Publ. RIMS Kyoto Univ. 52 (2016), [43–](#page-0-0)[62](#page-19-0) DOI 10.4171/PRIMS/173

Mixed Frobenius Structure and Local Quantum Cohomology

by

Yukiko KONISHI and Satoshi MINABE

Abstract

In a previous paper, the authors introduced the notion of mixed Frobenius structure (MFS) as a generalization of the structure of a Frobenius manifold. Roughly speaking, the MFS is defined by replacing a metric of the Frobenius manifold with a filtration on the tangent bundle equipped with metrics on its graded quotients. The purpose of the current paper is to construct a MFS on the cohomology of a smooth projective variety whose multiplication is the nonequivariant limit of the quantum product twisted by a concave vector bundle. We show that such a MFS is naturally obtained as the nonequivariant limit of the Frobenius structure in the equivariant setting.

2010 Mathematics Subject Classification: Primary 53D45; Secondary 14N35. Keywords: mixed Frobenius structure, quantum cohomology, local mirror symmetry.

§1. Introduction

We continue our study of mixed Frobenius structure and local quantum cohomology initiated in [\[8\]](#page-19-1).

§1.1. A mixed Frobenius algebra

Let K be a field. A finite-dimensional associative commutative K-algebra A equipped with a nondegenerate bilinear form g (called a metric) is called a Frobenius algebra if q is invariant under the product, i.e., $q(xy, z) = q(x, yz)$ for any $x, y, z \in A$.

In [\[8\]](#page-19-1), the following generalization of the Frobenius algebra was introduced. Let A be a K-algebra as above. By definition, a Frobenius filtration $(I_{\bullet}, g_{\bullet})$ on A consists of an exhaustive increasing filtration I_{\bullet} by ideals and A-invariant met-

Communicated by H. Nakajima. Received March 30, 2015. Revised July 13, 2015.

Y. Konishi: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan;

e-mail: konishi@math.kyoto-u.ac.jp S. Minabe: Department of Mathematics, Tokyo Denki University, 120-8551 Tokyo, Japan;

e-mail: minabe@mail.dendai.ac.jp

c 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

rics g_{\bullet} on its graded quotients (Definition [2.1\)](#page-3-0). We call an algebra with a Frobenius filtration a mixed Frobenius algebra. If the filtration is trivial, this is nothing but the notion of Frobenius algebra. We show that any algebra over an algebraically closed field admits a Frobenius filtration (Theorem [2.3\)](#page-3-1). This is in contrast to the fact that not all algebras admit invariant metrics.

One of the main results of this paper is to show that a mixed Frobenius Kalgebra appears in the limit as $\lambda \to 0$ of a "Frobenius algebra over $K[\lambda]$ " (§[3\)](#page-4-0). The precise statement is as follows. Let H_K^{λ} be a free $K[\lambda]$ -module of finite rank equipped with a symmetric $K[\lambda]$ -bilinear form $g^{\lambda}: H_K^{\lambda} \times H_K^{\lambda} \to K[\lambda, \lambda^{-1}]$. If g^{λ} is unimodular over $K[\lambda, \lambda^{-1}]$, then it defines on the K-vector space $H_K := H_K^{\lambda}/\lambda H_K^{\lambda}$ an exhaustive increasing filtration by subspaces and metrics on its graded quotients (Lemma [3.4\)](#page-5-0). We call such a pair a *nondegenerate filtration*. Moreover, if H_K^{λ} is equipped with a $K[\lambda]$ -algebra structure with respect to which g^{λ} is invariant, then the nondegenerate filtration is a Frobenius filtration on H_K with respect to the induced multiplication (Theorem [3.5\)](#page-6-0). This construction is a generalization of the nilpotent construction in [\[8,](#page-19-1) §3.1] (cf. §[3.2\)](#page-6-1).

§1.2. A mixed Frobenius structure

A Saito structure (without a metric)^{[1](#page-1-0)} on a complex manifold M [\[11,](#page-19-2) §VII.1] is a triple consisting of a torsion-free flat affine connection ∇ , a symmetric Higgs field $\Phi: T_M \to \text{End } T_M$ and a vector field E called an Euler vector field satisfying certain compatibility conditions (see Definition [4.1\)](#page-8-0). A symmetric Higgs field gives rise to a fiberwise commutative associative multiplication \circ on T_M . If a Saito structure (∇, Φ, E) on M is further equipped with a \circ -invariant metric g on T_M compatible with the other data, then the Saito structure (∇, Φ, E) with the metric g is equivalent to a Frobenius manifold structure on M [\[2\]](#page-18-0).

Now we introduce the notion of mixed Frobenius structure which generalizes the Frobenius manifold structure. The idea is to replace a \circ -invariant metric g with a Frobenius filtration $(I_{\bullet}, g_{\bullet})$. Namely, we define a *mixed Frobenius struc*ture (MFS) on a manifold M to be a Saito structure (∇, Φ, E) on M together with a nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ on the tangent bundle T_M subject to various compatibility conditions (Definition [4.5\)](#page-9-0). In particular, it is required that $(T_M, \circ, I_{\bullet}, g_{\bullet})$ is a mixed Frobenius algebra. We arrived at this notion through our study of local mirror symmetry [\[1\]](#page-18-1). For details about the motivation, we refer to $[8, §1.3]$ $[8, §1.3]$. Notice that we slightly modify the definition of MFS from $[8]$ (cf. Remark [4.7\)](#page-10-0).

¹In this article, we call a Saito structure without a metric a Saito structure for short.

For the application to local quantum cohomology, it is necessary to consider a formal and logarithmic version of MFS. Let K be a subfield of \mathbb{C} . Let $R = K[[t_1, \ldots, t_n, q_1, \ldots, q_m]]$ and $M = Spf R$ be the formal completion of K^{n+m} = Spec $K[t, q]$ at the origin. We consider the logarithmic structure on M defined by the divisor $\{q_1 \cdots q_m = 0\}$ on K^{n+m} . We denote by M^{\dagger} the resulting logarithmic formal scheme. We define a formal (and logarithmic) MFS on M^{\dagger} in §[5.](#page-11-0) As in the case of mixed Frobenius algebra, we show that a formal MFS on M^{\dagger} is obtained in the limit as $\lambda \to 0$ of a "formal Frobenius structure over $K[\lambda]$ " on M^{\dagger} (Proposition [5.5\)](#page-13-0).

§1.3. MFS from local quantum cohomology

Let X be a smooth complex projective variety and let $H_{\mathbb{C}} := H^{\text{even}}(X,\mathbb{C})$. We choose a nef basis $\{\phi_1, \ldots, \phi_p\}$ of $H^2(X, \mathbb{Z})$ and extend it to a homogeneous basis $\{\phi_0 = 1, \phi_1, \ldots, \phi_p, \phi_{p+1}, \ldots, \phi_s\}$ of $H_{\mathbb{C}}$. Let t_0, \ldots, t_s be the coordinates on $H_{\mathbb{C}}$ associated to the basis. We set $R = K[[t, q]]$ where $t = (t_0, t_{p+1}, \ldots, t_s)$ and $q =$ (q_1, \ldots, q_p) with $q_i = e^{t_i}$. Let M^{\dagger} be the logarithmic formal scheme defined as in the previous subsection.

Fix a concave holomorphic vector bundle V on X (e.g., V is the dual of an ample line bundle). We construct a formal MFS on M^{\dagger} from V as follows. Let us introduce the fiberwise S^1 -action on V by scalar multiplication. Then, following Givental [\[3\]](#page-19-3), we consider the S^1 -equivariant Gromov–Witten invariants of X and the intersection pairing on X, both twisted by the inverse of the S^1 equivariant Euler class of V . Using them, one can define the twisted quantum cup product $*_\mathcal{V}$ on $H^{\lambda}_{\mathbb{C}} := H_{\mathbb{C}} \otimes_{\mathbb{C}} \mathbb{C}[\lambda]$ where $\mathbb{C}[\lambda] = H^*_{S^1}(pt, \mathbb{C})$ is identified with the S^1 -equivariant cohomology of a point. Identifying the logarithmic tangent sheaf $\mathcal{T}_{M^{\dagger}}^{\lambda} := \mathcal{T}_{M^{\dagger}} \otimes_{\mathbb{C}} \mathbb{C}[\lambda]$ of M^{\dagger} over $\mathbb{C}[\lambda]$ with $\mathcal{O}_M \otimes_{\mathbb{C}} H_{\mathbb{C}}^{\lambda}$, we obtain a formal Frobenius structure over $\mathbb{C}[\lambda]$ on M^{\dagger} . Then, as an application of the results in §[5,](#page-11-0) we obtain a formal MFS on M^{\dagger} in the nonequivariant limit (i.e. the limit as $\lambda \to 0$) (Theorem [6.4\)](#page-16-0).

As mentioned earlier, our motivation to study MFS comes from local mirror symmetry [\[1\]](#page-18-1). Relationships to [\[1\]](#page-18-1) and to our previous work [\[7\]](#page-19-4) are explained in §[6.4.](#page-18-2)

§1.4. Conventions

(1) Let K be a field. A K-algebra means a finite-dimensional commutative associative K-algebra with a unit.

(2) Given a commutative ring R , an R -algebra structure on a free R -module means an associative commutative R-bilinear multiplication which admits a unit.

46 Y. Konishi and S. Minabe

§2. Mixed Frobenius algebra

§2.1. Frobenius filtration and mixed Frobenius algebra

Let K be a field. A nondegenerate symmetric bilinear form g on a K -vector space is called a *metric*. A pair $(I_{\bullet}, g_{\bullet})$ consisting of an exhaustive increasing filtration I_{\bullet} on a K-vector space by subspaces and a collection of metrics g_{\bullet} on $I_{\bullet}/I_{\bullet-1}$ is called a nondegenerate filtration on the vector space.

Let A be a K -algebra. We say that a metric g on an A -module I is A -invariant if it satisfies the condition

$$
g(a \cdot x, y) = g(x, a \cdot y) \quad (a \in A, x, y \in I).
$$

Definition 2.1. A Frobenius filtration on a K-algebra A is a nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ on A such that each filter I_{\bullet} is an ideal of A and the metric g_{\bullet} on $I_{\bullet}/I_{\bullet-1}$ is $A/I_{\bullet-1}$ -invariant.

Definition 2.2. A mixed Frobenius K-algebra is a pair which consists of a K-algebra A and a Frobenius filtration $(I_{\bullet}, g_{\bullet})$ on A.

§2.2. Existence of Frobenius filtrations

In this subsection, the field K is assumed to be algebraically closed.

Theorem 2.3. Any finite-dimensional K-algebra A has a Frobenius filtration.

Let $\mathfrak{N} =$ √ 0 be the nilradical of A. Note that the finite-dimensionality of A implies that $\mathfrak N$ is a nilpotent ideal and that $\mathfrak N$ coincides with the Jacobson radical of A. It follows that A/\mathfrak{N} is a semisimple algebra. Consider the decreasing sequence of ideals $A \supset \mathfrak{N} \supset \mathfrak{N}^2 \supset \cdots \supset \mathfrak{N}^{l-1} \supset \mathfrak{N}^l = 0.$

Lemma 2.4. $\mathfrak{N}^i/\mathfrak{N}^{i+1}$ is a completely reducible A/\mathfrak{N}^{i+1} -module.

Proof. Consider the exact sequence of A-modules

$$
0 \to \mathfrak{N} / \mathfrak{N}^{i+1} \to A / \mathfrak{N}^{i+1} \to A / \mathfrak{N} \to 0.
$$

It follows that A/\mathfrak{N}^{i+1} acts on $\mathfrak{N}^{i}/\mathfrak{N}^{i+1}$ via A/\mathfrak{N} , since $\mathfrak{N}/\mathfrak{N}^{i+1}$ annihilates $\mathfrak{N}^{i}/\mathfrak{N}^{i+1}$. Then the semisimplicity of A/\mathfrak{N} implies that $\mathfrak{N}^{i}/\mathfrak{N}^{i+1}$ is a completely reducible A/\mathfrak{N} -module, hence it is also a completely reducible A/\mathfrak{N}^{i+1} -module. \Box

Lemma 2.5. Let B be a finite-dimensional K -algebra. Then for any simple *B*-module $S \neq 0$, we have dim_K $S = 1$.

Proof. Since S is a simple B-module, there is a maximal ideal m of B such that $S \cong$ B/\mathfrak{m} as B-modules. The finite-dimensionality of B implies that the composition $K \to B \to B/\mathfrak{m}$ is a field extension of finite degree. It then follows that $B/\mathfrak{m} \cong K$, \Box since K is algebraically closed.

Proof of Theorem [2.3.](#page-3-1) By the above two lemmas, $\mathfrak{N}^{i}/\mathfrak{N}^{i+1}$ is the direct sum of 1-dimensional simple A/\mathfrak{N}^{i+1} -modules. If we take a basis $x_{i,j}$ (1 $\leq j \leq$ $\dim_K \mathfrak{N}^i/\mathfrak{N}^{i+1}$ of the simple modules and define a bilinear form \langle , \rangle_i on $\mathfrak{N}^i/\mathfrak{N}^{i+1}$ by

$$
\langle x_{i,j}, x_{i,k} \rangle_i = \delta_{j,k},
$$

then \langle , \rangle_i is an invariant metric. Thus the filtration $I_{\bullet} := \mathfrak{N}^{l-\bullet}$ with metrics $g_{\bullet} := \langle , \rangle_{i-\bullet}$ is a Frobenius filtration on A. \Box

§3. Mixed Frobenius algebra from a localized $K[\lambda]$ -metric

§3.1. Construction of a mixed Frobenius algebra

Let K be a field and let H_K be a K-vector space of dimension s. We set $H_K^{\lambda} := H_K \otimes_K K[\lambda]$ and identify H_K with the quotient module $H_K^{\lambda}/\lambda H_K^{\lambda}$. Let $\pi: H_K^{\lambda} \to H_K = H_K^{\lambda}/\lambda H_K^{\lambda}$ be the projection.

Definition 3.1. A localized $K[\lambda]$ -metric on H_K^{λ} is a symmetric $K[\lambda]$ -bilinear form $g^{\lambda}: H_K^{\lambda} \times H_K^{\lambda} \to K[\lambda, \lambda^{-1}]$ which is unimodular over $K[\lambda, \lambda^{-1}]^2$ $K[\lambda, \lambda^{-1}]^2$.

Now assume that a localized $K[\lambda]$ -metric g^{λ} on H_K^{λ} is given. We will construct from g^{λ} a nondegenerate filtration on H_K .

Lemma 3.2. There exist a pair of $K[\lambda]$ -module bases x_1, \ldots, x_s and y_1, \ldots, y_s of H_K^{λ} and a set of integers $\kappa_1 \geq \cdots \geq \kappa_s$ satisfying

(3.1)
$$
g^{\lambda}(\boldsymbol{x}_{i}, \boldsymbol{y}_{j}) = \lambda^{-\kappa_{i}} \delta_{i,j}.
$$

The integers κ_i are uniquely determined by g^{λ} (but the bases are not).

Proof. Let G be the matrix representation of g^{λ} with respect to a $K[\lambda]$ -module basis of H_K^{λ} . Multiplying by λ^{k_0} with some $k_0 \in \mathbb{Z}$ if necessary, we assume that all entries of the matrix λ^{k_0} G are polynomials. By the theorem of elementary divisors, λ^{k_0} G can be transformed into a diagonal matrix by successive elementary transformations from the left and from the right. This means that there exist $K[\lambda]$ module bases $\{\bm x_i\}$, $\{\bm y_i\}$ of H_K^{λ} such that $\lambda^{k_0}g_{\lambda}(\bm x_i,\bm y_j)=\delta_{i,j}\,e_i$ where $e_1,\ldots,e_s\in$ $K[\lambda]$ are diagonal entries (i.e. the elementary divisors of λ^{k_0} G). The assumption of unimodularity over $K[\lambda, \lambda^{-1}]$ implies that e_i 's are monomials. \Box

²This means that, given a $K[\lambda]$ -basis of H_K^{λ} , the representation matrix of g^{λ} is unimodular over $K[\lambda, \lambda^{-1}].$

Let us define a sequence of $K[\lambda]$ -submodules by

(3.2)
$$
I_k^{\lambda} = \{ \boldsymbol{x} \in H_K^{\lambda} \mid \lambda^k g^{\lambda}(\boldsymbol{x}, \boldsymbol{y}) \in K[\lambda] \ (\forall \boldsymbol{y} \in H_K^{\lambda}) \} \quad (k \in \mathbb{Z}).
$$

Concretely, I_k^{λ} is written as follows with the basis x_1, \ldots, x_s of Lemma [3.2:](#page-4-2)

(3.3)
$$
I_k^{\lambda} = \bigoplus_{i:\,\kappa_i\leq k} K[\lambda] \, \boldsymbol{x}_i \oplus \bigoplus_{i:\,\kappa_i>k} \lambda^{\kappa_i-k} K[\lambda] \, \boldsymbol{x}_i.
$$

The same formula holds for the other basis $\{y_i\}$.

Lemma 3.3. For $x, y \in I_k^{\lambda}$, Res_{$\lambda=0$} $\lambda^{k-1}g^{\lambda}(x, y)$ depends only on $\pi(x), \pi(y) \in$ H_K . Moreover $\text{Res}_{\lambda=0} \lambda^{k-1} g^{\lambda}(\boldsymbol{x}, \boldsymbol{y}) = 0$ if $\boldsymbol{x} \in I_{k-1}^{\lambda}$ or $\boldsymbol{y} \in I_{k-1}^{\lambda}$.

Proof. Let us write $x, y \in I_k^{\lambda}$ as

$$
\mathbf{x} = \sum_{i:\,\kappa_i\leq k} f_i(\lambda)\mathbf{x}_i + \sum_{i:\,\kappa_i>k} \lambda^{\kappa_i-k} f_i(\lambda)\mathbf{x}_i \quad (f_i(\lambda) \in K[\lambda]),
$$

$$
\mathbf{y} = \sum_{i:\,\kappa_i\leq k} h_i(\lambda)\mathbf{y}_i + \sum_{i:\,\kappa_i>k} \lambda^{\kappa_i-k} h_i(\lambda)\mathbf{y}_i \quad (h_i(\lambda) \in K[\lambda]).
$$

By (3.1) , we obtain

(3.4)
$$
\operatorname{Res}_{\lambda=0} \lambda^{k-1} g^{\lambda}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i: \kappa_i=k} f_i(0) h_i(0).
$$

The statement follows easily from this.

Let

(3.5)
$$
I_k := \pi(I_k^{\lambda}) = \bigoplus_{i:\,\kappa_i\leq k} K\pi(\boldsymbol{x}_i) \quad (k\in\mathbb{Z}).
$$

By Lemma [3.3,](#page-5-1) the following bilinear form g_k on I_k/I_{k-1} is well-defined:

(3.6)
$$
g_k(\bar{x}, \bar{y}) = \operatorname{Res}_{\lambda=0} \lambda^{k-1} g^{\lambda}(\boldsymbol{x}, \boldsymbol{y}) \quad (x, y \in I_k),
$$

where $x \mapsto \bar{x}$ denotes the projection $H_K \to H_K/I_{k-1}$ and \mathbf{x}, \mathbf{y} are any lifts of x, y to I_k^{λ} .

Lemma 3.4. $(I_{\bullet}, g_{\bullet})$ is a nondegenerate filtration on H_K .

Proof. The nondegeneracy of g_k follows from (3.4) .

Now assume that H_K^{λ} is equipped with an associative commutative K[λ]-algebra structure * with unit. Let g^{λ} be a localized K[λ]-metric which is ∗-invariant, i.e.

(3.7)
$$
g^{\lambda}(\mathbf{x} * \mathbf{y}, \mathbf{z}) = g^{\lambda}(\mathbf{x}, \mathbf{y} * \mathbf{z}) \quad (\mathbf{x}, \mathbf{y}, \mathbf{z} \in H^{\lambda}).
$$

 \Box

 \Box

On H_K , we have the induced multiplication and the nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ defined in $(3.5), (3.6)$ $(3.5), (3.6)$ $(3.5), (3.6)$.

Theorem 3.5. $(H_K, I_{\bullet}, g_{\bullet})$ is a mixed Frobenius algebra.

Proof. The *-invariance [\(3.7\)](#page-5-5) of g^{λ} implies that I_k^{λ} is an ideal. Therefore I_k is an ideal with respect to the induced multiplication \circ on H_K . The \circ -invariance of g_k follows from the ∗-invariance of g^{λ} . \Box

§3.2. Nilpotent construction

Let (A, g) be a Frobenius K-algebra having nilpotent elements n_1, \ldots, n_r and let

$$
\mathbf{n} = \lambda^r + n_1 \lambda^{r-1} + \cdots + n_r \in A[\lambda].
$$

As an example of Theorem [3.5,](#page-6-0) we consider the case $H_K^{\lambda} = A[\lambda]$ with the localized $K[\lambda]$ -metric g^{λ} given by

$$
g^{\lambda}(\boldsymbol{x},\boldsymbol{y}) := g(\boldsymbol{x}\cdot\boldsymbol{y},\boldsymbol{n}^{-1}) = \sum_{j\geq 0} \frac{1}{\lambda^{(j+1)r}} g(\boldsymbol{x}\cdot\boldsymbol{y}, (\lambda^r - \boldsymbol{n})^j) \quad (\boldsymbol{x},\boldsymbol{y}\in A[\lambda]).
$$

Let us calculate the nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ defined by $(3.5), (3.6)$ $(3.5), (3.6)$ $(3.5), (3.6)$. The ideals I_k^{λ} of $A[\lambda]$ defined in [\(3.2\)](#page-5-6) are as follows.

Lemma 3.6. We have

(3.8)
$$
I_k^{\lambda} = \begin{cases} {\lambda^{-k} \mathbf{n} \cdot \mathbf{x} \mid \mathbf{x} \in A[\lambda]} & (k \le 0), \\ I_0^{\lambda} \oplus J_k^{\lambda} & (k > 0). \end{cases}
$$

In the last line, the direct sum is that of A-modules and

$$
J_k^{\lambda} = \{ \boldsymbol{x} \in A^{
$$

where $A^{. Here $\deg x$ is the degree of x with respect$ to λ .

Proof. Since *n* is monic of degree *r*, any $x \in A[\lambda]$ can be written uniquely as $\boldsymbol{x} = \boldsymbol{n} \cdot \boldsymbol{x}' + \boldsymbol{x}''$ with $\deg \boldsymbol{x}'' < r$.

First, we consider the case $k = 0$. It is easy to see that $x \in I_0^{\lambda}$ if and only if $g^{\lambda}(\boldsymbol{x}^{"},y) = 0$ for any $y \in A$. If $\boldsymbol{x}^{"} = \sum_{i=1}^{r} a_i \lambda^{r-i}$ then we have

$$
g^{\lambda}(\boldsymbol{x}^{\prime\prime},y)=\sum_{1\leq i\leq r,\,j\geq 0}g(a_i(\lambda^r-\boldsymbol{n})^j,y)\lambda^{-(i+jr)}=\frac{g(a_1,y)}{\lambda}+o\bigg(\frac{1}{\lambda^2}\bigg).
$$

From this equation, for x to be in I_0^{λ} , it is necessary to have $g(a_1, y) = 0$ for any $y \in A$, hence $a_1 = 0$. Then we have

$$
g^{\lambda}(\boldsymbol{x}^{\prime\prime},y)=\frac{g(a_2,y)}{\lambda^2}+o\bigg(\frac{1}{\lambda^3}\bigg),\,
$$

hence $a_2 = 0$. Repeating this process, we obtain $x'' = 0$.

Next, we consider the case $k < 0$. If $x \in I_k^{\lambda}$ then $x \in I_0^{\lambda}$. Therefore it can be written as $\mathbf{x} = \mathbf{n} \cdot \mathbf{x}'$. Since $\mathbf{x} \in I_k^{\lambda}$, we have $\lambda^k g^{\lambda}(\mathbf{x}, y) = \lambda^k g(\mathbf{x}', y) \in K[\lambda]$ for any $y \in A$. It then follows that the coefficients of x' up to degree $-k-1$ must be zero. Hence x' is divisible by λ^{-k} .

For $k > 0$, it is easy to see that $x \in I_k^{\lambda}$ if and only if $\lambda^k x''$ is divisible by **n**.

Let $N: A^{\oplus r} \to A^{\oplus r}$ be the homomorphism given by

$$
N\begin{pmatrix} a_1 \\ \vdots \\ a_r \end{pmatrix} = \begin{pmatrix} -n_1 & 1 & 0 & \cdots & 0 \\ -n_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -n_{r-1} & 0 & 0 & \cdots & 1 \\ -n_r & 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_r \end{pmatrix}.
$$

The projections $A^{\oplus r} \to A$ to the first and the rth factors are denoted p_1, p_r .

Lemma 3.7. We have

(3.9)
$$
I_k = \begin{cases} 0 & (k < 0), \\ \{x \cdot n_r \mid x \in A\} & (k = 0), \\ I_0 + J_k & (k > 0), \end{cases}
$$

where $J_k = p_r(\text{Ker } N^k)$.

Proof. By Lemma [3.6,](#page-6-2) it is enough to show that $\pi(J_k^{\lambda}) = J_k$ for $k > 0$. Let $\rho: A^{ be the isomorphism $\sum_{i=1}^r a_i \lambda^{r-i} \mapsto {}^t(a_1, \ldots, a_r)$. Notice that$ $\rho^{-1} \circ N \circ \rho : A^{ maps x to the remainder of λx divided by n. By$ induction on k , we can show that

$$
(3.10) \qquad \lambda^k \boldsymbol{x} = \sum_{i=0}^{k-1} (p_1 \circ N^i \circ \rho)(\boldsymbol{x}) \lambda^{k-1-i} \cdot \boldsymbol{n} + (\rho^{-1} \circ N^k \circ \rho)(\boldsymbol{x}) \quad (\boldsymbol{x} \in A^{
$$

Thus we obtain

$$
J_k^{\lambda} = \{ \mathbf{x} \in A^{
$$

 \Box

From this $\pi(J_k^{\lambda}) = J_k$ follows.

Lemma 3.8. We have

$$
g_0(x \cdot n_r, y \cdot n_r) = g(x \cdot y, n_r),
$$

\n
$$
g_k(\bar{x}, \bar{y}) = g(x, p_1(N^{k-1}\vec{y})) \quad (k > 0, x, y \in J_k),
$$

where $\vec{y} \in \text{Ker } N^k$ is any lift of y satisfying $p_r(\vec{y}) = y$.

Proof. The case $k = 0$ is clear. For $k > 0$, let $\boldsymbol{x}, \boldsymbol{y} \in J_k^{\lambda}$ be lifts of x, y . By [\(3.10\)](#page-7-0), we have

$$
g_k(\bar{x}, \bar{y}) = g^{\lambda}\left(\mathbf{x}, \frac{\lambda^k \mathbf{y}}{n}\right)\Big|_{\lambda=0} = g(x, p_1(N^{k-1}\rho(\mathbf{y}))). \qquad \Box
$$

As a corollary of Theorem [3.5,](#page-6-0) we obtain

Proposition 3.9. $(A, I_{\bullet}, g_{\bullet})$ with I_{\bullet}, g_{\bullet} given in Lemmas [3.7](#page-7-1) and [3.8](#page-7-2) is a mixed Frobenius algebra.

When $r = 1, J_k = \{x \in A \mid n_1^k \cdot x = 0\}$ and $g_k(\bar{x}, \bar{y}) = g(x \cdot y, (-n_1)^{k-1})$ $(k > 0)$. This is the nilpotent construction in [\[8,](#page-19-1) §3] up to shifts of the filtration.

§4. Mixed Frobenius structure

In this section, the base field is $K = \mathbb{C}$, a manifold means a complex manifold and vector bundles are assumed to be holomorphic. For a manifold M, T_M denotes the tangent bundle, \mathcal{T}_M its sheaf of local sections and we write $x \in \mathcal{T}_M$ to mean that x is a local section of T_M .

Although definitions here are for complex manifolds, they can be easily translated to C^{∞} -manifolds $(K = \mathbb{R})$.

§4.1. Saito structure

The following definition is due to Sabbah [\[11,](#page-19-2) Ch. VII].

Definition 4.1. Let M be a manifold. A Saito structure (without a metric) on M consists of

- a torsion-free flat connection ∇ on T_M ,
- an associative and commutative \mathcal{O}_M -bilinear multiplication \circ on \mathcal{T}_M with a global unit section e, and
- a global vector field E on M (called the *Euler vector field*),

satisfying the following conditions.

(i) The multiplication C_x by $x \in \mathcal{T}_M$ regarded as a local section of End T_M satisfies

$$
\nabla_x C_y - \nabla_y C_x = C_{[x,y]},
$$

and the unit vector field e is flat, i.e. $\nabla e = 0$.

(ii) The vector field E satisfies $\nabla(\nabla E) = 0$ and

$$
(4.2) \qquad [E, x \circ y] - [E, x] \circ y - x \circ [E, y] = x \circ y \quad (x, y \in \mathcal{T}_M).
$$

In this article, we call a Saito structure without a metric a Saito structure for short.

Remark 4.2. In [\[11\]](#page-19-2), a Saito structure is defined in terms of the symmetric Higgs field instead of the multiplication. As explained in $[11, Ch. 0.13]$ $[11, Ch. 0.13]$, a symmetric Higgs field corresponds to a multiplication and Definition [4.1](#page-8-0) is equivalent to that in [\[11\]](#page-19-2).

Lemma 4.3. Given a Saito structure (∇, \circ, E) on a manifold M, there exists a local vector field $\mathcal{G} \in \mathcal{T}_M$ such that

$$
\nabla_x \nabla_y \mathcal{G} = x \circ y
$$

for any flat vector fields $x, y \in \mathcal{T}_M$. Moreover $\nabla \nabla([E, \mathcal{G}] - \mathcal{G}) = 0$.

We call $\mathcal G$ satisfying [\(4.3\)](#page-9-1) a (local) potential vector field.

Proof. Let $\{t_{\alpha}\}_\alpha$ be a local coordinate system on M whose corresponding local frame fields $\{\partial_\alpha\}_\alpha$ are ∇ -flat. Let us write $\partial_\alpha\circ\partial_\beta=\sum_\gamma C_{\alpha\beta}^\gamma\partial_\gamma$. The commutativity implies $C_{\alpha\beta}^{\gamma} = C_{\beta\alpha}^{\gamma}$. Equation [\(4.1\)](#page-8-1) is equivalent to $\partial_{\alpha}C_{\beta\gamma}^{\delta} = \partial_{\beta}C_{\alpha\gamma}^{\delta}$. Therefore there exist $\mathcal{G}^{\gamma} \in \mathcal{O}_M$ such that $\partial_{\alpha} \partial_{\beta} \mathcal{G}^{\gamma} = C^{\gamma}_{\alpha\beta}$. Then $\mathcal{G} := \sum_{\gamma} \mathcal{G}^{\gamma} \partial_{\gamma}$ satisfies [\(4.3\)](#page-9-1). The second statement follows from [\(4.2\)](#page-8-2). \Box

Remark 4.4. It is known that a Frobenius manifold structure defined by Dubrovin [\[2\]](#page-18-0) is equivalent to a Saito structure with a metric [\[11,](#page-19-2) Ch. VII, Prop. 2.2]. When M is a Frobenius manifold, (4.1) is equivalent to the potentiality condition, and the gradient vector field of the potential function is a potential vector field.

§4.2. Mixed Frobenius structure

Definition 4.5. A mixed Frobenius structure (MFS) on a manifold M consists of a Saito structure (∇, \circ, E) together with

- an increasing sequence of subbundles I_{\bullet} of T_M and
- metrics (i.e. nondegenerate symmetric \mathcal{O}_M -bilinear forms) g_{\bullet} on $\mathcal{I}_{\bullet}/\mathcal{I}_{\bullet-1}$

satisfying the following conditions.

- (i) $(\circ, I_{\bullet}, g_{\bullet})$ is a mixed Frobenius algebra structure on T_M , i.e. \mathcal{I}_k are ideals of \mathcal{T}_M and all g_k 's are \circ -invariant.
- (ii) The subbundles I_k ($k \in \mathbb{Z}$) are preserved by ∇ and the metrics are compatible with ∇ , i.e.

$$
(4.4) \t zg_k(\overline{x},\overline{y})=g_k(\overline{\nabla_z x},\overline{y})+g_k(\overline{x},\overline{\nabla_z y}) \quad (k\in\mathbb{Z},\,z\in\mathcal{T}_M,\,x,y\in\mathcal{I}_k).
$$

Here $x \mapsto \overline{x}$ denotes the projection $\mathcal{I}_k \to \mathcal{I}_k/\mathcal{I}_{k-1}$.

(iii) The subbundles I_k ($k \in \mathbb{Z}$) are preserved by $[E, -]$ and there exists a collection ${D_k \in K}_{k \in \mathbb{Z}}$ of numbers (called *charges*) such that

(4.5)
$$
E g_k(\overline{x}, \overline{y}) - g_k(\overline{[E, x]}, \overline{y}) - g_k(\overline{x}, \overline{[E, y]})
$$

$$
= (2 - D_k) g_k(\overline{x}, \overline{y}) \quad (k \in \mathbb{Z}, x, y \in \mathcal{I}_k).
$$

A MFS with the trivial filtration I_{\bullet} (i.e. $0 \subset T_M$) is the same as a Saito structure with a metric [\[11\]](#page-19-2) and also the same as a Frobenius manifold structure [\[2\]](#page-18-0).

Lemma 4.6. If $(\nabla, \circ, E, I_{\bullet}, g_{\bullet})$ is a MFS on a manifold M, then each $\mathcal{I}_k \subset \mathcal{T}_M$ $(k \in \mathbb{Z})$ is involutive.

Proof. This follows from the condition that I_k is preserved by the torsion free affine connection ∇. \Box

As a consequence of this lemma, there exists a flat local coordinate system $\{t_{k\alpha}\}_{k\in\mathbb{Z}, 1\leq \alpha\leq \dim I_k/I_{k-1}}$ such that $\{t_{k\alpha}\}_{k\leq l, 1\leq \alpha\leq \dim I_k/I_{k-1}}$ is a local coordinate system of leaves of I_l .

Remark 4.7. The definition of MFS in this article is different from that in our previous article [\[8,](#page-19-1) Definition 6.2] in a few points.

Firstly the charges D_k are allowed to take any values. The advantage is that any mixed Frobenius algebra has a MFS (see Proposition [4.8](#page-10-1) below) whereas the condition $D_k = D_0 - k$ in the old definition is quite restrictive.

Secondly the compatibility conditions of the multiplication with the connection and the Euler vector field are strengthened as we adopt the Saito structure (compare $[8, (6.2), (6.9)]$ $[8, (6.2), (6.9)]$ with $(4.1), (4.2)$ $(4.1), (4.2)$ $(4.1), (4.2)$). The reason for this change is the existence of a local potential vector field (Lemma [4.3\)](#page-9-2) and the flat meromorphic connection [\[11\]](#page-19-2) on the Saito structure. We believe that they may play important roles in formulating local mirror symmetry as an equivalence of MFS's (cf. $\S 6.4$).

§4.3. An algebra with a Frobenius filtration has a MFS

Let $(A, I_{\bullet}, g_{\bullet})$ be a mixed Frobenius algebra. We assume that $A = \bigoplus_{d \in \mathbb{Z}} A_d$ is a graded algebra satisfying $I_k = \bigoplus_i I_k \cap A_d$. Moreover we assume that there exist ${D_k \in \mathbb{Z} \mid k \in \mathbb{Z}, I_k/I_{k-1} \neq 0}$ such that

$$
g_k(x, y) = 0
$$
 unless $|x| + |y| = D_k$.

Here |x| denotes the degree of $x \in A$. Notice that any mixed Frobenius algebra satisfies this assumption with $A = A_0$ and $D_0 = 0$.

Let $\{e_{k\alpha} \mid k \in \mathbb{Z}, 1 \leq \alpha \leq \dim I_k/I_{k-1}\}$ be a homogeneous basis of A such that $\{e_{k\alpha} \mid k \leq l, 1 \leq \alpha \leq \dim I_l/I_{l-1}\}$ is a basis of I_l . Let $\{t_{k\alpha}\}\)$ be the associated coordinates of A.

Proposition 4.8. The trivial connection d, the multiplication on A, the vector field

$$
E = \sum_{k,\alpha} (1 - |e_{ka}|) t_{ka} \partial_{ka},
$$

and the nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ form a MFS on A of charges $\{D_k\}.$

§5. Formal mixed Frobenius structure

In this section we will define a formal (and logarithmic) version of MFS using [\[4\]](#page-19-5) as reference.

In this section, the base field K may be any subfield of \mathbb{C} .

§5.1. Notation

Fix $n \in \mathbb{Z}_{>0}$ and $m \in \mathbb{Z}_{\geq 0}$. Set $R = K[[t_1, \ldots, t_n, q_1, \ldots, q_m]]$ and

(5.1)
$$
P = \{ \Phi(t, q) \in R \mid \exists d_1, \dots, d_m \in \mathbb{Z}_{\geq 0} \text{ such that } q_1^{-d_1} \cdots q_m^{-d_m} \Phi(t, q) \in R^{\times} \},
$$

which is a submonoid of R. Let $M = Spf R$ be the formal completion of K^{n+m} Spec $K[t, q]$ at the origin and let P_M be the constant sheaf on M with a stalk P. Denote by M^{\dagger} the formal scheme M equipped with the logarithmic structure associated to $P_M \hookrightarrow \mathcal{O}_M$.

Let $\mathcal{T}_{M^{\dagger}}$ be the sheaf of logarithmic vector fields on M^{\dagger} which is freely generated by $\frac{\partial}{\partial t_1}, \ldots, \frac{\partial}{\partial t_n}$ and $q_1 \frac{\partial}{\partial q_1}, \ldots, q_m \frac{\partial}{\partial q_m}$ over \mathcal{O}_M . Namely, if we let

(5.2)
$$
H_K = \bigoplus_{\alpha=1}^n K \frac{\partial}{\partial t_\alpha} \oplus \bigoplus_{i=1}^m K q_i \frac{\partial}{\partial q_i}
$$

then $\mathcal{T}_{M^{\dagger}} = \mathcal{O}_M \otimes_K H_K$. Define a flat connection ∇ on $\mathcal{T}_{M^{\dagger}}$ by $\nabla = d \otimes 1_{H_K}$. The Lie bracket [,] satisfies

,

(5.3)
$$
[x, y] = \nabla_x y - \nabla_y x \quad (x, y \in \mathcal{T}_{M^+}).
$$

§5.2. Formal mixed Frobenius structure

We keep the notation of $\S 5.1$.

Definition 5.1. A formal Saito structure on M^{\dagger} consists of

- an \mathcal{O}_M -bilinear multiplication \circ on $\mathcal{T}_{M^{\dagger}}$ and
- an element $E \in \mathcal{T}_{M^{\dagger}}$

satisfying the following conditions.

(i) The multiplication \circ is compatible with ∇ in the sense that

(5.4)
$$
\nabla_x(y \circ z) = \nabla_y(x \circ z) \quad (x, y, z \in H_K),
$$

and the unit element e satisfies $\nabla e = 0$, i.e. $e \in H_K$.

(ii) The element E satisfies^{[3](#page-12-0)} $\nabla_x \nabla_y E = 0$ for $x, y \in H_K$ and

(5.5)
$$
[E, x \circ y] - x \circ [E, y] - [E, x] \circ y = x \circ y \quad (x, y \in \mathcal{T}_{M^+}).
$$

If (\circ, E) is a formal Saito structure on M^{\dagger} , then as in Lemma [4.3,](#page-9-2) there exists $\mathcal{G} \in K[\log q_1, \ldots, \log q_m] \otimes_K \mathcal{T}_{M^{\dagger}}$ satisfying (4.3) for $x, y \in H_K$.

Definition 5.2. A formal mixed Frobenius structure on M^{\dagger} consists of

- a formal Saito structure (\circ, E) on M^{\dagger} and
- a nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ on H_K

satisfying the following conditions:

(i) $\mathcal{I}_k = \mathcal{O}_M \otimes_K I_k$ is an ideal and g_k extended \mathcal{O}_M -bilinearly to \mathcal{I}_k is \circ -invariant, i.e.

(5.6)
$$
g_k(x \circ y, z) = g_k(y, x \circ z) \quad (x \in \mathcal{T}_{M^{\dagger}}, y, z \in \mathcal{I}_k).
$$

(ii) \mathcal{I}_k is preserved by $[E, -]$, i.e. $[E, x] \in \mathcal{I}_k$ $(x \in \mathcal{I}_k)$ and there exists a collection ${D_k \in K \mid k \in \mathbb{Z}, I_k/I_{k-1} \neq 0}$ of numbers, called *charges*, satisfying

(5.7)
$$
Eg_k(\bar{x}, \bar{y}) - g_k(\overline{[E, x]}, \bar{y}) - g_k(\bar{x}, \overline{[E, y]}) = (2 - D_k)g_k(\bar{x}, \bar{y}) \quad (x, y \in \mathcal{I}_k).
$$

Here $x \mapsto \bar{x}$ denotes the projection $\mathcal{I}_k \to \mathcal{I}_k/\mathcal{I}_{k-1}$.

Remark 5.3 (on the convergent case). Let (\circ, E) (resp. $(\circ, E, I_{\bullet}, g_{\bullet})$) be a formal Saito structure (resp. a formal MFS) on M^{\dagger} and let $C^{\gamma}_{\alpha\beta} \in \mathcal{O}_M$ $(1 \leq \alpha, \beta, \gamma \leq \beta)$ $n+m$) denote the structure constants of ◦ with respect to the basis (x_1, \ldots, x_{n+m}) $=(\partial_{t_1},\ldots,\partial_{t_n},q_1\partial_{q_1},\ldots,q_m\partial_{q_m})$. If there exists an open neighborhood U' of $0 \in$ $K^{n+m} = \text{Spec } K[t, q]$ where all $C_{\alpha\beta}^{\gamma}$ converge, then (∇, \circ, E) (resp. $(\nabla, \circ, E, I_{\bullet}, g_{\bullet})$) is a Saito structure (resp. a MFS) on $U = U' \cap \{q_1 \cdots q_m \neq 0\}$ with local flat coordinates $t_1, \ldots, t_n, \log q_1, \ldots, \log q_m$. In the case when the filtration I_{\bullet} is trivial, then $(U, \circ, E, e, g_{\bullet})$ is a Frobenius manifold with logarithmic poles along the divisor ${q_1 \cdots q_m = 0}$ (see [\[10\]](#page-19-6) for the definition).

³If we write $E = \sum_{\alpha=1}^n E_{\alpha} \partial_{t_{\alpha}} + \sum_{i=1}^m E_i q_i \partial_{q_i}$, the condition $\nabla \nabla E = 0$ implies that E_{α} $(1 \le \alpha \le n)$ and E_i $(1 \le i \le m)$ are linear polynomials in t independent of q.

§5.3. Localized formal Frobenius structure over $K[\lambda]$

We still keep the notation of $\S 5.1$ $\S 5.1$ and use superscripts λ for objects tensored with $K[\lambda]$: $\mathcal{O}_M^{\lambda} := \mathcal{O}_M \otimes_K K[\lambda], H_K^{\lambda} = H_K \otimes_K K[\lambda],$ and $\mathcal{T}_{M^{\dagger}}^{\lambda} := \mathcal{T}_{M^{\dagger}} \otimes_K K[\lambda] =$ $\mathcal{O}_M \otimes_K H_K^{\lambda}$. We have a flat connection ∇ on $\mathcal{T}_{M^{\dagger}}^{\lambda}$ defined by the $K[\lambda]$ -linear extension of that introduced in §[5.1.](#page-11-1)

Definition 5.4. A localized formal Frobenius structure over $K[\lambda]$ on M^{\dagger} consists of

- an \mathcal{O}_M^{λ} -bilinear multiplication $*$ on $\mathcal{T}_{M^{\dagger}}^{\lambda}$,
- an element $\boldsymbol{E} \in \mathcal{T}_{M^{\dagger}}^{\lambda}$, and
- a localized $K[\lambda]$ -metric g^{λ} on H_K^{λ} ,

satisfying the following conditions.

(i) The multiplication $*$ is compatible with ∇ in the sense that

(5.8)
$$
\nabla_x(\mathbf{y}*z) = \nabla_y(\mathbf{x}*z) \quad (\mathbf{x}, \mathbf{y}, \mathbf{z} \in H_K^{\lambda}),
$$

and the unit *e* satisfies $\nabla e = 0$, i.e. $e \in H_K^{\lambda}$.

(ii) The element **E** satisfies $\nabla_x \nabla_y \mathbf{E} = 0$ for $x, y \in H_K^{\lambda}$ and

(5.9)
$$
[\mathbf{E}^{\lambda}, \mathbf{x} * \mathbf{y}] - \mathbf{x} * [\mathbf{E}^{\lambda}, \mathbf{y}] - [\mathbf{E}^{\lambda}, \mathbf{x}] * \mathbf{y} = \mathbf{x} * \mathbf{y} \quad (\mathbf{x}, \mathbf{y} \in \mathcal{T}_{M^{\dagger}}^{\lambda}),
$$

where $\boldsymbol{E}^{\lambda} := \boldsymbol{E} + \lambda \frac{\partial}{\partial \lambda}$.

- (iii) g^{λ} , extended \mathcal{O}_M^{λ} -bilinearly to $\mathcal{T}_{M^{\dagger}}^{\lambda}$, is *-invariant.
- (iv) There exists $D \in K$ (called a *charge*) satisfying

(5.10)
$$
\mathbf{E}^{\lambda} g^{\lambda}(\mathbf{x}, \mathbf{y}) - g^{\lambda}([\mathbf{E}^{\lambda}, \mathbf{x}], \mathbf{y}) - g^{\lambda}(\mathbf{x}, [\mathbf{E}^{\lambda}, \mathbf{y}])
$$

= $(2 - D)g^{\lambda}(\mathbf{x}, \mathbf{y})$ $(\mathbf{x}, \mathbf{y} \in \mathcal{T}^{\lambda}_{M^{\dagger}}).$

Proposition 5.5. Let $(*, E, g^{\lambda})$ be a localized formal Frobenius structure over $K[\lambda]$ of charge D on M^{\dagger} . Let \circ be the multiplication on $\mathcal{T}_{M^{\dagger}}$ induced by $\pi: \mathcal{T}^{\lambda}_{M^{\dagger}} \to$ $\mathcal{T}_{M^{\dagger}} = \mathcal{T}_{M^{\dagger}}^{\lambda}/\lambda \mathcal{T}_{M^{\dagger}}^{\lambda}$, $E = \pi(E)$, and let $(I_{\bullet}, g_{\bullet})$ be the nondegenerate filtration on H_K induced from the localized $K[\lambda]$ -metric g^{λ} (see Lemma [3.4\)](#page-5-0). Then $(\circ, E, I_{\bullet}, g_{\bullet})$ is a formal MFS on M^{\dagger} of charges $\{D_k = D - k\}.$

Proof. First, the conditions (i) and (ii) of Definition [5.1](#page-11-2) follow from (i) and (ii) in Definition [5.4](#page-13-1) respectively.

The *-invariance of g^{λ} implies that $\mathcal{O}_M \otimes I_k^{\lambda} =: \mathcal{I}_k^{\lambda} \subset \mathcal{T}_{M^{\dagger}}^{\lambda}$ is an ideal with respect to ∗, which in turn implies that \mathcal{I}_k is an ideal with respect to \circ . It also implies the ∘-invariance of the metrics q_{\bullet} .

Equation [\(5.10\)](#page-13-2) implies that the Lie bracket $[E^{\lambda}, -]$ preserves $\mathcal{I}_{k}^{\lambda}$. From this it follows that $[E, -]$ preserves \mathcal{I}_k . Equation [\(5.10\)](#page-13-2) also implies [\(5.7\)](#page-12-1) as follows. For $x, y \in \mathcal{I}_k$, we have

$$
Eg_k(\bar{x}, \bar{y}) = \text{Res}_{\lambda=0} \lambda^{k-1} (k + \boldsymbol{E}^{\lambda}) g^{\lambda}(\boldsymbol{x}, \boldsymbol{y})
$$

\n
$$
\stackrel{(5.10)}{=} k g_k(\bar{x}, \bar{y})
$$
\n
$$
+ \text{Res}_{\lambda=0} \lambda^{k-1} \{ g^{\lambda}([\boldsymbol{E}^{\lambda}, \boldsymbol{x}], \boldsymbol{y}) + g^{\lambda}(\boldsymbol{x}, [\boldsymbol{E}^{\lambda}, \boldsymbol{y}]) + (2 - D) g^{\lambda}(\boldsymbol{x}, \boldsymbol{y}) \}
$$
\n
$$
= (2 - D + k) g_k(\bar{x}, \bar{y}) + g_k([E, x], y) + g_k(x, [E, y]),
$$

where $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{I}_k^{\lambda}$ are lifts of x, y .

§6. Local quantum cohomology

In this section, K denotes either $\mathbb R$ or $\mathbb C$.

§6.1. Notation

Let X be a smooth complex projective variety. Let $\mathcal{V} \to X$ be a concave^{[4](#page-14-0)} vector bundle of rank r. Let $S^1 = U(1)$ act on V by the scalar multiplication on the fiber. The generator of the S^1 -equivariant cohomology of a point is denoted λ .

Let $H_K := H^{\text{even}}(X, K)$. We fix a basis $\{\phi_1, \ldots, \phi_p\}$ of $H^2(X, \mathbb{Z})$ satisfying the condition that $\int_C \phi_i \geq 0$ for any curve $C \subset X$.^{[5](#page-14-1)} We also fix a homogeneous basis $\{\phi_0 = 1, \phi_1, \ldots, \phi_p, \phi_{p+1}, \ldots, \phi_s\}$ of H_K .

Let t_0, \ldots, t_s be the coordinates on H_K associated to the basis. We set $R =$ K[[t, q]] where $t = (t_0, t_{p+1}, \ldots, t_s)$ and $q = (q_1, \ldots, q_p)$ with $q_i = e^{t_i}$. As in §[5.1,](#page-11-1) we consider the formal scheme $M = Spf R$ with a fixed logarithmic structure defined by the monoid [\(5.1\)](#page-11-3) and denote it by M^{\dagger} . We identify H_K with the linear space of derivations on R defined in (5.2) by

(6.1)
$$
\begin{cases} \phi_{\alpha} \mapsto \frac{\partial}{\partial t_{\alpha}} & (\alpha = 0, \ p + 1, \dots, s), \\ \phi_{i} \mapsto q_{i} \frac{\partial}{\partial q_{i}} & (1 \leq i \leq p). \end{cases}
$$

Hence $\mathcal{T}_{M^{\dagger}} = \mathcal{O}_M \otimes_K H_K$. The same notations \mathcal{O}_M^{λ} , H_K^{λ} and $\mathcal{T}_{M^{\dagger}}^{\lambda}$ as in §[5.3](#page-13-3) will be used.

 \Box

⁴A vector bundle V is *concave* if $H^0(C, f^*\mathcal{V}) = 0$ for any genus zero stable map (f, C) to X of nonzero degree.

⁵ The existence of such a basis follows from the fact that the Mori cone $\overline{NE}_{\mathbb{R}}(X)$ of a smooth projective variety X does not contain a straight line (see e.g. [\[6,](#page-19-7) Corollary 1.19]). If σ denotes the image of $\overline{NE}_{\mathbb{R}}(X)$ in $H_2(X, \mathbb{R})$, the dual cone $\sigma^{\vee} = \{x \in H^2(X, \mathbb{R}) \mid \langle x, y \rangle \ge 0, y \in \sigma\}$ is of maximal dimension. Therefore there exists an integral basis ϕ_1, \ldots, ϕ_p of $H^2(X, \mathbb{R})$ such that $\phi_i \in \sigma^{\vee}.$

We put the grading on the vector space H_K by setting $|\phi| = k$ if $\phi \in$ $H^{2k}(X,K)$. We also put the gradings on the rings \mathcal{O}_M and \mathcal{O}_M^{λ} by $|t_{\alpha}| = 1 - |\phi_{\alpha}|$ $(\alpha = 0, p + 1, \ldots, s), |\lambda| = 1$ and $|q_i| = \xi_i$, where ξ_i are defined by

(6.2)
$$
c_1(X) + c_1(\mathcal{V}) = \sum_{i=1}^p \xi_i \phi_i.
$$

Then we have the induced gradings on $\mathcal{T}_{M^{\dagger}}$ and $\mathcal{T}_{M^{\dagger}}^{\lambda}$. Let

(6.3)
$$
\mathbf{E} = \sum_{\alpha=0}^{s} (1 - |\phi_{\alpha}|) t_{\alpha} \frac{\partial}{\partial t_{\alpha}} + \sum_{i=1}^{p} \xi_{i} q_{i} \frac{\partial}{\partial q_{i}}, \quad \mathbf{E}^{\lambda} = \mathbf{E} + \lambda \frac{\partial}{\partial \lambda}.
$$

Then, for a homogeneous $f \in \mathcal{O}_M^{\lambda}$ and $\mathbf{x} \in \mathcal{T}_{M^{\dagger}}^{\lambda}$, we have

(6.4)
$$
\mathbf{E}^{\lambda} f = |f|f, \quad [\mathbf{E}^{\lambda}, \mathbf{x}] = (|\mathbf{x}| - 1)\mathbf{x}.
$$

§6.2. Localized formal Frobenius structure over $K[\lambda]$

The following material can be found in [\[3\]](#page-19-3). Let g^{λ} be a localized $K[\lambda]$ -metric on H_K^{λ} defined by

(6.5)
$$
g^{\lambda}(\phi,\varphi) = \int_X \phi \cup \varphi \cup \frac{1}{e_{S^1}(\mathcal{V})}
$$

where $e_{S^1}(\mathcal{V})$ is the S^1 -equivariant Euler class of \mathcal{V} :

$$
e_{S^1}(\mathcal{V}) = \lambda^r + c_1(\mathcal{V})\lambda^{r-1} + \cdots + c_r(\mathcal{V}).
$$

Lemma 6.1. g^{λ} and **E** (in [\(6.3\)](#page-15-0)) satisfy [\(5.10\)](#page-13-2) with $D = \dim_{\mathbb{C}} X + r$.

Proof. By degree consideration, g^{λ} satisfies

(6.6)
$$
g^{\lambda}(\phi_{\alpha}, \phi_{\beta}) = \eta_{\alpha\beta} \lambda^{|\phi_{\alpha}| + |\phi_{\beta}| - \dim_{\mathbb{C}} X - r} \quad (\eta_{\alpha\beta} \in K).
$$

This together with [\(6.4\)](#page-15-1) implies the lemma.

We define a multiplication on $\mathcal{T}_{M^{\dagger}}^{\lambda}$ as follows. For $x_1, \ldots, x_m \in H_K$ and $d \in$ $H_2(X,\mathbb{Z})$, let

$$
(6.7) \qquad \langle x_1, \dots, x_m \rangle_{\mathcal{V},d} = \int_{[\overline{M}_{0,m}(X,d)]^{\text{vir}}} \prod_{i=1}^m \text{ev}_i^* \, x_i \cup e_{S^1}(-R^\bullet \mu_* \, \text{ev}_{m+1}^* \, \mathcal{V}) \in K[\lambda]
$$

where $\overline{M}_{0,m}(X,d)$ is the moduli stack of genus zero stable maps to X of degree d with m marked points, ev_i : $\overline{M}_{0,m}(X,d) \to X$ is the evaluation map at the

 \Box

ith marked point, and $\mu : \overline{M}_{0,m+1}(X,d) \to \overline{M}_{0,m}(X,d)$ is the forgetful map. We define the multiplication $*\gamma$ on $\mathcal{T}_{M^{\dagger}}^{\lambda}$ by

(6.8)
$$
g^{\lambda}(\boldsymbol{x} *_{\mathcal{V}} \boldsymbol{y}, \boldsymbol{z}) = \sum_{d} \sum_{m \geq 0} \frac{1}{m!} \langle \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \underbrace{\tau, \dots, \tau}_{m} \rangle_{\mathcal{V}, d} \quad (\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathcal{T}_{M^{\dagger}}^{\lambda})
$$

$$
= \sum_{d} \sum_{m \geq 0} \frac{1}{m!} \langle \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \underbrace{\tau_{\geq 4}, \dots, \tau_{\geq 4}}_{m} \rangle_{\mathcal{V}, d} q^{d}.
$$

In the first line, $\tau = \sum_{\alpha=0}^{s} t_{\alpha} \phi_{\alpha}$, and in the second line, $\tau_{\geq 4} = \sum_{\alpha=p+1}^{s} t_{\alpha} \phi_{\alpha}$ and $q^d = e^{\int_d (t_1 \phi_1 + \dots + t_p \phi_p)}$. In passing to the second line, the fundamental class axiom and the divisor axiom of Gromov–Witten theory (see, e.g., [\[9,](#page-19-8) III, §5]) are used.

Lemma 6.2. $(\mathcal{T}_{M^{\dagger}}^{\lambda}, *_{\mathcal{V}})$ is a graded ring. Hence the multiplication $*_\mathcal{V}$ and \mathbf{E} in [\(6.3\)](#page-15-0) satisfy [\(5.9\)](#page-13-4).

Proof. The lemma follows from the degree axiom of Gromov–Witten theory. \Box

Proposition 6.3. $(g^{\lambda}, *_{\mathcal{V}}, \mathbf{E})$ is a localized formal Frobenius structure over $K[\lambda]$ of charge dim_C $X + r$ on M^{\dagger} .

Proof. By the definition of $*\gamma$, it is clear that g^{λ} is $*\gamma$ -invariant and satisfies [\(5.8\)](#page-13-5). \Box

§6.3. Formal mixed Frobenius structure from local quantum cohomology

Theorem 6.4. The collection $(\circ_v, E, I_{\bullet}, g_{\bullet})$ of the following data determines a $formal \ MFS \ of \ charges \ \{\dim_{\mathbb C} X + r - k\}_{k\in \mathbb Z} \ on \ M^{\dagger};$

- the multiplication \circ_V on $\mathcal{T}_{M^{\dagger}}$ induced from the multiplication $*\mathcal{V}$ on $\mathcal{T}_{M^{\dagger}}^{\lambda}$,
- the Euler vector field E which has the same expression as E in [\(6.3\)](#page-15-0),
- a nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ on H_K constructed in Lemma [3.4](#page-5-0).

Proof. Applying Proposition [5.5](#page-13-0) to the localized formal Frobenius structure over $K[\lambda]$ in Proposition [6.3,](#page-16-1) we obtain the result. \Box

Remark 6.5 (on convergence of the formal MFS). If $V \rightarrow X$ is a negative line bundle, it can be shown that the structure constants of \circ _V are convergent if those of the quantum product of X are convergent, e.g. if X is a smooth projective toric variety [\[5\]](#page-19-9). The proof is completely the same as Iritani's [\[5\]](#page-19-9) except that it is necessary to modify the proof of his Lemma 4.2. For a pair of such X and a negative line bundle V , the formal MFS described in this subsection is actually a MFS on some open subset of H_K (see Remark [5.3\)](#page-12-2).

Let us describe the MFS in Theorem [6.4](#page-16-0) concretely. The multiplication \circ_V on $\mathcal{T}_{M^{\dagger}}$ is as follows. For $d \neq 0, x_1, \ldots, x_m \in H_K$, let

(6.9)
$$
\langle x_1, \ldots, x_m \rangle_{\mathcal{V},d}^{\lambda=0} = \int_{[\overline{M}_{0,m}(X,d)]^{\text{vir}}} \prod_{i=1}^m \text{ev}_i^* x_i \cup e(R^1 \mu_* \text{ev}_{m+1}^* \mathcal{V}),
$$

where e denotes the (nonequivariant) Euler class. Then a potential vector field $\mathcal G$ for $\circ_{\mathcal{V}}$ (cf. Lemma [4.3\)](#page-9-2) is given by

(6.10)
$$
\mathcal{G} = \sum_{\alpha=0}^{s} (\partial_{\alpha} \Phi_{\alpha}) \phi^{\alpha} + \sum_{\alpha=1}^{s} (\partial_{\alpha} \Phi_{\text{qu}}) c_{r}(\mathcal{V}) \cup \phi^{\alpha},
$$

where $\partial_{\alpha} = \frac{\partial}{\partial t_{\alpha}}$ and

$$
\Phi_{\text{cl}} = \frac{1}{3!} \int_X \tau \cup \tau \cup \tau, \qquad \Phi_{\text{qu}} = \sum_{d \neq 0} \sum_{m \geq 0} \frac{q^d}{m!} \langle \underbrace{\tau_{\geq 4}, \dots, \tau_{\geq 4}}_{m} \rangle^{\lambda = 0}_{\mathcal{V}, d},
$$

and $\{\phi^{\alpha}\}\$ is a basis of H_K dual to $\{\phi_{\alpha}\}\$ with respect to the intersection form of X.

By the result of §[3.2,](#page-6-1) the nondegenerate filtration $(I_{\bullet}, g_{\bullet})$ on H_K is

(6.11)
$$
I_k = 0 \quad (k < 0),
$$

$$
I_0 = \{x \cup c_r(\mathcal{V}) \mid x \in H_K\},
$$

$$
I_k = I_0 + J_k, \quad J_k = p_r(\text{Ker } N^k),
$$

where

$$
N = \begin{pmatrix} -c_1(\mathcal{V}) & 1 & 0 & \cdots & 0 \\ -c_2(\mathcal{V}) & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -c_{r-1}(\mathcal{V}) & 0 & 0 & \cdots & 1 \\ -c_r(\mathcal{V}) & 0 & 0 & \cdots & 0 \end{pmatrix} : H_K^{\oplus r} \to H_K^{\oplus r}
$$

and p_r is the projection to the rth factor. The metrics g_k on I_k/I_{k-1} are given by

(6.12)
$$
g_0(c_r(\mathcal{V}) \cup x, c_r(\mathcal{V}) \cup y) = \int_X c_r(\mathcal{V}) \cup x \cup y \qquad (x, y \in H_K),
$$

$$
g_k(\overline{x}, \overline{y}) = \int_X x \cup p_1(N^{k-1}\overline{y}) \qquad (k > 0, x, y \in J_k),
$$

where $\vec{y} \in \text{Ker } N^k$ is any lift of y.

Remark 6.6 (on the nilradical of \circ_V). If $\int_C (c_1(X) + c_1(V)) \leq 0$ for any curve $C \subset X$, then $\phi_\alpha \circ_\mathcal{V} \phi_\beta \in \mathcal{O}_M \otimes_K H^{\geq |\phi_\alpha| + |\phi_\beta|}(X,K)$ by the degree axiom. Therefore for such (X, V) , the nilradical of $(\mathcal{T}_{M^{\dagger}}, \circ_{\mathcal{V}})$ is $\mathcal{O}_M \otimes_K H^{\geq 2}(X, K)$.

§6.4. Remarks on local mirror symmetry

Let X be a Fano toric surface and $\mathcal{V} = K_X$ the canonical bundle. Take $\phi_{p+1} = \phi^0$. Then

$$
\mathcal{G} = \sum_{\alpha=0}^{p+1} (\partial_{\alpha} \Phi_{\text{cl}}) \phi^{\alpha} + \sum_{i=1}^{p} k_i (\partial_i \Phi_{\text{qu}}) \phi_{p+1},
$$

where

$$
\Phi_{\mathbf{qu}} = \sum_{d \neq 0} N_d q^d, \qquad N_d = \int_{[\bar{M}_{0,0}(X,d)]^{\text{vir}}} e(R^1 \mu_* \operatorname{ev}_{m+1}^* K_X),
$$

and the k_i are defined by $\sum_{i=1}^p k_i \phi_i = c_1(K_X)$. The coefficient of ϕ_{p+1} in $\mathcal G$ above is nothing but the function \mathcal{F}_{local} in [\[1,](#page-18-1) §6.3].

Next, let us discuss the relationship with the mirror side of the story. Let Δ be the fan polytope of X. There is a certain family of curves $\mathcal{C} \to \mathcal{M}(\Delta)$ in $(\mathbb{C}^*)^2$ associated to Δ . It was shown that

$$
H^*(X, \mathbb{C}) \cong H^2((\mathbb{C}^*)^2, C_z) \qquad (z \in \mathcal{M}(\Delta))
$$

as C-vector spaces and that the weight filtration of the mixed Hodge structure on $H^2((\mathbb{C}^*)^2, C_z)$ coincides with Frobenius filtration (up to shifts). Compare [\[7,](#page-19-4) §8] with (6.11) and $[8, (8.8)]$ $[8, (8.8)]$.

Under the mirror map, \mathcal{F}_{local} corresponds to a double logarithmic period of $\omega_0(z) = \left[\left(\frac{dt_1}{t_1} \wedge \frac{dt_2}{t_2}, 0 \right) \right] \in H^2((\mathbb{C}^*)^2, C_z)$, and $\{g_0(\phi_i \circ_{K_X} \phi_j, c_1(K_X))\}_{1 \le i,j \le p}$ is essentially equal to the Yukawa coupling defined in [\[7,](#page-19-4) §6].

It would be desirable to construct a MFS on $H^2((\mathbb{C}^*)^2, C_z)$ which is compatible with its variation of mixed Hodge structures and which agrees with the MFS on $H^*(X,\mathbb{C})$ under the mirror map.

Acknowledgements

The authors thank Hiroshi Iritani for discussion and various comments. They also thank the referee for helpful comments. Y.K. is supported in part by JSPS Grantin-Aid for Young Scientists (No. 22740013). S.M. is supported in part by JSPS Grant-in-Aid for Young Scientists (No. 24740028).

References

- [1] T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999), 495–565. [Zbl 0976.32012](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0976.32012&format=complete) [MR 1797015](http://www.ams.org/mathscinet-getitem?mr=1797015)
- [2] B. Dubrovin, Geometry of 2D topological field theories, in Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Springer, Berlin, 1996, 120–348. [Zbl 0841.58065](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0841.58065&format=complete) [MR 1397274](http://www.ams.org/mathscinet-getitem?mr=1397274)
- [3] A. Givental, Elliptic Gromov–Witten invariants and the generalized mirror conjecture, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci., River Edge, NJ, 1998, 107–155. [Zbl 0961.14036](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0961.14036&format=complete) [MR 1672116](http://www.ams.org/mathscinet-getitem?mr=1672116)
- [4] M. Gross, Tropical geometry and mirror symmetry, CBMS Reg. Conf. Ser. Math. 114, Amer. Math. Soc., Providence, RI, 2011. [Zbl 1215.14061](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1215.14061&format=complete) [MR 2722115](http://www.ams.org/mathscinet-getitem?mr=2722115)
- [5] H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math. 610 (2007), 29–69. [Zbl 1160.14044](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.14044&format=complete) [MR 2359850](http://www.ams.org/mathscinet-getitem?mr=2359850)
- [6] J. Kollár and S. Mori, *Birational geometry of algebraic varieties*, Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge, 1998. [Zbl 1143.14014](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1143.14014&format=complete) [MR 1658959](http://www.ams.org/mathscinet-getitem?mr=1658959)
- [7] Y. Konishi and S. Minabe, Local B-model and mixed Hodge structure, Adv. Theor. Math. Phys. 14 (2010), 1089–1145. [Zbl 1229.81243](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.81243&format=complete) [MR 2821394](http://www.ams.org/mathscinet-getitem?mr=2821394)
- [8] , Mixed Frobenius structure and local A-model, $arXiv:1209.5550$ (2012).
- [9] Y. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ. 47, Amer. Math. Soc., Providence, RI, 1999. [Zbl 0952.14032](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0952.14032&format=complete) [MR 1702284](http://www.ams.org/mathscinet-getitem?mr=1702284)
- [10] T. Reichelt, A construction of Frobenius manifolds with logarithmic poles and applications, Comm. Math. Phys. 287 (2009), 1145–1187. [Zbl 1197.53117](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1197.53117&format=complete) [MR 2486676](http://www.ams.org/mathscinet-getitem?mr=2486676)
- [11] C. Sabbah, *Déformations isomonodromiques et variétés de Frobenius*, EDP Sciences, Les Ulis, and CNRS Éditions, Paris, 2002. [Zbl 1101.14001](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1101.14001&format=complete) [MR 1933784](http://www.ams.org/mathscinet-getitem?mr=1933784)

