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Multidegrees of Monomial Rational Maps

by

Paolo Aluffi

Abstract

We prove a formula for the multidegrees of a rational map defined by generalized mono-
mials on a projective variety, in terms of integrals over an associated Newton region. This
formula leads to an expression of the multidegrees as volumes of related polytopes, in
the spirit of the classical Bernstein–Kouchnirenko theorem, extending the scope of these
formulas to more general monomial maps. We also determine a condition under which the
multidegrees may be computed in terms of the characteristic polynomial of an associated
matrix.
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§1. Introduction

Let V ⊆ Pr be a projective variety, and ϕ : V 99K PM a rational map. The

multidegrees γ` of ϕ, ` = 0, . . . ,dimV , are the coefficients of the class of the

(closure of the) graph Γ of this map in Pr × PM , to wit

γ` = hdimV−` ·H` · Γ,

where h, resp., H is the pull-back of the hyperplane class in Pr, resp., PM . The

numbers γ` are obviously significant: for example, γdimV = 0 if and only if the

general nonempty fiber of ϕ is positive dimensional; and if the general nonempty

fiber consists of D reduced points, then γdimV is the product of D and deg(imϕ).

When V = Pr and M = r, ϕ is a Cremona transformation if and only if γr = 1.

In general, γ0 = deg V and γi = 0 if and only if i > dim(imϕ); if V = Pr and

i < dim(imϕ), γi may be interpreted as the degree of the closure of the image of

a general Pi ⊆ Pr. We assemble the multidegrees into a polynomial
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γϕ(t) = γ0 + γ1t+ γ2t
2 + · · ·

of degree dim(imϕ). This polynomial does not depend on the dimension r of the

space containing V ; it does depend on the hyperplane class of the embedding

V ↪→ Pr. We can in fact define a multidegree class (§2.1) on V as the push-forward

to V of (
∑
`≥0H

`) · [Γ]; this is independent of any projective embedding of V ,

and our results will in fact deal with this class. In this introduction we will state

the results for the multidegree polynomial, to remain closer to the more classical

notion. We note that Macaulay2 ([GS]) includes a multidegree command, which is

very useful for experimentations involving concrete examples.

We consider rational maps ϕ whose components are monomials µ0, . . . , µM in

sections sj of line bundles Lj , j = 1, . . . , n, on V , of course subject to the condition

that all monomials are sections of the same line bundle L . For example, ϕ could

be the restriction to V of a rational map Pr 99K PM defined by isobaric monomials

in a collection of homogeneous polynomials. The hypersurfaces Xj defined by sj
on V are required to satisfy a weak transversality hypothesis, explained in §2.2.

For simplicity, the reader may assume that V is nonsingular and the Xj form a

simple normal crossing divisor, but much less is needed: local equations for the

divisors Xj only need to determine regular sequences, i.e., to meet with regular

crossings in the sense of [Har15]; and V is not required to be nonsingular (see §2.2

for further details). We say that ϕ is r.c. monomial if it satisfies this condition.

We now state the result. The monomials µi = smi1
1 · · · smin

n determine lattice

points (mi1, . . . ,min) in Zn ⊆ Rn (with coordinates (a1, . . . , an)). We move this

set of points so that one of them is at the origin, by setting m′ij = mij − mMj

for i = 0, . . . ,M . Notice that the lattice points m′i = (m′i1, . . . ,m
′
in) all lie on the

subspace d1a1 + · · · + dnan = 0, where dj = hdimV−1 · Xj is the degree of Xj

viewed as an algebraic set in Pr.
We denote by Nϕ the convex hull of the positive orthants translated at the

lattice points m′i; we call Nϕ the Newton outer region of ϕ.

Theorem 1.1. Let ϕ : V 99K PM be a r.c. monomial rational map. Then

(1.1) γϕ(t) =

∫
Nϕ

n!X1 · · ·Xnt
nhdimV+1 da1 · · · dan

(h+ (a1X1 + · · ·+ anXn)t)n+1
.

Remark 1.2. (i) The integral should be interpreted as follows. Perform the in-

tegral with Xj , h, and t as parameters; the result is a rational function in these

parameters. Part of the content of the statement is that after replacing the parame-

ters Xj by the classes of the corresponding divisors in V , and h by the restriction of

the hyperplane class from Pr, this rational function gives a polynomial in t; the co-

efficient of t` in this polynomial is a homogeneous polynomial of degree dimV in the
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classes Xj and h. The statement is that replacing the terms hdimV−` ·Xj1 · · ·Xj`

in this polynomial with the corresponding intersection numbers determines the

`-th multidegree γ`.

(ii) The convex region Nϕ depends on the choice of the pivoting monomial.

It is a consequence of the theorem that this choice does not affect the result of

evaluating the integral as specified in (i).

Example 1.3. Let F1, F2, F3 be general homogeneous polynomials in x0, x1, x2

of degrees 1, 2, 3 respectively. Consider the rational map ϕ : P2 99K P2 given in

components by (x0, x1, x2) 7→ (F2F
2
3 , F

2
1F

2
3 , F

3
1F2F3). According to Theorem 1.1,

the multidegrees of ϕ are the coefficients of t` in∫
Nϕ

n!X1 · · ·Xnt
nhdimV+1 da1 · · · dan

(h+ (a1X1 + · · ·+ anXn)t)n+1
,

where n = 3, dimV = 2, X1, X2, X3 are the curves F1 = 0, F2 = 0, F3 = 0,

respectively, and Nϕ is the Newton outer region determined by the lattice points

(0, 1, 2), (2, 0, 2), (3, 1, 1) translated back to A = (−3, 0, 1), B = (−1,−1, 1), C =

(0, 0, 0). That is, Nϕ is the region in R3 extending from the triangle ABC towards

the three positive coordinate directions.

A

C

B

The reader will easily verify that∫
Nϕ

6X1X2X3t
3h3 da1da2da3

(h+ (a1X1 + a2X2 + a3X3)t)4

=
h2(h2 + (−4X1 + 3X3)ht+ (3X2

1 + 3X1X2 − 5X1X3 −X2X3 + 2X2
3 )t2)

(h+ (−3X1 +X3)t)(h+ (−X1 −X2 +X3)t)
.

As promised, the denominator disappears (canceling the extra factor at numerator)

after setting X1 = h, X2 = 2h, X3 = 3h; we get (as h2 = 1)

γϕ(t) = 1 + 5t+ 6t2,

i.e., γ0 = 1, γ1 = 5, γ2 = 6. This says that ϕ is generically 6-to-1. Since the class of
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the monomials was 8h to begin with, we see that the base locus of ϕ contributes 58

to the intersection number (8h)2.

The integral appearing in Theorem 1.1 may be computed from a decomposi-

tion of the region Nϕ into simplices, including the positive coordinate directions

as possible vertices (at infinity). We will use notation as in [Alu15, §2.2]: in par-

ticular, if a simplex T has s+ 1 finite vertices, its rank is rkT = s; and the volume

of T is the normalized volume of the projection along its infinite directions. Also,

we let deg T denote hdimV−rkT ·
∏
Xj , where the (intersection) product is taken

over the complement of the infinite directions in T . We denote by ai the vertex at

infinity in the positive direction of the coordinate ai.

Theorem 1.4. Let ϕ be a r.c. monomial rational map. Then

(1.2) γϕ(t) =
∑
T

V̂ol(T ) deg(T )trkT

where the sum ranges over the full-dimensional simplices T in a triangulation of

Nϕ, with vertices chosen among vertices of Nϕ and infinite coordinate vertices.

Example 1.5. For the case illustrated in Example 1.3, a triangulation of Nϕ
consists of the simplices T1 = Ca1a2a3, T2 = ACa2a3, T3 = ABa1a3, T4 =

ABCa1. We have rkT1 = 0; rkT2 = rkT3 = 1; rkT4 = 2; V̂ol(T1) = 1, V̂ol(T2) = 3,

V̂ol(T3) = V̂ol(T4) = 1 (as e.g., the projection of T4 on the a2a3 plane is the triangle

with vertices (1, 2), (0, 2), (1, 1)); and deg T1 = h2−0 = 1, deg T2 = h2−1 ·X1 = 1,

deg T3 = h2−1 ·X2 = 2, deg T2 = h2−2 ·X2 ·X3 = 6. According to Theorem 1.4,

γϕ(t) = 1 + 3 · 1 t+ 1 · 2 t+ 1 · 6 t2,
agreeing with the previous computation.

Remark 1.6. The diagram determined by a choice of monomials and the vol-

umes of the individual simplices of a decomposition are independent of the source

variety V . Thus we could use the same data obtained in Example 1.5 to ob-

tain the multidegree for the restriction ϕ′ of the map defined in Example 1.3 to

any degree-d curve V ⊆ P2, as long as the restrictions of the curves F1 = 0,

F2 = 0, F3 = 0 to V meet with regular crossings. Here, this means that V should

avoid the points of intersection of these curves. With such a choice of V we have

deg T1 = h1−0 · V = d, deg T2 = h1−1 · X1 · V = d, deg T3 = h1−1 · X2 · V = 2d,

and deg T2 = h1−2 ·X2 ·X3 · V = 0 (by dimension considerations). According to

Theorem 1.4,

γϕ′(t) = d+ 3 · d t+ 1 · 2d t+ 1 · 0 t2 = d+ 5d t.

This says in particular that the degree of the image of a suitably general degree-d

curve V ⊆ P2 via ϕ must be 5d.
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Remark 1.7. In the particular case where V = Pr and Xj = coordinate hyper-

planes, the multidegrees of rational monomial maps may be computed via toric

methods by mixed volumes of Minkowski sums of polytopes (see e.g. [GSP06, §4]

or [Dol, §3.5]). In particular, the top degree may be expressed as the ordinary

(normalized) euclidean volume of a convex polytope; this is an instance of the

Bernstein–Kouchnirenko theorem. The leading coefficient of (1.2) reproduces this

result in this particular case, and extends it to the more general monomial maps

on arbitrary projective varieties considered here, where toric techniques do not

seem to be immediately applicable. Even for these very special monomial maps, it

would be interesting to understand more fully the relation between the ordinary

volumes appearing in Theorem 1.4 and the mixed volumes obtained by applying

the Bernstein–Kouchnirenko theorem.

In the case M = r = n − 1, Nϕ has one finite face which (if nondegener-

ate) is an (n − 1)-simplex in Rn. The map ϕ is determined by the n × n matrix

M′ϕ = (m′ij) whose rows m′i consist of the translated lattice points, as above. (So

one row of M′ϕ is 0.) We say that ϕ is well-presented if the following requirement

on M′ϕ is satisfied. Every choice of a set I of indices i1, . . . , i` determines a pro-

jection Rn → Rn−` along the coordinate directions ai1 , . . . , ai` . We require that

the projection of the Newton outer region of ϕ be the Newton outer region deter-

mined by the projections of the rows m′k for k /∈ I. (We also require a condition on

the signs of certain minors of Mϕ; see §4.2.) For example, the standard Cremona

transformation (x1 : · · · : xn) 7→
(

1
x1

: · · · : 1
xn

)
trivially satisfies this condition.

We prove that if ϕ is well-presented, then the multidegree polynomial of ϕ

may be computed directly from the characteristic polynomial of the matrix M′ϕ.

The precise statement in the generality considered here is given in Theorem 4.11;

for ordinary monomial rational maps ϕ : Pn−1 99K Pn−1, the result may be stated

as follows. Let

α : (x1, . . . , xn−1) 7→ (xa111 · · ·xa1,n−1

n−1 , . . . , x
an−1,1

1 · · ·xan−1,n−1

n−1 )

be a morphism of tori, with aij ∈ Z, inducing a rational map ϕ : Pn−1 99K Pn−1.

Let A = (aij) be the matrix of exponents of α, with characteristic polynomial

PA(t) = det(tI −A).

Theorem 1.8. If the monomial rational map ϕ : Pn−1 99K Pn−1 is well-presented,

then γϕ(t) = tn−1PA(1/t).

It would be interesting to provide alternative characterizations of well-pre-

sented monomial rational maps.
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§2. Proof of Theorem 1.1

§2.1. The multidegree class

We work over an algebraically closed field.

Fulton–MacPherson intersection theory yields a direct relation between the

multidegrees of a rational map ϕ : Pr 99K PM and the degrees of the Segre classes

of the base scheme of ϕ: see e.g. [Alu03, Proposition 3.1], [GSP06, Proposition 5],

or [Dol, Proposition 2.3.1]. The case considered here requires the straightforward

generalization of this relation to the case of rational maps ϕ : V 99K PM , where V

is a subvariety of Pr.
Notation: Let V be a closed subvariety (or subscheme) of Pr, L a line bundle

on V , and let ϕ : V 99K PM be the rational map determined by a linear system

in H0(V,L ). Let Γ ⊆ V × PM be the closure of the graph of ϕ, and let G be its

‘shadow’ in V :

G := π∗((1 +H +H2 + · · · ) ∩ [Γ]),

where H is the pull-back of the hyperplane class from the PM factor, and π : Γ→ V

is the projection. This is the ‘multidegree class’ mentioned in the introduction; the

multidegrees of ϕ are the degrees of the components of G, viewed as classes in Pr:

γϕ(t) =

∫
(1 + ht+ h2t2 + · · · ) ∩G =

∑
`≥0

(hdimV−` ·G`)t`,

where h is the pull-back of the hyperplane class from Pr, and G` is the term of

codimension ` in G. Thus, computing the multidegree polynomial is reduced to

computing the multidegree class G.

Lemma 2.1. Let i : S ⊆ V be the base scheme of the linear system defining ϕ.

Then

G = c(L ∗)−1(([V ]− i∗s(S, V ))⊗V L ∗).

Here we are using the ⊗ notation introduced in §2 of [Alu94]: if a is a class of

codimension p in A∗V , then a⊗V L ∗ denotes c(L ∗)−p ∩ a; the class a⊗V L ∗ is

defined for all a ∈ A∗V by extending this prescription by linearity. Propositions 1

and 2 in [Alu94] detail a few simple properties of this operation, freely used in

what follows.

Proof of Lemma 2.1 (cf. [Alu03, Proposition 3.1]). If we identify Γ with the blow-

up of V along S, the class of the exceptional divisor E is seen to equal D − H,

where D = π∗c1(L ). Thus
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G = π∗

(
1

1−H
∩ [Γ]

)
= c(L ∗)−1 ∩ π∗

(
1−D
1−H

∩ [Γ]

)
= c(L ∗)−1 ∩ π∗

((
1−D
1−H

∩ [Γ]

)
⊗Γ L ⊗Γ L ∗

)
= c(L ∗)−1 ∩ π∗

((
1

1 +D −H
∩ [Γ]

)
⊗Γ L ∗

)
= c(L ∗)−1 ∩ π∗

(((
1− E

1 + E

)
∩ [Γ]

)
⊗Γ L ∗

)
= c(L ∗)−1 ∩

(
[V ]− π∗

(
E

1 + E
∩ [Γ]

)
⊗V L ∗

)
= c(L ∗)−1([V ]− i∗s(S, V )⊗V L ∗)

as stated.

§2.2. R.c. monomial schemes and maps

Now assume that ϕ is monomial in the sense specified in §1: the linear system defin-

ing ϕ is generated by monomials µ0, . . . , µM in sections sj of line bundles Lj , j =

1, . . . , n, on V ; if µi = smi1
1 · · · smin

n , we assume L ⊗mi1
1 ⊗· · ·⊗L ⊗min

n
∼= L for all i.

We let Xj denote the zero-scheme of sj . The zero-schemes of the monomials

µi are effective divisors supported on the union of the Xj ’s, and the intersection of

these divisors, i.e., the base scheme S of ϕ, is a monomial scheme. The condition

we require of the hypersurfaces Xj is that monomial schemes defined with respect

to X1, . . . , Xn may be principalized by a sequence of blow-ups along codimension 2

monomial subschemes defined with respect to the proper transforms of the Xj ’s

and the exceptional divisors in the blow-up sequence. C. Harris [Har15] proves

that this condition holds if the hypersurfaces Xj meet with regular crossings, i.e.,

for all A ⊆ {1, . . . , n} and all p ∈
⋂
i∈AXi, the local equations for Xi, i ∈ A, form

a regular sequence at p. Harris’s theorem extends a result of R. Goward [Gow05,

Theorem 2], which deals with the normal crossings case and under the assumption

that V is nonsingular. In the situation considered by Harris, neither V nor the

Xj need to be smooth. For example, V could be an arbitrarily singular subvariety

of Pr, and the Xj could be obtained as intersections of V with components of a

divisor with simple normal crossings in Pr, such that V meets properly all strata

of this divisor.

If the Xj meet with regular crossings, then the base scheme S is a r.c. mono-

mial scheme in the sense of [Har15] and [Alu15], and we say that ϕ is a r.c. mono-

mial rational map. The theorems stated in the introduction hold under the as-

sumption that ϕ is r.c. monomial.



642 P. Aluffi

§2.3. Newton regions

In the situation described in §2.2, the base scheme S of ϕ is the subscheme

of V defined by the monomials µ0, . . . , µM . As in [Alu15], we associate with

the monomials µi = smi1
1 · · · smin

n the lattice points (mi1, . . . ,min) in Rn, and

the ‘Newton region’ N obtained as the (closure of the) complement in the pos-

itive orthant of the convex hull N c of the translations by µi of the positive or-

thants.

N

N c

O

If dj = hdimV−1 ·Xj , then for every i we have
∑
djmij = hdimV−1 ·

∑
mijXj =

hdimV−1·c1(L )∩[V ] =: d. Therefore all the vertices (mij) belong to the hyperplane

with equation d1a1 + · · ·+ dnan = d in Rn. We translate the vertices so that this

hyperplane goes through the origin, for example by subtracting the coordinates of

one vertex. (The choice of this pivoting monomial will be immaterial.)

O

Nϕ

The ‘Newton outer region’ Nϕ is the corresponding translation of the region N c.

Lemma 2.2. With notation as above,

[V ]− i∗s(S, V ) =

∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

.

Proof. Since S is r.c. monomial by assumption, by the main theorem in [Alu15] its

Segre class in V is evaluated by the integral over N of the same rational function

appearing on the right-hand side. Since the integral over the positive orthant is 1

(i.e., [V ]), the integral over N c equals [V ] − i∗s(S, V ) when viewed in A∗V , as

stated.
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§2.4. The main theorem

By Lemmas 2.1 and 2.2, the multidegree class is given by

G = c(L ∗)−1

(∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

⊗V L ∗
)
.

We can perform the ⊗V on the integrand. If µ = sm1
1 · · · smn

n is the pivoting

monomial, then m1X1 + · · ·+mnXn represents c1(L ) (once the Xj are replaced

with the homonymous cycles). Using the simple properties of ⊗V (cf. [Alu94, §2]),

we get

n!X1 · · ·Xn

(1+a1X1 + · · ·+anXn)n+1
⊗V L ∗ =

n!c(L ∗) ·X1 · · ·Xn

(1+(a1−m1)X1 + · · ·+(an−mn)Xn)n+1

and hence

(2.1) G =

∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + (a1 −m1)X1 + · · ·+ (an −mn)Xn)n+1

.

Now, as (a1, . . . , an) ranges over N c, the translated point (a1 −m1, . . . , an −mn)

ranges over Nϕ. Therefore, we have

Theorem 2.3. With notation as above, the multidegree class of a r.c. monomial

rational map V 99K Pn is given by

(2.2) G =

∫
Nϕ

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

.

Theorem 2.3 is the primary result. To complete the proof of Theorem 1.1, it

suffices to read off the degree hdimV−` ·G` from the components of the multidegree

class, where G` has codimension ` in V . From (2.2), inserting a dummy variable

u to keep track of codimensions, we see that

(2.3) G0 +G1u+G2u
2 + · · · =

∫
Nϕ

n!X1 · · ·Xnu
n da1 · · · dan

(1 + (a1X1 + · · ·+ anXn)u)n+1
.

Formally,

γϕ(t) = hdimV ·G0 + hdimV−1 ·G1 t+ hdimV−2 ·G2 t
2 + · · ·

= hdimV

(
G0 +G1

t

h
+G2

t2

h2
+ . . .

)
Implementing this formal manipulation in (2.3) yields the integral given in (1.1),

concluding the proof of Theorem 1.1.
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§3. Proof of Theorem 1.4

§3.1. Generalized simplices

Integrals such as the one appearing in Theorem 2.3 may be computed from a

triangulation of the region Nϕ. For us, a generalized simplex T of rank s in Rn

is the subset spanned by s + 1 affinely independent points v0, . . . , vs, and n − s
positive coordinate directions aj1 , . . . , ajn−s

(‘infinite vertices’). Thus,

T =
{ s∑
i=0

αivi +

n−s∑
k=1

βkejk

∣∣∣ ∀i, k : αi ≥ 0, βk ≥ 0, and
∑
i

αi = 1
}

where e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). The (normalized) volume V̂ol(T ) of

a simplex is the normalized volume of the simplex obtained by projecting T along

its infinite directions. The simplex may degenerate when the vertices are affinely

dependent; the volume of such an ‘empty’ simplex is 0.

A simple calculus exercise yields the following result.

Lemma 3.1. If T has finite vertices vi = (vi1, . . . , vis), i = 0, . . . , s, and infinite

vertices ajk , k = 1, . . . , n− s, then∫
T

n!X1 · · ·Xn da1 · · · dan
(1 + a1X1 + · · ·+ anXn)n+1

=
V̂ol(T )∏s

i=0(1 + vi1X1 + · · ·+ vinXn)
· X1 · · ·Xn∏n−s

k=1 Xjk

.

Proof. See [Alu15, Lemma 2.5].

§3.2. Multidegree class and volumes of simplices

The point now is that if (vi1, . . . , vin) is one of the translated monomials, i.e., one

of the vertices of Nϕ, then after evaluating the Xi’s to the corresponding classes,

vi1X1 + · · ·+ vinXn = 0.

Indeed, vi1X1+· · ·+vinXn is obtained by subtracting two classes both representing

c1(L ). Therefore, if T is part of a triangulation of Nϕ, and the finite vertices of T

are vertices of Nϕ, then the contribution of T to the multidegree class G is simply

(by Theorem 2.3)

V̂ol(T ) · X1 · · ·Xn∏n−s
k=1 Xjk

.

The factor

XT :=
X1 · · ·Xn∏n−s
k=1 Xjk
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for the generalized simplex T is the product of the classes Xj such that aj is not

an infinite vertex of T . As a class in A∗V , XT has codimension equal to the rank

of T . Summarizing, we get

Corollary 3.2. With notation as above, the multidegree class for ϕ is given by

(3.1) G =
∑
T

V̂ol(T ) ·XT

where the sum is over the generalized simplices in a triangulation of Nϕ, with finite

vertices at vertices of Nϕ.

Remark 3.3. The region Nϕ may be viewed as the convex hull of the (finite)

translated monomials and of the (infinite) positive coordinate directions. As such,

it always admits a triangulation whose simplices have vertices among these points

(cf. [DLRS10, §2.2]).

§3.3. Multidegree polynomial

If an embedding of V in a projective space Pr has been chosen, and h is the

restriction of the hyperplane class, it is now natural to let the degree of T be the

intersection number hdimV−rkT ·XT . By (3.1), we have

γ` =
∑

rkT=`

V̂ol(T ) deg(T ),

where the sum is over (maximal dimension) simplices of fixed rank in a triangula-

tion of Nϕ. In other words,

γϕ(t) =
∑
T

V̂ol(T ) deg(T )trk(T ),

concluding the proof of Theorem 1.4.

§4. Well-presented rational maps

§4.1. The matrix of a rational map

We now consider the n× (M + 1)-matrix Mϕ whose rows are the vectors

mi = (mi1, . . . ,min)

determined by the exponents of the monomials defining the rational map ϕ. We

aim at identifying a condition under which the multidegree polynomial of ϕ may

be obtained directly from this matrix. We specialize to the case M = n − 1,

and renumber the monomials from 1 to n, so the matrix Mϕ := (mij)i=1,...,n
j=1,...,n

is
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square. The motivating example is the case of dominant (ordinary) monomial maps

Pn−1 99K Pn−1, and monomial Cremona transformations in particular (cf. [Dol,

§3.5]); we remind the reader that our context is more general, in that the source

need not be projective space (or even nonsingular) and the monomials may be

built on sections of line bundles (cf. §§1 and 2).

§4.2. Well-presented maps

We say that ϕ is well-presented byM =Mϕ if the following condition holds. For

every subset I = {i1, . . . , i`} ⊆ {1, . . . , n}, we let MI be the matrix obtained by

removing the i-th row and column of M for all i ∈ I. We also let πI denote the

projection Rn≥0 → Rn−`≥0 along the i1, . . . , i` directions. We require that

• The projection πI(Nϕ) of the Newton outer region of ϕ equals the Newton outer

region determined by the projections πI(mk) for k 6∈ I.

• For all I ( {1, . . . , n}, the determinant ofMI either is 0 or has sign (−1)n−1−|I|.

Roughly, these conditions say that the ordered simplex determined by the rows

of the matrix M is in sufficiently general position with respect to the coordinate

directions.

Example 4.1. The standard Cremona transformation P2 99K P2, (x1 : x2 : x3) 7→
(x2x3 : x1x3 : x1x2), with matrix 0 1 1

1 0 1

1 1 0


is well-presented.

O

For example, for I = {3}, we see that the projection (1, 1) of the third row to the

horizontal plane is in the region determined by the projections (0, 1) and (1, 0) of

the other rows:
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Also, detM{3} = det
(

0 1
1 0

)
= −1, as required. The reader can verify that the

conditions are satisfied for all choices of I.

On the other hand, the identity P2 → P2 is not well-presented.

For example, for I = {3} we have the following projection:

The projection of the third row is not in the outer region determined by the other

two. Further, detM{3} = 1 6= (−1)1 in this case.

§4.3. The Newton region of a well-presented rational map

The main implication of the condition considered in §4.2 is the following descrip-

tion of the Newton region N determined by a well-presented monomial map: this

is the closure in the positive orthant of the complement of the outer region N c

determined by the rows ofMϕ. (Recall that the region Nϕ is a translation of N c.)

For example, for the Cremona transformation in Example 4.1, the Newton re-

gion consists of three infinite parallelepipeds along the coordinate axes, and one

tetrahedron connecting them:

Lemma 4.2. If ϕ is well-presented, then the corresponding Newton region is the

(non-overlapping) union over all proper subsets I = {i1, . . . , i`} ( {1, . . . , n} of

the generalized simplices with infinite vertices at ai1 , . . . , ai` and finite vertices at

the origin and the rows mk of Mϕ for k 6∈ I.
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This statement is well illustrated by the the Cremona example depicted above.

There are seven proper subsets of {1, 2, 3}; the tetrahedron in the middle corre-

sponds to I = ∅; the three infinite simplices to the singletons; and the three

simplices corresponding to the remaining three subsets are empty. More gener-

ally, the following picture (still for n = 3) may help in visualizing the content of

Lemma 4.2:

a
3

a
2

a
1

m
1

m
2

m
3O

The positive orthant is represented by the simplex Oa1a2a3, and a3 points towards

the reader. The triangle m1m2m3 is contained in the orthant, and m3 points

away from the reader. The region between the triangles m1m2m3 and a1a2a3 is

the region N c. The region N is its complement, i.e., the union of the simplices

Om1a2a3, Om1m2a3, etc., as prescribed by the lemma. In the Cremona case of

Example 4.1, the vertices m1, m2, m3 are on the faces Oa2a3, Oa1a3, Oa1a2,

respectively, so three of the simplices are degenerate.

Proof of Lemma 4.2. It is clear that N may be decomposed as a union of simplices

with vertices at the origin O, at some subset of infinite directions ai, i ∈ I ⊆
{1, . . . , n}, and at a subset of the rows of M. Also, I cannot consist of the whole

{1, . . . , n}, since the generalized simplex with vertices O, a1, . . . , an is the whole

positive orthant. For I = {i1, . . . , i`} properly contained in {1, . . . , n}, we have

to determine the set of n − ` rows mk completing O, ai1 , . . . , ai` to a simplex T

contained in N . For this, we project along I. For i ∈ I, πI(mi) is in the outer

region determined by the projections πI(mk) for k 6∈ I, by the first requirement

listed in §4.2. It follows that these latter n − ` rows must be the complementary

set of vertices of T , and this is the assertion of the lemma.

§4.4. The multidegree class of a well-presented map

Lemma 4.2 and volume computations give the following result. Recall that G

denotes the multidegree class (cf. §2.1), and that for I ⊆ {1, . . . , n}, MI de-

notes the matrix obtained by removing the i-th row and column from M for all

i ∈ I.
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Corollary 4.3. If ϕ is r.c.-monomial and well-presented by the matrixM =Mϕ,

then

(4.1) G = c(L ∗)−1 ∩
( ∑
I⊆{1,...,n}

(−1)n−|I|(detMI)
∏
k 6∈I

Xk

)
.

Proof. By (2.1) in §2.4,

G =

∫
Nc

n!X1 · · ·Xn da1 · · · dan
(1 + (a1 −mn1)X1 + · · ·+ (an −mnn)Xn)n+1

,

where we have used mn as pivot. As N is the complement of N c in the positive

orthant, and the integral over the orthant is c(L ∗), the decomposition of N ob-

tained in Lemma 4.2 and the formula for integrals over simplices (Lemma 3.1;

remember that O is a vertex of each simplex) give

G = c(L ∗)−1 ∩
(

1−
∑

I({1,...,n}

(V̂olTI)XTI

)
,

where TI is the simplex with vertices at the origin, ai for i ∈ I, and mk for k 6∈ I.

Now V̂ol(TI) is, by definition, the normalized volume of the simplex spanned by

the projections of the finite vertices of TI ; thus, it equals ± the determinant of

the matrix obtained by replacing, for i ∈ I, the i-th row of M with the standard

basis vector ei. In other words, this volume equals ±detMI , and by the second

requirement listed in §4.2 we have

V̂ol(TI) = (−1)n−1−|I| detMI

for I properly contained in {1, . . . , n}. Thus

G = c(L ∗)−1 ∩
(

1 +
∑

I({1,...,n}

(−1)n−|I|(detMI)XTI

)
.

The statement follows if we set detMI = 1 for I = {1, . . . , n} (the ‘empty

matrix’).

Since the nonzero components of the class G have codimension at most n−1,

the right-hand side of (4.1) is necessarily a polynomial of degree less than n in the

Xj ’s, once these are evaluated to the corresponding classes in A∗V . As we will see,

this fact has a more direct explanation.

We consider the matrix Mϕ(X) whose rows are the vectors

(mi1X1, . . . ,minXn).

As usual, the Xj ’s are considered as parameters at first, and will eventually be

evaluated to the corresponding classes in A∗V . For the considerations which follow,
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we impose the condition

(4.2) m11X1 +m12X2 + · · ·+m1nXn = · · · = mn1X1 +mn2X2 + · · ·+mnnXn.

Once the Xj are replaced with the corresponding classes c1(Lj) in A∗V , this

common value is c1(L ) by assumption. This amounts to the statement that the

column vector

( 1...
1

)
is an eigenvector of Mϕ(X), with eigenvalue c1(L ). Thus,

the characteristic polynomial of Mϕ(X) has a factor of t− c1(L ):

(4.3) det(tI −Mϕ(X)) = (t− c1(L )) ·Q(t)

for a polynomial Q(t) of degree n− 1. On the other hand, evaluating the charac-

teristic polynomial of Mϕ(X) at t = 1 gives the term in parentheses appearing

in (4.1): indeed,

(4.4) det(tI −Mϕ(X)) =
∑

I⊆{1,...,n}

t|I|(−1)n−|I|(detMI)
∏
k 6∈I

Xk

by elementary linear algebra. It follows that G may be computed directly from the

polynomial Q(t):

Corollary 4.4. If ϕ is well-presented, and with notation as above, G = Q(1).

Proof. By (4.4), this follows from (4.1) and (4.3): the factor t − c1(L ) equals

c(L ∗) for t = 1.

§4.5. The multidegree class and a characteristic polynomial

We will now identify Q(t) itself as a characteristic polynomial. Let M′′ϕ(X) be

the matrix obtained by subtracting the last row of Mϕ(X) from the others, and

discarding the last row and column:m11X1 m12X2 m13X3

m21X1 m22X2 m23X3

m31X1 m32X2 m33X3

;

(
(m11 −m31)X1 (m12 −m42)X2

(m21 −m31)X1 (m22 −m42)X2

)
.

Lemma 4.5.

Q(t) = det(tI −M′′ϕ(X)).
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Proof. This is also elementary linear algebra. If we perform a change of basis from

the standard basis to e1, . . . , en−1, e1 + · · ·+ en, then Mϕ(X) is transformed into
1 0 · · · 0 −1

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 · · · 1 −1

0 0 · · · 0 1

 · Mϕ(X) ·


1 0 · · · 0 1

0 1 · · · 0 1
...

...
. . .

...
...

0 0 · · · 1 1

0 0 · · · 0 1

 =

(
M′′ϕ(X) 0

∗ c1(L )

)
,

hence

det(tI −Mϕ(X)) = (t− c1(L )) · det(tI −M′′ϕ(X)).

The result follows by comparing with (4.3).

Corollary 4.6. With notation as above, and assuming that ϕ is well-presented,

the multidegree class of ϕ is obtained by evaluating the characteristic polynomial

for the matrix M′′ϕ(X) at t = 1.

Remark 4.7. Note that Xn does not appear inM′′ϕ(X), and hence in the expres-

sion for the multidegree class obtained in Corollary 4.6. This is not too surprising,

given the redundancy built into the classes of the hypersurfaces Xi (cf. (4.2)). Of

course we could use the i-th row as pivot, and this would yield an expression for

the multidegree class in which Xi does not appear.

§4.6. Monomial morphisms of tori

The matrix M′′ϕ(X) has a compelling interpretation in the case of rational maps

ϕ : Pn−1 99K Pn−1 whose components are monomials in the homogeneous coordi-

nates x1, . . . , xn. Every such map may be obtained by homogenizing a monomial

morphism of (n− 1)-tori:

(4.5) α : (x1, . . . , xn−1) 7→ (xa111 · · ·xa1,n−1

n−1 , . . . , x
an−1,1

1 · · ·xan−1,n−1

n−1 )

with aij ∈ Z. A homogenization may be performed (for example) by multiplying

each monomial by a power of xn to obtain monomials of common degree 0, then

multiplying each monomial by a common factor to obtain nonnegative exponents

throughout.

Example 4.8. Applying this procedure to the monomial map of tori

(x1, x2, x3) 7→ (x−1
1 x3, x

−2
2 , x2x3)
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gives the following rational map P3 99K P3:

(x1 : · · · : x4)

7→ (x−1
1 x3 : x−2

2 x2
4 : x2x3x

−2
4 : 1) = (x2

2x3x
2
4 : x1x

4
4 : x1x

3
2x3 : x1x

2
2x

2
4).

We say that α is well-presented if its homogenization is well-presented in the

sense specified in §4.2. We are ready to prove Theorem 1.8 from the introduction:

Theorem 4.9. Let α be a map of (n−1)-tori, let A = (aij) be the (n−1)×(n−1)

matrix of exponents, let PA(t) = det(tI−A) be the characteristic polynomial of A,

and let γα(t) be the multidegree polynomial for the corresponding rational map

Pn−1 99K Pn−1. Assume that α is well-presented. Then

γα(t) = tn−1PA(1/t).

Proof. The matrix h·A obtained by multiplying each entry of A by the hyperplane

class h equals the matrixM′′ϕ(X) for the rational map Pn−1 99K Pn−1 obtained by

homogenizing α, and setting all Xj to equal h. By Corollary 4.6, the multidegree

class equals det(I−h ·A), and the stated formula follows by formal manipulations.

Example 4.10. The standard Cremona transformation corresponding to the map

of tori

(x1, . . . , xn−1) 7→ (x−1
1 , . . . , x−1

n−1)

is well-presented (Example 4.1). The exponent matrix is

A =

−1 · · · 0
...

. . .
...

0 · · · −1

 ,

hence PA(t) = (t + 1)n−1. According to Theorem 4.9, its multidegree polynomial

is γα(t) = (1 + t)n−1. Therefore its multidegrees are γ` =
(
n−1
`

)
(cf. [GSP06,

Theorem 2] and [Dol, §3.4]).

§4.7. Multidegrees of well-presented r.c. monomial rational maps

For more general well-presented r.c. monomial rational maps V 99K Pn−1 based on

n hypersurfacesX1, . . . , Xn, consider (as in §§2 and 3) the Newton outer regionNϕ,

whose vertices are the rows of the n×nmatrixM′ϕ(X) of translations (mj−mn)·X:
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m21X1 m22X2 m23X3

m31X1 m32X2 m33X3


;

(m11 −m31)X1 (m12 −m32)X2 (m13 −m33)X3

(m21 −m31)X1 (m22 −m32)X2 (m23 −m33)X3

0 0 0

 .

(Of course any row can serve as pivot.)

Theorem 4.11. Let ϕ be well-presented, and let M′ϕ(X) be as above, with char-

acteristic polynomial PM′ϕ(X)(t) = det(tI −M′ϕ(X)). Then the multidegree poly-

nomial of ϕ is given by

(4.6) γϕ(t) = hdimV−ntnPM′ϕ(X)(h/t).

Identity (4.6) should be interpreted by computing the right-hand side for-

mally; this yields an expression in t whose coefficients are homogeneous polynomi-

als of degree dimV in the variables h,X1, . . . , Xn. The statement is that evaluating

the products as intersection products of the corresponding classes in V gives the

multidegree polynomial of ϕ.

Proof. The characteristic polynomial ofM′ϕ(X) equals tPM′′ϕ(X)(t), and it follows

from Lemma 4.5 and Corollary 4.6 that

PM′ϕ(X)(t) = tnG0 + tn−1G1 + · · ·+ tGn−1,

where G` is the term of codimension ` in G. Since

γϕ(t) = hdimV ·G0 + hdimV−1 ·G1t+ · · ·

the stated formula follows by formal manipulations of these expressions.

Example 4.12. Returning to the case in Example 1.3, ϕ is well-presented, as the

reader can easily verify. The matrices Mϕ, M′ϕ(X) are0 1 2

2 0 2

3 1 1

 ,

−3X1 0 X3

−X1 −X2 X3

0 0 0

 .

We have det(tI −M′ϕ(X)) = t(t+ 3X1)(t+X2). According to Theorem 4.11,

γϕ(t) = h2−3t3
h

t

(
h

t
+ 3X1

)(
h

t
+X2

)
= h2 + (3h ·X1 + h ·X2)t+ 3X1X2t

2.
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Since X1 = h and degX2 = 2h in this example, this recovers the result γϕ(t) =

1+5t+6t2 for the multidegree polynomial of ϕ, in agreement with the computations

performed in Examples 1.3 and 1.5.
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