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Singularities of Solutions of Quasilinear Partial
Differential Equations in a Complex Domain

by

Keisuke UCHIKOSHI

Abstract

We consider the Cauchy problem for a quasilinear partial differential equation of an
arbitrary order in a complex domain. We assume that the initial data have singularities
along complex submanifolds. We show that if the characteristic roots are distinct, the
singularities of the solution propagate along the characteristic complex submanifolds.
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81. Introduction

Let n > 1 and m > 2. We denote z = (xg,2') = (2", 2,) = (xo,2",2,) =

(0, 21,...,2,) € C"L. For a function u(x) we denote Viu(x) = (9%u; |af < j).
We consider a quasilinear partial differential equation of the form
(1) E(z,VI'u) = Z Eo(x,u)0%u + E' (2, V" u) = 0.

|a]=m

Let Ug € C and U = (Ug; |8] < m — 1). We assume that E, (x,u) is holomorphic
at (z,u) = (0,u°) and E’'(x,U) is holomorphic at (z,U) = (0,U°). For functions
u(z) and f(z), we denote
Eluf = Z Eo(z,u)00 f(z) + E'(z, VI u).
lee|=m

We consider the following Cauchy problem in a complex domain:

E(z, V™) = 0,
91 u(0,2') =u;(2'), 0<j<m-—1.

(2)
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Let Q = Q(r) = {z € C"™!; |z] < r}, and let
Qr)oQ°=Q%r)=Q(r)N{zg =0} D Z =Z(r) = Q°(r) Nn{z, = 0}.

We assume that the initial values u;(z’) are holomorphic on the universal covering
space R(Q°\ Z) of Q°\ Z. More precisely, we define

O(R(Q°\ Z)) = {holomorphic functions on R(Q°\ Z)},
OIIUR(Q°\ Z2)) = {f(2) € O(R(°\ 2)); 8% f(«') is bounded if |o/| < j — 1,
and 2202 f(z') is bounded if |a/| = j}

forje N=1{1,2,...}and 0 < ¢ < 1. The set 07~9(R(02°\ Z)) consists of holomor-
phic functions on R(2°\ Z) which can be extended to functions on R(2°\ Z)U Z
with Hoélder continuity exponent j — g (see [11, Chapter 13, Proposition 8.7]). We
remark that if f(z') € O'179(R(Q°\ Z)), then we can naturally define the trace
flz1,...,2y—-1,0) on Z.

We assume the following conditions A1-A4 hold:

A1l. The initial hypersurface {zy = 0} is noncharacteristic: E, = 1 for a =
(m,0,...,0).
A2. We have u; € O™ I79(R(Q°\ Z)) for 0 < j <m — 1.

Therefore V™~ 14(0) is naturally determined by the initial values of u(x). We
define u° = u(0) and U°® = V™14 (0). We assume the following:

A3. E,(x,u) is holomorphic near (z,u) = (0,4(0)), and E’(z,U) is holomorphic
at (z,U) = (0, V~1u(0)).

We want to show that the singularities of the solution to (2) propagate along
the complex hypersurfaces Zi,...,Z,, which start from Z at xy = 0. For this
purpose, we define the principal symbol o(F)(z,u,§) for & = (&,...,&,) by
0(E) =3 |aj=m Falz,u)”. We finally assume the following:

A4. Let ¢° = (0,...,0,1) € C". The equation o(E)(z,u,&) = 0 has distinct
roots §o = pj(z,u, &), 1 < j <m, at (z,u,&) = (0,u°,£°).

We consider the following characteristic function x;(z) for 1 < j < m:
(3) Ono 35 (x) = pi (2, w(w), o iy (), 1i5(0,2") = wn.

We want to assert that the solution w is holomorphic on {x; # 0,1 < j < m}, but
we have the following difficulty: The characteristic equation (3) depends on the
solution u(z). Since the solution u(x) is multi-valued outside of the characteristic
sets Z1, ..., Zm, the same should be true for the characteristic function r;(z) itself.
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In other words, the characteristic set Z; may be different from one of the branches
of the solution to another (see [12, Section 6] for an explicit example of such a
phenomenon). Taking this difficulty into account, we shall make a precise definition
of the characteristic sets and formulate the main results exactly in the next section.

Let us briefly review the history of this problem. For a linear equation, there
are many papers studying this problem. We only refer to [1, 6, 7, 14], where one can
find further references. For semilinear problems E. Leichtnam [8] and A. Nabaji
and C. Wagschal [10] gave a similar result. For a quasilinear equation of order two,
this problem was studied in [12, 13]. In the present article we consider a quasilinear
equation of an arbitrary order. This is important not only theoretically but also
in applications.

Theoretically, a second order equation is very special in that we can apply
the hodograph transformation. This means that we can find a coordinate sys-
tem y = (Yo, . - ., Yn) in which the equation takes the form 850 — a;n + (lower order
terms). Using this coordinate system, we can easily calculate the singularities along
{yn = yo} (see [9] for the hodograph transformation). Unfortunately, this method
is not applicable for higher order equations. Furthermore, the domains of definition
for solutions of higher order equations have complicated geometrical structure. Let
D be the domain of definition for a solution. Later we shall see that the Poincaré
group Hi(D) is equal to Z x (Z*(™=1). Here Z*(™~1) denotes the free group gener-
ated by m—1 elements. If m = 2, then Hy (D) = ZXZ. 1t D = {yn # Y0, Yn  —Yo,
we can identify g € R(D) with (y, arg(yn — o), arg(yn + o)) € D x R x R. There-
fore it suffices to calculate the branches of the solution for each arg(y, — yo) and
arg(yn + yo). For higher order equations the situation is completely different, and
we shall discuss the geometry of the domain of definition.

For applications, some important equations such as the compressible Euler
system for perfect fluids reduce to higher order equations. J.-Y. Chemin [2, 3, 4]
studied the propagation of singularities of higher order nonlinear equations in a
real domain, providing a result covering the compressible Euler system. In the
forthcoming article, we shall give an application to the compressible Euler system,
giving a new result on singularity propagation. See also [5] for this problem for the
incompressible Euler system.

Plan of the paper. In Section 2, we give the precise statement of the main result.
In Section 3, we rewrite the equation in terms of a characteristic coordinate system.
In Section 4 we consider a complex domain in which we shall solve the equation,
and in Section 5 we define two indicators I(y),d(y) describing the geometry of
the complex domain. In Section 6 we define some function spaces using these
indicators, and in Section 7 we solve the equation in these function spaces. In
Section 8 we study the structure of singularity sets.
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§2. Main results
Let r,R> 0,1 <j <m, and a; = p;(0,u(0),&"). We define
Vi = Vj(R,r) = {x € Qr); [en + a;zo| < Rlxol},
Vi = Vj(R) = {z € Qr); lvn + a;x0| < Rlzol},
QG =URr)=r)\ | ViR

1<j<m

(see Figure 1(a)). We assume that 0 < R < 1, and thus V;(2R) N V;(2R) = 0 if
j # k. We shall find the true singularity set Zy in Vi (R,r) for each k, and thus
Vi(R,r) is a neighborhood of the singularity set. Let kg € {1,...,m}. Without
loss of generality we discuss the case kg = m.

x,eC X €C

Imx,

Imx,
n Ql(R’I’)

\

Vm(R.r) V](R,r) Sm(r) S_,(r)
(a) (b)
Figure 1. (a) V;(R,r) and Q1 (R, 7); (b) S;(r) and =;(r).

We next define
S; = 8;(r) ={z € Qr); z,, + a;zo = 0},
=, j(r) = the convex hull of S; U S,,
€ Qr); xy = —(0a; + (1 — )a,)xo for some 6 € [0,1]},
n= U =0

1<j<m—1

(1]
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)

T
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(see Figure 1(b)). Let I' C € be a continuous curve starting at 2°= (0,...,0,r/2)
€ Q; and ending at an arbitrary point x € ;. We denote the homotopy equiv-
alence class of T' in Oy by [I']. By definition, R(€)) is the set of those homotopy
equivalence classes, and consider the natural projection 7 : R(Q1) 3 [I'] — z € Q4.
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We denote the point [I'] € R(£2;) also by & or simply by «, if there is no confusion.
For each Ny € Z; = {0,1,2,...} we denote by Rn,(£21) the set of all homo-
topy equivalence classes [I'] for which we can choose I' in such a way that TN =
consists of at most Ny points (If {z(0); 0 < 6 < 0°} is the arc length parametriza-
tion of ', then z(f) € I' N = for at most Ny values of 6.) Therefore we have
Ro(21) CTR1(21) CR2() C -+ C Ry (1) S R(N).

Definition. Let Ny € Z,. We say that a function f(z) is of type Ny if there exist
R,r > 0 such that f(x) is holomorphic on Ry, (21 (R,7)).

Theorem 1. For any Ny, there exists a solution to (2) of type Ny.

We next investigate how to extend the solution inside of the singularity neigh-
borhood V,,, (R, r). Roughly speaking, we want to assert that there is a singularity
set Zpy C Vi (R,7) outside of which the solution is holomorphic (see Figure 2).

X, eC

Z(po)
N

N\

Re x,

Im x,

QiR 1)

/// \\

BN
Va(RD) V(R

Figure 2. Singularity set.

However, if we consider different branches of the solution, then the singularity set
may be different. Assume that pg(2”) is a holomorphic function on R(V,,(2R, 7))
satisfying |po(z”)| < R|xo|. Since po(z”) is independent of z,, it is in fact holo-
morphic on the universal covering space of {z” € C"; |2 < 7, zy # 0}. We
denote Z(po) = {Z € R(Vin(2R,7)); , = po(z”)}. Note that the projection of
Z(po) onto C"*! is contained in V;, (R, 7). Let m : R(V;n (2R, 7)) — Vi (2R, 7) be
the natural projection, and let ! € Ry, (Q1 (R, 7)) N7~ (V,,(2R,7)). Note that
each connected component of R(Q1(R,7)) N7~ 1(V,,(2R, 7)) is homeomorphic to
R(V,,(R,7)), where

V! (R,7) = Qi (R,7) NV (2R, T)
={z € C""Y |z| < 7, Rlzo| < |Zn + amzo| < 2R|z0|}.
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0

R(Q,RMNTVm(2R M)
) ¢ “-
RVa(Rr, X)) l RR(Vn(2RM\ Z(po))
T

82
—-

RVm(2R, M\ Z(po)

Ve(R, 1)

@ —
0=

Vr(2R,r)

Figure 3. Structure of the universal covering space.

We denote the connected component of R(Q1(R,r)) N7~ (V,, (2R, 7)) con-
taining Z* by R(V,,(R,r,')). Then we have R(V,.,(R,r, 7)) C R(R(Vin (2R, 7))\
Z(po)). We can make the following identifications (see Figure 3):

R(Vm(2R,7)) 3 T — (z,argxo) € Vi (2R, 1) X R,
R(R(Vy (2R, 7, )\ Z(po)) 2 & v (2, arg zg, arg(z, — po)) € Vin (2R, 1) x R2.
This yields the following natural mappings:
RR(Vm (2R, 7))\ Z(po)) = R(Vin (2R, 7)) \ Z(po) = Vin (2R, 7)
w w W
(x,arg xo, arg(zy, — po)) +— (x,arg xo) — x

If Ny € N, we define

S (Vin (R, 3) \ Z(p0)) = {<x,arg 20, ar8(n — p0)) € Vin (2R, 7,31 x B2

ar < o ) ar < z(l) )‘ < N, }
_— ) = —_ To.
B\ —pol@)) el = poa) ’

Definition. Let Ny € N. We say that a function f(x) is of type (Np, m) if there
exist R, > 0 such that the following conditions are satisfied. First, f(z) is holo-
morphic on Ry, (Q1(R, 7)), and for any &' € Ry, (Q(R, 7)) N7 (Vin (2R, 7)),
there exists a holomorphic function po(z”) on R(V,,(2R,r,7')) satisfying |pg(x")]

< R|xg|. Furthermore, we can analytically continue the branch of f(x) at ! to
SNy (R(Vin (2R, 7, 31)) \ Z(po)). We have denoted by Z(pg) the singularity set cor-
responding to Z!. Here the constants R, may depend on Nj.
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Definition. Let No,k € N and 0 < ¢ < 1. We assume that f(x) is
a function of type (Np,m). We say that f(x) is of type (No,m,k — q) if
there exist R,r > 0 satisfying the following additional condition: Let &' &
Ry, (1 (R, 7)) N7 (V, (2R, 7)). We consider the corresponding branch of f(x)
extended to Sy, (R(Vin (2R, 7,21)) \ Z(po)). If |a| < k, then

—=

102 f(@)] < Clay — po(a”)| #1790+ (o) = max(|a] — k +¢,0)

for some C' > 0 on Sy, (R(Vin (R, 7, 31))\Z(po). Here po(x”') is the function defined
above.

Remark. From now on, we denote x,,(x) simply by x(z). If f(x) is of type
(No,m, 1 — q), we can define the trace of f(z)|z(,,) on the singularity set Z(po).

Theorem 2. For each Ny € N, there exists a holomorphic solution u of (2) and k
of (3) for j =m of type (No,m,m — q). Furthermore, £ does not vanish at any
point in its domain of definition, and k(x)|z(,,) = 0. In this sense we may write
Zm = Z(po) = {7 € R(Vpu(R',7,3Y)); k(%) = 0}.

Remark. If E(z, VI'u), the initial values u;(z"), and all the characteristic roots
pi(z,u(x),£’) are real functions, then the solution w(x) and the characteristic
functions k;(x) are also real valued. Considering uji(x’) = lim. o u;(z", z, +
ey/—1) for real x, we can define the natural branch u*(x) and /fj[ (x) for real x.
Then the solution u*(z) is real analytic on {x € R"*!; |z| < 7, mf(x) # 0 for
1<j<m}.

83. Deformation of the equation

If u(z) satisfies condition (2) and k(x) satisfies condition (3) for k = m, we define
y =", yn) = (2", k(x)), which we regard as a new coordinate system. We next
rewrite the equation F(z, Vu) = 0 using this coordinate system. If we can define
the inverse function z(y) = (y”, x,(y)), then it is easy to see that

(4) = _ayj'rn/aynx'ru ]#TL,
’ 1/ayn,$na Jj=mn,
and thus
Oy, Tn )
ayjf_ 8y].r aynfv Jj#mn,
(5) ax]f = 1 Yntn

Oy, [, j=n.

Oy, Tn
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Therefore, considering x,, = z,,(y) as a function of y, we can rewrite (3) as

(6) _ayo‘rn = /’Lm(y> u(y), g)l&’:(fﬁyl Tp (Y)sers =0y, _12Zn(y),1)s xn(O, y/) = Yn.

We denote u(z(y)) also by u(y). Weset W =Wy a; 1<k<2, |a|<k-1)
€ C"3. We define W = (Wp ; 1 <k <2, |a] <k—1) e C"3, where

0 u(0), k=1, l|af =0,
Wka -
022 (0), k=2, 0] <1.

Let u(x) satisfy (2) and x,(y) satisfy (6). Let F(y, W) be a holomorphic function
on a neighborhood of (y, W) = (0, W°), and set ¢(y) = F(y,u(y), V,zn(y)). We
denote the set of such functions c(y) by P°. If j € N, we denote by P? the set of
polynomials of the components of (Vu, VJx,) with coefficients belonging to P°.
For a function f(y) we deﬁng PI(f) = {2 ja1<j Ca®)Oy [ cal) € Pi}.

If j > 1, we denote X7 = (Xp0;1 < k < 2, |a] < j). We define X° =
(X o 1 <k <2, |al <j) where Xp | = 07vi(0). Let F(y, X) be a holomorphic
function on a neighborhood of (y, X) = (0, X°), and set ¢(y) = F(y, Viv(y)). We
denote the set of such functions c(y) by 7. Therefore P/ C Q7.

Let A = Ay --- Ay, where A; = 0y, — (aj — @y, )9,y,, . The aim of this section is
to prove that we can approximate E(z, VI'u) by A in the following sense:

Proposition 1. There ezist Qj.o € P° for j = 1,2 and |a| = m such that

E(l’,v;nu) = Au—l— Z Ql,aasu"r Z QZ,aagl‘n +Ql(y7v21—lu,v;n—lxn)’

|a]=m |a]=m

where Q' € Q™! and

Q1,0 =0, a=(m,0,...,0) or (0,...,0,m),
(7) [Ql,a(ya u(y)7 Vgl,l‘n(y))]yzo = 07 ag + oy =M,
QQ,Q = 07 ap + o =M.

We prepare some results.
Lemma 1. If |a| > 2, then

0ok = Z Aa[g@gxn modulo P11
|B]=lc|

for some Ao € P°. Furthermore, if 3=(0,...,0,|al|), then Aag=—(0:k)*/0y, Tn.-
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Proof. We first consider the case |a| = 2. Let 03 = 0,0, , and assume 0 < j, k <
n — 1. From (4) and (5), we have

9, i
8‘;/{ = awj (8@@"{) — (ayJ y; L ayn) ayka?

a Oy, Tn Oy, Tn
0y, 0y | Oy w0y, 0y, 10 Oyn - 0y,0y, k0 Oytn - Oy ay - Oy 1y
© Oyaa (Oy, xn)? (O, n)? (Oy, zn)?

2
_ 0y, 0y n Opyk- 0y, 0y, kn Ouyk- 0y 0y, T Oz;k - Ogy k- Oy Ty

)

0y, Tn 0y, Tn 0y, Tn Oy, Tn

which proves the lemma in this case. We can handle the case j = n or k = n

similarly.

We next assume that | > 3 and the conclusion is true if |o| < I — 1. We
consider the case |a| = I. We assume that 0F = 0,,0] where |y| = [ — 1. Let
0<k<n-—1.Then

« Y — 8ykxn 16
Opk = 05, (07K) = Z Oy, — o =z Ay, (Avﬁayxn)
181=II Ynm
Oy, T,
= > (Away,@agxn_ % -Ayﬁamaga:n>

181=I1

modulo P'~!, from which we obtain the lemma. We can handle the case k = n
similarly. O

Lemma 2. We have E[uls=}",, _,, A,05 ©n(y) modulo Q™1 for some A!, e PP.
Furthermore, if ag # 0 or a,, = m, then AL, = 0.

Proof. Using the notation of Lemma 1, we have

Elulk = Z Eo(w,u)Aapdlz, = Z ALz,
|a|=|8|=m |Bl=m
modulo Q™~1, where Aj = Yalem Ealz,u)Aag. It B = (0,...,0,m), then we
have Ay = =3, 1_, Ea(2, u)(9:K)* /0y, xn = 0. If |3] = m and Sy # 0, using (6)
we can rewrite 85 T, in the form

6‘59:n = Z A%, 0], modulo pm-t
lv|=m
Yo=0
YnFEM
for some Agw € PY. Therefore we can delete (‘35 T, with By # 0, and we obtain the
conclusion of Lemma 2. O
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Lemma 3. If |a| > 2, then

05 f(x)

> R ,(a K)1OPON f + 0%k - Oy, f modulo PII71(f).

Bty=a
Bn=0

The proof is almost the same as that of Lemma 3, and we omit it.
Proof of Proposition 1. From Lemmas 2 and 3, we have

E(z,Vyu)= Y Ba(z,u)du

|a]=m

|
= > e )@ 00+ Bl 0
\ﬂl;rhl:m o

n=

modulo @™ 1. From Lemma 3 we have

me ZQla yu+ ZQ2O¢8 L.

|a]=m |a|=m

Here 2, denotes A], of Lemma 2, and

= B ) @),

11
S(@) By
where S(a) = {(8,7) € Z}™ x Z™; B = (a”,0), [y = an}. If a = (m,0,...,0),
then S(a) has a unique element (,8 7) (a,( ...,0)), and we have Q1 =1
Similarly we can prove Q7 , = 0if a = (0,...,0,m) and Q2. = 0 if ag + v, = m.

Furthermore, we have

Z [Qlll,(j,o,...,o,k)néni]y=0: Z [Ea(ng+,um(a:,6/),fl)a]wz(),g':(o,_“70,nn)

jt+k=m |a]=m

= H [770_H'j(xvEI)+,u7n(x7gl)]93:0,5’:(0,...,0,7]"):O~

1<j<m

Comparing the coefficients, we get [QY ,(y, u(y), Vizn(y))]y=0= 0 if ag + oy = m.
Denoting 37, _,, @1 o0yu = Au+ 37, _,, Q1,005 u, we obtain the conclusion of
Proposition 1. O

84. Characteristic coordinate system

We assume that M > 0 is large, 0 < R <« 1/M, and each of Ry,..., R,, denotes
either R or 0. We define a; = p;(0,4(0),£”°) as before, and b; = a; — a,,. We set

Qy = {y € C"L; |y, + bjyo| > Rilyo| for 1 < j < mj}.
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We want to solve (1) for y € Qo, and we need to study some of its geometrical
properties. For 1 < k < m we define

\I/k . (Cn+1 Sy (yll7yn +bky0) c (CnJrl'
We denote z = U*(y) and 7 = 20/2, = yo/(yn + bryo). Then
(8) PF iy 3y S (1,7) €wP x €T x (C\ {0},

where w¥ = {7 € C; |1+ (b; — bp)7| > Rj|7|, 1 < j < m}. For k = m, we denote T
also by 0 = yo/Yn.

We can illustrate these domains as follows. If ( € C and p > 0, we define
B((,p) ={2€C;|z—¢| <pyand B((,7) ={z € C;|z—(| <r}. Ifr =00, we
set B(¢,p) = B(¢,p) = C. If s = 0, we define B((,1/s) = B((,1/s) = C. Finally,
we set

bj — by, R;
B’?:B( J ) J ) for j # k,
3T\ =P =R by — b — B2

and denote its closure by B}“. It is easy to see that —1/(b; —by) € Bj’? and we may
assume BF N Bj’-c = if 7 # j. By a direct calculation, we have

w* = B(0,1/Re) \ | ] BY.
J#k
In Figure 4(a) we illustrate the following case: k = m = 4, b; — by, = e2iV=1In/3

(1<j<3), R =--=Ry=R. We define

" 1 Q2 3y yo/(yn + bryo) € W,

PP F Wk 3 R (y) = oF (y) € WF

Im7 . Im¢c
Bi G4
]
ﬁéx ~1/(b-by) (D‘* >/</
1
< Re 7 D4 Re ¢
4
&/Z D, 3
B(0,1/R4) 1 Do

(a) (b)
Figure 4. (a) The domain w¥; (b) the partition of C.
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Denoting 7 = ¢*(y), we have ©* *(7) = 7/(1 + (b — by)7). We define
Dij ={y € Qa3 |yn + aigol < lyn +ajyol}, i # 7,
D; = (") Dij,
J#i
G == QQ \ U .Dj,
1<jsm
and
Dy = ¢"(Dig) = {7 € C; [L+ (b = be)7| < [L+ (b = bi)7l}, 5 # 3,
k_ ok _ k
Di =" (D;) = ﬂDija
J#i
Gr=¢f@=c\ |J Db
1<j<m
We have the partition DfU- - -LIDF LIG* = C (see Figure 4(b)). Roughly speaking,
7 € D} means that 7 is near —1/(b; —b;), and 7 € G* means that 7 is near none of
—1/(b; — bi). In Figure 4(b) we illustrate the following case: k =m =4, b; — by, =
e2V=17/3 (1 < j < 3). We also note 0 € w*.

Lemma 4. (i) If |b; — bg| > |bj — by|, then
—b; + b, |b; + by )
Df =B SR : - :
N (M—mPﬂ@—mzm—mP—@—mP

(11) [f |bz — bk| = |bj — bk|, then D,Z = {T € (C, Re((bl - bj)T) > 0}
(ifi) If |b; — bi| < |bj — b, then

Dk.C\B< “bitb; i +by| )
17 .

[bi — bi|* — b — b[*" b — b[* — [bj — by[?
Proof. We have
Te€D;; & |1+ (b —bp)T| < |14 (bj — by)T]|
& (|bi —bil* = |bj — b|*)TT + (b — bj)T + (b; — bj)T <0,
and we can easily prove the lemma. O

Lemma 5. If j # k, then —1/(b; —by) € Bj’-“ C D;-“, and D;-“ is a bounded domain.
Its boundary 8D;-C 1s the union of finitely many circular arcs or line segments, and

it is a continuous curve surrounding —1/(b; — by).

Proof. Since R is small, we deduce the first statement from Lemma 4(i). Trivially
we have an =Uig AT € Gy [T+ (bi = bi)7[ = [1+ (bj — bie)7[, [1+ (b — by)7| <
|1+ (b — bg)7| for any I # i}. This yields the second statement. O
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Lemma 6. Let 7 € Df and let X(7) = {07; 0 > 0}. Then there exists 6y > 0
such that X (1) N D¥ = {07; 0 > 6,}.

Proof. We have Df = ﬂ#k D,’gj. By Lemma 4(iii), each D,’jj is the complement
of a disk whose boundary contains the origin. Therefore there exists some ; such
that X (7) N D,]gj = {07; 0 > 0;}. Hence X(7) N Df = {07; 60 > 6y} with 6, =
minj;ﬁk Qj . O
Definition. If 7 € DF, we define 7¢ = fo7 for the above 6 (see Figure 5(a)). If

7 € D} for j # k, we denote 1 = ©/*(7) € Df. Then we have defined 1 for this
L E D,’g, and we set 7¢ = "7 (1g). If 7 € G¥, we define 7 = 7.

Im7T

1
’_\ Re T

( ( .\
< Re T ==
\
Q_/ \ ( ‘r‘ ——F%L
N Z-G

Y,
AN

[

(2) (b)

Figure 5. 7 and ~*.

Let 7 € D¥ for j # k. Since ¢7*(7) € D, the four points 0, 0" (7g), " (1)
and oo lie on the same line in this order. This means that the four points 0, ¢, T,
1/(bx — b;) lie on the same circular arc (or the same line) in this order (see Figure
5(b)). If kK = m, then we denote 7¢ also by o¢.

We say that a continuous curve v C w™ from 0 to o is a canonical curve if it
satisfies the following conditions:

(i) v =1 + 72, where y; C G™ is a continuous curve from 0 to og. We assume
that ~; is the shortest curve among the curves contained in G™ belonging to
the same homotopy class.

(ii) If 0 € G™, then v, = 0.

(iii) If o € D}, then 2 is the segment from o to o of the circle (or the line)
passing through 0,0¢,0, —1/(b; — by,).

If v is a canonical curve from 0 to o, then:

(i) *™(y) = 4% = 4F + 1%, and 4¥ C G* is a continuous curve from 0 to

16 = o™ (0g).
(ii) If 7 = pF™(0) € G*, then 5 = ().
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(iii) If 7 € Df, then ~% is the segment from 7¢ to 7 of the circle (or the line)
passing through 0, 7¢, 7, —1/(b; — by).
In any case, ¥ C G is a continuous curve from 0 to 7g, and 4 is a circular arc
or a line segment from 7¢ to 7.
We next explain the meaning of these curves. From (8), we have

m—1 times

—
Hl(Qg) = Hl(wk) X Hl((C\{O}) = (Z* *Z) X Z,

for each k (here * denotes free product). This means the following: Let I' C Q5 be
a continuous curve from 3° € Q2N ({0} x C") to y* € Oy and let 2° = Uk (y°), 2* =
U (y*). Then T is homotopically equivalent to I'*:* 4+ T*! in Q,, where

(a) k(%) is a continuous curve in the initial hyperplane ¥¥(Q5) N ({0} x C")

from 2° to (0,27,...,2%);

(b) WF(THFL) C Cx {(2f,...,2)} is a continuous curve from (0, 2%, .., 2}) to z*.
We may assume WF(T%1) = {(72%, 25, ...,2%); 7 € ¢*(7)}, where v is a canon-
ical curve.

In this sense, the homotopy equivalence class [I'] is essentially described by a
canonical curve v, neglecting I'*0 in the initial hyperplane. We also note that I'*:!
is a characteristic curve for the operator Ag. There are m ways of this description
corresponding to the choice of k € {1,...,m}. It is not clear whether specifying a
point y*, we can use the same curve = in the above discussion for 1 < k < m. We
have the following result.

Lemma 7. In the above discussion, each T*1 is described by the same canonical
curve .

Proof. For k = m, let us choose a canonical curve v as above. Then I'" =
0 4 T8 where T™0 C QoN ({0} x C?) and T™! = {(oy%, y5, ..., y)); 0 €7}
It follows that W*(T™) = WF(T™0) + Uk(I™1) where
WEIE™Y) = {O (0, ¥i, - Yno1:¥n); 0 €7}
={(oyn/(1+bro),yis - yn 1 (L+ Do)y ); 0 €7}
={(ym vty vnnyn /(L= b)) 7 € BT}
Here 7 = "™ (o) varies from 0 to 7*. Since we can describe 3 in the form of a

direct product as in (8), I'"™! is homotopically equivalent to IT'"™2 4 T'™3 in Q.

where
TET™2) = {(0,y],.. .. yh_ 1,y /(L= 7)) 7 € Q5™ ()],
TE@™3) = {(ryh,yts - yh_1. U /(1= bm™)); T € ™ (7))
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We have y} /(1—by7*) = 2%, and therefore I3 = T'*:1. On the other hand, I'"™? is
contained in the initial hyperplane. Therefore I'** is homotopically equivalent to
9 4+ T2 in the initial hyperplane. Neglecting curves in the initial hyperplane,
"1 and I'®! are described by the same canonical curve 7. O

85. Properties of a canonical curve

In this section, we always assume the following condition. Let y* € Qq, 0™ = y{ /vy,
and let o be a point on a canonical curve v from 0 to o*. Let 1 < k£ < m, and
* =k (0%, T = "™ (o). Furthermore, we assume

=U(y") = (25,215 2nm1s20) = (Y0 Uis - Yn1s U+ DkYG):
2=(T20, 2], 2 1, 2n ),
y=(UN"N2) = (125,205, 2, (1 —ber)zl).
This means that we regard y* as a fixed point, and y as a point moving along a

characteristic curve I'*! in Lemma 7.
Let M > 0 be large. For 1 < j < m, we define

7 =),
73\4=s0 ()0{767 7| < M},
M (™) = the length of ~7,
(o’*) = the length of 7M,
ml(o®) = Z N, (o)

1<j<m

For each j, |y +b;y;| M (0*) denotes the length of the characteristic curve W/ (I'7!)
in Lemma 7, and thus the distance (not in mathematically strict sense) between
yo = 0 and yo = y;, considered in the universal covering space.

Remark. We have defined the canonical curve expecting that if y is moving back-
wards from yy = y§ to yo = 0 along I'*1 then the solution behaves in a good
manner, in the following sense:

i) The distance maxi<i<m |yn + b;yo| N (o) between the initial hyperplane and y
<< j
is decreasing (from o* to 0).

(ii) The distance mini<j<m |yn + bjyo| between the singularity set and y is in-
creasing.

Unfortunately, these are not literally true. For example, let us consider (i). If
j = k, then by assumption |y, + bryo| = |y + brys| and trivially M (o) < M (o).
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Therefore (i) is true for j = k. However, if j # k, then it may happen that
lyn + bjyol > |y + bjyg| and (i) may be false. We shall see that (i) and (ii) are
true after modifying these indicators (see Propositions 2 and 3 below):

Definition. We define the modified indicators by

. 5 . .

(y) = "M Oy + byl N (0), ly) = max P(y),
. g5 o . .

@ (y) = e MOy, + byo| - Ril(y),  d(y) = i @ (y)-

Then we have the following result.
Proposition 2. We have I(y*) — I(y) > M=%y + bryg|(\F (o) — A\ (0)).
To prove Proposition 2, we first prepare two lemmas.

Lemma 8. Assume |p/0™(c*)| > M for some jo. Then there exists some j # jo
for which 17 (c*) > 170(c*).

Proof. From |p70™(0*)| > M we obtain @™ (c*) € ng (see Figure 4(b)). Let
0%, be the point defined in Section 3 (see Figure 5). Then ¢/°™(c,) belongs to
the closure of D7’ N DJ° for some j # jo. This means

(9) 1+ (b — bjo )™ (08)| = 1.

It suffices to show the following two inequalities for this j:

(10)  (V(0™) = N (oe))lyn + bjyp| = (W (0) = X0 (08)) |y + biovol
(11) N (o)l + biys| = N (08)lyn + bio¥a ).
We denote ¢i0™(0) = 1, @I0™(0*) = 1*, pIo™(0%,) = 1% From (9) we obtain

' L 3 v
L+ (b —bjg)e* 14 (bj —bjp )i

N (") = N(0g) = "™ (0") = "™ (0g)] =
_ ‘ v
L+ (b = bjo)e* |
Since y; + by = (14 (b; — bj,)¢*) (v + bj,y5), we have
(M (@) = N (&)l + 5] = |0 — w6l -y + biowi .
From the assumption |¢*| > M we have |[t* — 5| = Mo(0*) — Mo(of,) (see Fig-
ure 5(a)), and we obtain (10).
We next show (11). We have M (0f,) = [1€ |dp?7°(1)|. Here ¢ moves on GJ0
and so |1+ (bj, — b;)e| < M4 (see Figure 5). It follows that
‘d@j’jo(b) d( L )‘ _ 1 > 2
de de \ 1+ (b — bjy )t 11+ (bj, — bj)ef* —
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Therefore M (o) > M~Y/2 [16 |di| = M~Y/2)1(5%,). On the other hand,

[+ B39 | = 1(1+ (b5 — bjo)) (s + jo)| = M [y + bjo g -
Therefore (11) holds. O
Lemma 9. (i) If |¢?"(0)| < M, then |1+ (b; — bj)p?™ ()| < M/,

(ii) If [¢"™(0)| < M, then |1+ (bi — bj)p?™(0)| = M1,
Proof. (i) If |¢7™(o)| < M, we have
11+ (b — b)) ™(0)] <14 M|b; — b;| < M54,

(i) If |¢*™(0)| < M, from (i) we have

L+ (b = b ™ (@) = [1+ (b = b)) ™ = M5, =
Proof of Proposition 2. We need to consider the following cases:
(a) |@?™(c*)] < M for any j.
(b) |¢?™(o)| = M for some jo.
(c) |pio™(a*)| > M for some jo and |p?™ ()| < M for any j.
We first consider case (a). Let 1 < j < m. In this case o also satisfies the same
condition |¢?™(c)| < M automatically (see Figure 5). It suffices to show
(12) Py) SP(Y) = lyn + byl (A (07) = A*(0))-
From Lemma 9 we obtain

Yn + bij
Y +by5

_ ’1 (bj —by)(r —7%) r<14 M5|T* — < eM5(A1\/I(O'*)_/\M(O')).
T b | <

MMy (o

Therefore e Nyn + bjyo] < eM A (@) |gx 4 bjys|, and it follows that

(13)  V(y) = MMy, 1 byl (o) < MMy 4 by N (o)
SU(Y") = lyn + bigg| (N (o) = N (0)).
On the other hand, from Lemma 9 we have

LT

() = [+ (b = b)7| 72 = M,

Therefore

(14) N(o%) =N (o) = /T |dp?™ (7)) = MM (%) = M (o).

T
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We also have

(15)  Jyn + 0551 = (14 (b = b)) (s + bryg)| = M2y, + bryg .
From (14) and (15), we get

(16) (W (™) = N (o))lyn + bjys| = M7 (A*(0™) = X(0)) |y, + bryo)-

From (13) and (16) we obtain (12) in case (a).

We next consider case (b). In this case, the number jj is uniquely determined
and o* automatically satisfies the same condition |70 (a*)| > M for the same j.
By Lemma 8, we have [(y) = max;.j, I’ (y), l(y*) = max;.;, I/ (y*). Therefore it
suffices to show (12) for j # jo. We consider the following subcases:

(b1) jo # k-
(b2) jo = k.

In subcase (bl), if j # jo, k, we can apply the same reasoning as in case (a),
and we obtain (12). If j = k, then (12) is trivially true (see the remark at the
beginning of this section). Thus we obtain (12) if j # jo.

In subcase (b2), assume j # jo (= k); we will show (12). We define (b; —by)T =
reV=1% with 7 > M'/? and 0 < 6 < 27, and we set f(r) = |1+ (b; —by,)7|. We have
f(r) = 1+reY=1e| = (142r cos a+r2)"/2, and thus f'(r) = (r4cosa)/f(r) > 1/2.
It follows that

[ + 05961 — lyn + bjyol = (11 + (bj — bi)7"| = [1+ (b5 — be)7]) Y5, + by

> [bj = be[ - |7 = 7] - |yp, + byl /2
> (N¥(0™) = A (0))lys + bryg| /M.

Therefore
(y*) = MA@ |y L piys | N (o)
> M@y by | N (07) + (N (07) = A¥(0) |yl + by |N (%) /M
> 1 (y) + (AF (™) = M (0))]yss + by | (o) /M.

Here M (0*) > |@?™(0*)| = |(F™(0*)) 7L + b — br|™* > M~1. Thus we obtain
(12) in case (b2).

In case (c), there exists a unique point o' € v which satisfies |70 (o1)] = M
for the number jy in the statement of (c). Let y* € 5 correspond to 71. Consid-
ering (y, y') instead of (y,y*), we can apply case (a) to obtain

Py) <P (y') = M7 = M7))lys + brys -
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Considering (y!,y*) instead of (y,y*), we can apply case (b) to get
Ply') <P (y") = M2 () = MTh)lyn + brysl.
Therefore we obtain (12) in case (c). O
Proposition 3. If \y/(0*) < M2, then
d(y) — d(y") = Rily;, + beys| (A" (07) = A (0)).
Proof. We consider cases (a)—(c), listed in the proof of Proposition 2.
In case (a), let 1 < j < m. Then o satisfies [¢?™(o)| < M. From Lemma 9,
Yn + 05Y0
Yn + bjyo

-h (bj —bp) (7" —7) <14+ M5|T* — < eMS(/\JVI(G'*)_)\IVI(U))/z.
1+ (bj —be)T |~ -

Therefore e~ M 2 (2)/2]y, 4 biyo| > e M M (07)/2)yx 4 b;jygl, and thus
67M5)\M(a)|yn + bjyo| > e—MS)\I\/j(o’*)eM5(A1\{(g'*)—)\M(O’))/2|y;kl + bjy8|
—M?® o* * * —MS * * *
> e MM e bys] e M (A (07) = Aar(0)lys + bivg .

From Lemma 9 we have |y +b;y5| = [(1+(b; —br)7) (v +bryg)| > M ~2|y: +bryg)s
and it follows that

€7M5AM(0)|yn + bjyol

5 * 6
> e M e biys 4+ MM |y + by | (A (0F) — A ().

This means
& (y) > & (y*) + Relyy, + brys | (A (0%) = A (0)).

Thus we obtain the conclusion in case (a).
In case (b), the number j, is uniquely determined. We need to consider sub-
cases (bl) and (b2), as before. For (b1), we have

(17) 11+ (bj, — bi) 7] = 1/|1 + (bi — bj )™ (o) < M~%/3,
and therefore
(18) M6 < |7 < MY/,

For any j, we have M (a) < M, (o) + |¢?™ ()| < M? + |7 ()| by assumption.
Therefore
. 5 . 7 .
P(y) = My, 4 bjyo N (o) < M (M? + 7™ (0)])]yn + bjyol
= M (ML (b = )7l + [y + bewi| < €My + by,
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and thus
(19) Uy) < M M3y + bryg |-
We next show
(20) #(y) > d*(y) if j# jo.
To see this, from (19) we note that

di(y) = ey, biyo| — Ryly)

> {e_MS/\M(U)|1 + (bj — by)T| — RjeM7M3}|ny + bryp |-

From (17) and (18),

11+ (b — bi)7| > [(b; — bjo) 7| — [1+ (bjy — be)7| > 2M /3
and thus

—-1/3 ,—~M®Xp (o ;
Bly) > MV @)y g g > eV 2l + ool

[T+ (bjo — br)7|

> d (y).
Hence we obtain (20), and this means

(21) d(y) = & (y).

Here the four points 0,7,7%,1/(b;, — bx) are located on the same circle (or line)
whose curvature radius is at least 1/(2]b;, — bg|). On the other hand, 7 and 7* are
sufficiently near, and thus

(22)  lyn +Joyol = 1+ (bjo — bw)7 - [y, + bryo
> {[1+ (bjy = bi) 7| + M~ (N (™) = A¥(0)) }yy, + brys |
= [y, + bjioys| + M~ (N (0*) = N (0))[yy; + bryg -
From (22) we have
& (y) = e MMy by yo| - Ry, l(y)
> My b |+ MM (N (07) = X () [y + by | — Ry ()
> d(y*) + Re(\*(07) = X*(0))lyy, + bryg .
Therefore d(y) = d’° (y) satisfies the conclusion for case (bl).

In case (b2), we can similarly prove (20) for j # jo (= k). Then d = d*
satisfies

* — 5 o* * * *
d¥(y*) = e MMMy 4 beys | — Ril(y”)
< e MA@ yx by — Rel(y) — Re(AF(0™) = AF(0)) |y + by
= d"(y) — Re(\* (™) — N(0)) [yss + bryg |-

This proves case (b2). We can handle case (c¢) as in Proposition 2. O



SINGULARITIES OF SOLUTIONS 123

From now on, we assume 0 < r < R < 1/M. We define
Lo(y") =r—r7"y") = y"|,  Li(y") = min(d(y"), Lo(y"))-

Roughly speaking, these functions describe the following quantities. We have al-
ready explained that I(y*) describes the distance from yo = 0 to yo = y§ in the
universal covering space. Hence 7~ 1I(y*) + |y"*| describes the distance from y = 0
to y = y*. Moreover Lo(y*) is the distance from y* to the set {r~1i(y) +|y'| = r}.
Finally, d(y*) describes the distance from y* to the singularity set.

Proposition 4. (i) We have

Lo(y) = Lo(y") + %WL +bryg (A" (07) = A%(a)).
(i) If A (y*) < M?, then

L1(y) = L1(y") + Relyy + bryg (A (07) = X*(0).
Proof. We have

Lo(y) = Lo(y™) = r~"1y) +r7 ") — Iy + ly"|
> 17y + breyg | (A (0%) = X(0)) = [y = Y-
Here y, = (1 — bx7)(yn + bryo), and
Y = Yl < [Br (7" = ) (s + b)) | < Mlys, + bryg| (A (07) = X (0).

Thus we obtain (i). Statement (ii) is trivial. O

Remark. Thus far we have assumed that each of Ry,..., R,, is either R or 0.
From now on, we assume R, = 0 and Ry = R for k # m. Correspondingly, we
modify the definition of 25 as follows:

Q= {y € C"; o + myo # 0, |yn + bjyol > Rlyo| (j # m)}.

86. Function spaces

In this section, we define some function spaces which we shall use to solve the
Cauchy problem. We define

Qp = {y € R(D); L1(y) > 0, Aur(y) < M2}

Remark. (i) We denote the universal covering space of Q2 by R(Qs), and Q, is
a subset of R(€s).
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(ii) If we consider finitely many branches of the solution, we may assume that
the corresponding value of \j; is less than 2M, and thus the corresponding point
7 belongs to Qs if £;(y) > 0.

Definition. Let 4,5 € N and f(y) € O(Qy). We define

’

Rla ‘ ’ _ "y _

Ilh-aama = > = sup (135 F@)La ()~ Lo(y) 1= 1=1+0),

CK/EZH,' CoyeQs

1 ’ ,3”/

Illimai-a = > gl Oy fli-ai-o:

la’|<i-1 — 77

18" <i—1

Here we have set o = (", ) = (@1, ..., Qn—1,04,) and s = max(s, 0). Finally,

we denote by O~%7-9(Qy) the set of holomorphic functions on €, which satisfy
[flli-g, j—q < o0

Remark. We have O'1-¢7-4(Qy) € 09 7+1-4(Qy) € O=97=9(y). If f(2')
€ OTYR(Q°\ Z)) and R > 0 is small, then f(z1,...,2p_1,2 + brzg) €
O=92-4((),), after modifying r if necessary. If f(z) € ©*~9=9(€),), then

1037 1 < N1 f limg. j—a B VL1 (y) ™m0 Lo () =070

on . Therefore f(y) is Holder continuous of exponent i — ¢ along {y, = 0}. The
second index j — ¢ does not have an important meaning.

We explain some properties of these function spaces.

Lemma 10. If f,g € (’)i"bj’q((lg), then fg € Oi*q’j*q(flg) and

(23) ||fg||ifq,j*q < Hf”ifq,j*qHQHFq,ijv

(24) ||fg||ifq,ij < Z ||f||irq,jrquHizfq,jzfq-
11+io=1+1
J1+j2=3+1

Proof. By definition we have

RlalH”lﬁ/‘ ’ / _ 11 "y _
1fglli—g1—q= Z W sup (\8;“, f65,9|/;§%+5n 1+<1)+L~é\a +8"" 1+q)+)_
o ,BELY QP yEQ2

From (ap+08n—1+q)+ > (ap—14¢)++(Bn—1+q)+ it follows that || fg|l1—¢,1-¢q <
[fl1-g.1-qllglli—g1—q- If 4,5 € N, then
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1 ! "’ ’ 6”,
1folliai-a < D =z 10 Oy Fli-ai-al9y 8mglli-g1—q
la/+p'|<i~1 oty
|’Y///+6//1‘Sj_1
1 ’ " ’ 6///
S Z Z a"ﬂ"’y“"5”” Ha’;’ 8;//'f‘|1—q,1—q||65/ ay”’g”l—%l_q

intiz=itl |a’|<iy—1,|B|<iz—1
FI=IH L | <Gy, 167 <o —1

< Z £ llis—a, 1 —allglliz—q, jo—a-
i1 io=i+1
Jitj2=j+1

This proves (24). The proof of (23) is similar. O

Lemma 11. Let N € N and X C CV be a connected and simply connected do-
main. Let F(¢) be a holomorphic function defined for ( = (¢1,...,{n) € X. As-
sume that f1(y), .., fr(y) € O(Qa) satisfy (f1(y),-- ., fn(y)) € X for anyy € 0.
Then g(y) = F(f1(y),. .., fn(y)) satisfies

1
1gll1-g,1-¢ < il sup [0f POl [T (fulh-ga-a)™

rezy = X 1<k<N

Proof. Let h > 0 and fix y° € X. We denote the set of holomorphic
functions defined in a neighborhood of 3° by Ognt1 0. We define YV =
25t =hi1 (Y — yo)‘S'OCnH’yo. We enumerate the elements of Z7 \ {(0,...,0)} as
0'(1),46'(2),... in such a way that |6’(1)] < [6’(2)] < ---. Then there exists b’ € Z
such that |8'(j)] < h < 1 <j <h'. We have

OLF(fr )iy ©
i) = 3 ((TT G-y ) L0 MO

rezy M<E<N
(5 J ERE o o
(y’—@/o)é(J)aaxj) ST T E(f1(y°), - AN ()
Z , 1<11:£N oy filw”) ...l

Fl
1<5<h’
ez <i<

modulo Y. It follows that if o' satisfies || < h, then we have
RN

1 5 (4) o F{c a£1+<~-+Fh/F(f1 (yo)7 o fN(yO))
Z <1<11:£N(5l(j)!ay/ Iuly )> > Til...T7h1 )

... Th eA(a)
1<5<h/

where A(a’) = {(T%,...,T") € ZYM; T4 (1) 4 - - + [TV |8 (W) = o/}. From
now on, we identify an element (I'',... ") of A(¢/) with the infinite sequence
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< = (r'Y,...,I" (0,...,0),(0,...,0),...) of elements belonging to Z5 . We
define ! =T'1...T"| and 8g°oF = 8gl+"'+Fh F. Then for each o/ € Z7,

Rlel

o'!

102 g(y)| L1 (y) @1+ Lo (y) I 11+

5 05" F(fi(y),- - fn @)

= !
I>~ecA(a’)
RV . o o ry
(T (5106 seleatn - oy e ) ),
1<k<N J):
1<j<h’

Considering the supremum over Q2 and the summation for o/ € Z", we obtain the
lemma. ]

Lemma 12. We have
7 117 ’ 1’ 3 -
10508 Fli—a -0 < 2 QNG Fl g 5131

Proof. By definition we have
1

7 Bl/, /+ ’ B,//+(S//l
||63’ 8y”'f||i—q,j—q S Z 1§11 Ha;/ K 8y’“ flli—Q7j—q
S~ Holaa!
e
Y
- Z 2‘al+,yll+‘ﬂlf’+§’/"a/!ﬁl//! ||a°"+7,35”'+5'”f”
—= / (B 4 51 y’ y!! 1-g,1—¢q
Wi C U e DL CR L
[6""|<5—1
’ 2 : .
< 2 G g, g1 0

We next consider Ay = 9y, — by0,, for 1 <k <m.Ifu, f € O(Qg) satisfy
Agu = f, u(0,y") = 0, we denote u = A,:lf. Then
AkAglf = f, AlzlAku = u(y) — u(07y/”7yn + bkyo), a;//AI:If = A;lﬁj,f.
Let y* € Oy, 0 =y /y;:, and let v be a canonical curve from 0 to o*. We denote
its length by 6*, and let v = {o(6); 0 < § < 6*} be the arc length parametrization
of 7. We denote 7(0) = "™ (o(6)) and
2= \Dk(y*) = (y67yrv s 7y:;—1?y7*1 + bkyé)a

2(0) = (T(0)zn, 21, -, 215 Zn),

y(8) = (T) 71 (2(0)) = (7(O) 2, 21, - - 2oy, (L= by (6)) 25
We can regard y(f) and y* as points of R(Q). Then A 'f(y*) =
fog f(y(9))zxdr(0) for 1 < k < m. We have the following result.
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Lemma 13. (i) If 1 <k <m, then |A; flli—g2-q < 72| flli—g1—q-
(ii) If k#m, then [|A7" fllz—ga—q < R3[| fl1-g1—q-
Proof. We define

Cor = sup (10 f(W)|L1 () 7T+ Lo (y) 1271 7170+),

yEN2
C7, = sup (10,02 f(y)|L1(y) @D+ Lo(y) 1 HD+) 1< j<n—1,
y€ﬂ2
", = sup (10y, 00 fF(y)|L1(y) @ T+ Lo(y) 1o 171+,
yEN

To prove (i), it suffices to show
(25) 19y At flli—gi-g < ¥4 flhmgig, 187 S L 1<k <m.

We only give the proof for |8”'| = 1 (the case |3"'| = 0 is easier). We assume
1<k<m,1<j3<n-—1. Then

B Rlel
||6yjAk1f||1—q,1—q < Z ol Cg'a
where
0
Cor = sup (|z;;|/;1(y*)(an1+q)+/;0(y*)<|a '71“”/ layjaﬁ“ff(y(Q))IldTW)l)-
y*eo 0

Using Proposition 4, we obtain

194,95 y(B)] < O L1(y(8))~ =1+ Lo(y(6)) 71"~
| -, ~la"|~q
SCetlr (ﬂO(y*) + 2Lk - Ak((f(e)))) .

It follows that

< sup (Ci'|27*z|£0(y*)(Ia”’|_1+q)+l(y*))7
y*€Q2

where
* o * |Z;<L‘ ki _* k ~lai=e
I(y") = ; Lo(y™) + 5= (A7) = A*(0(6))) |dr(0)].
By a direct calculation, we obtain

2r |2%] a 2r
* n )\k: * < "y _—
(co<y>+ ko >) 2 =0,

. (1—q)lz;l
I(y*) < q o

(la”[+1—q)lz;

|Eo(y*)_|“w|+1_q7 |O/"| > 1.



128 K. UCHIKOSHI

Anyway, we have

2r
(I +1)(1 = gl 25| Lo(y) e I=1Fa)+

I(y*) <

and '
> 27“0(])/
T (=g +1)

This means

1 2r
B -1
”8?/” Ak f”lfq,lfq < m”f”lfq,lfqv
and we obtain (25) for |8"'| = 1.
To prove (ii), it suffices to show

- 1
(26) 10y, A Fll1-g1-q < gz lh-gi-q . k#m.
We have

1 Rl | "

||8ynAk f”l—q,l—q < Z o/l el

where

6
&'f = sup <|Z:;|£1(y*)(o‘"_1+q)+ﬁo(y*)(lam|_l+q)+ / ‘(6%0;‘;]0)(3;(9)” |d7‘(9)|>.
0) 0

y* €2

Using Proposition 4, we obtain

18y, 0% F)(y(0))] < C L1 (y(8)) =9 Lo (y(0))~ o |10+
< CI (L (y") + RIzE (A (0%) = A¥(0(0)))) ™ L (y) o 1m0+
It follows that
"< sup (O |25 L (y*) @O T (),
y*eQz

where

0
J(y) =/0 (L1(y") + Rlzp| (A (0") = N (0(0))) """ |dr(0)].

As above, we have
L)~ (0

J(y*) < ;
W)= e+ DR = 5]
and thus

C”f < CZVL’

R(1L—q)(om + 1)
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Therefore
_ 1
||aynAk 1f”l—q,l—q < Riquf”l—q,l—q'

This proves (26). O

Corollary. (i) If 1 <k <m, then ||A; i 0 it1—q <2 fllimq, j—q-
(i) If k#m, then AL fllivi—g,j—q < B3| f]

i—q,j—q-

Proof. We have

1A Fllimg - = Y 10 00 A Flli-g1—q

/[ 1\
lo|<i—1 /B
18" 1<
S Z /'ﬂ///' ||A (a;" 65’” f)||1_Q72_q
lo|<i—1
18" 1<i—1
<Y 05O g = A i
lo’|<i—1
18"1<j-1
and we obtain (i). We can prove (ii) similarly. O

Lemma 14. We have || f(y) — f(0)

[1-g1-¢ < TQ/2(||fH2fq,1fq + [[Am fll1-g,1-q)-
Proof. We can write f(y) — f(0) = f1(y) + f2(y), where

fl(y) = f(y) - f(Ovyla---vyn—lvyn +bmy0)a
f2(y) = f(ovyla ooy Yn—1,Yn + bmyO) - f(O)

We have fi1(y) = A} A, f. From Lemma 13 it follows that

1)) <[ filli—g1—q < Tl/2HAmelfq,1fq~

On the other hand,

1= [ 50,00 a0] <

It follows that

1
Syl / 18y, £(0,04)|d6 < ]| l2—g1—s.
0

1<j<n

1F @) = FO] < 1AW+ 120 < 0l flla=gi-q + 721 A flli-g1-q-
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We have

1F(y) = F(O)ll1-g,1-g = sup [f(y) = F(O)]

yEN2
R'a" o o — o —
= 3 T sup (195 (f(y) — FO)|L () @m0 £ () 1)
|a/|21 CoyeQs
<> % sup (105 0y, f(y)|L1(y)* Lo (y) o110+
a0 @Nem + 1) yeq,
o’ |+1
+ D % sup (105 9y, f (y)|L1(y) @ =10+ Lo(y)le1H9).
=0 & Nk +1) yeq,
1<k<n—1
Moreover,

"

L1(y)onte < pafy (y)en—1HD+ and  Lo(y) 1@ 1HO+ 4 < pagy(y) 1o 1-1H D

It follows that

1f(y) = FO)l1-g,1—q < (Tl/z + nr 4+ nRrf) (|| fll2—g1-q + [[Am fll1-g,1-q)
< TQ/Q(”JCHq-&-Lq + [ Am flli—g,1-q)- 0
Lemma 14 means that if fe Q2= %179(Qy), A, f€O=4179(y) and f£(0)=0,
then || f(y)|l1—q,1—¢ is small.

§7. Construction of the solution
We denote v(y) = (v1(y), v2(y)) = (u(y), zn(y)). We define
T(Q2) = {f(y) € O™ 279(Qy); af,of € O ET((Q,), 0< 1 < m— 1},

Proposition 1 and Lemma 2 mean that it suffices to consider the following initial
value problem for v(y) € T(Q2) x T(Q2):

(27) Av;(y) = f;(v), 1<j<2,
0 0i(0,y) = vj(y') € OmTm9279((y), 1<5<2,0<I<m—1

Here we have denoted

Fi@) == > Qiral®)dvk +9;(v)
y
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for some Qj ;.o € P? and g; € Q™. They satisfy

Q11,0 =0, a=(m,0,...,0) or (0,...,0,m),
(28) [Ql,l,a(ya u(y), v;xn(y))]yzo = 0; Qg + ap =m,
Q12,0 = Q21,0 = Q22,0 =0, ag + o, = m.

We solve (27) by successive approximation. For ¢ > 0, we consider the follow-
ing initial value problem:

(29) MOy =Py,  1<j<2,
oL o0, y) = vuly), 1<j<2,0<I<m—1
Here we have denoted
; 0 i =0,
F@=1 o
fj(l/ v ), 2 Z 1.
If ¢ = 0, we can find the solution of (29) in the form
(30) o) = > W Y1 Yn + i)
1<k<m

for some vj(,z) (y')- In fact, substituting (30) into (29), we have >, ., ., bi@éybvﬁ) W)
= vj;(y'). It suffices to define u](g) (y') by

1 ... 1 ©
by - by v (¥) V5o (y')
: : 0 :

prol L pmet v () Vi m-1(Y')

Here we have set
Yn -1
Yn — t
VoY) = vjo(y) and () = / (17)' &t
0 (-1
for 1 <1 < m — 1. These functions v](,Z) (/) belong to T, and we have 3501)](-0)(0) _
O v;(0) for 0 < h < m— 1.1t i > 1, we define 2 = v{? — o™ and [V =

f]@ — f;i_l). Then we need to solve

(31) A (y) = F7 (), 1<j<2,
oL ol(0,y) =0, 1<j<2,0<i<m—1,

and the solution is ﬁ](-i)(y) =A7t ~A,_nlf](i)(y). We define ry = ra(1=9)/6 (> y1/24),
We have the following result.
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Proposition 5. If i > 1 and 0 < h <m — 1, then

< %i+3j—27 Hah —(1)

2i-3j—6
vo Vs lm—h—g2-q <711

(@)
HyOJHmhqlq
Proof. We define
f]O Z ijoz aao 18 y' ULy

acXy
fi1(v) = 0y, fio(v),
f]Z ’U Z Q]ka 8 Vk,

1<k<2
a€eXo

Fis) = D 03,Qj5.0(v) - 9507102 v; + g;(v),

aeXy
where X7 = {a € ZTFI; ag+ap =m,1 <ag <m-—1, | =0} and Xy =
{a € Z |a| = m, || # 0}. It is easy to see that f;(v) = doa<ji<s fig (). If
1> 1and 0 < j <3, we define

i i (i i i—1 0
FR@) = £ @), TR =0 - £ (F9 ) =0).
We define 17](;), (y) = A7t --A;;ﬁ;? (y)fori>1and 1 <35 <3.
The proof of Proposition 5 consists of two steps:

STEP 1. We prove Proposition 5 for i = 1.
STEP 2. We assume that ig > 2 and Proposition 5 is true if 1 < i <ig— 1. We
prove the case of i = iy under this assumption.
These steps are very similar, and we only explain Step 2. By the assumption of
induction, we have |05v (l)( ) — 0yv;(0)] < 1 on Qif0<i<ig—1, o] <m—1.
Therefore Q; 1. o (v )( )) and g;(v()) are well-defined.
Let 7 = ig. We first show

(32) 1750 h-g.1-g < 2P0,
If 7 = 2, then fjo =0, and thus we may assume j = 1. We define
_ i— ap—1ga’ ~(i—1)
f]OO == Z Qj,j,a(v( 2))31100 181/ vi

acX,

f301 =- Z (Qj,j,a(v(i_l)) — QjJ,a( ))80‘0 18“ (l D,

aeX

Then f o = fio(vD) = fio(wi=Y) = JF;& +JEJ((Z))1 We prove the following inequality
for 7/ =0,1:

(33) |7y hmgaq < MPriTH.
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We first consider ny((ZJ)o We can prove
(34) 10), Qjj.a (W) la=h—g1—q < nM?  for h=0,1.
In fact, from Lemma 11 we first obtain [|Q; .o (v""?)|1_4.1—y < M. Furthermore,

71— z 2
akamav( 2) Z Qj,j,a,8(v 2)5%5‘5 (2

|B|<1

1<i<2
for some Q; ;a5 € P, and we obtain (34). Here Q; . (v""?) vanishes when
y = 0, and from Lemma 14 and (34) we have [|Q; .o (v ™2)|1-g1-4 < 2nM3r5.
Therefore

150 l—g1-a < 3 1Qs7a @2 1—ga—qll020 7105 8\ Vg1

aceX
pivai
< MA3T

This means (33) for j' = 0.
On the other hand,

175l —g1—q

71— 71— g — o (i—1
< S Qe @) = Qa2 g1 —g 95 0% 0 T 1 g1

acXy

< Z M||Qj7j,a(v(i_1)) - Qj,j,a(v(i_z))nl—q,l—w

acXy

In the same way as above, [|Q;.a(v™D) = Q; 0@ )|1_g1-q < M4rfi+3j,
and we get (33) for 7/ =1 (and also (32)). We can similarly prove

(35) 1750 1.2 < BMArYHH0,
We next prove
0 2i+35—8
(36) i 11 —g1—g < M3
for 2 < 5/ < 3. If j/ = 2, we have

i i i—1
||f]2 l1-g,1-q < Z ||ija(( 1))_Qj,k,a(v( 2))H1—q,l—q||ag(jvg(' )Hl—q,l—q

1<k<2
aeXs

i — /' _(1—1
+ 3 1Qinra(0 ) - g1—q 05005 5V g1

1<k<2
aEeXs
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We have o # 0 for a € X5, and it follows that

1755 111=q1—

_(1—1
< Z Z || LLOUI(J )||m—h—q,1—q+ Z M||8;‘0° 3§ )||m—a0—q,2—q

1<k<2  1<I<2 1<k<2
acXo 0<h<1 aEXo

2i43j—5
< MBI
Thus we obtain (36) for j/ = 2, and similarly for 7/ = 3. We have
7;1) _A_ A7_n 17](0)( )_A_ A’;L 1 J(O)(O yla"'7yn—17yn)7
A Akvjl _AkJrl A, 11;8( ) Akil A, 11730 (0 ylw-wynfhyn)
for 0 < k <m — 1. Using (33) and Lemma 13, we get
Ay - Akﬁﬁ)ﬂkq,pq < ANBRBm Ik 2031,
Using (35) instead of (32), we obtain
Ay - Akil_}§i1)||1—q,2—q < GMBR3m+3k 20435 =5

Similarly we can prove the same estimates for v(2) and vj(?)), which completes the

proof of Proposition 5. O

Corollary. At each point y € Qu, we can define vj(y) = lim; s vj(i)(y). Then
a’wj € Omh=12-4(Qy) for 1 < j < 2,0 < h < m — 1. Furthermore, if |a| <
— 1, then |99v;(y) — 98v;(0)] < 1 on Qs.

We define

Q3 = {y € C"" |yl <73, |yn + brvo| > V/Ri |yo| for 1 <k <m},
Qs = {7 € O(Q3); \u(o) < M2},
Ifge Qs, then it is easy to see that y € Qs and
—2M7

~ ~ e .
Lo(t) >1r/2,  Ly(t) > min (|yn + bryo|l — v/ Ri |yol)-

2 1<k<m

Thus we obtain the following result.

Proposition 6. If 1< j <2, then v; € O(Q3), and

(m—g—ao—an)+

—(m
905l < =2 (min (v + byl — /B luo))) ol < m.



SINGULARITIES OF SOLUTIONS 135

88. Characteristic hypersurfaces

In this section we transform the solution wu(y) of (27) to a function u(x) of =
satisfying (2). Let
Q= {z € C"*Y 2| <7, |zn + agzo| > MVR |x0], 1 < k < m},
Us = {z € C" 2| <°, @0 + amao| < 2MVR |zo|}.
In Section 1, we have denoted these domains by Q; (M+/R, ) and V,,,(2M /R, %),
respectively. We have y” = 2’ and we write z(y) = (v, z,(y)). We need to find
the inverse function x,, = x,(y) of ¥y, = yn(x). We shall do this in two steps. First
we argue in {4, and next we refine this result in Uy. Note that z,(y) = v2(y) is a
solution of (6). We define
) ( Y, ( ) )|§ '=(— 8y11n(y) yn 1Tn(y) 1)s
) = 2n(Y) = Yn + amo.

fly
9(y
Then dy,9(y) = f(y) — f(0) and g(0,y') = 0. Hence |g(y)| < M>|(yo, yn)| - [y]-
Let T(z) = = Amt (xo/(2n + ammg)). We first want to find the inverse function
Ty = Tp(y) on Qg = {% € R(Q4); T(z) < 3M}. By definition,
(37) Yn = Tn(Y) + amxo — 9(y),

and we want to define the inverse function y,, = h(x) which satisfies
(38) hz) = zp + amxo — g(2”, h(x))

on Q. For this purpose, we define h(?) (z) inductively by

(39) R (z) = zp + amzo — gD (x), >0,

where

| 0, i=0,
99 (@) = - .
g(a” h= (), i>1.

By induction on 7 > 1, we can easily prove that h(i)(x) is well-defined and satisfies
(40) B (@) = R V(@) < (r 2]y (@) + brwo|, 1<k <m,

on Q. Therefore, for each x € Q, we can define h(z) = lim; o0 h(i)(x). It satisfies
(38), and for each z € Q4 we have (2, h(z)) € Q3. Substituting y,, = h(z) to (37)
and comparing it with (38), we have z, (2", h(z)) = x,. Therefore we obtain an
injection

(41) X: 3z (27, h(zx) € Qs.
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Remark. Let 1 <k < m. From (39) and (40) we deduce that |h()(z) + bryo| =
|2y + arxol, and

(42) |A(@) + bryol > |2 + arwol /2 > 2VR |yo
on Q4.

We next study the problem in the set Uy. We first define Us = {y € Qs;
lyn| < M3 - VR|yo|}. Let m; : R(Q;) — Q; be the canonical projection, and
U; = 7T;1(Uj) nQ; for j = 3,4. Let #! € U,. We can easily prove x(Uy) C Us, and
thus ' = y(2') € Us.

We can regard R(Us) C R(€23). We next prove that we can define a function
po(z") on R(Uy) and a mapping of {x € R(Uy); x,, # po(z”)} into {y € R(Us);
yn # 0}. Since Us = {y € C"*1; |y| <73, 0 < |yn| < M?VR |yo|}, we may identify
7 € R(Us) with (y,argyn,argye) € Us x R x R.

Let (y,argyn,argyo) € Us x R x R. Then we have (y”,argyg) € Uz x R
where Uy = {y" € C"; |y’| < 7, yo # 0}. We can identify ¢ € R(Usy) with
(y",argyo) € Uz x R. Therefore if § € R(Us), we can fix §” € R(Uz) and let
yn — 0. In this sense we define po(y”’) = lim,,, 0 2, () for §” = &" € R(Us). It is
easy to see [po(y")| < Mlyol. We define

1 T o "
0 n

on [73. Then
(43) Un = (@n(y) — po(y"))/0'(v),
and |p/(y) — 1| <7, |9y, 0’| < M on Us. We define
Up = {(&",2n) € R(Us) x C; |z| < 7°, 0 < |z, — po(2')] < M? - VR |z}

Let m4 : R(U;) — Uj be the canonical map, and let & € R(Uy), x = my(Z) € Uj.
We can identify & with (z, arg(z, — po(2”)),argzg) € U; x R x R. We define

To xh M
arg| ————— | —arg| ——2—— )| < = }.
Ty — po(z”) x} — po(z'"t) 2

We want to define a function y,, = h/(x) which satisfies

(44) yn(@) = (zn — po(a”))/p' (", W (z))

on Uj(&"). It will turn out that h/(x) coincides with the previous function h(z)

i) = {3 e R(w)
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defined by (41). For the moment we do not discuss this coincidence. We define

h/(z) (JI) — (x’ﬂ - po(l'//))/p/(yo), i =0,

(e — pola”) /o' @ WD (), 0> 1.
By induction on i > 1, we can prove that &' (z) is well-defined on Uj(z!), and
|W @ (z) — KD (z)| < /2O (z)| on Uj(&"). Therefore, for each z € Q4 we
can define h'(x) = lim; o K'Y (z). Comparing (43) and (44) as before, we have

(45)

yn = h/(x(y)). We obtain an injection

X UL(EY) 3 e (2 1 (2)) € Qs.
Both x and x’ have the same right inverse mapping x” : y +— z(y). Furthermore,
the Jacobian matrix dz(y)/0y is nondegenerate, and for any y € €23, the mapping
X" is a local isomorphism. Therefore x and x’ coincide on Q4 N U, (Z!), and we
obtain an injection

X QUUEY 3 2 y(z) € Qs.
We have the following result.

Proposition 7. Let &' € Uy, and define Uj(&') as above. Assume that |a| < m
and M’ is large enough.
(i) The solution u(x) of (2) is holomorphic on Q4 U Uj(Eh).
(it) |0gu(e)] < M'Li(y(x))~I*=m++ on Oy UTL(E).
) |0%u(z)] < M/ mini<p<m |20 + agzo|~121=mF0+ on Q.
) 05 u(x)] < M|z — po(a”)|~1o1=mHa)s on U(&).

(i
(iv
Proof. Denoting u(y(z)) also by u(x), we obtain (i). Let us prove (ii). Let |a| =
k > 1. From (5), we have

02 f(2) = By, wn) (Y AapOff + Y Bapdiwn +Ca),
|B|=Fk |Bl=k

where Ang, Bag, Co are polynomials of (9] f, 9)xn; || < k—1). By Proposition 7,
we have (ii).
To see (iii), we assume that Z € 0y and 1 < k < m . From (42) we have

i > i .
o fyn (2) + agwo| 2 lim |2 + axaol /2

It follows that
L > mi —+
1(y) = 1§k1£m |xn ak$0|/4a

and we obtain (iii). Using (45), we can similarly prove (iv). O
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Proof of Theorems 1 and 2. We use the notation 1, V,,, of Section 1, and Qy4, Uy
of Section 7. Let Ny € Nand 0 < ro < Ry < 1/M < 1. Let & € Ry, (Q1(Ro, r0)).
Choosing r = 7‘(1)/5,]% = RZM~2, we find that (z”,2, + anzo) € o, and
V™ (2" xp + amTo) = 2o/ (Tn + amxo) € W™. Now

T €Y & xy+ amro = —0(a; — am)xo for some 0 € (0,1] and j
& zo/(Tn + amzo) = —0'/(a; — a,,) for some 0’ > 1 and j.

It is clear from Figure 6 that the length of the canonical curve corresponding to
(", Ty +bmxo) does not exceed 3M, i.e., T'(z) < 3M. Therefore Ry, (21 (Ro,r0)) C
Q4(R,r) with R = REM 2, r = r}/®.

Imo 2

/

- 1/(aj _am)

Re o

Figure 6. The set ¥ illustrated in the o space.

If ' € Ry, (Qu(R, 7)) N7 (V;n(2R, 7)), then Z' € Uy. Thus we can define
po(z") on R(U,) and extend the solution on U,. This immediately yields Theo-
rem 2. O
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