Mod p Decomposition of H-spaces of Low Rank

by

Yutaka HEMMI and Hirokazu NISHINOBU

Abstract

Let X be a mod p H-space whose mod p cohomology is an exterior algebra generated by finitely many generators of degrees $2n_1 + 1, \ldots, 2n_k + 1$ with $1 \leq n_1 \leq \cdots \leq n_k$. It is known that if $n_k - n_1 < p - 1$ then X decomposes into a product of odd spheres, and if $n_k - n_1 < 2(p-1)$ then X decomposes into a product of odd spheres and $B_n(p)$ s. In this paper we consider the case of $n_k - n_1 < 3(p - 1)$, and give a product decomposition of X into irreducible factors.

2010 Mathematics Subject Classification: Primary 55P45; Secondary 55P60. Keywords: H-space, mod p decomposition, p-regular, quasi p-regular, Cohen–Neisendorfer method.

§1. Introduction

Let p be a prime, and \mathbb{F}_p the prime field of characteristic p. In this paper we assume that all spaces are localized at p . Let X be a simply connected H -space whose \mathbb{F}_n -cohomology is an exterior algebra generated by finitely many generators of odd degree:

$$
H^*(X; \mathbb{F}_p) = \Lambda(x_1, \dots, x_k),
$$

where deg $x_i = 2n_i + 1$ with $1 \leq n_1 \leq \cdots \leq n_k$. We call the sequence $(2n_1 + 1, \ldots,$ $2n_k + 1$) the type of X, and k the rank of X.

We study decomposition of such H-spaces into irreducible factors. For compact Lie groups, Mimura, Nishida and Toda [\[8\]](#page-14-1) gave a complete list of such decompositions. According to their results the type $(2n_1 + 1, \ldots, 2n_k + 1)$ of each irreducible factor appearing in the product decomposition of a compact Lie group

Communicated by T. Ohtsuki. Received September 10, 2015. Revised November 25, 2015.

Y. Hemmi: Department of Mathematics, Faculty of Science, Kochi University,

Kochi 780-8520, Japan; e-mail: hemmi@kochi-u.ac.jp

H. Nishinobu: Department of Mathematics, Faculty of Science, Kochi University,

Kochi 780-8520, Japan;

e-mail: cosmo51mutta@yahoo.co.jp

c 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

satisfies

- (1) $n_i \neq n_j$ for any $i \neq j$, and
- (2) $n_i \equiv n_j \mod p 1$.

For p-compact groups, Davis [\[3\]](#page-14-2) showed a similar result.

From those results one can guess that similar decompositions hold for general H -spaces. However, this is not the case. In fact, Zabrodsky $[13]$ showed that if $p \geq 5$, then for any map $f: S^{2m} \to S^{2n+1}$, there is an H-space $X = S^{2n+1} \cup_{f}$ $e^{2m+1} \cup e^{2n+2m+2}$. Thus, if f is essential with $m \neq n \mod p-1$, then X is not decomposable into factors satisfying (2).

On the other hand, for an H-space X of type $(2n_1+1,\ldots, 2n_k+1)$ if n_k-n_1 is not very large, then the result by Zabrodsky is not an obstruction to the decomposition into factors satisfying (2) since $\pi_{2m}(S^{2n+1}) = 0$ for $m - n \neq 0 \mod p - 1$ for small m (e.g., $m \leq n + p(p-1)$ by Toda [\[10\]](#page-14-4)).

From this point of view, the first known result is given by Kumpel [\[7\]](#page-14-5). He showed that if $n_k - n_1 < p - 1$ then X is p-regular, i.e., X decomposes into a product of odd spheres. The assumption $n_k - n_1 < p - 1$ is essential. In fact, Mimura and Toda [\[9,](#page-14-6) §2] showed that there is an irreducible space $B_n(p)$ with $H^*(B_n(p); \mathbb{F}_p) = \Lambda(x_1, x_2)$, where deg $x_1 = 2n + 1$ and deg $x_2 = 2n + 2(p - 1) + 1$ with $\mathcal{P}^1 x_1 = x_2$. Then Hemmi [\[6\]](#page-14-7) showed that if $n_k - n_1 < 2(p-1)$ then X is quasi p-regular, i.e., X decomposes into a product of odd spheres and $B_n(p)$ s.

In this paper, as the next step we consider the case of $n_k - n_1 < 3(p - 1)$. Unfortunately, we have to assume that $p \geq 5$. The reason is stated later.

To study our case, we first construct spaces which appear as factors in our decompositions. Those spaces are denoted by $B(n)$, $C(n)$, $E(n)$ and $F(n)$ for $n \geq 1$, and $D(n)$ for $n \geq 2$. Their cohomology algebras are as follows, where $q = 2(p - 1)$:

- (1) $H^*(B(n); \mathbb{F}_p) = \Lambda(b_1, b_2),$ $\deg b_1 = 2n + 1$, $\deg b_2 = 2n + 1 + q$;
- (2) $H^*(C(n); \mathbb{F}_p) = \Lambda(c_1, c_2),$ $\deg c_1 = 2n + 1$, $\deg c_2 = 2n + 1 + 2q$;
- (3) $H^*(D(n); \mathbb{F}_p) = \Lambda(d_1, d_2, d_3),$ $\deg d_1 = 2n + 1$, $\deg d_2 = 2n + 1 + q$, $\deg d_3 = 2n + 1 + 2q$;
- (4) $H^*(E(n); \mathbb{F}_p) = \Lambda(e_1, e_2, e_3),$ $\deg e_1 = 2n + 1$, $\deg e_2 = 2n + 1 + q$, $\deg e_3 = 2n + 1 + 2q$;
- (5) $H^*(F(n); \mathbb{F}_p) = \Lambda(f_1, f_2, f_3),$ deg $f_1 = 2n + 1$, deg $f_2 = 2n + 1 + q$, deg $f_3 = 2n + 1 + 2q$.

Moreover, the generators are connected by cohomology operations as follows:

$$
\mathcal{P}^1b_1 = b_2
$$
, $\Phi c_1 = c_2$, $\mathcal{P}^1d_1 = d_2$, $\mathcal{P}^1d_2 = d_3$,
 $\mathcal{P}^1e_1 = e_2$, $\Phi e_1 = e_3$, $\Phi f_1 = \mathcal{P}^1f_2 = f_3$.

Here, Φ is the secondary operation detecting the Toda class α_2 . Thus in particular we see that the spaces $B(n)$, $C(n)$, $D(n)$, $E(n)$ and $F(n)$ are irreducible.

Many of the above spaces are equivalent to the spaces given in [\[8\]](#page-14-1) and [\[9\]](#page-14-6). In fact, $B(n)$ is equivalent to $B_n(p)$ of [\[9\]](#page-14-6), and $C(1)$ and $E(1)$ are equivalent to B and $B_1^3(p)$ given in Propositions 8.4 and 7.4 of [\[8\]](#page-14-1), respectively. Moreover $D(n)$ is equivalent to $B_n^3(p)$ for some n in [\[9,](#page-14-6) Prop. 7.2].

To construct the above spaces we use the method introduced by Cohen and Neisendorfer [\[1\]](#page-14-8). Since our construction is functorial, the above spaces are characterized by the type of the cohomology rings and the action of the operations \mathcal{P}^1 and Φ.

Our main result is stated as follows.

Theorem 1.1. Let p be a prime with $p \geq 5$. Let X be an H-space with exterior \mathbb{F}_p -cohomology algebra of type $(2n_1 + 1, \ldots, 2n_k + 1)$ with $1 \leq n_1 \leq \cdots \leq n_k$. If $n_k - n_1 < 3(p-1)$, then X is homotopy equivalent to a product of the following spaces.

- (1) S^{2n+1} with $n_1 \le n \le n_k$;
- (2) $B(n)$ with $n_1 \leq n \leq n_k (p-1);$
- (3) $C(n)$ with $n_1 \leq n \leq n_k 2(p-1)$;
- (4) $D(n)$ with $n_1 \leq n \leq n_k 2(p-1)$ $(n \neq 1);$
- (5) $E(n)$ with $n_1 \leq n \leq n_k 2(p-1);$
- (6) $F(n)$ with $n_1 \leq n \leq n_k 2(p-1)$.

The above theorem states that the type $(2n_1+1, \ldots, 2n_t+1)$ of each irreducible factor satisfies (1) $n_i \neq n_j$ for any $i \neq j$, and (2) $n_i \equiv n_j \mod p-1$. The condition $n_k - n_1 < 3(p-1)$ is essential for this fact. In fact, if $n_k - n_1 = 3(p-1)$ then there is an irreducible H -space of type

$$
(2n+1, 2n+q+1, 2n+2q+1, 2n+2q+1, 2n+3q+1)
$$

for which condition (1) is not satisfied.

The paper is organized as follows. In Section 2, we review the method of Cohen and Neisendorfer [\[1\]](#page-14-8) for constructing H-spaces of low rank. Then in Section 3 we construct the spaces which appear as product factors in our decompositions of H-spaces. The main theorem is proved in Section 4.

210 Y. Hemmi and H. Nishinobu

§2. Cohen–Neisendorfer construction

In the rest of paper, we do not distinguish a continuous map and its homotopy class if there is no confusion.

There are two known methods to construct H-spaces of low rank: one by Cooke, Harper and Zabrodsky [\[2\]](#page-14-9), and the other by Cohen and Neisendorfer [\[1\]](#page-14-8). Here we review the Cohen–Neisendorfer method.

Let L be a cell complex consisting of odd cells:

$$
L = S^{2n_1+1} \cup e^{2n_2+1} \cup \dots \cup e^{2n_k+1},
$$

where $1 \leq n_1 \leq \cdots \leq n_k$. We call such a space an *odd cell complex* of rank k. It is proved in [\[1\]](#page-14-8) that if $k < p - 1$ then there is an H-space $M(L)$ and a map $\iota^L: L \to M(L)$ such that $(\iota^L)_*: H_*(L; \mathbb{F}_p) \to H_*(M(L); \mathbb{F}_p)$ is a monomorphism and $H_*(M(L); \mathbb{F}_p)$ is an exterior algebra generated by $(\iota^L)_*(\tilde{H}_*(L; \mathbb{F}_p))$. Thus, in particular, there are cohomology classes $x_i \in H^*(M(L); \mathbb{F}_p)$ $(1 \leq i \leq k)$ with deg $x_i = 2n_i + 1$ such that $\{(u^L)^*(x_1), \ldots, (u^L)^*(x_k)\}$ is a basis for $\tilde{H}^*(L; \mathbb{F}_p)$ and

$$
H^*(M(L); \mathbb{F}_p) \cong \Lambda(x_1, \ldots, x_k).
$$

This construction is functorial in the sense that for any map $f: K \to L$ from another odd cell complex K of rank less than $p-1$, there is a map $M(f): M(K) \rightarrow$ $M(L)$ such that the following diagram is homotopy commutative:

In particular, if K is a subcomplex of L of the form $S^{2n_1+1} \cup e^{2n_2+1} \cup \cdots \cup e^{2n_t+1}$ with $t < k$, then the cofibre sequence $K \to L \to L/K$ induces a homotopy fibre sequence

$$
M(K) \xrightarrow{\varepsilon} M(L) \xrightarrow{\pi} M(L/K)
$$

with

$$
\pi^*(z_i) = x_i \quad (t+1 \le i \le k),
$$

$$
\varepsilon^*(x_i) = y_i \quad (1 \le i \le t).
$$

where

$$
H^*(M(K); \mathbb{F}_p) \cong \Lambda(y_1, \dots, y_t), \quad H^*(M(L/K); \mathbb{F}_p) \cong \Lambda(z_{t+1}, \dots, z_k).
$$

As a special case, we have

$$
M(L_1 \vee L_2) \simeq M(L_1) \times M(L_2).
$$

Now, to define the space $M(L)$ and the map $\iota^L: L \to M(L)$, a space $\lambda(L)$ and a map $\lambda(L) \to \Sigma L$ are constructed in [\[1\]](#page-14-8) such that there is a natural fibre sequence

$$
\Omega \lambda(L) \to \Omega \Sigma L \xrightarrow{\rho} M(L) \to \lambda(L) \to \Sigma L.
$$

Then $\iota^L: L \to M(L)$ is given by the composition $\iota^L = \rho \circ E_L$, where $E_X: X \to$ $\Omega \Sigma X$ denotes the adjoint of $\mathrm{id}_{\Sigma X} : \Sigma X \to \Sigma X$ for a space X. It is also shown that there is a section s: $M(L) \to \Omega \Sigma L$ so that $\rho \circ s \simeq id$, and multiplication on $M(L)$ is defined by the composition

$$
\rho \circ \mu \circ (s \times s) \colon M(L) \times M(L) \to M(L),
$$

where $\mu: \Omega \Sigma L \times \Omega \Sigma L \to \Omega \Sigma L$ is the loop multiplication.

Now we show the following

Lemma 2.1. $s \circ \iota^L \simeq E_L : L \to \Omega \Sigma L$.

Proof. We first recall the definition of the section s from $[1]$. It is shown that the map $\Sigma \iota^L \colon \Sigma L \to \Sigma M(L)$ has a retraction $r \colon \Sigma M(L) \to \Sigma L$ so that $r \circ \Sigma \iota^L \simeq id$. Set $s' = \Omega r \circ E_{M(L)} : M(L) \to \Omega \Sigma M(L) \to \Omega \Sigma L$. It is also proved in [\[1\]](#page-14-8) that the composition $\rho \circ s' : M(L) \to M(L)$ is a homotopy equivalence. Then the section s: $M(L) \to \Omega \Sigma L$ is defined by $s = s' \circ (\rho \circ s')^{-1}$.

Now $(\rho \circ s') \circ \iota^L = \rho \circ \Omega r \circ E_{M(L)} \circ \iota^L = \rho \circ \Omega r \circ \Omega \Sigma \iota^L \circ E_L \simeq \rho \circ E_L = \iota^L.$ Thus, we have

$$
s \circ \iota^L = s' \circ (\rho \circ s')^{-1} \circ \iota^L \simeq s' \circ \iota^L \simeq \Omega r \circ E_{M(L)} \circ \iota^L \simeq \Omega r \circ \Omega \Sigma \iota^L \circ E_L \simeq E_L. \square
$$

Let L_i (1 $\leq i \leq t$) be an odd cell complex with rank less than $p-1$. Set $L = L_1 \vee \cdots \vee L_t$. Consider the composition

$$
\iota\colon L\subset L_1\times\cdots\times L_t\xrightarrow{\iota^{L_1}\times\cdots\times\iota^{L_t}}M(L_1)\times\cdots\times M(L_t).
$$

It is clear that $\iota_* : H_*(L; \mathbb{F}_p) \to H_*(M(L_1) \times \cdots \times M(L_t); \mathbb{F}_p)$ is a monomorphism and $H_*(M(L_1)\times\cdots\times M(L_t);\mathbb{F}_p)$ is an exterior algebra generated by $\iota_*(\tilde{H}_*(L;\mathbb{F}_p)).$ Thus it is natural to write $M(L_1) \times \cdots \times M(L_t)$ as $M(L)$ and ι as ι^L :

$$
\iota^L\colon L\to M(L)=M(L_1)\times\cdots\times M(L_t).
$$

Then we show the following

Lemma 2.2. Let $L = L_1 \vee \cdots \vee L_t$, where L_i are odd cell complexes of rank less than p – 1. Let Y be an H-space and $f: L \to Y$ a map. Then there is a map $\hat{f}: M = M(L) \rightarrow Y$ such that the following diagram is homotopy commutative:

Proof. It is sufficient to handle the case of $L = L_i$. In fact, if there are maps $\hat{f}_i: M(L_i) \to Y$ with $\hat{f}_i | L_i = f | L_i$ for $1 \leq i \leq t$, then we can define $\hat{f}: M(L) \to Y$ by

$$
\hat{f}(x_1, x_2, \dots, x_t) = (\dots(\hat{f}_1(x_1)\hat{f}_2(x_2))\dots)\hat{f}_t(x_t)
$$

using multiplication of Y.

Now we define $\hat{f} : M(L) \to Y$ by the composition

$$
r \circ \Omega \Sigma f \circ s \colon M(L) \to \Omega \Sigma L \to \Omega \Sigma Y \to Y,
$$

where s: $M(L) \to \Omega \Sigma L$ is the section and $r: \Omega \Sigma Y \to Y$ is the retraction of an H-space so that $r \circ E_Y \simeq id: Y \to Y$. Then by Lemma [2.1](#page-4-0) we have

> $\hat{f} \circ \iota^L \simeq r \circ \Omega \Sigma f \circ s \circ \iota^L \simeq r \circ \Omega \Sigma f \circ E_L \simeq r \circ E_Y \circ f \simeq f.$ \Box

§3. Construction of low rank H-spaces

Now we construct H-spaces $B(n)$, $C(n)$, $D(n)$, $E(n)$ and $F(n)$ by using the Cohen–Neisendorfer method. Since the rank should be less than $p-1$, we need to assume that $p \geq 5$. Our method to prove the main theorem is as follows: We construct odd cell complexes $L_A(n)$ for $A = B, C, U, V$ and W such that $M(L_A(n)) = A(n)$. Then we show that there is an odd cell complex L which is a wedge sum of such complexes, and a map $f: L \to X$ to an H-space X with the properties in Theorem [1.1](#page-2-0) such that $f^*(x_1), \ldots, f^*(x_k)$ is a basis for $\tilde{H}^*(L; \mathbb{F}_p)$, where $H^*(X; \mathbb{F}_p) \cong \Lambda(x_1, \ldots, x_k)$. Then by Lemma [2.2,](#page-5-0) we obtain Theorem [1.1.](#page-2-0)

First we note that $M(S^{2n+1}) = S^{2n+1}$ and $\iota^{S^{2n+1}} = \text{id}$.

To construct the required odd cell complexes, we recall the homotopy group $\pi_{2m}(S^{2n+1})$ for $2m < 2n + 3q$. In this range, the only non-trivial cases are

$$
\pi_{2n+q}(S^{2n+1}) \cong \mathbb{Z}/p\{\alpha_1(2n+1)\}, \quad \pi_{2n+2q}(S^{2n+1}) \cong \mathbb{Z}/p\{\alpha_2(2n+1)\}.
$$

Here, $\alpha_i(m) \in \pi_{m+iq-1}(S^m)$ for $m \geq 3$ are well known generators with $\alpha_i(m)$ $\sum_{n=3}^{\infty} \alpha_i(3)$ for $m > 3$. Moreover, $\alpha_2(3)$ is defined by the Toda bracket as

$$
\alpha_2(3) = {\alpha_1(3), p, \alpha_1(2p)}.
$$

For the composition $\alpha_1(2n+1) \circ \alpha_1(2n+q)$ we have the following

Lemma 3.1 (Toda [\[11,](#page-14-10) Proposition 13.6]). If $n = 1$, then $\alpha_1(3) \circ \alpha_1(2p)$ is a generator of $\pi_{q+1}(S^3) \cong \mathbb{Z}/p$, while for $n \geq 2$, $\alpha_1(2n+1) \circ \alpha_1(2n+q) = 0$.

Hereafter, we simply denote $\alpha_i(m)$ by α_i . Now, for $n \geq 1$, we set

$$
L_B(n) = S^{2n+1} \cup_{\alpha_1} e^{2n+q+1}, \quad L_C(n) = S^{2n+1} \cup_{\alpha_2} e^{2n+2q+1}.
$$

It is clear that $L_B(n) = \sum_{n=2}^{\infty} L_B(n)$ and $L_C(n) = \sum_{n=2}^{\infty} L_C(n)$. We notice that $\sum L_B(n) = S^{2n+2} \cup_{\alpha_1} e^{2n+2q+2}$ and $\sum L_C(n) = S^{2n+2} \cup_{\alpha_2} e^{2n+2q+2}$.

Now, if $n \geq 2$, then $\alpha_1(2n+1) \circ \alpha_1(2n+q) = 0$ by Lemma [3.1,](#page-6-0) and so we have an extension $\hat{\alpha}_1$: $S^{2n+q} \cup_{\alpha_1} e^{2n+2q} \to S^{2n+1}$ of α_1 : $S^{2n+q} \to S^{2n+1}$:

Then, for $n \geq 2$, we set

$$
L_D(n) = S^{2n+1} \cup_{\hat{\alpha}_1} C(S^{2n+q} \cup_{\alpha_1} e^{2n+2q}).
$$

It is clear that $L_D(n) = \sum_{n=0}^{2n-4} L_D(2)$, and

$$
L_D(n)/S^{2n+1} = S^{2n+q+1} \cup_{\alpha_1} e^{2n+2q+1} \simeq L_B(n+p-1).
$$

Finally, for $n \geq 1$, we set

$$
L_E(n) = S^{2n+1} \cup_{\nabla \circ (\alpha_1 \vee \alpha_2)} (e^{2n+q+1} \vee e^{2n+2q+1}),
$$

\n
$$
L_F(n) = (S^{2n+1} \vee S^{2n+q+1}) \cup_{(\alpha_2 \vee \alpha_1) \circ \Delta} e^{2n+2q+1},
$$

where $\nabla: S^{2n+1} \vee S^{2n+1} \to S^{2n+1}$ is the folding map and $\Delta: S^{2n+2q} \to S^{2n+2q}$ \vee S^{2n+2q} is the coproduct. Then $L_E(n) = \sum_{n=2}^{\infty} L_E(n)$ and $L_F(n) = \sum_{n=2}^{\infty} L_F(n)$. It is clear that

$$
L_B(n) \subset L_E(n), \quad L_C(n) \subset L_E(n),
$$

$$
L_F(n)/S^{2n+1} = L_B(n+p-1), \quad L_F(n)/S^{2n+q+1} = L_C(n).
$$

Now we define H-spaces $B(n)$, $C(n)$, $E(n)$ and $F(n)$ for $n \ge 1$, and $D(n)$ for $n \geq 2$ by

$$
B(n) = M(L_B(n)), \quad C(n) = M(L_C(n)), \quad D(n) = M(L_D(n)),
$$

$$
E(n) = M(L_E(n)), \quad F(n) = M(L_F(n)).
$$

Then the following proposition is clear from the construction.

Proposition 3.2. The H-spaces $B(n)$, $C(n)$, $D(n)$, $E(n)$ and $F(n)$ are irreducible, and

- (1) $H^*(B(n); \mathbb{F}_p) = \Lambda(b_1, b_2),$ $\deg b_1 = 2n + 1$, $\deg b_2 = 2n + 1 + q$;
- (2) $H^*(C(n); \mathbb{F}_p) = \Lambda(c_1, c_2),$ $\deg c_1 = 2n + 1$, $\deg c_2 = 2n + 1 + 2q$;
- (3) $H^*(D(n); \mathbb{F}_p) = \Lambda(d_1, d_2, d_3),$ $\deg d_1 = 2n + 1$, $\deg d_2 = 2n + 1 + q$, $\deg d_3 = 2n + 1 + 2q$;
- (4) $H^*(E(n); \mathbb{F}_p) = \Lambda(e_1, e_2, e_3),$ deg $e_1 = 2n + 1$, deg $e_2 = 2n + 1 + q$, deg $e_3 = 2n + 1 + 2q$;
- (5) $H^*(F(n); \mathbb{F}_p) = \Lambda(f_1, f_2, f_3),$ deg $f_1 = 2n + 1$, deg $f_2 = 2n + 1 + q$, deg $f_3 = 2n + 1 + 2q$.

The generators are connected by the cohomology operations as follows:

$$
\mathcal{P}^1 b_1 = b_2, \quad \Phi c_1 = c_2, \quad \mathcal{P}^1 d_1 = d_2, \quad \mathcal{P}^1 d_2 = d_3, \n\mathcal{P}^1 e_1 = e_2, \quad \Phi e_1 = e_3, \quad \Phi f_1 = \mathcal{P}^1 f_2 = f_3.
$$

Moreover, those spaces are characterized by the type of the cohomology rings and the action of the operations \mathcal{P}^1 and Φ since the Cohen–Neisendorfer method is functorial.

Various generalizations of the Cohen–Neisendorfer method have been considered by several authors. Among them are Wu $[12]$ and Grbić, Harper, Mimura, Theriault and Wu [\[4\]](#page-14-12), who studied the case of rank $p-1$. In particular, it is proved in [\[4,](#page-14-12) Proposition 1.1] that the Cohen–Neisendorfer method works also for the rank $p-1$ case but the resulting space need not be an H-space. This means that the above spaces $B(n)$ and $C(n)$ exist also for $p = 3$ as just topological spaces. Moreover, conditions for those spaces to be H-spaces are studied in [\[4,](#page-14-12) Theorem 7.1]. In particular, it is shown that $B(n)$ for $p = 3$ is an H-space if and only if $n = 1$ or $n \equiv -1 \mod 3$, which coincides with the result of [\[14\]](#page-14-13) and [\[5\]](#page-14-14). To study $D(n)$, $E(n)$ and $F(n)$ with $p = 3$, we need to consider the rank p case, and there are no known results for this case.

Now we study the homotopy groups of the spaces of Proposition [3.2.](#page-7-0)

Let $\varepsilon^B \colon S^{2n+1} \to L_B(n)$, $\varepsilon^C \colon S^{2n+1} \to L_C(n)$ and $\varepsilon_1^F \colon S^{2n+1} \to L_F(n)$ be the natural inclusions. Then, for $n \geq 1$, we set

$$
\alpha_2^B = (\varepsilon^B)_*(\alpha_2) \in \pi_{2n+2q}(L_B(n)), \quad \alpha_1^F = (\varepsilon_1^F)_*(\alpha_1) \in \pi_{2n+q}(L_F(n)),
$$

$$
\alpha_1^C = (\varepsilon^C)_*(\alpha_1) \in \pi_{2n+q}(L_C(n)), \quad \alpha_2^F = (\varepsilon_1^F)_*(\alpha_2) \in \pi_{2n+2q}(L_F(n)).
$$

Next we define $\tilde{\alpha}_1^B \in \pi_{2n+2q}(L_B(n))$ for $n \geq 2$. Since $\alpha_1 \circ \alpha_1 = 0$ $\pi_{2n+2q-1}(S^{2n+1})$ by Lemma [3.1](#page-6-0) and α_1 has order p, we have the Toda bracket $\{\alpha_1,\alpha_1,p\} \subset \pi_{2n+2q}(S^{2n+1})$. It is proved in [\[11,](#page-14-10) Chapter XIII] that $\{\alpha_1,\alpha_1,p\}$ consists of a single element $2^{-1}\alpha_2$. In other words, we have $\hat{\alpha}_1 \circ \tilde{p} = 2^{-1}\alpha_2$ in the following diagram:

We note that the above diagram is homotopy commutative except for two central parallelograms which are homotopy anti-commutative, i.e., homotopy commutative up to sign.

Then we define

$$
\tilde{\alpha}_1^B \in \pi_{2n+2q}(L_B(n))
$$

to be the coextension of $\alpha_1: S^{2n+2q} \to S^{2n+q+1}$ as defined in the above diagram. By definition we have

(3.2)
$$
(\pi^B)_*(\tilde{\alpha}_1^B) = \alpha_1
$$
 and $p\tilde{\alpha}_1^B = -2^{-1}(\varepsilon^B)_*(\alpha_2),$

where $\pi^B: L_B(n) \to L_B(n)/S^{2n+1} = S^{2n+q+1}$ is the projection.

Finally, we set

$$
\tilde{\alpha}_1^E = (\varepsilon_1^E)_*(\tilde{\alpha}_1^B) \in \pi_{2n+2q}(L_E(n)),
$$

where $\varepsilon_1^E: L_B(n) \to L_E(n)$ is the inclusion.

Then we show the following

Lemma 3.3.

$$
L_B(n) \cup_{\tilde{\alpha}_1^B} e^{2n+2q+1} \simeq L_D(n),
$$

\n
$$
L_B(n) \cup_{\alpha_2^B} e^{2n+2q+1} \simeq L_E(n),
$$

\n
$$
L_C(n) \cup_{\alpha_1^C} e^{2n+q+1} \simeq L_E(n),
$$

\n
$$
L_E(n) \cup_{\tilde{\alpha}_1^E} e^{2n+2q+1} \simeq L_D(n) \vee S^{2n+2q+1},
$$

\n
$$
L_F(n) \cup_{\alpha_2^F} e^{2n+2q+1} \simeq L_C(n) \vee L_B(n+p-1).
$$

Proof. The first three relations are easy to show.

Let ε^{D} : $S^{2n+1} \to L_D(n)$ and ε_1 : $S^{2n+1} \to S^{2n+1} \vee S^{2n+q+1}$ be the inclusions. Then the last two relations are shown as follows:

$$
L_E(n) \cup_{\tilde{\alpha}_1^E} e^{2n+2q+1} \simeq L_D(n) \cup_{(\varepsilon_D)_*(\alpha_2)} e^{2n+2q+1}
$$

\n
$$
\simeq L_D(n) \vee S^{2n+2q+1},
$$

\n
$$
L_F(n) \cup_{\alpha_2^F} e^{2n+2q+1} \simeq ((S^{2n+1} \vee S^{2n+q+1}) \cup_{(\varepsilon_1)_*(\alpha_2)} e^{2n+2q+1}) \cup e^{2n+2q+1}
$$

\n
$$
\simeq (L_C(n) \vee S^{2n+q+1}) \cup_{(*,\alpha_1)} e^{2n+2q+1}
$$

\n
$$
\simeq L_C(n) \vee L_B(n+p-1).
$$

We can also prove the following relation, but we do not give the proof since we do not use it in this paper:

$$
L_F(n) \cup_{\alpha_1^F} e^{2n+q+1} \simeq L_B(n) \vee L_B(n+p-1).
$$

Let $\iota^A: L_A(n) \to M(L_A(n)) = A(n)$ be the natural map for $A = B, C, U, V$ or W . Then we have the following fact, parts of which were already proved in [\[9,](#page-14-6) Thm. 3.2] and [\[8,](#page-14-1) Prop. 6.3].

Proposition 3.4. The even-dimensional non-trivial homotopy groups of $B(n)$, $C(n)$, $D(n)$, $E(n)$ and $F(n)$ for dimension less than $2n + 3q$ are as follows:

$$
\pi_{2n+2q}(B(n)) \cong \begin{cases} \mathbb{Z}/p\{(u^B)_*(\alpha_2^B)\} & (n = 1), \\ \mathbb{Z}/p^2\{(u^B)_*(\tilde{\alpha}_1^B)\} & (n \ge 2), \end{cases}
$$

$$
\pi_{2n+q}(C(n)) \cong \mathbb{Z}/p\{(u^C)_*(\alpha_1^C)\},
$$

$$
\pi_{2n+2q}(E(n)) \cong \mathbb{Z}/p\{(u^E)_*(\tilde{\alpha}_1^E)\} & (n \ge 2),
$$

$$
\pi_{2n+q}(F(n)) \cong \mathbb{Z}/p\{(u^F)_*(\alpha_1^F)\},
$$

$$
\pi_{2n+2q}(F(n)) \cong \mathbb{Z}/p\{(u^F)_*(\alpha_2^F)\}.
$$

We remark that $\pi_{2m}(D(n)) = 0$ for $2m < 2n + 3q$.

Proof. Almost all parts are easy to show by studying homotopy exact sequences of fibre sequences. Here we give just an outline.

For the case of $B(n)$, we consider the following fibre sequence coming from the cofibre sequence $S^{2n+1} \to L_B(n) \to L_B(n)/S^{2n+1} = S^{2n+q+1}$:

$$
S^{2n+1} \to B(n) \to S^{2n+q+1}.
$$

It is easy to show that the even-dimensional non-trivial homotopy groups of $B(n)$ occur only in dimensions $2n + 2q$. Since the connecting homomorphism $\partial_*: \pi_{2n+2q}(S^{2n+q+1}) \to \pi_{2n+2q-1}(S^{2n+1})$ satisfies $\partial_*(\alpha_1) = \alpha_1 \circ \alpha_1$, if $n = 1$ then by Lemma [3.1](#page-6-0) we have $\pi_{2q+2}(B(1)) \cong \mathbb{Z}/p\{(t^B)_*(\alpha_2^B)\}\.$ For $n \geq 2$, we have $\pi_{2n+2q}(B(n)) \cong \mathbb{Z}/p^2\{(\iota^B)_*(\tilde{\alpha}_1^B)\}\$ by Lemma [3.2.](#page-8-0)

For $E(n)$, we consider the homotopy exact sequence of the fibre sequence

$$
S^{2n+1} \to E(n) \to S^{2n+q+1} \times S^{2n+2q+1}.
$$

Then the connecting homomorphism $\partial_* \colon \pi_{2n+2q}(S^{2n+q+1} \times S^{2n+2q+1}) \to$ $\pi_{2n+2q-1}(S^{2n+1})$ satisfies $\partial_*(\alpha_1,*) = \alpha_1 \circ \alpha_1$. Thus, for the same reason as in the case of $B(n)$, we obtain the result.

The other cases are easy to show by considering homotopy exact sequences of the following fibrations:

$$
S^{2n+1} \to C(n) \to S^{2n+2q+1},
$$

\n
$$
B(n) \to D(n) \to S^{2n+2q+1},
$$

\n
$$
S^{2n+1} \times S^{2n+q+1} \to F(n) \to S^{2n+2q+1}.
$$

For positive integers n_1 and n with $n_1 \leq n \leq n_1 + 3(p-1)$, let $S_{n_1,n}$ be the set consisting of the pairs (A, γ) , where A is

- (1) S^{2m+1} with $n_1 \leq m \leq n$,
- (2) $B(m)$ with $n_1 \le m \le n-(p-1)$, or
- (3) $C(m)$, $D(m)$, $E(m)$ or $F(m)$ with $n_1 \leq m \leq n-2(p-1)$,

and $\gamma \in \pi_{2n}(A)$.

By Proposition [3.4,](#page-9-0) if $\gamma \neq 0$, then A must be S^{2n-q+1} , $S^{2n-2q+1}$, $B(n-2(p-1))$, $E(n-2(p-1))$ or $F(n-2(p-1))$, and γ is one of the classes in $\pi_{2n}(A)$ given in Proposition [3.4](#page-9-0) up to unit. We note that A is neither $C(m)$ nor $D(m)$, and $\gamma \neq (\iota^F)_*(\alpha_1^F)$ even if $A = F(m)$ for dimensional reasons.

We define a preorder on $S_{n_1,n}$ by writing $(A_1, \gamma_1) \preceq (A_2, \gamma_2)$ for $(A_1, \gamma_1), (A_2, \gamma_2) \in S_{n_1,n}$ if there is a map $f: A_1 \to A_2$ with $f_*(\gamma_1) = \gamma_2$. It is clear that $(A_1, \gamma_1) \preceq (A_2, \gamma_2)$ if $\gamma_2 = *$, or $A_1 = A_2$ with $\gamma_1 = \gamma_2$ up to unit. For the other cases, we have

Lemma 3.5. Let $n_1 \le n \le n_1 + 3(p-1)$ and $m = n - 2(p-1)$. Then in $S_{n_1,n}$ we have

$$
(S^{2m+(2-i)q+1}, \alpha_i) \preceq (F(m), (\iota^F)_*(\alpha_2^F)) \preceq (B(m), (\iota^B)_*(\alpha_2^B))
$$

for $i = 1, 2$. Moreover, if $m \geq 2$, then also for $i = 1, 2$ we have

$$
(B(m), (\iota^{B})_{*}(\tilde{\alpha}_{1}^{B})) \preceq (E(m), (\iota^{E})_{*}(\tilde{\alpha}_{1}^{E})) \preceq (S^{2m + (2-i)q + 1}, \alpha_{i}).
$$

Proof. First we show that there is a map $f: L_F(m) \rightarrow L_B(m)$ such that $f_*(\alpha_2^F) = \alpha_2^B$. Then $M(f)$: $F(m) \rightarrow B(m)$ satisfies $M(f)_*(\alpha_2^F) =$ $(\iota^B)_*(\alpha_2^B)$, and we have $(F(m), (\iota^F)_*(\alpha_2^F)) \preceq (B(m), (\iota^B)_*(\alpha_2^B))$.

Now since $\{\alpha_1, p, \alpha_1\} = \alpha_2$, we have $\hat{\alpha}_1 \circ \tilde{\alpha}_1 = \alpha_2$ in the following diagram, which is homotopy commutative except for two central homotopy anticommutative parallelograms:

Then the map $\tilde{p}: S^{2m+q} \to L_B(m)$ satisfies

$$
\tilde{p}_*(\alpha_1) = -(\varepsilon^B)_*(\alpha_2) = -\alpha_2^B.
$$

Consequently, for the map $f_0 = \nabla \circ (\varepsilon^B \vee \tilde{p}) : S^{2m+1} \vee S^{2m+q+1} \to L_B(m)$ we have $f_0 \circ ((\alpha_2 \vee \alpha_1) \circ \Delta) \simeq *,$ and there is an extension $f: L_F(m) \to L_B(m)$ of f_0 :

Then

$$
f_*(\alpha_2^F) = (\varepsilon_1^F)_*(\alpha_2) = (\varepsilon^B)_*(\alpha_2) = \alpha_2^B.
$$

Next we show that $(S^{2m+(2-i)q+1}, \alpha_i) \preceq (F(m), (\iota^F)_*(\alpha_2^F))$ for $i = 1, 2$. Clearly $(S^{2m+1}, \alpha_2) \preceq (F(m), (\iota^F)_*(\alpha_2^F))$ since $\alpha_2^F = (\varepsilon_1^F)_*(\alpha_2)$ for $\varepsilon_1^F : S^{2m+1} \to$ $L_F(m)$. On the other hand, for the other inclusion $\varepsilon_2^F: S^{2m+q+1} \to L_F(m)$ we have

$$
(\varepsilon_2^F)_*(-\alpha_1) = (\varepsilon_1^F)_*(\alpha_2) = \alpha_2^F.
$$

Thus, $(S^{2m+q+1}, \alpha_1) \preceq (F(m), (\iota^F)_*(\alpha_2^F)).$

Next suppose $m \ge 2$. The relation $(E(m), (t^E)_*(\tilde{\alpha}_1^E)) \preceq (S^{2m + (2-i)q+1}, \alpha_i)$ for $i = 1, 2$ is clear by considering the equalities $(\pi_1^E)_*(\tilde{\alpha}_1^E) = \alpha_1$ and $(\pi_2^E)_*(\tilde{\alpha}_1^E) = \alpha_2$, where $\pi_1^E: L_E(m) \to L_E(m)/L_B(m) = S^{2n+q+1}$ and $\pi_2^E: L_E(m) \to L_E(m)/L_C(m) = S^{2n+1}$ are the projections.

Moreover, the relation $(B(m), (\iota^B)_*(\tilde{\alpha}_1^B)) \preceq (E(m), (\iota^E)_*(\tilde{\alpha}_1^E))$ is clear since $(\varepsilon_1^E)_*(\tilde{\alpha}_1^B) = \tilde{\alpha}_1^E.$ \Box

§4. Proof of Main Theorem

First we show the following

Lemma 4.1. Let B be an H-space, and $f = (f_1, f_2): S^{2m} \to A \times B$ a map, Suppose that there is a map $\eta: A \to B$ such that $\eta \circ f_1 \simeq f_2$. Then there is a homotopy equivalence $\varphi: A \times B \to A \times B$ such that $\varphi \circ f \simeq (f_1, \ast)$.

Proof. Define $\psi: A \times B \to A \times B$ by

$$
\psi(a,b) = (a, \mu(\eta(a),b)),
$$

where μ is multiplication of B. Then $\psi \circ (f_1, \ast) \simeq f$. Since ψ is a homotopy equivalence, the homotopy inverse φ of ψ is the desired map. \Box

Now we prove the main theorem.

Proof of Theorem [1.1.](#page-2-0) We show that there are odd cell complexes L_i and maps $f_i: L_i \to X$ for $1 \leq i \leq k$ such that the following conditions are satisfied:

- (1) L_i is a wedge of spaces S^{2m+1} , $L_B(m)$, $L_C(m)$, $L_D(m)$, $L_E(m)$ and $L_F(m)$ for suitable m so that $M(L_i)$ is a product of S^{2m+1} , $B(m)$, $C(m)$, $D(m)$, $E(m)$ and $F(m)$.
- (2) $f_i^*(x_1), \ldots, f_i^*(x_i)$ is a basis for $\tilde{H}^*(L_i; \mathbb{F}_p)$.

Then by Lemma [2.2](#page-5-0) there is a map $\hat{f}_i: M(L_i) \to X$ such that

$$
H^*(M(L_i); \mathbb{F}_p) \cong \Lambda(\hat{f}_i^*(x_1), \ldots, \hat{f}_i^*(x_i)).
$$

In particular, $\hat{f}_k \colon M(L_k) \to X$ is a homotopy equivalence, and so gives the desired decomposition.

For $i = 1$, we take $L_1 = S^{2n_1+1}$ and f_1 the obvious map.

Suppose inductively that we have spaces L_i and maps f_i for $i < t$. We can change the generators x_i in $H^*(X; \mathbb{F}_p)$ if necessary so that f_{t-1} satisfies $f_{t-1}^*(x_i) = 0$ for $i \ge t$.

Take a map $\beta: S^{2n_t} \to M(L_{t-1})$ such that $\hat{f}_{t-1} \circ \beta \simeq *$ and for an extension g_{t-1} : $M(L_{t-1}) \cup_{\beta} e^{2n_t+1} \rightarrow X$ we have

$$
H^*(M(L_{t-1}) \cup_{\beta} e^{2n_t+1}; \mathbb{F}_p) \cong \Lambda(g_{t-1}^*(x_1), \ldots, g_{t-1}^*(x_{t-1})) \oplus \mathbb{Z}/p\{g_{t-1}^*(x_t)\}.
$$

If $\beta \simeq *$, then $M(L_{t-1}) \cup_{\beta} e^{2n_t+1} \simeq M(L_{t-1}) \vee S^{2n_t+1}$. Thus we can set $L_t = L_{t-1} \vee S^{2n_t+1}$ and define $f_t: L_t \to X$ by

$$
f_t = \nabla \circ (f_{t-1} \vee (g_{t-1} | S^{2n_t+1})): L_t = L_{t-1} \vee S^{2n_t+1} \to X \vee X \to X.
$$

Then it is clear that L_t and f_t satisfy the desired conditions (1) and (2).

Suppose that $\beta \not\cong *$. We write $L_{t-1} = K_1 \vee \cdots \vee K_s$, where each K_i is one of S^{2m+1} , $L_B(m)$, $L_C(m)$, $L_D(m)$, $L_E(m)$ or $L_F(m)$, and $\beta = (\beta_1, \ldots, \beta_s)$ with $\beta_i\colon S^{2n_t}\to M(K_i)$. Moreover, if $\beta_i \not\simeq *$ then $(M(K_i), \beta_i)$ is one of (S^{2n_t-q+1}, α_1) , $(S^{2n_t-2q+1}, \alpha_2), \quad (B(n_t - 2p + 2), (\iota^B)_*(\alpha_2^B)), \quad (B(n_t - 2p + 2), (\iota^B)_*(\tilde{\alpha}_1^B)),$ $(E(n_t - 2p + 2), (\iota^E)_*(\tilde{\alpha}_1^E))$ or $(F(n_t - 2p + 2), (\iota^F)_*(\alpha_2^F))$ by Proposition [3.4.](#page-9-0) We remark that the pairs $(C(n_t - p + 1), (\iota^C)_*(\alpha_1^C))$ and $(F(n_t - p + 1), (\iota^F)_*(\alpha_1^F))$ do not occur for dimensional reasons. We assume that the $\{(M(K_i), \beta_i)\}\)$ are arranged so that if $(M(K_i), \beta_i) \preceq (M(K_i), \beta_i)$ then $i \leq j$.

We show there is a homotopy equivalence $\psi: M(L_{t-1}) \to M(L_{t-1})$ such that $\psi \circ \beta \simeq (\beta_1, \ast, \ldots, \ast)$ or $\psi \circ \beta \simeq (\alpha_2, \alpha_1, \ast, \ldots, \ast)$ with $K_1 = S^{2n_t-2q+1}$ and $K_2 = S^{2n_t-q+1}$. In fact, if $(M(K_1), \beta_1)$ is a minimum pair, then by applying Lemma [4.1](#page-12-0) with $A = M(K_1)$ and $B = M(K_2) \times \cdots \times M(K_s)$ we get such a homotopy equivalence $\psi: M(L_{t-1}) \to M(L_{t-1})$. On the other hand, if there are no minimum pairs in $\{(M(K_i), \beta_i)\}\)$, then we can assume that $(M(K_1), \beta_1) = (S^{2n_t-2q+1}, \alpha_2), (M(K_2), \beta_2) = (S^{2n_t-q+1}, \alpha_1)$, and $(S^{2n_t-2q+1}, \alpha_2) \preceq (M(K_i), \beta_i)$ and $(S^{2n_t-q+1}, \alpha_1) \preceq (M(K_i), \beta_i)$ for $i \geq 3$. Then by applying Lemma [4.1](#page-12-0) with $A = M(K_1) \times M(K_2)$ and $B = M(K_3) \times \cdots \times M(K_s)$ we obtain a homotopy equivalence $\psi \colon M(L_{t-1}) \to M(L_{t-1})$ as desired.

Let A and B be the spaces in the above argument. We replace f_{t-1} by $\hat{f}_{t-1} \circ$ $\psi^{-1} \circ \iota^{L_{t-1}}: L_{t-1} \to X$, and β by $\psi \circ \beta$. Then we can write $L_{t-1} = L_A \vee L_B$ with $M(L_A) = A$ and $M(L_B) = B$, and $\beta = (\beta_A, \beta_B)$, where $\beta_B \simeq * : S^{2n_t} \to B$ and (A, β_A) is one of $(S^{2n_t-2q+1}, \alpha_2)$, (S^{2n_t-q+1}, α_1) , $(S^{2n_t-2q+1} \times S^{2n_t-q+1}, (\alpha_2, \alpha_1))$, $(B(n_t-2p+2), (\iota^B)_*(\alpha_2^B)), (B(n_t-2p+2), (\iota^B)_*(\tilde{\alpha}_1^B)), (E(n_t-2p+2), (\iota^E)_*(\tilde{\alpha}_1^E))$ or $(F(n_t - 2p + 2), (t^F)_*(\alpha_2^F))$. Then $\beta_A \simeq t^A \circ \gamma$, where (L_A, γ) is one of $(S^{2n_t-2q+1}, \alpha_2)$, (S^{2n_t-q+1}, α_1) , $(S^{2n_t-2q+1} \vee S^{2n_t-q+1}, (\alpha_2 \vee \alpha_1) \circ \Delta)$, $(L_B(n_t - 2p + 2), \alpha_2^B), (L_B(n_t - 2p + 2), \tilde{\alpha}_1^B), (L_E(n_t - 2p + 2), \tilde{\alpha}_1^E)$ or $(L_F(n_t - 2p + 2), \alpha_2^F).$

Set $h_A = f_{t-1}|L_A$ and $h_B = f_{t-1}|L_B$, and consider the extension $\hat{h}_A: L_A \cup_\gamma e^{2n_t+1} \to X$. We write $L_t = (L_A \cup_\gamma e^{2n_t+1}) \vee L_B$ and define $f_t: L_t \to X$ by

$$
f_t = \nabla \circ (\hat{h}_A \vee h_B) \colon L_t \to X \vee X \to X.
$$

Since $L_A \cup_{\gamma} e^{2n_t+1}$ is a wedge of S^{2m+1} , $L_B(m)$, $L_C(m)$, $L_D(m)$, $L_E(m)$ and $L_F(m)$ for suitable m by Lemma [3.3,](#page-8-1) L_t and f_t satisfy the desired conditions (1) and (2). This completes the proof. \Box

References

- [1] F. R. Cohen and J. A. Neisendorfer, A construction of p-local H-spaces, in Algebraic topology (Aarhus, 1982), Lecture Notes in Math. 1051, Springer, 1984, 351–359. [Zbl 0582.55010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0582.55010&format=complete) [MR 0764588](http://www.ams.org/mathscinet-getitem?mr=0764588)
- [2] G. Cooke, J. Harper, and A. Zabrodsky, Torsion free mod p H-spaces of low rank, Topology 18 (1979), 349–359. [Zbl 0426.55009](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0426.55009&format=complete) [MR 0551016](http://www.ams.org/mathscinet-getitem?mr=0551016)
- [3] D. M. Davis, Homotopy type and v_1 -periodic homotopy groups of p -compact groups, Topology Appl. 156 (2008), 300–321. [Zbl 1160.55010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.55010&format=complete) [MR 2475117](http://www.ams.org/mathscinet-getitem?mr=2475117)
- [4] J. Grbić, J. Harper, M. Mimura, S. Theriault and J. Wu, Rank p-1 mod-p H-spaces, Israel J. Math. 194 (2013), 641–688. [Zbl 1277.55003](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1277.55003&format=complete) [MR 3047086](http://www.ams.org/mathscinet-getitem?mr=3047086)
- [5] J. Harper, Rank 2 mod 3 H-spaces, in Current trends in algebraic topology, Part 1 (London, Ont., 1981), Canad. Math. Soc. Conf. Proc. 2, Amer. Math. Soc., 1982, 375–388. [Zbl 0559.55011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0559.55011&format=complete) [MR 0686126](http://www.ams.org/mathscinet-getitem?mr=0686126)
- [6] Y. Hemmi, Mod p decompositions of mod p finite H-spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 59–65. [Zbl 0976.55007](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0976.55007&format=complete) [MR 1822064](http://www.ams.org/mathscinet-getitem?mr=1822064)
- [7] P. G. Kumpel, Jr., On p-equivalences of mod p H-spaces, Quart. J. Math. Oxford (2) 23 (1972), 173–178. [Zbl 0235.57016](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0235.57016&format=complete) [MR 0300275](http://www.ams.org/mathscinet-getitem?mr=0300275)
- [8] M. Mimura, G. Nishida and H. Toda, Mod p decomposition of compact Lie groups, Publ. RIMS Kyoto Univ. 13 (1977), 627–680. [Zbl 0383.22007](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0383.22007&format=complete) [MR 0478187](http://www.ams.org/mathscinet-getitem?mr=0478187)
- [9] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups —I, Topology 9 (1970), 317–336. [Zbl 0204.23803](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0204.23803&format=complete) [MR 0266237](http://www.ams.org/mathscinet-getitem?mr=0266237)
- [10] H. Toda, p-primary components of homotopy groups of spheres, IV, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32 (1959), 297–332. [Zbl 0095.16802](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0095.16802&format=complete) [MR 0111041](http://www.ams.org/mathscinet-getitem?mr=0111041)
- [11] , Composition methods in homotopy groups of spheres, Princeton Univ. Press, Princeton, 1962. [Zbl 0101.40703](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0101.40703&format=complete) [MR 0143217](http://www.ams.org/mathscinet-getitem?mr=0143217)
- [12] J. Wu, The functor A^{\min} for $(p-1)$ -cell complexes and EHP sequences, Israel J. Math. 178 (2010), 349–391. [Zbl 1231.55006](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1231.55006&format=complete) [MR 2733074](http://www.ams.org/mathscinet-getitem?mr=2733074)
- [13] A. Zabrodsky, On rank 2 mod odd H-spaces, in: New developments in topology, G. Segal (ed.), London Math. Soc. Lecture Note Ser. 11, Cambridge Univ. Press, 1974, 119–128. [Zbl 0275.55021](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0275.55021&format=complete) [MR 0336742](http://www.ams.org/mathscinet-getitem?mr=0336742)
- [14] $\qquad \qquad$, Some relations in the mod 3 cohomology of *H*-spaces, Israel J. Math. **33** (1979), 59–72. [Zbl 0417.55013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0417.55013&format=complete) [MR 0571584](http://www.ams.org/mathscinet-getitem?mr=0571584)