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Relativistic Version

by

Fumio Hiroshima and Itaru Sasaki

Abstract

An enhanced binding of N relativistic particles coupled to a massless scalar Bose field is
investigated. It is not assumed that the system has a ground state for the zero-coupling.
It is shown, however, that there exists a ground state for sufficiently large coupling. The
proof is based on checking the stability condition and showing uniform exponential decay
of infrared-regularized ground states.
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§1. Preliminaries

§1.1. Introduction

Non-perturbative analysis of eigenvalues embedded in the continuous spectrum

has been developed in the last decade and it has been applied to the mathemati-

cally rigorous analysis of the spectra of self-adjoint Hamiltonians in quantum field

theory. Among other things, stability and instability of a quantum mechanical

particle coupled to a quantum field have been investigated.

The Hamiltonian in quantum field theory is realized as a self-adjoint operator

of the form

(1) K0 + αKI,
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acting in a Hilbert space over C for each value of the coupling constant α ∈ R.

Here K0 is the subject term and KI an interaction term. We are concerned with

ground states of K0 + αKI in this paper.

Let σ(T ) be the spectrum of a self-adjoint operator T .

Definition 1.1 (Ground state and ground state energy). Let T be a self-adjoint

operator bounded from below. Then the bottom of the spectrum, E0(T )=inf σ(T ),

is called the ground state energy of T . Suppose E0(T ) is an eigenvalue of T . Then

an eigenvector f associated with E0(T ) is called a ground state of T , i.e., Tf =

E0(T )f .

Generally the bottom of the spectrum of the zero-coupling Hamiltonian K0

is embedded in the continuous spectrum. Hence the spectral analysis of K0 +αKI

is regarded as the perturbation problem of embedded eigenvalues. Although an

analytic perturbation theory of the discrete spectrum is established for various

types of self-adjoint operators, the perturbation of embedded eigenvalues is crucial

and it is not straightforward to apply the perturbation theory of discrete spectra.

Hence it is subtle to show the existence of a ground state of K0 + αKI even for

small values of the coupling constant. Moreover a ground state need not exist for

K0 + αKI, α 6= 0, even when inf σ(K0 + αKI) > −∞ and K0 has a ground state.

The existence or absence of a ground state for physically reasonable Hamil-

tonians of quantum field theory has been however proven so far under some as-

sumptions. The existence of a ground state of the standard Nelson Hamiltonian

[Nel64] was in particular proven in e.g. [BFS98, Spo98, Ger00, Sas05], where the

most basic assumptions are

(1) the infrared regularity condition,

(2) the existence of a ground state of K0.

In particular assumption (2) tells us that the Hamiltonians K0 + αKI also have a

ground state for all α.

It is found however that an interaction with quantum fields enhances the

binding energy, which suggests that a Hamiltonian with sufficiently large cou-

pling constant may have a ground state whether K0 has a ground state or not. If

K0 +αKI with sufficiently large coupling constant has a ground state whether K0

has a ground state or not, then it is said that enhanced binding occurs. The study

of enhanced binding was initiated by [HS01], and in [HS08] enhanced binding was

shown for a system of N nonrelativistic particles governed by a Schrödinger op-

erator and linearly coupled to a massless scalar Bose field. In this paper we show

enhanced binding after replacing the nonrelativistic particles with relativistic ones.
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Finally we make some comments on related work on enhanced binding. The

enhanced binding has been studied so far for various kinds of models in quantum

field theory. In [HS01] the enhanced binding of the Pauli–Fierz model with the

dipole approximation is studied. In [HSS11] a complementary result to [HS01] is

established, i.e., the absence of a ground state for a sufficiently small coupling con-

stant. See also [AK03, BLV05, BV04, CEH03, CVV03, HVV03] for related work.

§1.2. Main results

The total Hamiltonian we consider is of the form

(2) HV = H0 + κHI.

The operator H0 = H0(κ) describes the zero-coupling Hamiltonian and is given

by

H0 = Hp + κ2Hf ,

Hp =

N∑
j=1

(√
−∆j +m2

j −mj + V (xj)
)
,

where mj > 0 is the mass of the j-th particle, V (x) an external potential, Hf

the free field Hamiltonian, and κ > 0 denotes a scaling parameter. The opera-

tor HI describes a particle-boson linear interaction. We notice that there are no

pair potentials in HV , and V is assumed to be independent of j for simplicity.

Introducing a dressing transformation eiT to derive an effective potential Veff , we

transform HV into

(3) e−iTHV eiT = hVeff + κ2Hf +HR(κ),

where hVeff is the effective particle Hamiltonian given by

(4) hVeff =

N∑
j=1

(√
−∆j +m2

j −mj + V (xj)
)

+ Veff(x1, . . . , xN )

and HR(κ) is a remainder term to be regarded as a perturbation of hVeff + κ2Hf .

Compensating for deriving Veff through the dressing transformation, we have the

remainder term HR(κ) which is unfortunately no longer linear and has the com-

plicated form

HR(κ) =

N∑
j=1

(√(
−i∇j −

1

κ
Aj(xj)

)2

+m2
j −

√
−∆j +m2

j

)
,



658 F. Hiroshima and I. Sasaki

where Aj denotes some quantum vector field. Nevertheless it turns out to be a

small perturbation for sufficiently large κ in some sense.

We are interested in the existence of a ground state of HV , equivalently of

e−iTHV eiT . We do not however assume the existence of ground states of H0. As

will be shown below, enhanced binding is exhibited by the transformed Hamilto-

nian (3) rather than HV itself. Since we consider a massless boson, the bottom of

the spectrum of HV is the edge of the continuous spectrum and a regular pertur-

bation cannot be applied. Thus it is not clear whether e−iTHV eiT has a ground

state even when hVeff has a ground state.

The conventional approach is to assume an infrared cutoff in the form of a

factor λ̂ in HI by setting λ̂(k)d|k|>σ, HV with cutoff λ̂d|k|>σ is denoted by HV
σ ,

and to show the existence of a ground state Φσ of HV
σ . The vector Φσ is called

an infrared-regularized ground state. Then one is left to show that the sequence

of ground states Φσ has a nonzero weak limit Φ as σ → 0, which is the desired

ground state of HV . We show in this paper:

(A) the stability condition for HV is satisfied (Lemma 3.1),

(B) the infrared-regularized ground state Φσ has exponential decay uniformly with

respect to the infrared cutoff parameter σ (Lemma 3.8),

(C) (1) the stability condition and (2) exponential decay imply the existence of a

ground state of HV (Appendix 4),

(D) there exist ᾱ > 0 and κ0 such that for each κ > κ0, HV has a unique ground

state for |α| ∈ (ᾱ, ᾱ(κ)) with some ᾱ(κ) (Theorem 2.3).

Statement (D) describes enhanced binding and is the main theorem in this paper.

§1.3. Strategies

We explain in more detail the technical improvements of this paper.

(Reduction to the stability condition for hVeff) The stability condition is

introduced in [GLL01] to show the existence of a ground state of nonrelativistic

quantum electrodynamics. The key ingredient in this paper is that we show in

Lemma 3.1 that the stability condition for hVeff implies that of HV . This is proved

by applying an energy comparison inequality derived by functional integration

of the heat semigroup generated by (3) (Lemma 3.2) and a simple variational

principle (Lemma 3.3), hence we focus on showing the stability condition for hVeff

instead of HV .

(Uniform exponential localization by functional integration) Our method

is a minor but nontrivial modification of [HS08] and a mixture of [Ger00, GLL01].
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We do not assume the compactness of Hp, unlike [Ger00]. Instead we show expo-

nential localization of infrared-regularized ground states, ‖Φσ(x)‖F ≤ Cδe
−δ|x|,

which is derived through functional integration in Lemma 3.8. The crucial point is

to show that this localization is uniform in σ > 0, i.e., Cδ and δ are independent

of σ > 0.

(Scaling) The scaling introduced in this paper can be obtained by replacing the

annihilation operator a and the creation operator a∗ with κa and κa∗, respectively.

This scaling is introduced in [Dav77, Dav79, Hir99] and the scaling limit as κ→∞
is called the weak coupling limit. Roughly speaking, at least in the nonrelativistic

domain, Hp
∼= − 1

2m∆ + V , and so

HV = κ2(κ−2Hp +Hf + κ−1HI)

with

κ−2Hp
∼= −

1

2mκ2
∆ +

1

κ2
V.

Thus we interpret that enhanced binding of HV occurs when sufficiently large

particle mass and shallow external potential are assumed. An alternative expla-

nation of the scaling is that it is a tool to derive a Markov process from e−tH
V

.

Although the scalar product (f ⊗ Ω, e−tH
V

g ⊗ Ω) does not define a Markov pro-

cess, (f, e−t(heff−Ediag)g) does with generator heff − Ediag. It can be obtained by

the scaling limit:

(f ⊗ Ω, e−tH
V

g ⊗ Ω)→ (f, e−t(heff−Ediag)g)

as κ→∞. This can be done in a similar manner to [Hir99]. More precisely, if heff

has a unique strictly positive ground state φp, then there exists a diffusion process

(Yt)t≥0 such that

(fφp, e
−t(heff−Ediag)gφp) = E[f(Y0)g(Yt)],

where E denotes expectation, and (Yt)t≥0 is the so-called P (φ)1 process. See e.g.

[GHPS12] for the construction of the P (φ)1 process.

The organization of this paper is as follows.

In the remainder of Section 1 we define the Nelson model with a relativistic

kinetic term, and introduce the scaling parameter κ > 0. In Section 2 we introduce

a dressing transformation, and mention the stability condition and uniform expo-

nential decay of Φσ(x). In Section 3 we prove the stability condition in Section 3.1

and uniform exponential decay in Section 3.2, and in Section 3.3 we demonstrate

enhanced binding.

In Appendix 4 we show that the relativistic version of the stability condition

also implies the existence of a ground state. In Appendix 5 we review the fundamen-
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tal properties of the bottom of the essential spectrum of a relativistic Schrödinger

operator. In Appendix 6 we give a functional integral representation of e−tH
V

and

prove an inequality used in the proof of exponential decay of infrared-regularized

ground states. In Appendix 7 we derive an energy comparison inequality for the

translation invariant Hamiltonian
∑N
j=1(

√
−∆j +mj −mj + V (xj)).

§1.4. Definition

We begin with the definition of the Nelson model with N relativistic particles.

Throughout we assume N ≥ 2 and the dimension of the state space is d ≥ 3. The

Hamiltonian of the Nelson model can be realized as a self-adjoint operator on the

tensor product of L2(RdN ) and the boson Fock space F over L2(Rd),

(5) H = L2(RdN )⊗F .

Here F is defined by F =
⊕∞

n=0 L
2
sym(Rdn), where L2

sym(Rdn) is the set of square

integrable functions Ψ on (Rd)n such that Ψ(x1, . . . , xn) = Ψ(xσ(1), . . . , xσ(n)) for

any permutation σ of {1, . . . , n}. A vector Ψ ∈ F is written as Ψ = {Ψ(n)}∞n=0 with

Ψ(n) ∈ L2
sym(Rdn), and the Fock vacuum Ω ∈ F is defined by Ω = {1, 0, 0, . . .}.

We denote by a(f) and a∗(f), f ∈ L2(Rd), the annihilation and creation operators

in F , respectively. They satisfy the canonical commutation relations

(6) [a(f), a∗(g)] = (f̄ , g)1l, [a(f), a(g)] = 0 = [a∗(f), a∗(g)]

and the adjoint relation a∗(f) = (a(f̄))∗. Throughout this paper, (F,G)K denotes

the scalar product on the Hilbert space K, which is linear in G and antilinear in F .

We omit K unless confusion arises. We informally write a#(f) =
∫
a#(k)f(k) dk,

a# = a, a∗. The second quantization of a closed operator A on L2(Rd) is denoted

by dΓ(A). The free field Hamiltonian Hf is a self-adjoint operator on F , given by

the second quantization of the multiplication operator ω(k) = |k| on L2(Rd):

(7) Hf = dΓ(ω).

Next we introduce the particle Hamiltonian. We suppose that N relativistic

particles are governed by the relativistic Schrödinger operator Hp of the form

(8) Hp =

N∑
j=1

(Ωj + Vj)

acting on L2(RdN ), where

(9) Ωj = Ωj(pj) =
√
p2
j +m2

j −mj
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is the j-th particle Hamiltonian with momentum pj = −i∇xj and mass mj > 0.

Vj = V (xj) denotes an external potential. In this paper, we assume for simplicity

that there is no interparticle potential.

The Hamiltonian of the relativistic Nelson model is then defined by

(10) HV = H0 + κHI,

where the zero-coupling Hamiltonian H0 is given by

(11) H0 = Hp ⊗ 1l + κ21l⊗Hf

and κ > 0 is a scaling parameter. HI denotes the linear interaction given by

(12) HI = α

N∑
j=1

∫ ⊕
RdN

φj(xj) dX

under the identification H ∼=
∫ ⊕
RdN F dX, where dX = dx1 · · · dxN . Here α ≥ 0 is

the coupling constant, and the scalar field φj(x) is given by

(13) φj(x) =
1√
2

∫
Rd

(
a∗(k)λ̂j(−k)e−ikx + a(k)λ̂j(k)eikx

)
dk

for each x ∈ Rd with ultraviolet cutoff functions λ̂j . Here {· · · } denotes operator

closure. The standard choice of the ultraviolet cutoff is

λ̂j(k) = (2π)−d/2ω(k)−11l|k|≤Λ,

where 1lX denotes the characteristic function of X. We do not however fix any

special cutoff function.

Throughout this paper we assume the following three conditions:

(V) V (−∆ + 1)−1/2 is compact.

(UV) λ̂j(−k) = λ̂j(k) ≥ 0 and λ̂j ∈ L2(Rd) for j = 1, . . . , N .

(IR) λ̂j/ω ∈ L2(Rd) for j = 1, . . . , N .

Assumption (V) implies that V is infinitesimally small with respect to the self-

adjoint operator
√
−∆ +m2 −m for all m ≥ 0. Hence, by the Kato–Rellich theo-

rem, Hp is self-adjoint on D(
∑N
j=1 Ωj) and essentially self-adjoint on any core for∑N

j=1 Ωj , where D(A) denotes the domain of A. (UV) implies that HI is symmet-

ric. Moreover (V), (UV) and (IR) also imply that, for all α ∈ R and ε > 0,

‖HIΨ‖ ≤ ε‖H0Ψ‖+ bε‖Ψ‖, Ψ ∈ D(H0).

Therefore, by the Kato–Rellich theorem, HV is self-adjoint on D(H0) for all κ > 0

and α ≥ 0. The nonnegativity λ̂j(k) ≥ 0 in (UV) implies that the effective potential

is attractive, which is used in Lemma 3.10.
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§2. Existence of a ground state

§2.1. Dressing transformation

To derive the effective particle Hamiltonian we introduce the so-called dressing

transformation e−iT , where T = α
κ

∑N
j=1 πj and

πj =

∫ ⊕
RdN

dX

(
i√
2

∫ (
a∗(k)e−ikxj

λ̂j(−k)

ω(k)
− a(k)eikxj

λ̂j(k)

ω(k)

)
dk

)
.

By (IR), πj is self-adjoint on H and so eiT is unitary.

Lemma 2.1. The unitary operator eiT maps D(HV ) onto itself and

(14) e−iTHV eiT = hVeff ⊗ 1l + κ21l⊗Hf +HR(κ),

where the effective Hamiltonian is defined by

(15) hVeff =

N∑
j=1

(Ωj + Vj) + Veff ,

with the effective pair potential

Veff = α2
∑

1≤i<j≤N

Wij(xi − xj),(16)

Wij(x) = −
∫
Rd

λ̂i(−k)λ̂j(k)

ω(k)
e−ikx dk.(17)

Here HR(κ) is the remainder term given by

HR(κ) =

N∑
j=1

(
∆Ωj −

α2

2
‖λ̂j/

√
ω‖2

)
,(18)

∆Ωj = Ωj

(
pj +

α

κ
Aj

)
− Ωj(pj),(19)

with a vector field

Aj = (Aj1, . . . , Ajd),

Ajl =

∫ ⊕
RdN

(
1√
2

∫
Rd
kl

(
a∗(k)e−ikxj

λ̂j(−k)

ω(k)
+ a(k)eikxj

λ̂j(k)

ω(k)

)
dk

)
dX.
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Proof. We directly see that

e−iT pje
iT = pj +

α

κ
Aj ,

e−iTφje
iT = φj −

α

κ

N∑
i=1

∫
Rd

λ̂i(k)λ̂j(−k)

ω(k)
e−ik(xj−xi) dk,

e−iTHfe
iT = Hf −

1

κ
HI +

α2

2κ2

N∑
i,j=1

∫
Rd

λ̂i(−k)λ̂j(k)

ω(k)
e−ik(xi−xj) dk.

From these, the lemma follows.

(UV) and (IR) imply that Veff is bounded. Therefore HV
eff is a self-adjoint

operator on D(
∑N
j=1 Ωj).

§2.2. Main results

Recall that E0(T ) = inf σ(T ) for a self-adjoint operator T .

Theorem 2.2 (Existence of a ground state). Assume (V), (UV) and (IR) hold.

Suppose that E0(hVeff) ∈ σdisc(hVeff). Then there exists κ0 > 0 such that HV has a

unique ground state for any κ > κ0.

In order to show enhanced binding, we introduce an assumption on V :

(EN) (1) infx∈Rd V (x) > −∞ and lim inf |x|→∞ V (x) = 0;

(2)
√
−∆ +NV acting in L2(Rd) has a negative energy ground state;

(3) V is a d-dimensional relativistic Kato-class potential, i.e.,

lim
t↓0

sup
x∈Rd

ExP
[∫ t

0

V (Xs) ds

]
= 0,

where ExP denotes the expectation on a probability space (D,B,Px),

and (Xt)t≥0 denotes the d-dimensional Lévy process with characteristic

function ExP[eiuXt ] = e−t(
√
u2+m2−m)eiux.

Assumption (EN)(1) is used only to show spatial exponential decay of the infrared-

regularized ground state Φσ. The second assumption (EN)(2), which is used in

(55), is crucial to showing enhanced binding. Intuitively a sufficiently strong in-

teraction engages N particles through linear interaction of the quantum field, and

consequently the total Hamiltonian can be regarded as
√
−∆+NV . This intuitive

description is justified in this paper. (EN)(3) is used to show the continuity of

ground state energy of a translation invariant Hamiltonian in Lemma 3.11.

We now state the main results of this paper.
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Theorem 2.3 (Enhanced binding). Suppose (V), (UV) and (IR) hold. Assume

(EN) and N ≥ 2. Then there exist ᾱ, κ0 > 0 such that for each κ > κ0, HV has a

unique ground state for |α| ∈ (ᾱ, ᾱ(κ)) with some constant ᾱ(κ).

Remark 2.4. In Theorem 2.2, hVeff has a ground state. In Theorem 2.3 we do not

assume the existence of a ground state of Hp, i.e., the zero-coupling Hamiltonian

H0 does not necessarily have a ground state.

Remark 2.5. In the case of N = 1, we cannot apply our method to show en-

hanced binding. Although in this case enhanced binding may also occur, it is

crucial to estimate the dressing transformed Hamiltonian (14). We do not discuss

this case later.

Example 2.6. We give examples of V satisfying (V) and (EN), but for which√
−∆ + 1− 1 + V has no ground state in dimension d ≥ 3. Suppose that

|Ṽ (x)| ≤ c(1 + |x|)−ε

with some c, ε > 0. For example Ṽ = −e−x2

. Then (V) is satisfied with V = δṼ

for all constants δ > 0. Let Ṽ 6≡ 0, Ṽ ≤ 0 and Ṽ ∈ Ld(Rd) ∩ Ld/2(Rd). Let δ > 0

be a sufficiently small constant and set

(20) Hδ =
√
−∆ + 1− 1 + δṼ .

Let Eδ(·) be the spectral measure of Hδ. Since Ṽ (
√
−∆ + 1)−1 is compact, the

essential spectrum of Hδ is σess(Hδ) = [0,∞) for all δ > 0. By the relativistic

version of the Lieb–Thirring bound [Dau83], we have

(21) dim RanEδ((−∞, 0]) ≤ c1δd
∫
Rd
|Ṽ (x)|d dx+ c2δ

d/2

∫
Rd
|Ṽ (x)|d/2 dx,

where c1 and c2 are positive constants independent of Ṽ . Hence Hδ has no ground

state for sufficiently small δ such that the right-hand side of (21) is strictly smaller

than one. Similarly σess(
√
−∆ + NδṼ ) = [0,∞). However,

√
−∆ + NδṼ has a

negative eigenvalue for sufficiently large N , since inf σ(
√
−∆+NδṼ ) < 0 for suffi-

ciently large N , which implies that
√
−∆+NδṼ has a ground state for sufficiently

large N . Therefore for sufficiently small δ, V = δṼ satisfies (V) and (EN), but√
−∆ + 1− 1 + δṼ has no ground state.

§2.3. Stability condition and exponential decay

In order to prove Theorems 2.2 and 2.3 we investigate the stability condition. First

of all we introduce cluster Hamiltonians. Let CN = {1, . . . , N}. For each β ⊂ CN
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(β 6= ∅), we define

H0(β) =
∑
j∈β

(Ωj + καφj) + κ2Hf ,(22)

HV (β) = H0(β) +
∑
j∈β

Vj ,(23)

acting on L2(Rd|β|) ⊗ F , where φj =
∫ ⊕
Rd|β| φj(xj) dXβ , Xβ = (xj)j∈β . Clearly

HV = HV (CN ). Let

(24) E0(β) = inf σ(H0(β)), EV (β) = inf σ(HV (β)).

For β = ∅, we set E0(∅) = EV (∅) = 0. The lowest two-cluster threshold is defined

as the minimal energy of systems such that only the particles involved in β are

bound by the origin but others are sufficiently far from the origin. It is defined by

(25) ΣV = min{EV (β) + E0(βc) | β ( CN}.

The gap between the ground state energy EV and the lowest two-cluster threshold

ΣV is related to the existence of a ground state by the proposition below. Let HV
σ

be HV with λ̂j replaced by λ̂j(k)1l|k|>σ.

Proposition 2.7. (Case σ > 0) Suppose that EV < ΣV . Then HV
σ has a unique

ground state Φσ.

(Case σ = 0) Suppose that EV < ΣV and there exists δ > 0 independent of σ such

that sup0<σ<σ̄ ‖(eδ|X| ⊗ 1l)Φσ‖H < ∞ with some σ̄ > 0. Then HV has

a ground state.

Proof. The proof is a minor modification of those in [Ger00, GLL01], and it is

given in Appendix 4.1 for σ > 0, and in Appendix 4.2 for the case σ = 0.

The condition ΣV > EV is called the stability condition. For our model the

uniform exponential decay of ‖Φσ(x)‖F may be derived from the stability condi-

tion, but we do not prove it. So we need not only the stability condition but also

uniform exponential decay.

§3. Proof of the main theorem

In order to show Theorems 2.2 and 2.3, by Proposition 2.7 it is enough to show both

(1) the stability condition and (2) the uniform exponential decay of ‖Φσ(x)‖F .

§3.1. Stability condition

It is not straightforward to show the stability condition, so we will make a detour

and the discussion will be reduced to that of the effective particle Hamiltonian hVeff .
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Let us define the lowest two-cluster threshold of hVeff in a similar way to HV and

we shall compare it with ΣV . For β ⊂ CN , we define effective cluster Hamiltonians

by

h0
eff(β) =

∑
j∈β

Ωj − α2
∑

i,j∈β, i<j

Wij(xi − xj),(26)

hVeff(β) = h0
eff(β) +

∑
j∈β

Vj .(27)

We set

(28) E0(β) = inf σ(h0
eff(β)), EV (β) = inf σ(hVeff(β))

and EV = EV (CN ). Then the lowest two-cluster threshold of hVeff is defined by

(29) ΞV = min{EV (β) + E0(βc) | β ( CN}.

Constants cV and dV are such that ‖
∑N
j=1 ΩjΨ‖ ≤ cV ‖hVeffΨ‖ + dV ‖Ψ‖ and we

set

G(t) =
( N∑
j=1

‖λ̂j/ω‖ ‖λ̂j‖
)
t2 +

( N∑
j=1

√
2mj‖λ̂j/ω‖

)
|t|(30)

+
√

2N(cV |EV |+ dV ).

The next lemma is a key ingredient of this paper.

Lemma 3.1. Assume that ΞV −EV > 0, and α and κ satisfy ΞV −EV > G(α/κ).

Then the stability condition ΣV − EV > 0 holds.

In order to prove Lemma 3.1, we prepare two lemmas. We set

(31) Ediag =
α2

2

N∑
j=1

‖λ̂j/
√
ω‖2.

Lemma 3.2. For all β ⊂ CN ,

(32) E#(β) ≤ E#(β) +
α2

2

∑
j∈β

‖λ̂j/
√
ω‖2, # = 0, V.

In particular, ΞV ≤ ΣV + Ediag.

Proof. See Proposition 6.3.

Lemma 3.3. For all κ > 0 we have EV ≤ EV + G(α/κ)− Ediag.



Enhanced Binding II 667

Proof. For every ε > 0, we can choose a normalized vector v ∈ C∞0 (RdN ) such

that ‖(hVeff − EV )v‖ ≤ ε. Set Ψ = v ⊗ Ω. Then, by Lemma 2.1, we have

EV ≤ EV + ε+
(

Ψ,
(
−Ediag +

N∑
j=1

∆Ωj

)
Ψ
)
.

Since πj commutes with pi, i 6= j, by setting Tj = απj/κ we can see that ∆Ωj =

e−iTjΩje
iTj − Ωj and

|(Ψ,∆ΩjΨ)| = |((eiTj − 1)Ψ,Ωje
iTjΨ) + (Ψ,Ωj(e

iTj − 1)Ψ)|.

Hence

|(Ψ,∆ΩjΨ)| ≤ |α|
κ
‖πjΨ‖ · ‖ΩjeiTjΨ‖+

|α|
κ
‖πjΨ‖ · ‖ΩjΨ‖.

The right-hand side above is identical with

|α|√
2κ
‖λ̂j/ω‖

((
Ψ,

(
pj +

|α|
κ
Aj

)2

Ψ

)1/2

+ (Ψ, p2
jΨ)1/2

)
.

Thus

|(Ψ,∆ΩjΨ)| ≤ |α|√
2κ
‖λ̂j/ω‖

(
2‖ΩjΨ‖+ 2mj +

√
2 |α|
κ

∥∥|k|λ̂j/ω∥∥)
and

EV ≤ EV + ε+

N∑
j=1

|α|√
2κ
‖λ̂j/ω‖

(
2mj +

√
2 |α|
κ

∥∥|k|λ̂j/ω∥∥)

+

N∑
j=1

√
2 |α|
κ
‖λ̂j/ω‖

(
cV (|EV |+ ε) + dV

)
− Ediag.

Since ε > 0 is arbitrary, the lemma follows.

Proof of Lemma 3.1. By Lemmas 3.2 and 3.3, we have

(33) ΣV − EV ≥ ΞV − EV − G(α/κ) > 0.

§3.2. Exponential decay

Functional integration has proven to be a strong tool to show exponential localiza-

tion of a bound state in quantum mechanics. That can also be applied in quantum

field theory.

Let (Xt)t≥0 = (X1
t , . . . , X

N
t )t≥0 be N independent d-dimensional Lévy pro-

cesses on a probability space (D,B,Px), x ∈ RdN , with characteristic function

(34) E0
P[e−iu·Xt ] = e−t

∑N
j=1(
√
u2
j+m

2
j−mj), u = (u1, . . . , uN ) ∈ RdN .
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Here and in what follows, Exm[· · · ] denotes expectation with respect to a path

measure mx starting from x. Let Weff = Weff(x1, . . . , xN ) =
∑N
j=1 V (xj)+Veff(x).

Proposition 3.4. There exists σ0 > 0 such that for all σ ≤ σ0,

(35) ‖Φσ(X)‖F ≤ et(E
V +Ediag+ε(σ))

(
EXP
[
e−2

∫ t
0
Weff (Xs) ds

])1/2‖Φσ‖H
for each X ∈ RdN , where ε(σ) > 0 satisfies limσ→0 ε(σ) = 0.

Proof. See Proposition 6.4.

From Proposition 3.4, in order to show the exponential decay of ‖Φσ(X)‖F
it suffices to estimate

et(E
V +Ediag)EXP

[
e−2

∫ t
0
Weff (Xs) ds

]1/2
.

To do so, we divide Weff into two parts. Let

BR = {x = (x1, . . . , xN ) ∈ RdN | |x| ≥ 2R and min{|xi − xj |, i 6= j} ≤ |x|/2}.

Define V Reff,∞ = Veff1lBR and V Reff,0 = Veff1lBcR . Then

(36) Weff = V + V Reff,0 + V Reff,∞.

By the Riemann–Lebesgue lemma, lim|x|→∞Wij(x) = 0. Notice that

lim
|x|→∞

(V (x) + V Reff,0(x)) = 0,

‖V Reff,∞‖∞ ≤
α2

2

∑
i 6=j

∫
λ̂i(k)λ̂j(−k)

ω(k)
dk.

The Lévy measure νj(dx) = νj(x)dx associated with the Lévy process (Xj
t )t≥0 is

given by

(37) νj(x) = 2

(
mj

2π

)(d+1)/2
1

|x|(d+1)/2

∫ ∞
0

ξ(d−1)/2e−
1
2 (ξ+ξ−1)mj |x| dξ, x ∈ Rd.

We note that νj(x) ≤ Ce−c|x| with some constants C, c ≥ 0.

Proposition 3.5. There exist η, C1, C2 > 0 such that

(38) P0
(

sup
0≤s≤t

|Xs| > a
)
≤ C1e

−ηaeC2t for all a > 0.

Proof. We see that

P0
(

sup
0≤s≤t

|Xs| > a
)

= E0
P[1lsup0≤s≤t |Xs|−a>0] ≤ e−ηaE0

P

[
eη sup0≤s≤t |Xs|

]
.
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It is known that E0
P

[
eη sup0≤s≤t |Xs|

]
< C1e

C2t for sufficiently small η > 0 [CMS90].

Hence the proposition follows.

We define B = {Xs ∈ BcR for all 0 ≤ s ≤ t}. Since V Reff,∞(Xs) = 0 on B, we

have

(39) EXP
[
e−2

∫ t
0
Weff (Xs) ds

]
= EXP

[
1lBe

−2
∫ t
0

(V+V Reff,0)(Xs) ds
]

+ EXP
[
1lBce−2

∫ t
0
Weff (Xs) ds

]
.

By the Schwarz inequality,

(40) EXP
[
1lBce−2

∫ t
0
Weff (Xs) ds

]
≤ EXP

[
1lBce−4

∫ t
0
V Reff,∞(Xs) ds

]1/2EXP [1lBce−4
∫ t
0

(V+V Reff,0)(Xs) ds
]1/2

.

We will estimate the terms in (39) and (40). Set

WR
a (x) = inf{V (y) + V Reff,∞(y) | |x− y| < a},
WR
∞ = inf

x∈RdN
(V (x) + V Reff,∞(x)).

Lemma 3.6. Suppose (EN)(1) holds. Let R, a > 0. Then for all X ∈ RdN and

t > 0,

(41) EXP
[
e−2

∫ t
0

(V (Xs)+V
R
eff,∞(Xs)) ds

]
≤ e−2tWR

a (x) + C1e
−2tWR

∞eC2te−ηa,

where C1, C2 and η are as in (38).

Proof. Set A = {sup0≤s≤t |Xs| < a} ⊂ D. Since (Xt)t≥0 under the probability

measure PX and (Xt +X)t≥0 under P0 are identically distributed, we have

EXP
[
e−2

∫ t
0

(V (Xs)+V
R
eff,∞(Xs)) ds

]
= E0

P

[
e−2

∫ t
0

(V (Xs+X)+V Reff,∞(Xs+X)) ds
]
.

Then

E0
P

[
1lAe

−2
∫ t
0

(V (Xs+X)+V Reff,∞(Xs+X)) ds
]
≤ e−2tWR

a (x),

E0
P

[
1lAce

−2
∫ t
0

(V (Xs+X)+V Reff,∞(Xs+X)) ds
]
≤ e−2tWR

∞E0
P[1lAc ] ≤ e−2tWR

∞C1e
C2te−ηa

by Proposition 3.5, and the lemma follows.

Lemma 3.7. Let X ∈ RdN and set R = |X|. Then

(42) EXP
[
1lBce−4

∫ t
0
V Reff,∞(Xs) ds

]
≤ e4‖Veff,∞‖∞tC1e

C2te−ηR,

where C1, C2 and η are as in (38).

Proof. Since EXP
[
e−4

∫ t
0
V Reff,∞(Xs) ds

]
≤ EXP

[
e4‖Veff,∞‖∞

∫ t
0

1lBR (Xs) ds
]
, we can see

that
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EXP [e−4
∫ t
0
V Reff,∞(Xs) ds]

≤
∞∑
n=0

(4‖Veff,∞‖∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsn EXP
[
1lBc

n∏
j=1

1lBR(Xsj )
]

= EXP [1lBc ] +

∞∑
n=1

(4‖Veff,∞‖∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsn E0
P

[
1lBc

n∏
j=1

1lBR(X +Xsj )
]
.

Now,

EXP [1lBc ] ≤ P0
(

sup
0≤s≤t

|Xs +X| > 2R
)

(43)

≤ P0
(

sup
0≤s≤t

|Xs| > 2R− |X|
)

= P0
(

sup
0≤s≤t

|Xs| > R
)
.

By the definition of BR, in a similar way we have

EXP [e−4
∫ t
0
V Reff,∞(Xs) ds] ≤ PX(Bc) +

∞∑
n=1

(4‖Veff,∞‖∞)n

n!

×
∫ t

0

ds1 · · ·
∫ t

0

dsn P0(|Xs1 +X| > 2R, . . . , |Xsn +X| > 2R)

≤ PX(Bc) +

∞∑
n=1

(4‖Veff,∞‖∞)n

n!

∫ t

0

ds1 · · ·
∫ t

0

dsn P0(|Xs1 | > R, . . . , |Xsn | > R).

From P0(|Xs1 | > R, . . . , |Xsn | > R) ≤ P0(sup0≤s≤t |Xs| > R) and Proposition

3.5, we have

EXP
[
e−4

∫ t
0
V Reff,∞(Xs) ds

]
≤ P0

(
sup

0≤s≤t
|Xs|>R

)
+

∞∑
n=1

(4‖|Veff,∞‖∞)n

n!

∫ t

0

ds1 . . .

∫ t

0

dsn P0
(

sup
0≤s≤t

|Xs|>R
)

≤
∞∑
n=0

(4‖Veff,∞‖∞)n

n!
tnC1e

C2te−ηR = e4‖Veff,∞‖∞tC1e
C2te−ηR.

Hence the lemma follows.

Lemma 3.8. Let Φσ be the infrared-regularized ground state. Suppose (EN)(1)

holds and EV + Ediag < 0. Furthermore assume that EV + Ediag + ε(σ) < −γ
with some γ > 0 for σ < σ̄, where ε(σ) is as in Proposition 3.4. Then there exist

δ, Cδ > 0 independent of σ such that

(44) sup
0<σ<σ̄

‖Φσ(X)‖F ≤ Cδe−δmin{γ,η}|X|,

where η > 0 is as in Proposition 3.5.
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Proof. We set Ẽ = EV + Ediag + ε(σ). It is enough to estimate

e2tẼEXP
[
e−2

∫ t
0
Weff (Xs) ds

]
,

by Proposition 3.4. Recall that WR
a (x) = inf{WR(y) | |x− y| ≤ a}. Then

(45) lim
|x|→∞

W
|x|
|x|/2(x) = 0.

Hence there exists a positive constant R∗ such that |W |X||X|/2(X)| ≤ |Ẽ|/2 for all X

such that |X| > R∗. Suppose that |X| > R∗ and let R = |X|. We divide Weff as

in (36) for R. We have

e2tẼEXP
[
e−

∫ t
0
Weff (Xs) ds

]
≤ e2tẼEXP

[
1lBe

−2
∫ t
0

(V+V Reff,0)(Xs) ds
]

+ e2tẼ
(
EXP
[
1lBce−4

∫ t
0

(V+V Reff,0)(Xs) ds
])1/2(EXP [1lBce−4

∫ t
0

(V+V Reff,∞)(Xs) ds
])1/2

.

Now,

EXP
[
1lBe

−2
∫ t
0

(V+V Reff,0)(Xs) ds
]
≤ e−2tWR

a (x) + C1e
−2tWR

∞eC2te−ηa,(46)

ExP
[
1lBce−4

∫ t
0

(V+V Reff,0)(Xs) ds
]
≤ e−4tWR

a (x) + C1e
−4tWR

∞eC2te−ηa,(47)

by Lemma 3.6. Set t = t(X) = ε|X| and a = |X|/2. Then W
|X|
|X|/2(X) − Ẽ >

−Ẽ/2 > 0, since Ẽ < 0 by assumption. Hence

e2tẼEXP
[
1lBe

−2
∫ t
0

(V+V Reff,0)(Xs) ds
]
≤ eεẼ|X| + C2e

εC2|X|−η|X|/2−2εW |X|∞ |X|

≤ e−εγ|X| + C2e
−(η/2+2εW |X|∞ −εC2)|X|.

Similarly,

e4tẼEXP
[
1lBe

−4
∫ t
0

(V+V Reff,0)(Xs) ds
]
≤ e−2εγ|X| + C2e

−(η/2+4εW |X|∞ −εC2)|X|.

Finally, by Lemma 3.7 we have

e4tẼEXP
[
1lBe

−4
∫ t
0
Weff (Xs) ds

]
≤ C1e

4εẼ+4‖Veff,∞‖∞ε+C2ε−η)|X|

≤ C1e
−(4εγ−4‖Veff,∞‖∞ε−C2ε+η)|X|.

Note that W
|X|
∞ → 0 as |X| → ∞. Take a sufficiently small ε > 0 such that

η/2+(2W
|X|
∞ −C2)ε > 0, η/2+(4W

|X|
∞ −C2)ε > 0 and (4γ−4‖Veff,∞‖∞−C2)ε+η

> 0. Then ‖Φσ(X)‖F ≤ D1e
−min{η,γ}D2|X| follows.

Corollary 3.9. Suppose (EN)(1) holds. Then (44) holds for sufficiently

small |α/κ|.

Proof. Notice that EV ≤ EV + G(α/κ)− Ediag by Lemma 3.3. Since EV < 0 and

limt→0 G(t) = 0, the corollary follows.
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§3.3. Proofs of Theorems 2.2 and 2.3

3.3.1. Proof of Theorem 2.2. Note that 0 < EV−ΞV is equivalent to inf σ(HV
eff)

∈ σdisc(HV
eff). The uniform exponential decay

‖Φσ(x)‖F ≤ Cδe−δ|x|

is shown for sufficiently small |α/κ| in Lemma 3.8. Then from limκ→∞ G(α/κ) = 0

and ΣV − EV ≥ ΞV − EV − G(α/κ), there exists κ0 such that for all κ > κ0

the stability condition EV < ΣV holds. Therefore, by Proposition 2.7, HV has a

ground state.

3.3.2. Proof of Theorem 2.3. Now we prove enhanced binding. By Propo-

sition 2.7 it is enough to show EV < ΞV , since the uniform exponential decay

‖Φσ(x)‖F < Cδe
−δ|x| is already established.

Lemma 3.10. Let β ( CN but β 6= ∅. Then there exists α1 > 0 such that, for all

α with |α| > α1, E0 < EV (β) + E0(βc). In particular E0 < ΞV for |α| > α1.

Proof. We have

E0 = α2
∑
i<j

Wij(0) + o(α2), EV (β) = α2
∑
i<j
i, j∈β

Wij(0) + o(α2),

E0(βc) = α2
∑
i<j

i, j∈βc

Wij(0) + o(α2).

Since ∑
i<j

i∈β, j∈βc

Wij(0) +
∑
i<j

i∈βc,j∈β

Wij(0) < 0,

the lemma holds.

To see enhanced binding we want to investigate the center of motion of hVeff .

Notice that h0
eff commutes with the total momentum Ptot =

∑N
j=1 pj , so it can

be decomposed with respect to the spectrum of Ptot. Let U = eix1·
∑N
j=2 pj , which

diagonalizes Ptot as U PtotU −1 = p1. Hence it also diagonalizes h0
eff , and we obtain

U h0
effU −1 = Ω1

(
p1 −

N∑
j=2

pj

)
+

N∑
j=2

Ωj(pj) +
∑
j≥2

α2W1j(xj)

+
∑

2≤i<j≤N

α2Wij(xi − xj),

U hVeffU −1 = h0
eff + V (x1) +

N∑
j=2

V (x1 + xj).



Enhanced Binding II 673

Consequently,

U h0
effU −1 =

∫ ⊕
Rd
k(P ) dP,

k(P ) = Ω1

(
P −

N∑
j=2

pj

)
+

N∑
j=2

Ωj(pj) +
∑
j≥2

α2W1j(xj) +
∑

2≤i<j≤N

α2Wij(xi − xj).

Lemma 3.11. We have E0 = inf σ(k(0)).

Proof. Set inf σ(k(P )) = E(P ) for notational simplicity. It can be seen in Ap-

pendix 7 that

(48) E(0) ≤ E(P )

for all P , and E(P ) is continuous in P . Hence (Φ, HΦ) =
∫
Rd(Φ(P ), k(P )Φ(P )) dP

≥ E(0)‖Φ‖2 for Φ ∈ D(H). Thus E(0) ≤ E0. On the other hand, set Φε =∫ ⊕
Rd Φ(P )1l[0,ε)(P ) dP . Then

‖Φε‖2E0 ≤ (Φε, HΦε) ≤ sup
|P |<ε

E(P )‖Φε‖2.

Taking ε ↓ 0 on both sides we get E0 ≤ E(0) + δ for all δ > 0, since E(P ) is

continuous in P . Hence E(0) ≥ E0, and E0 = E(0) follows.

Lemma 3.12. There exists α2(P ) > 0 such that inf σ(k(P )) ∈ σdisc(k(P )) for

every P ∈ Rd for |α| > α2(P ). In particular k(0) has a ground state for |α| > α2

with some α2 > 0.

Proof. Note that Wij(0)<0, Wij(x)>Wij(0) for x 6= 0, and lim|x|→∞Wij(x) = 0.

Set X = (x2, . . . , xN ). Let a = {2, . . . , N}. Let {j̃β}β⊂a be the Ruelle–Simon

partition of unity [CFKS87, Definition 3.4], i.e., j̃β(λX) = j̃β(X) for all λ > 1,

|X| = 1, and there exists a constant C > 0 such that

supp j̃β ∩ {X | |X| > 1} ⊂ {X | |Xi −Xj | ≥ C|X| for all {i, j} 6⊂ β}.

We set jβ(X) = j̃β(X/R). Then

(49) k(P ) = jak(P )ja +
∑
β(a

jβk(P )jβ + o(1l),

where o(1l) denotes a bounded operator such that limR→∞ ‖o(1l)‖ = 0. We set

kβ =
∑
j∈β

(Ωj(pj) + α2W1j(xj)) +
∑
i,j∈β

α2Wij(xi − xj),

k̄βc =
∑
j∈βc

Ωj(pj) +
∑
i,j∈βc

α2Wij(xi − xj).
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With the identification L2(Rd(N−1)) ∼= L2(Rd|β|)⊗ L2(Rd|βc|)), we can write

(50) jβk(P )jβ = jβΩ1

(
P −

N∑
j=2

pj

)
jβ + jβ(kβ ⊗ 1l + 1l⊗ k̄βc)jβ + Iβj

2
β

where Iβ =
∑
j∈βc α

2W1j(xj) +
∑
i∈β,j∈βc
i∈βc,j∈β

α2Wij(xi − xj). Hence, (49) and (50)

imply

k(P ) ≥ E0(k(P ))j2
a +

∑
β(a

jβ(kβ ⊗ 1l + 1l⊗ k̄βc + Iβ)jβ + o(1l).

Note that j2
a and Iβj

2
β are relatively compact with respect to k(P ). Thus we have

inf σess(k(P )) ≥ max{E0(kβ) + E0(k̄βc) | β ( a}.

For all β ( a,

lim
α→∞

E0(k(P ))

α2
=
∑
i<j

Wij(0) <
∑
j∈β

W1j(0) +
∑
i,j∈β
i<j

Wij(0) +
∑
i,j∈βc
i<j

Wij(0)(51)

= lim
α→∞

E0(kβ) + E0(k̄βc)

α2
.

Therefore there exist α2(P ) such that inf σeff(k(P )) > E0(k(P )) for all α > α2(P ).

Lemma 3.13. Let |α| > α2, where α2 is as in Lemma 3.12, and uα be a normal-

ized ground state of k(0). Then |uα(x2, . . . , xN )|2 → δ(x2) · · · δ(xN ) as α→∞ in

the sense of distributions.

Proof. It suffices to show that for all ε > 0,

(52) lim
α→∞

∫
|X|>ε

|uα(X)|2 dX = 0,

where X = (x2, . . . , xN ), since (52) implies that

lim
α→0

∫
Rd(N−1)

f(X)|uα(X)|2 dX = f(0)

for all f ∈ C∞0 (Rd(N−1)). We write kα(0) to emphasize the α dependence of k(0).

Since kα(0)/α2 ≥
∑
i<jWij(0) and limα→∞ inf σ(kα(0))/α2 =

∑
i<jWij(0), we
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have∑
i<j

Wij(0) = lim
α→0

α−2(uα, kα(0)uα)

≥ lim inf
α→∞

(
uα,

(∑
j≥2

W1j(xj) +
∑

2≤i<j≤N

Wij(xi − xj)
)
uα

)
≥
∑
i<j

Wij(0).

Thus

(53)
∑
i<j

Wij(0) = lim inf
α→∞

(
uα,

(∑
j≥2

W1j(xj) +
∑

2≤i<j≤N

Wij(xi − xj)
)
uα

)
.

Suppose that cε = lim infα→∞
∫
|X|>ε |uα(X)|2 dX > 0. Then

lim inf
α→∞

∫
Rd(N−1)

∑
j≥2

(W1j(xj)−W1j(0))|uα(X)|2 dX

> cε
∑
j≥2

sup
|X|>ε

(W1j(xj)−W1j(0)) > 0,

which contradicts (53). Therefore (52) holds.

Proof of Theorem 2.3. First we assume that V ∈ C∞0 (Rd). It is enough to show

EV < ΞV , since the uniform exponential decay ‖Φσ(x)‖ ≤ Cδe
−δ|x| is established

in Lemma 3.8 for sufficiently small |α/κ|. Assume |α| > max{α1, α2} > 0. Let uα
be a normalized ground state of k(0). From Ω1(a+ b) ≤ |a|+ Ω1(b) for a, b ∈ Rd,
we have

(54) U h0
effU −1 ≤

√
−∆1 + k(0).

By (EN)(2), there exists a normalized vector v ∈ C∞0 (Rd) such that

(55) (v, (
√
−∆ +NV )v) < 0.

We set Ψ(x1, . . . , xN ) = v(x1)uα(x2, . . . , xN ). Then, by (54),

(56) EV ≤ (Ψ,U hVeffU −1Ψ) ≤ (v, (
√
−∆ + V )v) + E0 +

(
Ψ,

N∑
j=2

V (x1 + xj)Ψ
)
.

Let V αj,smeared(x1) =
∫
Rd(N−1) V (xj + x1)|uα(X)|2 dX. By Lemma 3.13,

lim
α→∞

(Ψ, V (xj + x1)Ψ) = lim
α→∞

(v, V αj,smearedv) = (v, V v),

and so by (55) and (56),

(57) EV ≤ (v, (
√
−∆ +NV )v) + E0 < E0
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for α > α3 with some α3 > 0. From this inequality and Lemma 3.10, we conclude

that for α with |α| > ᾱ = max{α1, α2, α3},

ΣV − EV ≥ ΞV − EV − G(α/κ) ≥ E0 − EV − G(α/κ)

> −(v, (
√
−∆ +NV )v)− G(α/κ).

Notice that G(α/κ) → 0 as κ → ∞, and −(v, (
√
−∆ + NV )v) > 0. Thus the

right-hand side above is positive for sufficiently small |α|/κ. Since G is increasing,

it is trivial to see that κ0 = ᾱ/G−1(a), where a = −(v, (
√
−∆ + NV )v) and

ᾱ(κ) = G−1(a)κ. Thus the theorem follows for V ∈ C∞0 (Rd). For general V we can

use the limiting argument of [HS08, Appendix]. See Appendix 5.

Appendix

§4. Stability condition: relativistic version

In this section we shall prove Proposition 2.7. We only give an outline of the proof.

The details are left to the reader.

§4.1. Case σ > 0

Since the scaling parameter κ does not play any role in this section, we set κ = 1.

Let σ > 0. We decompose the single boson Hilbert space into high energy and low

energy parts, L2(Rd) ∼= K>σ ⊕ K≤σ, where K≤σ = L2({k ∈ Rd | ω(k) ≤ σ}) and

K>σ = L2({k ∈ Rd | ω(k) > σ}). Correspondingly, we have the identification

(58) H ∼= H>σ ⊗F (K≤σ),

where H>σ = L2(RdN )⊗F (K>σ). We define the regularized Hamiltonian by

(59) HV
σ = H0 +HI,σ.

Here HI,σ is the regularized interaction defined by

HI,σ =

N∑
j=1

αj

∫ ⊕
RdN

φj,σ(xj) dX,

and φj,σ(x) is φj(x) with cutoff λj(k) replaced by λj(k)1lω(k)>σ(k). Then HV
σ

approximates HV in the following sense:

Lemma 4.1. HV
σ converges to HV as σ → 0 in the norm resolvent sense.

Let EVσ = inf σ(HV
σ ) and let ΣVσ be the lowest two-cluster threshold for HV

σ ,

defined in the same way as ΣV . From Lemma 4.1, we can show that EVσ and ΣVσ
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converge to EV and ΣV respectively as σ → 0. Therefore for sufficiently small

σ > 0,

(60) ΣVσ > EVσ .

Under the identification (58), HV
σ can be decomposed as

HV
σ
∼= HV

σ dH>σ⊗ 1lF(K≤σ) + 1lH>σ ⊗HfdF(K≤σ).

Since HfdF(K≤σ) has a ground state, HV
σ may have a ground state if and only

if HV
σ dH>σ

does. We shall prove the existence of a ground state of HV
σ dH>σ

for

sufficiently small σ > 0. For σ > 0, we truncate ω as

ωσ(k) =

{
|k| for |k| > σ,

σ for |k| ≤ σ,

and we set Hf,σ = dΓ(ωσ). Then

HV
σ dH>σ= H0,σ +HI,σ

with H0,σ = Hp⊗1l+1l⊗Hf,σ. We denote the Fourier transformation from L2(Rdy)

to L2(Rdk) by F . We set Ǩ>σ = {f̌ = F−1f ∈ L2(Rdy) | f ∈ K>σ}. We introduce

some notation. Let T : K1 → K2 be a contraction operator from a Hilbert space K1

to another one K2. Then we define Γ(T ) =
⊕∞

n=0⊗nT with ⊗0T = 1l, which is

also a contraction operator from F (K1) to F (K2). Let

ȞV
σ = Γ(F−1)HV

σ dH>σΓ(F ),

which is defined on Ȟ>σ = L2(RdN ) ⊗F (Ǩ>σ). Let χ, χ̄ ∈ C∞(RdN ) be cutoff

functions such that χ(X)2 + χ̄(X)2 = 1 with χ(X) = 1 for |X| ≤ 1 and χ(X) = 0

for |X| ≥ 2. For R > 0, we set χR(X) = χ(X/R), χ̄R(X) = χ̄(X/R).

Lemma 4.2. We have

ȞV
σ = χRȞ

V
σ χR + χ̄RȞ

V
σ χ̄R + Ô(R−1),

where Ô(R−1) is an operator such that ‖Ô(R−1)‖ ≤ C/R for some constant C > 0.

Proof. We have the operator equality

ȞV
σ = χRȞ

V
σ χR + χ̄RȞ

V
σ χ̄R(61)

+
1

2

N∑
j=1

[χR, [χR,Ωj(pj)]] +
1

2

N∑
j=1

[χ̄R, [χ̄R,Ωj(pj)]].
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By the Fourier transformation,

[χR,Ωj(pj)] = (2π)−dN/2
∫
RdN

χ̂(K)eiK·X/R
(
Ωj(pj)− Ωj(pj − kj/R)

)
dK,

where K = (k1, . . . , kN ) ∈ RdN . By the triangle inequality,

|Ωj(pj)− Ωj(pj − kj/R)| =
∣∣‖(pj ,mj)‖C4 − ‖(pj − kj/R,mj)‖C4

∣∣
≤ ‖(kj/R, 0)‖C4 =

1

R
|kj |.

Hence, [χR,Ωj(pj)] is a bounded operator with

(62) ‖[χR,Ωj(pj)]‖ ≤
1

R
(2π)−dN/2

∫
RdN
|χ̂(K)| · |kj | dK.

Similarly, as 1l− χ̄ ∈ C∞0 (RdN ) and [χ̄R,Ωj(pj)] = [1l− χ̄R,Ωj(pj)], we have

‖[χ̄R,Ωj(pj)]‖ ≤
1

R
(2π)−dN/2

∫
RdN
| ̂1l− χ̄(K)| · |kj | dK.

Hence the lemma follows.

Let j, j̄ ∈ C∞0 (Rd) be another pair of cutoff functions such that j(y)2 + j̄(y)2

= 1 for every y ∈ Rd with j(y) = 1 for |y| ≤ 1 and j(y) = 0 for |y| ≥ 2. We set

jP (y) = j(y/P ) and j̄P (y) = j̄(y/P ) for P > 0. The map

uP : Ǩ>σ → L2(Rdy)⊕ L2(Rdy), f 7→ jP f ⊕ j̄P f,

is an isometry, since ‖jP f ⊕ j̄P f‖2 = ‖f‖2. We also note that the adjoint u∗P maps

f ⊕ g ∈ L2(Rdy)⊕ L2(Rdy) to jP f + j̄P g ∈ L2(Rd). The operator

UP = 1lL2(RdN ) ⊗ Γ(uP ) : Ȟ>σ → Ȟ ⊗F (L2(Rdy))

is also an isometry, where Ȟ = L2(RdN )⊗F (L2(Rdy)). Let

Ȟ0,σ = Γ(F−1)H0,σΓ(F ), Ȟf,σ = Γ(F−1)Hf,σΓ(F ).

Lemma 4.3. (1) For every σ > 0, we have

χRȞ
V
σ χR = χRU

∗
P {ȞV

σ ⊗ 1l + 1l⊗ Ȟf,σ}UPχR + ô(1l)

as operators in H>σ, where ô(1l) is an operator such that ô(1l)(Ȟ0,σ + 1l)−1 is

bounded and limP→∞ limR→∞ ‖ô(1l)(Ȟ0,σ + 1)−1‖ = 0.

(2) We have

χ̄RȞ
V
σ χ̄R ≥ ΣVσ χ̄

2
R + o(R0),

where o(R0) is a number such that limR→∞ o(R0) = 0.

Proof. See [GLL01, Lemma A.1].
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Proposition 4.4. There exists a ground state of HV
σ .

Proof. By Lemmas 4.2 and 4.3,

ȞV
σ = χRU

∗
P {ȞV

σ ⊗ 1l + 1l⊗ Ȟf,σ}UPχR + χ̄RȞ
V
σ χ̄R + ô(1l).

Since ωσ ≥ σ, we have Ȟf,σ ≥ σ(1l − PΩ), where PΩ denotes the orthogonal

projection on the vacuum space {CΩ}. By this inequality and Lemma 4.3,

ȞV
σ ≥ (EVσ + σ)χ2

R + ΣVσ χ̄
2
R −K + ô(1l),

where K = σχRU
−1
P (1l ⊗ PΩ)UPχR = χ2

R ⊗ Γ(jP ). Here K is relatively compact

with respect to
∑N
j=1 Ωj + Ȟf,σ. Since, by (V),

∑N
j=1 Ωj + Ȟf,σ is also relatively

bounded with respect to ȞV
σ , K is relatively compact with respect to ȞV

σ . By

the definition of ô(1l), there is a constant C independent of P and R such that

ô(1l) ≥ −o(1l)(ȞV
σ + C). Thus, we have the operator inequality

(1 + o(1l))ȞV
σ − EVσ + o(1l)−K ≥ σχ2

R + (ΣVσ − EVσ )χ̄2
R ≥ min{σ,ΣVσ − EVσ }.

Since K does not change the essential spectrum of ȞV
σ , for all P and R we have

(1 + o(1l)) inf σess(H
V
σ )− EVσ + o(1l) ≥ min{σ,ΣVσ − EVσ }.

Hence, by (60),

inf σess(H
V
σ )− EVσ ≥ min{σ,ΣVσ − EVσ } > 0.

Therefore σ(ȞV
σ )∩ [EVσ , E

V
σ + min{σ,ΣVσ −EVσ }) is a purely discrete spectrum. In

particular, HV
σ has a ground state.

§4.2. Case σ = 0

Next we prove the existence of a ground state of HV . For σ > 0, let Φσ ∈H be a

normalized ground state of HV
σ . Let {σn} be a sequence such that limn→∞ σn = 0

and Φσn converges weakly to some vector Φ ∈ H . It is well known from [AH97]

that if Φ 6= 0 then Φ is a ground state of HV . In the following we prove that a

subsequence of {Φσ}σ converges to some nonzero vector Φ.

Lemma 4.5. We have the energy bound sup0<σ�1(Φσ, H0Φσ) <∞. In addition,

if EV < ΣV , then sup0<σ�1(Φσ, NΦσ) <∞.

Proof. The former statement follows from the definition of Φσ, and the latter from

[Ger00, Lemma IV2].
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We denote by B(K) the set of bounded operators on a Hilbert space K. For

each k ∈ Rd, let

v(k) =

N∑
j=1

αj√
2
λ̂j(−k)e−ikxj .

Then v(k) ∈ B(L2(RdNX )). For each k ∈ Rd, we set

T (k) = (HV − EV + ω(k))−1(v(k)⊗ 1lF ).

Then T (k) ∈ B(H ) for every k ∈ Rd, (Ψ, T (k)Φ) is measurable for all Φ,Ψ ∈H ,

and
∫
Rd ‖T (k)‖2B(H ) dk <∞. Hence T (·) can be regarded as a vector in the Banach

space L2(Rd;B(H )). Since Φσ ∈ D(N1/2), a(k)Φσ is well defined for almost every

k ∈ Rd. Let θs, s ∈ Rd, be the shift on L2(Rd;B(H )), i.e., for B ∈ L2(Rd;B(H )),

(θsB)(k) = B(k − s), a.e. k ∈ Rd.

Lemma 4.6. The map Rd 3 s 7→ ‖θsTe−δ|x|‖L2(Rd;B(H )) ∈ R is continuous.

Proof. Since θs is a translation, it is enough to show that ‖θsTeδ|x|‖ is continuous

at s = 0, i.e., ‖θsTe−δ|x| − Te−δ|x|‖L2(Rd;B(H )) converges to 0 as s→ 0. We have

(63) ‖θsTe−δ|x| − Te−δ|x|‖L2(Rd;B(H ))

≤
(∫
|k|≤C1

+

∫
|k|≥C2

+

∫
C1<|k|<C2

)
‖T (k − s)e−δ|x| − T (k)e−δ|x|‖2B(H )

for 0 < C1 < C2. For C1 < |k| < C2, we write

T (k − s)e−δ|x| − T (k)e−δ|x|

= (HV − EV + ω(k))−1
( N∑
j=1

Ωj + 1l
)( N∑

j=1

Ωj + 1l
)−1

(v(k − s)− v(k))e−δ|x|

+ (HV −EV + ω(k))−1(HV −EV + ω(k − s))−1v(k − s)(ω(k − s)− ω(k))e−δ|x|.

Since for all k with C1 < |k| < C2,

sup
C1≤|k|

∥∥∥(HV − EV + ω(k))−1
( N∑
j=1

Ωj + 1l
)∥∥∥ <∞,

we have

‖T (k − s)e−δ|x| − T (k)e−δ|x|‖B(H )

≤ C
∥∥∥( N∑

j=1

Ωj + 1l
)−1

e−δ|x|(v(k − s)− v(k))
∥∥∥
B(H )

+ C‖e−δ|x|v(k − s)‖B(H )
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for some constant C > 0 depending on C1 and C2. Note that( N∑
j=1

Ωj + 1l
)−1

e−δ|x|

is compact. By Proposition 4.7 below, we have

(64) lim
s→0

∫
C1<|k|<C2

∥∥∥( N∑
j=1

Ωj + 1l
)−1

e−δ|x|(v(k − s)− v(k))
∥∥∥2

B(H )
dk = 0.

Next we see that

lim
s→0

∫
|k|≤C1

‖T (k − s)e−δ|x| − T (k)e−δ|x|‖2B(H ) dk

≤ 2 lim
s→0

∫
|k|≤C1

(
|λ̂(−k)|2

|ω(k)|2
+
|λ̂(−k + s)|2

|ω(−k + s)|2

)
dk ≤ 4

∫
k≤C1

|λ̂(−k)|2

ω(k)2
dk,

and the right-hand side above converges to zero as C1 → 0. Similarly,

(65) lim
C2→∞

lim
s→0

∫
|k|≥C2

‖T (k − s)e−δ|x| − T (k)e−δ|x|‖2B(H ) dk = 0.

Therefore, by combining (64)–(65), we complete the proof.

Proposition 4.7 ([Ger06, proof of Lemma 3.2]). Suppose Rd 3 k 7→ m(k) ∈
B(L2(RdN )) is a weakly measurable map such that for all 0 < C1 < C2,∫

C1≤|k|≤C2

‖m(k)‖2B(L2(RdN )) dk <∞,

and let R be a compact operator on L2(RdN ). Then for all 0 < C1 < C2,

lim
s→0

∫
C1<|k|<C2

‖R(m(k − s)−m(k))‖2B(L2(RdN )) dk = 0.

Lemma 4.8. Let F ∈ C∞0 (Rd) be a cutoff function with 0 ≤ F ≤ 1, F (s) = 1 for

|s| ≤ 1/2, F (s) = 0 for |s| ≥ 1. Let FR = FR(−i∇k) = F (−i∇k/R). Then

(66) lim
R→∞

sup
0<σ�1

(Φσ,dΓ(1l− FR)Φσ) = 0.

Proof. It is shown in [Ger00, proof of Proposition IV.3] that

lim
σ→0

∫
Rd
‖a(k)Φσ − T (k)Φσ‖2H dk = 0.

Then

(Φσ,dΓ(1l− FR)Φσ)H =

∫
Rd

(T (k)Φσ, (1l− FR)T (k)Φσ)H dk + o(σ0),
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where o(σ0) denotes a constant that converges to 0 as σ → 0. By the Cauchy–

Schwarz inequality the right-hand side above has the upper bound

(67) ‖T‖L2(Rd;B(H )) · ‖(1l− FR)T (k)e−δ|x|‖L2(Rdk;B(H )) · ‖eδ|x|Φσ‖H + o(σ0).

Note that sup0<σ�1 ‖eδ|x|Φσ‖H < ∞ for some δ > 0 by assumption. By the

Fourier transformation, we have

(68) ‖(1l− FR)T (k)e−δ|x|‖2L2(Rd;B(H ))

=

∫
Rd

∥∥∥∥(2π)−d/2
∫
Rd
ds F̂ (s)(1l− θ−s/R)T (k)e−δ|x|

∥∥∥∥2

B(H )

dk

≤ (2π)−d
∫
Rd
|F̂ (s)|2 · ‖(1l− θ−s/R)Te−δ|x|‖L2(Rd;B(H )) ds.

Notice that

|F̂ (s)|2 · ‖(1l− θ−s/R)Te−δ|x|‖L2(Rd;B(H )) ≤ |F̂ (s)|2 · 2‖λ̂j/ω‖,

and the right-hand side above is integrable in s and independent of R. Moreover,

Lemma 4.6 implies that the last integrand in (68) converges to 0 as R → ∞.

Therefore, by the Lebesgue dominated convergence theorem, (68) converges to 0

as R→∞, and hence (66) holds.

Proposition 4.9. HV has a ground state.

Proof. The proof is parallel to that of [Ger00, Lemma IV.5]. From (1l−Γ(FR))2 ≤
dΓ(1l− FR) and Lemma 4.8, we have

(69) ‖(1l− Γ(FR))Φσ‖ ≤ o(R0) + o(σ0).

Let {σn}n be a subsequence such that limn→∞ σn = 0 and Φ = w-limn→∞Φσn .

By Lemmas 4.5 and 3.8, and (69), for every ε > 0 there exist R0, λ0, n0 > 0 such

that for all R > R0, λ0 > λ and n ≥ n0,

‖(1l− χ(H0 ≤ λ))Φσn‖ < ε, ‖(1l− χ(N ≤ λ))Φσn‖ < ε,

‖(1l− χ(|X| ≤ λ))Φσn‖ < ε, ‖(1l− Γ(FR))Φσn‖ < ε,

where χ(s ≤ λ) denotes the characteristic function of {s ∈ R | s ≤ λ}. Note that

K = χ(H0 ≤ λ)χ(N ≤ λ)χ(|X| ≤ λ)Γ(FR) is a compact operator. For all large

R, λ > 0, we have

‖Φ‖ ≥ ‖KΦ‖ − ‖(1l−K)Φ‖ ≥ lim
n→∞

‖KΦσn‖ − ‖(1l−K)Φ‖

≥ lim inf
n→∞

(‖Φσn‖ − ‖(1l−K)Φσn‖)− ‖(1l−K)Φ‖ ≥ 1− 4ε− ‖(1l−K)Φ‖.
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Clearly 1l−K strongly converges to 0 when R and λ go to infinity. Since ε > 0 is

arbitrary, we have ‖Φ‖ = 1. Therefore HV has a normalized ground state Φ.

§5. Essential spectrum

We state without proofs some general lemmas given in [HS08].

Lemma 5.1. Let Kε, ε > 0, and K be self-adjoint operators on a Hilbert space K,

and σess(Kε) = [ξε,∞). Suppose that limε→0Kε = K in the uniform resolvent

sense, and limε→0 ξε=ξ. Then σess(K)=[ξ,∞). In particular, limε→0 inf σess(Kε)

= inf σess(K).

Lemma 5.2. Let ∆ be the d-dimensional Laplacian. Assume that V (−∆+1)−1/2

is a compact operator. Then there exists a sequence {V ε}ε>0 such that V ε ∈
C∞0 (Rd) and limε→0 V

ε(−∆ + 1)−1/2 = V (−∆ + 1)−1/2 uniformly.

Set

k0(β) = −
∑
j∈β

√
−∆j +

∑
i,j∈β

Vij , kV (β) = h0(β) +
∑
j∈β

Vj

with Vi, Vij ∈ L2
loc(Rd) such that Vi(−∆+1)−1/2 and Vij(−∆+1)−1/2 are compact

operators. We define K = kV (CN ). Let

(70) ΞV = min
β(CN

{inf σ(k0(β)) + inf σ(kV (β))}

be the lowest two-cluster threshold of K.

Lemma 5.3. There exist sequences {V εi }ε, {V εij}ε ⊂ C∞0 (Rd), i, j = 1, . . . , N ,

such that

(1) lim
ε→0

ΞV (ε) = ΞV , (2) lim
ε→0

inf σess(K(ε)) = inf σess(K),

where ΞV (ε) (resp. K(ε)) is ΞV (resp. K) with Vi and Vij replaced by V εi and V εij,

respectively.

§6. Functional integration and energy comparison inequality

In this Appendix we shall show Lemma 3.2 and Proposition 3.4 by functional

integration. To do so, we take a Schrödinger representation instead of the Fock

representation. We quickly review the former.

Let Q = S ′R(Rd) be the set of real-valued Schwartz distributions on Rd. The

boson Fock space F can be identified with L2(Q, µ) with some Gaussian measure µ
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such that

Eµ[φ(f)] = 0, Eµ[φ(f)φ(g)] = 1
2 (f, g)

for f, g ∈ L2
R(Rd). Then the scalar field operator in F is unitarily equivalent to

the Gaussian random variable φ(f) in L2(Q):

φ(f) ∼ 1√
2

∫
(a∗(k)f̂(−k) + a(k)f̂(k)) dk

for f ∈ L2
R(Rd). Moreover Hf can be unitarily transformed into a self-adjoint

operator in L2(Q). We denote it by the same notation, Hf .

Furthermore we need the Euclidean quantum field to construct the functional

integral representation of the one-parameter semigroup generated by the Nelson

Hamiltonian HV . Set QE = S ′R(Rd+1). Thus L2(QE , µE) is the L2 space endowed

with a Gaussian measure such that

EµE [φE(F )] = 0, EµE [φE(F )φE(G)] = 1
2 (F,G)L2(Rd+1).

Let jt : L2
R(Rd) → L2

R(Rd+1) be a family of isometries connecting L2(Q) and

L2(QE) which satisfies

j∗s jt = e−|t−s|ω(−i∇)

for all s, t ∈ R. Let Js = Γ(js) be the second quantization of js. Then Js : L2(Q)→
L2(QE) is also a family of isometries such that J∗s Jt = e−|t−s|Hf for all s, t ∈ R.

We identify H with the set of L2(Q)-valued L2 functions on RdN ,
∫ ⊕
RdN L

2(Q) dX,

and HV can be expressed as

(71) Hp ⊗ 1l + κ21l⊗Hf + κα

N∑
j=1

∫ ⊕
RdN

φ(λ(· − xj)) dX

in the Schrödinger representation.

Next we prepare a probabilistic description of the self-adjoint operator Hp.

Let (Xt)t≥0 = (X1
t , . . . , X

N
t )t≥0 be the RdN -valued Lévy processes on a proba-

bility space (D, B,Px) starting from x = 0 with characteristic function (34). Set

W (x1, . . . , xN ) =
∑N
j=1 V (xj). Then we have the Feynman–Kac formula

(f, e−Hpg) =

∫
RdN

ExP
[
f̄(X0)g(Xt)e

−
∫ t
0
W (Xs) ds

]
.

The functional integral representation of e−tH
V

can be obtained in the same

way as the standard Nelson model. The only difference is the process associated

with the kinetic term. Instead of the Brownian motion the Lévy process (Xj
t )t≥0

is taken for e−tH
V

. The Feynman–Kac type formula for e−tH
V

is then given by



Enhanced Binding II 685

(F, e−tH
V

G)H =∫
RdN

dxExP
[
e−

∫ t
0
W (Xs) ds(J0F (X0), e−κφE(

∑N
j=1

∫ t
0
jκ2sλj(·−Xs) ds)Jκ2tG(Xt))L2(QE)

]
.

Next we also consider the Feynman–Kac formula for exp(−te−iTHV eiT ). It is

given by the composition of dN -dimensional Brownian motion (B1
t , . . . , B

N
t )t≥0

on a probability space (C,B,Wx) and N independent subordinators (T jt )t≥0, j =

1, . . . , N , on (Ωµ,Bµ, µ) such that Bj
T jt

has the same distribution as Xj
t . Set BTt =

(Bj
T jt

)t≥0, j=1,...,N . We have

Proposition 6.1. Let F,G ∈H . Then

(F, e−te
−iTHV eiTG) = etEdiag

∫
RdN

dxEx,0W×µ
[
e−

∫ t
0

(W+Veff )(BTs ) ds

×
(
J0F (BT0), e−iκ

−1φE(Kt)Jκ2tG(BTt)
)
L2(QE)

]
.

Here Kt =
∑N
j=1

∫ T jt
0

j(T j−1)κ2s
λj(· − Bjs) ◦ dBjs denotes the L2(Rd+1)-valued

Stratonovich integral and j(T j−1)t
are some isometries defined by (T jt )t≥0.

Proof. See [Hir14, Theorem 3.15].

By using Proposition 6.1 we can compute the scaling limit of e−iTHV eiT as

κ → ∞. Note that (J0Φ, Jκ2tΨ) → (Φ, PΩΦ) as κ → ∞ for t 6= 0. Then by the

functional integral representation (Proposition 6.1) we immediately see that

(72) lim
κ→∞

(F, e−te
−iTHV eiTG) = (F, e−t(h

V
eff−Ediag) ⊗ PΩG).

Since hVeff has a ground state, this suggests that HV also has a ground state for

sufficiently large κ. This has been indeed proved in Section 3.

By functional integral representation we have an energy comparison bound.

Proposition 6.2. We have inf σ(HV ) ≤ inf σ(hVeff) + Ediag.

Proof. By Proposition 6.1,

|(F, e−te
−iTHV eiTG)| ≤ etEdiag(|F |, e−t(h

V
eff+Hf )|G|).

Hence the proposition follows.

In the same way as with Proposition 6.2 but for HV replaced by HV (β)

or H0(β) we obtain

Proposition 6.3 (Lemma 3.2). We have

(73) inf σ(H#(β)) ≤ inf σ(h#
eff(β)) +

∑
j∈β

α2

2
‖λ̂j/

√
ω‖2, # = 0, V.
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Next we prove Proposition 3.4. We can construct the functional integral rep-

resentation of e−tH
V
σ in much the same way as that of e−tH

V

. The only difference

is to replace λ̂j with λ̂jdω(k)>σ.

Proposition 6.4. Proposition 3.4 holds.

Proof. Notice that Φσ = e−t(e
−iTHVσ e

iT−EVσ )Φσ. Then by Proposition 6.1,

Φσ(x) = et(E
V
σ +Ediag)Ex,0W×µ

[
e−

∫ t
0
Weff (BTs ) dsJ∗0 e

−iκ−1φE(Kt)Jκ2tΦσ(BTt)
]
.

Thus it is straightforward to see by the Schwarz inequality that

‖Φσ(x)‖F ≤ et(E
V
σ +Ediag)

(
Ex,0W×µ

[
e−2

∫ t
0
Weff (BTs ) ds

])1/2‖Φσ‖H .

Note that limσ→0E
V
σ = EV . Then the proposition follows, since BTt has the same

distribution as Xt.

§7. The bound E(0) ≤ E(P ) and continuity of E(·)

We next consider a fiber decomposition of the translation invariant relativistic

Schrödinger operator Hp =
∑N
j=1 Ωj + Veff in L2(RdN ).

For notational convenience and generalizations, we consider the Schrödinger

operator of the form Hp =
∑N
j=0 Ωj + v in L2(Rd(N+1)), where

v =

N∑
j=0

vij(xi − xj),

and we assume that v is relativistic of Kato class. Let Xt = (Xj
t )t≥0, j = 0, . . . , N ,

be N + 1 independent Lévy processes with ExP[eiu·X
j
t ] = e−tΩj(u), and set Xt =

(Xj
t )t≥0,j=1,...,N . Let Ptot =

∑N
j=0 pj be the total momentum. Then Hp commutes

with Ptot, and so Hp
∼=
∫ ⊕
Rd k(P ) dP , where k(P ) is a self-adjoint operator on

L2(RdN ). Let E(P ) = inf σ(k(P )).

Theorem 7.1. (1) E(0) ≤ E(P ) for all P ∈ Rd.

(2) Rd 3 P 7→ E(P ) ∈ R is continuous.

We shall prove this theorem by making use of a path integral representation.

Set x = (x0,x) ∈ Rd × RdN . Let U = Feix0·
∑N
j=1 pj : L2(Rd(N+1))→ L2(Rd(N+1))

be a unitary operator, where F denotes the Fourier transformation with respect

to x0, i.e., Ff(k,x) = (2π)−d/2
∫
f(x0,x)e−ik·x0 dx0. We have

(Uf)(k,x) = (2π)−d/2
∫
Rd
e−ik·x0f(x0, x1 + x0, . . . , xN + x0) dx0.
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Thus we can directly see that (UPtotU
−1f)(k,x) = kf(k,x). Hence U diagonalizes

Ptot, and thus UHpU
−1 =

∫
Rd k(P ) dP . We have

(74) (f, e−tHpg)L2(Rd(N+1)) =

∫
Rd(N+1)

dxE(x0,x)
P

[
f(X0)g(Xt)e

−
∫ t
0
v(Xs) ds

]
.

We construct the Feynman–Kac formula for (f, e−tk(P )g)L2(RdN ). Let v = 0. Then

k(P ) = Ω0

(
P −

N∑
j=1

pj

)
+

N∑
j=1

Ωj(pj).

Since E(0,x)
P

[
eiX

0
t (P−

∑N
j=1 pj)

]
= e−tΩ0(P−

∑N
j=1 pj), we intuitively see that

(f, e−tk(P )g)L2(RdN ) =

∫
RdN

dxE(0,x)
P

[
f(X0)eiX

0
t ·(P−

∑N
j=1 pj)g(Xt)

]
.

Note that e−iX
0
t ·
∑N
j=1 pj denotes a translation:

(e−iX
0
t ·
∑N
j=1 pjg)(Xt) = g(X1

t −X0
t , . . . , X

N
t −X0

t ).

The next proposition gives the Feynman–Kac formula with potential.

Proposition 7.2. Let F,G ∈ L2(RdN ) and P ∈ Rd. Then

(75) (F, e−tk(P )G)L2(RdN )

=

∫
RdN

dxE(0,x)
P

[
F (X0)e−

∫ t
0
v(Xs) dseiX

0
t ·(P−

∑N
j=1 pj)G(Xt)

]
.

Proof. Let ξ ∈ Rd. First we see that

(76) (f, e−tHpeiξ·Ptotg)L2(Rd(N+1)) =

∫
Rd
dP eiξ·P (f(P ), e−tk(P )g(P ))L2(RdN ),

where

f(P ) = (Uf)(P,x) = (2π)−d/2
∫
Rd
e−iP ·Xf(X,x1 +X, . . . , xN +X) dX,

and g(P ) is given similarly. Now we set f = fs = ps ⊗ F and g = gr = pr ⊗ G,

where F,G ∈ S (R3N ) and ps(X) = (2πs)−d exp(−|X|2/(2s)) is the heat kernel.

Note that fs → δ(x0)⊗ F as s ↓ 0. We have

lim
s↓0

∫
Rd
dP eiξ·P (fs(P ), e−tk(P )gr(P ))L2(RdN )

= (2π)−d/2
∫
Rd
dP eiξ·P (F, e−tk(P )gr(P ))L2(RdN ).
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The right-hand side above is the inverse Fourier transform of the function h : P 7→
(F, e−tk(P )gr(P ))L2(RdN ) and

(77) lim
r↓0

h(P ) = (F, e−k(P )G)L2(RdN )(2π)−d/2.

On the other hand, the left-hand side of (76) can be represented by the Feynman–

Kac formula:

(78) (fs, e
−tHpeiξ·Ptotgr)

=

∫
Rd(N+1)

dxE(x0,x)
P

[
fs(X0)e−

∫ t
0
v(Xs) dsgr(X

0
t + ξ, . . . ,XN

t + ξ)
]
.

Taking s ↓ 0, we have∫
Rd(N+1)

dxE(x0,x)
P

[
fs(X0)e−

∫ t
0
v(Xs) dsgr(X

0
t + ξ, . . . ,XN

t + ξ)
]

→ E(0,0)
P

[∫
RdN

dxF (x)e−
∫ t
0
v(Xs+(0,x)) dsgr(X

0
t +ξ,X1

t +ξ+x1, . . . , X
N
t +ξ+xN )

]
.

The right-hand side is a function of ξ. Its Fourier transform with respect to ξ is

E(0,0)
P

[∫
RdN

dxF (x)e−
∫ t
0
v(Xs+(0,x)) ds

× (2π)−d/2
∫
Rd
dξe−iξ·P gr(X

0
t + ξ,X1

t + ξ + x1, . . . , X
N
t + ξ + xN )

]
.

Take r ↓ 0. We have

E(0,0)
P

[∫
RdN

dxF (x)e−
∫ t
0
v(Xs+(0,x)) dseiX

0
t ·P

×G(X1
t −X0

t + x1, . . . , X
N
t −X0

t + xN )

]
= E(0,x)

P

[∫
RdN

dxF (X0)e−
∫ t
0
v(Xs) dseiX

0
t (P−

∑N
j=1 pj)G(Xt)

]
.

Comparing (77) with the right-hand side above, we deduce the theorem for F,G

in S . By a limiting argument the theorem is valid for all f, g ∈ L2(RdN ).

Proof of Theorem 7.1. By Proposition 7.2 we have

(79) |(f, e−tk(P )g)| ≤
∫
RdN

dxE(0,x)
P

[
|f(X0)|e−

∫ t
0
v(Xs) ds|e−iX

0
t ·
∑N
j=1 pjg(Xt)|

]
.

Since e−iX
0
t ·
∑N
j=1 pj is a shift operator,

|e−iX
0
t ·
∑N
j=1 pjg(Xt)| ≤ e−iX

0
t ·
∑N
j=1 pj |g(Xt)|.

Hence |(f, e−tk(P )g)| ≤ (|f |, e−tk(0)|g|), which yields (1).
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Next we show (2). By the Feynman–Kac formula it is immediate that

(F, (e−tk(P ) − e−tk(Q))G)

=

∫
RdN

dxE(0,x)
P

[
F (X0)e−

∫ t
0
v(Xs) dse−iX

0
t ·
∑N
j=1 pj

(
i

∫ X0
t ·P

X0
t ·Q

eiθ dθ

)
G(Xt)

]
.

Therefore

|(F, (e−tk(P ) − e−tk(Q))G)|
‖F‖‖G‖

≤ |P −Q| sup
x∈RdN

(
E(0,x)

P

[
|X0

t |2e−2
∫ t
0
v(Xs) ds

])1/2
.

Since v is relativistic of Kato class,

sup
x∈RdN

E(0,x)
P

[
|X0

t |2e−2
∫ t
0
v(Xs) ds

]
≤ sup

x∈RdN
E(0,x)

P [|X0
t |4]1/2 sup

x∈RdN

(
E(0,x)

P

[
e−4

∫ t
0
v(Xs) ds

])1/2
<∞.

Thus e−tk(P ) uniformly converges to e−tk(Q) as |P −Q| → 0, and (2) follows.
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