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Mixed Frobenius Structure and
Local Quantum Cohomology

by

Yukiko Konishi and Satoshi Minabe

Abstract

In a previous paper, the authors introduced the notion of mixed Frobenius structure
(MFS) as a generalization of the structure of a Frobenius manifold. Roughly speaking,
the MFS is defined by replacing a metric of the Frobenius manifold with a filtration on the
tangent bundle equipped with metrics on its graded quotients. The purpose of the current
paper is to construct a MFS on the cohomology of a smooth projective variety whose
multiplication is the nonequivariant limit of the quantum product twisted by a concave
vector bundle. We show that such a MFS is naturally obtained as the nonequivariant
limit of the Frobenius structure in the equivariant setting.
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§1. Introduction

We continue our study of mixed Frobenius structure and local quantum cohomol-

ogy initiated in [8].

§1.1. A mixed Frobenius algebra

Let K be a field. A finite-dimensional associative commutative K-algebra A equip-

ped with a nondegenerate bilinear form g (called a metric) is called a Frobenius al-

gebra if g is invariant under the product, i.e., g(xy, z) = g(x, yz) for any x, y, z ∈ A.

In [8], the following generalization of the Frobenius algebra was introduced.

Let A be a K-algebra as above. By definition, a Frobenius filtration (I•, g•) on

A consists of an exhaustive increasing filtration I• by ideals and A-invariant met-
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rics g• on its graded quotients (Definition 2.1). We call an algebra with a Frobenius

filtration a mixed Frobenius algebra. If the filtration is trivial, this is nothing but

the notion of Frobenius algebra. We show that any algebra over an algebraically

closed field admits a Frobenius filtration (Theorem 2.3). This is in contrast to the

fact that not all algebras admit invariant metrics.

One of the main results of this paper is to show that a mixed Frobenius K-

algebra appears in the limit as λ → 0 of a “Frobenius algebra over K[λ]” (§3).

The precise statement is as follows. Let Hλ
K be a free K[λ]-module of finite rank

equipped with a symmetric K[λ]-bilinear form gλ : Hλ
K×Hλ

K → K[λ, λ−1]. If gλ is

unimodular over K[λ, λ−1], then it defines on the K-vector space HK := Hλ
K/λH

λ
K

an exhaustive increasing filtration by subspaces and metrics on its graded quotients

(Lemma 3.4). We call such a pair a nondegenerate filtration. Moreover, if Hλ
K is

equipped with a K[λ]-algebra structure with respect to which gλ is invariant, then

the nondegenerate filtration is a Frobenius filtration on HK with respect to the

induced multiplication (Theorem 3.5). This construction is a generalization of the

nilpotent construction in [8, §3.1] (cf. §3.2).

§1.2. A mixed Frobenius structure

A Saito structure (without a metric)1 on a complex manifold M [11, §VII.1] is

a triple consisting of a torsion-free flat affine connection ∇, a symmetric Higgs

field Φ : TM → EndTM and a vector field E called an Euler vector field sat-

isfying certain compatibility conditions (see Definition 4.1). A symmetric Higgs

field gives rise to a fiberwise commutative associative multiplication ◦ on TM . If a

Saito structure (∇,Φ, E) on M is further equipped with a ◦-invariant metric g on

TM compatible with the other data, then the Saito structure (∇,Φ, E) with the

metric g is equivalent to a Frobenius manifold structure on M [2].

Now we introduce the notion of mixed Frobenius structure which generalizes

the Frobenius manifold structure. The idea is to replace a ◦-invariant metric g

with a Frobenius filtration (I•, g•). Namely, we define a mixed Frobenius struc-

ture (MFS) on a manifold M to be a Saito structure (∇,Φ, E) on M together

with a nondegenerate filtration (I•, g•) on the tangent bundle TM subject to var-

ious compatibility conditions (Definition 4.5). In particular, it is required that

(TM , ◦, I•, g•) is a mixed Frobenius algebra. We arrived at this notion through

our study of local mirror symmetry [1]. For details about the motivation, we re-

fer to [8, §1.3]. Notice that we slightly modify the definition of MFS from [8] (cf.

Remark 4.7).

1In this article, we call a Saito structure without a metric a Saito structure for short.
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For the application to local quantum cohomology, it is necessary to con-

sider a formal and logarithmic version of MFS. Let K be a subfield of C. Let

R = K[[t1, . . . , tn, q1, . . . , qm]] and M = Spf R be the formal completion of Kn+m

= SpecK[t, q] at the origin. We consider the logarithmic structure on M defined

by the divisor {q1 · · · qm = 0} on Kn+m. We denote by M† the resulting loga-

rithmic formal scheme. We define a formal (and logarithmic) MFS on M† in §5.

As in the case of mixed Frobenius algebra, we show that a formal MFS on M† is

obtained in the limit as λ→ 0 of a “formal Frobenius structure over K[λ]” on M†

(Proposition 5.5).

§1.3. MFS from local quantum cohomology

Let X be a smooth complex projective variety and let HC := Heven(X,C). We

choose a nef basis {φ1, . . . , φp} of H2(X,Z) and extend it to a homogeneous basis

{φ0 = 1, φ1, . . . , φp, φp+1, . . . , φs} of HC. Let t0, . . . , ts be the coordinates on HC
associated to the basis. We set R = K[[t, q]] where t = (t0, tp+1, . . . , ts) and q =

(q1, . . . , qp) with qi = eti . Let M† be the logarithmic formal scheme defined as in

the previous subsection.

Fix a concave holomorphic vector bundle V on X (e.g., V is the dual of

an ample line bundle). We construct a formal MFS on M† from V as follows.

Let us introduce the fiberwise S1-action on V by scalar multiplication. Then,

following Givental [3], we consider the S1-equivariant Gromov–Witten invariants

of X and the intersection pairing on X, both twisted by the inverse of the S1-

equivariant Euler class of V. Using them, one can define the twisted quantum

cup product ∗V on Hλ
C := HC ⊗C C[λ] where C[λ] = H∗S1(pt ,C) is identified with

the S1-equivariant cohomology of a point. Identifying the logarithmic tangent

sheaf T λM† := TM† ⊗C C[λ] of M† over C[λ] with OM ⊗C H
λ
C , we obtain a formal

Frobenius structure over C[λ] on M†. Then, as an application of the results in §5,

we obtain a formal MFS on M† in the nonequivariant limit (i.e. the limit as λ→ 0)

(Theorem 6.4).

As mentioned earlier, our motivation to study MFS comes from local mirror

symmetry [1]. Relationships to [1] and to our previous work [7] are explained

in §6.4.

§1.4. Conventions

(1) Let K be a field. A K-algebra means a finite-dimensional commutative asso-

ciative K-algebra with a unit.

(2) Given a commutative ring R, an R-algebra structure on a free R-module means

an associative commutative R-bilinear multiplication which admits a unit.
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§2. Mixed Frobenius algebra

§2.1. Frobenius filtration and mixed Frobenius algebra

Let K be a field. A nondegenerate symmetric bilinear form g on a K-vector space

is called a metric. A pair (I•, g•) consisting of an exhaustive increasing filtration I•
on a K-vector space by subspaces and a collection of metrics g• on I•/I•−1 is called

a nondegenerate filtration on the vector space.

Let A be a K-algebra. We say that a metric g on an A-module I is A-invariant

if it satisfies the condition

g(a · x, y) = g(x, a · y) (a ∈ A, x, y ∈ I).

Definition 2.1. A Frobenius filtration on a K-algebra A is a nondegenerate fil-

tration (I•, g•) on A such that each filter I• is an ideal of A and the metric g• on

I•/I•−1 is A/I•−1-invariant.

Definition 2.2. A mixed Frobenius K-algebra is a pair which consists of a

K-algebra A and a Frobenius filtration (I•, g•) on A.

§2.2. Existence of Frobenius filtrations

In this subsection, the field K is assumed to be algebraically closed.

Theorem 2.3. Any finite-dimensional K-algebra A has a Frobenius filtration.

Let N =
√

0 be the nilradical of A. Note that the finite-dimensionality of A

implies that N is a nilpotent ideal and that N coincides with the Jacobson radical

of A. It follows that A/N is a semisimple algebra. Consider the decreasing sequence

of ideals A ⊃ N ⊃ N2 ⊃ · · · ⊃ Nl−1 ⊃ Nl = 0.

Lemma 2.4. Ni/Ni+1 is a completely reducible A/Ni+1-module.

Proof. Consider the exact sequence of A-modules

0→ N/Ni+1 → A/Ni+1 → A/N→ 0.

It follows that A/Ni+1 acts on Ni/Ni+1 via A/N, since N/Ni+1 annihilates

Ni/Ni+1. Then the semisimplicity of A/N implies that Ni/Ni+1 is a completely

reducible A/N-module, hence it is also a completely reducible A/Ni+1-module.

Lemma 2.5. Let B be a finite-dimensional K-algebra. Then for any simple

B-module S 6= 0, we have dimK S = 1.

Proof. Since S is a simple B-module, there is a maximal ideal m of B such that S ∼=
B/m as B-modules. The finite-dimensionality of B implies that the composition
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K → B → B/m is a field extension of finite degree. It then follows that B/m ∼= K,

since K is algebraically closed.

Proof of Theorem 2.3. By the above two lemmas, Ni/Ni+1 is the direct sum

of 1-dimensional simple A/Ni+1-modules. If we take a basis xi,j (1 ≤ j ≤
dimK Ni/Ni+1) of the simple modules and define a bilinear form 〈 , 〉i on Ni/Ni+1

by

〈xi,j , xi,k〉i = δj,k,

then 〈 , 〉i is an invariant metric. Thus the filtration I• := Nl−• with metrics

g• := 〈 , 〉i−• is a Frobenius filtration on A.

§3. Mixed Frobenius algebra from a localized K[λ]-metric

§3.1. Construction of a mixed Frobenius algebra

Let K be a field and let HK be a K-vector space of dimension s. We set

Hλ
K := HK ⊗K K[λ] and identify HK with the quotient module Hλ

K/λH
λ
K . Let

π : Hλ
K → HK = Hλ

K/λH
λ
K be the projection.

Definition 3.1. A localized K[λ]-metric on Hλ
K is a symmetric K[λ]-bilinear form

gλ : Hλ
K ×Hλ

K → K[λ, λ−1] which is unimodular over K[λ, λ−1]2.

Now assume that a localized K[λ]-metric gλ on Hλ
K is given. We will construct

from gλ a nondegenerate filtration on HK .

Lemma 3.2. There exist a pair of K[λ]-module bases x1, . . . ,xs and y1, . . . ,ys
of Hλ

K and a set of integers κ1 ≥ · · · ≥ κs satisfying

(3.1) gλ(xi,yj) = λ−κiδi,j .

The integers κi are uniquely determined by gλ (but the bases are not).

Proof. Let G be the matrix representation of gλ with respect to a K[λ]-module

basis of Hλ
K . Multiplying by λk0 with some k0 ∈ Z if necessary, we assume that

all entries of the matrix λk0G are polynomials. By the theorem of elementary

divisors, λk0G can be transformed into a diagonal matrix by successive elementary

transformations from the left and from the right. This means that there exist K[λ]-

module bases {xi}, {yi} of Hλ
K such that λk0gλ(xi,yj) = δi,j ei where e1, . . . , es ∈

K[λ] are diagonal entries (i.e. the elementary divisors of λk0G). The assumption

of unimodularity over K[λ, λ−1] implies that ei’s are monomials.

2This means that, given a K[λ]-basis of Hλ
K , the representation matrix of gλ is unimodular

over K[λ, λ−1].
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Let us define a sequence of K[λ]-submodules by

(3.2) Iλk = {x ∈ Hλ
K | λkgλ(x,y) ∈ K[λ] (∀y ∈ Hλ

K)} (k ∈ Z).

Concretely, Iλk is written as follows with the basis x1, . . . ,xs of Lemma 3.2:

(3.3) Iλk =
⊕
i:κi≤k

K[λ]xi ⊕
⊕
i:κi>k

λκi−kK[λ]xi.

The same formula holds for the other basis {yi}.

Lemma 3.3. For x,y ∈ Iλk , Resλ=0 λ
k−1gλ(x,y) depends only on π(x), π(y) ∈

HK . Moreover Resλ=0 λ
k−1gλ(x,y) = 0 if x ∈ Iλk−1 or y ∈ Iλk−1.

Proof. Let us write x, y ∈ Iλk as

x =
∑
i:κi≤k

fi(λ)xi +
∑
i:κi>k

λκi−kfi(λ)xi (fi(λ) ∈ K[λ]),

y =
∑
i:κi≤k

hi(λ)yi +
∑
i:κi>k

λκi−khi(λ)yi (hi(λ) ∈ K[λ]).

By (3.1), we obtain

(3.4) Resλ=0 λ
k−1gλ(x,y) =

∑
i:κi=k

fi(0)hi(0).

The statement follows easily from this.

Let

(3.5) Ik := π(Iλk ) =
⊕
i:κi≤k

Kπ(xi) (k ∈ Z).

By Lemma 3.3, the following bilinear form gk on Ik/Ik−1 is well-defined:

(3.6) gk(x̄, ȳ) = Resλ=0 λ
k−1gλ(x,y) (x, y ∈ Ik),

where x 7→ x̄ denotes the projection HK → HK/Ik−1 and x,y are any lifts of x, y

to Iλk .

Lemma 3.4. (I•, g•) is a nondegenerate filtration on HK .

Proof. The nondegeneracy of gk follows from (3.4).

Now assume that Hλ
K is equipped with an associative commutative

K[λ]-algebra structure ∗ with unit. Let gλ be a localized K[λ]-metric which is

∗-invariant, i.e.

(3.7) gλ(x ∗ y, z) = gλ(x,y ∗ z) (x,y, z ∈ Hλ).
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On HK , we have the induced multiplication and the nondegenerate filtration

(I•, g•) defined in (3.5), (3.6).

Theorem 3.5. (HK , I•, g•) is a mixed Frobenius algebra.

Proof. The ∗-invariance (3.7) of gλ implies that Iλk is an ideal. Therefore Ik is an

ideal with respect to the induced multiplication ◦ on HK . The ◦-invariance of gk
follows from the ∗-invariance of gλ.

§3.2. Nilpotent construction

Let (A, g) be a Frobenius K-algebra having nilpotent elements n1, . . . , nr and let

n = λr + n1λ
r−1 + · · ·+ nr ∈ A[λ].

As an example of Theorem 3.5, we consider the case Hλ
K = A[λ] with the localized

K[λ]-metric gλ given by

gλ(x,y) := g(x · y,n−1) =
∑
j≥0

1

λ(j+1)r
g(x · y, (λr − n)

j
) (x,y ∈ A[λ]).

Let us calculate the nondegenerate filtration (I•, g•) defined by (3.5), (3.6).

The ideals Iλk of A[λ] defined in (3.2) are as follows.

Lemma 3.6. We have

(3.8) Iλk =

{
{λ−kn · x | x ∈ A[λ]} (k ≤ 0),

Iλ0 ⊕ Jλk (k > 0).

In the last line, the direct sum is that of A-modules and

Jλk = {x ∈ A<r[λ] | λkx is divisible by n},
where A<r[λ] = {x ∈ A[λ] | degx < r}. Here degx is the degree of x with respect

to λ.

Proof. Since n is monic of degree r, any x ∈ A[λ] can be written uniquely as

x = n · x′ + x′′ with degx′′ < r.

First, we consider the case k = 0. It is easy to see that x ∈ Iλ0 if and only if

gλ(x′′, y) = 0 for any y ∈ A. If x′′ =
∑r
i=1 aiλ

r−i then we have

gλ(x′′, y) =
∑

1≤i≤r, j≥0

g(ai(λ
r − n)

j
, y)λ−(i+jr) =

g(a1, y)

λ
+ o

(
1

λ2

)
.

From this equation, for x to be in Iλ0 , it is necessary to have g(a1, y) = 0 for any

y ∈ A, hence a1 = 0. Then we have

gλ(x′′, y) =
g(a2, y)

λ2
+ o

(
1

λ3

)
,

hence a2 = 0. Repeating this process, we obtain x′′ = 0.
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Next, we consider the case k < 0. If x ∈ Iλk then x ∈ Iλ0 . Therefore it can be

written as x = n · x′. Since x ∈ Iλk , we have λkgλ(x, y) = λkg(x′, y) ∈ K[λ] for

any y ∈ A. It then follows that the coefficients of x′ up to degree −k − 1 must be

zero. Hence x′ is divisible by λ−k.

For k > 0, it is easy to see that x ∈ Iλk if and only if λkx′′ is divisible by n.

Let N : A⊕r → A⊕r be the homomorphism given by

N

a1

...

ar

 =


−n1 1 0 · · · 0

−n2 0 1 · · · 0
...

...
...

. . .
...

−nr−1 0 0 · · · 1

−nr 0 0 · · · 0


a1

...

ar

 .

The projections A⊕r → A to the first and the rth factors are denoted p1, pr.

Lemma 3.7. We have

(3.9) Ik =


0 (k < 0),

{x · nr | x ∈ A} (k = 0),

I0 + Jk (k > 0),

where Jk = pr(KerNk).

Proof. By Lemma 3.6, it is enough to show that π(Jλk ) = Jk for k > 0. Let

ρ : A<r[λ] → A⊕r be the isomorphism
∑r
i=1 aiλ

r−i 7→ t(a1, . . . , ar). Notice that

ρ−1 ◦N ◦ ρ : A<r[λ] → A<r[λ] maps x to the remainder of λx divided by n. By

induction on k, we can show that

(3.10) λkx =

k−1∑
i=0

(p1 ◦N i ◦ρ)(x)λk−1−i ·n+ (ρ−1 ◦Nk ◦ρ)(x) (x ∈ A<r[λ]).

Thus we obtain

Jλk = {x ∈ A<r[λ] | ρ(x) ∈ KerNk}.

From this π(Jλk ) = Jk follows.

Lemma 3.8. We have

g0(x · nr, y · nr) = g(x · y, nr),
gk(x̄, ȳ) = g(x, p1(Nk−1~y )) (k > 0, x, y ∈ Jk),

where ~y ∈ KerNk is any lift of y satisfying pr(~y) = y.
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Proof. The case k = 0 is clear. For k > 0, let x,y ∈ Jλk be lifts of x, y. By (3.10),

we have

gk(x̄, ȳ) = gλ
(
x,
λky

n

)∣∣∣∣
λ=0

= g(x, p1(Nk−1ρ(y))).

As a corollary of Theorem 3.5, we obtain

Proposition 3.9. (A, I•, g•) with I•, g• given in Lemmas 3.7 and 3.8 is a mixed

Frobenius algebra.

When r = 1, Jk = {x ∈ A | nk1 · x = 0} and gk(x̄, ȳ) = g(x · y, (−n1)k−1)

(k > 0). This is the nilpotent construction in [8, §3] up to shifts of the filtration.

§4. Mixed Frobenius structure

In this section, the base field is K = C, a manifold means a complex manifold and

vector bundles are assumed to be holomorphic. For a manifold M , TM denotes the

tangent bundle, TM its sheaf of local sections and we write x ∈ TM to mean that

x is a local section of TM .

Although definitions here are for complex manifolds, they can be easily trans-

lated to C∞-manifolds (K = R).

§4.1. Saito structure

The following definition is due to Sabbah [11, Ch. VII].

Definition 4.1. Let M be a manifold. A Saito structure (without a metric) on M

consists of

• a torsion-free flat connection ∇ on TM ,

• an associative and commutative OM -bilinear multiplication ◦ on TM with a

global unit section e, and

• a global vector field E on M (called the Euler vector field),

satisfying the following conditions.

(i) The multiplication Cx by x ∈ TM regarded as a local section of EndTM
satisfies

(4.1) ∇xCy −∇yCx = C[x,y],

and the unit vector field e is flat, i.e. ∇e = 0.

(ii) The vector field E satisfies ∇(∇E) = 0 and

(4.2) [E, x ◦ y]− [E, x] ◦ y − x ◦ [E, y] = x ◦ y (x, y ∈ TM ).
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In this article, we call a Saito structure without a metric a Saito structure for

short.

Remark 4.2. In [11], a Saito structure is defined in terms of the symmetric Higgs

field instead of the multiplication. As explained in [11, Ch. 0.13], a symmetric Higgs

field corresponds to a multiplication and Definition 4.1 is equivalent to that in [11].

Lemma 4.3. Given a Saito structure (∇, ◦, E) on a manifold M , there exists a

local vector field G ∈ TM such that

(4.3) ∇x∇y G = x ◦ y

for any flat vector fields x, y ∈ TM . Moreover ∇∇([E,G]− G) = 0.

We call G satisfying (4.3) a (local) potential vector field.

Proof. Let {tα}α be a local coordinate system on M whose corresponding local

frame fields {∂α}α are∇-flat. Let us write ∂α◦∂β =
∑
γ C

γ
αβ∂γ . The commutativity

implies Cγαβ = Cγβα. Equation (4.1) is equivalent to ∂αC
δ
βγ = ∂βC

δ
αγ . Therefore

there exist Gγ ∈ OM such that ∂α∂βGγ = Cγαβ . Then G :=
∑
γ Gγ∂γ satisfies (4.3).

The second statement follows from (4.2).

Remark 4.4. It is known that a Frobenius manifold structure defined by Dubro-

vin [2] is equivalent to a Saito structure with a metric [11, Ch. VII, Prop. 2.2].

When M is a Frobenius manifold, (4.1) is equivalent to the potentiality condition,

and the gradient vector field of the potential function is a potential vector field.

§4.2. Mixed Frobenius structure

Definition 4.5. A mixed Frobenius structure (MFS) on a manifold M consists of

a Saito structure (∇, ◦, E) together with

• an increasing sequence of subbundles I• of TM and

• metrics (i.e. nondegenerate symmetric OM -bilinear forms) g• on I•/I•−1

satisfying the following conditions.

(i) (◦, I•, g•) is a mixed Frobenius algebra structure on TM , i.e. Ik are ideals of

TM and all gk’s are ◦-invariant.

(ii) The subbundles Ik (k ∈ Z) are preserved by ∇ and the metrics are compatible

with ∇, i.e.

(4.4) zgk(x, y) = gk(∇z x, y) + gk(x,∇z y) (k ∈ Z, z ∈ TM , x, y ∈ Ik).

Here x 7→ x denotes the projection Ik → Ik/Ik−1.
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(iii) The subbundles Ik (k ∈ Z) are preserved by [E,−] and there exists a collection

{Dk ∈ K}k∈Z of numbers (called charges) such that

(4.5) Egk(x, y)− gk([E, x], y)− gk(x, [E, y])

= (2−Dk)gk(x, y) (k ∈ Z, x, y ∈ Ik).

A MFS with the trivial filtration I• (i.e. 0 ⊂ TM ) is the same as a Saito

structure with a metric [11] and also the same as a Frobenius manifold structure [2].

Lemma 4.6. If (∇, ◦, E, I•, g•) is a MFS on a manifold M , then each Ik ⊂ TM
(k ∈ Z) is involutive.

Proof. This follows from the condition that Ik is preserved by the torsion free

affine connection ∇.

As a consequence of this lemma, there exists a flat local coordinate system

{tkα}k∈Z, 1≤α≤dim Ik/Ik−1
such that {tkα}k≤l, 1≤α≤dim Ik/Ik−1

is a local coordinate

system of leaves of Il.

Remark 4.7. The definition of MFS in this article is different from that in our

previous article [8, Definition 6.2] in a few points.

Firstly the charges Dk are allowed to take any values. The advantage is that

any mixed Frobenius algebra has a MFS (see Proposition 4.8 below) whereas the

condition Dk = D0 − k in the old definition is quite restrictive.

Secondly the compatibility conditions of the multiplication with the connec-

tion and the Euler vector field are strengthened as we adopt the Saito structure

(compare [8, (6.2), (6.9)] with (4.1), (4.2)). The reason for this change is the ex-

istence of a local potential vector field (Lemma 4.3) and the flat meromorphic

connection [11] on the Saito structure. We believe that they may play important

roles in formulating local mirror symmetry as an equivalence of MFS’s (cf. §6.4).

§4.3. An algebra with a Frobenius filtration has a MFS

Let (A, I•, g•) be a mixed Frobenius algebra. We assume that A =
⊕

d∈ZAd is a

graded algebra satisfying Ik =
⊕

d Ik ∩ Ad. Moreover we assume that there exist

{Dk ∈ Z | k ∈ Z, Ik/Ik−1 6= 0} such that

gk(x, y) = 0 unless |x|+ |y| = Dk.

Here |x| denotes the degree of x ∈ A. Notice that any mixed Frobenius algebra

satisfies this assumption with A = A0 and D0 = 0.

Let {ekα | k ∈ Z, 1 ≤ α ≤ dim Ik/Ik−1} be a homogeneous basis of A such

that {ekα | k ≤ l, 1 ≤ α ≤ dim Il/Il−1} is a basis of Il. Let {tkα} be the associated

coordinates of A.
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Proposition 4.8. The trivial connection d, the multiplication on A, the vector

field

E =
∑
k,α

(1− |eka|)tka∂ka,

and the nondegenerate filtration (I•, g•) form a MFS on A of charges {Dk}.

§5. Formal mixed Frobenius structure

In this section we will define a formal (and logarithmic) version of MFS using [4]

as reference.

In this section, the base field K may be any subfield of C.

§5.1. Notation

Fix n ∈ Z>0 and m ∈ Z≥0. Set R = K[[t1, . . . , tn, q1, . . . , qm]] and

(5.1) P ={Φ(t, q)∈R | ∃d1, . . . , dm∈Z≥0 such that q−d11 · · · q−dmm Φ(t, q)∈R×},

which is a submonoid of R. Let M = Spf R be the formal completion of Kn+m =

SpecK[t, q] at the origin and let PM be the constant sheaf on M with a stalk P .

Denote by M† the formal scheme M equipped with the logarithmic structure

associated to PM ↪→ OM .

Let TM† be the sheaf of logarithmic vector fields on M† which is freely gen-

erated by ∂
∂t1
, . . . , ∂

∂tn
and q1

∂
∂q1

, . . . , qm
∂
∂qm

over OM . Namely, if we let

(5.2) HK =

n⊕
α=1

K
∂

∂tα
⊕

m⊕
i=1

Kqi
∂

∂qi
,

then TM† = OM ⊗K HK . Define a flat connection ∇ on TM† by ∇ = d⊗ 1HK . The

Lie bracket [ , ] satisfies

(5.3) [x, y] = ∇xy −∇yx (x, y ∈ TM†).

§5.2. Formal mixed Frobenius structure

We keep the notation of §5.1.

Definition 5.1. A formal Saito structure on M† consists of

• an OM -bilinear multiplication ◦ on TM† and

• an element E ∈ TM†

satisfying the following conditions.
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(i) The multiplication ◦ is compatible with ∇ in the sense that

(5.4) ∇x(y ◦ z) = ∇y(x ◦ z) (x, y, z ∈ HK),

and the unit element e satisfies ∇e = 0, i.e. e ∈ HK .

(ii) The element E satisfies3 ∇x∇yE = 0 for x, y ∈ HK and

(5.5) [E, x ◦ y]− x ◦ [E, y]− [E, x] ◦ y = x ◦ y (x, y ∈ TM†).

If (◦, E) is a formal Saito structure on M†, then as in Lemma 4.3, there exists

G ∈ K[log q1, . . . , log qm]⊗K TM† satisfying (4.3) for x, y ∈ HK .

Definition 5.2. A formal mixed Frobenius structure on M† consists of

• a formal Saito structure (◦, E) on M† and

• a nondegenerate filtration (I•, g•) on HK

satisfying the following conditions:

(i) Ik = OM⊗K Ik is an ideal and gk extended OM -bilinearly to Ik is ◦-invariant,

i.e.

(5.6) gk(x ◦ y, z) = gk(y, x ◦ z) (x ∈ TM† , y, z ∈ Ik).

(ii) Ik is preserved by [E,−], i.e. [E, x] ∈ Ik (x ∈ Ik) and there exists a collection

{Dk ∈ K | k ∈ Z, Ik/Ik−1 6= 0} of numbers, called charges, satisfying

(5.7) Egk(x̄, ȳ)− gk([E, x], ȳ)− gk(x̄, [E, y]) = (2−Dk)gk(x̄, ȳ) (x, y ∈ Ik).

Here x 7→ x̄ denotes the projection Ik → Ik/Ik−1.

Remark 5.3 (on the convergent case). Let (◦, E) (resp.(◦, E, I•, g•)) be a formal

Saito structure (resp. a formal MFS) on M† and let Cγαβ ∈ OM (1 ≤ α, β, γ ≤
n+m) denote the structure constants of ◦ with respect to the basis (x1, . . . , xn+m)

= (∂t1 , . . . , ∂tn , q1∂q1 , . . . , qm∂qm). If there exists an open neighborhood U ′ of 0 ∈
Kn+m = SpecK[t, q] where all Cγαβ converge, then (∇, ◦, E) (resp. (∇, ◦, E, I•, g•))
is a Saito structure (resp. a MFS) on U = U ′ ∩ {q1 · · · qm 6= 0} with local flat

coordinates t1, . . . , tn, log q1, . . . , log qm. In the case when the filtration I• is trivial,

then (U, ◦, E, e, g•) is a Frobenius manifold with logarithmic poles along the divisor

{q1 · · · qm = 0} (see [10] for the definition).

3If we write E =
∑n
α=1 Eα∂tα +

∑m
i=1 Eiqi∂qi , the condition ∇∇E = 0 implies that Eα

(1 ≤ α ≤ n) and Ei (1 ≤ i ≤ m) are linear polynomials in t independent of q.
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§5.3. Localized formal Frobenius structure over K[λ]

We still keep the notation of §5.1 and use superscripts λ for objects tensored with

K[λ]: OλM := OM ⊗K K[λ], Hλ
K = HK ⊗K K[λ], and T λM† := TM† ⊗K K[λ] =

OM ⊗K Hλ
K . We have a flat connection ∇ on T λM† defined by the K[λ]-linear

extension of that introduced in §5.1.

Definition 5.4. A localized formal Frobenius structure over K[λ] on M† consists

of

• an OλM -bilinear multiplication ∗ on T λM† ,
• an element E ∈ T λM† , and

• a localized K[λ]-metric gλ on Hλ
K ,

satisfying the following conditions.

(i) The multiplication ∗ is compatible with ∇ in the sense that

(5.8) ∇x(y ∗ z) = ∇y(x ∗ z) (x,y, z ∈ Hλ
K),

and the unit e satisfies ∇e = 0, i.e. e ∈ Hλ
K .

(ii) The element E satisfies ∇x∇yE = 0 for x,y ∈ Hλ
K and

(5.9) [Eλ,x ∗ y]− x ∗ [Eλ,y]− [Eλ,x] ∗ y = x ∗ y (x,y ∈ T λM†),

where Eλ := E + λ ∂
∂λ .

(iii) gλ, extended OλM -bilinearly to T λM† , is ∗-invariant.

(iv) There exists D ∈ K (called a charge) satisfying

(5.10) Eλgλ(x,y)− gλ([Eλ,x],y)− gλ(x, [Eλ,y])

= (2−D)gλ(x,y) (x,y ∈ T λM†).

Proposition 5.5. Let (∗,E, gλ) be a localized formal Frobenius structure over

K[λ] of charge D on M†. Let ◦ be the multiplication on TM† induced by π : T λM† →
TM† = T λM†/λT

λ
M† , E = π(E), and let (I•, g•) be the nondegenerate filtration on

HK induced from the localized K[λ]-metric gλ (see Lemma 3.4). Then (◦, E, I•, g•)
is a formal MFS on M† of charges {Dk = D − k}.

Proof. First, the conditions (i) and (ii) of Definition 5.1 follow from (i) and (ii) in

Definition 5.4 respectively.

The ∗-invariance of gλ implies that OM ⊗ Iλk =: Iλk ⊂ T λM† is an ideal with

respect to ∗, which in turn implies that Ik is an ideal with respect to ◦. It also

implies the ◦-invariance of the metrics g•.
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Equation (5.10) implies that the Lie bracket [Eλ,−] preserves Iλk . From this

it follows that [E,−] preserves Ik. Equation (5.10) also implies (5.7) as follows.

For x, y ∈ Ik, we have

Egk(x̄, ȳ) = Resλ=0 λ
k−1(k + Eλ)gλ(x,y)

(5.10)
= kgk(x̄, ȳ)

+ Resλ=0 λ
k−1{gλ([Eλ,x],y) + gλ(x, [Eλ,y]) + (2−D)gλ(x,y)}

= (2−D + k)gk(x̄, ȳ) + gk([E, x], y) + gk(x, [E, y]),

where x,y ∈ Iλk are lifts of x, y.

§6. Local quantum cohomology

In this section, K denotes either R or C.

§6.1. Notation

Let X be a smooth complex projective variety. Let V → X be a concave4 vector

bundle of rank r. Let S1 = U(1) act on V by the scalar multiplication on the fiber.

The generator of the S1-equivariant cohomology of a point is denoted λ.

Let HK := Heven(X,K). We fix a basis {φ1, . . . , φp} of H2(X,Z) satisfying

the condition that
∫
C
φi ≥ 0 for any curve C ⊂ X.5 We also fix a homogeneous

basis {φ0 = 1, φ1, . . . , φp, φp+1, . . . , φs} of HK .

Let t0, . . . , ts be the coordinates on HK associated to the basis. We set R =

K[[t, q]] where t = (t0, tp+1, . . . , ts) and q = (q1, . . . , qp) with qi = eti . As in §5.1,

we consider the formal scheme M = Spf R with a fixed logarithmic structure

defined by the monoid (5.1) and denote it by M†. We identify HK with the linear

space of derivations on R defined in (5.2) by

(6.1)

{
φα 7→ ∂

∂tα
(α = 0, p+ 1, . . . , s),

φi 7→ qi
∂
∂qi

(1 ≤ i ≤ p).

Hence TM† = OM ⊗K HK . The same notations OλM , Hλ
K and T λM† as in §5.3 will

be used.

4A vector bundle V is concave if H0(C, f∗V) = 0 for any genus zero stable map (f, C) to X
of nonzero degree.

5 The existence of such a basis follows from the fact that the Mori cone NER(X) of a smooth
projective variety X does not contain a straight line (see e.g. [6, Corollary 1.19]). If σ denotes
the image of NER(X) in H2(X,R), the dual cone σ∨ = {x ∈ H2(X,R) | 〈x, y〉 ≥ 0, y ∈ σ} is
of maximal dimension. Therefore there exists an integral basis φ1, . . . , φp of H2(X,R) such that
φi ∈ σ∨.



58 Y. Konishi and S. Minabe

We put the grading on the vector space HK by setting |φ| = k if φ ∈
H2k(X,K). We also put the gradings on the rings OM and OλM by |tα| = 1− |φα|
(α = 0, p+ 1, . . . , s), |λ| = 1 and |qi| = ξi, where ξi are defined by

(6.2) c1(X) + c1(V) =

p∑
i=1

ξiφi.

Then we have the induced gradings on TM† and T λM† .
Let

(6.3) E =

s∑
α=0

(1− |φα|)tα
∂

∂tα
+

p∑
i=1

ξiqi
∂

∂qi
, Eλ = E + λ

∂

∂λ
.

Then, for a homogeneous f ∈ OλM and x ∈ T λM† , we have

(6.4) Eλf = |f |f, [Eλ,x] = (|x| − 1)x.

§6.2. Localized formal Frobenius structure over K[λ]

The following material can be found in [3]. Let gλ be a localized K[λ]-metric on Hλ
K

defined by

(6.5) gλ(φ, ϕ) =

∫
X

φ ∪ ϕ ∪ 1

eS1(V)

where eS1(V) is the S1-equivariant Euler class of V:

eS1(V) = λr + c1(V)λr−1 + · · ·+ cr(V).

Lemma 6.1. gλ and E (in (6.3)) satisfy (5.10) with D = dimCX + r.

Proof. By degree consideration, gλ satisfies

(6.6) gλ(φα, φβ) = ηαβλ
|φα|+|φβ |−dimCX−r (ηαβ ∈ K).

This together with (6.4) implies the lemma.

We define a multiplication on T λM† as follows. For x1, . . . , xm ∈ HK and d ∈
H2(X,Z), let

(6.7) 〈x1, . . . , xm〉V,d =

∫
[M0,m(X,d)]vir

m∏
i=1

ev∗i xi ∪ eS1(−R•µ∗ ev∗m+1 V) ∈ K[λ]

where M0,m(X, d) is the moduli stack of genus zero stable maps to X of degree

d with m marked points, evi : M0,m(X, d) → X is the evaluation map at the
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ith marked point, and µ : M0,m+1(X, d) → M0,m(X, d) is the forgetful map. We

define the multiplication ∗V on T λM† by

(6.8) gλ(x ∗V y, z) =
∑
d

∑
m≥0

1

m!
〈x,y, z, τ, . . . , τ︸ ︷︷ ︸

m

〉V,d (x,y, z ∈ T λM†)

=
∑
d

∑
m≥0

1

m!
〈x,y, z, τ≥4, . . . , τ≥4︸ ︷︷ ︸

m

〉V,d qd.

In the first line, τ =
∑s
α=0 tαφα, and in the second line, τ≥4 =

∑s
α=p+1 tαφα and

qd = e
∫
d
(t1φ1+···+tpφp). In passing to the second line, the fundamental class axiom

and the divisor axiom of Gromov–Witten theory (see, e.g., [9, III, §5]) are used.

Lemma 6.2. (T λM† , ∗V) is a graded ring. Hence the multiplication ∗V and E in

(6.3) satisfy (5.9).

Proof. The lemma follows from the degree axiom of Gromov–Witten theory.

Proposition 6.3. (gλ, ∗V ,E) is a localized formal Frobenius structure over K[λ]

of charge dimCX + r on M†.

Proof. By the definition of ∗V , it is clear that gλ is ∗V -invariant and satisfies (5.8).

§6.3. Formal mixed Frobenius structure

from local quantum cohomology

Theorem 6.4. The collection (◦V , E, I•, g•) of the following data determines a

formal MFS of charges {dimCX + r − k}k∈Z on M†;

• the multiplication ◦V on TM† induced from the multiplication ∗V on T λM† ,
• the Euler vector field E which has the same expression as E in (6.3),

• a nondegenerate filtration (I•, g•) on HK constructed in Lemma 3.4.

Proof. Applying Proposition 5.5 to the localized formal Frobenius structure over

K[λ] in Proposition 6.3, we obtain the result.

Remark 6.5 (on convergence of the formal MFS). If V → X is a negative line

bundle, it can be shown that the structure constants of ◦V are convergent if those

of the quantum product of X are convergent, e.g. if X is a smooth projective

toric variety [5]. The proof is completely the same as Iritani’s [5] except that it

is necessary to modify the proof of his Lemma 4.2. For a pair of such X and a

negative line bundle V, the formal MFS described in this subsection is actually a

MFS on some open subset of HK (see Remark 5.3).
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Let us describe the MFS in Theorem 6.4 concretely. The multiplication ◦V on

TM† is as follows. For d 6= 0, x1, . . . , xm ∈ HK , let

(6.9) 〈x1, . . . , xm〉λ=0
V,d =

∫
[M0,m(X,d)]vir

m∏
i=1

ev∗i xi ∪ e(R1µ∗ ev∗m+1 V),

where e denotes the (nonequivariant) Euler class. Then a potential vector field G
for ◦V (cf. Lemma 4.3) is given by

(6.10) G =

s∑
α=0

(∂αΦcl)φ
α +

s∑
α=1

(∂αΦqu)cr(V) ∪ φα,

where ∂α = ∂
∂tα

and

Φcl =
1

3!

∫
X

τ ∪ τ ∪ τ, Φqu =
∑
d6=0

∑
m≥0

qd

m!
〈τ≥4, . . . , τ≥4︸ ︷︷ ︸

m

〉λ=0
V,d ,

and {φα} is a basis of HK dual to {φα} with respect to the intersection form of X.

By the result of §3.2, the nondegenerate filtration (I•, g•) on HK is

Ik = 0 (k < 0),

I0 = {x ∪ cr(V) | x ∈ HK},
Ik = I0 + Jk, Jk = pr(KerNk),

(6.11)

where

N =


−c1(V) 1 0 · · · 0

−c2(V) 0 1 · · · 0
...

...
...

. . .
...

−cr−1(V) 0 0 · · · 1

−cr(V) 0 0 · · · 0

 : H⊕rK → H⊕rK

and pr is the projection to the rth factor. The metrics gk on Ik/Ik−1 are given by

(6.12)

g0(cr(V) ∪ x, cr(V) ∪ y) =

∫
X

cr(V) ∪ x ∪ y (x, y ∈ HK),

gk(x, y) =

∫
X

x ∪ p1(Nk−1~y) (k > 0, x, y ∈ Jk),

where ~y ∈ KerNk is any lift of y.

Remark 6.6 (on the nilradical of ◦V). If
∫
C

(c1(X) + c1(V)) ≤ 0 for any curve

C ⊂ X, then φα◦Vφβ ∈ OM⊗KH≥|φα|+|φβ |(X,K) by the degree axiom. Therefore

for such (X,V), the nilradical of (TM† , ◦V) is OM ⊗K H≥2(X,K).
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§6.4. Remarks on local mirror symmetry

Let X be a Fano toric surface and V = KX the canonical bundle. Take φp+1 = φ0.

Then

G =

p+1∑
α=0

(∂αΦcl)φ
α +

p∑
i=1

ki(∂iΦqu)φp+1,

where

Φqu =
∑
d6=0

Nd q
d, Nd =

∫
[M̄0,0(X,d)]vir

e(R1µ∗ ev∗m+1KX),

and the ki are defined by
∑p
i=1 kiφi = c1(KX). The coefficient of φp+1 in G above

is nothing but the function Flocal in [1, §6.3].

Next, let us discuss the relationship with the mirror side of the story. Let ∆

be the fan polytope of X. There is a certain family of curves C →M(∆) in (C∗)2

associated to ∆. It was shown that

H∗(X,C) ∼= H2((C∗)2, Cz) (z ∈M(∆))

as C-vector spaces and that the weight filtration of the mixed Hodge structure on

H2((C∗)2, Cz) coincides with Frobenius filtration (up to shifts). Compare [7, §8]

with (6.11) and [8, (8.8)].

Under the mirror map, Flocal corresponds to a double logarithmic period of

ω0(z) =
[(
dt1
t1
∧ dt2

t2
, 0
)]
∈ H2((C∗)2, Cz), and {g0(φi ◦KX φj , c1(KX))}1≤i,j≤p is

essentially equal to the Yukawa coupling defined in [7, §6].

It would be desirable to construct a MFS on H2((C∗)2, Cz) which is compat-

ible with its variation of mixed Hodge structures and which agrees with the MFS

on H∗(X,C) under the mirror map.
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