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Ice Quivers with Potential Arising from
Once-punctured Polygons and
Cohen–Macaulay Modules

by

Laurent Demonet and Xueyu Luo

Abstract

Given a tagged triangulation of a once-punctured polygon P ∗ with n vertices, we as-
sociate an ice quiver with potential such that the frozen part of the associated frozen
Jacobian algebra has the structure of a Gorenstein K[X]-order Λ. Then we show that
the stable category of the category of Cohen–Macaulay Λ-modules is equivalent to the
cluster category C of type Dn. This gives a natural interpretation of the usual indexation
of cluster tilting objects of C by tagged triangulations of P ∗. Moreover, it extends natu-
rally the triangulated categorification by C of the cluster algebra of type Dn to an exact
categorification by adding coefficients corresponding to the sides of P . Finally, we lift
the previous equivalence of categories to an equivalence between the stable category of
graded Cohen–Macaulay Λ-modules and the bounded derived category of modules over
a path algebra of type Dn.
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§1. Introduction

In a previous paper [9], we constructed ice quivers with potential arising from trian-

gulations of polygons and we proved that the frozen parts of their frozen Jacobian

algebras are orders. We proved that the categories of Cohen–Macaulay modules

over these orders are stably equivalent to cluster categories of type A. The aim

of this paper is to extend these results to tagged triangulations of once-punctured

polygons to recover cluster categories of type D. We refer to [9] for a detailed intro-

duction and we will focus here on the tools we specifically need for this new case.

For every bordered surface with marked points, Fomin, Shapiro and Thurston

introduced the concept of tagged triangulations and their mutations [12]. Then,

they associated to each of these triangulations a quiver Q(σ) and showed that the

combinatorics of triangulations of the surface correspond to that of the cluster alge-

bra defined by Q(σ). Later in [25], Labardini-Fragoso associated a potential W (σ)

on Q(σ). He proved that flips of triangulations are compatible with mutations of

quivers with potential. This was generalized to the case of tagged triangulations

by Labardini-Fragoso and Cerulli Irelli in [7, 26].

We refer to [3, 8, 30, 31] for a general background on Cohen–Macaulay modules

(or lattices) over orders. Recently, strong connections between Cohen–Macaulay

representation theory and tilting theory, especially cluster categories, have been

established [1, 2, 11, 20, 21, 22, 24]. This paper enlarges some of these connections

by dealing with frozen Jacobian algebras associated with tagged triangulations of

once-punctured polygons from the viewpoint of Cohen–Macaulay representation

theory.

Throughout this paper, K denotes a field and R = K[X]. We extend the

construction of [12], and associate an ice quiver with potential (Qσ,Wσ, F ) to each

tagged triangulation σ of a once-punctured polygon P ∗ with n vertices by adding

a set F of n frozen vertices corresponding to the edges of the polygon and certain

arrows (see Definition 2.9). We study the associated frozen Jacobian algebra

Γσ := P(Qσ,Wσ, F )

(see Definition 2.1). Our main results are the following:
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Theorem 1.1 (Theorems 2.19 and 2.30). Let eF be the sum of the idempotents

of Γσ at frozen vertices. Then

(1) the frozen Jacobian algebra Γσ has the structure of an R-order (see Definition

2.17 and Remark 2.18);

(2) the frozen part eFΓσeF is isomorphic to the Gorenstein R-order

(1.2) Λ :=



R′ R′ R′ · · · R′ X−1(X,Y )

(X,Y ) R′ R′ · · · R′ R′

(X) (X,Y ) R′ · · · R′ R′

...
...

...
. . .

...
...

(X) (X) (X) · · · R′ R′

(X) (X) (X) · · · (X,Y ) R′


n×n

,

where R′ = K[X,Y ]/(Y (X − Y )) and each entry of the matrix is an R′-
submodule of R′[X−1].

Remark 1.3. In view of the isomorphism of R-algebras

R′ ∼= R−R := {(P,Q) ∈ R2 |P −Q ∈ (X)}, Y 7→ (0, X),

we have an isomorphism

Λ ∼=



R−R R−R R−R · · · R−R R×R
(X)× (X) R−R R−R · · · R−R R−R
(X)− (X) (X)× (X) R−R · · · R−R R−R

...
...

...
. . .

...
...

(X)− (X) (X)− (X) (X)− (X) · · · R−R R−R
(X)− (X) (X)− (X) (X)− (X) · · · (X)× (X) R−R


n×n

((X)− (X) is the ideal of R−R generated by (X,X)).

This order is part of a wide class of Gorenstein orders, called almost Bass

orders, introduced and studied by Drozd–Kirichenko–Rŏıter and Hijikata–Nishida

[16, 17] (see also [18]). More precisely, Λ is an almost Bass order of type (III).

Theorem 1.4 (Theorems 2.30, 3.3, 3.16 and 3.19). The category CM Λ has the

following properties:

(1) For any tagged triangulation σ of P ∗, we can map each tagged arc a of σ

to the indecomposable Cohen–Macaulay Λ-module eFΓσea, where ea is the

idempotent of Γσ at a. This module only depends on a (not on σ) and this
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map induces one-to-one correspondences

{sides and tagged arcs of P ∗} ↔ {indecomposable objects of CM Λ}/∼=,
{sides of P} ↔ {indecomposable projectives of CM Λ}/∼=,

{tagged triangulations of P ∗} ↔ {basic cluster tilting objects of CM Λ}/∼=.

(2) For the cluster tilting object Tσ := eFΓσ corresponding to a tagged triangula-

tion σ,

EndCM Λ(Tσ) ∼= Γop
σ .

(3) The category CM Λ is 2-Calabi–Yau.

(4) If K is a perfect field, there is a triangle-equivalence C(KQ) ∼= CM Λ, where

Q is a quiver of type Dn and C(KQ) is the corresponding cluster category.

Remark 1.5. To prove Theorem 1.4(3), we establish that

CM Λ ∼= CMZ/nZ(K[x, y]/(xn−1y − y2)),

where x has degree 1 and y has degree −1 (modulo n).

Usually, the cluster category C(KQ) is constructed as an orbit category of the

bounded derived category Db(KQ). We can reinterpret this result in this context

by studying the category of graded Cohen–Macaulay Λ-modules CMZ Λ:

Theorem 1.6 (Theorem 4.5). With the same notation as before:

(1) The Cohen–Macaulay Λ-module Tσ can be lifted to a tilting object in CMZ Λ.

(2) There exists a triangle-equivalence Db(KQ) ∼= CMZ Λ.

In Section 2, we introduce ice quivers with potential (Qσ,Wσ, F ) associated

with tagged triangulations σ of a once-punctured polygon P ∗. We also introduce

combinatorial and algebraic elementary tools in Subsection 2.3. Finally, we prove in

this section that the frozen Jacobian algebra Γσ associated with (Qσ,Wσ, F ) is an

R-order, and that Λ ∼= eFΓσeF which is independent of σ. In Section 3, we classify

Cohen–Macaulay modules over Λ, we compute homological properties of CM Λ

and we establish the correspondence between tagged triangulations of P ∗ and

basic cluster tilting objects of CM Λ. Thus, after proving that CM Λ is Frobenius

stably 2-Calabi–Yau, we conclude that CM Λ is stably triangle-equivalent to a

cluster category of type D. In Section 4, we deal with results about CMZ Λ.

Notice that the naive generalizations of these results to other surfaces do not

hold in general, as shown in Subsection 2.5 for a digon with two punctures.
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§2. Ice quivers with potential associated with triangulations

In this section, we introduce ice quivers with potential associated with tagged

triangulations of a once-punctured polygon and their frozen Jacobian algebras.

We show that in any case, the frozen Jacobian algebra has the structure of an

R-order, and its frozen part is isomorphic to a given R-order Λ defined in (1.2).

§2.1. Frozen Jacobian algebras

We refer to [10] for background about quivers with potential. Let Q be a finite

connected quiver without loops, with set of vertices Q0 = {1, . . . , n} and set of

arrows Q1. As usual, if α ∈ Q1, we denote by s(α) its starting vertex and by

e(α) its ending vertex. We denote by KQi the K-vector space with basis Qi con-

sisting of paths of length i in Q, and by KQi,cyc the subspace of KQi spanned

by all cycles in KQi. Consider the path algebra KQ =
⊕

i≥0KQi. An element

W ∈ ⊕i≥1KQi,cyc is called a potential. Two potentials W and W ′ are called

cyclically equivalent if W −W ′ belongs to [KQ,KQ], the vector space spanned

by commutators. A quiver with potential is a pair (Q,W ) consisting of a quiver Q

without loops and a potential W which does not have two cyclically equivalent

terms.

For each arrow α ∈ Q1, the cyclic derivative ∂α is the linear map from⊕
i≥1KQi,cyc to KQ defined on cycles by

∂α(α1 . . . αd) =
∑
αi=α

αi+1 . . . αdα1 . . . αi−1.

Definition 2.1 ([5]). An ice quiver with potential is a triple (Q,W,F ), where

(Q,W ) is a quiver with potential and F is a subset of Q0. Vertices in F are called

frozen vertices.

The frozen Jacobian algebra is defined by

P(Q,W,F ) = KQ/J (W,F ),

where J (W,F ) is the ideal

J (W,F ) = 〈∂αW | α ∈ Q1, s(α) /∈ F or e(α) /∈ F 〉

of KQ.

Example 2.2. Consider the quiver Q of Figure 2.3 with potential W = α1β1γ1 +

α2β2γ2 + α3β3γ3 − γ1β2α3 and set of frozen vertices F = {4, 5, 6}. Then the

Jacobian ideal is

J (W,F ) = 〈β1γ1, γ1α1, α1β1 − β2α3, β2γ2, γ2α2 − α3γ1, β3γ3 − γ1β2, γ3α3〉.
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Figure 2.3. Example of iced quiver with potential.

Note that this ice quiver with potential appeared in connection with prepro-

jective algebras [5, 13].

§2.2. Ice quivers with potential arising from triangulations

We recall the definition of triangulations of a polygon with one puncture and intro-

duce our definition of ice quivers with potential arising from tagged triangulations

of a polygon with one puncture.

Definition 2.4. Let P be a regular polygon with n vertices and n sides. Fix

a marked point inside P . Then the marked point is called a puncture and the

combination of P and the puncture is called a (once-)punctured polygon P ∗. We

define the interior of P ∗ to be the interior of the polygon P excluding the puncture.

We denote by M the set of all the n vertices of the polygon and the puncture.

Definition 2.5 (Tagged arcs [12, Definition 7.1]). A tagged arc in the punctured

polygon P ∗ is a curve a in P such that

(1) the endpoints of a are distinct in M ;

(2) a does not intersect itself;

(3) except for the endpoints, a is disjoint from M and from the sides of P ;

(4) a does not cut out an unpunctured digon. (In other words, a is not contractible

onto the sides of P .)

Each arc a is considered up to isotopy inside the class of such curves.

Moreover, each arc incident to the puncture has to be tagged either plain or

notched.

In the figures, the plain tags are omitted while the notched tags are represented

by ./.

Definition 2.6 (Compatibility of tagged arcs [12, Definition 7.4]). Two tagged

arcs a and b are compatible if the following conditions are satisfied:
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(1) there are curves in their respective isotopy classes whose relative interiors do

not intersect;

(2) if a and b are incident to the puncture and not isotopic, they are either both

plain, or both notched.

Definition 2.7 ([12]). A tagged triangulation of the punctured polygon P ∗ is the

union of the set of sides of P and any maximal collection of pairwise compatible

tagged arcs of P ∗.

Remark 2.8. The set of all tagged arcs in a punctured polygon is finite. Moreover,

any tagged triangulation can be realized up to isotopy as a collection of tagged

non-intersecting arcs.

Let us now define ice quivers with potential arising from punctured polygons:

Definition 2.9. Let P ∗ be a punctured polygon with n sides and let σ be a tagged

triangulation of P ∗. For convenience, the n sides of P and all the tagged arcs of σ

are called the edges of σ. A true triangle of σ is a triangle consisting of edges of σ

such that the puncture is not in its interior.

We assign to σ two ice quivers with potential (Qσ,Wσ, F ) and (Q′σ,W
′
σ, F )

as follows.

The quiver Q′σ is a quiver whose vertices are indexed by the edges of σ.

Whenever two edges a and b are sides of a common true triangle of σ, then Q′σ
contains an internal arrow a → b in the true triangle if a is a predecessor of b

with respect to anticlockwise orientation centred at the joint vertex. For every

vertex of the polygon P , there is an external arrow a → b where a and b are its

two incident sides of P , a being a predecessor of b with respect to anticlockwise

orientation centred at the joint vertex. Moreover, if the puncture is adjacent to

exactly one notched arc and one plain arc of σ, we have the configuration shown

in Figure 2.10.

The quiver Qσ is obtained from Q′σ by removing external arrows winding

around vertices of P with no incident tagged arc in σ.

We say that a cycle of Qσ (resp. Q′σ) is planar if it does not contain any

arrow of Qσ (resp. Q′σ) in its interior and each arrow appears at most once. Notice

that for the definition of planar, the quivers are not abstract but embedded in

the plane (each internal arrow being drawn inside the triangle it is constructed

from, and each external arrow winding around the corresponding vertex outside

the polygon). We have the following possible different kinds of planar cycles in Qσ
and Q′σ:

(1) clockwise triangles which come from true triangles in σ;
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Figure 2.10. Once-punctured digon. We depict the part of Qσ quiver induced by

a once-punctured digon. Notice that there are two other arrows linking a and b if

P is the digon itself.

(2) an anticlockwise punctured cycle which consists of the arrows connecting arcs

incident to the puncture;

(3) anticlockwise external cycles which contain exactly one external arrow and

each of which is centred at a vertex of P .

We define F as the subset of (Qσ)0 indexed by the n sides of the polygon P .

The potential Wσ (resp. W ′σ) is defined as∑
clockwise triangles−

∑
anticlockwise external cycles

− the anticlockwise punctured cycle

in Qσ (resp. Q′σ).

When there is a once-punctured digon in the triangulation σ as shown in

Figure 2.10, we have to slightly adapt the previous definition. The anticlockwise

external cycle centred at Pk which is taken in account is the one containing γδ. On

the other hand, both ηαβ and ηγδ appear as clockwise triangles in Wσ and W ′σ.

In this case, there is no anticlockwise punctured cycle. An explicit case involving

a once-punctured digon is described in the proof of Lemma 2.27.

Example 2.11. Let us consider the triangulation σ of Figure 2.12. We drew the

corresponding quivers (γ is in Q′σ but not in Qσ). We have

Wσ = fgh+ abc+ ade− αag − βfbc and W ′σ = Wσ − γh.

From now on, for any tagged triangulation σ of the punctured polygon P ∗,
we denote P(Qσ,Wσ, F ) by Γσ.
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Figure 2.12. Quivers associated with a tagged triangulation.

Remark 2.13. (1) We can also realize Γσ as

Γσ ∼=
KQ′σ
J ′(W ′σ)

where J ′(W ′σ) := 〈∂αW ′σ | α ∈ Q1, α is not external〉.

We will use both definitions freely depending on convenience.

(2) Notice that (Q′σ,W
′
σ) and (Qσ,Wσ) are not necessarily reduced, in the

sense that oriented 2-cycles can appear in the potential, because some vertices of

the polygon have no incident tagged arcs in σ, or because the puncture has exactly

two non-isotopic incident tagged arcs. Thus, it is possible that non-admissible

relations appear.

(3) All arrows of Qσ (resp. Q′σ) appear either once in Wσ (resp. W ′σ), or

twice with opposite signs. Thus all relations derived from the potential are either

commutativity relations (of the form w = w′ for two paths w and w′ of length at

least 1), or 0 relations (of the form w = 0 for a path w of length at least 1).

§2.3. Notation and preliminaries

The vertices of the polygon P are labelled P1, . . . , Pn in counter-clockwise order.

When we do computations on the indices of vertices of P , we compute modulo n.

If r, s ∈ J1, nK := {1, . . . , n}, we denote

d(r, s) :=

{
s− r if s ≥ r,
s− r + n if s < r.

We also denote Jr, sK = {r, r+1, . . . , s}, Jr, sJ = Jr, sKr{s}, Kr, sK = Jr, sKr{r}
and Kr, sJ = J1, nK r Js, rK (notice that Kr, rJ = J1, nK r {r}). If A is a condition,

we define δA to be 1 if A is satisfied and 0 if A is not satisfied.
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For r, s, t ∈ J1, nK, we will use freely the identities Kr, sK = Jr + 1, s + 1J,
Kr, sK = J1, nK r Ks, rK, Jr, sJ = J1, nK r Js, rJ and δr∈Ks,tJ = δs∈Jt,rJ = δt∈Kr,sK.

If r, s ∈ J1, nK, we denote by (Pr, Ps) the arc going from Pr to Ps turning

counter-clockwise around the puncture (thus, (Pr, Pr+1) is a side of the polygon

and (Pr+1, Pr) is not except if n = 2). We denote by (Pr, ∗) the plain tagged arc

from Pr to the puncture and by (Pr, ./) the notched tagged arc from Pr to the

puncture.

From now on, we always denote a = (Pa1 , Pa2) if a is not incident to the

puncture, and a = (Pa1 , ∗) or a = (Pa1 , ./) if a is incident to the puncture (in

the latter case, we fix a2 = a1 by convention). We need to fix some geometrical

definition. To make it precise, we suppose that P is a regular polygon inscribed in

the unit circle and that the puncture is at the origin of the plane. Then ~a is the

vector from Pa1 to Pa2 if a1 6= a2, and it is the unit vector tangent at Pa1 to the

unit circle in the clockwise direction if a1 = a2.

If a and b are tagged arcs of P ∗, we define

`θa,b := d(a1, b1) + d(a2, b2) + n|δa1∈Kb1,a2J − δb2∈Kb1,a2J|.

Lemmas 2.14 and 2.15 are elementary observations about `θ. Proofs are com-

putational and given for the sake of completeness. We suggest skipping them on a

first reading.

Lemma 2.14. If a and b are two sides or tagged arcs of P ∗, the angle from ~a to ~b

is
π

n
`θa,b,

up to a multiple of 2π.

Proof. First of all, in complex coordinates, if a1 6= a2,

~a = exp

(
2πi

a2

n

)
− exp

(
2πi

a1

n

)
= exp

(
πi
a1 + a2

n

)(
exp

(
πi
a2 − a1

n

)
− exp

(
πi
a1 − a2

n

))
= exp

(
πi
a1 + a2

n

)
2i sin

(
π
a2 − a1

n

)
,

so the argument of ~a is

π

n

(
a1 + a2 +

n

2
+ nδa1≥a2

)
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(note that this formula works also if a1 = a2). So the angle from ~a to ~b is

π

n
(b1 − a1 + b2 − a2 + n(δb1≥b2 − δa1≥a2)).

As `θa,b is clearly invariant by rotation of the polygon, as also is the angle from ~a

to ~b, we can suppose that a2 = 1 and the angle from a to b becomes

π

n
(d(a1, b1)− nδa1>b1 + d(1, b2) + n(δb1≥b2 − 1))

=
π

n
(d(a1, b1) + d(1, b2)− nδa1>b1 − nδb1<b2)

=
π

n
(d(a1, b1) + d(1, b2)− nδa1∈Kb1,1J − nδb2∈Kb1,1J),

which is clearly congruent to π`θa,b/n modulo 2π.

Another important point is that `θ is subadditive:

Lemma 2.15. If a, b and c are three sides or tagged arcs of P ∗, then `θa,b + `θb,c
≥ `θa,c. More precisely,

• if a is a side of P ,

`θa,b + `θb,c = `θa,c + 2n(δc2∈Kc1,b2Jδb1∈Jb2,c1K + δa1∈Kb1,c1K);

• if b is a side of P ,

`θa,b + `θb,c = `θa,c + 2n(δa1∈Ka2−1,c1Kδc2∈Ka2−1,c1K + δb1∈Kc1,a2−1J);

• if c is a side of P ,

`θa,b + `θb,c = `θa,c + 2n(δa1∈Kb1,a2Jδb2∈Ja2,b1K + δc2∈Ja2,b2J).

Proof. We have

`θa,b+`θb,c−`θa,c = d(a1, b1)+d(b1, c1)−d(a1, c1)+d(a2, b2)+d(b2, c2)−d(a2, c2)

+n(|δa1∈Kb1,a2J−δb2∈Kb1,a2J|+ |δb1∈Kc1,b2J−δc2∈Kc1,b2J|
−|δa1∈Kc1,a2J−δc2∈Kc1,a2J|)

=n(δb1∈Kc1,a1J +δb2∈Kc2,a2J + |δa1∈Kb1,a2J−δb2∈Kb1,a2J|
+ |δb1∈Kc1,b2J−δc2∈Kc1,b2J|−|δa1∈Kc1,a2J−δc2∈Kc1,a2J|).

If this quantity were negative, we would have b1 ∈ Ja1, c1K and b2 ∈ Ja2, c2K and

one of the following two posibilities:

• a1 ∈ Kc1, a2J and c2 ∈ Ja2, c1K. As c2 /∈ Kc1, b2J, we get b1 /∈ Kc1, b2J so b1 ∈
Jb2, c1K. It is then easy to deduce that a1 ∈ Kb1, a2J and b2 /∈ Kb1, a2J, contrary

to the hypothesis.
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• a1 ∈ Ja2, c1K and c2 ∈ Kc1, a2J. As a1 /∈ Kb1, a2J, we get b2 /∈ Kb1, a2J so b2 ∈
Ja2, b1K. It is then easy to deduce that b1 /∈ Kc1, b2J and c2 ∈ Kc1, b2J, again

contrary to the hypothesis.

Notice that for any i, j, k, l ∈ J1, nK, we have the identities

|δi∈Kk,jJ − δl∈Kk,jJ| = δi∈Kk,jJδl∈Jj,kK + δi∈Jj,kKδl∈Kk,jJ

= δi∈Kk,jJδl∈Jj,kK + (1− δi∈Kk,jJ)(1− δl∈Jj,kK)

= 2δi∈Kk,jJδl∈Jj,kK + 1− δi∈Kk,jJ − δl∈Jj,kK

and

|δi∈Kk,jJ − δl∈Kk,jJ| = δi∈Kk,jJδl∈Jj,kK + δi∈Jj,kKδl∈Kk,jJ

= δi∈Kk,jJ(1− δl∈Kk,jJ) + (1− δi∈Kk,jJ)δl∈Kk,jJ

= δi∈Kk,jJ + δl∈Kk,jJ − 2δi∈Kk,jJδl∈Kk,jJ.

If a is a side of the polygon, we have a2 = a1 + 1 and the previous difference

becomes (up to a factor n)

δb1∈Kc1,a1J + δb2∈Kc2,a1+1J + |δa1 6=b1 − δb2∈Kb1,a1+1J|
+ |δb1∈Kc1,b2J − δc2∈Kc1,b2J| − |δa1 6=c1 − δc2∈Kc1,a1+1J|

= δa1∈Kb1,c1K + δb2∈Kc2,a1+1J + δa1 6=b1 − δb2∈Kb1,a1+1J

+ 2δb1∈Jb2,c1Kδc2∈Kc1,b2J + 1− δb1∈Jb2,c1K − δc2∈Kc1,b2J − δa1 6=c1 + δc2∈Kc1,a1+1J

= δa1∈Kb1,c1K + 2δb1∈Jb2,c1Kδc2∈Kc1,b2J + 1− δb1∈Jb2,c1K − δc2∈Kc1,b2J

+ δa1∈Kb2−1,c2−1K − δa1=b1 − δa1∈Kb2−1,b1−1K + δa1=c1 + δa1∈Kc2−1,c1−1K

= δa1∈Kb1,c1K + 2δb1∈Jb2,c1Kδc2∈Kc1,b2J − δb1∈Jb2,c1K − δc2∈Kc1,b2J

+ δa1∈Kb2−1,c2−1K − δa1=b1 + δa1∈Kb1−1,b2−1K + δb1=b2 + δa1=c1 + δa1∈Kc2−1,c1−1K

= δa1∈Kb1,c1K + 2δb1∈Jb2,c1Kδc2∈Kc1,b2J − δb1∈Kb2,c1K − δc2∈Kc1,b2J

+ δa1∈Kb1−1,c1−1K + δb2∈Kc1,b1J + δc2∈Kc1,b2J − δa1=b1 + δa1=c1

= 2δa1∈Kb1,c1K + 2δb1∈Jb2,c1Kδc2∈Kc1,b2J.

The other computations are analogous.

Let us introduce the K-algebras that will play an important role in this paper.

As before, R = K[X]. We define R′ = K[X,Y ]/(Y X − Y 2). It is in fact an

R-order of rank 2 (see Definition 2.17), and we have the following R-isomorphism

with a classical Bass order:

R′ → R−R := {(P,Q) ∈ R2 | P −Q ∈ (X)}, Y 7→ (0, X).
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The three indecomposable Cohen–Macaulay R′-modules and irreducible mor-

phisms over R appear in each of the two lines of the following commutative

diagram:

(Y ) R′ R′/(Y )

R′/(X − Y ) R′ (X − Y )

ι π

Y X−Y
X−Yo

Y

Y o

X−Y

π′ ι′

where Y and X −Y are multiplications, π are projections and ι are natural inclu-

sions.

Finally, we denote by R′ the algebra K[u±1, v]/(vu− v2) where R′ is seen as

a subalgebra of R′ through the inclusion

(2.16) R′ ↪→ R′, X 7→ u2n, Y 7→ v2n.

§2.4. Frozen Jacobian algebras are R-orders

Let (Qσ,Wσ, F ) be an ice quiver with potential arising from a tagged triangula-

tion σ as defined in Section 2.2, and ei be the trivial path of length 0 at vertex i.

The main result of this section is that Γσ := P(Qσ,Wσ, F ) (Definition 2.1) is an

R-order.

First, we introduce the definition of orders and Cohen–Macaulay modules over

orders.

Definition 2.17. Let S be a commutative Noetherian ring of Krull dimension 1.

An S-algebra A is called an S-order if it is a finitely generated S-module and

socS A = 0. For an S-order A, a left A-module M is called a (maximal) Cohen–

Macaulay A-module if it is finitely generated as an S-module and socSM = 0 (or

equivalently socAM = 0). We denote by CMA the category of Cohen–Macaulay

A-modules. It is a full exact subcategory of modA.

Remark 2.18. If S is a principal ideal domain (e.g. S = R) and M ∈ modS,

then socSM = 0 if and only if M is free as an S-module.

We refer to [3], [8], [30] and [31] for more details about orders and Cohen–

Macaulay modules.

The main theorem of this subsection is the following.

Theorem 2.19. The frozen Jacobian algebra Γσ has the structure of an R-order.
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The remaining part of this subsection is devoted to proving Theorem 2.19.

The strategy is to define a grading on Γσ, to prove that the centre Z(Γσ) of Γσ
is R′, and to give its order structure as an R′-module. Notice that the centre

of Jacobian algebras coming from surfaces without boundary was computed by

Ladkani [27, Proposition 4.11].

We describe Γσ in detail in Proposition 2.26. Let us define a grading on Qσ
(and Q′σ).

Definition 2.20 (θ-length). Let a and b be sides or tagged arcs of P ∗, and α :

a → b be an arrow of Q′σ. Let θ be the value of the oriented angle from ~a to ~b

taken in [0, 2π). We define the θ-length of α by

`θ(α) =
n

π
θ.

The θ-length of arrows extends additively to a map `θ from paths to integers,

defining a grading on KQσ (and KQ′σ) which will also be denoted by `θ.

Remark 2.21. Using Lemma 2.14, we easily see that `θ(α) = `θa,b for any arrow

α : a→ b. Indeed, if a and b share a common endpoint, then 0 ≤ `θa,b < 2n.

We now prove that for any tagged arcs or sides a and b of P ∗, the possible θ-

lengths of paths from a to b in Qσ do not depend on the triangulation σ containing

a and b.

Proposition 2.22. Let σ and σ′ be two different triangulations of the punctured

polygon P ∗. For any two edges a and b common to σ and σ′, the minimal θ-length

of paths from a to b in Qσ is the same as the one in Qσ′ .

Proof. Any two triangulations can be related by a sequence of flips such that

each time we only change one arc in the related triangulation to get another one.

Therefore, without losing generality, we can assume that the two triangulations σ

and σ′ have all arcs the same except one. We show the possible differences between

σ and σ′ in Figure 2.23.

It is sufficient to prove that for any two vertices common to both triangula-

tions, and for any path between them in one triangulation, we can find a path with

the same θ-length in the other triangulation. In each case, certain compositions of

two arrows in one of the diagrams have to be replaced by one arrow in the other

diagram. We can check case by case that the θ-lengths of both are equal.

For example, suppose that the triangulations only differ in a square not in-

cident to the puncture as shown at the top of Figure 2.23. Considering the given

position of the puncture, the arcs are (Pi, Pk), (Pi, Pj), (Pi, Pl), (Pj , Pk), (Pl, Pj)
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PkPi

PjPl

b ∗

↔

PkPi

PjPl

b ∗

PkPi

Pj

b∗

↔

PkPi

Pj

b∗

b

⊲⊳

Pi

Pj

∗
↔ b

Pi

Pj

∗

Figure 2.23. Possible flips.

and (Pl, Pk), and we get

`θ((Pj , Pk), (Pi, Pj)) + `θ((Pi, Pj), (Pl, Pj))

= d(j, i) + d(k, j) + d(i, l) = d(j, l) + d(k, j) = `θ((Pj , Pk), (Pl, Pj)).

The other cases are handled in the same way.

Proposition 2.24. The potential Wσ (resp. W ′σ) on Qσ (resp. Q′σ) is homoge-

neous of θ-length 2n. Thus, `θ induces a grading on Γσ.

Proof. Consider a true triangle of σ. Up to cyclic permutation, we can denote its

three sides by a, b, c in clockwise order, satisfying a1 = b2, a2 = c2. Moreover,

they satisfy either b1 = c1 and a1 ∈ Kb1, a2J (if the triangle is not incident to the

puncture), or b1 = b2 and c1 = c2 (if the triangle is incident to the puncture). In

any case, the θ-length of the clockwise triangle induced by this true triangle is
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`θa,b + `θb,c + `θc,a

= (d(a1, b1) + d(b1, c1) + d(c1, a1)) + (d(a2, b2) + d(b2, c2) + d(c2, a2))

+ n(|δa1∈Kb1,a2J − δb2∈Kb1,a2J|+ |δb1∈Kc1,b2J − δc2∈Kc1,b2J|
+ |δc1∈Ka1,c2J − δa2∈Ka1,c2J|)

= n+ n+ n× 0 = 2n.

Using the flips introduced in the proof of Proposition 2.22, we can transform

σ to a triangulation τ that consists of the sides of P and the tagged arcs incident

to the puncture (as in Figure 2.29, p. 162). Moreover, using the reasoning of

Proposition 2.22, flips clearly preserve the θ-length of anticlockwise planar cycles

of Q′σ winding around the puncture or vertices of P ∗. Therefore, it is enough to

see that W ′τ is homogeneous of θ-length 2n. This is easy to check by calculation.

As terms of Wσ are terms of W ′σ, Wσ is also homogeneous.

Proposition 2.25. Let a and b be two edges of σ which are not incident to the

puncture or tagged in the same way. The minimal θ-length of paths from a to b

in Qσ is `θa,b.

Proof. Let us prove first that there exists a path from a to b with θ-length `θa,b. We

use induction on `θa,b. If it is 0, then a = b and the result is obvious. If a and b are

both incident to the puncture and not isotopic, the result is immediate (consider

the triangulation τ consisting of the sides of P and the plain tagged arcs incident

to the puncture).

Suppose that a is not incident to the puncture. We consider four cases:

• Suppose that b1, b2 6= a2. Consider an arc c such that c1 = a1 and c2 = a2 + 1

and tagged in the same way as b if b1 = b2 and c1 = c2. The arc c is either

isotopic to the union of a and a side of the polygon (if a2 6= a1− 1), or to a part

of a (if a2 = a1 − 1). In any case, a, b and c are compatible so we can choose a

triangulation σ′ containing a, b and c. In Qσ′ , there is an arrow α from a to c

of θ-length 1, and as

`θc,b = d(c1, b1) + d(c2, b2) + n|δc1∈Kb1,c2J − δb2∈Kb1,c2J|
= d(a1, b1) + d(a2 + 1, b2) + n|δa1∈Kb1,a2+1J − δb2∈Kb1,a2+1J|
= d(a1, b1) + d(a2, b2)− 1 + n|δa1∈Kb1,a2J − δb2∈Kb1,a2J| = `θa,b − 1,

we can apply the induction hypothesis: there is a path w from c to b of θ-length

`θc,b and the path αw has the expected θ-length `θa,b. Finally, thanks to Proposi-

tion 2.22, there is a path of the same θ-length in σ.
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• Suppose that b1, b2 6= a1 and a2 6= a1 + 1. The same reasoning works with

c1 = a1 + 1 and c2 = a2.

• Suppose that b1 = a2 and b2 = a1. In this case, we construct σ′ by taking a,

b and the two tagged arcs connecting the puncture and a2. In σ′, there is an

arrow from a to b which has, by definition, θ-length `θa,b.

• Suppose that a2 = a1 + 1 and b1 6= a1. In this case, set c = (Pa1+1, Pa2+1) and

complete to a triangulation σ′ (containing b). We have an arrow α from a to c

of θ-length 2. Moreover,

`θc,b = d(c1, b1) + d(c2, b2) + n|δc1∈Kb1,c2J − δb2∈Kb1,c2J|
= d(a1 + 1, b1) + d(a2 + 1, b2) + n|δa1+1∈Kb1,a2+1J − δb2∈Kb1,a2+1J|
= d(a1, b1) + d(a2, b2)− 2 + n|δa1∈Kb1,a2J − δb2∈Kb1,a2J| = `θa,b − 2

and the same reasoning as before works.

The case where b is not incident to the puncture is similar.

Let us now prove by induction on the θ-length of any path w from a to b that

this θ-length is at least `θa,b. When a = b or if w is an arrow, it is clear. When a

and b are different and w is not an arrow, w is the composition of two nonzero

paths w′ from a to c and w′′ from c to b. By induction hypothesis and Lemma

2.15, we have

`θ(w) = `θ(w′) + `θ(w′′) ≥ `θa,c + `θc,b ≥ `θa,b.

At the end of this section, we will prove that Γσ has the structure of an

R-order and we will specify its structure. More precisely, we prove that the centre

of Γσ is isomorphic to R′ and we realize Γσ as a matrix algebra whose entries are

free R-submodules of R′ (see (2.16), p. 153).

For each vertex d of Q′σ, we will define an element Cd of edΓσed as follows.

• If Q′σ does not contain Figure 2.10 as a subtriangulation, all the planar cycles

at d are equivalent (because of commutativity relations). Denote by Cd the

common value of these planar cycles in Γσ.

• If Q′σ contains Figure 2.10 as a subtriangulation, if d 6= j, all cycles at d that

are planar in the full subquiver Q′σ r {j} are equivalent. Denote by Cd their

common value in Γσ. We define Cj = 0.

For each frozen vertex a of Q′σ, we denote by Ea the big cycle at a pass-

ing through each external arrow once. Finally, if a and b are two vertices of Q′σ
corresponding to edges which are not incident to the puncture, we write a ` b if
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a2 ∈ Kb2, a1J or b1 ∈ Kb2, a1J. We have a ` b in the following cases:

•∗ b
a •∗

b

a

•∗ a

b

•∗
a

b
•∗

a

b
•∗

b

a

Fix a grading of R′ such that u and v have degree 1. Then R′ is graded as

a subalgebra of R′ (X and Y have degree 2n). If a and b are two vertices of Q′σ,

we consider a graded R′-submodule Aa,b of R′ (that is also free over R) defined in

the following way:

• Aa,b = 0 if a and b are incident to the puncture and tagged differently (as i and

j in Figure 2.10);

• Aa,b = u`
θ
a,b−1vR′ if one of a and b is incident to the puncture and plain and

the other one either incident to the puncture and plain, or not incident to the

puncture;

• Aa,b = u`
θ
a,b−1(u−v)R′ if one of a and b is incident to the puncture and notched

and the other one either incident to the puncture and notched, or not incident

to the puncture;

• Aa,b = u`
θ
a,bR′ + v`

θ
a,bR′ if a and b are not incident to the puncture and a ` b;

• Aa,b = u`
θ
a,bR′ if a and b are not incident to the puncture and a /̀ b.

It is an easy consequence of Lemma 2.15 that A := (Aa,b)a,b∈Q′σ,0 is an R-

subalgebra of the matrix algebra MQ′σ,0
(R′).

Proposition 2.26. There exists an isomorphism of graded algebras φσ : R′ →
Z(Γσ) (Z(Γσ) is graded by θ-length). Moreover, for the induced R′-algebra struc-

ture of Γσ, there is an isomorphism of graded R′-algebras ψσ : A → Γσ induced

by isomorphisms of graded R′-modules

ψa,bσ : Aa,b
∼−→ eaΓσeb

(Γσ is graded by θ-length). Finally, the following properties are satisfied:

(i)σ for each frozen vertex a of Qσ,

eaφσ(X) = φσ(X)ea = Ea;

(ii)σ for each vertex a of Qσ,

eaφσ(Y ) = φσ(Y )ea

=

{
eaφσ(X)− Ca if σ has no plain arc incident to the puncture,

Ca otherwise;
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(iii)σ for any pair of frozen vertices a and b, ψa,bσ (u`
θ
a,b) is equivalent to the shortest

path among paths consisting of external arrows from a to b;

(iv)σ for any pair of frozen vertices a and b such that a is an immediate successor

of b in anticlockwise order (b2 = a1), let sa,b be the path from a to b whose

composition with the external arrow b → a is the anticlockwise external

cycle winding around a1; then

ψa,bσ (v`
θ
a,b)

=

{
ψa,bσ (u`

θ
a,b)− sa,b if σ has no plain arc incident to the puncture,

sa,b otherwise;

(v)σ for any external arrow α of Q′σ and any w ∈ Γσ, if αw = 0 then et(α)w = 0,

and if wα = 0 then wes(α) = 0.

First of all, when the triangulation has only notched arcs incident to the

puncture, the situation is similar to the fully plain one. Then, up to applying the

R-automorphism of R′ given by Y 7→ X − Y and the K[u±1]-automorphism of R′
given by v 7→ u − v, both results are equivalent (note that this pair of automor-

phisms commutes with the inclusion R′ ⊂ R′). From now on, we will only look at

cases where triangulations have at most one notched arc incident to the puncture.

Observe that (v)σ is in fact a consequence of the rest of the proposition.

Indeed, suppose that α is an external arrow from a vertex a to a vertex b and

suppose that w ∈ Γσ satisfies αw = 0. Without loss of generality, we can suppose

that w = ebwec for some vertex c of Q′σ. Thus, there is p ∈ Ab,c such that w =

ψb,cσ (p). Then, thanks to (i)σ and the multiplicativity of ψσ, we have

0 = Ebw = φσ(X)ebψ
b,c
σ (p) = φσ(X)ψb,cσ (p) = ψb,cσ (Xp),

and as ψb,cσ is injective, we get Xp = 0 in Ab,c. Since Ab,c is free over R ⊂ R′, it

follows that p = 0 and therefore w = 0. The other case is dealt with in the same

way.

If we suppose that the existence of φσ as a morphism of algebras and (ii)σ are

proved, we can easily deduce that φσ is graded. Indeed, we proved in Proposition

2.24 that `θ(Ck) = 2n. Thus, thanks to (ii)σ, if σ has at most one notched edge

incident to the puncture, then φσ(Y ) is homogeneous of degree 2n. Moreover, as

φσ is a morphism of algebras, we have φσ(X)φσ(Y ) = φσ(Y )φσ(Y ), so φσ(X) is

also homogeneous of degree 2n.

It is then automatic that ψa,bσ is graded for any vertices a and b (under the

hypothesis that ψa,bσ is an isomorphism of R′-modules). Indeed, `θa,b is by definition

the minimal θ-length of a path from a to b.



160 L. Demonet and X. Luo

The strategy for the rest of the proposition is to use induction on n. We start

by proving the proposition for two families of initial cases.

Lemma 2.27. Suppose that n = 2 and the triangulation σ consists of one plain

and one notched arc incident to the puncture as in Figure 2.10. Then the conclu-

sions of Proposition 2.26 are satisfied.

Proof. In this case, the quiver Q′σ is

1 2

3

4

η

ε

α

γ

ζ

β

δ

and the potential is W ′σ = ηαβ+ηγδ−γδε−ηζ, so the relations are βη = ηα = 0,

δη = δε, ηγ = εγ and ζ = αβ+ γδ (3 corresponds to the notched arc, and 4 to the

plain one). Using these relations we get

Claim 1. Any path different from η can be, up to the relations, expressed in a

unique way without subpaths of the form η, ζ, βεγ or δεα (the last two are 0

in Γσ).

The θ-lengths are given by `θ(α) = `θ(β) = `θ(γ) = `θ(δ) = 1 and `θ(ε) =

`θ(ζ) = `θ(η) = 2.

Let us prove that there is an isomorphism

φσ : R′ → Z(Γσ), X 7→ εζ + ζε+ βεα+ δεγ, Y 7→ εγδ + γδε+ δεγ.

It is easy to see that φσ(X) and φσ(Y ) commute with all arrows, so the image is

included in the centre. Moreover, we have

φσ(X)φσ(Y ) = εαβεγδ + εγδεγδ + αβεγδε+ γδεγδε+ δεγδεγ

= εγδεγδ + γδεγδε+ δεγδεγ = φσ(Y )2,

so φσ is a morphism. Notice that

φ1 = e1φσe1 : R′ → e1Z(Γσ)e1, X 7→ εαβ + εγδ, Y 7→ εγδ,

is an isomorphism. Indeed, surjectivity comes from Claim 1. For injectivity, notice

that every element of R′ can be (uniquely) written in the form P + Y Q where P
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and Q are polynomials in X. Then, as εαβεγδ = εγδεαβ = 0,

φ1(P + Y Q) = P (εαβ) + P (εγδ)− P (0)e1 + εγδQ(εγδ).

If φ1(P + Y Q) = 0 then βφ1(P + Y Q) = βP (εαβ) = 0. As Γσ/(e4, η) is a path

algebra (all relations are in the ideal (e4, η) of KQ′σ except ζ = αβ + γδ), we get

P = 0. Then εγδQ(εγδ) = 0. As Γσ/(e3, η − ε) is a path algebra (all relations are

in the ideal (e3, η − ε) of KQ′σ except ζ = αβ + γδ), we get Q = 0. Thus φ1 is

injective. We deduce immediately that φσ is also injective.

For the surjectivity of φσ, take an element z of Z(Γσ). Using Claim 1, it is

immediate that we can write

z = P1(εαβ) +Q1(εγδ) + P2(αβε) +Q2(γδε) + P3(βεα) +Q4(δεγ)

where Q1 and Q2 have no constant terms (we make the convention that (εαβ)0 =

e1, (αβε)0 = e2, (βεα)0 = e3 and (δεγ)0 = e4). Using the identity αz = zα, as

δεα = 0, we get P2(αβε)α = αP3(βεα) and, thanks to the grading by `θ, P2 = P3.

In the same way, βz = zβ implies P1 = P3, γz = zγ implies Q2 = Q4, and

δz = zδ implies Q1 = Q4. So z = P1(εαβ + αβε+ βεα) +Q1(εγδ + γδε+ δεγ) =

φσ(P1(X − Y ) +Q1(Y )).

It is an easy observation, using Claim 1, that e1Z(Γσ)ei = eiΓσei for every

i ∈ Q′σ,0. This permits one to compute, together with the θ-lengths given at the

beginning, the following isomorphisms of R′-modules (denoted ψa,bσ ) from Aa,b to

eaΓσeb where a, b ∈ J1, 4K:

H
HHHa

b
1 2 3 4

1 1 7→ e1 u2 7→ ε, v2 7→ η (u− v)3 7→ εα v3 7→ εγ

2 u2 7→ ζ, v2 7→ γδ 1 7→ e2 u− v 7→ α v 7→ γ

3 u− v 7→ β (u− v)3 7→ βε u−1(u− v) 7→ e3 0

4 v 7→ δ v3 7→ δε 0 u−1v 7→ e4

(note that 1 ` 2 and 2 ` 1). Points (i)σ to (iv)σ are easy to check. Multiplicativity

can be easily checked case by case.

Lemma 2.28. Suppose that the triangulation consists of the (plain) arcs connect-

ing each vertex of the polygon to the puncture. Then the conclusions of Proposition

2.26 are satisfied.

Proof. For each i from 1 to n, denote by i the arc from Pi to Pi+1 and by i′ the arc

from Pi to the puncture. Let αi be the arrow of Qσ from i′ to (i+1)′, βi the arrow

from (i+1)′ to i, γi the arrow from i to i′ and δi the arrow from i−1 to i (modulo n)
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(Figure 2.29). Note that `θ(αi) = `θ(δi) = 2, `θ(βi) = `θ(γi) = n−1. The relations

in Γσ are βiγi = αi+1αi+2 . . . αi−2αi, γiαi = δi+1γi+1 and αiβi = βi−1δi for all

i ∈ J1, nK.

b

i − 1i

(i− 1)′(i+ 1)′

αi αi−1

i′βi

βi−1γi

γi−1 Pi−1

Pi

Pi+1

δi

Figure 2.29. Initial case.

Notice that any path is equivalent to a path containing only arrows of type

δ or to a path containing no arrow of type δ. Then, up to equivalence, a path

containing no arrow of type δ can be supposed not to contain any arrow of type γ

except maybe at the beginning, and not to contain any arrow of type β except

maybe at the end. To summarize:

Claim 2. Any path of Q′σ is equivalent to a path of the form

δiδi+1 . . . δj or γµi αiαi+1 . . . αjβ
ν
j ,

where µ, ν ∈ {0, 1}.

For i ∈ J1, nK, we denote Ei = δi+1δi+2 . . . δi, Ci = γiβi−1δi = γiαiβi =

δi+1γi+1βi and Ci′ = βi−1δiγi = βi−1γi−1αi−1 = αiαi+1 . . . αi−1 = αiβiγi. Finally,

we set

E =

n∑
i=1

(Ei + Ci′) and C =

n∑
i=1

(Ci + Ci′).

Let us prove that there is an isomorphism of algebras given by

φσ : R′ = K[X,Y ]/(Y X − Y 2)→ Z(Γσ), X 7→ E, Y 7→ C.

We easily see from the relations that Ci′αi = αiC(i+1)′ , C(i+1)′βi = βiCi = βiEi,

Ciγi = Eiγi = γiCi′ , δiEi = Ei−1δi, δiCi = Ci−1δi, βiCi = βiEi, Ciγi = Eiγi and

CiEi = C2
i . Therefore C and E are in the centre of Γσ, and φσ is a morphism of

algebras.
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Any element of R′ can be written as P (X) + Y Q(Y ) where P and Q are

polynomials. If this element is in kerφσ, then P (E)+CQ(C) = 0. Notice now that

there are no relations between a path which contains only arrows of type δ and any

other path. Thus, we should have P (E) = 0 and then P = 0 as a polynomial (paths

appearing in CQ(C) contain arrows which are not of type δ). Then CQ(C) = 0.

Powers of C have different θ-lengths, so Q = 0 and finally kerφσ = 0.

Let us prove that φσ is surjective. Let z ∈ Z(Γσ). Using Claim 2 and EiCi
= C2

i , we can write

z =

n∑
i=1

[Pi(Ei) +Qi(Ci) + Si(Ci′)]

for some polynomials Pi, Qi and Si where Qi has no constant term (we make

the convention that E0
i = ei and C0

i′ = ei′). For any i, zαi = αiz implies that

Si(Ci′)αi = αiSi+1(C(i+1)′), so using the grading by θ-length, Si = Si+1. In the

same way, zβi = βiz implies Si+1(C(i+1)′)βi = βi(Pi(Ei)+Qi(Ci)) = (Pi(C(i+1)′)+

Qi(C(i+1)′)βi because βiEi = βiCi = C(i+1)′βi, so we get Si+1 = Pi +Qi. Finally,

zδi = δiz implies (Pi−1(Ei−1) +Qi−1(Ci−1))δi = δi(Pi(Ei) +Qi(Ci)). As already

observed before, there are no relations between paths containing only δ’s and

other paths. Thus, Pi−1(Ei−1)δi = δiPi(Ei) and Qi−1(Ci−1)δi = δiQi(Ci), and

using θ-length, Pi−1 = Pi and Qi−1 = Qi. Finally, we get

z = P1

( n∑
i=1

Ei

)
+Q1

( n∑
i=1

Ci

)
+ (P1 +Q1)

( n∑
i=1

Ci′
)

= φσ(P1(X) +Q1(Y )),

so φσ is surjective.

Let now i, j be two frozen vertices. Notice that

i ` j ⇔ i+ 1 ∈ Kj + 1, iJ or j ∈ Kj + 1, iJ ⇔ j = i− 1.

The following maps are isomorphisms of graded R′-modules:

ψi,jσ : u2d(i,j)R′ → eiΓσej , u2d(i,j) 7→ δi+1δi+2 . . . δj (j 6= i− 1);

ψi,i−1
σ : u2(n−1)R′ + v2(n−1)R′ → eiΓσei−1,

u2(n−1) 7→ δi+1δi+2 . . . δi−1, v
2(n−1) 7→ γiβi−1;

ψi,j
′

σ : v2d(i,j)+n−1R′ → eiΓσej′ , v2d(i,j)+n−1 7→ γiαi . . . αj−1;

ψi
′,j
σ : v2d(i,j+1)+n−1R′ → ei′Γσej , v2d(i,j+1)+n−1 7→ αi . . . αjβj ;

ψi
′,j′

σ : v2d(i,j)R′ → ei′Γσej′ , v2d(i,j) 7→ αi . . . αj−1 (j 6= i);

ψi
′,i′

σ : u−1vR′ → ei′Γσei′ , u−1v 7→ ei′ .

The argument mainly relies on Claim 2. Let us for example look at the second

case. It is easy to check that

ψi,i−1
σ (v2(n−1))(E − C) = 0 and ψi,i−1

σ (u2(n−1) − v2(n−1))C = 0,
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so ψi,i−1
σ is a morphism. Moreover, if an element u2(n−1)P (X) + v2(n−1)Q(Y ) is

mapped to 0 by this map, using the same kind of analysis as before, we prove that

P = Q = 0, so the map is injective. For surjectivity, notice that, for any path

that does not contain δ from i to i− 1, different from γiβi−1, in the form given by

Claim 2, we can write

γiαi . . . αi−1βi−1 = δi+1γi+1αi+1 . . . αi−1βi−1 = · · ·
= δi+1 . . . δi−1γi−1C

k
i−1αi−1βi−1 = δi+1 . . . δi−1C

k+1
i−1 ,

so the map is surjective.

Multiplicativity can be checked case by case. For example, if i, j, k ∈ J1, nK
and j ∈ Ki, kJ, we have

ψi,j
′

σ (v2d(i,j)+n−1)ψj
′,k
σ (v2d(j,k+1)+n−1) = γiαiαi+1 . . . αj−1αj . . . αkβk

= δi+1γi+1αi+1 . . . αkβk = · · · = δi+1 . . . δkγkαkβk = δi+1 . . . δkC

= ψi,kσ (u2d(i,k)Y ) = ψi,kσ (v2d(i,k)+2n) = ψi,kσ (v2d(i,j)+n−1v2d(j,k+1)+n−1).

Points (i)σ to (iv)σ are easy to check (and recall that (v)σ is a consequence

of them).

Proof of Proposition 2.26. Suppose that the result is proved for all triangulations

of polygons with n − 1 vertices and that there is a corner triangle PlPl+1Pl+2 in

the triangulation, as follows:

Pl+1

Pl
Pl+2

l
l+1

a
bc

l−1l+2

α

a∗

β

m

τ

PlPl+2

l− 1

m

l+ 2
τ

α′

β′
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(if there is no corner triangle, we are either in the case of Lemma 2.27, or in the

case of Lemma 2.28). By induction hypothesis, the expected results hold for τ . As

the θ-length depends on the size of the polygon, we will denote by `θ,τ (resp. `θ)

the θ-length in τ (resp. σ). In the same way, as the inclusion R′ ⊂ R′ depends on

the triangulation, we will call uτ and vτ the generators of R′ when we consider

this inclusion for τ .

Then there is a nonunital monomorphism

ξ : KQ′τ ↪→ KQ′σ, α′ 7→ αb, β′ 7→ cβ, γ 7→ γ for γ ∈ (Q′τ )1 r {α′, β′}.

We have W ′σ = ξ(W ′τ ) + abc − aa∗, so for any γ ∈ Q′τ which is not external,

∂γW
′
σ = ξ(∂γW

′
τ ). Thus ξ induces a morphism ξ̄ : Γτ → Γσ. Notice that by using

the relations, any path of Q′σ is equivalent to an element which does not contain

a∗, ca or ab. It is then easy to see that:

Claim 3. Any path of Q′σ is equivalent to a path of one of the following forms

where ω is a path of Q′τ :

ξ(ω), ξ(ω)α, ξ(ω)c, bξ(ω), βξ(ω), bξ(ω)α, bξ(ω)c, a, βξ(ω)α, βξ(ω)c.

Let us prove that ξ̄ is in fact injective. Let πτ be the canonical projection

KQ′τ → Γτ . Thanks to (iv)τ , we get

ker ξ̄ = πτ
(
ξ−1(〈∂bW ′σ, ∂cW ′σ〉+ ξ(J ′(W ′τ )))

)
= πτ

(
ξ−1(〈∂bW ′σ, ∂cW ′σ〉) + ξ−1(ξ(J ′(W ′τ )))

)
= πτ (ξ−1(〈∂bW ′σ, ∂cW ′σ〉)) + πτ (J ′(W ′τ ))

= πτ
(
ξ−1(〈ca− ωm,l−1α, ab− βωl+2,m〉)

)
where ωm,l−1 = ψm,l−1

τ

(
v
`θ,τm,l−1
τ

)
and ωl+2,m = ψl+2,m

τ

(
v
`θ,τl+2,m
τ

)
.

Up to equivalence, a path of Q′σ can always be supposed not to contain a∗.
Moreover, em Im(ξ)el = 0 = el+1 Im(ξ)em, so

ξ−1(〈ca− ωm,l−1α, ab− βωl+2,m〉) = ξ−1(〈cab− ωm,l−1αb, cab− cβωl+2,m〉)

and

ker ξ̄ = πτ
(
ξ−1(〈cab− ωm,l−1αb, cab− cβωl+2,m〉)

)
= πτ

(
ξ−1(〈cβωl+2,m − ωm,l−1αb, cab− cβωl+2,m〉)

)
= πτ

(
〈β′ωl+2,m − ωm,l−1α

′〉+ ξ−1(〈cab− cβωl+2,m〉)
)

= πτ
(
ξ−1(〈cab− cβωl+2,m〉)

)
= πτ (0) = 0.
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Let us prove that the following map is an isomorphism:

φσ : Z(Γτ ) ∼= R′ → Z(Γσ), X 7→ ξ̄(φτ (X)) + El + El+1,

Y 7→ ξ̄(φτ (Y )) + Cl + Cl+1.

First of all, φσ(X), φσ(Y ) ∈ Z(Γσ). Indeed, for each arrow γ in Qτ , we have,

by using induction hypothesis,

γφσ(X) = γξ̄(φτ (X)) = ξ̄(γφτ (X)) = ξ̄(φτ (X)γ) = ξ̄(φτ (X))γ = φσ(X)γ,

and the same for Y . For arrows which are not in Qτ we have

aφσ(X) = aEl = aa∗β
ext.︷︸︸︷. . . α = Cl+1β

ext.︷︸︸︷. . . α

= βCl+2

ext.︷︸︸︷. . . α = · · · = β
ext.︷︸︸︷. . . Cl = El+1a = φσ(X)a

where ext. denote products of external arrows and, thanks to (i)τ ,

bφσ(X) = bcβ
ext.︷︸︸︷. . . αb = Elb = φσ(X)b,

cφσ(X) = cEl+1 = cβ
ext.︷︸︸︷. . . αbc = φσ(X)c,

βφσ(X) = βEl+2 = El+1β = φσ(X)β,

αφσ(X) = αEl = El−1α = φσ(X)α.

For φσ(Y ), by using (ii)τ , all the computations are immediate.

Notice now that

C2
l = bc(ab)(ca) = bcβξ̄

(
ψl+2,m
τ

(
v
`θ,τl+2,m
τ

))
ξ̄
(
ψm,l−1
τ

(
v
`θ,τm,l−1
τ

))
α

= bcβξ̄
(
ψl+2,l−1
τ

(
v
`θ,τl+2,l−1+2n
τ

))
α = bcβξ̄

(
ψl+2,l−1
τ

(
Y u

`θ,τl+2,l−1
τ

))
α

= bcβCl+2ξ̄
(
ψl+2,l−1
τ

(
u
`θ,τl+2,l−1
τ

))
α

= Clbcβξ̄
(
ψl+2,l−1
τ

(
u
`θ,τl+2,l−1
τ

))
α = ClEl

and C2
l+1 = Cl+1El+1 by the same method. Therefore

φσ(Y X) = ξ̄(φτ (Y ))ξ̄(φτ (X)) + ClEl + Cl+1El+1

= ξ̄(φτ (Y 2)) + C2
l + C2

l+1 = φσ(Y 2),

so φσ is a morphism. As ξ̄ and φτ are injective, φσ is also injective. The last thing

to show is that φσ is surjective.

Using Claim 3 and the fact that, as it commutes with idempotents, every

element z ∈ Z(Γσ) is a linear combination of cycles, we can write

z = ξ̄(z′) + bξ̄(z′′)α+ βξ̄(z′′′)c.
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Then, as z is in the centre, for any x ∈ Γτ ,

ξ̄(xz′) = ξ̄(x)ξ̄(z′) = ξ̄(x)z = zξ̄(x) = ξ̄(z′)ξ̄(x) = ξ̄(z′x),

and, as ξ̄ is injective, xz′ = z′x and z′ ∈ Z(Γτ ). Therefore, up to subtracting

φσ(z′), we can suppose that z = bξ̄(z′′)α+ βξ̄(z′′′)c. Hence, we have

0 = zαb = αzb = ξ̄(α′z′′α′),

and, as ξ̄ is injective, α′z′′α′ = 0. Finally, emz
′′el−1 = 0 thanks to (v)τ . In the

same way el+2z
′′′em = 0, so z = 0. Therefore φσ is surjective.

We will prove the existence of ψσ as a family of morphisms of R′-modules.

Then these morphisms are automatically graded by looking at homogeneous gen-

erators. If i, j /∈ {l, l+ 1}, ξ̄ induces an isomorphism of R′-modules from eiΓτej to

eiΓσej . This proves the existence of ψi,jσ in this case.

Recall that l = (Pl, Pl+1), l + 1 = (Pl+1, Pl+2) and m = (Pl, Pl+2). Thus,

l + 1 ` l, l /̀ l + 1, and for any i ∈ Q′σ,0 r {l, l + 1} which is not incident to the

puncture, we have i1, i2 6= l + 1, so

i ` l ⇔ i2 ∈ Kl + 1, i1J or l ∈ Kl + 1, i1J

⇔ i2 ∈ Kl, i1J or l − 1 ∈ Kl, i1J ⇔ i ` l − 1;

l ` i ⇔ l + 1 ∈ Ki2, lJ or i1 ∈ Ki2, lJ

⇔ l + 2 ∈ Ki2, lJ or i1 ∈ Ki2, lJ ⇔ m ` i;

i ` l + 1 ⇔ i2 ∈ Kl + 2, i1J or l + 1 ∈ Kl + 2, i1J

⇔ i2 ∈ Kl + 2, i1J or l ∈ Kl + 2, i1J ⇔ i ` m;

l + 1 ` i ⇔ l + 2 ∈ Ki2, l + 1J or i1 ∈ Ki2, l + 1J

⇔ l + 3 ∈ Ki2, l + 2J or i1 ∈ Ki2, l + 2J ⇔ l + 2 ` i.

Let i /∈ {l, l + 1}. There are isomorphisms of R′-modules

eiΓτel−1 → eiΓσel, ω 7→ ξ̄(ω)α; el+2Γτei → el+1Γσei, ω 7→ βξ̄(ω);

emΓτei → elΓσei, ω 7→ bξ̄(ω); eiΓτem → eiΓσel+1, ω 7→ ξ̄(ω)c.

Injectivity comes from (v)τ . For example, if ξ̄(ω)α = 0 then ξ̄(ω)αb = 0 and

therefore ξ̄(ωα′) = 0, so ωα′ = 0 and finally ω = 0. For surjectivity, it is enough

to use Claim 3. In the same way, there is an isomorphism of R′-modules

emΓτem → elΓσel+1, ω 7→ bξ̄(ω)c.

Thus we get the expected R′-module structure for eiΓσej except when i =

j ∈ {l, l + 1} or i = l + 1 and j = l.
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Suppose that i = j = l. The elements of elΓσel are of the form λel + bωα for

λ ∈ K and ω ∈ emΓσel−1. We already know that

emΓσel−1
∼= u`

θ
m,l−1R′ + v`

θ
m,l−1R′,

and we get the following isomorphism of R′-modules:

R′ ∼=K K ⊕ u3(u`
θ
m,l−1R′ + v`

θ
m,l−1R′)→ elΓσel, (λ, u3p) 7→ λel + bψm,l−1

σ (p)α

(injectivity comes from (v)τ and the injectivity of ξ̄).

In the same way, if i = j = l + 1, there is an isomorphism of R′-modules

R′ ∼=K K ⊕ u3(u`
θ
l+2,mR′ + v`

θ
l+2,mR′)→ el+1Γσel+1,

(λ, u3p) 7→ λel+1 + βψl+2,m
σ (p)c.

Finally, suppose that i = l+ 1 and j = l. The elements of el+1Γσel are of the

form λa+ βωα and there is an isomorphism of R′-modules

u`
θ
l+1,lR′ + v`

θ
l+1,lR′ ∼=K Kv`

θ
l+1,l ⊕ u4u`

θ
l+2,l−1R′ → el+1Γσel,

(λv`
θ
l+1,l , u4p) 7→ λa+ βψl+2,l−1

σ (p)α.

Indeed, the only nonimmediate thing to check is aEl = aCl. By induction hypoth-

esis (in particular (v)τ ),

aEl = abcβξ̄
(
ψl+2,l−1
τ

(
u
`θ,τl+2,l−1
τ

))
α = βξ̄

(
ψl+2,l−1
τ

(
Y u

`θ,τl+2,l−1
τ

))
α

= βξ̄
(
ψl+2,l−1
τ

(
Y v

`θ,τl+2,l−1
τ

))
α = βξ̄

(
ψl+2,m
τ

(
v
`θ,τl+2,m
τ

))
ξ̄
(
ψm,l−1
τ

(
v
`θ,τm,l−1
τ

))
α

= abξ̄
(
ψm,l−1
τ

(
v
`θ,τm,l−1
τ

))
α = aCl.

For the multiplicativity of the ψσ, let us start by noticing that, thanks to the

beginning of the proof of Lemma 2.15, for any vertices i, j and k of Q′τ , we have

the identity

`θi,j + `θj,k − `θi,k
n

=
`θ,τi,j + `θ,τj,k − `

θ,τ
i,k

n− 1
.

It implies that ψi,jσ (w)ψj,kσ (w′) = ψi,kσ (ww′) for any (w,w′) ∈ Ai,j × Aj,k. Indeed,

it is enough to prove this when w and w′ are generators as R′-modules. Suppose

for example that w = u`
θ
i,j and w′ = u`

θ
j,k . Then, by the induction hypothesis,
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ψi,jσ
(
u`
θ
i,j
)
ψj,kσ

(
u`
θ
j,k
)

= ξ̄
(
ψi,jτ

(
u
`θ,τi,j
τ

)
ψj,kτ

(
u
`θ,τj,k
τ

))
= ξ̄
(
ψi,kτ

(
u
`θ,τi,j +`θ,τj,k
τ

))
= ξ̄
(
φτ
(
X(`θ,τi,j +`θ,τj,k−`

θ,τ
i,k )/2(n−1)

)
ψi,kτ

(
u
`θ,τi,k
τ

))
= φσ

(
X(`θ,τi,j +`θ,τj,k−`

θ,τ
i,k )/2(n−1)

)
ψi,kσ

(
u
`θi,k
τ

)
= φσ

(
X(`θi,j+`

θ
j,k−`θi,k)/2n

)
ψi,kσ

(
u`
θ
i,k
)

= ψi,kσ
(
u`
θ
i,j+`

θ
j,k
)
.

Multiplicativity for paths starting or ending at l or l+1 can be deduced easily

from that. For example, if i and k are vertices of τ ,

ψi,lσ
(
u`
θ
i,l
)
ψl,kσ

(
u`
θ
l,k
)

= ψi,l−1
σ

(
u`
θ
i,l−1

)
αbψm,kσ

(
u`
θ
m,k
)

= ψi,l−1
σ

(
u`
θ
i,l−1

)
ψl−1,m
σ (u3)ψm,kσ

(
u`
θ
m,k
)

= ψi,kσ
(
u`
θ
i,l−1+3+`θm,k

)
= ψi,kσ

(
u`
θ
i,l+`

θ
l,k
)
.

The last thing to check are the five additional conditions. Points (i)σ to (iv)σ
are easy to check and (v)σ is a consequence of them.

Theorem 2.30. There is an isomorphism of R-orders (and R′-algebras)

eFΓσeF = [u2d(i,j)R′ + v2d(i,j)R′δj=i−1 ]i,j∈J1,nK
∼= Λ

where the entries of eFΓσeF are R′-submodules of R′ and Λ is defined at (1.2).

For each edge a of σ, the eFΓσeF -module

Ma := eFΓσea = [A1,a, A2,a, . . . , An,a]
t

is, as a Λ-module, isomorphic to

[

a1︷ ︸︸ ︷
(Y ) . . . (Y )

n−a1︷ ︸︸ ︷
(Y 2) . . . (Y 2)]

t
if a = (Pa1 , ∗);

[

a1︷ ︸︸ ︷
(X − Y ) . . . (X − Y )

n−a1︷ ︸︸ ︷
(X2 − Y 2) . . . (X2 − Y 2)]

t
if a = (Pa1 , ./);

[

a1︷ ︸︸ ︷
R′ . . . R′

a2−a1︷ ︸︸ ︷
(X,Y ) . . . (X,Y )

n−a2︷ ︸︸ ︷
(X) . . . (X)]

t
if a1 < a2;

[

a2︷ ︸︸ ︷
(X,Y ) . . . (X,Y )

a1−a2︷ ︸︸ ︷
(X) . . . (X)

n−a1︷ ︸︸ ︷
(X2, Y 2) . . . (X2, Y 2)]

t
if a1 > a2.

Proof. If we arrange the sides of the polygon in the order (P1, P2), (P2, P3), . . . ,

(Pn−1, Pn), (Pn, P1), the first equality is a direct application of Proposition 2.26.

Notice that for sides i and j of the polygon, we can rewrite Ai,j as

Ai,j = u2d(i,j)R′ + v2d(i,j)R′δj=i−1 .
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We conjugate by the diagonal matrix with diagonal entries u2d(1,i) for i ∈ J1, nK;
then the matrix we obtain has entries

u2d(1,i)
(
u2d(i,j)R′ + v2d(i,j)R′δj=i−1

)
u−2d(1,j)

=u2d(i,j)−1+2d(1,i)−2d(1,j)
(
uR′ + vR′δj=i−1

)
=u2nδi∈Kj,1J−1

(
uR′ + vR′δj=i−1

)
= Xδi>jR′ +X−δi≤jY R′δj=i−1

for i, j ∈ J1, nK. It is Λ.

We obtain the structure of Ma, up to some degree shift, by multiplying on

the left by the same diagonal matrix.

Remark 2.31. Notice that in Theorem 2.30, the module Ma depends only on the

edge a and not on the triangulation σ.

§2.5. Counterexample with more than one puncture

In this subsection, we show that we cannot expect to generalize these results to

polygons with more than one puncture.

We take the triangulation σ of a twice-punctured digon of Figure 2.32. It

induces the quiver Qσ on the right and using the same definition as in Section 2,

we find that the natural analogue of Γσ is the path algebra of the quiver modulo

all obvious commutativity relations. We still call it Γσ. Suppose that Γσ is a K[U ]-

order, for U in the centre of Γσ. We can write e1U = P (αβ) + aω where P is a

polynomial and ω ∈ e6Γσe1. As, for ` > 0, c(αβ)` is clearly not divisible by c on

the right, and as cU = Uc, we infer that P is a constant polynomial. So, if we

denote by π : e1Γσe1 → K[αβ] the canonical projection, we get π(U) = P (0) ∈ K.

Hence K[αβ] is not a finitely generated module over K[π(U)] = K and therefore

e1Γσe1 is not a finitely generated module over K[U ], a contradiction.

This counterexample is easy to generalize to any polygon with at least two

punctures.

b b1 2

3 4

5

6 7 6 7

1 5 2

3 4

b

d

e
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α
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f

i

j

β

c
h

g

k

Figure 2.32. Twice-punctured digon.
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§3. Cohen–Macaulay modules over Λ

The aim of this section is to study the representation theory of Λ and its connection

to tagged triangulations of the punctured polygon P ∗ and the cluster category of

type Dn. In particular, we classify all Cohen–Macaulay Λ-modules and construct

a bijection between the set of isomorphism classes of all indecomposable Cohen–

Macaulay Λ-modules and the set of all sides and tagged arcs of P ∗. We then show

that the stable category CM Λ of Cohen–Macaulay Λ-modules is 2-Calabi–Yau and

CM Λ is triangle-equivalent to the cluster category of type Dn. To summarize, we

will prove that CM Λ admits the Auslander–Reiten quiver of Figures 3.1 and 3.2.

(m+2, ./) (m+3, ∗) (m, ./) (m+1, ∗)

(m+2,m+1) (m+2, ∗) (m+3,m+2) (m+3, ./) (m, ∗) (m+1,m) (m+1, ./) (m+2,m+1)

(m+3,m+1) (m+4,m+2) (m+1,m−1) (m+2,m)

(m+3,m) (m+4,m+1) (m+2,m−1) (m+3,m)

(m+4,m) (m+5,m+1) (m+2,m−2) (m+3,m−1)

(2m, 3) (1, 4) (2m−1, 2) (2m, 3)

(1, 3) (2, 4) (2m−1, 1) (2m, 2)

(1, 2) (2, 3) (2m, 1) (1, 2)

Figure 3.1. CM Λ for n = 2m.

(m+3, ./) (m+4, ∗) (m+1, ./) (m+2, ∗)

(m+3,m+2) (m+3, ∗) (m+4,m+3) (m+4, ./) (m+1, ∗) (m+2,m+1) (m+2, ./) (m+3,m+2)

(m+4,m+2) (m+5,m+3) (m+2,m) (m+3,m+1)

(m+4,m+1) (m+5,m+2) (m+3,m) (m+4,m+1)

(m+5,m+1) (m+6,m+2) (m+3,m−1) (m+4,m)

(1, 4) (2, 5) (2m, 2) (2m+1, 3)

(1, 3) (2, 4) (2m+1, 2) (1, 3)

(2, 3) (3, 4) (2m+1, 1) (1, 2)

Figure 3.2. CM Λ for n = 2m+ 1.

§3.1. Classification of Cohen–Macaulay Λ-modules

Let S be the set of tagged arcs and sides of the once-punctured polygon P ∗. In

this subsection, we prove the following theorem:
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Theorem 3.3. (1) There is a bijection between S and the set of isomorphism

classes of indecomposable Cohen–Macaulay Λ-modules given by a 7→ Ma (Ma

is defined in Theorem 2.30).

(2) Any Cohen–Macaulay Λ-module is isomorphic to
⊕

a∈SM
la
a for some non-

negative integers la. Moreover, the la are uniquely determined.

Remark 3.4. Theorem 3.3 shows that the Krull–Schmidt–Azumaya property is

valid in this case. This is interesting in its own right since our base ring R = K[X]

is not even local, and in such a case, this property usually fails.

First of all, it is immediate that the Ma are nonisomorphic indecomposable

Cohen–Macaulay Λ-modules. To prove this theorem, let us define the following

elements of Λ:

αi = Ei,i+1, αn = XEn,1, βi = Y Ei+1,i, βn = X−1Y E1,n.

Together with the idempotents Eii, they generate Λ as an R′-algebra and satisfy

the relations 
αiαi+1 . . . αi−1 = XEii,

βi−1βi−2 . . . βi = Y n−1Eii,

αiβi = βi−1αi−1 = Y Eii,

for i ∈ J1, nK. In fact, the quiver of Λ is

3

21

n

n− 1

Y E32

Y E21

X−1Y E1n

Y En,n−1

En−1,n

XEn,1

E12

E23

Lemma 3.5. Let r ∈ (Y )⊕m, s ∈ R′⊕p and t ∈ (X − Y )⊕q be vectors such that

the ideal I generated by their entries includes the ideal (X,Y ). Then there exists

an invertible (m+ p+ q)× (m+ p+ q) matrix

G =

A B 0

C D E

0 F G


with coefficients in R′ where B has coefficients in (Y ) and F has coefficients in

(X − Y ) such that
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• either G[r s t]
t

contains one 1 in its second block and 0 everywhere else;

• either G[r s t]
t

contains one Y in the first or second block, one X − Y in the

second or third block and 0 everywhere else.

Proof. The proof mainly relies on the Euclidean algorithm. We can write r = r′Y ,

s = s′ + s′′Y and t = t′(X − Y ) where r′ ∈ R⊕m, s′, s′′ ∈ R⊕p and t′ ∈ R⊕q. Up

to applying the Euclidean algorithm on the entries of s′ and then on the entries of

s′′ (which is multiplying by an invertible matrix on the left), we can suppose that

s = [Q1 +Q2Y Q3Y ]
t

for some Q1, Q2, Q3 ∈ R (we can ignore 0 entries). With the same method, we

can suppose that r has only one (nonzero) entry PY and t has only one (nonzero)

entry S(X − Y ). Using a sequence of (feasible) matrix multiplications[
1 0

T (X − Y ) 1

][
Q1 +Q2Y

S(X − Y )

]
=

[
Q1 +Q2Y

(S + TQ1)(X − Y )

]
,[

1 T

0 1

][
Q1 +Q2Y

S(X − Y )

]
=

[
(Q1 + TSX) + (Q2 − TS)Y

S(X − Y )

]
,

thanks to the Euclidean algorithm, we can assume that Q1 = 0 or S = 0. In the

same way, we can assume that Q3 = 0 or P = 0. If Q1 = 0, we can ensure that

at most one of Q2, Q3 and P is nonzero. To summarize, and forgetting about 0

entries, we can assume to be in one of the following four cases:

1. r = PY , s = 0, t = S(X − Y ): In this case, by our assumption,

(Y )⊕ (X − Y ) = (X,Y ) ⊂ I = (PY, S(X − Y )) = (PY )⊕ (S(X − Y )),

so we deduce that (Y ) = (PY ) and (X − Y ) = (S(X − Y )), so up to scalar

multiplication P = S = 1. This is one of the expected cases.

2. r = 0, s = QY , t = S(X − Y ): In this case, by the same reasoning as before,

up to scalar multiplication Q = S = 1. This is one of the expected cases.

3. r = PY , s = Q1 + Q2Y , t = 0: In this case, we rewrite s = Q′1 + Q′2(X − Y )

where Q′2 = −Q2 and Q′1 = Q1 + Q2X. Up to a sequence of feasible matrix

multiplications[
1 0

T 1

][
PY

Q′1 +Q′2(X − Y )

]
=

[
PY

(Q′1 + TPX) + (Q′2 − TP )(X − Y )

]
,[

1 TY

0 1

][
PY

Q′1 +Q′2(X − Y )

]
=

[
(P + TQ′1)Y

Q′1 +Q′2(X − Y )

]
,
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we can suppose that P = 0 or Q′1 = 0. If Q′1 = 0, we are in the previous case

and we can conclude. If P = 0, then I is a principal ideal containing (X,Y ), so

I = R′ and, up to scalar multiplication, Q′1 +Q′2(X − Y ) = 1. We are again in

an expected case.

4. r = 0, s = [Q1 +Q2Y Q3Y ], t = 0: This case in similar to the previous one.

Lemma 3.6. Let M = R′ ⊕M2 and N be Cohen–Macaulay R′-modules and f :

M → N and g, g′ : N → M be morphisms satisfying gf = X IdM , fg = X IdN ,

g′f = Y IdM and fg′ = Y IdN . There exists an isomorphism φ : N → N1 ⊕ N2

such that

φf =

[
ψ11 ψ12

0 ψ22

]
, gφ−1 =

[
χ11 χ12

0 χ22

]
, g′φ−1 =

[
χ′11 χ′12

0 χ′22

]
,

where either

• N1 = R′, ψ11 = 1, χ11 = X and χ′11 = Y , or

• N1 = (X,Y ), ψ11 = X, χ11 is the inclusion and χ′11 maps both X and Y to Y .

Proof. Let f1 : R′ → N be

f1 = f ◦
[
IdR′

0

]
.

As (Y ), R′ and (X − Y ) are the only isomorphism classes of indecomposable

Cohen–Macaulay R′-modules, we can decompose, up to isomorphism of N ,

N = (Y )⊕m ⊕R′⊕p ⊕ (X − Y )⊕q, f1 =

rs
t

 ,
where r is a vector with entries in (Y ), s is a vector with entries in R′ and t is a

vector with entries in (X − Y ). Using gf = X IdN and g′f = Y IdN , we conclude

that the ideal generated by the entries of r, s and t contains (X,Y ), so, thanks to

Lemma 3.5, up to multiplying f on the left by an invertible matrix and reordering

the rows, we can suppose that we are in one of the following cases:

1. N = R′ ⊕N2 and

f =

[
1 ∗
0 ∗

]
.

In this case, we can write

g =

[
X ∗
0 ∗

]
and g′ =

[
Y ∗
0 ∗

]
using the identities gf = X IdN and g′f = Y IdN . We are in the first expected

case.
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2. N = (Y )⊕R′ ⊕N2 and

f =

 Y ∗
X − Y ∗

0 ∗

 .
In this case, we can write

g =

[
ιY 1 ∗
∗ ∗ ∗

]
and g′ =

[
ιY 0 ∗
∗ ∗ ∗

]
Up to column operations on g and corresponding row operations on f , we can

write

f =

Y ∗
X 0

0 ∗

 , g =

[
0 1 0

∗ ∗ ∗

]
, g′ =

[
ιY 0 ∗
∗ ∗ ∗

]
(the 0 in the second column of f comes from gf = X IdN ). It is now easy to

see that we cannot get fg′ = Y IdM . So this case is excluded.

3. N = (Y )⊕ (X − Y )⊕N2 and

f =

 Y ∗
X − Y ∗

0 ∗

 .
In this case, we can write

g =

[
ιY ιX−Y ∗
0 0 ∗

]
and g′ =

[
ιY 0 ∗
0 0 ∗

]
(once again, we use the fact that (Y ) and (X − Y ) are in a direct sum). Using

the equality (Y )⊕ (X − Y ) = (X,Y ), we are in the second expected case.

4. N = R′ ⊕R′ ⊕N2 and

f =

 Y ∗
X − Y ∗

0 ∗

 .
We can write

g =

[
1 1 ∗
∗ ∗ ∗

]
and g′ =

[
1 0 ∗
∗ ∗ ∗

]
As in (ii), using column operations on g, we can rewrite

f =

Y ∗
X 0

0 ∗

 , g =

[
0 1 0

∗ ∗ ∗

]
, g′ =

[
1 0 ∗
∗ ∗ ∗

]
,

and this contradicts fg′ = Y IdM .
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5. N = R′ ⊕ (X − Y )⊕N2 and

f =

 Y ∗
X − Y ∗

0 ∗

 .
We can write

g =

[
1 ιX−Y ∗
∗ ∗ ∗

]
and g′ =

[
1 0 ∗
∗ ∗ ∗

]
Using column operations on g and g′, we can rewrite

f =

 Y 0

X − Y ∗
0 ∗

 , g =

[
1 ιX−Y ∗
∗ ∗ ∗

]
, g′ =

[
1 0 0

∗ ∗ ∗

]

(the 0 in the second column of f comes from g′f = Y IdN ). We cannot have

fg = X IdM , so this case is excluded.

We can easily dualize the previous lemma (over R′):

Lemma 3.7. Let M = R′ ⊕M2 and N be Cohen–Macaulay R′-modules and f :

N → M and g, g′ : M → N be morphisms satisfying gf = X IdN , fg = X IdM ,

g′f = Y IdN and fg′ = Y IdM . There exists an isomorphism φ : N → N1 ⊕ N2

such that

fφ−1 =

[
ψ11 0

ψ21 ψ22

]
, φg =

[
χ11 0

χ21 χ22

]
, φg′ =

[
χ′11 0

χ′21 χ′22

]
,

where either

• N1 = R′, ψ11 = 1, χ11 = X and χ′11 = Y , or

• N1 = (X,Y ), ψ11 is the inclusion, χ11 = X and χ′11 = Y .

Lemma 3.8. Let M be a Cohen–Macaulay Λ-module. If M , as an R′-module, has

a direct summand isomorphic to R′, then M has a direct summand isomorphic

to Ma for some tagged arc or side a of P ∗ which is not incident to the puncture.

Proof. For i ∈ J1, nK, let Mi = EiiM . By abuse of notation, we denote by αi :

Mi+1 → Mi and βi : Mi → Mi+1 the morphisms of R′-modules corresponding to

the elements with the same names in Λ.

Let i, j ∈ J1, nK be such that αiαi+1 . . . αj−1αj has a direct summand isomor-

phic to

R′
X−→ R′
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(such a pair exists as M contains R′ as a direct summand, and αiαi+1 . . . αi−1 =

X IdMi
for any i ∈ J1, nK). If j < i, note that αnα1 appears in the previous

composition. The number k of factors of this composition is d(i, j) + 1. We make

the additional assumption that k is as small as possible. Without loss of generality,

we can suppose that i = 1 ≤ j (the problem is invariant under cyclic permutation).

Using Lemma 3.6 for f = αj , g = αj+1αj+2 . . . αj−1 and g′ = βj , we find that

actually j > 1 and we can suppose that Mj+1 = R′ ⊕M ′j+1, Mj = (X,Y ) ⊕M ′j
and

αj =

[
X αj,12

0 αj,22

]
(the other possibility of Lemma 3.6 would contradict the minimality of k). Then,

we easily see that we can write M1 = R′ ⊕M ′1 and

γ = α1 . . . αj−1 =

[
ι(X,Y ) γ12

0 γ22

]
where ι(X,Y ) : (X,Y )→ R′ is the inclusion. Note that by hypothesis

γαj =

[
X 0

0 ∗

]
.

As all morphisms to R′ which are in the radical of CMR′ factor through

ι(X,Y ) : (X,Y )→ R′, by column operations on γ which do not affect the previous

shapes we can suppose that one of the following holds:

• γ12 = 0;

• M ′j = R′ ⊕M ′′j and

γ =

[
ι(X,Y ) 1 0

0 ∗ ∗

]
and αj =

X αj,12

0 ∗
0 ∗

 ;

then by a column operation on γ, we get

γ =

[
0 1 0

∗ ∗ ∗

]
and αj =

X αj,12

X 0

0 ∗


(the 0 in the second column of αj comes from the shape of γαj). But this

contradicts the existence of βj such that αjβj = Y IdMj .

Finally, we get the situation

γ =

[
ι(X,Y ) 0

0 γ22

]
and αj =

[
X 0

0 αj,22

]
.
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Now, using Lemma 3.7 for j > 2 permits us to suppose that

α1 =

[
ι(X,Y ) 0

α1,21 α1,22

]
.

Then we easily get

γ′ = α2 . . . αj−1 =

[
1 0

γ′21 γ′22

]
.

By row operations on γ′ (and the corresponding ones on α1), we can suppose that

α1 =

[
ι(X,Y ) 0

0 α1,22

]
and γ′ =

[
1 0

0 γ′22

]
.

We also easily get

γ′′ = αj+1 . . . αn =

[
1 0

0 γ′′22

]
.

Acting by automorphisms on M3, . . . ,Mj−1 if j > 3 and on Mj+2, . . . ,Mn if

j < n− 1 permits us easily to suppose that

α` =

[
1 0

0 α`,22

]
for any ` ∈ J2, j− 1K∪ Jj+ 1, nK. Then we conclude that M has a direct summand

isomorphic to

[R′

j−1︷ ︸︸ ︷
(X,Y ) . . . (X,Y )

n−j︷ ︸︸ ︷
(X) . . . (X)]

t ∼= M(P1,Pj).

Lemma 3.9. Let M be a Cohen–Macaulay Λ-module. If M , as an R′-module, has

no direct summand isomorphic to R′ then M has a direct summand isomorphic to

some Ma where a is a tagged arc of P ∗ incident to the puncture.

Proof. Denote as before Mi = EiiM . As an R′-module, M is a direct sum of copies

of (Y ) and (X − Y ). As there are no morphisms between (Y ) and (X − Y ), we

can suppose that only one of them appears as a summand of M and therefore the

matrix coefficients of the αi are just elements of R. Up to circular permutation,

we can suppose that αn is not invertible. Choose an R-basis {e1, . . . , e`} of Mn

such that e1 is not in the image of αn. By the usual Euclidean algorithm applied

on the right of αn, we can suppose that

αn =

[
λ 0

∗ ∗

]
and α1 . . . αn−1 =

[
λ′ 0

∗ ∗

]
.

As λ′λ = X and e1 is not reached by αn, we can suppose up to a scalar change

of basis that λ = X and λ′ = 1. Hence, by row operations on α1 . . . αn−1, we can
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suppose that

αn =

[
X 0

0 ∗

]
and α1 . . . αn−1 =

[
1 0

0 ∗

]
(the lower left 0 of αn comes from αnα1α2 . . . αn−1 = X IdMn

). Therefore, by

changes of basis of M2, . . . ,Mn−1, we can suppose that

α` =

[
1 0

0 ∗

]
for ` ∈ J1, n− 1K. Finally, M has a direct summand isomorphic to

[

n︷ ︸︸ ︷
(Y ) · · · (Y )]

t ∼= M(Pn,∗) or [

n︷ ︸︸ ︷
(X − Y ) · · · (X − Y )]

t ∼= M(Pn,./).

Proof of Theorem 3.3. First of all, thanks to Lemmas 3.8 and 3.9, any Cohen–

Macaulay Λ-module can be decomposed as expected.

For the uniqueness of the decomposition, we need to use Proposition 3.10

(notice that we do not use Theorem 3.3 in its proof). The endomorphism algebra

of Ma is isomorphic to R′ if a is not incident to the puncture and isomorphic

to R if a is incident to the puncture. Moreover, any endomorphism factorizing

through another indecomposable is in the ideal (X,Y ) in the first case and in

(X) in the second case. Thus, if we denote Λ̂ = KJXK ⊗R Λ, and consider the

functor KJXK⊗R − : CM Λ→ CM Λ̂, nonisomorphic indecomposable objects are

mapped to nonisomorphic objects, which are also indecomposable. Moreover, the

endomorphism rings of the objects KJXK⊗RMa are local, so we get the uniqueness

of the decomposition of objects in the essential image of the functor KJXK⊗R −.

This permits us to conclude the proof.

§3.2. Homological structure of CM Λ

The aim of this subsection is to compute spaces of morphisms and extensions in

the category CM Λ ∼= CM Λ′ where Λ′ = eFΓσeF . For convenience of notation,

we will work with Λ′. Notice that the definitions of a ` b and Aa,b given for two

tagged arcs a and b before Proposition 2.26 make sense even when a and b are not

compatible (there are cases where a ` b other than the one depicted there).

Proposition 3.10. Let a and b be two tagged arcs or sides of P ∗. In the notation

of Proposition 2.26, we have

HomΛ′(Ma,Mb) ∼= Aa,b.

Moreover, these morphisms are realized by right multiplication in R′, and therefore

composition of morphisms corresponds to multiplication in R′.
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Proof. First of all, for i ∈ J1, nK, using Theorem 2.30, recall that EiiMa
∼= Ai,a

and EiiMb
∼= Ai,b (in a compatible way with the Λ′-module structure). Thus, we

know that for any i, HomR′(Ai,a, Ai,b) can be realized as an R′-submodule of R′
through multiplication. Namely,

PPPPPPAi,a

Ai,b uj
′−1vR′ uj

′−1(u− v)R′ uj
′
R′

uj−1vR′ uj
′−j−1vR′ 0 uj

′−j+2n−1vR′

uj−1(u− v)R′ 0 uj
′−j−1(u− v)R′ uj

′−j+2n−1(u− v)R′

ujR′ uj
′−j−1vR′ uj

′−j−1(u− v)R′ uj
′−jR′

where j = `θi,a and j′ = `θi,b (the only other kind of Ai,a or Ai,b which can appear

is ujR′ + uj−1vR′ = uj−1((u − v)R′ ⊕ vR′), which can be realized as the direct

sum of the first two rows, and the first two columns; in any of these cases, the sum

is direct inside R′).
If f ∈ HomΛ′(Ma,Mb), let fi ∈ HomR′(Ai,a, Ai,b) be its ith component. As

u2Ei,i+1 ∈ Λ′, for any m ∈ Ma we find that f(u2Ei,i+1m) = u2Ei,i+1f(m). This

can be rewritten as fi(u
2mi+1) = u2fi+1(mi+1) or again fiu

2mi+1 = u2fi+1mi+1

if fi, fi+1 are considered as elements of R′. As u2 is invertible in R′, we get

fimi+1 = fi+1mi+1. This is true for any mi+1 ∈ Ai+1,a, so fi − fi+1 is in the

annihilator of Ai+1,a. By Theorem 2.30, the annihilators of Ai+1,a and Ai,a are

the same and included in

• (u− v)R′ if a is incident to the puncture and plain;

• vR′ if a is incident to the puncture and notched;

• 0 if a is not incident to the puncture.

Moreover, looking at the previous table, we find that

• HomR′(Ai,a, Ai,b)+HomR′(Ai+1,a, Ai+1,b) ⊂ vR′ if a is incident to the puncture

and plain;

• HomR′(Ai,a, Ai,b) + HomR′(Ai+1,a, Ai+1,b) ⊂ (u − v)R′ if a is incident to the

puncture and notched,

so HomR′(Ai,a, Ai,b)+HomR′(Ai+1,a, Ai+1,b) intersects the annihilator of Ai,a at 0

and we obtain fi = fi+1.

Finally, we get

HomΛ′(Ma,Mb) =

n⋂
i=1

HomR′(Ai,a, Ai,b)

as R′-submodules of R′.
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(a) Suppose now that neither a nor b is incident to the puncture. For i ∈ J1, nK,
we have

Ai,a =

u
`θ(Pi,Pi+1),aR′ if (Pi, Pi+1) /̀ a,

u
`θ(Pi,Pi+1),a(R′ + u−1vR′) if (Pi, Pi+1) ` a,

and

Ai,b =

u
`θ(Pi,Pi+1),bR′ if (Pi, Pi+1) /̀ b,

u
`θ(Pi,Pi+1),b(R′ + u−1vR′) if (Pi, Pi+1) ` b.

Therefore,

HomR′(Ai,a, Ai,b)

=


u
`θ(Pi,Pi+1),b−`θ(Pi,Pi+1),aR′ if (Pi, Pi+1) /̀ a and (Pi, Pi+1) /̀ b,

u
`θ(Pi,Pi+1),b−`θ(Pi,Pi+1),a+2n

(R′ + u−1vR′) if (Pi, Pi+1) ` a and (Pi, Pi+1) /̀ b,

u
`θ(Pi,Pi+1),b−`θ(Pi,Pi+1),a(R′ + u−1vR′) if (Pi, Pi+1) ` b.

Using Lemma 2.15, we obtain

HomR′(Ai,a, Ai,b)

=


u`
θ
a,b−2n(δb2∈Kb1,a2Jδa1∈Ja2,b1K+δi∈Ka1,b1K)R′ if (Pi, Pi+1) /̀ a and (Pi, Pi+1) /̀ b,

u`
θ
a,b−2n(δb2∈Kb1,a2Jδa1∈Ja2,b1K+δi∈Ka1,b1K−1)(R′ + u−1vR′)

if (Pi, Pi+1) ` a and (Pi, Pi+1) /̀ b,

u`
θ
a,b−2n(δb2∈Kb1,a2Jδa1∈Ja2,b1K+δi∈Ka1,b1K)(R′ + u−1vR′) if (Pi, Pi+1) ` b.

Notice that (Pi, Pi+1) ` a if and only if i ∈ Ka1, a2K.
(a-1) Suppose that a /̀ b. This means that a2 /∈ Kb2, a1J and b1 /∈ Kb2, a1J.

In this case, δb2∈Kb1,a2Jδa1∈Ja2,b1K = 0. Taking i = a1, we have (Pi, Pi+1) /̀ a

and (Pi, Pi+1) /̀ b and an easy computation gives HomR′(Ai,a, Ai,b) = u`
θ
a,bR′.

The only way to get a smaller module would be in the case (Pi, Pi+1) ` a and

(Pi, Pi+1) /̀ b, that is, i ∈ Ka1, a2K ∩ Kb2, b1K. With the current hypotheses, we get

Ka1, a2K ∩ Kb2, b1K ⊂ Ka1, b1K, so actually we cannot get a smaller module.

(a-2) Suppose now that a ` b. This means that a2 ∈ Kb2, a1J or b1 ∈ Kb2, a1J.
Let us consider two cases:

• b2 ∈ Kb1, a2J and a1 ∈ Ja2, b1K: Taking i = b2, we have (Pi, Pi+1) ` a and

(Pi, Pi+1) /̀ b, and an easy computation gives

HomR′(Ai,a, Ai,b) = u`
θ
a,b(R′ + u−1vR′).

Thanks to the term δb2∈Kb1,a2Jδa1∈Ja2,b1K, submodules that appear for any other

i are bigger.
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• b2 /∈ Kb1, a2J or a1 /∈ Ja2, b1K: In this case, as b1 6= b2, we see that in fact

b1 ∈ Kb2, a1J. Taking i = a1, we obtain (Pi, Pi+1) ` b and

HomR′(Ai,a, Ai,b) = u`
θ
a,b(R′ + u−1vR′).

Other submodules are bigger, because if (Pi, Pi+1) /̀ b, that is, i ∈ Kb2, b1K, we

would have i ∈ Ka1, b1K.

We finished the case where neither a nor b is incident to the puncture.

(b) Suppose now that both a and b are incident to the puncture. For i ∈ J1, nK,
we have

Ai,a =

u
`θ(Pi,Pi+1),a−1

vR′ if a is plain,

u
`θ(Pi,Pi+1),a−1

(u− v)R′ if a is notched,

Ai,b =

u
`θ(Pi,Pi+1),b−1

vR′ if b is plain,

u
`θ(Pi,Pi+1),b−1

(u− v)R′ if b is notched.

As there are no morphisms if the tags are different, we can suppose that both a

and b are plain, and we obtain, for any i ∈ J1, nK,

HomR′(Ai,a, Ai,b) = u
`θ(Pi,Pi+1),b−`θ(Pi,Pi+1),a−1

vR′.

Using Lemma 2.15 and the fact that b1 = b2, we deduce that

HomR′(Ai,a, Ai,b) = u`
θ
a,b−2nδi∈Ka1,b1K−1vR′,

and for i = a1, HomR′(Ai,a, Ai,b) = u`
θ
a,b−1vR′, which is of course the smallest

possible.

(c) Suppose now that a is incident to the puncture and b is not. Without loss

of generality, we can suppose a is plain. We have (X − Y )Ma = 0. Therefore, for

any f ∈ HomΛ′(Ma,Mb), (X − Y ) Im f = 0. Notice now that

M ′b = {m ∈Mb | (X − Y )m = 0}

satisfies

EiiM
′
b =

u
`θ(Pi,Pi+1),b+2n−1

vR′ if (Pi, Pi+1) /̀ b

u
`θ(Pi,Pi+1),b−1

vR′ if (Pi, Pi+1) ` b
= u

`θ(Pi,Pi+1),b+2nδi∈Kb2,b1K−1
vR′.

Let b′ = (Pb2 , ∗). Thanks to Lemma 2.15, we can rewrite

`θ(Pi,Pi+1),b + 2nδi∈Kb2,b1K = `θ(Pi,Pi+1),b′ + `θb′,b − 2nδi∈Kb2,b1K + 2nδi∈Kb2,b1K

= `θ(Pi,Pi+1),b′ + `θb′,b.
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Thus M ′b = u`
θ
b′,bMb′ and

HomΛ′(Ma,Mb) = u`
θ
b′,b HomΛ′(Ma,Mb′) = u`

θ
b′,b+`

θ
a,b′−1vR′,

and we have (using a1 = a2)

`θb′,b + `θa,b′ = d(b2, b1) + 2d(a1, b2) = d(a1, b1) + nδb2∈Kb1,a1J + d(a1, b2) = `θa,b,

which concludes this case.

(d) Finally, suppose that b is incident to the puncture and a is not. Without

loss of generality, we can suppose b is plain. As (X − Y )Mb = 0,

HomΛ′(Ma,Mb) = HomΛ′(M
′
a,Mb)

where M ′a = Ma/(X − Y )Ma. Using the same idea as before, we find that

EiiM
′
a = u

`θ(Pi,Pi+1),a−1
vR′,

and thanks to Lemma 2.15, if a′ = (Pa1 , ∗),

`θ(Pi,Pi+1),a = `θ(Pi,Pi+1),a′ + `θa′,a − 2n(δa2∈Ka1,a1Jδa1∈Ja1,a1K + δi∈Ka1,a1K)

= `θ(Pi,Pi+1),a′ + `θa′,a − 2n,

and therefore M ′a = u`
θ
a′,a−2nMa′ . Thus

HomΛ′(Ma,Mb) = u2n−`θ
a′,a HomΛ′(Ma′ ,Mb) = u2n−`θ

a′,a+`θ
a′,b−1vR′,

and, since b1 = b2,

2n− `θa′,a + `θa′,b = 2n− (d(a1, a2) + n) + 2d(a1, b1)

= 2n− (n− d(a2, a1) + n) + 2d(a1, b1)

= d(a1, b1) + d(a2, b1) + nδa1∈Kb1,a2J = `θa,b.

This concludes the proof.

Proposition 3.11. Let a and b be two tagged arcs or sides. Let Ma and Mb be the

corresponding indecomposable Λ′-modules. We have the following isomorphisms of

graded R′-modules:

• HomΛ′(Ma,Mb) = 0 if a and b are both incident to the puncture with different

tags;

• HomΛ′(Ma,Mb) = u`
θ
a,b(R′/(X,Y ))⊕ε, where

ε = δa1−1∈Kb1,b2Jδb2+1∈Ka1,a2J = δa2−1∈Kb1,b2Jδb1+1∈Ka1,a2J,

if either a and b are both incident to the puncture with the same tag, or exactly

one of them is incident to the puncture;
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• HomΛ′(Ma,Mb) = u`
θ
a,b(R′/(X,Y ))⊕ε, where

ε = δa1−1∈Kb1,b2Jδb2+1∈Ka1,a2J + δa2−1∈Kb1,b2Jδb1+1∈Ka1,a2J,

if neither a nor b is incident to the puncture.

Proof. (a) Suppose first that neither a nor b is incident to the puncture. For any

i ∈ J1, nK, let Pi be the projective module corresponding to the arc (Pi, Pi+1) of

the polygon. Thanks to Proposition 3.10, we have

HomΛ′(Ma, Pi) =

u
`θa,(Pi,Pi+1)R′ if a /̀ (Pi, Pi+1),

u
`θa,(Pi,Pi+1)(R′ + u−1vR′) if a ` (Pi, Pi+1),

and

HomΛ′(Pi,Mb) =

u
`θ(Pi,Pi+1),bR′ if (Pi, Pi+1) /̀ b,

u
`θ(Pi,Pi+1),b(R′ + u−1vR′) if (Pi, Pi+1) ` b.

As a consequence,

HomΛ′(Pi,Mb) ◦HomΛ′(Ma, Pi)

=

u
`θa,(Pi,Pi+1)+`

θ
(Pi,Pi+1),bR′ if a /̀ (Pi, Pi+1) and (Pi, Pi+1) /̀ b,

u
`θa,(Pi,Pi+1)+`

θ
(Pi,Pi+1),b(R′ + u−1vR′) if a ` (Pi, Pi+1) or (Pi, Pi+1) ` b.

Using Lemma 2.15, we get

`θa,(Pi,Pi+1) + `θ(Pi,Pi+1),b = `θa,b + 2n(δa1∈Ka2−1,b1Kδb2∈Ka2−1,b1K + δi∈Kb1,a2−1J).

The minimum is reached for i ∈ Ja2 − 1, b1K and is

`θa,b + 2nδb2∈Ka2−1,b1Kδa1∈Ka2−1,b1K = `θa,b + 2nδa2−1∈Kb1,b2Jδb1+1∈Ka1,a2J.

Recall now that a ` (Pi, Pi+1) if and only if a2 ∈ Ki+ 1, a1J if and only if i ∈
Ja1−1, a2−1J, and (Pi, Pi+1) ` b if and only if b1 ∈ Kb2, iJ if and only if i ∈ Kb1, b2K.
So a ` (Pi, Pi+1) or (Pi, Pi+1) ` b if and only if i ∈ Ja1 − 1, a2 − 1J ∪ Kb1, b2K. If

Ja1 − 1, a2 − 1J ∪ Kb1, b2K intersects Ja2 − 1, b1K, we deduce that

P(Ma,Mb) =

n∑
i=1

HomΛ′(Pi,Mb) ◦HomΛ′(Ma, Pi)

= u`
θ
a,b+2nδa2−1∈Kb1,b2Jδb1+1∈Ka1,a2J(R′ + u−1vR′)
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and otherwise

P(Ma,Mb) =

n∑
i=1

HomΛ′(Pi,Mb) ◦HomΛ′(Ma, Pi)

= u`
θ
a,b+2nδa2−1∈Kb1,b2Jδb1+1∈Ka1,a2JR′.

Notice that Ja1 − 1, a2 − 1J ∪ Kb1, b2K intersects Ja2 − 1, b1K if and only if

b1+1 ∈ Ja1, a2J or a2−1 ∈ Kb1, b2K, if and only if b1+1 ∈ Ka1, a2J or a2−1 ∈ Kb1, b2J
or a1 = b1 + 1 or a2 = b2 + 1.

Then we can simplify P(Ma,Mb) in the following way:

Case 1: P(Ma,Mb) = u`
θ
a,b+2n(R′+u−1vR′) if b1+1 ∈ Ka1, a2J and a2−1 ∈ Kb1, b2J,

Case 2: P(Ma,Mb) = u`
θ
a,bR′ if b1 + 1 /∈ Ja1, a2J and a2 − 1 /∈ Kb1, b2K,

Case 3: P(Ma,Mb) = u`
θ
a,b(R′ + u−1vR′) otherwise.

Recall also that

P(Ma,Mb) ⊂ HomΛ′(Ma,Mb) =

{
u`
θ
a,bR′ if a /̀ b,

u`
θ
a,b(R′ + u−1vR′) if a ` b,

and therefore, in Case 3, we will always get HomΛ′(Ma,Mb) = 0. In Case 1, if

a /̀ b, we get HomΛ′(Ma,Mb) ∼= u`
θ
a,bR′/(X,Y ) (as graded R′-modules); if a ` b,

we get HomΛ′(Ma,Mb) ∼= u`
θ
a,b(R′/(X,Y )⊕R′/(X,Y )). In Case 2, if a /̀ b, we get

HomΛ′(Ma,Mb) = 0; if a ` b, we get HomΛ′(Ma,Mb) ∼= u`
θ
a,bR′/(X,Y ).

Notice that a ` b if and only if a1 − 1 ∈ Jb1, b2J or b2 + 1 ∈ Ka1, a2K. Then an

easy case by case analysis concludes the case where neither a nor b is incident to

the puncture.

(b) Suppose now that at least one of a and b is incident to the puncture.

Without loss of generality, we can suppose that no notched tag appears. An easy

computation shows that, in any case,

HomΛ′(Pi,Mb) ◦HomΛ′(Ma, Pi) = u
`θa,(Pi,Pi+1)+`

θ
(Pi,Pi+1),b−1

vR′.

By Lemma 2.15,

`θa,(Pi,Pi+1) + `θ(Pi,Pi+1),b = `θa,b + 2n(δa1∈Ka2−1,b1Kδb2∈Ka2−1,b1K + δi∈Kb1,a2−1J),

which implies, as before, that the minimum is reached for i ∈ Ja2 − 1, b1K and is

`θa,b + 2nδa2−1∈Kb1,b2Jδb1+1∈Ka1,a2J.

Therefore, HomΛ′(Ma,Mb) ∼= u`
θ
a,bR′/(X,Y ) if a2 − 1 ∈ Kb1, b2J and b1 + 1 ∈

Ka1, a2J, and HomΛ′(Ma,Mb) = 0 otherwise.
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Proposition 3.12. The category CM Λ′ admits the following Auslander–Reiten

sequences for j 6= i, i+ 1:

0→M(Pi,Pj)

[
u
u

]
−−−→M(Pi+1,Pj) ⊕M(Pi,Pj+1)

[−u u]−−−−→M(Pi+1,Pj+1) → 0,

0→M(Pi,∗)
v−→M(Pi+1,Pi)

u−v−−−→M(Pi+1,./) → 0,

0→M(Pi,./)
u−v−−−→M(Pi+1,Pi)

v−→M(Pi+1,∗) → 0.

Notice that M(Pi,Pi), if it appears, has to be interpreted as M(Pi,∗)⊕M(Pi,./). Thus,

CM Λ′ admits an Auslander–Reiten translation τ defined by

τ(M(Pi,Pj)) = M(Pi−1,Pj−1) if j 6= i, i+ 1,

τ(M(Pi,∗)) = M(Pi−1,./), τ(M(Pi,./)) = M(Pi−1,∗).

Proof. (a) Consider the first case. Let a be a side or an arc of P ∗ which is not

incident to the puncture or a formal sum (Pa1 , ∗)⊕(Pa1 , ./), and f : M(Pi,Pj) →Ma

be a morphism which is not a split monomorphism. According to Proposition 3.10,

the degree deg(f) of f is at least

`θ(Pi,Pj),a + 2nδa=(Pi,Pj).

Moreover, using the beginning of the proof of Lemma 2.15, we get

`θ(Pi,Pj),(Pi+1,Pj)
+ `θ(Pi+1,Pj),a

− `θ(Pi,Pj),a
=n
(
δi=a1 + 0 + 0 + |δi+1∈Ka1,jJ − δa2∈Ka1,jJ| − |δi∈Ka1,jJ − δa2∈Ka1,jJ|

)
=n
(
δi=a1 + (δa2∈Jj,a1K − δa2∈Ka1,jJ)(δi+1∈Ka1,jJ − δi∈Ka1,jJ)

)
=n
(
δi=a1 + (2δa2∈Jj,a1K − 1)δi=a1

)
= 2nδi=a1δa2∈Jj,a1K,

so deg(f) ≥ `θ(Pi,Pj),(Pi+1,Pj)
+ `θ(Pi+1,Pj),a

+ 2n(δa=(Pi,Pj) − δi=a1δa2∈Jj,a1K), and

`θ(Pi,Pj),(Pi,Pj+1) + `θ(Pi,Pj+1),a − `θ(Pi,Pj),a
=n
(
0 + δj=a2 + 0 + |δi∈Ka1,j+1J − δa2∈Ka1,j+1J| − |δi∈Ka1,jJ − δa2∈Ka1,jJ|

)
=n
(
δj=a2 − (δi∈Ka1,jJ − δi∈Jj,a1K)δj=a2

)
= 2nδj=a2δi∈Jj,a1K,

so deg(f) ≥ `θ(Pi,Pj),(Pi,Pj+1) + `θ(Pi,Pj+1),a + 2n(δa=(Pi,Pj) − δj=a2δi∈Jj,a1K). As

at least one of δa=(Pi,Pj) − δi=a1δa2∈Jj,a1K and δa=(Pi,Pj) − δj=a2δi∈Jj,a1K is non-

negative, we get

deg(f) ≥ min
(
`θ(Pi,Pj),(Pi+1,Pj)

+ `θ(Pi+1,Pj),a
, `θ(Pi,Pj),(Pi,Pj+1) + `θ(Pi,Pj+1),a

)
.

Suppose that a1 6= i and a2 6= j. In this case,

`θ(Pi,Pj),(Pi+1,Pj)
+ `θ(Pi+1,Pj),a

= `θ(Pi,Pj),(Pi,Pj+1) + `θ(Pi,Pj+1),a.



Orders Arising from Punctured Polygons 187

Notice that if (Pi, Pj) ` a, i.e. j ∈ Ka2, iJ or a1 ∈ Ka2, iJ, then j ∈ Ka2, i + 1J or

a1 ∈ Ka2, i+1J or j+1 ∈ Ka2, iJ or a1 ∈ Ka2, iJ, i.e. (Pi+1, Pj) ` a or (Pi, Pj+1) ` a.

From that fact and easy observations, we get

f ∈ HomΛ′(M(Pi+1,Pj) ⊕M(Pi,Pj+1),Ma)u.

Suppose that a1 = i. Then deg(f) ≥ `θ(Pi,Pj),(Pi,Pj+1) + `θ(Pi,Pj+1),a.

If (Pi, Pj) ` a, i.e. j ∈ Ka2, iJ, then we have j + 1 ∈ Ka2, iJ or j + 1 =

i, i.e. (Pi, Pj+1) ` a or (Pi, Pj+1) = (Pi, ∗) ⊕ (Pi, ./). From that fact and easy

observations, we get

f ∈ HomΛ′(M(Pi,Pj+1),Ma)u.

Suppose that a2 = j. Then deg(f) ≥ `θ(Pi,Pj),(Pi+1,Pj)
+ `θ(Pi+1,Pj),a

.

If (Pi, Pj) ` a, i.e. a1 ∈ Ka2, iJ then we have a1 ∈ Ka2, i+1J, i.e. (Pi+1, Pj) ` a.

From that fact and easy observations, we get

f ∈ HomΛ′(M(Pi+1,Pj),Ma)u.

Thus in the first case, we have an almost split sequence.

(b) Let us consider the second case (the third case is similar to the second).

Let f : M(Pi,∗) → Ma be a morphism which is not a split monomorphism. As

before, deg(f) ≥ `θ(Pi,∗),a + 2nδa=(Pi,∗).
Notice that, thanks to the beginning of the proof of Lemma 2.15,

`θ(Pi,∗),(Pi+1,Pi)
+ `θ(Pi+1,Pi),a

− `θ(Pi,∗),a
=n
(
δi=a1 + 0 + 0 + |δi=a1 − δa2∈Ka1,iJ| − δa2∈Ka1,iJ

)
= 2nδi=a1δa2∈Ji,a1K = 2nδa=(Pi,∗),

so f ∈ HomΛ′(M(Pi+1,Pi),Ma)v.

Proposition 3.13. Denote v′ = u− v. The nonsplit extensions between indecom-

posable objects of CM Λ′ are, up to isomorphism,

0→M(Pi,Pj)

[
ud(j,l)

ud(i,k)

]
−−−−−−→M(Pi,Pl) ⊕M(Pk,Pj)

[ud(i,k) −ud(j,l)]−−−−−−−−−−−→M(Pk,Pl) → 0

if k ∈ Ki, jJ and l ∈ Kj, iK;

0→M(Pi,Pj)

[
ud(j,k)+n

ud(i,l)

]
−−−−−−−−→M(Pk,Pi) ⊕M(Pl,Pj)

[ud(i,l) −ud(j,k)+n]−−−−−−−−−−−−−→M(Pk,Pl) → 0

if k ∈ Jj, iJ and l ∈ Ki, jJ;

0→M(Pi,Pj)

[
ud(j,k)

ud(i,l)

]
−−−−−−→M(Pk,Pi) ⊕M(Pl,Pj)

[ud(i,l) −ud(j,k)]−−−−−−−−−−−→M(Pk,Pl) → 0,
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0→M(Pi,Pj)

[
ud(j,l)

ud(i,k)

]
−−−−−−→M(Pl,Pi) ⊕M(Pk,Pj)

[ud(i,k) −ud(j,l)]−−−−−−−−−−−→M(Pk,Pl) → 0

if l ∈ Ki, kJ and j ∈ Kk, iJ;

0→M(Pi,Pj)

[
ud(i,k)

vd(j,i)

]
−−−−−−→M(Pk,Pj) ⊕M(Pi,∗)

[vd(j,k) −v2d(i,k)]−−−−−−−−−−−−→M(Pk,∗) → 0,

0→M(Pi,Pj)

[
ud(i,k)

v′d(j,i)

]
−−−−−−→M(Pk,Pj) ⊕M(Pi,./)

[v′d(j,k) −v′2d(i,k)]−−−−−−−−−−−−→M(Pk,./) → 0

if k ∈ Ki, jJ;

0→M(Pi,∗)

[
vd(i,k)

v2d(i,l)

]
−−−−−−→M(Pk,Pi) ⊕M(Pl,∗)

[ud(i,l) −vd(l,k)]−−−−−−−−−−−→M(Pk,Pl) → 0,

0→M(Pi,./)

[
v′d(i,k)

v′2d(i,l)

]
−−−−−−−→M(Pk,Pi) ⊕M(Pl,./)

[ud(i,l) −v′d(l,k)]−−−−−−−−−−−→M(Pk,Pl) → 0

if i ∈ Kk, lJ;

0→M(Pi,∗)
vd(i,k)−−−−→M(Pk,Pi)

v′d(i,k)−−−−→M(Pk,./) → 0,

0→M(Pi,./)
v′d(i,k)−−−−→M(Pk,Pi)

vd(i,k)−−−−→M(Pk,∗) → 0

if i 6= k.

Moreover, in each case, fixing representatives of these isomorphism classes of

short exact sequences induces a basis of the corresponding extension group.

Proof. First of all, it is easy to check that all these nonsplit extensions exist (to

prove exactness, the easiest way is to project the sequence on each idempotent)

and they are nonsplit and not isomorphic to each other (and therefore linearly

independent). Let i, j, k, l ∈ J1, nK with j 6= i, i + 1 and l 6= k, k + 1. Thanks to

Proposition 3.12, we know that CM Λ′ admits an Auslander–Reiten duality

Ext1
Λ′(X,Y ) ∼= HomK(HomΛ′(Y, τ(X)),K).

Then, using Proposition 3.11, we get

dim Ext1
Λ′((M(Pk,Pl),M(Pi,Pj)) = dim HomΛ′(M(Pi,Pj),M(Pk−1,Pl−1))

= δi−1∈Kk−1,l−1Jδl∈Ki,jJ + δj−1∈Kk−1,l−1Jδk∈Ki,jJ

= δi∈Kk,lJδl∈Ki,jJ + δj∈Kk,lJδk∈Ki,jJ

=


2 if l ∈ Ki, kJ and j ∈ Kk, iJ,

1 if k ∈ Ki, jJ and l ∈ Kj, iK,

or k ∈ Jj, iJ and l ∈ Ki, jJ,

0 otherwise.
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We also get

dim Ext1
Λ′(M(Pk,∗),M(Pi,Pj)) = dim HomΛ′(M(Pi,Pj),M(Pk−1,./))

= δi−1∈Kk−1,k−1Jδk∈Ki,jJ = δk∈Ki,jJ;

dim Ext1
Λ′(M(Pk,Pl),M(Pi,∗)) = dim HomΛ′(M(Pi,∗),M(Pk−1,Pl−1))

= δi−1∈Kk−1,l−1Jδl∈Ki,iJ = δi∈Kk,lJ;

dim Ext1
Λ′(M(Pk,∗),M(Pi,∗)) = dim HomΛ′(M(Pi,∗),M(Pk−1,./)) = 0;

dim Ext1
Λ′(M(Pk,∗),M(Pi,./)) = dim HomΛ′(M(Pi,./),M(Pk−1,./))

= δi−1∈Kk−1,k−1Jδk∈Ki,iJ = δi 6=k.

The other cases are realized by swapping ∗ and ./. In any case, we exhausted the

dimensions with the short exact sequences that we provided.

Corollary 3.14. If a and b are two tagged arcs of P ∗, then dim Ext1
Λ′(Ma,Mb) is

the minimal number of intersection points between representatives of their isotopy

classes (where (Pi, ∗) and (Pj , ./) intersect once for i 6= j by convention).

Proof. It is an easy case by case argument.

§3.3. Cluster tilting objects of CM Λ and

relation to the cluster category

Let us recall the definition of cluster tilting objects.

Definition 3.15. Let C be a triangulated or exact category. An object T in C is

said to be cluster tilting if

addT = {Z ∈ C | Ext1
C(T,Z) = 0} = {Z ∈ C | Ext1

C(Z, T ) = 0},

where addT is the set of finite direct sums of direct summands of T .

For any tagged triangulation σ of the once-punctured polygon P ∗, we denote

Tσ =
⊕
a∈σ

Ma
∼= eFΓσ.

Theorem 3.16. The map σ 7→ Tσ gives a one-to-one correspondence between the

set of tagged triangulations of P ∗ and the set of isomorphism classes of basic cluster

tilting objects in CM Λ. Moreover, for any tagged triangulation σ, EndΛ(Tσ) ∼= Γop
σ

via right multiplication.
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Proof. Let E be a set of tagged arcs and sides of P ∗ and ME =
⊕

a∈EMa the

corresponding object in CM Λ. By Corollary 3.14, any two arcs in E are compatible

if and only if Ext1
Λ(ME ,ME) = 0. Thus, ME is cluster tilting if and only if it is a

maximal set of compatible tagged arcs and sides of P ∗ if and only if E = σ is a

tagged triangulation of P ∗. Thus, ME = Tσ.

For the second part, thanks to Propositions 2.26 and 3.10, for any a, b ∈ σ,

HomΛ′(Ma,Mb) ∼= Aa,b ∼= eaΓσeb. Therefore,

EndΛ′(Tσ) =
⊕
a,b∈σ

eaΓσeb = Γσ.

Moreover, composition on the left coincides with multiplication on the right by

Propositions 2.26 and 3.10. Notice that we get the opposite algebra because we

make endomorphism rings act on the left.

Theorems 3.3 and 3.16 show that the category CM Λ is very similar to the

cluster category of type Dn. In the rest of this section, we give an explicit connec-

tion. First, we recall some basic facts about cluster categories. The cluster category

is defined in [6] as follows.

Definition 3.17. For an acyclic quiver Q, the cluster category C(KQ) is the orbit

category Db(KQ)/F of the bounded derived category Db(KQ) by the functor

F = τ−1[1], where τ denotes the Auslander–Reiten translation and [1] denotes

the shift functor. The objects in C(KQ) are the same as in Db(KQ), and the

morphisms are given by

HomC(KQ)(X,Y ) =
⊕
i∈Z

HomDb(KQ)(F
iX,Y ),

where X and Y are objects in Db(KQ). For f ∈ HomC(KQ)(X,Y ) and g ∈
HomC(KQ)(Y,Z), the composition is defined by

(g ◦ f)i =
∑

i1+i2=i

gi1 ◦ F i1(fi2)

for all i ∈ Z.

In [15], Happel proved that Db(KQ) has Auslander–Reiten triangles. For a

Dynkin quiver Q, he showed in [14] that the Auslander–Reiten quiver of Db(KQ)

is Z∆, where ∆ is the underlying Dynkin diagram of Q. Then the Auslander–

Reiten quiver of C(KQ) is Z∆/ϕ, where ϕ is the graph automorphism induced by

τ−1[1]. In type Dn, the Auslander–Reiten quiver of C has the shape of a cylinder

with n τ -orbits. As a quiver, it is the same as the quiver of CM Λ (see Figures 3.1

and 3.2).
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Recall that a triangulated category is said to be algebraic if it is the stable

category of a Frobenius category. Let us state the following result due to Keller

and Reiten.

Theorem 3.18 ([24, Introduction and Appendix]). If K is a perfect field and

C an algebraic 2-Calabi–Yau triangulated category containing a cluster tilting

object T with EndC(T ) ∼= KQ hereditary, then there is a triangle-equivalence

C(KQ)→ C.

By using the above statements, we show the following triangle-equivalences

between cluster categories of type D and stable categories of Cohen–Macaulay

modules.

Theorem 3.19. (1) The stable category CM Λ is 2-Calabi–Yau.

(2) If K is perfect, then there is a triangle-equivalence C(KQ) ∼= CM Λ for a quiver

Q of type Dn.

Proof. We will prove (1) in the next subsection independently.

Let σ be the triangulation of P ∗ whose set of tagged arcs is

{(P1, P3), (P1, P4), . . . , (P1, Pn), (P1, ∗), (P1, ./)}.

The full subquiver Q of Qσ with set of vertices Qσ,0 r F is a quiver of type Dn.

Thus, we have

Γop
σ /(eF ) ∼= (KQ)op.

By Theorem 3.16, for the cluster tilting object Tσ, we have the isomorphism

EndΛ(Tσ) ∼= Γop
σ /(eF ).

Then, by Theorem 3.18, we obtain C((KQ)op) ∼= CM Λ.

§3.4. Proof of Theorem 3.19(1)

Here, we prove that the stable category CM Λ is 2-Calabi–Yau. Throughout, we

denote DK := HomK(−,K), DR := HomR(−, R) and (−)∗ := HomΛ(−,Λ).

Let us recall some general definitions and facts about Cohen–Macaulay mod-

ules. Let A be an R-order.

Definition 3.20. We say that X is an injective Cohen–Macaulay A-module if

Ext1
A(Y,X) = 0 for any Y ∈ CMA, or equivalently, X ∈ add(HomR(Aop, R)).

Denote by injA the category of injective Cohen–Macaulay A-modules.

An R-order A is Gorenstein if HomR(AA, R) is projective as a left A-module,

or equivalently, HomR(AA,R) is projective as a right A-module. We have an exact

duality DR : CMAop → CMA.
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The Nakayama functor is defined here by ν : projA
(−)∗−−−→ projAop DR−−→ injA,

which is isomorphic to (DRA)⊗A−. For any Cohen–Macaulay A-module X, con-

sider a projective presentation

P1
f−→ P0 → X → 0

and apply (−)∗ : modA→ modAop to get the exact sequence

0→ X∗ → P ∗0
f∗−→ P ∗1 → coker(f∗)→ 0.

We denote coker(f∗) by TrX and we get Im(f∗) = Ω TrX, where Ω is the syzygy

functor modAop → modAop. Then we apply DR : CMAop → CMA to

0→ X∗ → P ∗0
f∗−→ Ω TrX → 0

and denoting τX := DR Ω TrX, we get the exact sequence

(3.21) 0→ τX → νP0 → νX → 0.

For an R-order A, if K(x) ⊗R A is a semisimple K(x)-algebra, then we call

A an isolated singularity. By using the notions above, we have the following well-

known results in Auslander–Reiten theory.

Theorem 3.22 ([3, 28, 29]). Let A be an R-order that is an isolated singularity.

Then

(1) [3, Chapter I, Proposition 8.3] The construction τ gives an equivalence of cat-

egories CMA→ CMA, where CMA is the quotient of CMA by the subgroup

of maps which factor through an injective object.

(2) [3, Chapter I, Proposition 8.7] For X,Y ∈ CMA, there is a functorial iso-

morphism

HomA(X,Y ) ∼= DK Ext1
A(Y, τX).

For Gorenstein orders, we have the following nice properties.

Proposition 3.23. Assume that A is a Gorenstein isolated singularity. Then

(1) CMA is a Frobenius category.

(2) CMA is a K-linear Hom-finite triangulated category.

(3) τ = Ων = [−1] ◦ ν.

Proof. (1) The projective objects in CMA are just projective A-modules. They

are also injective objects. Since each finitely generated A-module is a quotient of

a projective Λ-module, it follows that CMA is a Frobenius category; (2) is due to

[14] and [31, Lemma 3.3]; (3) is a direct consequence of (3.21).
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The order Λ is Gorenstein. Indeed, as a graded left Λ-module,

DR(ΛΛ) = HomR





R′ R′ R′ · · · R′ R′ X−1(X,Y )

(X,Y ) R′ R′ · · · R′ R′ R′

(X) (X,Y ) R′ · · · R′ R′ R′

...
...

...
. . .

...
...

...

(X) (X) (X) · · · R′ R′ R′

(X) (X) (X) · · · (X,Y ) R′ R′

(X) (X) (X) · · · (X) (X,Y ) R′



, R


can be identified with

X−1



R′ X−1(X,Y ) X−1R′ · · · X−1R′ X−1R′ X−1R′

R′ R′ X−1(X,Y ) · · · X−1R′ X−1R′ X−1R′

R′ R′ R′ · · · X−1R′ X−1R′ X−1R′

...
...

...
. . .

...
...

...

R′ R′ R′ · · · R′ X−1(X,Y ) X−1R′

R′ R′ R′ · · · R′ R′ X−1(X,Y )

(X,Y ) R′ R′ · · · R′ R′ R′


= ΛV −1 ⊂ Mn(R′[X−1]),

where

V =



0 0 . . . 0 X 0

0 0 . . . 0 0 X

X2 0 . . . 0 0 0

0 X2 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . X2 0 0


.

Therefore DR(ΛΛ) is a projective (left) Λ-module.

According to Theorem 3.22 and Proposition 3.23, we have

HomΛ(X,Y ) ∼= DK HomΛ(Y, νX)

for X,Y ∈ CM Λ. Thus ν = (DR Λ)⊗Λ− is a Serre functor. We want to prove that

(DR Λ)⊗Λ − ∼= Ω−2(−).

Thanks to the previous discussion, there is an isomorphism of Λ-modules

f : Λ→ DR(ΛΛ), µ 7→ µV −1.
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We define an automorphism α of Λ by α(λ) = V −1λV for λ ∈ Λ. The auto-

morphism α corresponds to a 4π/n counter-clockwise rotation of the quiver of Λ

shown on page 172. In fact, if

λ =



λ1,1 λ1,2 . . . λ1,n−2 λ1,n−1 λ1,n

λ2,1 λ2,2 . . . λ2,n−2 λ2,n−1 λ2,n

λ3,1 λ3,2 . . . λ3,n−2 λ3,n−1 λ3,n

...
...

. . .
...

...
...

λn−2,1 λ1,2 . . . λn−2,n−2 λn−2,n−1 λn−2,n

λn−1,1 λn−1,2 . . . λn−1,n−2 λn−1,n−1 λn−1,n

λn,1 λn,2 . . . λn,n−2 λn,n−1 λn,n


is an element in Λ, then

α(λ) =



λ3,3 λ3,4 . . . λ3,n X−1λ3,1 X−1λ3,2

λ4,3 λ4,4 . . . λ4,n X−1λ4,1 X−1λ4,2

λ5,3 λ5,4 . . . λ5,n X−1λ5,1 X−1λ5,2

...
...

. . .
...

...
...

λn,3 λn,4 . . . λn,n X−1λn,1 X−1λn,2
Xλ1,3 Xλ1,4 . . . Xλ1,n λ1,1 λ1,2

Xλ2,3 Xλ2,4 . . . Xλ2,n λ2,1 λ2,2



.

Let A and B be two R-orders. For an (A,B)-bimodule M , ϑ ∈ Aut(A) and

ς ∈ Aut(B), we define ϑMς := M as a vector space, and the (A,B)-bimodule

structure is given by

a×m× b = ϑ(a)mς(b)

for m ∈ ϑMς and a ∈ A, b ∈ B. Since ϑ ∈ Aut(A), ϑ(−) is an automorphism of

modA.

Proposition 3.24. The above f : Λ→ DR Λ gives an isomorphism of Λ-bimodules

1Λα ∼= DR Λ.

Proof. Clearly, f preserves the left action of Λ. Moreover, it preserves the right

action since for λ, µ ∈ Λ, we have

f(µα(λ)) = f(µ(V −1λV )) = µ(V −1λV )V −1 = µV −1λ = f(µ)λ.

By using the isomorphism of Proposition 3.24, we find the following descrip-

tion of the Nakayama functor ν.

Lemma 3.25. We have an isomorphism ν ∼= α−1(−) of endofunctors of CM Λ.



Orders Arising from Punctured Polygons 195

Proof. Since DR Λ ∼= 1Λα, it follows that ν ∼= 1Λα ⊗Λ −. On the other hand, we

have an isomorphism H : 1Λα ⊗Λ − ∼= α−1(−) given by λ⊗− 7→ α−1(λ)(−).

Let T = K[x, y] and S := K[x, y]/(p) for some p ∈ T .

We define a Z/nZ-grading on T by setting deg(x) = 1 and deg(y) = −1. This

makes T a Z/nZ-graded algebra

T =
⊕

i∈Z/nZ
Ti = T0 ⊕ T1 ⊕ · · · ⊕ Tn−1.

Suppose that p is homogeneous of degree d with respect to this grading. Then the

quotient ring

S = K[x, y]/(p) = S0 ⊕ S1 ⊕ · · · ⊕ Sn−1

has a natural structure of a Z/nZ-graded algebra. The following result can be easily

established from classical results about matrix factorization (see [9, Theorem 3.22]

for a detailed proof).

Theorem 3.26 ([31]). In the category CMZ/nZ S, there is an isomorphism of

autoequivalences [2] ∼= (−d).

Setting p := xn−1y − y2, we have S = K[x, y]/(xn−1y − y2). Identifying

R′ = K[X,Y ]/(XY − Y 2) as a subalgebra of S via X 7→ xn and Y 7→ xy, we

regard S as an R′-algebra. We obtain the following lemma.

Lemma 3.27. For i ∈ J0, n− 1K we have, as R′-modules,

Si
∼=
{
R′xi if i ∈ J0, n− 2K,

(1, X−1Y )xn−1 if i = n− 1.

Proof. Let i ∈ J0, n − 2K. Over R = K[X], Si is generated by xi and xi+1y.

Thus, we have Si
∼= R′xi. Over R, Sn−1 is generated by xn−1 and y. So Sn−1

∼=
(1, X−1Y )xn−1.

From the Z/nZ-graded algebra S we define an R-order S[n] which is a subal-

gebra of Mn(S) as follows:

S[n] =



S0 S1 S2 · · · Sn−2 Sn−1

Sn−1 S0 S1 · · · Sn−3 Sn−2

Sn−2 Sn−1 S0 · · · Sn−4 Sn−3
...

...
...

. . .
...

...

S2 S3 S4 · · · S0 S1

S1 S2 S3 · · · Sn−1 S0


.
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Proposition 3.28. We have an isomorphism S[n] ∼= Λ of R′-algebras.

Proof. According to Lemma 3.27, S[n] is the matrix order

R′ R′x R′x2 · · · R′xn−2 (1, X−1Y )xn−1

(1, X−1Y )xn−1 R′ R′x · · · R′xn−3 R′xn−2

R′xn−2 (1, X−1Y )xn−1 R′ · · · R′xn−4 R′xn−3

...
...

...
. . .

...
...

R′x2 R′x3 R′x4 · · · R′ R′x
R′x R′x2 R′x3 · · · (1, X−1Y )xn−1 R′


.

Taking the conjugation by the diagonal matrix B = diag(xi)i∈J0,nK, we get

BS[n]B−1 = Λ.

From now on, we identify Λ and S[n]. Consider the matrix

U =



0 0 . . . 0 1 0

0 0 . . . 0 0 1

1 0 . . . 0 0 0

0 1 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 1 0 0


.

The automorphism β of S[n] given by β(s) = U−1sU for s ∈ S[n] corresponds

to the automorphism α of Λ. Thus we have an isomorphism 1S
[n]
β−1
∼= 1Λα−1 of

S[n]-bimodules.

Using the notation above, we have the following lemma.

Lemma 3.29. (1) [19, Theorem 3.1] The functor

F : mod Z/nZS → modS[n],

M0 ⊕M1 ⊕ · · · ⊕Mn−1 7→
[
M0 M1 . . . Mn−1

]t
,

is an equivalence of categories.

(2) For i ∈ Z, we denote by (i) : mod Z/nZS → mod Z/nZS the grade shift functor

defined by M(i)j := Mi+j for M ∈ mod Z/nZS. The functor (i) induces an

autofunctor (denoted by γi) of modS[n] which makes the following diagram

commute:

mod Z/nZS modS[n]

mod Z/nZS modS[n]

F

(i) γi

F
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More precisely, for any left S[n]-module
[
M0 M1 . . . Mn−1

]t
, we have

γi
([
M0 M1 . . . Mn−1

]t)
=
[
Mi Mi+1 . . . Mi+n−1

]t
.

Now we can prove the 2-Calabi–Yau property of CM Λ.

Proof of Theorem 3.19(1). The equivalence mod Z/nZS ∼= modS[n] = mod Λ in-

duces an equivalence

CMZ/nZ S ∼= CMS[n] = CM Λ.

In the category CMZ/nZ S, according to Theorem 3.26, we have an isomorphism

of functors

[2] ∼= (−deg (xn−2 − y2)) = (2).

By Lemma 3.25, we have ν ∼= α−1(−). Therefore, it is enough to prove α−1(−)
∼= (2), or equivalently βM ∼= γ−2(M) for any M ∈ CMS[n].

Let si be the row matrix which has 1 in the ith column. Since

βM =
[
s0 × βM s1 × βM s2 × βM . . . sn−1 × βM

]t
=
[
β(s0)M β(s1)M β(s2)M . . . β(sn−1)M

]t
=
[
sn−2M sn−1M s0M . . . sn−3M

]t
,

it follows that βM ∼= γ−2(M). Therefore, the category CM Λ is 2-Calabi–Yau.

§4. Graded Cohen–Macaulay Λ-modules

In this section, we prove a graded version of Theorem 3.19 which gives a relation-

ship between the category CMZ Λ of graded Cohen–Macaulay Λ-modules and the

bounded derived category Db(KQ) of type Dn.

Let Q be an acyclic quiver. We denote by Kb(projKQ) the bounded ho-

motopy category of finitely generated projective KQ-modules, and by Db(KQ)

the bounded derived category of finitely generated KQ-modules. These are

triangulated categories and the canonical embedding Kb(projKQ) → Db(KQ)

is a triangle functor.

We define a grading on Λ by Λi = Λ ∩Mn(KXi +KXi−1Y ) for i ∈ Z. This

makes Λ =
⊕

i∈Z Λi a Z-graded algebra. The category of graded Cohen–Macaulay

Λ-modules, CMZ Λ, is defined as follows. The objects are graded Λ-modules which

are Cohen–Macaulay, and the morphisms in CMZ Λ are Λ-morphisms preserving

the degree. The category CMZ Λ is a Frobenius category. Its stable category is

denoted by CMZ Λ. For i ∈ Z, we denote by (i) : CMZ Λ→ CMZ Λ the grade shift

functor: Given a graded Cohen–Macaulay Λ-module X, we define X(i) to be X

as a Λ-module, with the grading X(i)j = Xi+j for any j ∈ Z.
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Remark 4.1. We show that this grading of Λ is analogous to the grading of

Λ′ given by the θ-length. Let i, j ∈ F . By Theorem 2.30, eiΛ
′ej ∼= eiΛej . Let

λ ∈ eiΛ′ej ∼= eiΛej . Using a similar argument to the proof of Theorem 2.30, we

get

`θ(λ) + 2d(1, i)− 2d(1, j)

2n
= deg(λ)

where deg(λ) is the degree of λ as a member of Λ. Consider the two graded algebras

Λ′ =

n⊕
i=1

Λ′ei and Λ′′ := End
( n⊕
i=1

u2d(1,i)Λ′ei
)
.

By graded Morita equivalence, we have CMZ Λ′ ∼= CMZ Λ′′. Since Λ ∼= Λ′′ as

R-orders and deg(X) = 2n in Λ′′, it follows that the Auslander–Reiten quiver

of CMZ Λ′′ has 2n connected components each of which is a degree shift of the

Auslander–Reiten quiver of CMZ Λ.

We introduce the properties of CMZ Λ in the following theorems.

Theorem 4.2. (1) The set of isomorphism classes of indecomposable objects of

CMZ Λ is

{(i, j) | i, j ∈ Z, 0 < j − i < n} ∪ {(i, ∗) | i ∈ Z} ∪ {(i, ./) | i ∈ Z},

where

(i, j) = [

i︷ ︸︸ ︷
(X) · · · (X)

j−i︷ ︸︸ ︷
(X2, Y 2) · · · (X2, Y 2)

n−j︷ ︸︸ ︷
(X2) · · · (X2)]

t
if 0 < i < j ≤ n;

(i, j) = [

j−n︷ ︸︸ ︷
(X,Y ) · · · (X,Y )

n−j+i︷ ︸︸ ︷
(X) · · · (X)

n−i︷ ︸︸ ︷
(X2, Y 2) · · · (X2, Y 2)]

t
if i ≤ n < j;

(i, ∗) = [

i︷ ︸︸ ︷
(Y ) · · · (Y )

n−i︷ ︸︸ ︷
(Y 2) · · · (Y 2)]

t
if 0 < i ≤ n;

(i, ./) = [

i︷ ︸︸ ︷
(X − Y ) · · · (X − Y )

n−i︷ ︸︸ ︷
(X2 − Y 2) · · · (X2 − Y 2)]

t
if 0 < i ≤ n,

and the other (i, j) are obtained by shift:

(i+ kn, j + kn) = (i, j)(k),

(i+ kn, ∗) = (i, ∗)(k),

(i+ kn, ./) = (i, ./)(k),

for k ∈ Z. The projective-injective objects are of the form (i, i+ 1) for i ∈ Z.
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(2) The nonsplit extensions of indecomposable objects of CMZ Λ are of the form

0→ (i, j)→ (i, l)⊕ (k, j)→ (k, l)→ 0 if i < k < j < l < i+ n;

0→ (i, j)→ (k, i+ n)⊕ (l, j)→ (k, l + n)→ 0 if i < l < j ≤ k < i+ n;

0→ (i, j)→ (k, i+ n)⊕ (l, j)→ (k, l + n)→ 0

0→ (i, j)→ (l, i+ n)⊕ (k, j)→ (k, l + n)→ 0

}
if i < l < k < j < i+ n;

0→ (i, j)→ (k, j)⊕ (i, ∗)→ (k, ∗)→ 0

0→ (i, j)→ (k, j)⊕ (i, ./)→ (k, ./)→ 0

}
if i < k < j < i+ n;

0→ (i, ∗)→ (k, i+ n)⊕ (l, ∗)→ (k, l + n)→ 0

0→ (i, ./)→ (k, i+ n)⊕ (l, ./)→ (k, l + n)→ 0

}
if i < l < k < i+ n;

0→ (i, ∗)→ (k, i+ n)→ (k, ./)→ 0

0→ (i, ./)→ (k, i+ n)→ (k, ∗)→ 0

}
if i < k < i+ n.

Moreover, fixing representatives of these isomorphism classes of short exact

sequences induces bases of the corresponding extension groups.

(3) The exact category CMZ Λ admits the Auslander–Reiten sequences

0→ (i, j)→ (i, j + 1)⊕ (i+ 1, j)→ (i+ 1, j + 1)→ 0

for i+ 1 < j < i+ n (with the convention that (i, i+ n) = (i, ∗)⊕ (i, ./));

0→ (i, ∗)→ (i+ 1, i+ n)→ (i+ 1, ./)→ 0,

0→ (i, ./)→ (i+ 1, i+ n)→ (i+ 1, ∗)→ 0

for any i ∈ Z.

(4) The Auslander–Reiten quiver of CMZ Λ is the repetitive quiver of type Dn+1

(unfolded version of Figures 3.1 and 3.2).

(5) The syzygy in CMZ Λ is defined on indecomposable objects by

Ω((i, j)) = (i+ 1− n, j + 1− n),

Ω((i, ∗)) = (i+ 1− n, ./), Ω((i, ./)) = (i+ 1− n, ∗).

Proof. (1) First of all, it is immediate that the graded modules (i, j) for 0 <

j − i < n, (i, ∗) and (i, ./) for i ∈ Z are not isomorphic. Therefore, we need to

prove that there are no other isomorphism classes. We consider the degree forgetful

functor F : CMZ Λ → CM Λ. Let X ∈ CMZ Λ be indecomposable and M be an

indecomposable direct summand of FX in CM Λ. By Theorem 3.3, there exists

a tagged arc or a side a of P ∗ such that M ∼= Ma. Then it is immediate that

M ∼= FY where Y ∈ CMZ Λ is (i, j) for 0 < j − i < n or (i, ∗) or (i, ./) for i ∈ Z.

There are two morphisms f : FY → FX and g : FX → FY such that gf = IdFY .
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Let us write

f =
∑
m∈Z

fm and g =
∑
m∈Z

gm

where fm is a graded morphism from Y to X(m) and gm a graded morphism from

X(m) to Y . Thus, we have ∑
k∈Z

gkfk = IdFY

and, as the endomorphism ring of Y is K, there exists k ∈ Z such that gkfk
is a nonzero multiple of IdY . In other terms, we found two graded morphisms

f̃ : Y → X(k) and g̃ : X(k)→ Y such that g̃f̃ = IdY . Thus, in modZ(Λ), we have

an isomorphism X ∼= Y (−k)⊕X ′. As modZ(R) is Krull–Schmidt, X ′ is necessarily

a graded Cohen–Macaulay module. Finally, as X is indecomposable in CMZ Λ, we

get X ∼= Y (−k).

Therefore, the set of isomorphism classes of indecomposable graded Cohen–

Macaulay Λ-modules is

{(i, j) | i, j ∈ Z, 0 < j − i < n} ∪ {(i, ∗) | i ∈ Z} ∪ {(i, ./) | i ∈ Z}.

Statements (2) and (3) are direct consequences through F of the ungraded

versions of Propositions 3.12 and 3.13. Statement (4) is a direct consequence of (1)

and (3).

For (5), using (2), the short exact sequences constructed from projective covers

are:

0→ (i+ 1− n, j + 1− n)→ (i, i+ 1)⊕ (j − n, j − n+ 1)→ (i, j)→ 0,

0→ (i+ 1− n, ./)→ (i, i+ 1)→ (i, ∗)→ 0,

0→ (i+ 1− n, ∗)→ (i, i+ 1)→ (i, ./)→ 0.

For any indecomposable graded Cohen–Macaulay Λ-module A, if A is of the

form (i, j) for two integers i and j, we write A1 = i and A2 = j, and if A is of the

form (i, ∗) or (i, ./), we write A1 = i and A2 = i + n. In this way, all morphisms

in CMZ Λ are going in the increasing direction in terms of these pairs of integers.

Definition 4.3. Let C be a triangulated category. An object T is said to be tilting

if HomC(T, T [k]) = 0 for any k 6= 0 and thick(T ) = C, where thick(T ) is the small-

est full triangulated subcategory of C containing T and closed under isomorphisms

and direct summands.

Theorem 4.4 ([23, Theorem 4.3], [20, Theorem 2.2], [4]). Let C be an algebraic

triangulated Krull–Schmidt category. If C has a tilting object T , then there exists

a triangle-equivalence

C → Kb(proj EndC(T )).
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Now we get the following theorem which is analogous to Theorems 3.16 and

3.19(2).

Theorem 4.5. Let Q be a quiver of type Dn. Then

(1) for a tagged triangulation σ of the once-punctured polygon P ∗, the cluster

tilting object eFΓσ can be lifted to a tilting object in CMZ Λ;

(2) there exists a triangle-equivalence Db(KQ) ∼= CMZ Λ.

Proof. (1) First, we have eFΓσ ∼=
⊕

a∈σMa. So we need to choose some degree

shift of each Ma.

Suppose that all tagged arcs of σ are incident to the puncture. Suppose with-

out loss of generality that they are tagged plain. We can lift σ to the set σ′ of

indecomposable objects of CMZ Λ of the form (i, ∗) for 1 ≤ i ≤ n. Let us prove

that the graded module T ′σ′ =
⊕

A∈σ′ A is tilting (it is Tσ if we forget the grading).

Let us check that

HomCMZ Λ((i, ∗),Ωk(j, ∗)) = 0

for any i, j ∈ J1, nK and k 6= 0. Thanks to Theorem 4.2, it is easy to compute

projective covers of modules and we know that Ωk(j, ∗) = (j + k(1 − n), ∗) if

k is even, and Ωk(j, ∗) = (j + k(1 − n), ./) if k is odd. Therefore, if k is odd,

HomCMZ Λ((i, ∗),Ωk(j, ∗)) = 0.

Moreover, if k ≥ 2, we get j + k(1− n) ≤ j + 2− 2n ≤ 0 < i. So

HomCMZ Λ((i, ∗),Ωk(j, ∗)) = 0.

If k ≤ −2 is even, we want to prove that

HomCMZ Λ((i, ∗),Ωk(j, ∗)) = Ext1
CMZ Λ((i, ∗),Ωk+1(j, ∗)) = 0.

We have Ωk+1(j, ∗) = (j+(k+1)(1−n), ./) and j+(k+1)(1−n) ≥ j+n−1 ≥ n ≥ i
and clearly Ext1

CMZ Λ((i, ∗),Ωk+1(j, ∗)) = 0.

Let us now prove that thick(T ′σ′) = CMZ Λ. First of all, for any i ∈ Z such

that n ≤ i < 2n− 2, considering the short exact sequence

0→ (i− n+ 1, ∗)→ (i, i+ 1)⊕ (n− 1, ∗)→ (i, 2n− 1)→ 0,

as (i − n + 1, ∗) and (n − 1, ∗) are in σ′ and (i, i + 1) is projective, we see that

(i, 2n − 1) ∈ thick(T ′σ′). Now, for any i ∈ Z such that n < i < 2n − 1, using the

short exact sequence

0→ (n, 2n− 1)→ (i, 2n− 1)⊕ (n, ∗)→ (i, ∗)→ 0

we find that (i, ∗) ∈ thick(T ′σ′). Thus, as Ω2k(j, ∗) = (j+2k(1−n), ∗), all the (j, ∗)
for j ∈ Z are in thick(T ′σ′). Consider i, j ∈ Z such that 1 < j − i < n. We then
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have a short exact sequence

0→ (i+ 1− n, ∗)→ (i, i+ 1)⊕ (j − n, ∗)→ (i, j)→ 0,

and, as (i+ 1−n, ∗) and (j −n, ∗) are in thick(T ′σ′) and (i, i+ 1) is projective, we

deduce that (i, j) ∈ thick(T ′σ′). Finally, as Ω(i, ∗) = (i − n + 1, ./), all the (i, ./)

are in thick(T ′σ′). We have thus proved that T ′σ′ is tilting in this case.

Suppose now that there is at least one tagged arc of σ which is not incident

to the puncture. Then there exists a vertex i0 of P such that i0 does not have

any incident internal edge in σ. Therefore, we can lift the tagged arcs of σ to a

set σ′ of indecomposable objects of CMZ Λ such that for any A ∈ σ′, we have

i0 < A1 < i0 + n and i0 + 1 < A2 < i0 + 2n. Let us prove that the graded module

T ′σ′ =
⊕

A∈σ′ A is tilting (it is Tσ if we forget the grading). Let us check that

HomCMZ Λ(A,ΩkB) = 0

for any A,B ∈ σ′ and k 6= 0. Let B′ = ΩkB. Thanks to Theorem 4.2, B′1 =

B1 + k(1− n) and B′2 = B2 + k(1− n).

Therefore, if k>0, we get B′1≤B1 + 1− n≤ i0<A1. So HomCMZ Λ(A,B′)=0.

If k < −1, we want to prove that HomCMZ Λ(A,B′) = Ext1
CMZ Λ(A,ΩB′) = 0.

If we denote B′′ = ΩB′, we have B′′1 = B′1 + 1 − n ≥ B1 + n − 1 ≥ i0 + n > A1.

Then as the morphisms are positively directed, Ext1
CMZ Λ(A,ΩB′) = 0.

For k = −1, by Theorem 3.16, we get

HomCMZ Λ(T ′σ′ ,Ω
−1T ′σ′)⊂HomCM Λ(Tσ,Ω

−1Tσ) = Ext1
CM Λ(Tσ, Tσ) = 0.

Let us now prove that thick(T ′σ′) = CMZ Λ. Consider an indecomposable

object A ∈ CMZ Λ with A1 = i0 + n. Let A′ ∈ CM Λ be its image through the

forgetful functor. It is a classical lemma about cluster tilting objects that there

exists a short exact sequence

0→ T ′1 → T ′0 → A′ → 0

of Cohen–Macaulay Λ-modules such that T ′0, T
′
1 ∈ add(Tσ).

Let X ′ be an indecomposable summand of T ′1. For any lift X of X ′ such that

Ext1
CMZ Λ(A,X) 6= 0, we have i0 < X1 < i0 + n by Theorem 4.2(2), so such a

lift X is unique and has to be in σ′. Moreover, in this case, Ext1
CMZ Λ(A,X) =

Ext1
CM Λ(A,X ′). Therefore, the unique lift T1 of T ′1 which is in add(T ′σ′) satisfies

Ext1
CMZ Λ(A, T1) = Ext1

CM Λ(A, T ′1), so we can lift the short exact sequence

0→ T ′1 → T ′0 → A′ → 0

to a short exact sequence

0→ T1 → T0 → A→ 0



Orders Arising from Punctured Polygons 203

of graded Cohen–Macaulay Λ-modules. As any indecomposable summand X of T0

is between T1 and A in the Auslander–Reiten quiver, we get i0 < X1 ≤ A1 = i0+n,

so X ∈ σ′. Finally, T0 and T1 are in add(T ′σ′), so A ∈ thick(T ′σ′).
For any i ∈ Z such that i0 +n < i < i0 +2n−1, there is a short exact sequence

0→ (i0 + n, i+ 1)→ (i, i+ 1)⊕ (i0 + n, ∗)→ (i, ∗)→ 0,

so, as (i0 + n, i + 1) and (i0 + n, ∗) are in thick(T ′σ′) and (i, i + 1) is projective,

(i, ∗) is in thick(T ′σ′). As we already got the result for (i0 + n, ∗) and (i0 + n, ./)

and Ω−1((i0 +n, ./)) = (i0 +2n−1, ∗), all the (i, ∗) for i0 +n ≤ i ≤ i0 +2n−1 are

in thick(T ′σ′). Up to a shift by 1− i0−n, we already saw that these (i, ∗) generate

CMZ Λ. Therefore, T ′σ′ is a tilting object in CMZ Λ.

(2) Take the triangulation σ whose set of tagged arcs is

{(P1, P3), (P1, P4), . . . , (P1, Pn), (P1, ∗), (P1, ./)}.

The full subquiver Q of Qσ with the set Qσ,0 r F of vertices is of type Dn. Thus,

Γop
σ /(eF ) ∼= (KQ)op.

Let σ′ be constructed from σ as before. Namely, i0 = 2 and

σ′ = {(n+ 1, n+ 3), (n+ 1, n+ 4), . . . , (n+ 1, 2n), (n+ 1, ∗), (n+ 1, ./)}.

For any A,B ∈ σ′ and k ∈ Z, we have B(k)1 = n+ 1 + kn, so

HomCMZ Λ(A,B(k)) = 0

for k 6= 0. Indeed, if k < 0 this is immediate as morphisms go increasingly, and if

k > 0, HomCMZ Λ(A,B(k)) = Ext1
CMZ Λ(A,ΩB(k)). Moreover, ΩB(k)1 = 2 + kn ≥

n+ 2 and for the same reason as before Ext1
CMZ Λ(A,ΩB(k)) = 0.

Thus, by Theorem 3.16,

EndCMZ Λ(eFΓσ) ∼= EndCM Λ(eFΓσ) ∼= Γop
σ /(eF ).

Because CMZ Λ is an algebraic triangulated Krull–Schmidt category, and

eFΓσ is a tilting object in CMZ Λ, by Theorem 4.4 there exists a triangle-equiv-

alence

CMZ Λ ∼= Kb
(
proj Endop

CMZ Λ
(eFΓσ)

)
.

Since gl.dimKQ <∞, we have a triangle-equivalence

Kb
(
proj Endop

CMZ Λ
(eFΓσ)

) ∼= Kb(projKQ) ∼= Db(KQ).

Therefore there is a triangle-equivalence CMZ Λ ∼= Db(KQ).
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2000), NATO Sci. Ser. II Math. Phys. Chem. 28, Kluwer, Dordrecht, 2001, 63–96.
Zbl 0989.16012 MR 1858032

[19] O. Iyama and B. Lerner, Tilting bundles on orders on Pd, Israel J. Math. 211, 147–169
(2016) MR 3474959

[20] O. Iyama and R. Takahashi, Tilting and cluster tilting for quotient singularities, Math. Ann.
356 (2013), 1065–1105. Zbl 06181402 MR 3063907

[21] H. Kajiura, K. Saito, and A. Takahashi, Matrix factorization and representations of quivers.
II. Type ADE case, Adv. Math. 211 (2007), 327–362. Zbl 1167.16011 MR 2313537

[22] , Triangulated categories of matrix factorizations for regular systems of weights with
ε = −1, Adv. Math. 220 (2009), 1602–1654. Zbl 1172.18002 MR 2493621

[23] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), 63–102.
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