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The Denominators of Normalized R-matrices of
Types A;i)_l, Agl), B and Dr(izl

by

Se-jin OH

Abstract

The denominators of normalized R-matrices provide important information on finite-
dimensional integrable representations over quantum affine algebras, and finite-dimen-
sional graded representations over quiver Hecke algebras by the generalized quantum
affine Schur—Weyl duality functors. We compute the denominators of all normalized

R-matrices between fundamental representations of types Agg_l (n > 3), Afn) (n >2),

B (n>3)and Dif_,)_l

types Agi)_l, Agi), B and Dg2) have only simple poles, and those of type Df_f_l (n>3)
have double poles under certain conditions.

(n > 2). Thus we can conclude that the normalized R-matrices of
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81. Introduction

Let g be an affine Kac-Moody algebra and U (g) be the quantum affine algebra
corresponding to g. The finite-dimensional integrable representations over Uy (g)
have been investigated by many authors during the past twenty years from different
perspectives (see [1, 3, 4, 10, 12, 24, 27]). Among these aspects, we focus on
the theory of R-matrices which has deep relationships with g-analysis, operator
algebras, conformal field theories, statistical mechanical models, etc.

The purpose of this paper is to compute the denominators of normalized
R-matrices between the fundamental representations V (c;, )’s over U (g). Know-
ing the denominators is quite crucial to the study of finite-dimensional integrable
representations by the following theorem:
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Theorem ([1, 24]). Let M be a finite-dimensional irreducible integrable U, (g)-
module M. Then there exists a finite sequence

((i1,a1),..., (i, a7))  in ({1,...,n} X kx)l
such that

o di i, (ar/ar) #0 for L <k <k <1 and
o M is isomorphic to the head of ®i:1 V(@i )ay, -

Moreover, such a sequence ((i1,a1), ..., (i1,a;)) is unique up to permutation. Here
k =C(q) C U,u=0C((¢*™)) and d;, ;,,(z) € k[2] denotes the denominator of the
normalized R-matrix

R (2): Viwi) @ Viwi, ). = k(2) @ (V(wi, ). @ V(w@i,))

st Kot1]
satisfying

dik:yik/ (Z)Rnorm (Z)(V(wlk) ® V(wlk/)z) C V(wik/)z ® V(wlk)

U 5T gt

Thus the study of denominators is one of the first steps to study the cate-
gory %y consisting of finite-dimensional integrable representations over U, ;(g).

On the other hand, Kang, Kashiwara and Kim [18, 19] recently constructed
the quantum affine Schur—-Weyl duality functor F by considering the zeros of the
denominators of normalized R-matrices. The way of constructing F can be de-
scribed as follows: Let {V;}ses be a family of fundamental representations over
U,(g). For an index set J and two maps X : J — k*, s:J — §, we can define
a quiver Q7 = (Qf,Q7) associated with (J, X, s) as (vertices) Qf = J, (arrows)
for i,j € J, we put d;; arrows from ¢ to j, where d;; is the order of the zero of
v, v (2) 8t X(3)/X ().

Then we obtain a symmetric Cartan matrix A’ = (a7;); jes associated with
(J,X,s) by

a,;]]:2 le:j7 aiJj:—dij—dji 1f27é]
Let R’ be the quiver Hecke algebra associated with the symmetric Cartan ma-

trix A7 and the parameters [25, 26, 30]
Qii(u,v) = (u—v)%(w—u)% ifi#£j, Qii(u,v)=0 forallie.

Theorem ([18]). There exists a functor F : Rep(R’) — €,, where Rep(R”)
denotes the category of finite-dimensional representations over R’ , which enjoys
the following properties:
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(a) F is a tensor functor; that is, there exist Uy(g)-module isomorphisms
F(R7(0)) ~k and F(M;oMy)~ F(M)® F(M>)

for any My, M, € Rep(R”).
(b) If the Cartan matriz A’ is of type A, (n > 1), D, (n > 4), Es, E; or Eg,
then the functor F is exact.

Thus the generalized quantum affine Schur—Weyl duality functor provides the
way of investigating the category € via the category Rep(R’) and the other way
around (see [20]).

Note that A” depends on the choice of (.J, X, s) and the denominators. Hence
one may expect various exact functors defined on Rep(R”) for a fixed algebra R”.
In the forthcoming papers by the author and his collaborators [21, 22], such situ-
ations will be considered, and the denominator formulas given in this paper will
play an important role.

The denominators of all normalized R-matrices R}5™ (z) for AP oM and
DY were studied in [1, 6, 19], and the denominators of the normalized R-matrix

197 (2) (resp. R;%™(2)) between vector representations (resp. spin representa-
tions) for all classical affine types are given in [23, 28]. On the other hand, the
explicit forms of the normalized R-matrix R}%™(z) for all classical affine types
were studied in [7, 14, 15, 16]. With these results, we will compute the denomina-
tors dj(2) of all normalized R-matrices ;9™ (2) by employing the frameworks
given in [1, Appendix C] and [19, Appendix A].

Our main results are

min(k,l)
ko(Z) — H (Zt _ (_qt)\kfl\+2s)(zt _ (p*)t(_qt)%fkfl)

s=1

if V(wy) and V(w;) are not spin representations, and

I
—~
—
N
|

di.n(2) (1) Fhg2n=2k=144s) if g — B (> 3) and k < n,
s=1
k
din(2) = [] (2% + (—g®)"F+2%) if g= D), (n>2) and k < n.

V)
Il
-

Here,

<pv,5>q(p,5)

¢?=q and p*:=(-1)

2 ifg=D, (n>2),
1 otherwise,

for the null root ¢ (see (2.3)). Hence we conclude that
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(a) Rp™(2) of AL) | (n>3), AZ) (n>2), BY” (n > 3) or D) has only simple
poles,
(b) RR™(2) of D7(12-s)-1 (n > 3) has a double pole at z = (—¢?)*/? if

2<kil<n—-1,k+l>n 2n+2—-k—-I1<s<k+land s=k+ 1 mod 2,
(c) RR9™(2) has a pole at +(—¢")* only if k € Z and 2 < £ < (p,d) (see [9]).

This paper is organized as follows. In the first section, we briefly recall the
notion of quantum affine algebras and R-matrices. In the next section, we give the
Ué(g)—module structure of the vector representations and spin representations over
U, (). In the third section, we study morphisms from V'(w;), @V (w;), to V (wy).,
called the Dorey rule. Then we prove the existence of certain surjective homomor-
phisms which can be understood as a Dfi)l—analogue of [19, Lemma A.3.2] and
a generalized Dorey rule in the context of [20]. In the last section, we propose
a general framework for computing the denominators, which originates from [19,
Appendix A]. Then we compute dy ,,(z) for g = ijl (n > 2) and the unknown de-
nominators dj () of normalized R-matrices for g = Aéi)q (n>3), A;i) (n>2),
B (n > 3) and DSJZI (n > 2), by using the results in the previous sections.
In the appendix, we provide a table of dj, ;(z) for all classical affine types for the
reader’s convenience.

§2. Quantum affine algebras and R-matrices

In this section, we briefly recall the background on quantum affine algebras, their
finite-dimensional integral representations and R-matrices. We refer to [1, 18, 24|
for precise statements and definitions.

§2.1. Quantum affine algebras and their representations

Let I = {0,1,...,n} be a set of indices and set Iy := I\ {0}. An affine Cartan
datum is a quadruple (A, P, II,ITV) consisting of

(a) a matrix A of corank 1, called the affine Cartan matriz satisfying
(1) ;=2 (Z S I), (ll) Qai; € Zgo, (111) aij = 0 if aj; = 0

with D = diag(d; € Z~¢ | ¢ € I) making DA symmetric,
(b) a free abelian group P of rank n + 2, called the weight lattice,
(¢) I={w; | i€ I} CP, called the set of simple roots,
(d) ¥ ={h; | i € I} C PY := Hom(P, Z), called the set of simple coroots,

which satisfy:
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(1) <hi,ozj> = Q5 for all Z,] € I,
(2) T and ITY are linearly independent sets,
(3) for each i € I, there exists A; € P such that (h;, A;) = 6;; for all j € I.

We set Q= P, c; Zas, Qr = Dic; Zxoi, QV = @Pc; Zhi and QY = @, Z>ohi.
We choose the imaginary root § = Ziel a;a; € Q4 and the center ¢ = Ziel cih;
€ QY such that {\ € Q| (h;,\) =0foreveryi e I} =Zdand {h € Q" | (h,a;) =0
for every ¢ € I'} = Zc (see [17, Chapter 4]).

Remark 2.1. In this paper, we mainly deal with the affine types Agill (n>3),

Aéi) (n>2), BY (n > 3) and Df_?_l (n > 2) with the following enumerations on

their affine Dynkin diagrams (cf. [17, Chapter 4]):

@ —€1—€250
2
Ay (n = 3): o L 3 o o S
€1—€2 €3—€3 €3—€q €n—1—€n 2€p
n—1
Ag) (n>2): OO<:‘1 2 o o—6
n - —e1 €1—€2 €3—e€3 €n—1—€n 2€n
( —€1—€270
1)
> 3): J\ —1
By’ (n>3) 4 2 3 R n- n
€1—€2 €E2—€3 €E3—€4 €n—1—€En €n
0 1 2 n—1
D(l)1 (n > 2): oL—— o o—Ib
n+ = —€1  €1—€2 €2—€3 €n_1—€n €n

Set h = Q ®z PY. Then there exists a symmetric bilinear form ( , ) on h*
satisfying
2(ai, A)
(ai, @)
We normalize the bilinear form by (¢, \) = (J, A) for any A € b*.

Denote by g the affine Kac-Moody Lie algebra associated with (A, P,II, 1Y)
and by W the Weyl group of g, generated by (s;);c;. We define go to be the
subalgebra of g generated by the Chevalley generators e;, f;, and h; for i € Ij.
Then gq is a finite-dimensional simple Lie algebra.

(hi, Ay = for any ¢ € I and \ € h*.

Let v be the smallest positive integer such that
Y(ai,05)/2 € Z for any i € 1.

Let g be an indeterminate. For m,n € Z>¢ and i € I, we define ¢; = ql@ai)/2 and

—n

= B2 = e [1] -

4= 4 k=1 "
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Definition 2.2. The quantum affine algebra Uy(g) associated with (A, P,II,1IV)
is the associative algebra over Q(q'/7) with 1 generated by e;, f; (i € I) and ¢"
(h € v~tPV) satisfying the following relations:

(1) ¢" =1,4"¢" = ¢"*"" for h, W € y~'PY,

(2) ¢"eig™" = ¢ ei, " fig" =g fifor heyTIPY i€

(

Ki— K/ .
3) eif; — fiei = 6ij———4—, where K; = ¢},
i — 4;
1—ay; 1—ai;
(4) Z (_1)ke£17aij*k')€jegk) _ Z (_1)kfi(17a,;jfk)fjfi(k) —0 forij,
k=0 k=0

where ) = ek /[k;! and fi(k) = fF /K]l

Let Uf(g) (vesp. Uy (g)) be the subalgebra of U,(g) generated by e;’s
(resp. fi’s) and Uy (g) be the subalgebra of U,(g) generated by e;, fi, K (ie.
We call U;(g) also the quantum affine algebra. Throughout this paper, we mainly
deal with Uy (g). When we deal with U (g)-modules, we regard the base field as k,
the algebraic closure of C(q) in J,,~ C((g*™)).

For U, (g)-modules M and N, M ® N becomes a U, (g)-module via the comul-
tiplication A of Uy (g):

21) A" =¢"®¢", Ale) =6, 0K ' +10e;, A(fi)=f®1+K;® fi.

Set P.:=P/Zd and let cl: P — P be the canonical projection. We say that
a Ug(g)-module M is integrable provided that

(a) M decomposes into P.-weight spaces, that is,

M = @ Ml»“ where MH = {’U cM | KZ"U — q<hi’“>v}7
ILGPCI

(b) e; and f; (i € I) act on M nilpotently.

We denote by € the category of finite-dimensional integrable Uy (g)-modules. Note
that @ is a tensor category with the comultiplication (2.1).

Note that an irreducible module M in % contains a unique (up to a constant
multiple) vector uys of weight A € P.; with the following properties:

e (c,A\) =0 and (h;,A) > 0 for all i € I,
o wt(M):={pecPa|M,#0} CA— ZZEIO Z>ocl(ay).

Such a weight A is also unique. We call the vector uy; the dominant extremal vector
of M and the weight A the dominant extremal weight of M.
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For an integrable Uy (g)-module M, the affinization Mag of M is the P-graded
U, (g)-module

Mg = @ (MaH)A with (Maﬁ‘))\ = Mcl(/\)-
AeP

Here the actions e; and f; are defined so that they commute with the canonical
projection cl: Mg — M.

We denote by zns: Mag — Mag the Ug(g)-module automorphism of weight §
defined by (Mag)x — (Mag)rrs. For € k*, we define

Mz = Maff/(ZM — (E)Maff.
Note that, for M € €y and = € k*, M, is also contained in €.
We embed P into P by ¢: P — P which is given by ¢(cl(A;)) = A;. For

u € My (A € Pg) and an indeterminate z, let us denote by u. € (Mag),(x) the
element such that cl(u,) = u. With this notation, we have

ei(uy) = 290 (eju),,  filus) = 2700 (fiu),,  Ki(us) = (Ku),.

Then we have Mug ~ M, :=k[z,27!] ® M and hence the canonical action of z
on M, determines an automorphism z; on M,g. Thus u, is the element 1 ® u €
k[z,2z7']® M for u € M. We sometimes use M,,, instead of M, to emphasize that
zp is an indeterminate depending on the module M.

Definition 2.3 ([1, §1.3]). For i € Iy, the ith fundamental module is a unique
finite-dimensional integrable U, (g)-module V' (w;) satisfying the following proper-
ties:

(1) The weights of V(w;) are contained in the convex hull of Wycl(w;).

(2) V(@i)er(w;) = C(q)tcw,, where ug, is the dominant extremal vector of V(w;).

(3) To any i € Wycl(w;), we can associate a non-zero vector u,,, called an extremal
vector of weight u, such that

FEP i () >
(2.2) Si - Uy = Usp = (—=(h; ;L))N .
e; oy, if (R, p) <

K2

for any ¢ € 1.

(4) Vv, generates V(w;) as a U,(g)-module.

For a U, (g)-module M, we call *M the right dual and M* the left dual of M
if there exist U, (g)-homomorphisms

MM S5k koMM and M@*M Sk k— M ® M.
Note that V(w;), is contained in €, and has the right dual and left dual as follows:

(23) V(wl); = V(wi*)m(p)*la *V(wz)z = V(wi*)wp where
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e ¥ is the image of ¢ under the involution of Iy determined by the action of wy,
® p:= (_1)<Pv75>q(l776))

e p is defined by (h;,p) = 1 and p" is defined by (p", ;) =1 for all i € I.

An integrable Ué(g)—module M is called good if it has certain properties; we
refer to [24] for the precise definition, which we do not need here. We just note that
the fundamental modules are good U, (g)-modules and any good U, (g)-module is
irreducible.

§2.2. Normalized and universal R-matrices

In this subsection, we recall the notions of R-matrices following [24, §8] and [20,
§2.2]. Let us take a basis {P,} of Uf(g) and a basis {Q,} of U, (g) which are
dual to each other with respect to a suitable coupling on U (g) x U; (g). Then
for U;(g)-modules M and N define

RN (u@v) = ¢S TP @ Quu,

so that R%“]‘(f gives a U (g)-linear homomorphism from M @ N to N ® M under
the assumption that the infinite sum is meaningful. We call Ry}'Y; the universal
R-matriz.

For M and N in %, R%‘:L’NZN converges in the (zy/znr)-adic topology. The

existence of the universal R-matrix for M, N € €, is proved in [8]. Hence we have
a morphism of k[[zn/2n]] ®k[zn /20] k[zit, 23 @ U, (g)-modules
Runiv -k ZN/ZM ® Mz ®Nz
v Kl @ (M @ Nay)

- k[[ZN/ZMH ® (NZN ®MZI\/I)‘
k[ZN/Z]\{]

Note that the universal R-matrix has the following property:

(24)  Riiiven)., ., = (dv., @ RipX, o (RipN, @idy; ),
where (N®@ N'), ., ~ N,y @ N__.

We say that RUMH:L N, I8 rationally renormalizable if there exist a€k(zn/2zpr)
and a k(zn, zar) ® Uy (g)-homomorphism

(2.5) R :k(zp, 2N) ® (M,, ® N.\)

- k(Z]VI7ZN) ® (NZN ®MZM)

such that Ry N, = alt.
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For good modules M and N in %, it is known that Rﬂ:\; Ny is ratio-
nally renormalizable [1, Corollary 2.5]. More precisely, there exists a(zn/zp) €
K[z}, 251 ]% such that:

(@) R v, (Wa)ay ® (un)zy) = alen/za)((un)zy ® (Unr)zy ),

where up; and upy denote the dominant extremal vectors of M
and N, respectively,

(2.6) (i) RN = G(ZN/ZM)_lRR/IffL,NzN is a unique k(zn, 2a) ® U,(9)-
homomorphism in (2.5) satisfying

?\%ﬁ((uM)ZM ® (UN)ZN) = (UN)ZN ® (uM)ZIVI'

We call Ryg'y the normalized R-matriz.
Let dps,n(u) € k[u] be a monic polynomial of smallest degree such that the
image of M,, ® N, under the homomorphism dy n(2n/20m) Rig'N is contained

in N,y ® M,,. We call dy,v(u) the denominator of Rj7"y}. Thus we have
dM,N(ZN/ZM)R?\/?TﬁI MzM X NzN — NzN ®MZM.

Lemma 2.4 ([1, Lemma C.15]). Let M, N, O and P be irreducible modules
in Cy. If there exists a surjective U, (g)-homomorphism M @ N — O, then

dpy(2)dp,n(2)apo(z) du,p(z)dn,p(z)ao,r(2)
dp’o(z)ap’M(Z)ap’N(Z)’ do’p(z>aM’p(Z)aN,p(2)

€ k[zil].

83. Vector and spin representations
In this section, we record the U, (g)-module structure of

e V(wy), called the vector representation,

e V(wy,), called the spin representation, for g = B,Sl) or D7(12+)1-

As a P-graded vector space, the vector representation can be expressed as follows
[13, Chapter 11]:

V(w) = (EB kvj) & (jé kv;) eV

=1
where
2 1 2 2
L e A o,
1% 0 kuvg kv kvo @ kv
and

wt(v;) = €, wt(vy) = —¢; forj=1,...,n and wt(vp)=wt(vg) =0.
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The actions of e;, f; and ¢ are defined as follows:

" vy = q<h’Wt(”f)>vj for h € P,

V4 if j=i+1,i#n, viy1 if j=i, i#n,

vy if j=1,i#n, v; i j=i+1,i#n,

vy if j=1, i=0, vy if j=2,1=0,

vy if j=2,i=0, vy if j=1,i=0,

0 otherwise, 0 otherwise,

v; if j=i+4+1, i#n, viy1 if j=1i, i#n,

vy if j=1, i#n, vs if j=i+1,i#n,
AD: eoy={"" lfJ:ﬁ Z:n fivj=3"" lf]:? Z:n

vy if j=1,1i=0, v if j=1,i=0,

[2lovr if j=0,i=0, [2]ov; if j=0, i=0,

0 otherwise, 0 otherwise,

U4 if j=i+1,i#mn, Vig1 if j=1, i#mn,

vy ifj=i, i#n, vz if j=i+1,i#n,

Vo if j=mn, i=n, Vg if j=n, i=n,
BWY: evj={ [2av, if j=0, i=n, fivi=1 [2lwvm if j=0, i=n,

vy if j=1,i=0, vy if j=2,i=0,

vy if j=2,1=0, Vg if j=1, i=0,

0 otherwise, 0 otherwise,

v; if j=i+4+1, i#n, Vit if j=1, i#n,

VT if j=1, i#n, vy if j=i+1,i#n,

Vo if j=m, i=n, Vg if j=n, i=n,

D) i ey =4 [2nv, if j=0, i=n, fivyj={ 2o if j=0, i=n,

vy if j=1,i=0, vy if j=1, i=0,

[2]ovy if j=0,i=0, [2]ovy if j=0, i=0,

0 otherwise, 0 otherwise.

For g = BS) or g = D,(f_s)_l, the spin representation V(w,) is the k-vector
space with a basis

Bsp :{(ml,...,mn); m; =+Or—}.



DENOMINATORS OF R-MATRICES 719
Its U, (g)-module structure is given by defining the action of e;, f; and q" as follows:

1 n
¢"v =gty for h e PY, where wt(v) = 3 ;mkek,

i i+l o
(m17"'7+a _7"'amn) 1f27én,mi=—, Miy1 = +,
n
M1,y .en, Mp_1,+ ifi=n, m, =—
By(Ll): e = ( 1, s Mln—1, ) ) n )
(= —ma,...,myp) ifi =0, m =ma =+,
0 otherwise,
i itl o
(ma,...,—, +,...,my) ifi#n, mi=+ myy =—,
n
v = (my,...,mp_1,—) ifi=mn, m, =+,
0 =
(+,+,ms3,...,my,) ifi=0, my =mg=—,
0 otherwise,
i i+l o
(m17"'7+a _7"'amn) lfz#nami:_ami-i-l:_'_v
n
() . _ (mlw-wmnfl,"') 1fZ:7’L, my = —,
Dyl ev= o
(_7m2,"'amn) 1fz:(),m1:+,
0 otherwise,
i i+l o
(my,...,—, +,...,my) ifi#n, m;=+ mip =—,
n
v = (my,...,mp_1,—) ifi=n, m, =+,
v =
(+,ma,...,my) ifi=0,m; = —,
0 otherwise.

84. Surjective homomorphisms between integrable Ué (g)-modules
In this section, we first study the morphisms in
HomUé(g)(V(wi)a @ V(w;)p, V(wg)e) fori,j, ke Iy and a,b,c € k™.

These kinds of morphisms are known as Dorey type morphisms and have been
investigated in [5] for the classical untwisted affine types A,(ll), B,gl)7 Cr(bl) and D%l).
By the result of [20], dim(Homy, (g)(V(@i)a ® V(w@;)s, V(@k)c)) < 1 and V(wk).
is the irreducible head of V(w;), ® V (w;)p.

In the last part of this section, we study the surjective homomorphisms which

can be understood as a D,(fll—analogue of the surjective homomorphisms given in
[19, (A.17)]

HomU;(D,@) )(V(wk)a (24 V(wl)b, V(’(Dn)c X V(wn)d)

n+1
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The existence of such morphisms can also be considered as a generalized Dorey
rule, since V(wy)e ® V(wy)q is simple and is the irreducible head of V(wy),
® V(@)p.

Hereafter, we will use the following convention frequently:

For a statement P, §(P) is 1 if P is true and 0 if P is false.

By the result on BY" in [5], it suffices to consider when g = Agl)_l (n>3),
Agi) (n>2) and D,(IQJZI (n>2).
The finite Dynkin diagrams of gy associated with g are given as follows:

1 n-1 n (2) (2)
(e o o———0 (A A
Cn e1—er €n—1—€n 2en (Agn—1, Asn)
1 n—1 n (2)
e o o o
B,: o= En_17€:>n 2 (Dn+1)

We denote by Vy(w;) for i € I the highest weight U, (go)-module with highest
weight w;.
Throughout this paper, we set

T (¢ o= W &)
(4.1) t{2 ifg=D,7,, and 19{1 ifg=By"or D7y,

1 otherwise, 0 otherwise.

§4.1. i+j=k<n-—9
Recall that there exists an injective U, (go)-module homomorphism
D Vo(wivg) — Vo(wi) @ Vo(w;) fori+j<n—1
given by

(4.2) Uy > Uy = Z C’ﬁ‘,gu# ® uge (Cﬁ,ﬁ €k)
A=p+g

where A € Wy - w;1; and p (resp. §) runs over Wy - @; (resp. Wy - w;).

For a positive integer [ < n — ¥, we sometimes write A € wt(Vo(w;)) as a
sequence (A1,...,\,) € {1,0,—1}" such that A = >"7_, Ayex. In (4.2), since ®; ;
is a Uy(go)-homomorphism and V(w4 ;) is generated by us,, ;, we observe that

(4.3) A >0 = pp, & >0 and A\ <0 = g, & <0,

under the assumption that Cﬁ"g # 0. Since Mg, pg, &k € {1,0,—1} for all k, we
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conclude that
(4.4) e =0 forall 1 <k <mn.

From (4.3), 0,1\75 must be the same as C** ¢ whenever (hy, \) # 0 for k € Io.

Sk Sk

Proposition 4.1. For A € Wy - w1, p € Wy - @; and £ € Wy - @w; such that
A=pu+¢, set

(45) Ci\L,f = #{(avb) | a<b, (Mavfa) = (07 1)’ Mo # 0}
+ #{(avb) | a< bv (Ma»ga) = (_170)a fb 7é O}'

Then the C’ﬁ‘é in (4.2) is given by

A
Che = (e

Proof. First, we check that A cﬁyf whenever (hy, A) # 0 for k € Iy. To do

so, it suffices to consider (a, bs)kisﬁ, k 4+ 1). Then one can easily check that
#{(a,b) | a <D, (pta;&a) = (0,1), pp # 0}
+#{(a,b) | a <b, (1a;&a) = (=1,0), & # 0}
= #{(a,0) | a <b, ((skpt)as (sk€)a) = (0, 1), (skp)p # 0}
+#{(a,0) | a <b, ((skt)as (sk1)a) = (=1,0), (sk€)p 7 0}
Thus we can assume that A = w;;; since we only consider A in Wy - w;4;. If
k > i+ j, then (hg,A) = 0 and hence exvy = 0. For 1 < k < i+ j, we also have

erxvx = 0 since (hg, A\) = 0. On the other hand, by a direct computation with (4.2),
the right hand side of the following equation must vanish:

(4.6)  epvy = Z Cﬁ7gq1_1vsku ® ve + Z Cﬁ,fvﬂ ® Ve
(ke pmk+1)=(0,1) (ks prk+1)=(1,0)
(&k+€k+1)=(1,0) (&k+8k+1)=(0,1)

For (p, tr+1) = (0,1) and (&k,&k+1) = (1,0), we can check that (4.5) yields

A

A
Cue = Cspp,sie + 1.

This implies that the right hand side of (4.6) vanishes when C,;\@ = (—ql)cﬁf.
Thus our assertion follows. O

Now we shall determine z,y € k* such that there exists an injective U, (g)-
module homomorphism

(4.7) V(@irs) = V(w@i)e ® V(w,),y
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(4.8) The strategy in this subsection can be explained as follows: We have an
injection of U, (go)-modules,

Vo(@isg) = V(wi)z @ V(w;)y-

Using the characterization of V(w;;;) in Definition 2.3, it suffices to
determine x and y satisfying the following equation which is induced by
the desired U, (g)-homomorphism in (4.7) and the action of s:

058;;\,505 = f(2)g(y)Cp e,  where

(i) A\, p and £ are extremal weights and (hg, A) # 0,
(ii) f(z) and g¢(y) arise from the action of Sy on V(w;), and
V(w;)y, respectively.

The action sy for g = A(Qi)_l (n>3),g= Agi) (n>2)and g = ij_l (n>2)
can be summarized as follows:

—E9,—E€1,E3,...,E ifg= A2 ,
(4.9) 50(51752,53,...,5‘:”): {( 2 1 3 ?’L) 1 g 2n—1

(—e1,82,...,6n) ifg:A(Qi) or Dﬁzl,

where g € {—1,0,1} for 1 <k < n.

Proposition 4.2. Let g = Afn)_l (n > 3). Then the x, y in (4.7) are given as
follows:

—1

z=(—q) and y=(—q)

Proof. By (4.8)(i) and (4.9), it suffices to consider A € Wy - w;;; such that
A1, A2 > 0. Thus it is enough to consider p1, p2,£1,& > 0 by (4.3). Then

So - vy = Usgx = ZCli"glﬁ(/ﬂ=1)+5(H2=1)y5(§1=1)+5(€2=1) Vsopu @ Vsoe -

Thus

A = = = =
03 = ofn=DHe=D A= +iE=1 A

On the other hand, by (4.5),

Ciﬁﬁ,sog—Cﬁ,gZM(m =1)x#{0>1[&#0} +0(pe=1) x #{b>2]& # 0}
—0(& =1 x#{b>1[pp #0} = (&2 =1) x #{b>2 | pup # 0}

=0 =1)xj+(p2=1)x(j —0(§&2=1))
=66 =1)xi=6(&=1)x (i—0(u=1)).
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By (4.4), 1:& =0 (i = 1,2) and hence we conclude that
e — Cne = —(6(E1 = 1) +6(& = 1)) x i+ (81 = 1) + 8(n2 = 1)) x ji.

Thus x = (—¢)? and y = (—q)~* as desired. O
Proposition 4.3. Let g = Agi) (n > 2). Then the x, y in (4.7) are given by

r=(—q) and y=(—q)"
Proof. For the same reason as in the preceding proposition, it suffices to consider
A € Wy - w;1; such that (hg, A\) < 0 and hence A\; = 1. Then

So - va = vgor = 20y = CX @ =VPE=D @
Thus
A S(m=1), 5(&1=1) ~A
ssgu,SOﬁ = 2?0 =lyt& DCmé'

On the other hand, by (4.5),
sod §(p1=1)x #{b>1|£,70 —5(&1=1) X #{b>1|p£0} ~A
0 (_q) (p1=1)X#{b>1|& }(_q) (&1=1) x#{b>1|pp }CH{'

sop,s0€

Thus we conclude that z = (—¢)? and y = (—q) ™% 0

Proposition 4.4. Let g = Dﬁizl (n > 2). Then the x, y in (4.7) are given by
w=(=¢")"? and y=(-¢*)""%

Proof. It suffices to consider A € Wy-w;; such that (hg, A\) < 0, and hence A\; = 1.
Note that ¢; = ¢2. Then

2 = =
So - Uy = vsgx = vy = 3 @ =D g E=D
Here so(e1,€2,...,6n) = (—€1,€2,...,€,). Thus

A _ .20(p1=1),,20(&1=1) A
Cssgu,sof_x (k2 )y (&1 )C#YE‘

On the other hand, by (4.5),

A 4 = b —0(&1= b A
C’:guvsof _ (_q2) (m1=1)x#{ >1|§b750}(_q2) (E1=1)x#{ >1"“’7é0}0#,£.

Thus we conclude that 22 = (—¢?)’ and 32 = (—¢?)~" as desired. O

Theorem 4.5. For i +j = k < n — 1, there exists a surjective U,(g)-module
homomorphism

(410) pi,j: V(wi)(_qt)—j/t X V(Wj)(_qt)i/t - V(’Wk)
By taking duals, there exists an injective Ug(g)-module homomorphism
(411) Lij: V(wk) — V(Wi)(_qt)j/t X V(Wj)(_qt)—i/t.

Proof. This immediately follows from the previous propositions. O
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84.2. i=j=mn, k<nforg:DfL2_21

In this subsection, we fix g as D£2+)1- Recall that there exists an injective Uy (By,)-
module homomorphism Vy(wy) — Vo(w,) @ Vo(w,) given by

(412) Uy — vy = Z C’ﬁ‘éuu ®u5
A=p+E

where A € Wy - w; and p, € € Wy - w,,.
We sometimes write p € wt(Vo(wy,)) as a sequence (p1,...,un) € {+,—}"

such that .
HE
= — k.
Hw ; B k

Proposition 4.6. Set

102’5 = #{(a’b) | a<b, (,uavga) = (_’ +)7 (Uba€b> = (+> _)}7
(4.13) 20p e = #{a | (e, &) = (=)},
p(e) = (—a)"(=¢*) V2

Then C;)[,g in (4.12) is given by

A
Che = (—q*) hep(ach o).

Proof. As in Proposition 4.1, one can check that C:::,s;cé = C;‘)f whenever (hy, A)
# 0 for k € Iy. Thus we can assume that A = w; since we consider A\ in Wy - w;.
If 1 <k <4, then eguy = 0 since {eg, \) = 0. Similarly, (ex, A) =0 for £ > i. On
the other hand, by a direct computation with (4.12), the right hand side of the

following equation must vanish (i < k):

Do Ol us ®ug
(ks 1)=(—,+)
(&k-&r+1)=(+,—)
+ > Cpcupy @use ifi<k<mn,

(ks pte+1)=(+,—)
ELUN = (&k:6kt1)=(=+)

S Gl
(b €n)=(—+)
+ Z Uy @ Us, ¢ if £k =n.
(#nEn)=(+,—)

Equivalently,

CA 7q263);/4"sk§ ifi <k <mnand (:ukvgk) = (75 +)7
6 =

(9712

onpsne L k=mnand pu, =+.
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On the other hand, for i < k < n and (uk,&x) = (—, +), one can check that

A {1ci\k,u,sk§ -1 ifi <k <n and (Mkagk) = (_7+)7

1€, e = '
' 1cg\w,5k5 + 203,& if k=n and p, =+,

e = 2C§\W,Sk5 ifi <k<mnand (u,&) = (—,+),
" 2 e — 1 ifk=mnand p, =+,

by using the formulas in (4.13). Thus our assertion follows. O
Theorem 4.7. For k < n — 1, there exists a surjective Ué(D,(izl)-module homo-
morphism

(4.14) Pk - V(wn)i\/jl(,qz)f(nfk)m ® V(wn);\/fl(fqz’)(nfk)ﬂ - V(wk)
By taking duals, there exists an injective Ué(Df_‘)_l)—module homomorphism

(4.15) tn gt V(wg) — V(wn)i\/jl(,(ﬁ)(nfk)/z & V(wn)$\/jl(,q2)7(n7k)/2~

Proof. We apply the same strategy of §4.1, i.e., we determine the x and y in
(4.7). As in Proposition 4.2, we first consider A € Wy - @y, with A\; = 1 and hence
w1 = & = +. In this case,

2
Sp - Uy = Usyr = e(() Juy = Z C’l’)’gajyusw ® Usyg -

On the other hand,

A A A A
1C0E = 16006 200e = 20500 se
Thus we conclude that xy = 1.
Consider A € Wy - w; with (hg,A\) = 0. Equivalently A; = 0 and hence
—p1 = &1. In this case,

0=eqvx = Z C/;\’gq_lmusw ® uge + Z C/;\{yu,b ® Usyé -
(11,€1)=(+,—) (n1,€1)=(—,+)

Thus, for p; = +, we have

C3 = Che(—a)~" x

A —
sof,S06 = Cﬂ,f(_Q) U a®

< |8

On the other hand,

1c;\0#’505 = 10275 +#{b>1]| (s, &) = (+,—)} and gcg\w,SOE = 20275 + 1.

Thus 22 = —(—¢?)"~*, which yields our assertion. O



726 S.-3. On

84.3. j=1 andi:k:nforg:A(Qi)
In this subsection, we show that there exists a surjective U, é(A;i))—homomorphism
(4.16) V(wn)(_q)—l & V(wl)(,q)n = V(wy).

Indeed, we do not use (4.16) in this paper; we present it for the sake of forthcoming
works.

Similarly to the previous subsections, we shall determine the relations among
a, b and ¢ such that

(417) V(wn)a — V(wl)b ® V(wn)c

Recall that (see [29, Table 1])

(4.18) V(wn) ~ @ W(w;) as Uy(Cr)-modules.

-

0

J

Here Vp(wy) is the trivial U,(C))-module k. Thus
Vo(wn)®? — V(w) @ V(w,) as Uy(Cp)-modules.
The crystal graph of V' (w;) is given by (see [13, Example 11.1.4])

1

e
\

0

T%i% ......... n_l
1 2 n—2 n—1

We denote by u the dominant integral weight vector of V(w,,) with weight w,, =
Zielo Ei- — — ~ ~

For i1,...,%k,j1,---,51 € lo, we let uli1,...,4,71,...,5:1] be the vector in
Vo(wn—1), a Uy(Cp)-submodule of V(w;), with weight

k l
Wt(u[aa cee 7%7].17 cee 7le = Wt(u) - Zzgis - Zsjta
s=1 t=1

if such a weight vector exists in Vj (e, —;). Note that, by (4.18), the vector is unique
if it exists.
The map (4.17), if it exists, sends u to

n

V=1 @u+ (—gbLe) (Z(—q)k_lvk ® u[@]).

k=1
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Here v should be a unique (up to a constant) vector in V(wi)p ® V(wy). in the
sense that e;v = 0 for i € Iy and fov = 0, since u is a unique vector in V(wy,),
with these properties.

In V(w,)a, we have

(4.19) So-u=aS,-u where S, =8-S, forw=s7---s, € Wq.
On the other hand,
So-v=ev=cur®ull] - qc vy u[l] — qb~ cdz Lo, @ [T, k],
k#1

Sy -V = 1(2)...f(2_)1 v

n

= v @ ufl] + (—gv™'¢) (D (~0)* Mo @ ulL k+1])
k#n

A~

+(=gv o) (—q)" " or @ u[l],
where d is an element in k™ such that
(4.20) ePDulk] =d x u[l,k] for k#1in V(wy)e.

By (4.19), we conclude that
(4.21) a=—qc, b=ua(—q)", d=c
Now, it suffices to show that d =c = 1.
Proposition 4.8. For 1 # k € Iy, the coefficient d in (4.20) is 1, i.e.,
ePulk] = ul, k] in V(wn)e.
Proof. By Definition 2.2(3), we have

-~

fleou[/Z\} = eoflu[/Q\] = egu[l] = [2]pul[1].
Thus
ereou[2] = [2)oetPul] = [2Jou[2).
From the actions e; (i € I) on V(wy,)., we have

(4.22) eoeleé 2] = cegeru[T, 2] = ceou[2, 1] = c[2)ou[T, 2].

Since all vectors in V(w,,) are annihilated by the action e( ) , the quantum Serre
relation in Definition 2.2(4) implies that

(4.23) eoele(() )u[ 2] = (61663) + e((f)eleo - 683)61)u[§]
= e erequl2] = [2oel” uf2] = [2JoulT, 2].
From (4.21), (4.22) and (4.23), we conclude that d = ¢ =1 as desired. O
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Now, we have the following theorem.
Theorem 4.9. There exists a surjective Ué(A(Qi))—module homomorphism

(424) Pin: V(wn)(,q)fl ® V(wl)(_q)n - V(wn)

2)

By taking duals, there exists an injective U;(Agn)-module homomorphism

(4.25) i V(o) — V(w1)(,q)n & V(wn)(_q)—l.

84.4. Diﬂl-analogue of the surjective homomorphisms
given in [19, (A.17)]

This subsection is devoted to proving the following lemma:

Lemma 4.10. Letn, 7 € {/—1,—v/—1} and 1 < k,l <n—1 such that k+1 = n.
Then there exists a surjective U,;(Dﬁ)_l)—module homomorphism

V(wk)n(_q2)—l/2 ® V(w) 2)k/2 = Viwn)-1® V(wy).

n'(—q

Proof. Note that n/n’ = £1. By Theorem 4.7, there are injective U;(Dfﬁl)—
homomorphisms

Y12 VI(@k)y(—q2y-172 = V(@n) -1 @ V(@) (—g2y(-n+h-1/2,
Yo V(1) (—q2yrrz = V(Tn) _(Lg2)msn-n/2 @ V(wn),
by taking duals. Then we obtain ¢ = (idy(x,)_ , ® tr ® idy(x,)) 0 (Y1 @ P2),
@1 V(@k)y(—g2y-1r2 @ V(@1)y(—g2yrrz = V(wn) -1 @ V(w@y),

since V(wn)(_q2)(—n+k—l)/2 and V(wn)_(_q2)(n+k—l)/2 are dual to each other.
Applying the argument of [19, Lemma A.3.2], we have

(V@ W) Etr(Ueg, ® Uy, )V1 @ w1

mod @ (V(@a)-1)a @ V(@n)mp o,
A£—w+wn

where

e v is the Uy(B,,)-lowest weight vector of V(wy), (_q2)-1/2 of weight —wy,
e w is the Uy (B,,)-highest weight vector of V(w@;),(_g2)x/> of weight @,
e v; is a non-zero vector of V(w,)_1 of weight —wy, + w,,

e w; is a non-zero vector of V(w,,) of weight w; — w,,.

Thus ¢ is non-zero. As V(w,)_1 ® V(w,) is irreducible, our assertion follows. [J
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85. The computation of denominators between
fundamental representations

For simplicity, we write Ri5™ for R%O(I;nk),\/(wl)v d, for dy (), v (w,), and ag, for

aV(wk),V(wz) of §22
By the result of [1, Appendix A] and [2], the denominator dj;(z) and the
element ay, ;(2z) € k(z) are symmetric with respect to the indices k and I:

(5.1) ko(Z) = dlvk(z) and akJ(Z) = al,k(z).
85.1. General framework

In this subsection, we propose the strategy for computing dj, ;(z), which originates
from [1, Appendix C] and [19, Appendix A].
Note that we have a surjective homomorphism
(5.2) Pi-1,1" V(wz_l)(_qt)—l/t ® V(w1)(_qt)l—1/t —» V(wl) ifl <n-—19,
by the previous section.

Assumption 5.1. (A) We know ay /(z) for k € Iy and I’ <1 —1.
(B) We know dy,1(z) for all g, and dy ,(2) for g = BY org= Dfizl.

With these assumptions and (2.4), consider the commutative diagram

(5.3)

idV(wk)®pl—1,1

V(@k) @V (@1-1) gy 1702 @ V(@1 gryi-ares V() ® V().
sznlizl((_qt)il/tz)@’id\/(mq>(7qt)lfl/tz
V(wlfl)(—qt)*l/tz ® V(wk) ® V(Wl)(_qt)z—l/tz RN (2)

. univ, t\l—1/t
ldV(Wz71><7qt)71/tz®Rk,l ((=4%) z)

Pi-1,1Qidy ()
V(WIfl)(_qt)—l/tz ® V(w1)(_qt)l—1/tz ® V(wk) —_—> V(wl)z & V(wk)

Then we have

(5.4)
UL, k] @U[,...1—1] @ U t UL,....k] @ V[1,....1-1,]
ari-1((—¢") l/tz)vu .... 1-1] @ V1,5 DUl
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where

® V1. q) is the dominant extremal weight vector of V(zw,) for a € Iy,

ERRRE}

o W= Rz?lrm((—qt)l_l/tz)(U[l,m’k] ® 1}1).
By considering the vector w, we can get an equation explaining the relationship
between

ari-1(—q ' 2)ar,1((—¢) 7 12) and  ag,(z).

By Assumption 5.1(A), we can compute ay ;(z) by induction.
After getting ay(z), we use the formulas in Lemma 2.4, by applying two
surjective homomorphisms of §4,

(5.5) Pk—1,1° V(Wk_]_)(,qt)—l/t ® V(W]_)(,qt)k—l/t —» V(wk),
(5.6) Pr-1,1: V(@) (—gty-170 ® V(@1) (e (—gty-w/t = V(@k-1),
and setting W = V(w;) or V(w,), to get two elements in k[z*'] which are de-

scribed in terms of dj;(z)’s and ax(2)’s. Here (5.6) is a non-zero composition of
U, (g)-homomorphisms given as follows:

V(Wk)(_qt)—l/t X V(W1)(px)(_qt)—k/t
— V(wkfl) ® V(w1)(_qt)—k/t ® V(w1)(p*)(_qt)—k/1
— V(wk_l) Rk ~ V(wk_l).
Note that (5.6) is surjective since it is non-zero and V(wy_1) is irreducible.
Since we know the forms of ay ;(2)’s, two elements in k[z*!] can be described
in terms of dy ;(2)’s and polynomials in k[2] (up to a constant multiple in k[zF1]*).
By the assumptions, we know dy 1), d1,,(2) and hence we can compute dy; ()
and dj (%), by manipulating the two elements in k[2*!] and using induction.
The denominator dy ;(z) of RYY™(2): V(w1) ® V(w1). = V(w1). ® V(w1)
is computed in [23] (see also [14] for g = A§2)) to be

(5.7) dia(2) = (2" = (¢*))(" = ()"

The denominator di ,(z) of R{%™(2): V(w1) ® V(wy,). — V(w,). @ V(w)
for g = BV is computed in [7] to be

(5.8) din(2) =dpi(2) = 2 — (—1)”“(]3”“.

Considering Assumption 5.1, the only missing part is the denominator dj ,,(2)
_ p®
for g =D, (n>2).
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§5.2. The denominator d; ,(z) for g = Df_?_l (n>2)

To compute the denominator dy ,,(z) for g = ngl (n > 2), we follow the notation
and arguments given in [23, Section 4].
By the U, (D 24)-1) module structure of V(w;) and V(w,) in §3, we have

V(w) = Vo(w1) @ W(0) and V(wy,) = Vo(w,) as Uy(By)-modules.
Here Vh(wy,) (resp. V5(0)) is the highest U, (B, )-module with highest weight <,
(resp. 0). Thus

V(wn) @ V(w) ~ Vo(\) @ Vo(w,)®?  as Uy(B,)-modules,
where A = (3/2,1/2,...,1/2). Let
mt = (+,...,+) and mi=(+ ..., 4 -+, ...,+) (1<i<n)

be elements in V(w,). Then by direct calculation we have:

Lemma 5.2. Let uy, ul, and uZ  be the Uy(B,)-highest weight vectors with

weights A, wy, and w, in V(wy,)s @ V(wi), respectively. Then:
(a) ux = (m) @,

(b) Uén =2 ' (m +) ® vy,

(0) uZ, = S pe ()P M) @ vypa g + (2051 () @ wo.

Lemma 5.3. Let uy, a;n

and 2, be the Uy(By)-highest weight vectors with
weights A, @, and w, in V(w1)y @ V(wy)s, respectively. Then:

(a) x =v1 ® (m}),
(b) Ilv = [2lg 'vg ® (my)),
() %, = 3oy (1) 2Oy @ () + g 205 vo ® (myf).

Hence R{™: V(w1)y @ V(wn)e — V(wn)e ® V(wl) can be expressed by
1 (Gy) =ux and  RYQ™(d Zaw”

The following lemmas can be obtained by direct calculatlons.
Lemma 5.4. For the highest weight vectors defined in Lemma 5.2, we have
(a) folug,) =2ty (g  z)un,
(b) folu wn) =2~y ((=1)"¢*"y)ux,
(c) e1--en_ 16512)671 1 626160(%13") = (y)ua,
(d) E

1 en1een 1 - egereg(uz,)) = (¢ w)un,
in V(wn)z @ V(w)y.
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Lemma 5.5. For the highest weight vectors defined in Lemma 5.3, we have
lz,) =2y~ (z)hn,
fo(@Z,)) =ty H((=1)"q~ " 2y)un,
2 - 1~
L ente et esereo (L)) = (g7 y)ia,

Wn
2.) = (¢ 2)u,

g

—
o
D D
S

(2) =
1°  €n_1€n en_1---eze1eo(l

inV(w)y @ V(wn)e.

From these lemmas, we obtain

q—ly—l (_1)nq2nm—1 (a?n) _ y—l (_1)nq—2n—2$—1
y q 'z K q 'y g 'z ’

and hence
(awn) B 1 qu _ (_l)nq2n+1 (_1)n(q—2n—1 _ q2n+1)z
TR - 2= )
where z = 2y~ 1.
Hence we conclude that
(5.9) dy(2) = dpi(2) = 22+ (=¢%)"*' forg=D), (n>2).

§5.3. Denominators between fundamental representations
Write
da(z) = [z = 2.

v

For rational functions f,g € k(z), we write f = g if there exists an element
a € k[zF1])* such that f = ag.

Lemma 5.6 ([1]). For k,l € Iy, we have

ak(2)ar ((p*)~'2) = M7

ai(2) = 4= ] (p* 202 0) oo (0", 250"
’ (2025 0*2) e (P*225 ' 23 p*2)

(5.10)

i

where (2;q) 0o = [[oeo(l — ¢°2).

Now we list the triples (4, ¢, p*) for each g:
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g 4 c p”
AP aptar + 22t +an_1) +om ho +h1 +2(ha + -+ - + hy) —(—9)*"
e 20 4+ + an1) + an ho + 2(h1 + -+ hy) G
B‘Ell) ag+ a1 +2(a+ -+ an) ho +h1 +2(ha + -+ + hno1) + hn  —(=q)*" !
D'E7.2-&>-1 aotor+--tan ho+2(h1 + -+ hn-1) + hn —(=a)"

Table 1. (d,c,p*) for each affine type

By Lemma 5.6 and (5.7), we can compute a; 1(z) for all g:

(2n 4 2)(2n —2)  [4n][0]

ifg=A% | (n>3),

@n)2 [2)ldn—2]
[2n + 3][2n — 1] [4n + 2][0] @
Bt 1P [ 8T A (122

(511)  a11(2) = [2n + 1][2n — 3] [4n — 2][0]

2n—12  [2[4n — 4]

{nt1i{n—-1} {200} . _ e
q )2 12n -1 if g= wazl (n>2),

if g = BY (n>3),

where, for a € Z and b € 1Z,
[a] = ((=0)"2: 000 (@) = (—(=0)"2:P"%) 0
{0} = (=0*)°2:0") 00 ¥ (—=(—°)"2: ™) x.
Note that, for a € Z and b € %Z, we have

[a/la+4n) = 2 — (—q) "%, (a)/(a + 4n) =z + (—q)~* ifg =A%) | (n>3),

[a]/[a+4n+2] =2z — (—¢)7¢ ifg:Aéi) (n > 2),
[a]/[a4+4n —2] =z — (—¢)~° if g= B (n>3),
{(b}/{b+2n} = 2% — (—¢*) ™ it =D}, (n>2).

Following [16], [7, (3.12)] and [15, (3.7)], we recall that the image of v ® v
(k #£1 € Iy) under the normalized R-matrix

11 (2): Vie) @ V(w): = Viw): @ V(w)
is given by
(1 _ (q2)t)zt><6(k>l) qt(zt _ 1)
2= (¢?) 2t = (¢*)
Here > is the linear order on the labeling set of the basis of V(w;) (see [13,
Section 8]).

(5.12) RYY™(2)(vr @ 01) = (vk @ V) + (v ® vg).
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Proposition 5.7. For 1 <k,l <n —19, we have

(5.13)  axu(z) =
Mk —1|[4n— |k —1]] @n+k+1)2n—Fk—1)

[ A
Frlin—k—1 @n+[b—Ih2n— -] Y=,
Ik —tldn+2— k1) 2ot itktlenti-k-l] . o
k+ldn+2—k—1 2n+til+k—l2n+t1—jk—y] “&~ "
Ik —tll2n k1= 1)n k== N2n— k=l =1 ey
t+i2n+k—1—12n—k+1-1)2n—k—1— 2] 8=
{1523 2n — " H{n + 5 {n — B} ifg= D
{50 {2n — B {n + |55 M n - 155} e

Proof. We give the proof only for g of type Aéi)fr For the other g, one can apply
the same argument. We first consider k& = 1.

By (5.11), our assertion for k = [ = 1 holds. Applying the commutative
diagram (5.3) for k£ = 1, we have

(5.14) al,lfl(_q_lz)al,l((_q)l_lz)v[l,...,l—l] @w  ayi(2)vp,. -1, ® V1,

where
norm -1 Q((fq)lilz 7 ) 1- q2
= - ®u) = ® vy + ®
w 1 ((=q) " 2) (v @ w) =& v QU1 (gt 5V1 ®@ U
Since vyy,... ;—1] ® v1 vanishes under the map p;—1 1, (5.14) indicates that

. 1 —¢)1z—1
ari(2) = arg-1 (¢~ 2)ari ((—q)' Z)W

-1 [4n+1-3|
n+i-1 -3

=a11(—¢ " 2)ai((—9)''2) [

Hence our assertion for k = 1 follows by induction on I:

[(—1[dn—1+1] 2n—1—-1)2n+1+1)

5.15 = = .
(5.15) ai(2) = a3) = i T T @e s i m e — 1 1)
By (5.1), we now assume 2 < [ < k < n. By direct calculation, one can show
that
ficificz o filvp,. o ®@v1) = v, g @,
ficrfica - filvr @up, k) = v @V, -
Since Rp™ is a U, (g)-homomorphism and sends vjy, . ) ® v1 to v1 @1, k),
we have

Rnorm( )(U[l,...,k] ® UZ) =& U[l,...,k].
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Thus, the image in (5.4),
ak,l—l(*qilz)ak,l((*Q)lilz)v[l,...,l—l] ®w > ag1(2)v[1,..1—1,1] D V[1,... k]
for w = R};f’fm((—q)l’lz)(v[l,_“’k] ® ;) = v @ vy, k], implies that
(5.16) ary(2) = api-1(—q¢*2) a1 ((—q)'"12) (2<1<k<n).
Hence one can obtain our assertion by induction on /. O

Theorem 5.8. For 1 < k,l <n—14, we have

min(k,l)

(5.17) di(2) = H (2t — (—gt)E=t+2s) (ot (p)t(—qt)2s=k~1).

s=1
Proof. For 1 < k,l <n—1, set

min(k,l)
(5.18) Dy (2) = H (2t — (—gh)F=11+28) (ot — (p*)t(—g?)2s— k1),
s=1
Observe that Dy ;(z) behaves similarly to dj;(z). Namely (cf. (5.1), (5.7) and
(5.10)),

(5.19) D1’1(Z) = d1’1<z), Dk}l(z) = D“@(z),

) = i (Gana((7) 1) = e

5.20 —_ = —
(5:20) Dy, (prz—1 dy(prz—1)

By calculations, one can check that
(5.21) DkJ(Z) = DkJ_l((—qt)il/tZ)DkJ((—qt)lil/tz) for 2 < k <n-— 19,

which is similar to (5.16).

Now we give a proof for g = Dfll, since this case is most complicated. For
the other g, the argument is similar.

We shall show that Dy ;(z) = di(2) indeed. Our assertion for k =1 =1 is
presented in (5.9). Assume that 1 <k <n—1land2<1<n-—1.

From the surjective homomorphism in Theorem 4.5,

Pr-1,1": V(wl_l)(,qz)fl/z ® V(wl)(,qz)(zq)/z — V(wm),
and the first formula in Lemma 2.4 with P = V (wy,), we have the following element
in k[z+1]:

(5.22)
di-1((—=¢*)~V22)dg 1 ((—¢*)(—1/22) ari(2)
dy.1(2) @k,lfl((—q2)—1/2z)ak)1((—qQ)(l—l)/Qz) :
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In particular, if 2 <[ < k <n —1, then

dia-1((—g%)V22)dg 1 ((—g?) 1= 1/22)
ko(Z)

(5.23) € k[z*],

since (cf. (5.16))

ak(2) +17%
() o) ()72 ©

by the computation using (5.13). Using (5.13) once again, for k = 1 < [, one can

compute that

ay,1(z) _
’ = for2<i<n-—1.
a1~ P2)an (—)0%2) — 22— (=g T =T

Set k =1 and then replace [ with & in (5.22). Then (5.22) becomes

d1,k,1((—q2)_1/22)D1’1((—QQ)(k_l)/QZ) z2 _ (_q2)1—k
di,k(2) 22— (—¢?)3F

= di-1((=¢%)"?2) (2 _d(_q2)2"—’“+1)(z2 — (= € k[z*]

(5.24)

for 2 <k <n—1,since Dy1(z) = d11(2).
On the other hand, from the surjective homomorphism

V(wk)(,q2)f1/2 ® V(W1)7(7q2)(2n—k)/2 — V(wg-1),

and the second formula in Lemma 2.4 with P = V(w;), we have the following
element in k[z*!]:
(5.25)
di(=(=¢*)* 7 22)dya((=¢%)'?2) ak—1,(2)
dy—1,1(2) a1 (=)' /?2)ar (= (=¢?)F=2m/2z)

By the computations using (5.13), we have

ax—1,1(%)
a1 ((—¢2)Y22)ay 1 (—(—q2)(F—2m)/22)
22 (—g?)2mhei '
22 — (—q?)2n—k-lH1 ifl<l<k<n-1,
= 22 _ (_q2)2’nfk‘*l71 Z2 _ (_q2)71 .
2 (—g2)EnhHl 2 (_g2)t f2<l=k<n-1
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Thus the element (5.25) in k[z%!] can be written as follows:

dii(—(=¢*)" 222 dia((—g%)P2) 22 = (=) F 1!

5.26
( ) dr—1,1(%) 22 — (—q2)2n—k-l+1
if1<l<k<n-1,
and
(5.27)
dy 1 (—(—g2)F=2/2)dy 1 ((—q2)Y22) 22 — (—g2)2n—k=I=1 52 _ (—¢2)~1

dr_1.(2) 22— (—q2)2n—h—IHL ;2 — (g2t
if2<l=k<n-—1.
Setting I = 1 in (5.26), we obtain

Dia(—(=¢*)* V22 dya () 2° — (=¢?)**!
di—1.1((—¢?)~1/22) 22 — (—q2)2n—k+l

(5.28) € k[z%)

for2<k<n-1.
Now we claim that

dy 1 (2) = D1 x(2) = (2% — (—(12)k+1)(22 — (—q2)2n_k+1) for2<k<n-1.

With (5.19), we can start induction on k. Thus (5.24) can be written in the form

Dl,kfl((_qz)_lﬂz)(«% _ (_q2)2n+1—k)(z2 _ (_q2)1—k)

5.29
( ) de(z)
_ (22 _ (7q2)k+1)(22 _ (7q2)2n7k+3)(22 _ (fq2)2n+17k)(22 _ (7(]2)14@)
o dy ,(2)
ck[z*] for2<k<n-—1.
Now we claim that
(5.30) z=+4(—¢g>)1R/2 £(—¢?) @ FF3/2 are not zeros of dy x(z).

If (5.30) is true, we have

D 2 _ (_42\k+1 2 _ (_2\2n+1-k
(5.31> 17/6(2) _ (Z ( q ) )(Z ( q ) ) c k[zj:l]
dlyk(z) de(Z)
for2<k<n-1.
Since (1 — k)/2 < 0, we have +(—¢?)(*=%)/2 ¢ C[[q]]. Then [19, Theorem
2.2.1(1)] tells us that £(—q?)1=%)/2 cannot be zeros of dy j(z).
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Now we shall show that z = 4(—¢%)?*~*+3)/2 are not zeros of dy;(z). By
(5.29), we know that z = 4(—¢?)*=3)/2 are not zeros of dy x(z). Since

Dyi(z) _ Dra(p*z7")

d,i(2) dii(prz—1)

by (5.20), one can check that the fact that
z = +(—¢?)* =372 are not poles of Dy 1(2)/dy x(2),
implies
z = +(—¢*) " 9/2 are not poles of Dy i (—(—¢*)"2 ") /d1p(—(—¢*)"2"")

Hence +(—¢?)"=*+3)/2 cannot be zeros of d; x(z) and hence (5.30) holds.
By induction on k in (5.28), we also obtain

d .
(22 — (—q2)k+1)1(,l,;§z_) (—q2)2nF1-F) ek[z*'] ifk#n—1,
) € k[z*] fh=n—1

22— (—q2)2nti-F

By Theorem 4.5 and Lemma 4.10, dy x(2) has zeros at +(—¢%)*+1/2 for
1<k<n-—1. Thus

du k(%) dy k(2) 1
5.32 : = : k
(5.32) Din(z) (22— (—@2)F+1)(22 — (—g2)2n+i-F) € k[z"]
for2<k<n-1.

Recall that dy 1(z) € k[z] is a monic polynomial of smallest degree. By con-
sidering (5.31) and (5.32) together, our assertion holds for | = 1:

dl,k(z) _ (22 . (_q2)k+l)(z2 _ (_q2)2n+1—k) — Dl,k(z) (2 < k <n-— 1).

Now we apply induction on k + I. Applying induction at (5.23) with (5.21),

we have
dri—1((=¢*)"22)dp 1 (—¢*)"1/22)  Dpaa((—¢*)~22)Dra((—¢»)1/22)
ko(Z) dk,l(z)

_ Di,(2) SEl
D) e k[z7].
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Let ¢k71(z) S k[Zil] satisfy DkJ(Z) = dk,l(z)gbk,l(z). We claim that ¢k7l(z) =1.
Note that

Dy i(— (=) *=2m/2) Dy 1 (—q?)Y22) 22 — (—g?)2n—k1-1
Dy_1,(2) 22— (—g2)n—k—I+1

(22 _ (_q2)4n7k7l+1)(z2 _ (_q2)2n7k7l71) if 1 <k,

= (Z2 _ (_q2)4n7k71+1)(z2 _ (_q2)2n7k7l71>

x (22 = (=¢*)")(2% = (=¢%)) il = k.

By (5.26), (5.27) and induction on k + I, the above elements can be written in the
form
(22 — (—q2)An—k=l41) (32 _ (_g2)2n—k—l-1)
Pri((—q%)1/22)
(22 — (—q2)An—k=141) (32 _ (_g2)2n—k—l-1)
Pri((—q%)1/22)
x (22 = (=) (22 — (=¢») ) e k[zH]  ifl =k

e k[z*] ifl <k,

Recall that ¢y ;((—q?)'/?2) divides Dy ((—¢?)'/?z). Thus we conclude that
(533) gi)k,l(z) =1 ifk+1<n,
Z2 _ (_q2)2n7k71

Dr(2)

(5.34) ck[z] ifk+I>n,

since

o (22— (—g?)Inh=lH1) (22 — (—¢?)?"~*=I=1) is not a factor of Dy ;((—¢?)'/?2) for
k+1<n,

o (22 — (=¥ k(22 — (—¢®)2 (22 — (—¢®)7!) is not a factor of
Dia((—¢*)'22) for k+1>n.

(2n—k—1)/2

Now our assertion holds if z = 4(—¢?) are not zeros of ¢ (z) for

k+ 1> n. From (5.20), one can see that
(5.35) S (—(=¢*)"271) = dra(2).

Thus it suffices to prove that z = +(—q?)**)/2 are not zeros of ¢y, ;(2) for k+1 > n.
(a) f k4+1 > n, then n > 2n — k — [ and hence ¢y ;(z) = 1 by (5.33) and
(5.35).
(b) Now assume k + ! = n. Then Lemma 4.10 tells us that dj ;(z) has zeros
at z = +(—¢?)F*tD/2. By the definition of Dy (2), +(—¢*)*+Y/2 are zeros of
multiplicity 1. Thus +(—¢?)*+)/2 cannot be zeros of ¢y ;(z) when k+1=mn. O
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Now we shall compute di ,(z) for g = BY and g= Dﬁ)_l. By Lemma 5.6,
(5.8) and (5.9), we have

[2n - 3}(7,,_;,_1) [671 - 1](n+1)

27 + 1 (ny1) [6n = 5] (n+1)
3n+1\/fn—-1\/

{37’742*1}/{7111}/ lfg:DSz‘f)—h

{2

where, for a,k € Z and b € %Z,

[y = ((—1)*¢22:p)oe,  {b} := (—V-1(=¢")"0") e (V=1(—¢*)"; P*?) 0

ifg= Bg),

(5.36) arn(2) =

W prove the statement below only for g = Br(Ll). For g = Df_&l, one can apply
the same arguments.

Proposition 5.9. For1<I[<n—1, we have
[271 — 2] — 1](n+l)[6n + 20 — 3}(7,_;,_[)
) 21 + 21 = 1 (40 [6n — 20 = 3] (41
al,nzz I [ n—11'
e {)
n—L/f n+ti’/
{# {7
Proof. By (5.36), it suffices to consider 2 <! < n — 1. Applying the commutative
diagram (5.3) with k = n, and (5.4), we have

ifg=BY,
(5.37)
ifg= Df—s)—r

an,lfl(*qilz)an,l((*Q)lilz)v[l,...,l—l] QW — an,l(Z)U[1,...,l—1,l] ®m,

where w = R2™((—¢)'~2)(m;} ®v;) for the highest weight vector m;} of V().
Since m;! vanishes under the action f; (1 < i <[ — 1), as in the proof of
Proposition 5.7 we have

w =R (=)' 2)(mf @ u) = v @m},

and hence
(5.38) ani(2) = ani-1(—=q¢712) an1((—q)''z) for2<i<n-—1.
By (5.36) and induction on [, our assertion follows. O

Theorem 5.10. For1 <k <n—1, we have

k
[](z = (-p)nthg2n=2imtdsy ip g = BIY,
(5.39) din(2) = °5!
[1G2+ (=g ) ifg =D,

s=1
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Proof. By (5.8), it suffices to consider 2 < k < n — 1. From the surjective homo-
morphism in Theorem 4.5,

V(wk_l)(_q)—l ® V(W1)(,q)k—1 —» V(wk),

the first formula in Lemma 2.4 with W = V(w,,) yields

(g™ 2)ds () 12) 1.0 (2) i
dk,n(z) ak—l,n(_q_lz)al,n((_Q)k_lz)
By (5.38), this element can be written more simply as
-1 k=1
gy BtnCr (0 )
dk’n(z)
_ _ -1 — (=1 n+k 2n—2k+3
B e e s B

dkyn(z)

On the other hand, for each 2 < k < n — 1, we have a surjective homomorphism
V(wk)_q—l ® V(W1),(,q)2n—l—k —» V(wk_l).

Then the second formula in Lemma 2.4 with P = V (w,,) yields

dn__k+1—2n dn_ n
(541 N (=(=9) 2)dk,n(—q2) a 11;2(2) € K[+,
di—1,n(2) a1,n(—(=)" 172" 2)ay,n(—q2)
Using (5.37), the second factor of (5.41) can be written as
akfl,n(z) _ P (_1)n+k+1q§n—2k—3
W (— (=) 224y o (—qz) 2 — (—1)nthtign2RTL’
and hence (5.41) becomes
din(=02) (2 = ("4 - (g

dk—1,n(2) (z — (—1)nthtLg2n—2k+T)
By the induction hypothesis,

5 = (_1)n+k+l 6n—2k—1

q and (_1)n+k+1 2n—2k—3
S

ds
are not zeros of di_1,,(z). Hence

dk,n(*qz)
di—1,n(2) (2 — (—1)rthttgdn—2ht)

(5.42) € k[z*],
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which is equivalent to

dk’n(z)

€ k[z*1].
dk—l,n(*qflz)(z _ (71)n+kq§n—2k+3)

Combining (5.40) and (5.42) gives our assertion:

i (2) = di—1,0(—q7 " 2) (2 — (=1)"FFgn72EF2)

k
_ H(z o (71)n+kq§n72k71+4s)' O
s=1

Remark 5.11. In conclusion, we can observe that

for all k,1 € Iy, RE5™ (2) has only simple poles unless g = D512+)1 (n > 3).

For g = Df)

11 (n>3), Rp9™(2) has a double pole at z = +(—¢*)*/? if

2<kili<n—-1,k+Il>n,2n+2—-k—-1<s<k+land s=k+1[ mod 2.
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Appendix: The table of denominators

Type k,l Denominators
min(k,l,n+1—k,n+1-1)
AL 1<k,I<n dpa(2)= 11 (5= (—q)2+I=tly
s=1
min(k,l)
BY | 1<ki<n-1 de(2)= [] (=(=)/F712%) (e (—q)?F7t 1122
s=1
k
qzzq 1§k§n—1 dk’n(z):H(Z_(_l)n+kq3n72kfl+4s)
s=1
n
k=l=n dn,n(z):]___[(z_(qs)4872)
s=1
min(k,l,n—k,n—1) min(k,l)
s 1<k, 1<n dii(2)= T (z=(=as)*71H2) IT (2= (—qs)mH2 k129
s=1 i=1
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(1]
2]

(3]

(4]
(5]

[6]

[7]

(8]

min(k,l)
DY 1<k,I<n—2 d(2)= [ (2= (=@)F~11+29)(z—(—q)?n—27h71H2)
s=1
k
1<k<n—2 dn—1(2)=dpn(2)=] [ (z— (=) F~1F2)
s=1
[n—1/2]
{k, ly={n,n—1} dnn-1(2)=dn-1n(2)= [ (z=(-0)*)
s=1
[n/2]
k=le{n,n—1} dnn(2)=dn-1,n-1(2)= [] (z=(=9)**?)
s=1
min(k,l)
AL 1<k, 1<n dia()= [ (= (=)W 120 (z 4 (—q)>nk-1429)
s=1
min(k,l)
A% 1<k, i<n dig(2)= [ (== 1H2%) (a— (—q)?rt1-htt2s)
s=1
min(k,l)
D¢, 1<k,l<n-1 di(z)= [] (= (=g} t2e) (22— (—g?)2n—k1H2s)
s=1
k
1<k<n-1 dpp i (2) =[] (22 +(=g>)"~FF2)
s=1
n
k=Il=n dn,n(z):H(z+(7q2)S)
s=1
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