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Abstract

It is shown that the ghost kernel for certain equivariant stable cohomotopy groups of
projective spaces is non-trivial. The proof is based on the Borel cohomology Adams
spectral sequence and the calculations with the Steenrod algebra afforded by it.
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§1. Introduction

Equivariant stable homotopy theory deals with the algebraic topology of group

actions. Symmetries are often useful even when studying problems that do not

involve group actions in the first place. The latest successful implementation of

this idea appears in the work of Hill, Hopkins, and Ravenel on the non-existence of

elements of Kervaire invariant one (see [HHR] and the surveys [HHR10], [HHR11a],

[HHR11b], and [Mil12]).

In equivariant stable homotopy theory there are many results which compare

the equivariant stable homotopy category to the usual, non-equivariant, stable

homotopy category (see [LMS86] and [May96] for background). For example, it is

well-known that G-equivalences f can be detected by their H-fixed points fH for

the various subgroups H ≤ G. In contrast, the analogous statement is known to

be false for the class of G-null maps, and this will be amplified here.

For easy book-keeping, let us fix a prime p, and let G be a finite group of

order p. These groups have precisely two subgroups, and it will turn out that even

this simple case is interesting enough for a start. The group [X,Y ]G of equivariant
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stable homotopy classes of maps between (pointed) G-CW-complexes X and Y

can be studied by means of the ghost map

[X,Y ]G → H0(G; [X,Y ])⊕ [XG, Y G],

which sends a stable G-map f to the pair (f, fG). Clearly, the kernel of a ghost

map is a place to look for genuinely equivariant phenomena. See [Chr98] for a

conceptual framework for related matters. The following examples show that ghost

kernels can be non-trivial, so that, in contrast to the case of equivalences, maps

which are essential need not be detected by their ghosts.

Example 1.1. The target of the ghost map for [S1,S0]G is Z/2 ⊕ Z/2 if both

spheres have the trivial G-action. However, the splitting theorem shows that the

group [S1,S0]G has an extra summand [S1,BG] ∼= G for the present choice of G.

Example 1.2. The ‘boundary map’ of the cofibration sequence EG+ → S0 → ẼG

is in the ghost kernel of [ẼG,ΣEG+]G: the target of the ghost map is zero because

both spaces ẼG and (EG+)G are contractible. However, if that map were zero,

this would split S0 into EG+ ∨ ẼG, but there is no non-trivial idempotent in the

Burnside ring [S0,S0]G.

The main aim of this text is to display a new family of elements in the ghost

kernel for another naturally occurring situation: the equivariant stable cohomo-

topy of projective spaces. Apart from the intrinsic interest in these spaces [GW08]

and maps like this, as explained above, this is also used in [Szy12] to show that

the equivariant Bauer–Furuta invariants of Galois covers of smooth 4-manifolds

are not determined by non-equivariant data (see also [Nak09a], [Nak09b], [Nak10],

and [Nak14]). It has been these applications that originally led to the work pre-

sented here.

Let us now investigate in more detail the G-spaces X and Y to be considered

here, and why they are of interest also from the point of view of pure equivariant ho-

motopy theory. If V is a complex G-representation, then CP(V )+ denotes the com-

plex projective space of V with the induced G-action, and with a disjoint G-fixed

base point added. The other fixed points of CP(V )+ are the G-invariant lines L

in V . In the language of representation theory, the fixed point sets are the projec-

tive spaces of the isotypical components of V which correspond to 1-dimensional

irreducible representations of G. If G is abelian, as in our case, all irreducible rep-

resentations are 1-dimensional. This shows that the fixed point sets all have the

same dimension if and only if V is a multiple of the regular representation CG.

That singles out this case, and we shall therefore assume it from now on. Also,
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the G-spaces CP(V ) appear as skeleta of the classifying space for G-line bundles,

underlining again their general importance.

At a fixed point L of the G-manifold CP(V ), the tangent G-representation is

Hom(L, V/L). (For typographical reasons, a notation such as V/L may refer to

the (orthogonal) complement of L in V in the following.) If V is a multiple of the

regular representation, these tangent representations are all isomorphic, namely

to W = V/C. This is yet another fact that makes the present choice of V special,

and it also shows that SW is a natural target in this situation. The corresponding

collapse maps CP(V )+ → SW to the one-point compactification SW of W generate

the group

[CP(V )+,S
W ]G

(see [Szy07a], where it is shown that the ghost map is injective in that case). As

it will turn out, we can change this if we replace W by W/RG, and this is the

situation studied here. Note that RG can be embedded in aCG/C if and only

if a ≥ 2.

The preceding discussion motivates the following notation which will be used

throughout. Choose an integer a ≥ 2 and let

(1.1) Va = aCG and Wa = aCG/(C⊕ RG),

considered as a complex and a real G-representation, respectively. Then our main

result is the following.

Theorem 1.3. For all integers a ≥ 2 and all primes p ≥ 5, the ghost kernel for

[CP(Va)+,S
Wa ]G

is non-trivial.

The ghost map is an isomorphism away from the prime p. We are therefore

dealing with a p-local phenomenon. For p ≥ 5, it is easily seen that the target of the

ghost map is zero, so it suffices to show that the group displayed in Theorem 1.3

is non-trivial, which is everything but obvious: It follows from our Theorem 8.2.

For p = 3, the target of the ghost map will contain 3-torsion, and Theorem 8.2 is

not sufficient to extend Theorem 1.3 to the prime p = 3.

Theorem 8.2 actually establishes more than the non-triviality of the groups

in Theorem 1.3: For all p ≥ 3 the p-power torsion of this group is an elementary

abelian p-group of rank r for some integer r that satisfies 1 ≤ r ≤ (p+ 1)/2. This

not only shows the non-triviality of the group, but also gives an upper bound on

its structure. I have reasons to conjecture that the group has p-rank 1 in all cases

(see Remark 8.3 at the end of Section 8). Furthermore, it is tempting to relate
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the groups for various a ≥ 2, and this problem is discussed in the final Section 9

(see Remarks 9.1–9.3).

The proof of Theorem 8.2 relies on the Adams spectral sequence based on

Borel cohomology [Gre88] and on the computations done with it in [Szy07b]. In

Sections 2 and 3, we will recall the necessary facts about that spectral sequence

and about the Borel cohomology of projective spaces, respectively. The filtration

of these by projective subspaces will later (in Section 7) be used to feed in the com-

putations of [Szy07b]. Before that, in Sections 4–6 a new method is introduced to

algebraically calculate the groups of homomorphisms of modules over the Steen-

rod algebra in the relevant cases. The results obtained there are the other, new

ingredient which is needed as an input for the computation. Section 8 combines

all this to give a proof of the main theorem. As already mentioned above, there

and in the concluding Section 9 we also discuss some related open problems.

§2. Borel cohomology and its Adams spectral sequence

Let p be an odd prime number, and let G be the cyclic group of order p. The

notation H∗ will be used for (reduced) ordinary cohomology with coefficients in

the field F with p elements. For a finite (pointed) G-CW-complex X, the Borel

cohomology is defined as

b∗X = H∗(EG+ ∧G X).

Therefore, the coefficient ring b∗ = b∗S0 = H∗(BG+) is the mod p cohomology ring

of the group. Since p is odd, this is the tensor product of an exterior algebra on a

generator σ in degree 1 and a polynomial algebra on a generator τ in degree 2.

If X and Y are finite G-CW-complexes, the Borel cohomology Adams spectral

sequence takes the form

Es,t2 = Exts,tb∗b(b
∗Y, b∗X) =⇒ ([X,Y ]Gt−s)

∧
p .

The convergence to the indicated target has been established by Greenlees [Gre88].

As a vector space, the algebra b∗b is the tensor product A∗ ⊗ b∗, where A∗

is the mod p Steenrod algebra. The algebra A∗ is generated by the Bockstein

element β in degree 1, and the Steenrod powers P i for i ≥ 1 in degree 2i(p− 1).

By convention, P 0 is the unit of the Steenrod algebra. Often the total power

operation

P =

∞∑
i=0

P i



A Non-trivial Ghost Kernel 253

will be used, which acts multiplicatively on cohomology algebras. As an example,

the A∗-action on the coefficient ring b∗ = b∗S0 is given by

β(σ) = τ, β(τ) = 0, P (σ) = σ, and P (τ) = τ + τp.

The multiplication in b∗b = A∗ ⊗ b∗ is the twisted product, the twist being given

by the A∗-action on b∗.

§3. Projective spaces and their Borel cohomology

Let V by a complex G-representation. In order to describe the Borel cohomo-

logy of the projective spaces CP(V )+, a few basic facts about Chern classes of

representations [Ati61] will have to be recalled.

By definition, the Borel cohomology of CP(V )+ is the ordinary cohomology

of the space EG+ ∧G CP(V )+ = (EG ×G CP(V ))+. The space EG×G CP(V )

is nothing but the projective bundle associated to the vector bundle EG ×G V

over BG. There is a tautological line bundle over the space EG×G CP(V ). Write ξV
for its first Chern class. The same symbol will be used for the reduction mod-

ulo p. Let n be the dimension of V . It follows from the Leray–Hirsch theorem

that the b∗-module b∗CP(V )+ is free of rank n with basis 1, ξV , ξ
2
V , . . . , ξ

n−1
V . The

relation

(3.1)

n∑
j=0

(−1)jcj(V )ξn−jV = 0

can be used as the definition of the Chern classes cj(V ) of the vector bun-

dle EG×G V over BG. If V = V1 ⊕ V2 is a direct sum, the total Chern class

c(V ) =
∑n
j=0 cj(V ) equals the product of the total Chern classes of the summands:

c(V1 ⊕ V2) = c(V1) · c(V2).

Since G is cyclic, the representations are easy to describe. Given an inte-

ger α, let C(α) be the G-representation where a chosen generator of G acts as

multiplication by exp(2πiα/p). We may define τ to be the first Chern class of

the G-representation C(1). Since multiplication of irreducible 1-dimensional rep-

resentations corresponds to addition in cohomology, the first Chern class of the

representation C(α) of G is ατ . If

V =

n⊕
j=1

C(αj),

consider the polynomial

f(V ) =

n∏
j=1

(x− αjτ)
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in b∗[x]. For example, if V is the complex regular representation CG,

(3.2) f(CG) =

p∏
α=1

(x− ατ) = xp − τp−1x = x(xp−1 − τp−1).

This polynomial will become prominent in the next section. By (3.1), the map

from b∗[x] to b∗CP(V )+ which sends x to ξV induces an isomorphism

(3.3) b∗[x]/f(V ) ∼= b∗CP(V )+.

The structure of b∗CP(V )+ as a b∗-module is clear by the Leray–Hirsch the-

orem. As for the action of the Steenrod algebra A∗, it suffices to study it on

the generators of b∗CP(V )+ as a b∗-module and, by multiplicativity, on ξV . But

this element has degree 2, so the action of the total Steenrod power P on it is

clear: P (ξV ) = ξV + ξpV . Since ξV is an integral class, we have β(ξV ) = 0, so β acts

trivially on all elements of even degree.

If U ⊆ V is a subrepresentation, the inclusion of CP(U)+ into CP(V )+ induces

a surjection in Borel cohomology. In the following, the notation V/U will often

denote an (orthogonal) complement of U in V , for typographical reasons. If V

contains a G-line L, the cofibre sequence

(3.4) CP(V/L)+ → CP(V )+ → SHom(L,V/L)

induces a short exact sequence

0← b∗CP(V/L)+ ← b∗CP(V/L⊕ L)+ ← b∗SHom(L,V/L) ← 0

of b∗b-modules, which in turn induces long exact sequences

(3.5) · · · ← Exts+1,t
b∗b (b∗Y, b∗SHom(L,V/L))← Exts,tb∗b(b

∗Y, b∗CP(V/L)+)← · · ·

for any Y . These will be used frequently later on. The long exact sequences (3.5)

converge to the long exact sequences

· · · ← [Σ−1SHom(L,V/L), Y ]Gt−s ← [CP(V/L)+, Y ]Gt−s ← · · ·

induced by the cofibre sequence (3.4).

§4. From topology to algebra

One of our main ingredients for the later calculations with the Adams spectral se-

quence is the vector space Hom1
b∗b(b

∗SWa , b∗CP(Va)+). The purpose of this section

is to prove Proposition 4.5, which establishes an isomorphism between that vector

space and another one which is defined purely in terms of polynomial algebra.
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Definition 4.1. Let Ma be the vector space of all elements µ in b∗CP(Va)+ of

degree (2a− 1)p− 3 for which the equation

(4.1) P (µ) = (1 + τp−1)(2a−1)(p−1)/2µ

describes the action of the total Steenrod operation.

Lemma 4.2. Evaluation on a generator of b∗SWa gives an isomorphism between

the vector space Hom1
b∗b(b

∗SWa , b∗CP(Va)+) and Ma.

Proof. First let us translate the grading into a suspension, so that we then deal

with the group Homb∗b(Σ
−1b∗SWa , b∗CP(Va)+). A b∗b-linear map from Σ−1b∗SWa

to b∗CP(Va)+ is just a b∗-linear map which is also A∗-linear. A b∗-linear map like

that is the same as an element µ in b∗CP(Va)+ of degree one less than the degree

of the generator of b∗SWa . That is, µ has degree (2a− 1)p− 3. In other symbols,

Homb∗(Σ−1b∗SWa , b∗CP(Va)+) ∼= b(2a−1)p−3CP(Va)+.

Such an element µ in b∗CP(Va)+ corresponds to an A∗-linear map if and only if

the Steenrod algebra acts on µ as on the generator of b∗SWa . In order to pro-

ceed, one has to know the A∗-action on the Borel cohomology of SWa . The (real)

dimension of Wa is (2a − 1)p − 2 and the (real) dimension of its fixed point set

is (2a− 1)− 2. The difference is (2a − 1)(p − 1). Thus A∗ acts on a generator

of b∗SWa as on τ (2a−1)(p−1)/2 in b∗. This means that β acts trivially, and P acts

by multiplication with

(1 + τp−1)(2a−1)(p−1)/2.

Note that this element is not homogeneous, since P is not homogeneous. This can

now be compared to the action of the Steenrod algebra on µ. Since the degree of µ

is even, β acts trivially. Thus, the only condition is on the power operations. One

has to require that

P (µ) = (1 + τp−1)(2a−1)(p−1)/2µ

in b∗CP(Va−1)+ for µ to represent a b∗b-linear map.

Motivated by the lemma, let us write

εa = (2a− 1)
p− 1

2
= (p− 1)a− p− 1

2
,(4.2)

ha = (1 + τp−1)εa .(4.3)

Thus, equation (4.1) now reads P (µ) = haµ.

A comment on the degrees might be appropriate. Until now, all the degrees

have come from the usual topologist’s grading of cohomology groups. Since our
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problem will eventually be reduced to polynomial algebra, it will be convenient to

use algebraic degrees. Then the elements x and τ of topological degree 2 will have

algebraic degree 1. The algebraic degree of µ will be written

(4.4) δa =
1

2
((2a− 1)p− 3) = pa− p+ 3

2
.

From now on, the degrees used will be algebraic unless stated otherwise.

Recall from (3.3) that one has an isomorphism b∗CP(V )+ ∼= b∗[x]/f(V ) for

any G-representation V . This will be used to identify the two rings. In particular,

we have b∗CP(Va)+ = b∗[x]/f(Va). If we set r = f(CG), then

(4.5) r =
∏
λ∈F

(x− λτ) = xp − xτp−1 = x(xp−1 − τp−1)

as in (3.2), and f(Va) = f(CG)a = ra. Note that the algebraic degree of ra is ap.

Definition 4.3. Let Ma be the vector space of polynomials m in the subring

F[τ, x] of the polynomial ring b∗[x] such that the algebraic degree of m is δa,

and ra divides P (m)− ham.

Lemma 4.4. There is an isomorphism between Ma and Ma which is the identity

on representatives.

Proof. With the notation already established, we see that Ma is the vector space

of all elements µ in b2δaCP(Va)+ for which P (µ) = haµ.

First note that the algebraic degree of ra, which is ap, is larger than the

algebraic degree δa of the µ. This shows that there are as many elements µ of that

degree in b∗CP(Va)+ as in F[τ, x]. In other words, the map

F[τ, x] ⊂ b∗[x]→ b∗[x]/f(Va) = b∗CP(Va)+

which is the identity on representatives is an isomorphism in this degree. In the

polynomial ring, the condition P (m) ≡ ham modulo ra ensures that the image µ

of m satisfies P (µ) = haµ.

Taken together, the previous two lemmas imply the following result, which

yields the translation of our problem into polynomial algebra.

Proposition 4.5. The vector space Hom1
b∗b(b

∗SWa , b∗CP(Va)+) is isomorphic to

the vector space Ma of polynomials m in the polynomial ring F[τ, x] such that the

algebraic degree of m is δa, and r
a divides P (m)− ham. An isomorphism is given

by associating to a map the representative of evaluation on the generator.
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Proof. By Lemma 4.2, evaluation on a generator of b∗SWa gives an isomorphism

between the vector space Hom1
b∗b(b

∗SWa , b∗CP(Va)+) and Ma. By Lemma 4.4,

there is an isomorphism between Ma and Ma which is the identity on representa-

tives.

§5. The algebra in the case a = 2

As a special case of Definition 4.3, M2 ⊂ F[τ, x] is the space of polynomials of

degree 3(p− 1)/2 that satisfy P (m) ≡ h2m modulo r2. The purpose of this section

is to prove the following estimate.

Proposition 5.1. The dimension of M2 is at least (p+ 1)/2.

This will be achieved by first producing enough elements in M2, and then

noting that they are linearly independent.

Lemma 5.2. For every integer k such that 0 ≤ k ≤ (p− 1)/2, the polynomial

τ (p−1)/2−kxk(kxp−1 + (1− k)τp−1)

is in M2.

Proof. The cases k = 1 and k = 0 can easily be dealt with directly. We will only

deal with the case k ≥ 2.

Let m be the polynomial displayed in the proposition. Since it has the correct

degree, it remains to show that r2 divides P (m)− h2m. Set

Eτ = 1 + τp−1 and Ex = 1 + xp−1.

Then P (τ) = τEτ , P (x) = xEx, r = x(Ex − Eτ ) and h2 = E
3(p−1)/2
τ . Rearranging

the terms, one sees that P (m)− h2m equals τ (p−1)/2−kxk times

(5.1)

kxp−1(Ep−1+kx E(p−1)/2−k
τ −E3(p−1)/2

τ ) + (1− k)τp−1(EkxE
3(p−1)/2−k
τ −E3(p−1)/2

τ ).

Since k ≥ 2, the polynomial P (m)− h2m is divisible by x2, and so in this case it

remains to show that (5.1) is divisible by (Ex − Eτ )2. Now

Ep−1+kx E(p−1)/2−k
τ − E3(p−1)/2

τ =E(p−1)/2−k
τ (Ep−1+kx − Ep−1+kτ )

=E(p−1)/2−k
τ (Ex − Eτ )

p+k−2∑
j=0

Ep+k−2−jx Ejτ
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and

EkxE
3(p−1)/2−k
τ − E3(p−1)/2

τ =E3(p−1)/2−k
τ (Ekx − Ekτ )

=E3(p−1)/2−k
τ (Ex − Eτ )

k−1∑
j=0

Ek−1−jx Ejτ

are both divisible by Ex − Eτ . It remains to show that

kxp−1E(p−1)/2−k
τ

(p+k−2∑
j=0

Ep+k−2−jx Ejτ

)
+ (1− k)τp−1E3(p−1)/2−k

τ

(k−1∑
j=0

Ek−1−jx Ejτ

)
is divisible by Ex − Eτ . But modulo Ex − Eτ we have Ex ≡ Eτ , so the above is

kxp−1E(p−1)/2−k
τ ((p+ k − 1)Ep+k−2τ ) + (1− k)τp−1E3(p−1)/2−k

τ (kEk−1τ )

= E3(p−1)/2−1
τ (k(k− 1)xp−1 + (1− k)kτp−1) = E3(p−1)/2−1

τ (k2− k)(xp−1− τp−1),

and xp−1 − τp−1 = Ex − Eτ ≡ 0 modulo Ex − Eτ . This finishes the proof.

Proof of Proposition 5.1. The (p + 1)/2 elements in the preceding lemma are

linearly independent in F[τ, x]. This follows from an inspection of the matrix which

expresses them in terms of the monomial basis: that matrix has full rank.

§6. The algebra in the cases a > 2

In this section, we will see that the vector spaces Ma for a > 2 relate to M2. First,

some general remarks are in order.

A linear polynomial in F[τ, x] is one of the form κτ+λx for some κ and λ in F.

A polynomial will be called split if it is a product of linear polynomials. Assume

that m is split into linear factors of the form Lj = x− λjτ :

m =
∏
j

Lj .

Since P (Lj) = (Lj + Lpj ) = Lj(1 + Lp−1j ) and P is multiplicative, we have

P (m) = m
∏
j

(1 + Lp−1j ).

This proves that, if m splits as above, then m divides P (m). Let us write

Q(m) = P (m)/m

for the quotient in this case, and recall the definitions of the polynomial ha and

the numbers εa and δa from (4.3), (4.2) and (4.4). If m splits, then m divides
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also P (m)− ham, and the quotient is

(6.1) Q(m)− ha =
∏
j

(1 + Lp−1j )− (1 + τp−1)(2a−1)(p−1)/2.

Let us count the number of factors in both of these terms. On the one hand,

if m splits, it does so into δa factors. On the other hand, the polynomial ha has εa
factors 1 + τp−1. The difference between those two numbers is

(6.2) δa − εa = a− 2,

so the numbers δa and εa are equal if and only if a = 2.

By definition (see (4.5)), the element r in F[τ, x] splits. In order to give a nice

formula for Q(r), some more preliminaries are necessary.

Lemma 6.1. In F[τ, x], for any κ in F, we have the equality

xp − τp−1x = −(x− κτ)(τp−1 − (x− κτ)p−1).

Proof. Note that∏
λ∈F

(x− λτ) =
∏
λ∈F

(x− (κ+ λ)τ) =
∏
λ∈F

((x− κτ)− λτ),

and therefore

xp − τp−1x = (x− κτ)p − τp−1(x− κτ)

= −(x− κτ)(τp−1 − (x− κτ)p−1),

Lemma 6.2. In F[τ, x][K] we have the equality∏
λ∈F

(K + (x− λτ)p−1) = (xp − τp−1x)p−1 +K(K + τp−1)p−1.

Proof. For any κ in F we can substitute K = −(x − κτ)p−1 into the right hand

side of the equation. We get

(xp − τp−1x)p−1 − (x− κτ)p−1(−(x− κτ)p−1 + τp−1)p−1.

But this is zero by the equality from the previous lemma, raised to the (p− 1)-st

power. This shows that the left hand side of the equation divides the right hand

side. The claim follows by comparing the degrees and a coefficient.

One gets the equality∏
λ∈F

(1 + (x− λτ)p−1) = (xp − τp−1x)p−1 + (1 + τp−1)p−1
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by specializing to K = 1 in the previous lemma. Using different notation, this

equation says the following.

Proposition 6.3. For every a ≥ 2,

(6.3) Q(r) = rp−1 + ha+1/ha.

Let κ be in F. Then r is clearly divisible by x − κτ , but ha+1/ha is not.

Therefore, (6.3) shows that Q(r) is not divisible by x− κτ .

We can now relate the cases a > 2 to the case a = 2. Recall that Ma has

been defined to be the set of polynomials m in F[τ, x] of degree δa that satisfy the

condition P (m) ≡ ham modulo ra.

Lemma 6.4. If a ≥ 3 then every element m in Ma is divisible by r.

Proof. We can write

m =
∑

i+j=δa

ci,jτ
ixj

with some coefficients ci,j in F. Furthermore, setting Eτ = 1 + τp−1 and simi-

larly Ex = 1 + xp−1, we have P (τ) = τEτ as well as P (x) = xEx. Consequently,

P (m)− ham =
∑

i+j=δa

ci,jτ
ixj(EiτE

j
x − ha).

By assumption on m, we have P (m) − ham = ras for some s in F[τ, x]. Putting

these together gives

(6.4) ras =
∑

i+j=δa

ci,jτ
ixj(EiτE

j
x − ha).

To prove the claim, it suffices to show that x− κτ divides m for each κ in F.

First assume κ 6= 0. Modulo x−κτ , we have r ≡ 0 and Ex ≡ Eτ , so that (6.4)

shows that

0 ≡
( ∑
i+j=δa

ci,jτ
ixj
)

(Eδaτ − ha)

modulo x−κτ . In other words, the right hand side, which ism(Eδaτ −ha), is divisible

by x−κτ . Both Eδaτ and ha are powers of 1 + τp−1. By (6.2), the exponents differ

by a− 2, so the assumption on a implies that Eδaτ 6= ha. As a consequence, x−κτ
does not divide Eδaτ − ha, so it must divide m.

It remains to show that x divides m. But modulo x, (6.4) reads

0 ≡ cδa,0τ δa(Eδaτ − ha).

Using Eδaτ 6= ha again, it follows that cδa,0 is zero. In other words, x divides m.
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Lemma 6.5. If 3 ≤ a ≤ p, division by r yields an injection from Ma into Ma−1.

Proof. The previous result shows that every element of Ma is divisible by r.

Given rm in Ma, one has to show that m is in Ma−1. First of all, the degree

of m is correct. Since rm is in Ma, we know that P (rm)−harm is divisible by ra.

By assumption, ra divides rpmha−1, so that ra divides

P (rm)− harm− rpmha−1 = P (rm)− (ha + rp−1ha−1)rm

=Q(r)rP (m)−Q(r)ha−1rm

=Q(r)(rP (m)− rha−1m).

Since none of the (linear) factors of r divides Q(r), we deduce that the polyno-

mial rP (m)−rha−1m must be divisible by ra, so that ra−1 divides P (m)− ha−1m,

which shows that m is in Ma−1. Thus, the map is well-defined. Since r is not a

zero-divisor, the map is injective.

Lemma 6.6. Let a and b be integers such that 2 ≤ a ≤ p − 1 and a ≤ b. Then

multiplication with rb−a is an injection from Ma into Mb.

Proof. Injectivity is clear, if the map is well-defined at all. But, as will be shown

now, it is. Equation (6.3) implies that Q(r) ≡ ha+1/ha modulo rp−1. Using that

result b− a times, we get Q(r)b−a ≡ hb/ha modulo rp−1. Hence

haQ(r)b−amrb−a ≡ hbmrb−a

modulo rp−1rb−a and therefore, by the assumption on a, also modulo rb. Suppose

now that m is in Ma. Then mrb−a has the required degree. If furthermore m

satisfies P (m) ≡ ham modulo ra, we have

P (mrb−a) = P (m)rb−aQ(r)b−a ≡ hamrb−aQ(r)b−a ≡ hbmrb−a

modulo rb, as was to be shown.

The following proposition sums up the preceding three lemmas.

Proposition 6.7. Multiplication by r yields isomorphisms

M2
∼= M3

∼= · · · ∼= Mp−1 ∼= Mp

and injections from these into Ma for every a ≥ 2.
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§7. Obstructions

As described in Section 2, the p-power torsion in [CP(Va)+,S
Wa ]G will be detected

by the Borel cohomology Adams spectral sequence

Exts,tb∗b(b
∗SWa , b∗CP(Va)+) =⇒ ([CP(Va)+,S

Wa ]Gt−s)
∧
p .

The E2-page of that spectral sequence is hard to compute directly. Instead,

we may filter the projective space CP(Va)+ by projective subspaces CP(V )+
for V ⊆ Va. The filtration quotients are linear G-spheres, so we may feed in results

from [Szy07b] one filtration step at a time. In this section, it will be described

how this can be done. For the most part, this is straightforward, and only at the

end will we spot the crux of the matter. See Lemma 7.8, which uses notation in-

troduced at the beginning of Section 7.2. The reader may wish to take this for

granted for the time being and skip to the next section to see how it fits into the

puzzle.

§7.1. The cases V ⊆ Va−1

The following result is a consequence of Proposition 5 of [Szy07b] and its

corollaries.

Lemma 7.1. Let V be a complex G-representation, L ⊆ V a complex line, and W

any G-representation that contains HomC(L, V/L) up to isomorphism. Then the

inclusion of CP(V/L)+ into CP(V )+ induces an isomorphism

Exts,tb∗b(b
∗SW , b∗CP(V/L)+)

∼=← Exts,tb∗b(b
∗SW , b∗CP(V )+)

for t− s < dimRW
G − dimR HomC(L, V/L)G.

An induction on the dimension of V now proves the following result.

Proposition 7.2. Let V ⊆ Va−1 be a complex subrepresentation. Then

Exts,tb∗b(b
∗SWa , b∗CP(V )+) = 0

for t− s ≤ 0. In particular, Exts,tb∗b(b
∗SWa , b∗CP(Va−1)+) = 0 for t− s ≤ 0.

As a consequence,

[CP(Va−1)+,S
Wa ]G = 0.

Although it will not be necessary to calculate [ΣCP(Va−1)+,S
Wa ]G, it will be

good to know one of the groups in the relevant column of the E2-page. These are

described in the following proposition.
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Proposition 7.3. Let V be a complex subrepresentation of Va−2. Then the vector

space Hom1
b∗b(b

∗SWa , b∗CP(V )+) is zero. Let U be a complex subrepresentation

of CG, and set V = Va−2 ⊕ U , so that Va−2 ⊆ V ⊆ Va−1. Then

dimF Hom1
b∗b(b

∗SWa , b∗CP(V )+) = dimC U.

In particular, dimF Hom1
b∗b(b

∗SWa , b∗CP(Va−1)+) = p.

Proof. The first part can also be proven by induction on the dimension of V . The

result is stated in the form in which it will be used later; but the pair (s, t) = (0, 1)

could be replaced by any pair (s, t) such that t− s ≤ 2.

The second part can be proven by induction on dimC U , using Propositions 5

and 9 of [Szy07b] and their corollaries.

§7.2. The cases Va−1 ⊆ V

We may now start filtering Va beyond Va−1. Given an integer α, let C(α)

be the G-representation where a chosen generator of G acts by multiplication

by exp(2πiα/p). For any integer k such that 0 ≤ k ≤ p consider the subrepresen-

tation

Uk =

k−1⊕
α=0

C(α)

of CG. This gives a flag

(7.1) 0 = U0 ⊂ U1 ⊂ · · · ⊂ Up = CG

with U1 the trivial G-line and both U(p+1)/2/U1 and Up/U(p+1)/2 isomorphic

to RG/R as real G-representations. The flag (7.1) yields a filtration of CP(Va)+
by projective spaces CP(Va−1 ⊕ Uk)+. For k = 0 this is CP(Va−1)+; for k = p

it is CP(Va)+. To compute the relevant part of the E2-page of the spectral se-

quence for [CP(Va−1 ⊕ Uk)+,S
Wa ]G∗ , we will proceed inductively. The case k = 0

has already been settled in the previous subsection. One may therefore assume

that k ≥ 1, and that the E2-page for CP(Va−1 ⊕ Uk−1)+ has been studied. For

convenience, we will write Va−1,k−1 for Va−1 ⊕ Uk−1 from now on, and similarly

in other cases.

Let us first see what the quotient G-spheres of the filtration are. The cofibre

of the inclusion of CP(Va−1,k−1)+ into CP(Va−1,k)+ is given by SH(a−1,k) with

H(a− 1, k) = HomC(Uk/Uk−1, Va−1,k−1) ∼= Va−1 ⊕HomC(Uk/Uk−1, Uk−1).

The cofibration sequence induces a short exact sequence in Borel cohomology.

Applying the functors Exts,tb∗b(b
∗SWa , ?) yields long exact sequences. In order to

use them, one will have to know the groups

(7.2) Exts,tb∗b(b
∗SWa , b∗SH(a−1,k))
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for t − s = 0, 1. These groups can be simplified as follows. Since Uk ⊆ CG, the

representation HomC(Uk/Uk−1, Uk−1) has no trivial summand. If we write

H(k) = HomC(Uk/Uk−1, Uk) ∼= H(0, k)⊕ C,

thenH(k) ∼= HomC(Uk/Uk−1, Uk−1)⊕C is a complex k-dimensional representation

which has exactly one trivial summand. Because

H(k)⊕ Va−1 ∼= C⊕H(a− 1, k), RG⊕ Va−1 ∼= C⊕Wa,

Proposition 3 of [Szy07b] implies that the group (7.2) is isomorphic to

(7.3) Exts,tb∗b(b
∗SRG, b∗SH(k)).

Note that this is independent of a.

The following discussion is divided into three cases: First we deal with the

cases where k ≤ (p− 1)/2, then with the case k = (p+ 1)/2, and finally with the

remaining cases where k ≥ (p+ 3)/2.

§7.3. The cases k ≤ (p− 1)/2

Here, Exts,tb∗b(b
∗SRG, b∗SH(k)) as in (7.3) is isomorphic to Exts,tb∗b(b

∗SW , b∗S2) for

some subrepresentation W of RG which properly contains the trivial subrepresen-

tation.

Proposition 7.4. If k ≤ (p− 1)/2 then

dimF Exts,tb∗b(b
∗SWa , b∗CP(Va−1,k)+) =


0, t− s ≤ −2,

k, t− s = −1,

0, t− s = 0,

p, (s, t) = (0, 1).

The multiplicative structure is as expected: The extension groups belong to

a Borel cohomology Adams spectral sequence that is a module over the spectral

sequence Exts,tb∗b(b
∗, b∗)⇒ ([S0,S0]Gt−s)

∧
p . In the t− s = −1 column, multiplication

with the class in Ext1,1b∗b(b
∗, b∗) that represents multiplication with p is injective.

In the target, this leads to a free module of rank k over the p-adic integers.

Proof of Proposition 7.4. This is again a straightforward induction on k, using the

long exact sequence associated with the extension

0← b∗CP(Va−1,k−1)+ ← b∗CP(Va−1,k)+ ← b∗SH(a−1,k) ← 0,

and the data from [Szy07b, Figure 8 in Section 4].
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§7.4. The first interesting case: k = (p+ 1)/2

In this case, the sphere SH(a−1,(p+1)/2) is the suspension of SWa , so that there is

an isomorphism Exts,tb∗b(b
∗SWa , b∗SH(a−1,(p+1)/2)) ∼= Exts,tb∗b(b

∗, b∗S1).

The long exact sequence (3.5) shows that Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+)

is zero as soon as the condition t − s ≤ −2 is fulfilled. The next case t − s = −1

is easy, too, since then the vector spaces Exts−1,tb∗b (b∗SWa , b∗CP(Va−1,(p−1)/2)+)

and Exts+1,t
b∗b (b∗SWa , b∗SH(a−1,(p+1)/2)) both vanish. In this way we may there-

fore deduce that the vector space Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+) is an exten-

sion of the vector space Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p−1)/2)+) by the vector space

Exts+1,t
b∗b (b∗SWa , b∗SH(a−1,(p+1)/2)). Using the data from [Szy07b, Figure 4 in Sec-

tion 1], one obtains

(7.4) dimF Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+) =

{
(p+ 1)/2, s = 0,

(p+ 3)/2, s ≥ 1.

The multiplicative structure is again as expected: In column t − s = −1, multi-

plication with the generator of Ext1,1 which represents multiplication with p is

injective. Starting with t − s = 0, the situation becomes more interesting. Then

the map

Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+)← Exts,tb∗b(b

∗SWa , b∗SH(a−1,(p+1)/2))

is surjective, since Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p−1)/2)+) is zero. As the right hand

side is non-zero only for (s, t) = (1, 1), so is Exts,tb∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+).

Thus, it remains to determine Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+).

The vector space Ext1,1b∗b(b
∗SWa , b∗SH(a−1,(p+1)/2)) is 1-dimensional. The ker-

nel of the surjection displayed right above is isomorphic—via the boundary ho-

momorphism of the long exact sequence—to the cokernel of the map induced by

the homomorphism Hom1
b∗b(b

∗SWa , ?). But that induced map is injective, since the

group Hom1
b∗b(b

∗SWa , b∗SH(a−1,(p+1)/2)) is zero. To summarise:

Lemma 7.5. The vector space Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+) is either 1-di-

mensional or zero, depending on whether the injection

Hom1
b∗b(b

∗SWa , b∗CP(Va−1,(p+1)/2)+)→ Hom1
b∗b(b

∗SWa , b∗CP(Va−1,(p−1)/2)+)

is also surjective (and therefore an isomorphism) or not (in which case the cokernel

is 1-dimensional).

By Proposition 7.4, the vector space Hom1
b∗b(b

∗SWa , b∗CP(Va−1,(p−1)/2)+) has

dimension p. Thus it would be sufficient to know the dimension of the other vector
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space Hom1
b∗b(b

∗SWa , b∗CP(Va−1,(p+1)/2)+) in order to determine the dimension of

the space Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+). For the moment, let us leave it like

that and see how we can proceed.

§7.5. The final cases: k ≥ (p+ 3)/2

In these cases the vector spaces Exts,tb∗b(b
∗SRG, b∗SH(k)) as in (7.3) are isomorphic

to Exts,tb∗b(b
∗, b∗SV ) for some subrepresentation V ⊆ RG properly containing the

trivial representation. The calculations summarised in [Szy07b, Figure 6 of Sec-

tion 3] are relevant here.

To determine the dimension of Exts,tb∗b(b
∗SWa , b∗CP(Va−1,k)+), the long ex-

act sequence (3.5) will be invoked again. Some of these groups will be non-

zero for t− s ≤ −2, since this holds for Exts+1,t
b∗b (b∗SWa , b∗SH(a−1,k)). One can

ignore these, since eventually only the case t − s = 0 is of interest. For the lat-

ter, it is good to know the groups with t − s = −1. In this case, the groups

Exts−1,tb∗b (b∗SWa , b∗CP(Va−1,k−1)+) vanish except for the case s = 2 and t = 1 that

we will discuss below, around (7.5). Also Exts+1,t
b∗b (b∗SWa , b∗SH(a−1,k)) = 0. As

in the previous case, we will get a splittable short exact sequence. By induction,

using (7.4), this yields

dimF Exts,tb∗b(b
∗SWa , b∗CP(Va−1,k)+) =

{
(p+ 1)/2, s = 0,

k + 1, s ≥ 1.

The multiplicative structure is again as expected: In column t − s = −1, multi-

plication with the generator of Ext1,1 which represents multiplication with p is

injective.

Now let us turn to the most interesting situation: t−s = 0. If in addition s 6= 1,

the groups Exts,tb∗b(b
∗SWa , b∗SH(a−1,k)) are zero. Using that and the corresponding

result from the first interesting case as an input, an induction shows that the

groups Exts,tb∗b(b
∗SWa , b∗CP(Va−1,k)+) vanish for s 6= 1. For k = p this implies the

following two results.

Proposition 7.6. All p-power torsion in [CP(Va)+,S
Wa ]G has order p.

Therefore, the p-adic completion of that group is elementary abelian of some

rank r. Eventually, we will prove upper and lower bounds on r (see Section 8).

Proposition 7.7. The non-trivial elements in [CP(Va)+,S
Wa ]G are detected by

their Borel cohomology e-invariants.

It remains to discuss the vector spaces Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,k)+). This

is a bit more complicated than in the first interesting case since this time the
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vector space Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,k−1)+) may already be non-zero. Moreover,

the boundary homomorphism

(7.5) Ext2,1b∗b(b
∗SWa , b∗SH(a−1,k))← Ext1,1b∗b(b

∗SWa , b∗CP(Va−1,k−1)+)

maps into a non-zero group. Nevertheless, it is the zero map. This follows from

the multiplicative structure and the fact that the boundary map respects it. Thus,

while the argument is a little more complicated than in the first interesting case,

the result is the same:

Lemma 7.8. For every integer k such that (p+ 1)/2 ≤ k ≤ p, the map

Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,k−1)+)← Ext1,1b∗b(b

∗SWa , b∗CP(Va−1,k)+)

is a surjection. The kernel of this homomorphism is either 1-dimensional or

zero, depending on whether the injection from Hom1
b∗b(b

∗SWa , b∗CP(Va−1,k)+)

into Hom1
b∗b(b

∗SWa , b∗CP(Va−1,k−1)+) is also surjective (and therefore an

isomorphism) or not (in which case the cokernel is 1-dimensional).

§8. Upper and lower bounds

We are now able to put together the algebraic calculations from Sections 4–6 and

the obstruction theory of the previous section to prove our main result, Theo-

rem 8.2. The following result summarises Propositions 4.5, 5.1, and 6.7.

Proposition 8.1. For any integer a ≥ 2, the dimension of the vector space

Hom1
b∗b(b

∗SWa , b∗CP(Va)+)

is at least (p+ 1)/2.

In Section 7 we have investigated two chains of homomorphisms, displayed in

Figure 8.1 below. Lemmas 7.5 and 7.8 show that the homomorphisms on the left

are surjective and each kernel is at most 1-dimensional. The maps on the right

are injections, and each cokernel is at most 1-dimensional. A map on the left is an

isomorphism if and only if the corresponding map on the right is not.

Theorem 8.2. The p-power torsion of the group [CP(Va)+,S
Wa ]G is non-zero

elementary abelian of rank r with 1 ≤ r ≤ (p+ 1)/2.

Proof. We know from Proposition 7.6 that the group [CP(Va)+,S
Wa ]G is elemen-

tary abelian.

As for the upper bound on its rank, the length of the chain on the left of

Figure 8.1, together with Lemmas 7.5 and 7.8, implies that the dimension of the

vector space Ext1,1b∗b(b
∗SWa , b∗CP(Va)+) is at most (p+ 1)/2.
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Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,(p−1)/2)+) Hom1

b∗b(b
∗SWa , b∗CP(Va−1,(p−1)/2)+)

Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,(p+1)/2)+)

OO

Hom1
b∗b(b

∗SWa , b∗CP(Va−1,(p+1)/2)+)

Lemma 7.5

OO

...

OO

...

OO

Ext1,1b∗b(b
∗SWa , b∗CP(Va−1,p)+)

OO

Hom1
b∗b(b

∗SWa , b∗CP(Va−1,p)+)

OO

Figure 8.1. Two chains of homomorphisms

In order to obtain the lower bound on the p-torsion of [CP(Va)+,S
Wa ]G, we

can use Proposition 8.1, which states that for any integer a ≥ 2, the dimension of

the vector space

Hom1
b∗b(b

∗SWa , b∗CP(Va)+)

is a least (p+ 1)/2. This implies that one of the inclusions in the right chain must

be an isomorphism. Therefore, one of the surjections on the left cannot be an

isomorphism. So the group Ext1,1b∗b(b
∗SWa , b∗CP(Va)+) is non-zero. By multiplica-

tivity, all the differentials must be zero on that group. Thus, the elements survive

to the E∞-page.

Remark 8.3. There are indications that the upper bound given in Theorem 8.2

is far from being sharp. Using methods similar to those of Section 5, it can be

improved roughly by a factor of 2. My results in this direction do not seem to justify

a detailed account, in particular as I suspect that the p-torsion in [CP(Va)+,S
Wa ]G

is isomorphic to Z/p for all primes p ≥ 3 and all integers a ≥ 2. While I do not

know how to prove this, it is consistent with computer experiments covering all

the cases with pa ≤ 50.

§9. Blind alleys and dead ends

In this section, we will pursue the question of how the groups [CP(Va)+,S
Wa ]G

may be related for varying a ≥ 2. It follows from Propositions 4.5 and 6.7 that

there are isomorphisms

Hom1
b∗b(b

∗SW2 , b∗CP(V2)+)∼= Hom1
b∗b(b

∗SW3 , b∗CP(V3)+) ∼= · · ·
∼= Hom1

b∗b(b
∗SWp , b∗CP(Vp)+),
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and injections from these into Hom1
b∗b(b

∗SWa , b∗CP(Va)+) for every a ≥ 2. As in

the proof of Theorem 8.2, this implies that there are p-local isomorphisms

[CP(V2)+,S
W2 ]G ∼= [CP(V3)+,S

W3 ]G ∼= · · · ∼= [CP(Vp)+,S
Wp ]G,

and injections from these into [CP(Va)+,S
Wa ]G for every a ≥ 2. However, the

morphisms are given algebraically on the level of Adams spectral sequences by

multiplication with a class originating from the regular representation. It would

be enlightening to see a more geometric and less computational explanation of

the phenomenon. However, there are some blind alleys and dead ends on the way

towards such an interpretation, and it seems only fair to disclose three of them

here.

Remark 9.1. First, note that [CP(Va)+,S
Wa ]G 6∼= [CP(Va+1)+,S

Wa+1 ]G inte-

grally: just compute the structure of these groups away from p. Thus the phe-

nomenon is genuinely p-local.

Remark 9.2. Second, the groups [CP(Va)+,S
Wa ]G for varying a are related as

shown in the following commutative diagram, in which all the arrows are induced

by inclusions.

[CP(Va)+,S
Wa ]G // [CP(Va)+,S

Wa+1 ]G

[CP(Va+1)+,S
Wa ]G

OO

// [CP(Va+1)+,S
Wa+1 ]G

OO

However it is not possible to explain the phenomenon from this point of view: The

horizontal maps are zero, since they are multiplication with the Euler class of CG,

which has non-zero fixed points. The group [CP(Va+1)+,S
Wa ]G seems to be even

more difficult to compute than the other three, whereas [CP(Va)+,S
Wa+1 ]G is zero.

Remark 9.3. Third, one might wonder whether, after translating the situation

into a (T×G)-equivariant setting, a suspension isomorphism could be used to

prove Theorem 1.3 or Theorem 8.2. But this is not the case: in the (T × G)-

equivariant setting, both sides differ by a 2p-dimensional sphere, but T acts triv-

ially on one of them and non-trivially on the other.
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