. We may and do assume that F consists of unitary operators. Let us take

1 ≥ δ > 0 small enough so that 10δ1/4 < ε2, 1− ε < (1− δ1/4)2, and (1 + δ1/4)2 <

1 + ε. Applying Lemma 5.10 to δ and F , we obtain a state ϕ ∈M∗ satisfying (5.4)

and (5.5). Take the unique vector ξ ∈ PM such that ϕ = ωξ, where PM denotes

the natural cone of M realized in the GNS Hilbert space HτM . We may and do

assume that ξ = ΛτM (b) for some positive b ∈ nτM . Then we have

ϕ(x) = τM (bxb) = τM (b2x) = τN (T (b2)x) for x ∈ N.

In particular, 1 = ϕ(1) = τN (T (b2)), and thus h := T (b2) is an operator

in L1(N, τN )+, where L1(N, τN )+ denotes the positive operators in L1(N, τN ),

the non-commutative L1-space with respect to the finite von Neumann algebra

{N, τN}. The L1-norm is denoted by | · |τN . The L2-space of {N, τN} and the

L2-norm are denoted by L2(N, τN ) and ‖ · ‖τN . For more details about the non-

commutative Lp-space with respect to a faithful normal semifinite tracial weight,
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the reader may refer to [Ta2, IX.2]. Then (5.4) implies

(5.6) |h− 1|τN < δ.

Applying the Araki–Powers–Størmer inequality to (5.5), we have

(5.7) ‖ΛτM (ubu∗)− ΛτM (b)‖ ≤ ‖uϕu∗ − ϕ‖1/2 < δ1/2.

Thus our task is to modify h so that we get a suitable estimate of the operator

norm of h. Using the Araki–Powers–Størmer inequality, we have

(5.8) ‖h1/2 − 1‖2τN ≤ |h− 1|τN < δ by (5.6).

Let h =
∫∞

0
λ de(λ) be the spectral decomposition. Set

αδ := (1− δ1/4)2, βδ := (1 + δ1/4)2,

e1 := e([0, αδ)), e2 := e((βδ,∞]).

Then it follows from (5.8) that

δ1/2τN (e1) ≤
∫

[0,αδ)

|λ1/2 − 1|2 dτ(e(λ)) ≤ ‖h1/2 − 1‖2τN < δ,

δ1/2τN (e2) ≤
∫

(βδ,∞]

|λ1/2 − 1|2 dτ(e(λ)) ≤ ‖h1/2 − 1‖2τN < δ.

Thus

(5.9) |e1|τN = τN (e1) < δ1/2, |e2|τN = τN (e2) < δ1/2.

Define e := e([αδ, βδ]) ∈ N and b′ := (eb2e)1/2 ∈M . Then

τN (1− e) = τN (e1) + τN (e2) < 2δ1/2 < ε,

τM (b′2) = τM (eb2e) = ϕ(e) ≤ 1.

Moreover,

T (b′2) = T (eb2e) = eT (b2)e = ehe ≤ βδe ≤ (1 + ε)e,

and similarly (1− ε)e ≤ T (b′2).

Next we have

|T (b′2)− 1|τN = |ehe− 1|τN ≤ |e(h− 1)e|τN + |e− 1|τN ≤ |h− 1|τN + |e− 1|τN
< δ + 2δ1/2 < 3δ1/2 by (5.6), (5.9).

Let (1− e)b2 = v|(1− e)b2| be the polar decomposition with a partial isometry v

in M . Since

|(1− e)h|τN ≤ |(1− e)(h− 1)|τN + |1− e|τN < δ + 2δ1/2 < 3δ1/2,
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we have

|b2(1− e)|τM = |(1− e)b2|τM = τM (v∗(1− e)b2) = τM (bv∗(1− e)b)(5.10)

≤ τM (bv∗vb)1/2τM (b(1− e)b)1/2

≤ τM (b2)1/2τM ((1− e)b2)1/2 = τN ((1− e)h)1/2

= |(1− e)h|1/2τN <
√

3 δ1/4.

Hence

(5.11) |b2 − eb2e|τM ≤ |(1− e)b2|τM + |eb2(1− e)|τM < 2
√

3δ1/4.

Then for u ∈ F , we have

‖ΛτM (ub′)− ΛτM (b′u)‖2 = ‖ΛτM (ub′u∗)− ΛτM (b′)‖2 ≤ |ub′2u∗ − b′2|τM
≤ |u(e− 1)b2eu∗|τM + |ub2(e− 1)u∗|τM

+ |ub2u∗ − b2|τM + |b2 − eb2e|τM
≤ 4
√

3δ1/4 + |ub2u∗ − b2|τM by (5.10), (5.11).

In the above, the second inequality follows from the Araki–Powers–Størmer in-

equality. Using again the Araki–Powers–Størmer inequality and (5.7), we obtain

‖ΛτM (ub′)− ΛτM (b′u)‖2 ≤ 4
√

3δ1/4 + 2‖ΛτM (ubu∗)− ΛτM (b)‖τM
< 4
√

3δ1/4 + 2δ1/2 < 10δ1/4 < ε2.

Therefore, b′ does the job.

Let b be as in Lemma 5.11. We define an operator Rb : HτN → HτM by

Rb(xξτN ) := ΛτM (b1/2xb1/2) for x ∈ N.

We now show that Rb is a well-defined bounded operator. Let x, y ∈ N . Then

〈Rb(xξτN ), Rb(yξτN )〉 = 〈ΛτM (b1/2xb1/2),ΛτM (b1/2yb1/2)〉 = τM (b1/2y∗bxb1/2)

= τM (by∗bx) = 〈ΛτM (bx),ΛτM (yb)〉.

We have

‖ΛτM (bx)‖2 = τM (x∗b2x) = τN (x∗T (b2)x) ≤ (1 + ε)τN (x∗x),

so ‖ΛτM (bx)‖ ≤ (1 + ε)1/2‖xξτN ‖. Similarly, ‖ΛτM (yb)‖ ≤ (1 + ε)1/2‖yξτN ‖. Hence

|〈Rb(xξτN ), Rb(yξτN )〉| ≤ (1 + ε)‖xξτN ‖ ‖yξτN ‖.

This shows that ‖Rb‖ ≤ (1 + ε)1/2.
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Lemma 5.12. Let ε > 0 and F ⊂ N be as before. Take b and e as in Lemma

5.11. Let Rb be the associated operator defined above. Then

(1) Rb is a c.p. operator from HτN into HτM ;

(2) |〈R∗bRb(xξτN ), yξτN 〉 − 〈xξτN , yξτN 〉| < ε‖y‖ + 2ε‖x‖ ‖y‖ for all x ∈ F and

y ∈ N .

Proof. (1) This is trivial.

(2) Since ‖ΛτM (yb)‖ = τM (by∗yb)1/2 ≤ ‖y‖τM (b2)1/2 ≤ ‖y‖, we have

|〈R∗bRb(xξτN ), yξτN 〉 − 〈ΛτM (xb),ΛτM (yb)〉| = |〈ΛτM (bx)− ΛτM (xb),ΛτM (yb)〉|
≤ ‖ΛτM (bx)− ΛτM (xb)‖ ‖ΛτM (yb)‖
≤ ε‖y‖,

and

|〈ΛτM (xb),ΛτM (yb)〉 − 〈xξτN , yξτN 〉|

= |τM (by∗xb)− τN (y∗x)| = |τM (y∗xb2)− τN (y∗x)| = |τN (y∗x(T (b2)− 1))|
≤ |τN (y∗x(T (b2)− e))|+ |τN (y∗x(e− 1))|
≤ ‖x‖ ‖y‖ ‖T (b2)− e‖+ ‖x‖ ‖y‖τN (1− e) ≤ 2ε‖x‖ ‖y‖.

Hence we are done.

Proof of Theorem 5.9. We have assumed that N is finite and M is semifinite. Let

τN , τM and T be as before. The proof below is similar to that of Theorem 5.1.

Let F be the collection of all finite subsets in the norm unit ball of N . Then

F is a directed set as before. Applying Lemmas 5.11 and 5.12 to ε and F ∈ F , we

obtain b(ε, F ) ∈ nτM ∩M+ such that

|〈R∗b(ε,F )Rb(ε,F )(xξτN ), yξτN 〉 − 〈xξτN , yξτN 〉| < 3ε for all x, y ∈ F.

Since M has the HAP, there exists a c.c.p. compact operator T(ε,F ) on HτM

such that

|〈R∗b(ε,F )T(ε,F )Rb(ε,F )(xξτN ), yξτN 〉 − 〈R∗b(ε,F )Rb(ε,F )(xξτN ), yξτN 〉| < ε

for all x, y ∈ F . If we set U(ε,F ) := R∗b(ε,F )T(ε,F )Rb(ε,F ), then U(ε,F ) is a c.p.

compact operator on HτN , because T(ε,F ) is compact. It turns out that U(ε,F )

converges to 1 weakly from the fact that ‖U(ε,F )‖ ≤ ‖Rb(ε,F )‖2 ≤ 1 + ε and

|〈U(ε,F )(xξτN ), yξτN 〉 − 〈xξτN , yξτN 〉| < 4ε for all x, y ∈ F.

Then the net (1 + ε)−1U(ε,F ) does the job.
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Let G be a locally compact quantum group in the sense of [KV]. Roughly

speaking, G consists of a von Neumann algebra L∞(G) and a coproduct

∆: L∞(G) → L∞(G) ⊗ L∞(G). Then G is said to be amenable if there exists

a state m on L∞(G), called an invariant mean on G, such that (id ⊗m) ◦ ∆(x)

= m(x).

Let α be an action of G on a von Neumann algebra M , that is, α is a unital

faithful normal ∗-homomorphism from M into M⊗L∞(G) such that (α⊗ id)◦α =

(id⊗∆) ◦α. If m is an invariant mean on G, then the map (id⊗m) ◦α is a norm

one projection from M onto Mα := {x ∈ M | α(x) = x ⊗ 1}, the fixed point

algebra. Thus the following result is an immediate consequence of Theorem 5.9.

Corollary 5.13. Let G be an amenable locally compact quantum group. Let α be

an action of G on a von Neumann algebra M . If M has the HAP, then the fixed

point algebra Mα has the HAP.

By a duality argument, we can generalize Theorem 5.1 as follows.

Corollary 5.14. Let G be a locally compact quantum group whose dual quantum

group is amenable. Let α be an action of G on a von Neumann algebra M . If

M oα G has the HAP, then so does M .

Finally, we present a generalization of Corollary 5.6 that is obtained from the

previous corollary and the fact that M oα G equals the fixed point algebra of

M ⊗ B(L2(G)) under the G-action.

Corollary 5.15. Let G be an amenable locally compact quantum group whose

dual quantum group is also amenable. Let α be an action of G on a von Neumann

algebra M . Then M oα G has the HAP if and only if so does M .

Remark 5.16. If we apply the same proof of Theorem 5.9 to the inclusion N ⊂M
such that M is semidiscrete, then we can show that N is semidiscrete. In particular,

this gives a proof of the fact that injectivity implies semidiscreteness. Indeed, let

M be an injective von Neumann algebra which acts on a Hilbert space H. Then

we have a norm one projection E from B(H) onto M . Since B(H) is semidiscrete,

so is M .
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