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Mod p Decomposition of H-spaces of Low Rank

by

Yutaka Hemmi and Hirokazu Nishinobu

Abstract

Let X be a mod p H-space whose mod p cohomology is an exterior algebra generated
by finitely many generators of degrees 2n1 + 1, . . . , 2nk + 1 with 1 ≤ n1 ≤ · · · ≤ nk. It
is known that if nk − n1 < p− 1 then X decomposes into a product of odd spheres, and
if nk − n1 < 2(p − 1) then X decomposes into a product of odd spheres and Bn(p)s. In
this paper we consider the case of nk − n1 < 3(p− 1), and give a product decomposition
of X into irreducible factors.
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§1. Introduction

Let p be a prime, and Fp the prime field of characteristic p. In this paper we

assume that all spaces are localized at p. Let X be a simply connected H-space

whose Fp-cohomology is an exterior algebra generated by finitely many generators

of odd degree:

H∗(X;Fp) = Λ(x1, . . . , xk),

where deg xi = 2ni+ 1 with 1 ≤ n1 ≤ · · · ≤ nk. We call the sequence (2n1 + 1, . . . ,

2nk + 1) the type of X, and k the rank of X.

We study decomposition of such H-spaces into irreducible factors. For com-

pact Lie groups, Mimura, Nishida and Toda [8] gave a complete list of such de-

compositions. According to their results the type (2n1 + 1, . . . , 2nk + 1) of each

irreducible factor appearing in the product decomposition of a compact Lie group
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satisfies

(1) ni 6= nj for any i 6= j, and

(2) ni ≡ nj mod p− 1.

For p-compact groups, Davis [3] showed a similar result.

From those results one can guess that similar decompositions hold for general

H-spaces. However, this is not the case. In fact, Zabrodsky [13] showed that if

p ≥ 5, then for any map f : S2m → S2n+1, there is an H-space X = S2n+1 ∪f
e2m+1 ∪ e2n+2m+2. Thus, if f is essential with m 6≡ n mod p − 1, then X is not

decomposable into factors satisfying (2).

On the other hand, for an H-space X of type (2n1 + 1, . . . , 2nk + 1) if nk−n1

is not very large, then the result by Zabrodsky is not an obstruction to the decom-

position into factors satisfying (2) since π2m(S2n+1) = 0 for m− n 6≡ 0 mod p− 1

for small m (e.g., m ≤ n+ p(p− 1) by Toda [10]).

From this point of view, the first known result is given by Kumpel [7]. He

showed that if nk − n1 < p − 1 then X is p-regular, i.e., X decomposes into a

product of odd spheres. The assumption nk − n1 < p − 1 is essential. In fact,

Mimura and Toda [9, §2] showed that there is an irreducible space Bn(p) with

H∗(Bn(p);Fp) = Λ(x1, x2), where deg x1 = 2n+ 1 and deg x2 = 2n+ 2(p− 1) + 1

with P1x1 = x2. Then Hemmi [6] showed that if nk − n1 < 2(p − 1) then X is

quasi p-regular, i.e., X decomposes into a product of odd spheres and Bn(p)s.

In this paper, as the next step we consider the case of nk − n1 < 3(p − 1).

Unfortunately, we have to assume that p ≥ 5. The reason is stated later.

To study our case, we first construct spaces which appear as factors in our

decompositions. Those spaces are denoted by B(n), C(n), E(n) and F (n) for

n ≥ 1, and D(n) for n ≥ 2. Their cohomology algebras are as follows, where

q = 2(p− 1):

(1) H∗(B(n);Fp) = Λ(b1, b2),

deg b1 = 2n+ 1, deg b2 = 2n+ 1 + q;

(2) H∗(C(n);Fp) = Λ(c1, c2),

deg c1 = 2n+ 1, deg c2 = 2n+ 1 + 2q;

(3) H∗(D(n);Fp) = Λ(d1, d2, d3),

deg d1 = 2n+ 1, deg d2 = 2n+ 1 + q, deg d3 = 2n+ 1 + 2q;

(4) H∗(E(n);Fp) = Λ(e1, e2, e3),

deg e1 = 2n+ 1, deg e2 = 2n+ 1 + q, deg e3 = 2n+ 1 + 2q;

(5) H∗(F (n);Fp) = Λ(f1, f2, f3),

deg f1 = 2n+ 1, deg f2 = 2n+ 1 + q, deg f3 = 2n+ 1 + 2q.
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Moreover, the generators are connected by cohomology operations as follows:

P1b1 = b2, Φc1 = c2, P1d1 = d2, P1d2 = d3,

P1e1 = e2, Φe1 = e3, Φf1 = P1f2 = f3.

Here, Φ is the secondary operation detecting the Toda class α2. Thus in particular

we see that the spaces B(n), C(n), D(n), E(n) and F (n) are irreducible.

Many of the above spaces are equivalent to the spaces given in [8] and [9]. In

fact, B(n) is equivalent to Bn(p) of [9], and C(1) and E(1) are equivalent to B

and B3
1(p) given in Propositions 8.4 and 7.4 of [8], respectively. Moreover D(n) is

equivalent to B3
n(p) for some n in [9, Prop. 7.2].

To construct the above spaces we use the method introduced by Cohen and

Neisendorfer [1]. Since our construction is functorial, the above spaces are charac-

terized by the type of the cohomology rings and the action of the operations P1

and Φ.

Our main result is stated as follows.

Theorem 1.1. Let p be a prime with p ≥ 5. Let X be an H-space with exterior

Fp-cohomology algebra of type (2n1 + 1, . . . , 2nk + 1) with 1 ≤ n1 ≤ · · · ≤ nk. If

nk − n1 < 3(p − 1), then X is homotopy equivalent to a product of the following

spaces.

(1) S2n+1 with n1 ≤ n ≤ nk;
(2) B(n) with n1 ≤ n ≤ nk − (p− 1);

(3) C(n) with n1 ≤ n ≤ nk − 2(p− 1);

(4) D(n) with n1 ≤ n ≤ nk − 2(p− 1) (n 6= 1);

(5) E(n) with n1 ≤ n ≤ nk − 2(p− 1);

(6) F (n) with n1 ≤ n ≤ nk − 2(p− 1).

The above theorem states that the type (2n1+1, . . . , 2nt+1) of each irreducible

factor satisfies (1) ni 6= nj for any i 6= j, and (2) ni ≡ nj mod p−1. The condition

nk−n1 < 3(p−1) is essential for this fact. In fact, if nk−n1 = 3(p−1) then there

is an irreducible H-space of type

(2n+ 1, 2n+ q + 1, 2n+ 2q + 1, 2n+ 2q + 1, 2n+ 3q + 1)

for which condition (1) is not satisfied.

The paper is organized as follows. In Section 2, we review the method of Cohen

and Neisendorfer [1] for constructing H-spaces of low rank. Then in Section 3 we

construct the spaces which appear as product factors in our decompositions of

H-spaces. The main theorem is proved in Section 4.
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§2. Cohen–Neisendorfer construction

In the rest of paper, we do not distinguish a continuous map and its homotopy

class if there is no confusion.

There are two known methods to construct H-spaces of low rank: one by

Cooke, Harper and Zabrodsky [2], and the other by Cohen and Neisendorfer [1].

Here we review the Cohen–Neisendorfer method.

Let L be a cell complex consisting of odd cells:

L = S2n1+1 ∪ e2n2+1 ∪ · · · ∪ e2nk+1,

where 1 ≤ n1 ≤ · · · ≤ nk. We call such a space an odd cell complex of rank k.

It is proved in [1] that if k < p − 1 then there is an H-space M(L) and a map

ιL : L → M(L) such that (ιL)∗ : H∗(L;Fp) → H∗(M(L);Fp) is a monomorphism

and H∗(M(L);Fp) is an exterior algebra generated by (ιL)∗(H̃∗(L;Fp)). Thus, in

particular, there are cohomology classes xi ∈ H∗(M(L);Fp) (1 ≤ i ≤ k) with

deg xi = 2ni + 1 such that {(ιL)∗(x1), . . . , (ιL)∗(xk)} is a basis for H̃∗(L;Fp) and

H∗(M(L);Fp) ∼= Λ(x1, . . . , xk).

This construction is functorial in the sense that for any map f : K → L from

another odd cell complex K of rank less than p−1, there is a map M(f) : M(K)→
M(L) such that the following diagram is homotopy commutative:

K
f //

ιK

��

L

ιL

��
M(K)

M(f) // M(L)

In particular, if K is a subcomplex of L of the form S2n1+1 ∪ e2n2+1 ∪ · · · ∪ e2nt+1

with t < k, then the cofibre sequence K → L → L/K induces a homotopy fibre

sequence

M(K)
ε−→M(L)

π−→M(L/K)

with

π∗(zi) = xi (t+ 1 ≤ i ≤ k),

ε∗(xi) = yi (1 ≤ i ≤ t).

where

H∗(M(K);Fp) ∼= Λ(y1, . . . , yt), H∗(M(L/K);Fp) ∼= Λ(zt+1, . . . , zk).
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As a special case, we have

M(L1 ∨ L2) 'M(L1)×M(L2).

Now, to define the space M(L) and the map ιL : L → M(L), a space λ(L)

and a map λ(L) → ΣL are constructed in [1] such that there is a natural fibre

sequence

Ωλ(L)→ ΩΣL
ρ−→M(L)→ λ(L)→ ΣL.

Then ιL : L → M(L) is given by the composition ιL = ρ ◦ EL, where EX : X →
ΩΣX denotes the adjoint of idΣX : ΣX → ΣX for a space X. It is also shown that

there is a section s : M(L)→ ΩΣL so that ρ ◦ s ' id, and multiplication on M(L)

is defined by the composition

ρ ◦ µ ◦ (s× s) : M(L)×M(L)→M(L),

where µ : ΩΣL× ΩΣL→ ΩΣL is the loop multiplication.

Now we show the following

Lemma 2.1. s ◦ ιL ' EL : L→ ΩΣL.

Proof. We first recall the definition of the section s from [1]. It is shown that the

map ΣιL : ΣL → ΣM(L) has a retraction r : ΣM(L) → ΣL so that r ◦ ΣιL ' id.

Set s′ = Ωr ◦ EM(L) : M(L)→ ΩΣM(L)→ ΩΣL. It is also proved in [1] that the

composition ρ ◦ s′ : M(L) → M(L) is a homotopy equivalence. Then the section

s : M(L)→ ΩΣL is defined by s = s′ ◦ (ρ ◦ s′)−1.

Now (ρ ◦ s′) ◦ ιL = ρ ◦ Ωr ◦ EM(L) ◦ ιL = ρ ◦ Ωr ◦ ΩΣιL ◦ EL ' ρ ◦ EL = ιL.

Thus, we have

s◦ ιL = s′ ◦ (ρ◦s′)−1 ◦ ιL ' s′ ◦ ιL ' Ωr◦EM(L) ◦ ιL ' Ωr◦ΩΣιL ◦EL ' EL.

Let Li (1 ≤ i ≤ t) be an odd cell complex with rank less than p − 1. Set

L = L1 ∨ · · · ∨ Lt. Consider the composition

ι : L ⊂ L1 × · · · × Lt
ιL1×···×ιLt

−−−−−−−−→M(L1)× · · · ×M(Lt).

It is clear that ι∗ : H∗(L;Fp)→ H∗(M(L1)× · · ·×M(Lt);Fp) is a monomorphism

and H∗(M(L1)×· · ·×M(Lt);Fp) is an exterior algebra generated by ι∗(H̃∗(L;Fp)).
Thus it is natural to write M(L1)× · · · ×M(Lt) as M(L) and ι as ιL:

ιL : L→M(L) = M(L1)× · · · ×M(Lt).
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Then we show the following

Lemma 2.2. Let L = L1 ∨ · · · ∨ Lt, where Li are odd cell complexes of rank less

than p − 1. Let Y be an H-space and f : L → Y a map. Then there is a map

f̂ : M = M(L)→ Y such that the following diagram is homotopy commutative:

L
f //

ιL

��

Y

M(L)

f̂

<<

Proof. It is sufficient to handle the case of L = Li. In fact, if there are maps

f̂i : M(Li)→ Y with f̂i|Li = f |Li for 1 ≤ i ≤ t, then we can define f̂ : M(L)→ Y

by

f̂(x1, x2, . . . , xt) = (· · · (f̂1(x1)f̂2(x2)) · · · )f̂t(xt)

using multiplication of Y .

Now we define f̂ : M(L)→ Y by the composition

r ◦ ΩΣf ◦ s : M(L)→ ΩΣL→ ΩΣY → Y,

where s : M(L) → ΩΣL is the section and r : ΩΣY → Y is the retraction of an

H-space so that r ◦ EY ' id : Y → Y . Then by Lemma 2.1 we have

f̂ ◦ ιL ' r ◦ ΩΣf ◦ s ◦ ιL ' r ◦ ΩΣf ◦ EL ' r ◦ EY ◦ f ' f.

§3. Construction of low rank H-spaces

Now we construct H-spaces B(n), C(n), D(n), E(n) and F (n) by using the

Cohen–Neisendorfer method. Since the rank should be less than p − 1, we need

to assume that p ≥ 5. Our method to prove the main theorem is as follows:

We construct odd cell complexes LA(n) for A = B, C, U , V and W such that

M(LA(n)) = A(n). Then we show that there is an odd cell complex L which is a

wedge sum of such complexes, and a map f : L → X to an H-space X with the

properties in Theorem 1.1 such that f∗(x1), . . . , f∗(xk) is a basis for H̃∗(L;Fp),
where H∗(X;Fp) ∼= Λ(x1, . . . , xk). Then by Lemma 2.2, we obtain Theorem 1.1.

First we note that M(S2n+1) = S2n+1 and ιS
2n+1

= id.

To construct the required odd cell complexes, we recall the homotopy group

π2m(S2n+1) for 2m < 2n+ 3q. In this range, the only non-trivial cases are

π2n+q(S
2n+1) ∼= Z/p{α1(2n+ 1)}, π2n+2q(S

2n+1) ∼= Z/p{α2(2n+ 1)}.
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Here, αi(m) ∈ πm+iq−1(Sm) for m ≥ 3 are well known generators with αi(m) =

Σm−3αi(3) for m > 3. Moreover , α2(3) is defined by the Toda bracket as

α2(3) = {α1(3), p, α1(2p)}.

For the composition α1(2n+ 1) ◦ α1(2n+ q) we have the following

Lemma 3.1 (Toda [11, Proposition 13.6]). If n = 1, then α1(3) ◦ α1(2p) is a

generator of πq+1(S3) ∼= Z/p, while for n ≥ 2, α1(2n+ 1) ◦ α1(2n+ q) = 0.

Hereafter, we simply denote αi(m) by αi.

Now, for n ≥ 1, we set

LB(n) = S2n+1 ∪α1
e2n+q+1, LC(n) = S2n+1 ∪α2

e2n+2q+1.

It is clear that LB(n) = Σ2n−2LB(1) and LC(n) = Σ2n−2LC(1). We notice that

ΣLB(n) = S2n+2 ∪α1 e
2n+2q+2 and ΣLC(n) = S2n+2 ∪α2 e

2n+2q+2.

Now, if n ≥ 2, then α1(2n + 1) ◦ α1(2n + q) = 0 by Lemma 3.1, and so we

have an extension α̂1 : S2n+q ∪α1 e
2n+2q → S2n+1 of α1 : S2n+q → S2n+1:

S2n+q α1 //

��

S2n+1

S2n+q ∪α1
e2n+2q

α̂1

77

Then, for n ≥ 2, we set

LD(n) = S2n+1 ∪α̂1
C(S2n+q ∪α1

e2n+2q).

It is clear that LD(n) = Σ2n−4LD(2), and

LD(n)/S2n+1 = S2n+q+1 ∪α1
e2n+2q+1 ' LB(n+ p− 1).

Finally, for n ≥ 1, we set

LE(n) = S2n+1 ∪∇◦(α1∨α2) (e2n+q+1 ∨ e2n+2q+1),

LF (n) = (S2n+1 ∨ S2n+q+1) ∪(α2∨α1)◦∆ e2n+2q+1,

where ∇ : S2n+1 ∨ S2n+1 → S2n+1 is the folding map and ∆: S2n+2q → S2n+2q ∨
S2n+2q is the coproduct. Then LE(n) = Σ2n−2LE(1) and LF (n) = Σ2n−2LF (1).

It is clear that

LB(n) ⊂ LE(n), LC(n) ⊂ LE(n),

LF (n)/S2n+1 = LB(n+ p− 1), LF (n)/S2n+q+1 = LC(n).
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Now we define H-spaces B(n), C(n), E(n) and F (n) for n ≥ 1, and D(n) for

n ≥ 2 by

B(n) = M(LB(n)), C(n) = M(LC(n)), D(n) = M(LD(n)),

E(n) = M(LE(n)), F (n) = M(LF (n)).

Then the following proposition is clear from the construction.

Proposition 3.2. The H-spaces B(n), C(n), D(n), E(n) and F (n) are irre-

ducible, and

(1) H∗(B(n);Fp) = Λ(b1, b2),

deg b1 = 2n+ 1, deg b2 = 2n+ 1 + q;

(2) H∗(C(n);Fp) = Λ(c1, c2),

deg c1 = 2n+ 1, deg c2 = 2n+ 1 + 2q;

(3) H∗(D(n);Fp) = Λ(d1, d2, d3),

deg d1 = 2n+ 1, deg d2 = 2n+ 1 + q, deg d3 = 2n+ 1 + 2q;

(4) H∗(E(n);Fp) = Λ(e1, e2, e3),

deg e1 = 2n+ 1, deg e2 = 2n+ 1 + q, deg e3 = 2n+ 1 + 2q;

(5) H∗(F (n);Fp) = Λ(f1, f2, f3),

deg f1 = 2n+ 1, deg f2 = 2n+ 1 + q, deg f3 = 2n+ 1 + 2q.

The generators are connected by the cohomology operations as follows:

P1b1 = b2, Φc1 = c2, P1d1 = d2, P1d2 = d3,

P1e1 = e2, Φe1 = e3, Φf1 = P1f2 = f3.

Moreover, those spaces are characterized by the type of the cohomology rings and

the action of the operations P1 and Φ since the Cohen–Neisendorfer method is

functorial.

Various generalizations of the Cohen–Neisendorfer method have been consid-

ered by several authors. Among them are Wu [12] and Grbić, Harper, Mimura,

Theriault and Wu [4], who studied the case of rank p−1. In particular, it is proved

in [4, Proposition 1.1] that the Cohen–Neisendorfer method works also for the rank

p − 1 case but the resulting space need not be an H-space. This means that the

above spaces B(n) and C(n) exist also for p = 3 as just topological spaces. More-

over, conditions for those spaces to be H-spaces are studied in [4, Theorem 7.1].

In particular, it is shown that B(n) for p = 3 is an H-space if and only if n = 1

or n ≡ −1 mod 3, which coincides with the result of [14] and [5]. To study D(n),

E(n) and F (n) with p = 3, we need to consider the rank p case, and there are no

known results for this case.
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Now we study the homotopy groups of the spaces of Proposition 3.2.

Let εB : S2n+1 → LB(n), εC : S2n+1 → LC(n) and εF1 : S2n+1 → LF (n) be

the natural inclusions. Then, for n ≥ 1, we set

αB2 = (εB)∗(α2) ∈ π2n+2q(LB(n)),

αC1 = (εC)∗(α1) ∈ π2n+q(LC(n)),

αF1 = (εF1 )∗(α1) ∈ π2n+q(LF (n)),

αF2 = (εF1 )∗(α2) ∈ π2n+2q(LF (n)).

Next we define α̃B1 ∈ π2n+2q(LB(n)) for n ≥ 2. Since α1 ◦ α1 = 0 ∈
π2n+2q−1(S2n+1) by Lemma 3.1 and α1 has order p, we have the Toda bracket

{α1, α1, p} ⊂ π2n+2q(S
2n+1). It is proved in [11, Chapter XIII] that {α1, α1, p}

consists of a single element 2−1α2. In other words, we have α̂1 ◦ p̃ = 2−1α2 in the

following diagram:

(3.1)

S2n+2q−1 p // S2n+2q−1 α1 //

��

S2n+q α1 //

ε

��

S2n+1

εB

��
S2n+2q−1 ∪p e2n+2q

55

��

S2n+q ∪α1 e2n+2q

α̂1

77

π

��

LB(n)

πB

��
S2n+2q

p̃

55

p // S2n+2q

α̃B
1

77

α1 // S2n+q+1

We note that the above diagram is homotopy commutative except for two central

parallelograms which are homotopy anti-commutative, i.e., homotopy commuta-

tive up to sign.

Then we define

α̃B1 ∈ π2n+2q(LB(n))

to be the coextension of α1 : S2n+2q → S2n+q+1 as defined in the above diagram.

By definition we have

(3.2) (πB)∗(α̃
B
1 ) = α1 and pα̃B1 = −2−1(εB)∗(α2),

where πB : LB(n)→ LB(n)/S2n+1 = S2n+q+1 is the projection.

Finally, we set

α̃E1 = (εE1 )∗(α̃
B
1 ) ∈ π2n+2q(LE(n)),

where εE1 : LB(n)→ LE(n) is the inclusion.

Then we show the following
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Lemma 3.3.

LB(n) ∪α̃B
1
e2n+2q+1 ' LD(n),

LB(n) ∪αB
2
e2n+2q+1 ' LE(n),

LC(n) ∪αC
1
e2n+q+1 ' LE(n),

LE(n) ∪α̃E
1
e2n+2q+1 ' LD(n) ∨ S2n+2q+1,

LF (n) ∪αF
2
e2n+2q+1 ' LC(n) ∨ LB(n+ p− 1).

Proof. The first three relations are easy to show.

Let εD : S2n+1 → LD(n) and ε1 : S2n+1 → S2n+1∨S2n+q+1 be the inclusions.

Then the last two relations are shown as follows:

LE(n) ∪α̃E
1
e2n+2q+1 ' LD(n) ∪(εD)∗(α2) e

2n+2q+1

' LD(n) ∨ S2n+2q+1,

LF (n) ∪αF
2
e2n+2q+1 ' ((S2n+1 ∨ S2n+q+1) ∪(ε1)∗(α2) e

2n+2q+1) ∪ e2n+2q+1

' (LC(n) ∨ S2n+q+1) ∪(∗,α1) e
2n+2q+1

' LC(n) ∨ LB(n+ p− 1).

We can also prove the following relation, but we do not give the proof since

we do not use it in this paper:

LF (n) ∪αF
1
e2n+q+1 ' LB(n) ∨ LB(n+ p− 1).

Let ιA : LA(n)→M(LA(n)) = A(n) be the natural map for A = B, C, U , V

or W . Then we have the following fact, parts of which were already proved in [9,

Thm. 3.2] and [8, Prop. 6.3].

Proposition 3.4. The even-dimensional non-trivial homotopy groups of B(n),

C(n), D(n), E(n) and F (n) for dimension less than 2n+ 3q are as follows:

π2n+2q(B(n)) ∼=

{
Z/p{(ιB)∗(α

B
2 )} (n = 1),

Z/p2{(ιB)∗(α̃
B
1 )} (n ≥ 2),

π2n+q(C(n)) ∼= Z/p{(ιC)∗(α
C
1 )},

π2n+2q(E(n)) ∼= Z/p{(ιE)∗(α̃
E
1 )} (n ≥ 2),

π2n+q(F (n)) ∼= Z/p{(ιF )∗(α
F
1 )},

π2n+2q(F (n)) ∼= Z/p{(ιF )∗(α
F
2 )}.

We remark that π2m(D(n)) = 0 for 2m < 2n+ 3q.
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Proof. Almost all parts are easy to show by studying homotopy exact sequences

of fibre sequences. Here we give just an outline.

For the case of B(n), we consider the following fibre sequence coming from

the cofibre sequence S2n+1 → LB(n)→ LB(n)/S2n+1 = S2n+q+1:

S2n+1 → B(n)→ S2n+q+1.

It is easy to show that the even-dimensional non-trivial homotopy groups of

B(n) occur only in dimensions 2n + 2q. Since the connecting homomorphism

∂∗ : π2n+2q(S
2n+q+1) → π2n+2q−1(S2n+1) satisfies ∂∗(α1) = α1 ◦ α1, if n = 1

then by Lemma 3.1 we have π2q+2(B(1)) ∼= Z/p{(ιB)∗(α
B
2 )}. For n ≥ 2, we have

π2n+2q(B(n)) ∼= Z/p2{(ιB)∗(α̃
B
1 )} by Lemma 3.2.

For E(n), we consider the homotopy exact sequence of the fibre sequence

S2n+1 → E(n)→ S2n+q+1 × S2n+2q+1.

Then the connecting homomorphism ∂∗ : π2n+2q(S
2n+q+1 × S2n+2q+1) →

π2n+2q−1(S2n+1) satisfies ∂∗(α1, ∗) = α1 ◦ α1. Thus, for the same reason as in

the case of B(n), we obtain the result.

The other cases are easy to show by considering homotopy exact sequences of

the following fibrations:

S2n+1 → C(n)→ S2n+2q+1,

B(n)→ D(n)→ S2n+2q+1,

S2n+1 × S2n+q+1 → F (n)→ S2n+2q+1.

For positive integers n1 and n with n1 ≤ n ≤ n1 + 3(p− 1), let Sn1,n be the

set consisting of the pairs (A, γ), where A is

(1) S2m+1 with n1 ≤ m ≤ n,

(2) B(m) with n1 ≤ m ≤ n− (p− 1), or

(3) C(m), D(m), E(m) or F (m) with n1 ≤ m ≤ n− 2(p− 1),

and γ ∈ π2n(A).

By Proposition 3.4, if γ 6=0, thenAmust be S2n−q+1, S2n−2q+1,B(n−2(p−1)),

E(n − 2(p − 1)) or F (n − 2(p − 1)), and γ is one of the classes in π2n(A) given

in Proposition 3.4 up to unit. We note that A is neither C(m) nor D(m), and

γ 6= (ιF )∗(α
F
1 ) even if A = F (m) for dimensional reasons.

We define a preorder on Sn1,n by writing (A1, γ1) � (A2, γ2) for

(A1, γ1), (A2, γ2) ∈ Sn1,n if there is a map f : A1 → A2 with f∗(γ1) = γ2. It is

clear that (A1, γ1) � (A2, γ2) if γ2 = ∗, or A1 = A2 with γ1 = γ2 up to unit. For

the other cases, we have
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Lemma 3.5. Let n1 ≤ n ≤ n1 + 3(p − 1) and m = n − 2(p − 1). Then in Sn1,n

we have

(S2m+(2−i)q+1, αi) � (F (m), (ιF )∗(α
F
2 )) � (B(m), (ιB)∗(α

B
2 ))

for i = 1, 2. Moreover, if m ≥ 2, then also for i = 1, 2 we have

(B(m), (ιB)∗(α̃
B
1 )) � (E(m), (ιE)∗(α̃

E
1 )) � (S2m+(2−i)q+1, αi).

Proof. First we show that there is a map f : LF (m) → LB(m) such that

f∗(α
F
2 ) = αB2 . Then M(f) : F (m) → B(m) satisfies M(f)∗((ι

F )∗(α
F
2 )) =

(ιB)∗(α
B
2 ), and we have (F (m), (ιF )∗(α

F
2 )) � (B(m), (ιB)∗(α

B
2 )).

Now since {α1, p, α1} = α2, we have α̂1 ◦ α̃1 = α2 in the following dia-

gram, which is homotopy commutative except for two central homotopy anti-

commutative parallelograms:

S2m+2q−1 α1 // S2m+q

��

p // S2m+q α1 //

��

S2m+1

εB

��
S2m+q ∪α1 e

2m+2q

55

��

S2m+q ∪p e2m+q+1

α̂1

66

��

LB(m)

πB

��
S2m+2q

α̃1

55

α1 // S2m+q

p̃
66

p // S2m+q+1

Then the map p̃ : S2m+q → LB(m) satisfies

p̃∗(α1) = −(εB)∗(α2) = −αB2 .

Consequently, for the map f0 = ∇◦ (εB ∨ p̃) : S2m+1∨S2m+q+1 → LB(m) we have

f0 ◦ ((α2 ∨ α1) ◦∆) ' ∗, and there is an extension f : LF (m)→ LB(m) of f0:

S2m+1 ∨ S2m+q+1 f0 //

��

LB(m)

LF (m)

f

77

Then

f∗(α
F
2 ) = (εF1 )∗(α2) = (εB)∗(α2) = αB2 .

Next we show that (S2m+(2−i)q+1, αi) � (F (m), (ιF )∗(α
F
2 )) for i = 1, 2.

Clearly (S2m+1, α2) � (F (m), (ιF )∗(α
F
2 )) since αF2 = (εF1 )∗(α2) for εF1 : S2m+1 →

LF (m). On the other hand, for the other inclusion εF2 : S2m+q+1 → LF (m) we
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have

(εF2 )∗(−α1) = (εF1 )∗(α2) = αF2 .

Thus, (S2m+q+1, α1) � (F (m), (ιF )∗(α
F
2 )).

Next suppose m ≥ 2. The relation (E(m), (ιE)∗(α̃
E
1 )) � (S2m+(2−i)q+1, αi)

for i = 1, 2 is clear by considering the equalities (πE1 )∗(α̃
E
1 ) = α1 and

(πE2 )∗(α̃
E
1 ) = α2, where πE1 : LE(m) → LE(m)/LB(m) = S2n+q+1 and

πE2 : LE(m)→ LE(m)/LC(m) = S2n+1 are the projections.

Moreover, the relation (B(m), (ιB)∗(α̃
B
1 )) � (E(m), (ιE)∗(α̃

E
1 )) is clear since

(εE1 )∗(α̃
B
1 ) = α̃E1 .

§4. Proof of Main Theorem

First we show the following

Lemma 4.1. Let B be an H-space, and f = (f1, f2) : S2m → A × B a map,

Suppose that there is a map η : A → B such that η ◦ f1 ' f2. Then there is a

homotopy equivalence ϕ : A×B → A×B such that ϕ ◦ f ' (f1, ∗).

Proof. Define ψ : A×B → A×B by

ψ(a, b) =
(
a, µ(η(a), b)

)
,

where µ is multiplication of B. Then ψ ◦ (f1, ∗) ' f . Since ψ is a homotopy

equivalence, the homotopy inverse ϕ of ψ is the desired map.

Now we prove the main theorem.

Proof of Theorem 1.1. We show that there are odd cell complexes Li and maps

fi : Li → X for 1 ≤ i ≤ k such that the following conditions are satisfied:

(1) Li is a wedge of spaces S2m+1, LB(m), LC(m), LD(m), LE(m) and LF (m) for

suitable m so that M(Li) is a product of S2m+1, B(m), C(m), D(m), E(m)

and F (m).

(2) f∗i (x1), . . . , f∗i (xi) is a basis for H̃∗(Li;Fp).

Then by Lemma 2.2 there is a map f̂i : M(Li)→ X such that

H∗(M(Li);Fp) ∼= Λ(f̂∗i (x1), . . . , f̂∗i (xi)).

In particular, f̂k : M(Lk)→ X is a homotopy equivalence, and so gives the desired

decomposition.

For i = 1, we take L1 = S2n1+1 and f1 the obvious map.
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Suppose inductively that we have spaces Li and maps fi for i < t. We

can change the generators xi in H∗(X;Fp) if necessary so that ft−1 satisfies

f∗t−1(xi) = 0 for i ≥ t.
Take a map β : S2nt →M(Lt−1) such that f̂t−1 ◦ β ' ∗ and for an extension

gt−1 : M(Lt−1) ∪β e2nt+1 → X we have

H∗(M(Lt−1) ∪β e2nt+1;Fp) ∼= Λ(g∗t−1(x1), . . . , g∗t−1(xt−1))⊕ Z/p{g∗t−1(xt)}.

If β ' ∗, then M(Lt−1) ∪β e2nt+1 ' M(Lt−1) ∨ S2nt+1. Thus we can set

Lt = Lt−1 ∨ S2nt+1 and define ft : Lt → X by

ft = ∇ ◦ (ft−1 ∨ (gt−1|S2nt+1)) : Lt = Lt−1 ∨ S2nt+1 → X ∨X → X.

Then it is clear that Lt and ft satisfy the desired conditions (1) and (2).

Suppose that β 6' ∗. We write Lt−1 = K1 ∨ · · · ∨ Ks, where each Ki is one

of S2m+1, LB(m), LC(m), LD(m), LE(m) or LF (m), and β = (β1, . . . , βs) with

βi : S
2nt →M(Ki). Moreover, if βi 6' ∗ then (M(Ki), βi) is one of (S2nt−q+1, α1),

(S2nt−2q+1, α2), (B(nt − 2p + 2), (ιB)∗(α
B
2 )), (B(nt − 2p + 2), (ιB)∗(α̃

B
1 )),

(E(nt − 2p + 2), (ιE)∗(α̃
E
1 )) or (F (nt − 2p + 2), (ιF )∗(α

F
2 )) by Proposition 3.4.

We remark that the pairs (C(nt−p+1), (ιC)∗(α
C
1 )) and (F (nt−p+1), (ιF )∗(α

F
1 ))

do not occur for dimensional reasons. We assume that the {(M(Ki), βi)} are ar-

ranged so that if (M(Ki), βi) � (M(Kj), βj) then i ≤ j.
We show there is a homotopy equivalence ψ : M(Lt−1) → M(Lt−1) such

that ψ ◦ β ' (β1, ∗, . . . , ∗) or ψ ◦ β ' (α2, α1, ∗, . . . , ∗) with K1 = S2nt−2q+1

and K2 = S2nt−q+1. In fact, if (M(K1), β1) is a minimum pair, then by

applying Lemma 4.1 with A = M(K1) and B = M(K2) × · · · × M(Ks)

we get such a homotopy equivalence ψ : M(Lt−1) → M(Lt−1). On the other

hand, if there are no minimum pairs in {(M(Ki), βi)}, then we can as-

sume that (M(K1), β1) = (S2nt−2q+1, α2), (M(K2), β2) = (S2nt−q+1, α1), and

(S2nt−2q+1, α2) � (M(Ki), βi) and (S2nt−q+1, α1) � (M(Ki), βi) for i ≥ 3. Then

by applying Lemma 4.1 with A = M(K1)×M(K2) and B = M(K3)×· · ·×M(Ks)

we obtain a homotopy equivalence ψ : M(Lt−1)→M(Lt−1) as desired.

Let A and B be the spaces in the above argument. We replace ft−1 by f̂t−1 ◦
ψ−1 ◦ ιLt−1 : Lt−1 → X, and β by ψ ◦ β. Then we can write Lt−1 = LA ∨LB with

M(LA) = A and M(LB) = B, and β = (βA, βB), where βB ' ∗ : S2nt → B and

(A, βA) is one of (S2nt−2q+1, α2), (S2nt−q+1, α1), (S2nt−2q+1×S2nt−q+1, (α2, α1)),

(B(nt−2p+2), (ιB)∗(α
B
2 )), (B(nt−2p+2), (ιB)∗(α̃

B
1 )), (E(nt−2p+2), (ιE)∗(α̃

E
1 ))

or (F (nt − 2p + 2), (ιF )∗(α
F
2 )). Then βA ' ιA ◦ γ, where (LA, γ) is

one of (S2nt−2q+1, α2), (S2nt−q+1, α1), (S2nt−2q+1 ∨ S2nt−q+1, (α2 ∨ α1) ◦ ∆),

(LB(nt − 2p + 2), αB2 ), (LB(nt − 2p + 2), α̃B1 ), (LE(nt − 2p + 2), α̃E1 ) or

(LF (nt − 2p+ 2), αF2 ).
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Set hA = ft−1|LA and hB = ft−1|LB , and consider the extension

ĥA : LA∪γ e2nt+1 → X. We write Lt = (LA∪γ e2nt+1)∨LB and define ft : Lt → X

by

ft = ∇ ◦ (ĥA ∨ hB) : Lt → X ∨X → X.

Since LA ∪γ e2nt+1 is a wedge of S2m+1, LB(m), LC(m), LD(m), LE(m) and

LF (m) for suitable m by Lemma 3.3, Lt and ft satisfy the desired conditions (1)

and (2). This completes the proof.
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