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Abstract

Concentration phenomena in statistical ensembles of Young diagrams have been inves-
tigated as static models first for the Plancherel ensemble by Vershik–Kerov and Logan–
Shepp in 1970s and later in some other group-theoretical setting by Biane. On the other
hand, a dynamical model of concentration for Young diagrams, which is not directly
connected with group representations, was shown by Funaki–Sasada in the framework
of hydrodynamic limit. The aim of this paper is to present a new dynamical model of
concentration for Young diagrams featuring the group-theoretical sense. Starting from an
initial state yielding concentration and a microscopic dynamics keeping the Plancherel
measure invariant, we derive an evolution of the profiles of Young diagrams under a dif-
fusive scaling limit. The resulting evolution along macroscopic time is described in terms
of the notions of Voiculescu’s free probability theory such as free compression and free
convolution of Kerov transition measures.
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§1. Introduction

The set of Young diagrams of size n, which is denoted by Yn, parametrizes all the

equivalence classes of irreducible representations of the symmetric group Sn. The

Plancherel measure M(n)
Pl is a fundamental probability measure on Yn, which is
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defined by

M(n)
Pl (λ) =

(dimλ)2

n!
, λ ∈ Yn,

where dimλ denotes the dimension of an irreducible representation of Sn labeled

by λ ∈ Yn. We call the probability space (Yn,M(n)
Pl ) the Plancherel ensemble of

Young diagrams of size n, anticipating that it is a certain equilibrium state in our

context. It is known that a Young diagram chosen out of the Plancherel ensemble

at random, strictly speaking according to the probability designed by M(n)
Pl , should

always look like a special shape. This is the famous phenomenon of concentration

to the limit shape discovered by Logan–Shepp [9] and Vershik–Kerov [13]. A more

precise statement is formulated as a weak law of large numbers as follows. Let us

identify a Young diagram λ ∈ Yn with its profile as defined in Subsection 2.1 (see

Figure 1). We consider the function λ rescaled by 1/
√
n:

(1.1) λ
√
n(x) =

1√
n
λ(
√
nx), x ∈ R.

Set

(1.2) Ω(x) =

{
2
π (x arcsinx2 +

√
4− x2), |x| ≤ 2,

|x|, |x| > 2.

Then, for any ε > 0, we have

lim
n→∞

M(n)
Pl

({
λ ∈ Yn

∣∣∣ sup
x∈R
|λ
√
n(x)−Ω(x)| ≥ ε

})
= 0.

The Plancherel measure can be lifted to the probability MPl on the space T con-

sisting of the infinite paths connecting Young diagrams

t =
(
t(0) = ∅ ↗ t(1) = �↗ t(2)↗ · · · ↗ t(n)↗ · · ·

)
, t(n) ∈ Yn,

so that it is the nth marginal distribution as

M(n)
Pl (λ) = MPl({t ∈ T | t(n) = λ}), λ ∈ Yn.

Then we can show almost sure convergence to the limit shape Ω as a strong law of

large numbers. This kind of concentration is also observed in some other settings

than the Plancherel one. In [1] and [2], Biane pointed out the property of “approx-

imate factorization” for states of the group algebra C[Sn] induced by probabilities

on Yn and gave interesting examples of these concentration phenomena. The ap-

proximate factorization property is interpreted as ergodicity in a certain weak

sense. The limit shape in the Plancherel ensemble simply means the 1-point func-

tion of the system. A thorough treatment including higher correlation functions

was developed by Borodin–Okounkov–Olshanski [3].
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Let us note that the concentration to the limit shape of Young diagrams is a

static result under the micro-macro correspondence by the rescaling given by (1.1).

The purpose of this paper is to capture the evolution of the rescaled profiles of

Young diagrams along macroscopic time under the same micro-macro correspon-

dence. In [5], Funaki–Sasada showed remarkable results on hydrodynamic limit

for the evolution of Young diagrams. In the model they treated, the microscopic

transition rule governing the dynamics on the set of Young diagrams is given by

creation and annihilation of a box according to the uniform distribution condi-

tioned on their size. Although their model is simple and natural, our aim here is

to consider a dynamical model featuring the direct group-theoretical meaning of

Young diagrams (which label the irreducible representations of symmetric groups).

The results of Funaki–Sasada [5] are given in the setting of the grand canonical

ensemble under which a Markov chain on the totality of Young diagrams of all sizes

allows variation of the number of boxes. The main theorem of this paper is stated

in the canonical ensemble setting where we consider a Markov chain on Yn and

then take a limit as n→∞. When we discuss the Plancherel ensemble in the grand

canonical manner, it seems natural to consider the probability on Y =
⊔∞
n=0 Yn

through poissonization of M(n)
Pl ’s. In Section 4, we formulate this model and state

some aspects of the problems when its scaling limit is considered.

It is interesting that certain Markov chains on the set of Young diagrams

are related to queuing networks in which Young diagrams are formed because of

existence of the priority structure for the services. We do not intend to discuss

the relationship with such dynamical models here but mention [11] and references

therein.

The framework of the scaling limit in this paper is as follows. Recall that, if

the microscopic Plancherel ensemble is zoomed out under scaling limit by 1/
√
n

as in (1.1), one observes Ω of (1.2) macroscopically. We consider a continuous

time Markov chain (X
(n)
s )s≥0 on the state space Yn which keeps the Plancherel

measure M(n)
Pl invariant. Then, if the chain starts with the initial state M(n)

Pl , the

macroscopic shape remains Ω as time goes by. As an initial state on Yn let us

now take a probability M(n)
0 under which we know in advance that concentration

occurs as n → ∞. After 1/
√
n-scaling limit as in (1.1) with respect to M(n)

0 , a

certain macroscopic shape ω0 is hence observed. When we derive the same Markov

chain as above from the initial state M(n)
0 , it is expected that the distribution M(n)

s

on Yn at time s will tend to M(n)
Pl as s → ∞. Then, seen from the macroscopic

point of view, an evolution from ω0 to Ω should be observed. Let us make the

scale more precise. We assume that the microscopic state (Yn,M(n)
0 ) appears if

the macroscopic initial shape ω0 is zoomed in
√
n multiple. Given a macroscopic
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time t > 0, we consider the situation after microscopically long time s = tn and,

observing it by the rescale of 1/
√
n, see some macroscopic shape ωt at time t. Note

that the scale of time versus space is the diffusive one. Our aim is to prove this

concentration to ωt at each time t and to describe ωt as explicitly as possible as a

function of t. Since we have convergence to the Plancherel measure as s → ∞ in

the microscopic situation, ωt should converge to the limit shape Ω as t→∞.

Let us introduce some notions needed to state our main theorem which realizes

the above framework. In order to take a Markov chain on Yn which keeps M(n)
Pl

invariant, we consider (a special case of) the down and up transition probabilities

used in [4]. For two Young diagrams λ and µ with sizes satisfying |µ|+ 1 = |λ|, we

use the notation of µ↗ λ if λ is formed by adding one box to µ. For λ ∈ Yn and

µ ∈ Yn−1 (n ∈ N), set

(1.3) P ↓λµ =

{
dimµ
dimλ , µ↗ λ,

0, otherwise,
P ↑µλ =

{
dimλ
n dimµ , µ↗ λ,

0, otherwise.

The branching rules of restriction and induction

ResSnSn−1
λ ∼=

⊕

µ∈Yn−1:µ↗λ

µ, IndSn
Sn−1

µ ∼=
⊕

λ∈Yn:µ↗λ
λ

imply that P ↓ and P ↑ satisfy

∑

µ∈Yn−1

P ↓λµ = 1,
∑

λ∈Yn

P ↑µλ = 1.

Hence, setting P (n) = P ↓P ↑, that is,

(1.4) P
(n)
λµ =

∑

ν∈Yn−1

P ↓λνP
↑
νµ, λ, µ ∈ Yn,

we obtain a stochastic matrix P (n) of degree |Yn|. We have

(1.5) P
(n)
λµ =





|{peaks of λ}|/n, λ = µ,

dimµ/(ndimλ), λ ∧ µ ∈ Yn−1,
0, otherwise,

for λ, µ ∈ Yn. Here if λ, µ ∈ Yn are distinct, then there can exist at most one

Young diagram ν ∈ Yn−1 satisfying both ν ↗ λ and ν ↗ µ, namely ν = λ ∧ µ
(= the set-theoretical intersection of the boxes). The number of Young diagrams

ν ∈ Yn−1 satisfying ν ↗ λ equals the number of peaks of λ (see (2.1)). More

generally, let G be a finite group and H its subgroup. We consider the irreducible



Diffusive Limit of Random Young Diagrams 695

decomposition of the restriction-induction: for λ ∈ Ĝ,

(1.6) IndGH ResGH λ
∼= IndGH

(⊕

ν∈Ĥ

[cλ,ν ]ν
)
∼=
⊕

µ∈Ĝ

[∑

ν∈Ĥ

cλ,ν cµ,ν

]
µ

where cλ,ν = [ResGH λ, ν] = [IndGH ν, λ]. Taking the dimension of (1.6), we have

(1.7) Pλµ =
dimµ

[G : H] dimλ

∑

ν∈Ĥ

cλ,ν cµ,ν , λ, µ ∈ Ĝ.

The transition probability (1.4) or (1.5) is a special case of (1.7) for G = Sn and

H = Sn−1. The following is a direct consequence of (1.7) and (1.8).

Lemma 1.1. The Plancherel measure MG
Pl on Ĝ:

(1.8) MG
Pl(λ) = (dimλ)2/|G|, λ ∈ Ĝ,

is symmetric with respect to P of (1.7), namely we have

MG
Pl(λ)Pλµ = MG

Pl(µ)Pµλ, λ, µ ∈ Ĝ.

Hence the restriction-induction Markov chain on Ĝ with transition probability ma-

trix P keeps MG
Pl invariant.

Let us consider a continuous time Markov chain (X
(n)
s )s≥0 with the transition

matrix P (n) on the state space Yn. The induced probability on the set of functions

(= paths) from [0,∞) to Yn is denoted byM(n). Let M(n)
0 be the initial distribution

on Yn. The distribution M(n)(X
(n)
s = ·) at time s is given by

(1.9) M(n)(X(n)
s = µ) =

∑

λ∈Yn

M(n)
0 (λ)(es(P

(n)−I))λµ, µ ∈ Yn.

By identifying a Young diagram with its profile, consider the space D consisting of

the continuous diagrams such that Y ⊂ D. Here ω ∈ D is by definition a function

R→ R satisfying the following conditions:

|ω(x)− ω(y)| ≤ |x− y|, x, y ∈ R,(1.10)

ω(x) = |x| if |x| is large enough.(1.11)

Let mω denote the transition measure of ω ∈ D (see (2.2) and (2.3)). The support

suppω = suppmω is defined as usual. The transition measure of Ω in (1.2) is the

standard semi-circle distribution such that

(1.12) mΩ(dx) =
1

2π

√
4− x2 1[−2,2](x) dx.
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For a probability on R, its kth moment and free cumulant are denoted by Mk( · )
and Rk( · ) respectively for k ∈ N (see Subsection 2.2). A decisive fact is that the

free cumulant sequence of (1.12) is

(1.13)
R1(mΩ) = 0, R2(mΩ) = 1,

R3(mΩ) = R4(mΩ) = R5(mΩ) = · · · = 0.

Some observations on topologies on D are needed to discuss concentration.

See Subsection 2.1 for more details. Setting

Da = {ω ∈ D | suppω ⊂ (−a, a)}

for a > 0, we have D =
⋃
a>0 Da. If D is equipped with the uniform topology

and Da with the relative topology, we can consider the inductive limit topology

on D, which is stronger than the uniform one. An intermediate topology on D is

the moment topology defined by the family of pseudo-distances

(1.14)

∣∣∣∣
∫

R
xk−1(ω1(x)− ω2(x)) dx

∣∣∣∣, ω1, ω2 ∈ D, k ∈ N,

or

(1.15) |Mk(mω1
)−Mk(mω2

)|, ω1, ω2 ∈ D, k ∈ N

(see Lemma 2.1). The equivalence of (1.14) and (1.15) follows from (2.3).

Now we present a condition for a sequence of probability spaces to form con-

centration. Expectation with respect to probability M is denoted by EM[ · ].

Definition 1.2. A sequence {(Yn,M(n))}n∈N of probability spaces satisfies con-

centration at ψ if there exists ψ ∈ D such that, for any p ∈ N and k1, . . . , kp ∈
{2, 3, . . .},

(1.16) lim
n→∞

EM(n) [Mk1(mλ
√
n) · · ·Mkp(mλ

√
n)] = Mk1(mψ) · · ·Mkp(mψ).

Since suppψ is compact, (1.16) determines ψ uniquely. We note the following

simple facts.

Remark 1.3. (1) The concentration (1.16) implies the weak law of large numbers

with respect to the moment topology on D: for any ε > 0 and k ∈ N,

(1.17) lim
n→∞

M(n)

({
λ ∈ Yn

∣∣∣∣
∣∣∣∣
∫

R
xk−1(λ

√
n(x)− ψ(x)) dx

∣∣∣∣ ≥ ε
})

= 0.

(2) If there exist a > 0 and n0 ∈ N such that, if n > n0, then suppλ
√
n ⊂

(−a, a) for all λ in suppM(n) (the so-called balanced condition), in addition to the

weak law of large numbers (1.17), then (1.16) is fulfilled.
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Here is our main theorem. The free convolution of two probabilities µ and ν

on R is denoted by µ � ν. For a probability µ on R and c ∈ (0, 1], let µc denote

the probability on R obtained as free compression by a projection of expectation c

(see Subsection 2.2).

Theorem 1.4. For the Markov chain (X
(n)
s )s≥0 of (1.9), assume that the initial

probability spaces {(Yn,M(n)
0 )}n∈N satisfy the concentration (1.16) at ψ = ω0 ∈ D.

For any (macroscopic time) t ≥ 0, consider the distribution of the Markov chain

at s = tn:

M(n)
t (λ) =M(n)(X

(n)
tn = λ), λ ∈ Yn.

Then {(Yn,M(n)
t )}n∈N satisfy concentration at ωt∈D: for any p∈N and k1, . . . , kp

∈ {2, 3, . . .},

lim
n→∞

EM(n)
t

[Mk1(mλ
√
n) · · ·Mkp(mλ

√
n)] = Mk1(mωt) · · ·Mkp(mωt)

for any t ≥ 0. Here the macroscopic profile ωt ∈ D at time t is characterized

through its transition measure mωt by the following operations of free compression

and free convolution:

(1.18) mωt = (mω0
)e−t � (mΩ)1−e−t , t > 0.

Remark 1.5. In terms of a free cumulant sequence1, (1.18) is translated into

(1.19)
R1(mωt) = 0, R2(mωt) = 1,

Rk(mωt) = Rk(mω0
)e−(k−1)t, k ≥ 3

(see (2.6) and (2.4) for the free cumulants obtained by free compression and free

convolution). Since for any k ∈ N we have

lim
t→∞

Rk(mωt) = Rk(mΩ)

by (1.19), ωt converges to Ω in D as t→∞ in the macroscopic point of view.

Remark 1.6. If we adopt P ↑P ↓ instead of P ↓P ↑ as the transition matrix of a

Markov chain on Yn governing the microscopic dynamics, we still have invariance

of M(n)
Pl and the same result for the diffusive limit. See Remark 3.6.

For hydrodynamic limit in most models including [5], a fundamental task is to

describe the evolution along macroscopic time by specifying a (non-linear) partial

differential equation for ωt obtained through the scaling limit. The profile ωt is

regarded as the interface of the region between y = ωt(x) and y = |x| whose area

is constant in t. In the context of this paper, the shape of an element of D can be

1Note that, for ω0 also, we have R1(mω0 ) = 0 and R2(mω0 ) = 1.
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efficiently analyzed by the free cumulant sequence of the transition measure. The

correspondence

ω ∈ D ↔ mω ↔ {Rk(mω)}k∈N
will be explained in Subsections 2.1 and 2.2. As for a partial differential equation

governing the evolution, we derive the one for the Stieltjes transform of mωt :

(1.20) G(t, z) =

∫

R

1

z − x mωt(dx), z ∈ C+,

in Theorem 3.3.

The subsequent sections are organized as follows. Section 2 is devoted to

reviewing necessary notions and properties. Introduced are the profile of a Young

diagram, its transition measure, several notions in free probability theory and so

on. The proof of Theorem 1.4 is given in Section 3. In Section 4, we consider

the poissonized Plancherel ensemble in which the microscopic dynamics allows

variation of sizes of Young diagrams and discuss a setting of the grand canonical

ensemble.

§2. Preliminaries

§2.1. Young diagram, continuous diagram and transition measure

A Young diagram is presented by λ = (λ1 ≥ λ2 ≥ · · · ≥ λl(λ)) where l(λ) denotes

the number of rows in λ or by λ = (1m1(λ)2m2(λ) · · · jmj(λ) · · · ) where mj(λ) de-

notes the number of rows of length j in λ. In this paper we mainly display a Young

diagram by loading the region y > |x| of the xy-plane with squares (= boxes) of

edge length
√

2 as in Figure 1. The piecewise linear graph presented by bold lines

in Figure 1 is called the profile of the Young diagram. A Young diagram identified
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mainly display a Young diagram by loading the region y > |x| of the xy-
plane with squares (= boxes) of edge length

√
2 as Figure 1. The piecewise

linear graph presented by bold lines in Figure 1 is called the profile of a
Young diagram. A Young diagram identified with its profile is regarded
as a continuous diagram defined by (1.10) and (1.11). Setting D0 = {λ ∈
D |λ is piecewise linear, λ′(x) = ±1}, we have Y ⊂ D0 ⊂ D. We encode
λ ∈ D0 by using the x-coordinates of the valleys and peaks of λ

(2.1) x1 < y1 < x2 < y2 < · · · < xr−1 < yr−1 < xr

as Figure 1. Conversely, interlacing xi’s and yi’s as in (2.1) are the coordi-
nates of some λ ∈ D0 if and only if they satisfy

r∑

i=1

xi −
r−1∑

i=1

yi = 0.

An atomic probability mλ on R is uniquely assigned to any λ = (x1 < y1 <
· · · < yr−1 < xr) ∈ D0 by

(2.2)
(z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr)
=

∫

R

1

z − xmλ(dx), z ∈ C \ R.

Clearly, supp mλ coincides with {x1, . . . , xr}. The probability mλ is called
the (Kerov) transition measure of λ. The transition measure mω can be
defined for any continuous diagram ω ∈ D also through a limiting procedure
so that it satisfies

(2.3)

∫

R

1

z − xmω(dx) =
1

z
exp

{∫

R

1

x− z
(ω(x)− |x|

2

)′
dx

}
, z ∈ C \ R

for ω ∈ D. A convenient way is as follows. In fact, (2.3) is verified for ω ∈ D0.

Then, taking a uniformly approximate sequence {λ(k)}k∈N ⊂ D0 for a given
ω ∈ D and recognizing that {Mn(mλ(k))}k∈N forms a Cauchy sequence for

any n ∈ N by applying (2.3) to ω = λ(k), we use an easy moment problem for
a compactly supported probability on R. Conversely, given a probability µ

x1 y1 x2 y2 x3

Figure 1. Young diagram, its profile and coordinates (−3 <
−2 < −1 < 1 < 3).

x1 y1 x2 y2 x3

Figure 1. Young diagram, its profile and coordinates (−3 < −2 < −1 < 1 < 3).
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with its profile is regarded as a continuous diagram defined by (1.10) and (1.11).

Setting D0 = {λ ∈ D |λ is piecewise linear, λ′(x) = ±1}, we have Y ⊂ D0 ⊂ D.

We encode λ ∈ D0 by using the x-coordinates of the valleys and peaks of λ,

(2.1) x1 < y1 < x2 < y2 < · · · < xr−1 < yr−1 < xr

as in Figure 1. Conversely, interlacing xi’s and yi’s as in (2.1) are the coordinates

of some λ ∈ D0 if and only if they satisfy

r∑

i=1

xi −
r−1∑

i=1

yi = 0.

An atomic probability mλ on R is uniquely assigned to any λ = (x1 < y1 < · · · <
yr−1 < xr) ∈ D0 by

(2.2)
(z − y1) · · · (z − yr−1)

(z − x1) · · · (z − xr)
=

∫

R

1

z − x mλ(dx), z ∈ C \ R.

Clearly, suppmλ coincides with {x1, . . . , xr}. The probability mλ is called the

(Kerov) transition measure of λ. The transition measure mω can be defined for any

continuous diagram ω ∈ D also through a limiting procedure so that it satisfies

(2.3)

∫

R

1

z − x mω(dx) =
1

z
exp

{∫

R

1

x− z

(
ω(x)− |x|

2

)′
dx

}
, z ∈ C \ R,

for ω ∈ D. A convenient way is as follows. In fact, (2.3) is satisfied for ω ∈ D0.

Then, taking a uniformly approximate sequence {λ(k)}k∈N ⊂ D0 for a given ω ∈ D
and recognizing that {Mn(mλ(k))}k∈N forms a Cauchy sequence for any n ∈ N
by applying (2.3) to ω = λ(k), we use an easy moment problem for a compactly

supported probability on R. Conversely, it is known that to a given probability µ

on R with compact support and mean 0, there corresponds a unique ω ∈ D such

that µ = mω.

Including consideration of probabilities with non-compact supports and cer-

tain moment conditions, a thorough treatment of interplay between transition

measures and continuous diagrams is given in [8]. Recall the moment topology

on D defined by (1.14) or (1.15). We record the following facts about topologies

on D.

Lemma 2.1. (1) The pointwise and uniform convergence topologies on D coin-

cide.

(2) Restricted to Da for a > 0, the uniform, moment, and inductive limit topologies

coincide.

(3) The moment topology is intermediate between the uniform and inductive limit

topologies on D.
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Proof. (1) directly follows from conditions (1.10) and (1.11) defining D; (2) and

(3) are shown by using (2.3).

§2.2. Free probability theory

Let us recall several notions of free probability theory. We refer to [10] for details.

Here we mainly pick up combinatorial aspects only for one-dimensional distribu-

tions. Consider a C∗-probability space (A, φ) consisting of a unital C∗-algebra A
and a state φ of A. Let µ, ν be the distributions of self-adjoint a, b ∈ A respectively.

If a and b are free, the distribution of a+ b is denoted by µ� ν and called the (ad-

ditive) free convolution of µ and ν. Given compactly supported probabilities µ, ν

on R, the probability µ � ν is uniquely determined and compactly supported. In

terms of free cumulants of probabilities on R, the free convolution is characterized

by

(2.4) Rk(µ� ν) = Rk(µ) +Rk(ν), k ∈ N.

Here Rk(µ) denotes the kth free cumulant of µ, which is defined (from a combina-

torial viewpoint) by the cumulant-moment formula (2.5) below. Let NC(n) denote

the set of non-crossing partitions of {1, . . . , n}. The subscripts of cumulants (and

moments also) are extended to any partition π = (v1, . . . , vl) ∈ NC(n) by setting

Rπ(µ) = R|v1|(µ) · · ·R|vl|(µ)

multiplicatively (where |vi| denotes the cardinality of block vi). Then we have

(2.5) Mn(µ) =
∑

π∈NC(n)

Rπ(µ), n ∈ N.

The Möbius function of the poset NC(n) enables us to write an inversion formula

of (2.5), which expresses Rn(µ) explicitly in terms of Mk(µ)’s.

If q ∈ A is a projection (q2 = q = q∗) such that the expectation φ(q) 6= 0,

setting B = qAq and c = φ(q), we have a C∗-probability space (B, 1cφ
∣∣
B). Moreover,

if self-adjoint a ∈ A and q are free, then the distribution of qaq with respect to 1
cφ
∣∣
B

is called the free compression of the distribution µ of a and denoted by µc. Given

a compactly supported probability µ on R and c ∈ (0, 1], the free compression µc
of µ is uniquely determined. In terms of free cumulants, the free compression is

characterized by

(2.6) Rk(µc) = ck−1Rk(µ)

(
=

1

c
Rk

(
µ

(
1

c
·
)))

, k ∈ N.
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For a compactly supported probability µ on R, set

(2.7) Kµ(ζ) =
1

ζ
+

∞∑

k=0

Rk+1(µ)ζk, ζ ∈ C.

The Taylor series part of (2.7) is Voiculescu’s R-transform of µ. The Stieltjes

transform

Gµ(z) =

∫

R

1

z − x µ(dx), z ∈ C,

of µ and Kµ of (2.7) are inverse functions of each other in appropriate domains

such that |z| � 1↔ |ζ| � 1.

§3. Concentration and diffusive limit

§3.1. Proof of Theorem 1.4

We begin with a simple observation.

Lemma 3.1. Let G be a finite group and H its subgroup. Consider the restriction-

induction chain on Ĝ with transition probability P = (Pλµ) given by (1.7). For any

conjugacy class C of G, taking the column vector (χ̃λC)λ∈Ĝ, we have

(3.1) P (χ̃ ·C) =

( |C ∩H|
|C| χ̃ ·C

)
.

Proof. The µ-entry of (3.1) for µ ∈ Ĝ is computed as

(3.2) P (χ̃ ·C)(µ) =
∑

ν∈Ĝ

Pµν χ̃
ν
C =

1

[G : H] dimµ

∑

ν∈Ĝ

∑

ξ∈Ĥ

cµ,ξ cν,ξ χ
ν
C

=
1

[G : H] dimµ

∑

ξ∈Ĥ

cµ,ξ χ
IndGH ξ
C =

1

[G : H] dimµ
χ
IndGH ResGH µ
C .

To use the induced character formula, divide C ∩ H into conjugacy classes of H

as C ∩H =
⊔
i Ci. Then we have

χ
IndGH ResGH µ
C =

∑

i

[G : H]
|Ci|
|C| χ

ResGH µ
Ci

= [G : H]
|C ∩H|
|C| χµC .

Combining this with (3.2), we obtain (3.1).

In particular, let C be the conjugacy class of Sn labeled by (ρ, 1n−|ρ|) for

ρ ∈ Y. Here (ρ, 1n−|ρ|) ∈ Yn is the Young diagram having n − |ρ| one-box rows

besides ρ. Then

|C ∩Sn−1|
|C| =

(n− 1)!(n− |ρ|+m1(ρ))!

n!(n− 1− |ρ|+m1(ρ))!
= 1− |ρ| −m1(ρ)

n
.
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Hence (3.1) gives

(3.3) P (n)(χ̃ ·(ρ,1n−|ρ|)) =

(
1− |ρ| −m1(ρ)

n

)
(χ̃ ·(ρ,1n−|ρ|)),

and hence also

(3.4) etn(P
(n)−I)(χ̃ ·(ρ,1n−|ρ|)) = e−t(|ρ|−m1(ρ))(χ̃ ·(ρ,1n−|ρ|)).

Let us show that {(Yn,M(n)
t )}n∈N at t > 0 satisfies concentration from Def-

inition 1.2. The connection between the situation at the initial time and the one

at a microscopic time s = tn is given by (3.4). However, since (3.4) is expressed in

terms of irreducible characters, we need a bridge between the irreducible characters

and the moments or (free) cumulants of transition measures. These relations were

investigated by Biane [2], who noticed the approximate factorization property for

states of the group algebra. A more explicit and systematic development was given

by Śniady [12]. We are also much influenced by Ivanov–Olshanski [7]. Since we do

not claim novelty in the static aspect in this paper, we omit a detailed procedure

here, referring to [12, Definition and Theorem 1].

Taking the assumption of Theorem 1.4 and (3.4) into account, and applying

the procedure cited above, we can obtain

(3.5) lim
n→∞

EM(n)
t

[Rk1(mλ
√
n) · · ·Rkp(mλ

√
n)] = (rk1e

−t(k1−1)) · · · (rkqe−t(kq−1))

for any k1, . . . , kq ∈ {3, 4, . . .} and kq+1 = · · · = kp = 2.

On the other hand, the formula (2.6) for free compression with (1.13) yields

R1((mω0
)e−t) = 0, R1((mΩ)1−e−t) = 0,

R2((mω0)e−t) = e−t, R2((mΩ)1−e−t) = 1− e−t,
Rk((mω0

)e−t) = Rk(mω0
)e−(k−1)t, Rk((mΩ)1−e−t) = 0 (k ≥ 3).

Since free convolution is characterized by (2.4), we see that the free cumulant

sequence {Rk((mω0
)e−t � (mΩ)1−e−t)}k∈N is

0, 1, r3e
−2t, . . . , rke

−(k−1)t, . . . .

This implies that the right hand side of (3.5) is equal to

p∏

i=1

Rki((mω0)e−t � (mΩ)1−e−t).

This completes the proof of Theorem 1.4.

Remark 3.2. We can now also see that if the initial state {(Yn,M(n))} satisfies

the approximate factorization property, then so does {(Yn,M(n)
t )} for any t > 0.
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§3.2. A PDE viewpoint

Let ωt be the macroscopic profile at t described in Theorem 1.4. To see another

aspect of the time evolution of ωt, we consider the Stieltjes transform G(t, z) of

mωt given in (1.20).

Theorem 3.3. The function G(t, z) satisfies the partial differential equation:

(3.6)
∂G(t, z)

∂t
=

1

G(t, z)

∂G(t, z)

∂z
+G(t, z)− 1

2

∂

∂z
G(t, z)2.

Proof. We just verify (3.6) from (1.18). From the expressions (2.7) for µ = mω0

and mωt respectively, we have

K0(ζ) = Kmω0
(ζ) =

1

ζ
+ ζ +

∞∑

k=2

Rk+1(mω0
)ζk,

K(t, ζ) = Kmωt
(ζ) =

1

ζ
+ ζ +

∞∑

k=2

Rk+1(mω0)e−ktζk.

These yield

(3.7) K0(ζe−t) =
et

ζ
+
ζ

et
− 1

ζ
− ζ +K(t, ζ).

Differentiating (3.7) in t and ζ respectively and eliminating K ′0-terms, we obtain

(3.8)
∂K(t, ζ)

∂t
+ ζ

∂K(t, ζ)

∂ζ
+

1

ζ
− ζ = 0.

Since

(3.9) K(t, G(t, z)) = z,

differentiating (3.9) by t and ζ respectively and then putting them into (3.8), we

get the desired equation (3.6).

Using (2.3), we readily reformulate (3.6) in terms of the profile of ωt. Set

ρ(t, x) =
∂

∂x

(
ωt(x)− |x|

2

)
.

Let G[f ] = G[f ](z) denote the Stieltjes transform of an R-valued function f .

Corollary 3.4. The function ρ(t, x) satisfies

(3.10) G

[
∂ρ

∂t

]
+ 1 =

(
zeG[ρ] − 1

zeG[ρ]

)(
G

[
∂ρ

∂x

]
+

1

z

)
.

Since it is not postulated in advance that ∂
∂x (ωt(x)− |x|) is of bounded vari-

ation, the derivative in (3.10) should be given an appropriate interpretation.
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Remark 3.5. Since (mΩ)t is the semi-circle distribution with mean 0 and variance

t on R, its Stieltjes transform g(t, z) satisfies the complex Burgers equation

∂g(t, z)

∂t
= −1

2

∂

∂z
g(t, z)2,

as is well-known and easily derived. For very small t > 0, the right hand side

of (3.6) may be considered as a simple sum of contributions of the initial part

(mω0
)e−t and the stationary part (mΩ)1−e−t under the approximation 1− e−t + t.

Remark 3.6. If we take P (n) = P ↑P ↓ instead of P ↓P ↑ as a microscopic dynamics,

the symmetry with respect to M(n)
Pl holds and Theorem 1.4 remains valid without

any modification. In fact, we have only to recognize that (1.5), (3.3) and (3.4)

would be the following:

P
(n)
λµ =





|{valleys of λ}|
n+ 1

, λ = µ,

dimµ

(n+ 1) dimλ
, λ ∨ µ ∈ Yn+1,

0, otherwise,

for λ, µ ∈ Yn, where λ ∨ µ means the set-theoretic union of the boxes,

P (n)(χ̃ ·(ρ,1n−|ρ|)) =

(
1− |ρ| −m1(ρ)

n+ 1

)
(χ̃ ·(ρ,1n−|ρ|)),

etn(P
(n)−I)(χ̃ ·(ρ,1n−|ρ|)) = e−

tn(|ρ|−m1(ρ))
n+1 (χ̃ ·(ρ,1n−|ρ|))

for ρ ∈ Y and n ∈ N.

§4. Grand canonical ensemble

Given a sequence {(Yn,M(n))}n∈N of probability spaces, we set

(4.1) M(ξ) =

∞∑

n=0

pξ(n)M(n)

where ξ > 0 is a parameter of the system and pξ is a probability on N t {0}. The

unique probability on Y0 = {∅} is denoted by M(0). Then M(ξ) is a probability on

Y =
⊔∞
n=0 Yn. This gives us the formalism of grand canonical ensembles. In what

follows, we consider poissonization of the ensemble by taking a Poisson distribution

as pξ:

(4.2) pξ =

∞∑

n=0

e−ξξn

n!
δn.
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Since pξ in (4.2) has mean ξ and standard deviation
√
ξ, it tends to concentrate

near n = ξ as ξ →∞. The concentration (1.16) is inherited by poissonization.

Proposition 4.1. If {(Yn,M(n))}n∈N satisfies (1.16), then

(4.3) lim
ξ→∞

EM(ξ) [Mk1(mλ
√
ξ) · · ·Mkp(mλ

√
ξ)] = Mk1(mψ) · · ·Mkp(mψ)

for the poissonization M(ξ).

Proof. The result follows from an elementary estimate. Expressing (4.3) as a

poissonized sum, we divide it, for example, into {|n − ξ| ≤ ξ3/4} and {|n − ξ|
> ξ3/4}.

Taking the Plancherel measure M(n)
Pl as M(n) and a Poisson distribution pξ in

(4.1), we set

(4.4) M(ξ)
PP(λ) =

e−ξξ|λ|(dimλ)2

(|λ|!)2 , λ ∈ Y.

The probability space (Y,M(ξ)
PP) is called the poissonized Plancherel ensemble. Since

the Plancherel ensemble M(n)
Pl satisfies the concentration (1.16) with the macro-

scopic shape Ω of (1.2), Proposition 4.1 implies that the limit shape Ω is observed

macroscopically in the poissonized Plancherel ensemble also. In particular,

lim
ξ→∞

M(ξ)
PP

({
λ ∈ Y

∣∣∣ sup
x∈R
|λ
√
ξ(x)−Ω(x)| ≥ ε

})
= 0

for any ε > 0.

In order to discuss a similar diffusive limit, we consider a Markov chain on Y
which is symmetric with respect to M(ξ)

PP. Recall the down and up transition prob-

abilities P
↓(n)
λµ and P

↑(n−1)
µλ defined in (1.3). Here the superscripts are put to make

the dependence on n explicit. We seek a transition probability P
(ξ)
λµ which has the

following form: for some αξ(n) ∈ (0, 1),

(4.5)
P

(ξ)
λµ = αξ(n)P

↑(n)
λµ + (1− αξ(n))P

↓(n)
λµ , λ ∈ Yn, n ∈ N,

P
(ξ)
∅� = αξ(0), P

(ξ)
∅∅ = 1− αξ(0).

We ask whether it is possible to determine {αξ(n)}∞n=0 such that 0 < αξ(n) < 1

and

(4.6) M(ξ)
PP(λ)P

(ξ)
λµ = M(ξ)

PP(µ)P
(ξ)
µλ , λ, µ ∈ Y.
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It suffices to verify (4.6) for λ ∈ Yn and µ ∈ Yn+1 such that λ ↗ µ. Combining

(4.5) and (4.4), we easily see that (4.6) holds if and only if

(4.7) αξ(n+ 1) = 1− n+ 1

ξ
αξ(n), n ∈ N t {0}.

We can observe that a solution of (4.7) is given by

(4.8) αξ(n) =

∞∑

l=0

(−1)lξl+1

(n+ 1) · · · (n+ l + 1)
, n ∈ N t {0}

(where the series expression is essentially a special case of a Kummer function).

Successive integration by parts yields

(4.9) αξ(n) =

∫ 1

0

ξe−ξx(1− x)n dx, n ∈ N t {0}.

For any ξ > 0 and n ∈ N, we see from (4.9) that

0 < αξ(n) < αξ(n− 1) < αξ(0) = 1− e−ξ < 1.

We have thus obtained the following.

Proposition 4.2. For ξ > 0 define P (ξ) = (P
(ξ)
λµ )λ,µ∈Y by (4.5) and (4.9) (or

(4.8)). Then P (ξ) gives a transition matrix. A Markov chain on Y with transition

matrix P (ξ) is symmetric with respect to M(ξ)
PP, that is, it satisfies (4.6).

Remark 4.3. In the poissonized Plancherel ensemble, the typical size of a Young

diagram is ξ, the mean of pξ. For n = ξ, (4.9) yields

αn(n) =

∫ 1

0

ne−nx(1− x)n dx =

∫ ∞

0

e−x
(

1− x

n

)n
1[0,n](x) dx

n→∞−−−−→ 1

2
.

In other words, creation and annihilation of boxes are asymptotically balanced

near the typical size.

Finally, we give an expression making the structure of the transition ma-

trix P (ξ) more transparent. Set a total order in Y =
⊔∞
n=0 Yn where the number of

boxes is non-decreasing and it coincides with the lexicographic order, for example,

in each Yn. Set

∆(ξ) = diag(∆
(ξ)
λ )λ∈Y, ∆

(ξ)
λ =

√
M(ξ)

PP(λ) =
e−ξ/2ξ|λ|/2 dimλ

|λ|! ,

A(ξ) = diag(αξ(|λ|))λ∈Y.



Diffusive Limit of Random Young Diagrams 707

Define T = (Tλµ)λ,µ∈Y by

Tλµ =

{
1, λ↗ µ,

0, otherwise.

Then, T + T ∗ is the adjacency matrix of the Young graph. As is well-known and

easily verified, it satisfies CCR: TT ∗ − T ∗T = I. Furthermore, set

(E∅)λµ =

{
1, λ = µ = ∅,
0, otherwise.

The following formula is directly verified.

Proposition 4.4. Under the above notation,

P (ξ) = ∆(ξ)−1
{

1√
ξ

(A(ξ)T + T ∗A(ξ)) + e−ξE∅

}
∆(ξ).

We note that 1√
ξ
(A(ξ)T + T ∗A(ξ)) is a far-reaching analogue of a tridiagonal

infinite Jacobi matrix 


0 a1
a1 0 a2

a2 0 a3

a3
. . .

. . .

. . .
. . .



,

and its asymptotic spectral analysis seems to be of independent interest. We refer

to [6] for such asymptotic problems about Jacobi matrices and adjacency matrices

of several sorts of graphs.

Remark 4.5. In order to consider a scaling limit as in Theorem 1.4 in the grand

canonical setting, we have to treat

M(ξ)
t (·) =

∑

λ∈Y
M(ξ)

0 (λ) (etξ(P
(ξ)−I))λ ·

as a distribution on Y at macroscopic time t > 0 and asymptotic behavior of a

quantity as in (4.3) rescaled by 1/
√
ξ with respect to M(ξ)

t as ξ →∞. Microscopic

time tξ is of the same order as the typical size ξ of Young diagrams as ξ → ∞.

This gives rise to a difficulty because we should take into account a wide range of

Young graphs which the microscopic chain driven by P (ξ) can spread.
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