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Microlocal Lefschetz Classes of
Graph Trace Kernels

by

Yuichi IKE

Abstract

In this paper, we define the notion of graph trace kernels as a generalization of trace
kernels. We associate a microlocal Lefschetz class with a graph trace kernel and prove
that this class is functorial with respect to the composition of kernels. We apply graph
trace kernels to the microlocal Lefschetz fixed point formula for constructible sheaves.
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81. Introduction

In [KS14], Kashiwara and Schapira introduced the notion of trace kernels and the
method to associate a microlocal Euler class with a trace kernel.

Let X be a C'*°-manifold and k be a field. We denote by wyx the dualizing
complex on X, that is, wx ~ orx|[dx] where orx is the orientation sheaf on X and
dx is the dimension of X. Denote by ka, and wa, the direct image of kx and wx
respectively under the diagonal embedding 6: X — X x X. Let w: T*X — X be
the cotangent bundle of X.

A trace kernel on X is a triplet (K, u,v) where K is an object of the derived
category of sheaves Db(k xxx) and u,v are morphisms

(1.1) urkay > K, v K —wa,.

One can naturally define the microlocal Euler class peu(K, u,v) as an element of
HY(T*X; phom(kax,way ) ~HR(T* X ;7 'wx), where A=SS(K)NTX (X x X).
Kashiwara and Schapira proved the functoriality of the microlocal Euler classes:

Communicated by T. Mochizuki. Received May 12, 2015. Revised August 5, 2015.

Yuichi Ike; Graduate School of Mathematical Sciences, the University of Tokyo,
3-8-1, Komaba, Meguro-ku, Tokyo, 153-8914, Japan;
e-mail: ike@ms.u-tokyo.ac. jp

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



84 Y. IKE

the microlocal Euler class of the composition K; o K5 of two trace kernels is the
composition of the microlocal Euler classes of K7 and K [KS14, Theorem 6.3].

On the other hand, microlocal Lefschetz classes of elliptic pairs (Guillermou
[Gu96]) and Lefschetz cycles of constructible sheaves (Matsui-Takeuchi [MT10])
were introduced in order to prove the microlocal fixed point formula. For elliptic
pairs, see Schapira—Schneiders [ScSn94]. For recent results on this subject, see also
[IMT15] and [RTT13].

Let us recall the notion of Lefschetz cycles defined in [MT10]. Let X be a
real analytic manifold and ¢: X — X be a morphism of manifolds. We denote by
D2 .(kx) the bounded derived category of R-constructible sheaves on X. Denote
by wr, the direct image of wx under the graph map d4: X — X x X,z
(z,¢(x)). With a pair (F,®) of F € DE_(kx) and ® € Hom(¢~'F, F), one can
associate a cohomology class uLe(F,®,¢) € HY(T*X; uay (wr,)), where A :=
SS(F)NTA (X x X)NTy, (X x X). This class is called the Lefschetz cycle or the
microlocal Lefschetz class of the pair (F, ®).

The microlocal Lefschetz classes of R-constructible sheaves can be treated in
the same way as the microlocal Euler classes of trace kernels. Define Dx F :=
Rstom(F,wy), the dual of F. The pair (F, ®) gives natural morphisms

(1.2) kay - DxFRF — wr,.

The composition of the above morphisms defines a cohomology class in
HY(T*X; phom(kay,wr,)) ~ H(T*X; pay (wr,)) and this class coincides with
uLe(F, D, ¢).

In this paper, we extend the notion of trace kernels so that we can treat fixed
point formulas. Then we associate a microlocal Lefschetz class with such a kernel
and prove the functoriality of the class.

For a C'*°-manifold X and a morphism of manifolds ¢: X — X, a ¢-graph
trace kernel is a triplet (K, u,v) where K € DP(kxxx) and u,v are morphisms

(1.3) urkay - K, v: K —uwr,.

One defines the microlocal Lefschetz class pLe(K,u,v,¢) as an element of
HY(T*X; phom(kay,wr,)), where A := SS(K)NTX (X x X)N Ty, (X x X).
By (1.2), a pair (F,®) of F € DE_(X) and ® € Hom(¢~1F, F) defines a ¢-graph
trace kernel.

Our main result is the functoriality of microlocal Lefschetz classes: the mi-
crolocal Lefschetz class of the composition Kj o0 K5 of two graph trace kernels is the
composition of the microlocal Lefschetz classes of Ky and K» (for a more precise
statement, see Theorem 4.3). As an application, we prove the microlocal Lefschetz
fixed point formula for constructible sheaves.
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Finally, let us explain the difference between our construction and that of
[KS14]. In the last section of [KS14], the authors have remarked that trace ker-
nels can be adapted to the Lefschetz fixed point formula for constructible sheaves.
However, their construction is not suitable to prove the functoriality of the coho-
mology classes. Therefore, we extend the notion of trace kernels itself and prove
the functoriality by using the new framework.

§2. Preliminaries

§2.1. Review on sheaves

In this paper, all manifolds are assumed to be real manifolds of class C'°*°. Through-
out this paper, let k£ be a field of characteristic zero. We follow the notation
of [KS90].

Let X be a manifold. We denote by 7mx: T*X — X its cotangent bundle. If
there is no risk of confusion, we simply write 7 instead of 7wy . For a submanifold M
of X, we denote by T3, X the conormal bundle to M. In particular, T3 X denotes
the zero-section of T*X. We also denote by a: T*X — T*X the antipodal map
defined by (z;&) — (z;—€). A set A C T*X is said to be conic if it is invariant by
the action of R on T* X.

Let f: X — Y be a morphism of manifolds. With f one associates the maps

X <l X %y Ty ey

X Y
We denote by ky the constant sheaf on X with stalk & and by DP(kx)

the bounded derived category of sheaves of k-vector spaces on X. One can de-

L
fine Grothendieck’s six operations Rf., f~', Rfi, f, ®, R#om as functors of de-
rived categories of sheaves. Since the functor - ® - is exact, we simply write

L kx
® instead of ®. One denotes by wyx the dualizing complex on X. That is, if

ax: X — pt denotes the natural map, then wx := a'y ky. One also denotes
by w@ ™' = RA#om(wx,kx) the dual of wy. More generally, for a morphism

f: X =Y, we denote by wx,/y := flhy ~wx ® f‘lwgg,’_l the relative dualizing
complex. Note that wx ~ orx[dx], where orx is the orientation sheaf on X and
dx is the dimension of X. Recall that there is a natural morphism of functors

(2.1) wxy ® f7HC) = f1()-
We define the duality functor by
(22) DxF = Rj‘fom(F, OJX).
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For F € DP(kx), we denote by Supp(F) the support of F' and by SS(F) its
micro-support, a closed conic involutive subset of T*X.

For a closed submanifold M of X, one denotes by zar: DP(kx) — DR (k7 x)
Sato’s microlocalization functor along M, where D, (kr, x) is the full subcategory
of D®(kry, x) consisting of R*-conic objects. We shall use the functor hom defined
in [KS90]. For Fy, F» € DP(kx), one defines the bifunctor

phom: DP(kx)°P x DP(kx) — Dp+ (k7= x),
phom(Fy, Fy) := paRA#om(qy ' Fi, g F»),

where ¢; and g9 are the first and second projections from X x X and A is the
diagonal. Note that the support of phom(F, Fy) satisfies

(2.3) Supp(phom(Fy, Fy)) C SS(Fy) N SS(Fy).

Furthermore, we have the isomorphism

(2.4) R, phom(Fy, Fy) ~ phom(Fy, Fy)|x ~ RAom(Fy, Fy).
§2.2. Compositions of kernels

We follow the notation of [KS14]. The results in this subsection are the same as
in Section 3 of [KKS14]. For the convenience of the readers, we give proofs of these
results here.

Notation 2.1. (i) For a manifold X, we denote by §: X — X x X the diagonal
embedding and by Ax the diagonal set of X x X.

(ii) Let X; (¢ = 1,2,3) be manifolds. For short, we write X;; = X; x X},
X103 := X1 X Xo X X3, Xq1093 := X7 X X7 X X9 x X5 x X3, etc.

(ili) Let ¢; : X; — X; (¢ = 1,2,3) be morphisms of manifolds. We write ¢;; :=
¢i X @5 1 X5 = Xij.

(iv) For simplicity, we shall write k; instead of kx, and w; instead of wy,, etc.
We also write ka, instead of ka, .

(v) We denote by m; or m;;, etc. the projection T*X; — X; or T*X;; — X,;,
etc.

(vi) We use the same symbol ¢; for the projections Xij = X; and X203 — X;.
We also denote by g;; the projection Xi23 — Xj;, by p; the projection
T*X;; — T*X;, and by p;; the projection T™ X123 — T Xj;.

(vii) We denote by pja (resp. pij) the composition of p; (resp. p;;) and the
antipodal map on 7% Xj.

(viii) We denote by d5 the diagonal embedding X235 — Xi223.



GRAPH TRACE KERNELS 87

Recall the operations of composition of kernels defined in [KS14].

Definition 2.2 ([KS14]). We define the operations of composition of kernels as
follows:

g: Db(klg) X Db(kgg) — Db(k‘lg),

(K12, Ka3) — K12 <2>K23 = Ra13, (415 K12 ® ¢o3' Ko3)
~ Rqi3,05 ' (K12 ® Ka3),
>§: Db(k‘lg) X Db(kgg) — Db(kjlg),

(K2, Ka3) = Kuo % K23 := Raua, (@S Xraas ® O2(K12 B K23)).

By (2.1), we have a natural morphism &5 *(-) — w?};i/xlzza ®0d4(+). Combining

this with the morphism Rgq;3; — Rqi3,, we obtain a natural morphism

(25) KlggKgg *)K12>5K23.

This is an isomorphism if plea (SS(K12)) N p;31(SS(K23)) is proper over T* X3.
We now define the composition of kernels on cotangent bundles.

Definition 2.3 ([KS14]). For kernels on cotangent bundles, we define the com-
position of kernels as follows:

§5 D" (kr-x,,) X D”(kr=x,,) = D°(kr-x,,),
(K12, Ka3) — K12 §K23 i= Rp13,(p1aa K12 @ Doy Kog).

We also define the corresponding operations for subsets of cotangent bundles.
Let AC T*X15 and B C T*X53. We set

A% Bi=pe(A)Npg (B),  A$B:=pis(Ax B).

In order to define a composition morphism, we need the following lemma. Let
X,Y, S be manifolds. Let ¢x: X — S and gy : Y — S be morphisms. Assume that

(2.6) X XgY is a submanifold of X x Y.

Let j be an embedding X x5Y < X xY. Noticing that (X x5Y) X (xxy)T* (X xY))
~T*X xgT*Y, we have the following morphisms:

(2.7) T*(X xgY) &L T*X xg T*Y 22 T* X x T*Y.
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Lemma 2.4. (cf. [KS90, Proposition 4.4.8]) For Fy,G; € DP(kx) and F»,Gs €
DP(ky ), there is a canonical morphism

(28)  Rja(phom(Gy, F1) B phom(Gy, F2))
— phom(j'(G1 8 Gy) ® wg?;lsy/xxval %Fg).

Proof. First, we construct the morphism when S = pt. By using the morphism
um (F) R un(G) = puxn(F 8 G) [KS90, Proposition 4.3.6], we obtain a chain of
morphisms

paxRAOm(ax 5 G, ax 1 F1) 8 pay RAom(ay 5 ' G, av' 1 Fo)
= payxay (RAom(qx; "G, qx 1 F1) R RAom(qy ;' Ga, qy' 1 F2))
= Bayxay (RAom(qx; G R qyy ' Ga, qx | Fi R gy Fo)
~ MAXXYR%m(qgl(Gl X Gg),qll(Fl X FQ))
Next, we treat the general case. Using the morphism
(2'9) Rjd!jglﬂ'hom(G7 F) — Uhom(j!G 0y w%;lsy/xxywj_lF)
from [KS90, Proposition 4.4.7], we obtain a chain of morphisms
Rjain t(phom(Gy, F1) ® phom(Ga, Fy)) — Rjgj-  uhom(G1 8 Gy, Fi B F))
%uhom(j!(GlﬁGQ)®w§;1sy/XXy,j71(F1®F2)). O

Proposition 2.5 ([KS14]). For Gy, Fy € DP(k12) and Ga, F» € DP(ka3), there is
a composition morphism

(2.10) whom(Gq, Fy) % whom(Ga, Fy) — phom(Gq x G, Fy <2>F2).

Proof. We shall apply Lemma 2.4 for X2 — X5 and X33 — Xs. In this case,
X2 Xx, Xog ~ X903 and j is the diagonal embedding X235 < Xi903. Consider
the following commutative diagram:

T*X1s % T* Xog 22272 1o X0 5 T4 X, % T X5 ~

idxsxid

T*X12 X X, T*X23 é T*Xl X TZzXQQ X T*Xg

Jr

jd\L O p P13

T* Xpog <20 T*X| x Xo x T* X

9131
T*Xlg Q

where ¢ is defined by (z2;&2) — (22, x2; —&2, &2).
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By Lemma 2.4, we get a morphism

(2.11) Rjajiz t(uhom(Gy, F1) & phom(Ga, Fy))
— phom(j(G1 R Ga) @ WPt o (PR ).

Set G :=j'(G1mGa) @wg L v € DP(kizs) and F = j~'(Fi & F») € D" (ki23).

Combining (2.11) with the morphism
(2.12) Rqi3,qi3, ' pphom(G, F) — phom(Rqi3,G, Rqi3,F)
from [KS90, Proposition 4.4.7], we get a morphism

qugﬂqlggled!jgl(uhom(Gl, F1) ® phom(Ga, Fs)) — phom(Rqi13,G, Rq13, F)
~ uhom(Gl >5 (;27 F1 gFQ)

By the above commutative diagram, we have

R1sm@1sg ‘Riagy ' ~ Rausn Bpii ;" o~ Raus Rpu(id x 6 x id)i(p1oe, pas) !
~ Rp13,(p12e, pas) "
Thus, the result follows from the isomorphisms
Rqi3,1q13; '‘Riariy * (whom(Gy, Fi) @ phom (G, Fz))
~ Rpisy(p12e, p23) " (whom(Gy, Fy) & phom(Gs, Fy))
~ Rp13(pion thom (G, F) ®p2_31uh0m(G2, Fy)). O

§3. Definition of graph trace kernels
§3.1. Microlocal homology associated with morphisms

Let X be a manifold and ¢: X — X be a morphism of manifolds. We shall identify
X with the diagonal Ax of X x X and write A instead of Ax if there is no risk
of confusion. We shall also identify 7*X with TX (X x X) by means of the map

(3.1) 0y T"X =2 T(X x X), (2;8) — (z,2;&,—8).
We denote by 64 = (idx,¢): X — X x X the graph map of ¢ and by
Iy = 64(X) the graph of ¢. Set kr, := (d¢)+kx, wr, := (d¢)swx and wl@djl =
(5¢)*w§_1. If ¢ = idx, we shall write § for d4, ka for kr,, etc.
Definition 3.1. Let A be a closed conic subset of T*X. We set
(i) AHN(D) == RUA (0% x) "' phom(ka, wr,),
(ii) MHA(¢) := RI(I™"X; . A4H#\(9)),
(i) MH} (¢) := H"(MH(¢))-
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Let ¢;: X; — X; (i = 1,2,3) be morphisms of manifolds. We write A; for
AX,', C X4, ete.
Lemma 3.2. We have natural morphisms:
(1) wF¢12 202 (kl"¢2 B wF¢3) - "‘)Fms ’
(ii) kayy = kg, 2*2 (W§;1 & kﬁs)'

Proof. We denote by d9o the diagonal embedding X112233 < X11222233-
(i) We have morphisms

wry,, (kr¢2 X wp¢3) = qulgg!ég;(wl‘d}l Rwr,, ®kr,, ® wp%)
~ Rq1133,(wr,, Rwr,, Bwr, ) = wr, .-
(ii) The proof is the same as that of [KS14, Lemma 4.3]. O
Proposition 3.3. We have a natural composition morphism
(3.2) phom(ka,,,wr, ) iuhom(kA237wp¢23) — phom(ka,s, wr,,,)-
Proof. We have

pthom(kay,, wr,, ) ~ phom((ws ™" 8 kys3) ® kay,, (W5~ B kass) @ wr,, )
~ uhom(w%z_l ® kg, kr,, ® wpd)s).
Applying Proposition 2.5 and Lemma 3.2, we get a chain of morphisms
whom(ka,,, wquw) ;32 uhom(kA237wr¢23)
=~ phom(ka,,,wr, ) éuhom(w%z_l ® kg, kr,, Bwr,, )
— phom(ka,, X (w&_l K kag),wWry,,, 3 (kr,, Rwr,,))
— phom(ka,s,wr, ,)- O

Corollary 3.4. Let A;; be a closed conic subset of T*X;; (ij = 12,23) and as-
sume that

(3.3) Ao X Aos — T X3 is proper.
2

Set A3 := Aqa §A23 N (5%*X13)’1(T1f¢13 Xi313). The composition of kernels induces

a morphism

(3.4) g’? MHy,, (¢12) ® MH4,, (¢23) — MHA, 4 (¢13)-
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In particular, a cohomology class A € I\\AI]HI(,JX12 (¢12) defines a morphism
(3.5) A §1 MHA gz, (¢23) — MHA,, (413)-

Proof. Noticing that

(3.6) MHjy,, (¢12) =~ RP!Y%*XHAH (T" X1122; phom(ka,, Wry,, )
(3.7) M, (¢23) = REsg, 255 (T Xoo33; phom(kay, s wry,, ),

we obtain a chain of morphisms

MHA12 (¢)12) ® MHA23 (¢23)

* . a
— RFJ?F*XmAlQéJ%*szA% (T X1133; ,LLhOm(kA12,wr¢12) 2 phom(ka,s, WF¢23))

— RFga

T* X

3/\13 (T*X1133; )U’hom(kAlg ’ wF¢13 )) =~ MHAIS (¢13)'

Here, the first morphism comes from the assumption (3.3) and the second one is
given by Proposition 3.3. 0

83.2. Microlocal Lefschetz classes of graph trace kernels

Let ¢: X — X be a morphism of manifolds.

Definition 3.5. A ¢-graph trace kernel (K,u,v) is the data of K € DP(kxxx)
together with morphisms

(3.8) ka K and K < wr,.

In particular, the original trace kernels defined in [KS14] are id x-graph trace
kernels. If there is no risk of confusion, we simply write K instead of (K, u,v).
For a ¢-graph trace kernel K, we set

SSa.4(K) = SS(K) NTA(X x X) NT}, (X x X)
= (6. x) "N (SS(K) N T, (X x X).

Definition 3.6. Let (K, u,v) be a ¢-graph trace kernel.

(i) The morphism u defines an element % in HgS(K)ﬂTg(XxX)(T*X; phom(ka, K)).
The microlocal Lefschetz class ule(K, ¢) € H(S)SAMK)(T*X;uhom(kA,wp¢))
of K is the image of u under the morphism phom(ka, K) — phom(ka,wr,)
associated with v.

(ii) Let A C T*X be a closed conic subset containing SSa 4(K). We denote by
pLen (K, ¢) the image of @ in HY (T*X; phom(ka,wr,)).
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Therefore, we have
(3.9) pLe (K, ¢) € MH (¢).

If there is no risk of confusion, we simply write uLe(K, ¢) instead of uLea (K, ¢).
We denote by Le(K, ¢) the restriction of uLe(K,¢) to the zero-section X
of T* X and call it the Lefschetz class of K. Note that

uhom(kA,wF¢)|(XXx) o~ R%m(kA,wp¢) ~ (5¢)*R%m(k(5¢)_1(A),wX)
= (6¢)*RFM(MX)7

where M = {zx € X; ¢(z) = x} is the fixed point set of ¢. Since RI'js(wx) =~
6 1(6¢)+ R p(wx ), we have

(3.10) Le(K, ¢) € Ha (X;wx).

Graph trace kernels for constructible sheaves. Denote by DP (Kx) the full
triangulated subcategory of DP(ky) consisting of cohomologically constructible
sheaves (see [KS90, Section 3.4]).

Lemma 3.7. Let F € DP.(kx) and ®: ¢~ F — F be a morphism in D2 (kx).
There exist natural morphisms in D2, (kxxx),

(3.11) ka = DxFRF,
(312) DXFgF%dey

In other words, a pair (F,®) of an object F € DP.(kx) and a morphism
®: ¢7'F — F defines naturally a ¢-graph trace kernel.

Proof. (i) The morphism idp induces a morphism
(3.13) kx — Rsom(F,F) ~ §'(DxFr F).

Hence, (3.11) is obtained by adjunction.
(ii) Noticing that 5;1 (DxFRF) ~ Dx F®¢~ ' F, we have a chain of morphisms

(3.14) 3, (DxFuF) % DxF @ F — wx.
Therefore, (3.12) is obtained by adjunction. O

We denote by TK,(F,®) the ¢-graph trace kernel associated with the pair
(F,®)of F € D2 (kx)and ®: ¢~ F — F. The graph trace kernel defines a microlo-
cal Lefschetz class pLe(TKy(F, ®), ). We also denote this class by pLe(F, ®, ¢).
Note that this construction coincides with that of Lefschetz cycles in [MT10].
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Graph trace kernels over one point. Let X = pt. In this case, a (graph) trace
kernel (K, u,v) is the data of K € D”(k) and morphisms

(3.15) kS K5k

The (microlocal) Lefschetz class Le(K) of K is the image of 1 € k under vu.

Let us denote by D?(k) the full triangulated subcategory of D" (k) consisting
of objects with finite-dimensional cohomology. Let V' € D?(k) and f: V=V be a
k-linear map. Set K := V*®V where V* := RHom(V, k). Let u be the dual of the
trace morphism V®V™* — k and v be the composition of idy~® f: V*QV — V*QV
and the trace morphism. Then

(3.16) Le(V*®@ V) =tr(f) := Y _(—1)”tr(H(f)).

PEZL

84. Main results
84.1. Compositions of microlocal Lefschetz classes

Let Xi, X5, X3 be manifolds and ¢;: X; — X; (¢ = 1,2,3) be morphisms. For
ij = 12,23, let K;; be a ¢;;-graph trace kernel.

Lemma 4.1. There are natural morphisms

(4.1) K12202(l€1"¢2 &wp%) —>UJ1'*¢13,
(4.2) kiag, = Kiz 2 (WX, ®ka,).
Proof. (i) By Lemma 3.2(i), we have a morphism

(43) wF¢12 202 (krd>2 X wr¢3) - wrms :

Composing it with the morphism Kis — wr, , we get (4.1).
(ii) By Lemma 3.2(ii), we have a morphism

(44) kAlS - kAlz 2*2 (wg;l X kA?,)'
Composing it with the morphism ka,, — K12, we get (4.2). O

Let A1122 € T*X1122 be a closed conic subset containing SS(K72), and Agg
be a closed conic subset of T* X53. Assume that

a
(45) A1122 2><2 6%*X23A23 — T*X1133 1S proper.
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Set

Az = Anioo NTA , X112 N T, Xi12o,
Pyp— * a a b
Aq133 = (A1122 N Ty, . X1122) S O x5 N3,
Mg = Anizs NTA, Xz N7, | Xinss

a a —1 *
=As (23 Aoz N (5T*X13) (TF¢13 Xlg).
We define a map

(4.6) Prepp s MHp,, (d23) — MHA,,(d13)
by the chain of morphisms
MHa (¢23) = RTsg.,

~ ers%*

Aos (T X22335 phom(kags, wr,,, )

* . ®X—1
X23A23(T Xzzgg,ﬂhom(wA2 ® kJAs,kr¢2 &wp¢3))

— ROy 55 (T" X1133; phom(Ki2,wr,, ) ;:Q,uhom(w%;l 8 kag, kr,, Buwr,,))
— R A4 q55 (T X1133; phom (K12 X (w%z_l bd kA3),wF¢12 3 (kr¢2 IZIwF¢3)))
- RF&}* REE (T" X1133; Nhom(kAlaawF¢13)) > MHAa, 5 (413).

X1

The first morphism is given by v: K15 — wr o, 88 follows:

RIsa

9 yy Moo (T Xo233; phom(F, G))
— RFAlmeE‘mZ X122 (T X1122; pphom (K, wry,, ))
® RIsg 3A23(T*X2233; phom(F, G))

T*Xq

= RT3 (T X1133; phom(K2,wr, ) 2g;uhom(F, G)).

Here, we set F := w%;l Kka,, G = kr,, Rwr,, and K := K;5 for simplicity, and

use (4.5). The second morphism comes from Proposition 2.5, and the last one is
induced by the morphisms in Lemmas 3.2 and 4.1.

Lemma 4.2. In the situation as above, we have
(47) Cp,, = :uLe(Kl% ¢12) (:): MHAQS (¢23) - MHAIB (¢13)7
where the right hand side is the map given by Corollary 3.4.

Proof. Consider the following commutative diagram, where we use the same no-

tation as above: I’ := w%;l ®ka,, G = k}r‘¢2 Rwr,, and K = Kio.
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R0, Ay (T Xa233; phom(F, G))

T*X23
\
a RT A, 155 (T* X1133; prthom(ka,,, wr,, ) iuhom(F, QG))
RFAuLw (T*X1133;Nh0m(K7 wfa)lz) zgzllhOW(Fv G)) ¢
b R A5 (T* X 11335 phom(ka,, X Fwr, , Z%G))
/

1%1—‘/\1133 (T*X1133', /l,hOm(K 2*2 f‘_‘7 (/.)[‘ol2 ;2 G))
By using the morphisms in Lemma 3.2, we get a morphism

(4.8) w: R A, (T X1133; phom(ka,, X Fwg,, 2 Q)
= RIse. s (T X1133; prhom (ka5 Weys))-

T*Xq

By construction, the morphism ®g,, is obtained as the composition of a, b, ¢,
and w. On the other hand, the morphism puLe(K72, ¢12)§ is obtained as the com-

position of d, e, and w. Hence, the result follows from the commutativity of the
above diagram. O

For ij = 12,23, let Ayj; C T"Xy;; be a closed conic subset containing
SS(K;j). Assume that

a
(4.9) At122 x A2933 — T X133 is proper.

a
Set Aiigs = Anizz 0 Asosy and Aig = Mgy NTA Xiiss N1y, Xiiss.

Theorem 4.3. Let K;; be a ¢;j-graph trace kernel with SS(K;;) C Ay;j;. Assume
that (4.9) holds and set Koz := (wgg*1 X kos3) ® Kag. Then the following hold.

(i) The object K12 o IN(Q;), 18 a ¢13-graph trace kernel.

(ii) We have pLe(K12 o f(gg, ¢13) = pLle(K12, d12) %/LLQ(KQ:;, ¢23) as an element
of MHY , (¢13).

Proof. (i) Tensoring the sequence

(4.10) kAZS — Koz — Wy,
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with wS@_l X ko33, We get a sequence
®-1 x
(4.11) wa, ®ka, — Koz — kr, Rouwr,, .

Combining this with Lemma 4.1, we obtain sequences

(412) kAm — Kio 2*2 (w%;l X ]{JAJ) — Ko 2*2 I’Egg
and
(4.13) Kz 2 Koz — K1y 2 (k%z ﬁwr%) — wr,, -

By the assumption (4.9), we have an isomorphism

(414) Q K12 2021?23 l> K12 2*2 KQS.

Using (4.12)—(4.14), we find that Kio g I~(23 is a ¢13-graph trace kernel.

(ii) By Proposition 2.5, under the assumption (4.9), idk,, and idg, = define a
morphism

(415) BZ K12 2>(<2 K23 %Klg%Kgg.
This morphism is the inverse of the morphism « of (4.14).
Now let us consider the following commutative diagram:

®-1
kn,s —>K122*2(wA2 ®ka,) *>K12202(k1~¢2 &wr¢3) —=uwr,, 2%(.1<:p¢2 &wp¢3)

l |

o ~

Ko x Ko ~ Kz 0 Ko
22 3 22

By the graph trace kernel structure of Ko 2o2 I~(23, the composition of the bottom

arrows and y: wr, o (kpd)2 IZIOJF%) — wr,,, defines uLe(K72 202[?237 ¢13). By the
construction of the map ®g,,, the composition of the top arrows and v defines
D, (nLe(Kas, Pa3)). Hence, the result follows from Lemma 4.2. O

84.2. Operations on microlocal Lefschetz classes

Let X; and X5 be manifolds and ¢;: X7 — X7 and ¢2: X9 — X5 be morphisms
of manifolds. For i = 1,2, let K; be a ¢;-graph trace kernel and let A;; be a closed
conic subset of T*X;; with SS(K;) C Ay;.
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Let f: X1 — X5 be a morphism of manifolds. Assume that ¢sf = f¢1, that

is, the diagram
Xq AN Xo

al f |+

Xl —_—> X2
commutes. Since I'y C (¢12)}(T's), we have a natural morphism
(4.16) ®: (¢12)” "k, — kr,.

Then the pair (kr,,®) defines naturally a ¢12-graph trace kernel TKy,, (kr,,
by Lemma 3.7.
Set f:=f x f: X711 = Xoo. We identify X910 with X7192. Then we have

(Wi ™! @ k122) @ T, (kr,, @) = (W7 ®ki22) @ wr, ®kr,

~ kjr‘f X k'pf ~ krf'
We also note that

(4.17) RfiKy ~ Ky o kr,, K, ~ kr; o Ka.

)

External product. Let X5 = pt. We then write X5 instead of X3. For ¢ = 1,2,
let A; be a closed conic subset of T*X;. In this case, we have the composition

morphism
(4.18) MHy, (¢1) @ MHy, (¢2) = MHA, xa, (¢12)-

Taking the 0-th cohomology, we have a morphism

(4.19) MHY, (¢1) ® MHSY, (¢2) = MHY 5, (¢12)-
In this case, we shall write A1 X Ay instead of A; o As.
Set

Then by Theorem 4.3, we obtain the following.

Proposition 4.4. The object K1 R K5 is a ¢p12-graph trace kernel and

(421) ,uLe(Kl X KQ, ¢12) = /,I,LG(K:L, ¢1) X /,LLG(KQ, ¢2)
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Direct image. Let X; = pt. We then write X, X5 instead of X5, X3. Let A1 C
T* X1 be a closed conic subset. Assume that
(4.22) [ is proper on Ay NTx X;.
We set
Fubn—oa (A1) = Ay O TF X1a 0 (6 x,) T (T, X22)
= fafa (A1) N (03 x,) T H(IF,, Xo2) C T* X,
and

(4.23) Juwdr—ds = %MLe(krfaq’, $12): MHQ (¢1) — MH?,L,¢1_>¢2(A1)(¢2)-

Proposition 4.5. Assume that fis proper on A1 NTx,  X11 and set Ay := AN
Tngu. Then the object Rfi K1 is a ¢o-graph trace kernel and

(4.24) PLe(Rfi K1, ¢2) = fupn—son (HLe(K1,61)).

Proof. The assumption implies that A1; X Tf’:lelgg — T* X5 is proper. By The-
11
orem 4.3, K, 9 (w®71 R k122) @ TKy,, (kr,, @) ~ K; ] kpf ~ RfiK, is a ¢o-graph

trace kernel and we have
(425) NLe(RﬁKh (bZ) = /*LLe(Klv ¢1) (CI) NLe(kaa q)v ¢12)- O

Inverse image. Let X3 = pt. Let Ay C T* X5 be a closed conic subset. Assume
that

(4.26) f is non-characteristic for A,.
We set
fromo2(Ag) =Ty, Xio § Ag N (63 x,) T H(TF, X11)
= fafz ' (A2) N (03 x,) " (TF,, Xu1) € T X1,
and

(4.27) 0702 = ule(kr,, @, ¢12) O MHR, (62) = MHG 0 0s (n,) (91).

Proposition 4.6. Assume that ]? is mon-characteristic for Asg and set Ay =
Ao NTR, Xoa. Then the object (wx, /x, ®ki) ® f YKy is a ¢1-graph trace kernel
and

(4'28) MLe((wxl/Xz X kl) ® f_lKQa ¢1) = fﬂ7¢1—>¢2 (MLe(K% ¢2))
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Proof. The assumption implies that TfffX 1122 2a><2 Aoy — T X1y is proper. By The-
orem 4.3, TKg,, (kr;, ®) o (WS ' ®ky) ® Ky is a ¢1-graph trace kernel. Here, we
have isomorphisms
TK g,y (kr,, @) 9 (w5~ ®ka) ® Ko = (w1 8 k1) @ (k) o (W5 ®ky) ® Ko)
~ (W Bh) @ fH((W§ ™ Bhe) ® K»)
~ (w1 k) ® (fTwd w k) © fT K
~ (wx, /x, B k1) ® f1Ks.
Applying Theorem 4.3 again, we obtain
(4.29)  ple((wx,/x, ®k1) ® F Ky, ¢1) = ple(kr,, ®, ¢12) §ML€(K27 $2). O

Tensor product. Let X; = X5 = X and ¢1 = ¢o = ¢. For i = 1,2, let K; be
a ¢-graph trace kernel and A;; C T*(X x X) be a closed conic subset satisfying
SS(K;) C A;;. Assume that

(4.30) A1 NAS, C Ty x (X x X)),
and set

Recall that for a morphism f: X — Y, we set f:: fxf: XxX =Y xY. Since
@6 = 6¢, we have a morphism

(4.32) §7%: MHY, p, (6) = MHQ o, (9).
Composing it with the morphism of external product

(4.33) x: MHY, (¢) @ MHS_(8) — MHS, 44, (),
we get a convolution morphism

(4.34) *: MH] | (¢) ® MH} (¢) — MH3 4, (¢).

Proposition 4.7. Assume that (4.30) holds. Then the object (WS ' Rkx) ® K,
® Ko is a ¢-graph trace kernel and

(4.35) ple((w$ ' Rkx) ® K1 ® Ka, ¢) = pLe(K1, ¢) * uLe(Kz, ¢).

Proof. Since we regard 6: X x X — X x X x X x X as the map (x1,22)
(x1,x2,21,22), we have (5~_1(K1 R K3) ~ K; ® Ky. The assumption implies §
is non-characteristic for A; x As. Thus, the result follows from Propositions 4.4
and 4.6, since wx/x xx = w?}*l. O



100 Y. IKE

84.3. Application to the Lefschetz fixed point formula
for constructible sheaves

Let X be a real analytic manifold and ¢x: X — X be a morphism of manifolds.
We denote by DB _(kx) the full triangulated subcategory of DP(kx) consisting
of R-constructible complexes. Since R-constructible complexes are cohomologi-
cally constructible, a pair (F,®) of an object F € D} (kx) and a morphism
P: qb;(lF — F gives naturally a ¢ x-graph trace kernel TKy, (F, ®@).

Let Y be another real analytic manifold and ¢y : Y — Y be a morphism. Let
f: X — Y be a morphism of manifolds which satisfies ¢y f = f¢x. Then we have
a natural morphism

Oy REF = 6y REROx 63 F = 6y Roy REF = REF.
We denote this morphism by R f.®.
Proposition 4.8. Assume that f is proper on Supp(F). Then
(4.36) pLe(REF,Rfe®, dy) = fu.ox ooy (HLe(F, @, dx)).

Proof. By assumption, Rf.F € DR (ky). Hence, the pair (Rf.F,Rf.®) gives a
¢y-trace kernel TKy, (Rf.F,Rf.®). Then we have an isomorphism

(4.37) TK4, (Rf.F,Rf,®) ~ RATK,, (F,®).
Hence, by Proposition 4.5,

pLe(Rf.F,Rf.®, ¢y) = uLe(RATK (F, ®), dy)
= fH7¢'X_>¢Y (/’(‘Le(Fa(I>7¢X)) O

Note that the above formula is similar to that of [MT10].
Applying Proposition 4.8 for Y =pt and the natural morphism f=a: X — pt,
we obtain

Corollary 4.9. Assume that Supp(F') is compact. Then
(4.38) tr(F, ®) = a, (uLe(F, @, ¢x)),
where the left hand side is defined by

(439)  tr(F®):= > (~)Ptr(HP(X; F) — HP(X; 65 F) & HP(X; F)).
PEZ
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