Self-dual t-structure

by

Masaki Kashiwara

Abstract

We give a self-dual t-structure on the derived category of R-constructible sheaves over any Noetherian regular ring by generalizing the notion of t-structure.

2010 Mathematics Subject Classification: Primary 18D; Secondary 18E30. Keywords: t-structure.

Introduction

Let X be a complex manifold and let $D^b_{\mathbb{C}\text{-}c}(\mathbf{k}_X)$ be the derived category of sheaves of **k**-vector spaces on X with \mathbb{C} -constructible cohomology. Here **k** is a given base field. Then the t-structure $({^pD}^{\leq 0}_{\mathbb{C}\text{-}c}(\mathbf{k}_X), {^pD}^{\geq 0}_{\mathbb{C}\text{-}c}(\mathbf{k}_X))$ on $D^b_{\mathbb{C}\text{-}c}(\mathbf{k}_X)$ with middle perversity is self-dual with respect to the Verdier dual functor $D_X = R\mathcal{H}om(\bullet, \omega_X)$. Namely, the Verdier dual functor exchanges ${}^pD_{\mathbb{C}\text{-}c}^{\\leq 0}(\mathbf{k}_X)$ and ${}^pD_{\mathbb{C}\text{-}c}^{\\geq 0}(\mathbf{k}_X)$. However, on a real analytic manifold X (of positive dimension), no perversity gives a self-dual tstructure on the derived category $D_{\mathbb{R}_{\infty}}^{\mathbf{b}}(\mathbf{k}_X)$ of \mathbb{R} -constructible sheaves on X. In this paper, we construct such a self-dual t-structure after generalizing the notion of t-structure. This generalized notion already appeared in the paper of Bridgeland [\[2\]](#page-24-1) on stability conditions (see also [\[4\]](#page-24-2)). This construction can also be applied to the derived category $D_{\text{coh}}^{\text{b}}(A)$ of finitely generated modules over a Noetherian regular ring A. We construct a (generalized) t-structure on $D^{\text{b}}_{\text{coh}}(A)$ which is self-dual with respect to the duality functor $\mathrm{RHom}_A(\bullet, A)$.

Let us explain our results more precisely with the example of $D_{\mathbb{R}-c}^{\mathbf{b}}(\mathbf{k}_X)$. Let X be a real analytic manifold. Recall that a sheaf F of k-vector spaces is called \mathbb{R} -constructible if X is a locally finite union of locally closed subanalytic subsets ${X_\alpha}_{\alpha}$ such that all the restrictions $F|_{X_\alpha}$ are locally constant with finitedimensional fibers. Let $D_{\mathbb{R}-c}^b(\mathbf{k}_X)$ be the bounded derived category of \mathbb{R} -construc-

Communicated by H. Nakajima. Received August 9, 2015. Revised December 20, 2015.

M. Kashiwara: Research Institute for Mathematical Sciences, Kyoto University,

Kyoto 606-8502, Japan;

e-mail: masaki@kurims.kyoto-u.ac.jp

c 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

tible sheaves. Let $D_X = R\mathcal{H}om(\bullet, \omega_X)$ be the Verdier dual functor. For $c \in \mathbb{R}$, we define

(0.1) $1/2 \frac{\sum_{k=0}^{R-1} (kx)}{\sum_{k=0}^{R} (kx)} := \{K \in D_{\mathbb{R}-c}^{\mathbb{b}}(kx) \mid D_X K \in \frac{1}{2} \frac{1}{D_{\mathbb{R}-c}^{\mathbb{b}}} (kx)\}.$ $1/2 \mathcal{D}_{\mathbb{R}\text{-}\mathrm{c}}^{\leq c}(\mathbf{k}_X) := \{ K \in \mathcal{D}_{\mathbb{R}\text{-}\mathrm{c}}^{\mathrm{b}}(\mathbf{k}_X) \mid \dim \mathrm{Supp}(H^i K) \leq 2(c-i) \text{ for any } i \in \mathbb{Z} \},\$

Then, the pair $((1/2D_{\mathbb{R}-c}^{\leq c}(\mathbf{k}_X))_{c\in\mathbb{R}}, (1/2D_{\mathbb{R}-c}^{\geq c}(\mathbf{k}_X))_{c\in\mathbb{R}})$ satisfies the axioms of (gen-eralized) t-structure (Definition [1.2\)](#page-2-0). In particular, $({}^{1/2}D_{\mathbb{R}-c}^{\leq c}(\mathbf{k}_X), {}^{1/2}D_{\mathbb{R}-c}^{>c-1}(\mathbf{k}_X))$ is a t-structure in the ordinary sense for any $c \in \mathbb{R}$. Here $\frac{1}{2}D_{\mathbb{R}-c}^{>c}(\mathbf{k}_X) :=$ $\bigcup_{b>c} 1/2 \mathcal{D}_{\mathbb{R}-c}^{\geq b}(\mathbf{k}_X)$. Therefore, for any $K \in \mathcal{D}_{\mathbb{R}-c}^b(\mathbf{k}_X)$ and $c \in \mathbb{R}$, there exists a distinguished triangle $K' \to K \to K'' \xrightarrow{+1}$ in $D_{\mathbb{R}-c}^{\mathbf{b}}(\mathbf{k}_X)$ such that $K' \in {}^{1/2}D_{\mathbb{R}-c}^{\leq c}(\mathbf{k}_X)$ and $K'' \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{>c}({\bf k}_X).$

Note that ${}^{1/2}D_{\mathbb{R}-c}^{\leq c}(\mathbf{k}_X) = {}^{1/2}D_{\mathbb{R}-c}^{\leq s}(\mathbf{k}_X)$ for $s \in \frac{1}{2}\mathbb{Z}$ such that $s \leq c < s + 1/2$, and $1/2 \mathcal{D}_{\mathbb{R}-c}^{>c}(\mathbf{k}_X) = 1/2 \mathcal{D}_{\mathbb{R}-c}^{>s}(\mathbf{k}_X)$ for $s \in \frac{1}{2}\mathbb{Z}$ such that $s - 1/2 < c \leq s$.

This paper is organized as follows. In Section [1,](#page-1-0) we generalize the notion of a t-structure. In Section [2,](#page-4-0) we recall the result of $[4]$ on a t-structure on the derived category of a quasi-abelian category. In Section [3,](#page-5-0) we give the t-structure associated with a torsion pair on an abelian category.

In Section [4,](#page-6-0) we define a self-dual t-structure on the derived category of coherent sheaves on a Noetherian regular scheme.

In Section [5,](#page-9-0) we give two t-structures on the derived category of the abelian category of R-constructible sheaves of A-modules on a subanalytic space X . Here A is a Noetherian regular ring. One is purely topological and the other is self-dual with respect to the Verdier duality functor.

In Section [6,](#page-19-0) we study the self-dual t-structure on the derived category of the abelian category of sheaves of A-modules on a complex manifold X with \mathbb{C} constructible cohomology. The main result is its microlocal characterization (Theorem [6.2\)](#page-20-0).

Convention. In this paper, all subanalytic spaces and complex analytic spaces are assumed to be Hausdorff, locally compact, countable at infinity and with finite dimension.

§1. (Generalized) t-structure

Since the following lemma is elementary, we omit its proof.

Lemma 1.1. Let X be a set.

(i) Let $(X^{\leq c})_{c \in \mathbb{R}}$ be a family of subsets of X such that $X^{\leq c} = \bigcap_{b>c} X^{\leq b}$ for any $c \in \mathbb{R}$. Set $X^{\leq c} := \bigcup_{b \leq c} X^{\leq b}$. Then

(a) $X^{< c} = \bigcup_{b < c} X^{< b}$,

(b)
$$
X^{\leq c} = \bigcap_{b > c} X^{< b}.
$$

- (ii) Conversely, let $(X^{\leq c})_{c \in \mathbb{R}}$ be a family of subsets of X such that $X^{\leq c}$ = $\bigcup_{b < c} X^{< b}$ for any $c \in \mathbb{R}$. Set $X^{\leq c} := \bigcap_{b > c} X^{< b}$. Then
	- (a) $X^{\leq c} = \bigcap_{b>c} X^{\leq b}$,
	- (b) $X^{< c} = \bigcup_{b < c} X^{\leq b}$.
- (iii) Let $(X^{\leq c})_{c \in \mathbb{R}}$ and $(X^{\leq c})_{c \in \mathbb{R}}$ be as above. Let $a, b \in \mathbb{R}$ be such that $a < b$. If $X^{< c} = X^{\leq c}$ for any c such that $a < c \leq b$, then $X^{\leq a} = X^{\leq b}$.

Let us recall the notion of t-structure (see [\[1\]](#page-23-0)). Let $\mathcal T$ be a triangulated category. Let $\mathcal{T}^{\leq 0}$ and $\mathcal{T}^{\geq 0}$ be strictly full subcategories of \mathcal{T} . Here, a subcategory \mathcal{C}' of a category C is called *strictly full* if it is full, i.e. $\text{Hom}_{\mathcal{C}'}(X, Y) = \text{Hom}_{\mathcal{C}}(X, Y)$ for any $X, Y \in \mathcal{C}'$, and any object of C isomorphic to some object of \mathcal{C}' is an object of \mathcal{C}' .

For $n \in \mathbb{Z}$, we set $\mathcal{T}^{\leq n} = \mathcal{T}^{\leq 0}[-n]$ and $\mathcal{T}^{\geq n} = \mathcal{T}^{\geq 0}[-n]$. Let us recall that $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is a *t-structure* on \mathcal{T} if:

- (1.1) (a) $\mathcal{T}^{\leq 0} \subset \mathcal{T}^{\leq 1}$ and $\mathcal{T}^{\geq 1} \subset \mathcal{T}^{\geq 0}$,
	- (b) Hom $\tau(X, Y) = 0$ for $X \in \mathcal{T}^{\leq 0}$ and $Y \in \mathcal{T}^{\geq 1}$,
	- (c) for any $X \in \mathcal{T}$, there exists a distinguished triangle $X_0 \to X \to X_1 \xrightarrow{+1}$ in \mathcal{T} such that $X_0 \in \mathcal{T}^{\leq 0}$ and $X_1 \in \mathcal{T}^{\geq 1}$.

We shall generalize this notion.

Definition 1.2. Let $(\mathcal{T}^{\leq c})_{c \in \mathbb{R}}$ and $(\mathcal{T}^{\geq c})_{c \in \mathbb{R}}$ be families of strictly full subcategories of a triangulated category \mathcal{T} , and set $\mathcal{T}^{< c} = \bigcup_{b < c} \mathcal{T}^{\leq b}$ and $\mathcal{T}^{> c} =$ $\bigcup_{b>c} \mathcal{T}^{\geq b}$. We say that $((\mathcal{T}^{\leq c})_{c \in \mathbb{R}}, (\mathcal{T}^{\geq c})_{c \in \mathbb{R}})$ is a (*generalized*) *t-structure* (cf. [\[2\]](#page-24-1)) if

- (1.2) (a) $\mathcal{T}^{\leq c} = \bigcap_{b>c} \mathcal{T}^{\leq b}$ and $\mathcal{T}^{\geq c} = \bigcap_{b for any $c \in \mathbb{R}$,$
	- (b) $\mathcal{T}^{\leq c+1} = \mathcal{T}^{\leq c}[-1]$ and $\mathcal{T}^{\geq c+1} = \mathcal{T}^{\geq c}[-1]$ for any $c \in \mathbb{R}$,
	- (c) Hom $\tau(X, Y) = 0$ for any $c \in \mathbb{R}, X \in \mathcal{T}^{< c}$ and $Y \in \mathcal{T}^{> c}$,
	- (d) for any $X \in \mathcal{T}$ and $c \in \mathbb{R}$, there exist distinguished triangles $X_0 \rightarrow$ $X \to X_1 \xrightarrow{+1}$ and $X'_0 \to X \to X'_1 \xrightarrow{+1}$ in $\mathcal T$ such that $X_0 \in \mathcal T^{\leq c}$, $X_1 \in \mathcal{T}^{>c}$ and $X'_0 \in \mathcal{T}^{.$

Note that under conditions $(a)-(c)$, the distinguished triangles in (d) are unique up to a unique isomorphism.

If $((\mathcal{T}^{\leq c})_{c \in \mathbb{R}}, (\mathcal{T}^{\geq c})_{c \in \mathbb{R}})$ is a generalized t-structure, then the pairs $(\mathcal{T}^{\leq c}, \mathcal{T}^{> c-1})$ and $(\mathcal{T}^{< c}, \mathcal{T}^{\geq c-1})$ are t-structures in the original sense for any $c \in \mathbb{R}$. Hence, $\mathcal{T}^{\leq c} \cap \mathcal{T}^{> c-1}$ and $\mathcal{T}^{< c} \cap \mathcal{T}^{\geq c-1}$ are abelian categories.

Assume that $((\mathcal{T}^{\leq c})_{c \in \mathbb{R}}, (\mathcal{T}^{\geq c})_{c \in \mathbb{R}})$ is a generalized t-structure. Then the inclusion functors $\mathcal{T}^{\leq c} \to \mathcal{T}$ and $\mathcal{T}^{< c} \to \mathcal{T}$ have respective right adjoints

$$
\tau^{\leq c} \colon \mathcal{T} \to \mathcal{T}^{\leq c} \quad \text{and} \quad \tau^{< c} \colon \mathcal{T} \to \mathcal{T}^{< c}.
$$

Similarly, the inclusion functors $\mathcal{T}^{\geq c} \to \mathcal{T}$ and $\mathcal{T}^{>c} \to \mathcal{T}$ have respective left adjoints

$$
\tau^{\geq c}\colon \mathcal{T}\to \mathcal{T}^{\geq c}\quad \text{and}\quad \tau^{>c}\colon \mathcal{T}\to \mathcal{T}^{>c}.
$$

We have distinguished triangles functorially in $X \in \mathcal{T}$:

$$
\tau^{\leq c} X \to X \to \tau^{>c} X \xrightarrow{+1}
$$
 and $\tau^{< c} X \to X \to \tau^{\geq c} X \xrightarrow{+1}$.

These four functors are called the truncation functors of the generalized t-structure $((\mathcal{T}^{\leq c})_{c \in \mathbb{R}}, (\mathcal{T}^{\geq c})_{c \in \mathbb{R}}).$

For any $a, b \in \mathbb{R}$, we have isomorphisms of functors

$$
\tau^{\le a}\circ\tau^{\le b}\simeq\tau^{\le \min(a,b)},\quad \tau^{\ge a}\circ\tau^{\ge b}\simeq\tau^{\ge \max(a,b)},\quad \tau^{\le a}\circ\tau^{\ge b}\simeq\tau^{\ge b}\circ\tau^{\le a}.
$$

In the last formula, we can replace $\tau^{\geq a}$ with $\tau^{>a}$ or $\tau^{\leq b}$ with $\tau^{< b}$. For any $c \in \mathbb{R}$, we have

$$
\mathcal{T}^{\leq c} = \{ X \in \mathcal{T} \mid \text{Hom}_{\mathcal{T}}(X, Y) \simeq 0 \text{ for any } Y \in \mathcal{T}^{>c} \},
$$

(1.3)
$$
\mathcal{T}^{< c} = \{ X \in \mathcal{T} \mid \text{Hom}_{\mathcal{T}}(X, Y) \simeq 0 \text{ for any } Y \in \mathcal{T}^{\geq c} \},
$$

$$
\mathcal{T}^{\geq c} = \{ Y \in \mathcal{T} \mid \text{Hom}_{\mathcal{T}}(X, Y) \simeq 0 \text{ for any } X \in \mathcal{T}^{< c} \},
$$

$$
\mathcal{T}^{> c} = \{ Y \in \mathcal{T} \mid \text{Hom}_{\mathcal{T}}(X, Y) \simeq 0 \text{ for any } X \in \mathcal{T}^{\leq c} \}.
$$

We set $\mathcal{T}^c := \mathcal{T}^{\leq c} \cap \mathcal{T}^{\geq c}$. Then \mathcal{T}^c is a quasi-abelian category (see [\[2\]](#page-24-1) and [\[6\]](#page-24-3)). More generally, for $a \leq b$, we set

$$
\mathcal{T}^{[a,b]}:=\mathcal{T}^{\leq b}\cap \mathcal{T}^{\geq a}.
$$

Then $\mathcal{T}^{[a,b]}$ is a quasi-abelian category if $a \leq b < a+1$.

A t-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is regarded as a generalized t-structure by setting

(1.4)
$$
\mathcal{T}^{\leq c} = \mathcal{T}^{\leq 0}[-n] \quad \text{for } n \in \mathbb{Z} \text{ such that } n \leq c < n+1,
$$

$$
\mathcal{T}^{\geq c} = \mathcal{T}^{\geq 0}[-n] \quad \text{for } n \in \mathbb{Z} \text{ such that } n-1 < c \leq n.
$$

Hence, a t-structure is nothing but a generalized t-structure such that $\mathcal{T}^{\leq 0} = \mathcal{T}^{< 1}$ and $\mathcal{T}^{\geq 1} = \mathcal{T}^{>0}$, or equivalently $\mathcal{T}^c = 0$ for any $c \notin \mathbb{Z}$.

In the following, we call a generalized t-structure simply a t-structure.

Remark 1.3. In the examples we give in this paper, the t-structures also satisfy the following condition:

- (e) for any $c \in \mathbb{R}$ we can find a and b such that $a < c < b$ and
	- (1) $\mathcal{T}^{< c} = \mathcal{T}^{\leq a}, \mathcal{T}^{\leq c} = \mathcal{T}^{< b},$
	- (2) $\mathcal{T}^{>c} = \mathcal{T}^{\geq b}, \mathcal{T}^{\geq c} = \mathcal{T}^{>a}.$

More precisely, in the examples in this paper, we can take $a = \max\{s \in \frac{1}{2}\mathbb{Z} \mid s < c\}$ and $b = \min\{s \in \frac{1}{2}\mathbb{Z} \mid s > c\}$. Hence $\mathcal{T}^c = 0$ if $c \notin \frac{1}{2}\mathbb{Z}$.

§2. t-structure on the derived category of a quasi-abelian category

For more details, see [\[4,](#page-24-2) §2].

Let C be a quasi-abelian category (see $[6]$). Recall that, for a morphism $f: X \to Y$ in C, Im $f := \text{Ker}(Y \to \text{Coker } f)$ and $\text{Coim } f := \text{Coker}(\text{Ker } f \to X)$. Hence, we have a diagram $-f_{-}$

$$
\text{Ker } f \longrightarrow X \longrightarrow \text{Coim } f \longrightarrow \text{Im } f \longrightarrow Y \longrightarrow \text{Coker } f.
$$

Let $C(\mathcal{C})$ be the category of complexes in \mathcal{C} , and $D(\mathcal{C})$ the derived category of \mathcal{C} (see [\[6\]](#page-24-3)). Let us define various truncation functors for $X \in C(\mathcal{C})$:

$$
\tau^{\leq n} X : \cdots \to X^{n-1} \to \text{Ker } d_X^n \to 0 \to 0 \to \cdots,
$$

\n
$$
\tau^{\leq n+1/2} X : \cdots \to X^{n-1} \to X^n \to \text{Im } d_X^n \to 0 \to \cdots,
$$

\n
$$
\tau^{\geq n} X : \cdots \to 0 \to \text{Coker } d_X^{n-1} \to X^{n+1} \to X^{n+2} \to \cdots,
$$

\n
$$
\tau^{\geq n+1/2} X : \cdots \to 0 \to \text{Coim } d_X^n \to X^{n+1} \to X^{n+2} \to \cdots,
$$

for $n \in \mathbb{Z}$. Then we have morphisms functorial in X:

$$
\tau^{\leq s}X \to \tau^{\leq t}X \to X \to \tau^{\geq s}X \to \tau^{\geq t}X
$$

for $s, t \in \frac{1}{2}\mathbb{Z}$ such that $s \leq t$. We can easily check that the functors $\tau^{\leq s}, \tau^{\geq s} : C(\mathcal{C}) \to C(\mathcal{C})$ send morphisms homotopic to zero to morphisms homotopic to zero and quasi-isomorphisms to quasi-isomorphisms. Hence, they induce functors

$$
\tau^{\leq s}, \tau^{\geq s} \colon \mathcal{D}(\mathcal{C}) \to \mathcal{D}(\mathcal{C})
$$

and morphisms $\tau^{\leq s} \to id \to \tau^{\geq s}$.

For $s \in \frac{1}{2}\mathbb{Z}$, set

$$
D^{\leq s}(\mathcal{C}) = \{ X \in D(\mathcal{C}) \mid \tau^{\leq s} X \to X \text{ is an isomorphism} \},
$$

$$
D^{\geq s}(\mathcal{C}) = \{ X \in D(\mathcal{C}) \mid X \to \tau^{\geq s} X \text{ is an isomorphism} \}.
$$

Then $\{D^{\leq s}(\mathcal{C})\}_{s\in \frac{1}{2}\mathbb{Z}}$ is an increasing sequence of strictly full subcategories of $D(\mathcal{C})$, and ${D}^{\geq s}(\mathcal{C})\}_{s\in \frac{1}{2}\mathbb{Z}}$ is a decreasing sequence of strictly full subcategories of D(\mathcal{C}).

The functor $\tau^{\leq s} \colon D(\mathcal{C}) \to D^{\leq s}(\mathcal{C})$ is a right adjoint functor of the inclusion functor $D^{\leq s}(\mathcal{C}) \hookrightarrow D(\mathcal{C})$, and $\tau^{\geq s} \colon D(\mathcal{C}) \to D^{\geq s}(\mathcal{C})$ is a left adjoint functor of $D^{\geq s}(\mathcal{C}) \hookrightarrow D(\mathcal{C}).$

For $c \in \mathbb{R}$, we set

(2.1)
$$
D^{\leq c}(\mathcal{C}) = D^{\leq s}(\mathcal{C}) \quad \text{where } s \in \frac{1}{2}\mathbb{Z} \text{ satisfies } s \leq c < s + 1/2,
$$

$$
D^{\geq c}(\mathcal{C}) = D^{\geq s}(\mathcal{C}) \quad \text{where } s \in \frac{1}{2}\mathbb{Z} \text{ satisfies } s - 1/2 < c \leq s.
$$

Proposition 2.1 ([\[6\]](#page-24-3), see also [\[4\]](#page-24-2)). $((D^{\leq c}(\mathcal{C}))_{c \in \mathbb{R}}, (D^{\geq c}(\mathcal{C}))_{c \in \mathbb{C}})$ is a t-structure.

We call it the *standard t-structure* on $D(\mathcal{C})$. The triangulated category $D(\mathcal{C})$ is equivalent to the derived category of the abelian category $D^{\leq c}(\mathcal{C}) \cap D^{>c-1}(\mathcal{C})$ for every $c \in \mathbb{R}$. The full subcategory $D^0(\mathcal{C}) := D^{\leq 0}(\mathcal{C}) \cap D^{\geq 0}(\mathcal{C})$ is equivalent to \mathcal{C} .

If $\mathcal C$ is an abelian category, then the standard t-structure is

$$
D^{\leq c}(\mathcal{C}) = \{ X \in D(\mathcal{C}) \mid H^i(X) = 0 \text{ for any } i > c \},
$$

$$
D^{\geq c}(\mathcal{C}) = \{ X \in D(\mathcal{C}) \mid H^i(X) = 0 \text{ for any } i < c \}.
$$

§3. t-structure associated with a torsion pair

Let C be an abelian category. A *torsion pair* is a pair (T, F) of strictly full subcategories of $\mathcal C$ such that

- (3.1) (a) Hom_C(X, Y) = 0 for any $X \in \mathsf{T}$ and $Y \in \mathsf{F}$,
	- (b) for any $X \in \mathcal{C}$, there exists an exact sequence $0 \to X' \to X \to X'' \to 0$ with $X' \in \mathsf{T}$ and $X'' \in \mathsf{F}$.

Let (T, F) be a torsion pair. Then

$$
\mathsf{T} \simeq \{ X \in \mathcal{C} \mid \text{Hom}_{\mathcal{C}}(X, Y) = 0 \text{ for any } Y \in \mathsf{F} \},
$$

$$
\mathsf{F} \simeq \{ Y \in \mathcal{C} \mid \text{Hom}_{\mathcal{C}}(X, Y) = 0 \text{ for any } X \in \mathsf{T} \}.
$$

Moreover, T is stable under taking quotients and extensions, while F is stable under taking subobjects and extensions.

For any integer n , we define

(3.2)

$$
{}^{p}D^{\leq n}(\mathcal{C}) := \{ X \in D(\mathcal{C}) \mid H^{i}(X) \simeq 0 \text{ for any } i > n \},
$$

\n
$$
{}^{p}D^{\leq n-1/2}(\mathcal{C}) := \{ X \in D(\mathcal{C}) \mid H^{i}(X) \simeq 0 \text{ for any } i > n \text{ and } H^{n}(X) \in \mathsf{T} \},
$$

\n
$$
{}^{p}D^{\geq n-1/2}(\mathcal{C}) := \{ X \in D(\mathcal{C}) \mid H^{i}(X) \simeq 0 \text{ for any } i < n \},
$$

\n
$$
{}^{p}D^{\geq n}(\mathcal{C}) := \{ X \in D(\mathcal{C})^{\geq n-1/2} \mid H^{i}(X) \simeq 0 \text{ for any } i < n \text{ and } H^{n}(X) \in \mathsf{F} \}.
$$

For any $c \in \mathbb{R}$, we define $\text{PD}^{\leq c}(\mathcal{C})$ and $\text{PD}^{\geq c}(\mathcal{C})$ by (2.1) .

Since the following proposition can be easily proved, we omit the proof.

Proposition 3.1. $((P D^{\leq c}(\mathcal{C}))_{c \in \mathbb{R}}, (P D^{\geq c}(\mathcal{C}))_{c \in \mathbb{R}})$ is a t-structure.

We have

$$
\mathsf{T} \simeq {}^{\mathrm{p}}\mathsf{D}^{-1/2}(\mathcal{C}), \quad \mathsf{F} \simeq {}^{\mathrm{p}}\mathsf{D}^{0}(\mathcal{C}), \text{ and } \mathcal{C} \simeq {}^{\mathrm{p}}\mathsf{D}^{[-1/2,0]}(\mathcal{C}).
$$

Moreover, $D(\mathcal{C})$ is equivalent to the derived category of the abelian category ${\rm \textbf{PD}}^{[0,1/2]}(\mathcal{C}).$

Note that

$$
\mathrm{D}^{\leq c}(\mathcal{C}) \subset \mathrm{^pD}^{\leq c}(\mathcal{C}) \subset \mathrm{D}^{\leq c+1/2}(\mathcal{C}) \quad \text{and} \quad \mathrm{D}^{\geq c+1/2}(\mathcal{C}) \subset \mathrm{^pD}^{\geq c}(\mathcal{C}) \subset \mathrm{D}^{\geq c}(\mathcal{C}).
$$

§4. Self-dual t-structure on the derived category of coherent sheaves

Let X be a Noetherian regular scheme. Consider the duality functor $D_X :=$ $R\mathcal{H}om_{\mathscr{O}_X}(\bullet,\mathscr{O}_X)$. Let $D^{\operatorname{b}}_{\operatorname{coh}}(\mathscr{O}_X)$ be the bounded derived category of \mathscr{O}_X -modules with coherent cohomology. We denote by $((D_{coh}^{\leq c}(\mathscr{O}_X))_{c \in \mathbb{R}}, (D_{coh}^{\geq c}(\mathscr{O}_X))_{c \in \mathbb{R}})$ the standard t-structure on $D_{\text{coh}}^{b}(\mathscr{O}_{X}).$

Recall that, for any coherent \mathscr{O}_X -module \mathscr{F} , its *codimension* is defined by

$$
\operatorname{codim} \mathscr{F} := \operatorname{codim} \operatorname{Supp} (\mathscr{F}) = \inf_{x \in \operatorname{Supp} (\mathscr{F})} \dim \mathscr{O}_{X, \, x}.
$$

Here we understand codim $0 = +\infty$.

We set

$$
{}^{1/2}D_{\text{coh}}^{\leq c}(\mathscr{O}_X) := \{ \mathscr{F} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) \mid \operatorname{codim} H^i(\mathscr{F}) \geq 2(i-c) \text{ for any } i \in \mathbb{Z} \},
$$

$$
{}^{1/2}D_{\text{coh}}^{\geq c}(\mathscr{O}_X) := \{ \mathscr{F} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) \mid D_X \mathscr{F} \in D_{\text{coh}}^{\leq -c}(\mathscr{O}_X) \}
$$

$$
= \{ \mathscr{F} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) \mid \operatorname{codim} H^i(D_X \mathscr{F}) \geq 2(i+c) \text{ for any } i \in \mathbb{Z} \}.
$$

These satisfy condition [\(a\)](#page-2-1) of Definition [1.2.](#page-2-0) Note that

$$
{}^{1/2}D_{\text{coh}}^{\leq c}(\mathscr{O}_X) = \{ \mathscr{F} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) \mid \mathscr{F}_x \in D^{\leq c + \frac{1}{2} \dim \mathscr{O}_{X,x}}(\mathscr{O}_{X,x}) \text{ for any } x \in X \}.
$$

We also have

$$
{}^{1/2}D_{\text{coh}}^{< c}(\mathscr{O}_X) := \bigcup_{b < c} {}^{1/2}D_{\text{coh}}^{< b}(\mathscr{O}_X)
$$
\n
$$
= \{ \mathscr{F} \in D_{\text{coh}}^b(\mathscr{O}_X) \mid \text{codim } H^i(\mathscr{F}) > 2(i - c) \text{ for any } i \in \mathbb{Z} \},
$$
\n
$$
{}^{1/2}D_{\text{coh}}^{> c}(\mathscr{O}_X) := \bigcup_{b > c} {}^{1/2}D_{\text{coh}}^{> b}(\mathscr{O}_X)
$$
\n
$$
= \{ \mathscr{F} \in D_{\text{coh}}^b(\mathscr{O}_X) \mid \text{codim } H^i(D_X \mathscr{F}) > 2(i + c) \text{ for any } i \in \mathbb{Z} \}.
$$

Lemma 4.1. Let $\mathscr{F} \in D^b_{\text{coh}}(\mathscr{O}_X)$. Then $\mathscr{F} \in {}^{1/2}D^{ \geq c}_{\text{coh}}(\mathscr{O}_X)$ if and only if we have $H^{i}R\Gamma_{Z}\mathscr{F}=0$ for any closed subset Z and $i < c + (\text{codim }Z)/2$.

Proof. We shall use the results in [\[3\]](#page-24-4). Let us define the systems of support

$$
\Phi^n = \{ Z \mid \operatorname{codim} Z \ge 2(n+c) \},
$$

$$
\Psi^n = \{ Z \mid n < c+1 + (\operatorname{codim} Z)/2 \}.
$$

Then it is enough to show that

(4.1)
$$
(\Phi \circ \Psi)^n := \bigcup_{i+j=n} (\Phi^i \cap \Psi^j) = \{Z \mid \text{codim } Z \geq n\}.
$$

Indeed,

$$
{}^{1/2}D_{\text{coh}}^{\leq -c}(\mathscr{O}_X) = {}^{\Phi}D_{\text{coh}}^{\leq 0}(\mathscr{O}_X)
$$

 := { $\mathscr{F} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) | \text{Supp}(H^k(\mathscr{F})) \in \Phi^k \text{ for any } k \in \mathbb{Z}$ },

and hence [\[3,](#page-24-4) Theorem 5.9] along with [\(4.1\)](#page-7-0) implies that $\frac{1}{2}D^{2c}_{coh}(\mathscr{O}_X)$ coincides with

$$
\Psi D_{\rm coh}^{>0}(\mathscr{O}_X) := \{ F \mid H^i(\mathrm{R}\Gamma_Z F) = 0 \text{ for any } Z \in \Psi^{i+1} \}
$$

=
$$
\{ F \mid H^i(\mathrm{R}\Gamma_Z F) = 0 \text{ for any } i < c + (\operatorname{codim} Z)/2 \}.
$$

Let us show [\(4.1\)](#page-7-0) Assume that $Z \in \Phi^i \cap \Psi^j$ with $i + j = n$. Then

$$
2\operatorname{codim} Z \ge 2(i+c) + (2(j-c-1)+1) = 2n-1
$$

and hence $\operatorname{codim} Z \geq n$.

Conversely, assume that codim $Z \geq n$. Then take an integer i such that $i \leq$ $(\operatorname{codim} Z)/2 - c < i + 1$. Then $i > (\operatorname{codim} Z)/2 - c - 1$ and

$$
j := n - i < \text{codim } Z - ((\text{codim } Z)/2 - c - 1) = c + 1 + (\text{codim } Z)/2.
$$

Hence $Z \in \Phi^i \cap \Psi^j \subset (\Phi \circ \Psi)^n$.

 \Box

Proposition 4.2. $((^{1/2}D_{coh}^{\leq c}(\mathscr{O}_X))_{c \in \mathbb{R}}, (^{1/2}D_{coh}^{\geq c}(\mathscr{O}_X))_{c \in \mathbb{R}})$ is a t-structure on $D_{\rm coh}^{\rm b}(\mathscr{O}_X).$

Proof. This follows from [\[3\]](#page-24-4). Indeed, $({}^{1/2}D_{coh}^{ coincides with$ $({}^{\Psi}D_{\rm coh}^{\rm b}(\mathscr{O}_X)^{\leq 0}, {}^{\Psi}D_{\rm coh}^{\rm b}(\mathscr{O}_X)^{\geq 0})$ by the proof of the preceding proposition.

Corollary 4.3. For $\mathscr{F} \in {}^{1/2}D_{coh}^{\leq c}(\mathscr{O}_X)$ and $\mathscr{G} \in {}^{1/2}D_{coh}^{\geq c'}(\mathscr{O}_X)$, we have

$$
\mathbf{R}\mathscr{H}\!\mathit{om}_{\mathscr{O}_X}(\mathscr{F},\mathscr{G}) \in \mathbf{D}^{\geq c'-c}_{\mathrm{coh}}(\mathscr{O}_X).
$$

Conversely, for any $c' \in \mathbb{R}$,

$$
{}^{1/2}D_{\text{coh}}^{\geq c'}(\mathscr{O}_X) = \{ \mathscr{G} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) \mid \text{R} \mathscr{H}\!\!om_{\mathscr{O}_X}(\mathscr{F}, \mathscr{G}) \in D_{\text{coh}}^{\geq c'-c}(\mathscr{O}_X) \text{ for any } c \in \mathbb{R} \text{ and } \mathscr{F} \in {}^{1/2}D_{\text{coh}}^{\leq c}(\mathscr{O}_X) \},
$$

and for any $c \in \mathbb{R}$,

$$
{}^{1/2}D_{\text{coh}}^{\geq c}(\mathscr{O}_X) = \{ \mathscr{F} \in D_{\text{coh}}^{\text{b}}(\mathscr{O}_X) \mid R\mathscr{H}\!\mathit{om}_{\mathscr{O}_X}(\mathscr{F}, \mathscr{G}) \in D_{\text{coh}}^{\geq c'-c}(\mathscr{O}_X) \text{ for any } c' \in \mathbb{R} \text{ and } \mathscr{G} \in {}^{1/2}D_{\text{coh}}^{\geq c'}(\mathscr{O}_X) \}.
$$

Proposition 4.4. For $\mathscr{F}, \mathscr{G} \in D^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{O}_X)$, we have:

- (i) if $\mathscr{F} \in {}^{1/2}D_{\text{coh}}^{\leq c}(\mathscr{O}_X)$ and $\mathscr{G} \in D_{\text{coh}}^{\leq c'}(\mathscr{O}_X)$, then $\mathscr{F} \overset{L}{\otimes}_{\mathscr{O}_X} \mathscr{G} \in {}^{1/2}D_{\text{coh}}^{\leq c+c'}(\mathscr{O}_X)$,
- (ii) if $\mathscr{F} \in D_{\text{coh}}^{\leq c}(\mathscr{O}_X)$ and $\mathscr{G} \in {}^{1/2}D_{\text{coh}}^{\geq c'}(\mathscr{O}_X)$, then

$$
\mathrm R\mathscr{H}\!\mathit{om}_{\mathscr{O}_X}(\mathscr{F}, \mathscr{G}) \in {}^{1/2}\mathrm D^{\geq c'-c}_{\mathrm{coh}}(\mathscr{O}_X),
$$

(iii) if $\mathscr{F} \in {}^{1/2}D^{\geq c}_{\text{coh}}(\mathscr{O}_X)$ and $\mathscr{G} \in D^{\leq c'}_{\text{coh}}(\mathscr{O}_X)$, then

$$
\mathbf{R}\mathscr{H}\!\mathit{om}_{\mathscr{O}_X}(\mathscr{F},\mathscr{G}) \in {}^{1/2}\mathbf{D}^{\leq c'-c}_{\mathrm{coh}}(\mathscr{O}_X),
$$

(iv) if
$$
\mathscr{F} \in {}^{1/2}D_{\text{coh}}^{\geq c}(\mathscr{O}_X)
$$
 and $\mathscr{G} \in {}^{1/2}D_{\text{coh}}^{\geq c'}(\mathscr{O}_X)$, then $\mathscr{F} \otimes_{\mathscr{O}_X}^{\mathbb{L}} \mathscr{G} \in D_{\text{coh}}^{\geq c+c'}(\mathscr{O}_X)$.

Proof. (i) For any $\mathscr{H} \in {}^{1/2}D_{\text{coh}}^{\geq c''}(\mathscr{O}_X)$, we have $R\mathscr{H}\!\mathscr{om}_{\mathscr{O}_X}(\mathscr{F},\mathscr{H}) \in D_{\text{coh}}^{\geq c''-c}(\mathscr{O}_X)$ by Corollary [4.3.](#page-7-1) Hence,

$$
\mathrm{R\mathscr{H}\!\mathit{om}}_{\mathscr{O}_X}(\mathscr{F}\overset{\mathrm{L}}{\otimes}_{\mathscr{O}_X}\mathscr{G},\mathscr{H})\simeq \mathrm{R\mathscr{H}\!\mathit{om}}_{\mathscr{O}_X}(\mathscr{G},\mathrm{R\mathscr{H}\!\mathit{om}}_{\mathscr{O}_X}(\mathscr{F},\mathscr{H}))
$$

belongs to $D_{\text{coh}}^{\geq c''-c-c'}(\mathscr{O}_X)$. Since this holds for an arbitrary $\mathscr{H} \in {}^{1/2}D_{\text{coh}}^{\geq c''}(\mathscr{O}_X)$, we conclude that $\mathscr{F}^{\mathcal{L}}_{\otimes_{\mathscr{O}_X}}\mathscr{G} \in {}^{1/2}D^{\leq c+c'}_{\text{coh}}(\mathscr{O}_X)$ by [\(1.3\)](#page-3-0).

(ii) Since $\mathscr{F}^{\mathcal{L}}_{\otimes_{\mathscr{O}_X}}D_X\mathscr{G}\in {}^{1/2}D_{\text{coh}}^{\leq c-c'}(\mathscr{O}_X)$ by (i), it follows that $R\mathscr{H}\!\mathit{om}_{\mathscr{O}_X}(\mathscr{F},\mathscr{G})$ $\simeq \mathsf{D}_X(\mathscr{F}\overset{\mathbf{L}}{\otimes} \mathsf{D}_X\mathscr{G})$ belongs to ${}^{1/2}\mathsf{D}^{\geq c'-c}_{\text{coh}}(\mathscr{O}_X)$.

- (iii) Since $\mathbb{R}\text{Hom}_{\mathscr{O}_X}(\mathscr{F},\mathscr{G}) \simeq (D_X\mathscr{F}) \overset{\mathbf{L}}{\otimes}_{\mathscr{O}_X} \mathscr{G}$, (iii) follows from (i).
- (iv) follows from Corollary [4.3](#page-7-1) and $\mathscr{F} \overset{\mathbf{L}}{\otimes}_{\mathscr{O}_X} \mathscr{G} \simeq R\mathscr{H}\!\!\mathscr{om}_{\mathscr{O}_X}(D_X\mathscr{F}, \mathscr{G}).$ \Box

Let A be a Noetherian regular ring and $X = \text{Spec}(A)$. We write $D^{\text{b}}_{\text{coh}}(A)$, ${}^{1/2}D_{\rm coh}^{\leq c}(A)$ and ${}^{1/2}D_{\rm coh}^{\geq c}(A)$ for $D_{\rm coh}^{\rm b}(\mathscr{O}_X), {}^{1/2}D_{\rm coh}^{\leq c}(\mathscr{O}_X)$ and ${}^{1/2}D_{\rm coh}^{\geq c}(\mathscr{O}_X)$, respectively.

Remark 4.5. (i) A similar construction is possible for a complex manifold X and coherent \mathscr{O}_X -modules.

(ii) For any $c \in \mathbb{R}$, we have

$$
\mathbf{D}_{\text{coh}}^{\leq c}(\mathscr{O}_X) \subset {}^{1/2}\mathbf{D}_{\text{coh}}^{\leq c}(\mathscr{O}_X) \subset \mathbf{D}_{\text{coh}}^{\leq c+\dim X/2}(\mathscr{O}_X),
$$

$$
\mathbf{D}_{\text{coh}}^{\geq c+\dim X/2}(\mathscr{O}_X) \subset {}^{1/2}\mathbf{D}_{\text{coh}}^{\geq c}(\mathscr{O}_X) \subset \mathbf{D}_{\text{coh}}^{\geq c}(\mathscr{O}_X).
$$

(iii) If $\mathscr F$ is a Cohen–Macaulay $\mathscr O_X$ -module with codim $\mathscr F = r$, then we have $\mathscr{F} \in {}^{1/2}D_{\text{coh}}^{-r/2}(\mathscr{O}_X).$

 (iv) Assume that A is a Noetherian regular integral domain of dimension 1, and K the fraction field of A. Let $C = Mod_{coh}(A)$. We take as $T \subset C$ the subcategory of torsion A-modules, and as F the subcategory of torsion free A-modules. Then the t-structure $((P\mathrm{D}^{\leq c}(\mathcal{C}))_{c \in \mathbb{R}}, (P\mathrm{D}^{\geq c}(\mathcal{C}))_{c \in \mathbb{R}})$ associated with the torsion pair (T, F) (see §[3\)](#page-5-0) coincides with the t-structure $((1/2D_{\text{coh}}^{\leq c}(A))_{c \in \mathbb{R}}, (1/2D_{\text{coh}}^{\geq c}(A)))_{c \in \mathbb{R}})$. Hence we have

(4.2)
\n
$$
{}^{1/2}D_{\text{coh}}^{\leq n}(A) = D_{\text{coh}}^{\leq n}(A),
$$
\n
$$
{}^{1/2}D_{\text{coh}}^{\leq n-1/2}(A) = \{X \in D_{\text{coh}}^{\leq n}(A) \mid K \otimes_A X \in D^{\leq n-1}(K)\},
$$
\n
$$
{}^{1/2}D_{\text{coh}}^{\geq n-1/2}(A) = D_{\text{coh}}^{\geq n}(A),
$$
\n
$$
{}^{1/2}D_{\text{coh}}^{\geq n}(A) = \{X \in D_{\text{coh}}^{\geq n}(A) \mid H^n(X) \text{ is torsion free}\}.
$$

for any $n \in \mathbb{Z}$.

Let F be the quasi-abelian category of finitely generated torsion free A-modules. Then $D^b(\mathcal{F}) \simeq D^b_{coh}(A)$, and the t-structure $((1/2D_{coh}^{\leq c}(A))_{c\in\mathbb{R}},$ $(1/2D_{\text{coh}}^{\geq c}(A))_{c \in \mathbb{R}}$ coincides with the standard t-structure of $D^b(\mathcal{F})$.

§5. Self-dual t-structure: real case

§5.1. Topological perversity

Let X be a subanalytic space (cf. $[5, \text{Exercise IX.2}])$. A subanalytic space is called smooth if it is is locally isomorphic to a real analytic manifold as a subanalytic space.

A subanalytic stratification $X = \bigsqcup_{\alpha \in I} X_{\alpha}$ of X is a locally finite family of locally closed smooth subanalytic subsets $\{X_{\alpha}\}_{{\alpha \in I}}$ (called strata) such that the closure $\overline{X_{\alpha}}$ is a union of strata for any α . A subanalytic stratification $X = \bigsqcup_{\alpha \in I} X_{\alpha}$ is called good if it satisfies the following condition:

(5.1) for any $K \in D^b(\mathbb{Z}_X)$ such that $K|_{X_\alpha}$ has locally constant cohomology for all α , $(R\Gamma_{X_{\alpha}}K)|_{X_{\alpha}}$ has locally constant cohomology for all α .

Let $X = \bigsqcup_{\alpha \in I} X_{\alpha}$ and $X = \bigsqcup_{\alpha \in I'} X_{\beta}'$ be two stratifications. We say that $X = \bigsqcup_{\alpha \in I} X_{\alpha}$ is *finer* than $X = \bigsqcup_{\beta \in I'} X_{\beta}'$ if any X_{α} is contained in some X_{β}' . The following fact guarantees that there exist enough good stratifications:

(5.2) For any locally finite family $\{Z_j\}_j$ of locally closed subsets, there exists a good stratification such that any Z_i is a union of strata.

A regular subanalytic filtration of X is an increasing sequence

$$
\emptyset = X_{-1} \subset \cdots \subset X_N = X
$$

of closed subanalytic subsets X_k of X such that $\check{X}_k := X_k \setminus X_{k-1}$ is smooth of dimension k. We say that it is a good filtration if $\{X_k\}$ satisfies [\(5.1\)](#page-9-1). Note that any subanalytic stratification $X = \bigsqcup_{\alpha \in I} X_{\alpha}$ gives a regular subanalytic filtration defined by $X_k := \bigsqcup_{\dim X_\alpha \leq k} X_\alpha$.

Let A be a Noetherian regular ring. Denote by $Mod_{\mathbb{R}_{\mathbb{C}}}(A_X)$ the category of $\mathbb R$ -constructible A_X -modules, and by $\mathrm{D}^\mathrm{b}_{\mathbb R\text{-}\mathrm{c}}(A_X)$ the bounded derived category of $\mathbb R$ constructible A_X -modules. Let $((D_{\mathbb{R}-c}^{\leq c}(A_X))_{c\in\mathbb{R}}, (D_{\mathbb{R}-c}^{\geq c}(A_X))_{c\in\mathbb{R}})$ be the standard t-structure of $D_{\mathbb{R}_{\mathbb{C}}}^{\mathbf{b}}(A_X)$, that is,

$$
D_{\mathbb{R}\text{-}c}^{\leq c}(A_X) = \{ K \in D_{\mathbb{R}\text{-}c}^b(A_X) \mid H^i(K) = 0 \text{ for any } i > c \},
$$

$$
D_{\mathbb{R}\text{-}c}^{\geq c}(A_X) = \{ K \in D_{\mathbb{R}\text{-}c}^b(A_X) \mid H^i(K) = 0 \text{ for any } i < c \}.
$$

We define

$$
{}_{\text{KS}}^{1/2} \mathcal{D}_{\mathbb{R}\text{-c}}^{\leq c}(A_X) = \{ K \in \mathcal{D}_{\mathbb{R}\text{-c}}^{\mathbf{b}}(A_X) \mid \dim \text{Supp}(H^i(K)) \leq -2(i-c) \text{ for any } i \},
$$

(5.3)

$$
{}_{\text{KS}}^{1/2} \mathcal{D}_{\mathbb{R}\text{-c}}^{\geq c}(A_X) = \{ K \in \mathcal{D}_{\mathbb{R}\text{-c}}^{\text{b}}(A_X) \mid H^i \text{R} \Gamma_Z(K) = 0 \text{ for any closed subanalytic subset } Z \text{ and } i < c - \frac{1}{2} \dim Z \}.
$$

Proposition 5.1. The pair $\left(\binom{1/2}{\text{KS}}\mathbf{D}_{\mathbb{R}-c}^{\leq c}(A_X)\right)_{c \in \mathbb{R}}, \left(\binom{1/2}{\text{KS}}\mathbf{D}_{\mathbb{R}-c}^{\geq c}(A_X)\right)_{c \in \mathbb{R}}$ is a t-structure on $D_{\mathbb{R}-c}^{\mathbf{b}}(A_X)$.

Proof. Indeed, $\binom{1/2}{\text{KS}}\mathcal{D}_{\mathbb{R}-\text{c}}^{c}(A_X)$ coincides with the t-structure associated with the perversity $p(n) = [c - n/2]$ (see e.g. [\[5,](#page-24-5) Definition 10.2.1]).

Lemma 5.2 ([\[5,](#page-24-5) Proposition 10.2.4]). Let $K \in D^b_{\mathbb{R}^n}(\mathbb{A}_X)$ and let $X = \bigsqcup_{\alpha} X_{\alpha}$ be a subanalytic stratification of X such that $(D_XK)|_{X_\alpha}$ has locally constant cohomology for any α . Then $K \in \frac{1/2}{\text{KS}} \mathcal{D}^{\geq c}_{\mathbb{R}-c}(A_X)$ if and only if

$$
(\mathrm{R}\Gamma_{X_{\alpha}}K)_x \in D^{\geq c-\dim X_{\alpha}/2}_{\text{coh}}(A) \quad \text{ for any } \alpha \text{ and } x \in X_{\alpha}.
$$

§5.2. Self-dual t-structure: R-constructible case

As in the preceding subsection, X is a subanalytic space and A is a Noetherian regular ring. Let D_X be the duality functor

$$
D_X(K) = R\mathcal{H}om_A(K, \omega_X) \quad \text{ for } K \in D^b_{\mathbb{R}^{\infty}}(A_X),
$$

where $\omega_X = a_X^{\dagger} A_{\text{pt}}$ with the canonical projection $a_X : X \to \text{pt}$. For $F \in Mod_{\mathbb{R}\text{-}\mathrm{c}}(A_X)$, we set

(5.4)
$$
\text{mod-dim}(F) = \sup_{m \ge 0} \left(\dim \{ x \in X \mid \text{codim } F_x = m \} - m \right),
$$

where codim F_x denotes the codimension of $\text{Supp}(F_x) \subset \text{Spec}(A)$. Hence if $X =$ $\bigsqcup_{\alpha} X_{\alpha}$ is a subanalytic stratification with connected strata and $F|_{X_{\alpha}}$ is locally constant for any α , then

$$
\text{mod-dim}(F) = \sup \{ \dim X_{\alpha} - \text{codim } F_{x_{\alpha}} \mid F|_{X_{\alpha}} \neq 0 \},\
$$

where x_{α} is a point of X_{α} . We understand mod-dim $0 = -\infty$.

We set

$$
(5.5) \quad {}^{1/2}D_{\mathbb{R}\text{-c}}^{\leq c}(A_X) = \{K \in D^{\mathrm{b}}_{\mathbb{R}\text{-c}}(A_X) \mid \text{mod-dim}(H^i(K)) \leq -2(i-c) \text{ for any } i\},
$$

$$
{}^{1/2}D_{\mathbb{R}\text{-c}}^{\geq c}(A_X) = \{K \in D^{\mathrm{b}}_{\mathbb{R}\text{-c}}(A_X) \mid D_X K \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{\leq -c}(A_X)\}.
$$

Note that, when A is a field, they coincide with ${}_{\text{KS}}^{1/2} \mathcal{D}_{\mathbb{R}-c}^{\leq c}(A_X)$ and ${}_{\text{KS}}^{1/2} \mathcal{D}_{\mathbb{R}-c}^{\geq c}(A_X)$.

Lemma 5.3. Let $K \in D^b_{\mathbb{R}^n}(\mathbb{A}_X)$ and $c \in \mathbb{R}$. Let $X = \bigsqcup_{\alpha} X_{\alpha}$ be a subanalytic stratification such that $K|_{X_\alpha}$ has locally constant cohomology. Then the following conditions are equivalent:

- (a) $K \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{\leq c}(A_X),$
- (b) dim{ $x \in X \mid K_x \notin \frac{1}{2}D_{\text{coh}}^{\leq c-k/2}(A) \} < k \text{ for any } k \in \mathbb{Z}$,
- (c) $K_x \in {}^{1/2}D_{\text{coh}}^{\leq c-(\dim X_{\alpha})/2}(A)$ for any α and $x \in X_{\alpha}$.

Proof. (a)⇔(c). It is obvious that $K \in {}^{1/2}D_{\mathbb{R}_c}^{\leq c}(A_X)$ if and only if

 $\dim X_{\alpha} - \text{\text{codim}} \, \text{Supp}(H^i(K)_x) \leq -2(i-c) \quad \text{ for any } \alpha, x \in X_{\alpha} \text{ and } i \in \mathbb{Z}.$

The last condition is equivalent to

$$
\mathrm{codim} \operatorname{Supp}(H^i(K_x)) \ge 2(i - c + (\dim X_\alpha)/2),
$$

or equivalently $K_x \in {}^{1/2}D_{\text{coh}}^{\leq c-(\dim X_{\alpha})/2}(A)$.

(b)⇔(c). (b) is equivalent to

for any
$$
x \in X_\alpha
$$
, $K_x \notin {}^{1/2}D_{\text{coh}}^{\leq c-k/2}(A)$ implies dim $X_\alpha < k$,

which is equivalent to

for any
$$
x \in X_\alpha
$$
, $\dim X_\alpha \ge k$ implies $K_x \in {}^{1/2}D_{\text{coh}}^{\le c-k/2}(A)$

This is obviously equivalent to (c).

Lemma 5.4. Let $K \in D^b_{\mathbb{R}^n}(\mathbb{A}_X)$ and $c \in \mathbb{R}$. Let $X = \bigsqcup_{\alpha} X_{\alpha}$ be a subanalytic stratification such that $(D_XK)|_{X_{\alpha}}$ has locally constant cohomology. Then the following conditions are equivalent:

(a)
$$
K \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c}(A_X),
$$

(b) for any $c' \in \mathbb{R}$ and $M \in {}^{1/2}D_{\text{coh}}^{\leq c'}(A)$, we have

$$
\mathcal{R}\mathcal{H}\!\mathit{om}_A(M_X,K) \in \mathcal{K}_\mathcal{S}^{1/2} \mathcal{D}_{\mathbb{R}\text{-}\mathbf{c}}^{\geq c-c'}(A_X),
$$

- (c) $\mathrm{R}\Gamma_Z(K)_x \in {}^{1/2}\mathrm{D}_{\mathrm{coh}}^{\geq c-\dim Z/2}(A)$ for any closed subanalytic set Z and $x \in Z$,
- (d) $(R\Gamma_{X_{\alpha}}K)_x \in {}^{1/2}D_{\text{coh}}^{\geq c-\dim X_{\alpha}/2}(A)$ for any α and $x \in X_{\alpha}$,
- (e) dim{ $x \in X \mid (\mathrm{R}\Gamma_{\{x\}}K)_x \notin {}^{1/2}D^{\geq c+k/2}_{\text{coh}}(A) \} < k \text{ for any } k \in \mathbb{Z}_{\geq 0}.$

Proof. Let $i_{\alpha} : X_{\alpha} \to X$ be the inclusion.

(a) \Leftrightarrow (d). By (a) \Leftrightarrow (c) in the preceding lemma, condition (a) is equivalent to

$$
(\mathsf{D}_X K)_x \in {}^{1/2} \mathsf{D}_{\mathrm{coh}}^{\leq -c - (\dim X_\alpha)/2}(\Lambda) \quad \text{ for any } \alpha \text{ and } x \in X_\alpha.
$$

On the other hand, we have $i_{\alpha}^{-1}D_XK \simeq D_{X_{\alpha}}i_{\alpha}^{\dagger}K$. Hence $i_{\alpha}^{\dagger}K$ has locally constant cohomology. Since

$$
(\mathsf{D}_X K)_x \simeq (\mathsf{D}_{X_\alpha} i_\alpha^! K)_x \simeq \mathrm{RHom}_A((i_\alpha^! K)_x, A)[\dim X_\alpha],
$$

the above condition is equivalent to

$$
\mathrm{RHom}_A((i_\alpha^! K)_x, A) \in {}^{1/2}D_{\mathrm{coh}}^{\leq -c + (\dim X_\alpha)/2}(A),
$$

which is again equivalent to $(i_{\alpha}^{\dagger} K)_x \in {}^{1/2}D_{\text{coh}}^{\geq c-(\dim X_{\alpha})/2}(A)$.

(a)⇔(e). (a) is equivalent to $D_X K \in {}^{1/2}D_{\mathbb{R}_{\text{-c}}}^{\leq -c}(\mathbf{k}_X)$. By the preceding lemma, this is equivalent to

$$
\dim\{x \in X \mid (\mathsf{D}_X K)_x \notin \lambda^{1/2} \mathrm{D}_{\mathrm{coh}}^{\leq -c-k/2}(A) \} < k \quad \text{ for any } k \in \mathbb{Z}_{\geq 0}.
$$

Since $(D_X K)_x \simeq D_A((R\Gamma_{\{x\}}K)_x)$, the condition $(D_X K)_x \notin {}^{1/2}D_{\text{coh}}^{\leq -c-k/2}(A)$ is equivalent to $(\mathrm{R}\Gamma_{\{x\}}K)_x \notin {}^{1/2}D^{\geq c+k/2}_{\mathrm{coh}}(A).$

(d)⇔(b). Condition (d) is equivalent to

 (5.6) RHom $_A(M,(\mathrm{R}\Gamma_{X_\alpha}K)_x) \in D^{\geq c-(\dim X_\alpha)/2-c'}_{\text{coh}}(A)$ for any $M \in {}^{1/2}D^{\leq c'}_{\text{coh}}(A)$, α and $x \in X_{\alpha}$.

 \Box

Since RHom_A $(M, (\mathrm{R} \Gamma_{X_\alpha} K)_x) \simeq (\mathrm{R} \Gamma_{X_\alpha} \mathrm{R} \mathcal{H}om_A(M_X, K))_x$, the last condition [\(5.6\)](#page-12-0) is equivalent to (b) by Lemma [5.2.](#page-10-0)

 $(c) \Rightarrow (d)$ is obvious.

(b)⇒(c). For any $c' \in \mathbb{R}$ and $M \in {}^{1/2}D_{\text{coh}}^{\leq c'}(A)$, we have

$$
(\mathrm{R}\Gamma_Z\mathrm{R\mathscr{H}\!\mathit{om}}_A(M_X,K))_x\in \mathrm{D}^{\geq c-c'-(\dim Z)/2}_{\mathrm{coh}}(A).
$$

Since RHom_A $(M, (\text{R}\Gamma_Z K)_x) \simeq (\text{R}\Gamma_Z \text{R} \mathcal{H}om_A (M_X, K))_x$, we obtain (c). \Box

We shall prove the following theorem in several steps.

Theorem 5.5. $((1/2\mathbf{D}_{\mathbb{R}-c}^{\leq c}(A_X))_{c\in\mathbb{R}}, (1/2\mathbf{D}_{\mathbb{R}-c}^{\geq c}(A_X))_{c\in\mathbb{R}})$ is a t-structure on ${\rm D}^{\rm b}_{{\mathbb R} \text{-}{\rm c}}(A_X).$

It is obvious that conditions [\(a\)](#page-2-1) and [\(b\)](#page-2-2) in Definition [1.2](#page-2-0) are satisfied. Let us show (c) .

Lemma 5.6. For $c \in \mathbb{R}$, $K \in {}^{1/2}D_{\mathbb{R}-c}^{\leq c}(A_X)$ and $L \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c'}(A_X)$, we have $\mathbb{R}\text{Hom}(K,L)\in \mathrm{D}^{\geq c'-c}_{\mathbb{R}\text{-}c}(A_X).$

Proof. Let us take a good regular subanalytic filtration
$$
\emptyset = X_{-1} \subset \cdots \subset X_N = X
$$
 such that K and L have locally constant cohomology on each $\mathring{X}_k := X_k \setminus X_{k-1}$. We may assume that \mathring{X}_k is smooth of dimension k .

Let $i_k: \mathring{X}_k \to X$ be the inclusion.

Let us first show that

(5.7)
$$
i_k^{\dagger} \mathbf{R} \mathcal{H}om(K, L) \simeq \mathbf{R} \mathcal{H}om(i_k^{-1} K, i_k^{\dagger} L) \text{ belongs to } \mathbf{D}_{\mathbb{R}\text{-c}}^{\geq c'-c}(A_{\mathring{X}_k}).
$$

Since $i_k^{-1}K$, $i_k^!L$ have locally constant cohomology,

$$
(i_k^! R\mathcal{H}om(K, L))_x \simeq \mathrm{RHom}_A(((i_k)^{-1}K)_x, (i_k^! L)_x)
$$

for any $x \in \mathring{X}_k$. Hence it is enough to show that

(5.8)
$$
\text{RHom}_{A}((i_{k}^{-1}K)_{x}, (i_{k}^{!}L)_{x}) \in D_{\mathbb{R}_{-}}^{\geq c'-c}(A).
$$

This follows from Corollary [4.3](#page-7-1) and

$$
(i_k^{-1}K)_x \in {}^{1/2}D_{\text{coh}}^{\leq c-k/2}(A)
$$
 and $(i_k^!L)_x \in {}^{1/2}D_{\text{coh}}^{\geq c'-k/2}(A)$.

Now we shall show by induction on k that

$$
\mathrm{R}\Gamma_{X_k}\mathrm{R\mathscr{H}\!\!om}(K,L)\in \mathrm{D}_{\mathbb{R}\text{-}\mathrm{c}}^{\geq c'-c}(A_X).
$$

By the induction hypothesis $R\Gamma_{X_{k-1}}R\mathcal{H}om(K,L) \in D_{\mathbb{R}_{-c}}^{\geq c'-c}(A_X)$. We have the distinguished triangle

$$
\mathrm{R}\Gamma_{X_{k-1}}\mathrm{R}\mathscr{H}\!\mathit{om}(K,L)\to \mathrm{R}\Gamma_{X_k}\mathrm{R}\mathscr{H}\!\mathit{om}(K,L)\to \mathrm{R}\Gamma_{\mathring{X}_k}\mathrm{R}\mathscr{H}\!\mathit{om}(K,L)\xrightarrow{+1}.
$$

Since R $\Gamma_{\hat{X}_k}R\mathcal{H}om(K,L) \simeq R(i_k)_*i_k^!\mathbb{R}\mathcal{H}om(K,L)$ belongs to $D_{\mathbb{R}-c}^{\geq c'-c}(A_X)$, we obtain R Γ_{X_k} R $\mathcal{H}om(K,L) \in D_{\mathbb{R}_{\text{-c}}}^{\geq c'-c}(A_X)$. \Box

Now we shall show condition [\(d\)](#page-2-4) of Definition [1.2](#page-2-0) in a special case.

Lemma 5.7. Let X be a smooth subanalytic space, and $c \in \mathbb{R}$. Let $K \in D_{\mathbb{R}-c}^{\mathbf{b}}(A_X)$ and assume that K has locally constant cohomology. Then there exists a distinguished triangle

$$
K' \to K \to K'' \xrightarrow{+1}
$$

with $K' \in {}^{1/2}D_{\mathbb{R}-c}^{\leq c}(A_X)$ and $K'' \in {}^{1/2}D_{\mathbb{R}-c}^{>c}(A_X)$. Moreover K' and K'' have locally constant cohomology.

Proof. We argue in three steps.

(i) Such a distinguished triangle exists locally. Indeed, for any $x \in X$, there exist an open neighborhood U of x and $M \in D^b_{coh}(A)$ such that $K|_U \simeq M_U$. Take a distinguished triangle $M' \to M \to M'' \xrightarrow{+1}$ such that $M' \in {}^{1/2}D_{\text{coh}}^{\leq c-(\dim X)/2}(A)$ and $M'' \in {}^{1/2}D_{\text{coh}}^{>c-(\dim X)/2}(A)$. Then $M'_U \to M_U \to M''_U \xrightarrow{+1}$ gives the desired distinguished triangle.

(ii) If U_i is an open subset of X and $K'_i \to K|_{U_i} \to K''_i \xrightarrow{+1}$ is a distinguished triangle with $K'_i \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{\leq c}(A_{U_i})$ and $K''_i \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{>c}(A_{U_i})$ $(i = 1, 2)$, then there exists a distinguished triangle $K' \to K|_{U_1 \cup U_2} \to K'' \xrightarrow{+1}$ with $K' \in 1/2$ $D_{\mathbb{R}-c}^{\leq c}(A_{U_1 \cup U_2})$ and $K'' \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{>c}(A_{U_1\cup U_2}).$

Indeed, by the uniqueness of such a distinguished triangle, we have $K_1'|_{U_1 \cap U_2} \simeq$ $K_2'|_{U_1 \cap U_2}$. Denote both by $K_0 \in D^b(A_{U_1 \cap U_2})$. Let $i_0: U_1 \cap U_2 \to U_1 \cup U_2$ and $i_k: U_k \to U_1 \cup U_2(k = 1, 2)$ be the open inclusions. Then embed a morphism $(i_0)_!K_0 \rightarrow (i_1)_!K'_1 \oplus (i_2)_!K'_2$ into a distinguished triangle

$$
(i_0)_!K_0 \to (i_1)_!K'_1 \oplus (i_2)_!K'_2 \to K' \xrightarrow{+1}.
$$

Then $K'|_{U_k} \simeq K'_k$. Since the composition $(i_0)_! K_0 \to (i_1)_! K'_1 \oplus (i_2)_! K'_2 \to K|_{U_1 \cup U_2}$ vanishes, the morphism $(i_1)_!K'_1 \oplus (i_2)_!K'_2 \rightarrow K|_{U_1 \cup U_2}$ factors through K'. Hence, there exists a morphism $K' \to K|_{U_1 \cup U_2}$ which extends $K'_i \to K|_{U_i}$ $(i = 1, 2)$. Embedding this morphism into a distinguished triangle $K' \to K|_{U_1 \cup U_2} \to K'' \xrightarrow{+1}$, we obtain the desired distinguished triangle.

(iii) By (i) and (ii), there exist an increasing sequence of open subsets ${U_n}_{n \in \mathbb{Z}_{\geq 0}}$ with $X = \bigcup_{n \in \mathbb{Z}_{\geq 0}} U_n$ and a distinguished triangle $K'_n \to K|_{U_n} \to$

 $K_n'' \longrightarrow$ with $K_n' \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{\leq c}(A_{U_n})$ and $K_n'' \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{>c}(A_{U_n})$. Let $i_n: U_n \longrightarrow X$ be the inclusion. By the uniqueness of such distinguished triangles, we have $K'_{n+1}|_{U_n} \simeq K'_n$. Hence, we have a map $\beta_n: (i_n)_! K'_n \to (i_{n+1})! K'_{n+1}$. Let K' be the hocolim of the inductive system $\{(i_n)_1 K'_n\}_{n\in\mathbb{Z}_{\geq 0}}$, that is, the third term of a distinguished triangle

$$
\bigoplus_{n\in\mathbb{Z}_{\geq 0}} (i_n)_! K'_n \xrightarrow{f} \bigoplus_{n\in\mathbb{Z}_{\geq 0}} (i_n)_! K'_n \to K' \xrightarrow{+1}.
$$

Here f is such that the following diagram commutes for any $a \in \mathbb{Z}_{\geq 0}$:

$$
(i_a)_! K'_a \xrightarrow{\mathrm{id}_{(i_a)_! K'_a} \oplus (-\beta_a)} (i_a)_! K'_a \oplus (i_{a+1})_! K'_{a+1}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\bigoplus_{n \in \mathbb{Z}_{\geq 0}} (i_n)_! K'_n \xrightarrow{f} \bigoplus_{n \in \mathbb{Z}_{\geq 0}} (i_n)_! K'_n.
$$

Then $K'|_{U_n} \simeq K'_n$. Since the composition

$$
\bigoplus_{n \in \mathbb{Z}_{\geq 0}} (i_n)_! K'_n \xrightarrow{f} \bigoplus_{n \in \mathbb{Z}_{\geq 0}} (i_n)_! K'_n \to K
$$

vanishes, the morphism $\bigoplus_{n\in\mathbb{Z}_{\geq 0}} (i_n)_! K'_n \to K$ factors through K'. Hence there is a morphism $K' \to K$ which extends $(i_n)_! K'_n \to K$. Embedding this morphism into a distinguished triangle $K' \to K \to K'' \xrightarrow{+1}$, we obtain the desired distinguished \Box triangle.

Finally we shall complete the proof of condition [\(d\)](#page-2-4) of Definition [1.2.](#page-2-0)

Lemma 5.8. Let $K \in D_{\mathbb{R}-c}^{\mathbf{b}}(A_X)$ and $c \in \mathbb{R}$. Then there exists a distinguished triangle $K' \to K \to K'' \xrightarrow{+1}$ with $K' \in {}^{1/2}D_{\mathbb{R}_c}^{\leq c}(A_X)$ and $K'' \in {}^{1/2}D_{\mathbb{R}_c}^{>c}(A_X)$.

Proof. Let us take a good regular subanalytic filtration $\emptyset = X_{-1} \subset \cdots \subset X_N = X$ such that K has locally constant cohomology on each $\mathring{X}_k := X_k \setminus X_{k-1}$. We may assume that \check{X}_k is a smooth subanalytic space of dimension k. We shall prove that

 $(5.9)_k$ there exists a distinguished triangle $K' \to K|_{X\setminus X_k} \to K'' \stackrel{+1}{\longrightarrow}$ with $K \in$ ^{1/2}D^{$\leq c$} $(A_{X\setminus X_k})$ and $K'' \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{>c}(A_X)$. Moreover, $K'|_{\hat{X}_j}$ and $K''|_{\hat{X}_j}$ have locally constant cohomology for $j > k$,

by descending induction on k .

Assuming $(5.9)_k$, we shall show $(5.9)_{k-1}$. Let $K' \to K|_{X\setminus X_k} \to K'' \xrightarrow{+1}$ be a distinguished triangle as in $(5.9)_k$. Let $j: X \setminus X_k \to X \setminus X_{k-1}$ be the open embedding and $i: X_k \to X \setminus X_{k-1}$ the closed embedding. The morphism $K' \to$ $K|_{X\setminus X_k}$ induces $j_!K' \to K|_{X\setminus X_{k-1}}$. We embed it into a distinguished triangle

in D^b_{R-c}($A_{X\setminus X_{k-1}}$)

$$
j_!K' \to K|_{X\setminus X_{k-1}} \to L \xrightarrow{+1}.
$$

By Lemma [5.7,](#page-14-0) there exists a distinguished triangle

$$
(5.10)\t\t\t L' \to i^! L \to L'' \xrightarrow{+1}
$$

with $L' \in {}^{1/2}D_{\mathbb{R}_{-c}}^{\leq c}(A_{\mathring{X}_k})$ and $L'' \in {}^{1/2}D_{\mathbb{R}_{-c}}^{>c}(A_{\mathring{X}_k})$. We embed the composition $i_!L' \rightarrow i_!i^!L \rightarrow L$ into a distinguished triangle

(5.11)
$$
i_!L' \to L \to \widetilde{K}'' \xrightarrow{+1}.
$$

Finally, we embed the composition $K|_{X\setminus X_{k-1}} \to L \to \widetilde{K}''$ into a distinguished triangle

$$
\widetilde{K}' \to K|_{X \setminus X_{k-1}} \to \widetilde{K}'' \xrightarrow{+1}.
$$

Let us show that

$$
\widetilde{K}' \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{\leq c}(A_{X\setminus X_{k-1}}) \text{ and } \widetilde{K}'' \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{\geq c}(A_{X\setminus X_{k-1}}).
$$

By the construction, we have $\widetilde{K}''|_{X\setminus X_k} \simeq L|_{X\setminus X_k} \simeq K''$ and $\widetilde{K}'|_{X\setminus X_k} \simeq K'$. Hence it is enough to show that $i^{-1}\widetilde{K}' \in {}^{1/2}D_{\mathbb{R}-c}^{\leq c}(A_{\mathring{X}_k})$ and $i^{\dagger}\widetilde{K}'' \in {}^{1/2}D_{\mathbb{R}-c}^{>c}(A_{\mathring{X}_k})$. Applying the functor $i^!$ to (5.11) , we obtain a distinguished triangle

$$
L' \to i^! L \to i^! \widetilde{K}'' \xrightarrow{+1}.
$$

By the distinguished triangle [\(5.10\)](#page-16-1), we have $i^{\dagger} \tilde{K}'' \simeq L'' \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{>c}(A_{\mathring{X}_k})$.

By the octahedral axiom of a triangulated category, we have a diagram

and a distinguished triangle

$$
j_!K' \to \widetilde{K}' \to i_!L' \xrightarrow{+1}.
$$

This implies $i^{-1}\widetilde{K}' \simeq L' \in {}^{1/2}D_{\mathbb{R}-c}^{\leq c}(A_{\mathring{X}_k}).$

This completes the proof of Theorem [5.5.](#page-13-0)

 \Box

Recall the full subcategory of $D_{\mathbb{R}-c}^{\mathbf{b}}(A_X)$:

$$
^{1/2}{\rm D}_{{\mathbb R}\text{-}{\rm c}}^{[a,b]}(A_X):= {^{1/2}{\rm D}_{{\mathbb R}\text{-}{\rm c}}^{\leq b}(A_X)}\cap {^{1/2}{\rm D}_{{\mathbb R}\text{-}{\rm c}}^{\geq a}(A_X)}
$$

for $a \leq b$.

Proposition 5.9. Assume that $a, b \in \mathbb{R}$ satisfy $a \leq b \leq a+1$. Then $X \supset U \mapsto$ ${}^{1/2}D_{\mathbb{R}\text{-}\mathrm{c}}^{[a,b]}((A_U)$ is a stack on X.

Proof. (i) Let $K, L \in {}^{1/2}D_{\mathbb{R}-c}^{[a,b]}(A_X)$. Since $R\mathcal{H}om_A(K, L) \in D_{\mathbb{R}-c}^{\geq a-b}(A_X)$ $D_{\mathbb{R}-c}^{\geq 0}(A_X)$, the presheaf

$$
U \mapsto \text{Hom}_{1/2\text{D}^{[a,b]}_{\mathbb{R}\text{-}c}(A_U)}(K|_U, L|_U) \simeq \Gamma(U; H^0(\text{R} \mathcal{H}om_A(K, L)))
$$

is a sheaf. Hence, $U \mapsto {}^{1/2}D_{\mathbb{R}-c}^{[a,b]}(A_U)$ is a separated prestack on X. (ii) Let us show the following statement:

• Let U_1 and U_2 be open subsets of X such that $X = U_1 \cup U_2$, and let $K_k \in {}^{1/2}D_{\mathbb{R}_c}^{[a,b]}(A_{U_k})$ $(k = 1, 2)$. Assume that $K_1|_{U_1 \cap U_2} \simeq K_2|_{U_1 \cap U_2}$. Then there exists $K \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{[a,b]}(A_X)$ such that $K|_{U_k} \simeq K_k$ $(k = 1, 2)$.

Set $U_0 = U_1 \cap U_2$ and $K_0 = K_1|_{U_1 \cap U_2} \simeq K_2|_{U_1 \cap U_2} \in {}^{1/2}D_{\mathbb{R}-c}^{[a,b]}(A_{U_0})$. Let $j_k: U_k \to X$ be the open inclusion $(k = 0, 1, 2)$. Then we have $\beta_k : (j_0)_1(K_0) \to (j_k)_1K_k$ $(k =$ 1, 2). We embed the morphism (β_1, β_2) : (j_0) _! $(K_0) \rightarrow (j_1)$ _! $K_1 \oplus (j_2)$ _! K_2 into a distinguished triangle

$$
(j_0)_!(K_0) \to (j_1)_!K_1 \oplus (j_2)_!K_2 \to K \xrightarrow{+1}.
$$

Then K satisfies the desired condition.

(iii) Let us show the following statement:

• Let ${U_n}_{n\in\mathbb{Z}_{\geq 0}}$ be an increasing sequence of open subsets of X such that $X =$ $\bigcup_{n\in\mathbb{Z}_{\geq 0}} U_n$. Let $K_n \in {}^{1/2}D_{\mathbb{R}-c}^{[a,b]}(A_{U_n})$ $(n\in\mathbb{Z}_{\geq 0})$ and $K_{n+1}|_{U_n}\simeq K_n$. Then there exists $K \in {}^{1/2}D_{\mathbb{R}-c}^{[a,b]}(A_X)$ such that $K|_{U_n} \simeq K_n$ $(n \in \mathbb{Z}_{\geq 0}).$

The proof is similar to the proof of Lemma [5.7.](#page-14-0) Let $j_n: U_n \to X$ be the open inclusion, and let (j_n) $(K_n \rightarrow (j_{n+1})$ (K_{n+1}) be the morphism induced by the isomorphism $K_{n+1}|_{U_n} \simeq K_n$. Let K be the hocolim of the inductive system $\{(j_n)_1K_n\}_{n\in\mathbb{Z}_{\geq 0}}$. Then $K \in {}^{1/2}D_{\mathbb{R}-c}^{[a,b]}(A_X)$ satisfies the desired condition.

(iv) By (i)–(iii), we conclude that $U \mapsto {}^{1/2}D_{\mathbb{R}_{\text{-c}}}^{[a,b]}(A_U)$ is a stack on X. \Box

Proposition 5.10. Let $f: X \rightarrow Y$ be a morphism of subanalytic spaces, and $d \in \mathbb{Z}_{\geq 0}$. Assume that $\dim f^{-1}(y) \leq d$ for any $y \in Y$. Then:

- (i) If $G \in {}^{1/2}D_{\mathbb{R}_{-c}}^{\leq c}(A_Y)$, then $f^{-1}G \in {}^{1/2}D_{\mathbb{R}_{-c}}^{\leq c+d/2}(A_X)$.
- (ii) If $G \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c}(A_Y)$, then $f'G \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c-d/2}(A_X)$.

(iii) If $F \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c}(A_X)$ and $Rf_*F \in D_{\mathbb{R}-c}^{\rm b}(A_Y)$, then $Rf_*F \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c-d/2}(A_Y)$. (iv) If $F \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{\leq c}(A_X)$ and $Rf_!F \in D_{\mathbb{R}\text{-}c}^b(A_Y)$, then $Rf_!F \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{\leq c+d/2}(A_Y)$.

Proof. (i) Assume $G \in {}^{1/2}D_{\mathbb{R}_{\text{-c}}}^{\leq c}(A_Y)$. Then

$$
\dim\{x \in X \mid (f^{-1}G)_x \notin {}^{1/2}D_{\text{coh}}^{\leq c+d/2-k/2}(A)\}
$$
\n
$$
= \dim f^{-1}(\{y \in Y \mid G_y \notin {}^{1/2}D_{\text{coh}}^{\leq c+d/2-k/2}(A)\})
$$
\n
$$
\leq \dim\{y \in Y \mid G_y \notin {}^{1/2}D_{\text{coh}}^{\leq c+d/2-k/2}(A)\} + d < (k-d) + d = k.
$$

- (ii) follows from (i) by duality.
- (iii) For any $G \in {}^{1/2}D_{\mathbb{R}-c}^{< c-d/2}(A_Y),$

$$
\mathrm{Hom}_{\mathrm{D}^{\mathrm{b}}_{\mathbb{R}\text{-}\mathrm{c}}(A_Y)}(G, \mathrm{R}f_* F) \simeq \mathrm{Hom}_{\mathrm{D}^{\mathrm{b}}_{\mathbb{R}\text{-}\mathrm{c}}(A_X)}(f^{-1}G, F)
$$

vanishes because $f^{-1}G \in {}^{1/2}D_{\mathbb{R}-c}^{\leq c}(A_X)$ by (i). Hence $Rf_*F \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c-d/2}(A_Y)$ by (1.3) .

Similarly, (iv) follows from (ii).

We shall give relations between the two t-structures:

$$
(({}^{1/2}_{\text{KS}}D_{\mathbb{R}\text{-}c}^{\leq c}(A_X))_{c\in\mathbb{R}}, ({}^{1/2}_{\text{KS}}D_{\mathbb{R}\text{-}c}^{\geq c}(A_X))_{c\in\mathbb{R}}),
$$

$$
(({}^{1/2}D_{\mathbb{R}\text{-}c}^{\leq c}(A_X))_{c\in\mathbb{R}}, ({}^{1/2}D_{\mathbb{R}\text{-}c}^{\geq c}(A_X))_{c\in\mathbb{R}}).
$$

Lemma 5.11. Let $K \in D_{\mathbb{R}-c}^{\mathbf{b}}(A_X)$ and $c \in \mathbb{R}$.

- (i) The following conditions are equivalent:
	- (a) $K \in {}^{1/2}D_{\mathbb{R}\text{-c}}^{\leq c}(A_X),$
	- (b) for any $c' \in \mathbb{R}$ and $M \in {}^{1/2}D_{\text{coh}}^{\geq c'}(A)$, we have

$$
\mathcal{R}\mathcal{H}\!\!\mathit{om}_A(K, M \otimes \omega_X) \in \mathcal{H}_{\mathrm{KS}}^{1/2} \mathcal{D}_{\mathbb{R}\text{-}\mathrm{c}}^{ \geq c' - c}(A_X).
$$

- (ii) The following conditions are equivalent:
	- (a) $K \in {}^{1/2}D^{\geq c}_{\mathbb{R}_{-}c}(A_X),$
	- (b) for any $c' \in \mathbb{R}$ and $M \in {}^{1/2}D_{\text{coh}}^{\leq c'}(A)$, we have

$$
\mathcal{R}\mathcal{H}\!\mathit{om}_A(M_X,K) \in \mathop{\mathrm{KS}}\nolimits^{1/2} \mathcal{D}^{\geq c-c'}_{\mathbb{R}\text{-}c}(A_X).
$$

Proof. (ii) is already proved in Lemma [5.4;](#page-12-1) and (i) follows from (ii) because

$$
R\mathcal{H}om_A(K, M \otimes \omega_X) \simeq R\mathcal{H}om_A(D_X(M \otimes \omega_X), D_XK)
$$

$$
\simeq R\mathcal{H}om_A((D_A M)_X, D_X K),
$$

where $D_A M := R \text{Hom}_A(M, A)$.

 \Box

 \Box

Lemma 5.12. Let X and Y be subanalytic spaces. Let $K \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c}(A_X)$ and $L \in {}^{1/2}D_{\mathbb{R}-c}^{\geq c'}(A_Y)$. Then

$$
K \overset{\mathcal{L}}{\boxtimes} L \in \, {}_{\rm KS}^{1/2} \mathcal{D}_{\mathbb{R}\text{-}\mathrm{c}}^{\geq c+c'}(A_{X\times Y}).
$$

Proof. Let $X = \bigsqcup_{\alpha} X_{\alpha}$ and $Y = \bigsqcup_{\beta} Y_{\beta}$ be good subanalytic stratifications such that $K|_{X_\alpha}$ and $L|_{Y_\beta}$ are locally constant. Then $(R\Gamma_{X_\alpha}K)_x \in 1/2\mathbb{D}_{\text{coh}}^{\geq c-(\dim X_\alpha)/2}(A)$ and $(R\Gamma_{Y_{\beta}}L)_y \in {}^{1/2}D_{\text{coh}}^{\geq c' - (\dim Y_{\beta})/2}(A)$ for $x \in X_{\alpha}$ and $y \in Y_{\beta}$. Hence by Proposition $4.4(iv)$ $4.4(iv)$,

$$
(\mathrm{R}\Gamma_{X_{\alpha}\times Y_{\beta}}(K\overset{\mathbf{L}}{\otimes}L))_{(x,y)} \simeq (\mathrm{R}\Gamma_{X_{\alpha}}K)_{x} \overset{\mathbf{L}}{\otimes} (\mathrm{R}\Gamma_{Y_{\beta}}L)_{y} \in D_{\mathrm{coh}}^{\geq c+c'-(\dim(X_{\alpha}\times Y_{\beta}))/2}(A).
$$

This yields the conclusion.

This yields the conclusion.

Remark 5.13. We have

$$
{}_{\rm KS}^{1/2} \mathcal{D}^{\leq c}_{\mathbb{R}\text{-c}}(A_X) \subset {}^{1/2} \mathcal{D}^{\leq c}_{\mathbb{R}\text{-c}}(A_X), \quad {}^{1/2} \mathcal{D}^{\geq c}_{\mathbb{R}\text{-c}}(A_X) \subset {}^{1/2}_{\rm KS} \mathcal{D}^{\geq c}_{\mathbb{R}\text{-c}}(A_X).
$$

§6. Self-dual t-structure: complex analytic variety case

§6.1. Middle perversity in the complex case

Let X be a complex analytic space. We denote by $\dim_{\mathbb{C}} X$ the dimension of X. Hence dim_C $X = (\dim X_{\mathbb{R}})/2$ where $X_{\mathbb{R}}$ is the underlying subanalytic space. For a complex submanifold Y of a complex manifold X, we denote by $\text{codim}_{\mathbb{C}} Y$ the codimension of Y as complex manifolds. We sometimes write d_X for dim_C X.

Let $D^b_{\mathbb{C}\text{-}c}(A_X)$ be the bounded derived category of the abelian category of sheaves of A-modules with C-constructible cohomology. It is a full subcategory of $D_{\mathbb{R}-c}^{\mathrm{b}}(A_X)$ and it is easy to see that the self-dual t-structure on $D_{\mathbb{R}-c}^{\mathrm{b}}(A_X)$ induces a self-dual t-structure on $D_{\mathbb{C}\text{-c}}^{\mathbb{b}}(A_X)$. More precisely, if we define

$$
{}^{1/2}D_{\mathbb{C}\text{-}c}^{\leq c}(A_X) := D_{\mathbb{C}\text{-}c}^{\mathbf{b}}(A_X) \cap {}^{1/2}D_{\mathbb{R}\text{-}c}^{\leq c}(A_X),
$$

$$
{}^{1/2}D_{\mathbb{C}\text{-}c}^{\geq c}(A_X) := D_{\mathbb{C}\text{-}c}^{\mathbf{b}}(A_X) \cap {}^{1/2}D_{\mathbb{R}\text{-}c}^{\geq c}(A_X),
$$

then $((1/2\mathbf{D}_{\mathbb{C}\text{-c}}^{\leq c}(A_X))_{c\in\mathbb{C}}, (1/2\mathbf{D}_{\mathbb{C}\text{-c}}^{\geq c}(A_X))_{c\in\mathbb{C}})$ is a t-structure on $\mathbf{D}_{\mathbb{C}\text{-c}}^{\mathbf{b}}(A_X)$. Similarly, the t-structure $(({}^{1/2}_{KS}\mathcal{D}^{\leq c}_{\mathbb{R}-c}(A_X))_{c\in\mathbb{C}},({}^{1/2}_{KS}\mathcal{D}^{\geq c}_{\mathbb{R}-c}(A_X))_{c\in\mathbb{C}})$ induces the t-structure $\left(\left(\begin{matrix}1/2 \\ KS\end{matrix} \mathsf{D}_{\mathbb{C}\text{-c}}^{\leq c}(A_X)\right)_{c\in\mathbb{C}}, \left(\begin{matrix}1/2 \\ KS\end{matrix} \mathsf{D}_{\mathbb{C}\text{-c}}^{\geq c}(A_X)\right)_{c\in\mathbb{C}}\right)$ on $\mathsf{D}_{\mathbb{C}\text{-c}}^{\mathsf{b}}(A_X)$.

Note that the t-structure $\binom{1/2}{\text{KS}}\mathcal{D}^{\leq 0}_{\mathbb{C}\text{-c}}(A_X), \underset{\text{KS}}{^{1/2}}\mathcal{D}^{\geq 0}_{\mathbb{C}\text{-c}}(A_X)$ in the original sense is denoted by $({}^pD_{\mathbb{C}\text{-}c}^{\leq 0}(X), {}^pD_{\mathbb{C}\text{-}c}^{\geq 0}(X))$ in [\[5,](#page-24-5) §10.3].

In [\[5,](#page-24-5) §10.3], various properties of $\binom{1/2}{\text{KS}}\mathcal{D}^{\leq 0}_{\mathbb{C}\text{-c}}(A_X),^{1/2}_{\text{KS}}\mathcal{D}^{\geq 0}_{\mathbb{C}\text{-c}}(A_X)$ are studied. By using Lemma [5.11,](#page-18-0) in the next subsection we obtain similar properties for $((1/2 {\rm D}_{\mathbb{C}\text{-}{\rm c}}^{\leq c}(A_X))_{c\in\mathbb{C}}, (1/2 {\rm D}_{\mathbb{C}\text{-}{\rm c}}^{\geq c}(A_X))_{c\in\mathbb{C}}).$

§6.2. Microlocal characterization

Let X be a complex manifold. Let $K \in D^{\mathbf{b}}_{\mathbb{C}\text{-}\mathbf{c}}(A_X)$. Then the microsupport $SS(K)$ is a Lagrangian complex analytic subset of the cotangent bundle T^*X (see [\[5\]](#page-24-5)).

A point p of $SS(K)$ is called *good* if $SS(K)$ equals the conormal bundle T_Y^*X on a neighborhood of p for some locally closed complex submanifold Y of X . The complement of the set of good points of $SS(K)$ is a nowhere dense closed complex analytic subset of SS(K). For a good point p of SS(K), there exists $L \in D_{\text{coh}}^{b}(A)$ such that K is microlocally isomorphic to $L_Y[-\text{codim}_{\mathbb{C}} Y]$ on a neighborhood of p. We call L the type of K at p. (Note that in [\[5,](#page-24-5) $\S 10.3$], L is called the type of K at p with shift $0.$)

The type can be calculated by the vanishing cycle functor. If f is a holomorphic function such that $f|_Y = 0$ and $df(x_0) = p$, then we have $\varphi_f(K)_{x_0} \simeq$ $L[-\text{codim}_{\mathbb{C}} Y]$. Here, $x_0 \in X$ is the image of p by the projection $T^*X \to X$, and φ_f is the vanishing cycle functor from $D^{\mathbf{b}}_{\mathbb{C}\text{-c}}(A_X)$ to $D^{\mathbf{b}}_{\mathbb{C}\text{-c}}(A_{f^{-1}(0)})$. Note that

$$
\varphi_f(K) \simeq \mathrm{R}\Gamma_{\{x\mid \mathrm{Re}(f(x))\geq 0\}}(K)|_{f^{-1}(0)}.
$$

The following theorem is proved in [\[5,](#page-24-5) §10.3].

Theorem 6.1 ([\[5,](#page-24-5) Theorem 10.3.2]). Let $K \in D^b_{\mathbb{C}^{\infty}}(A_X)$. Then the following conditions are equivalent:

- (a) $K \in \frac{1}{2} \mathcal{D}^{\leq c}_{\mathbb{C}-c}(A_X)$ (resp. $K \in \frac{1}{2} \mathcal{D}^{\geq c}_{\mathbb{C}-c}(A_X)$),
- (b) the type of K at any good point of $SS(K)$ belongs to $D_{coh}^{\leq c-d_X}(A)$ (resp. belongs to $D^{\geq c-d_X}_{\text{coh}}(A)).$

As a corollary, we can derive the following microlocal characterization of $((^{1/2}D_{\mathbb{C}\text{-c}}^{\leq c}(A_X))_{c\in\mathbb{C}}, (^{1/2}D_{\mathbb{C}\text{-c}}^{\geq c}(A_X))_{c\in\mathbb{C}}).$

Theorem 6.2. Let $K \in D^b_{\mathbb{C} \text{-c}}(A_X)$. Then the following conditions are equivalent:

(a) $K \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{\leq c}(A_X)$ (resp. $K \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{\geq c}(A_X)),$

(b) the type of K at any good point of $SS(K)$ belongs to $1/2D_{coh}^{\leq c-d_X}(A)$ (resp. belongs to ${}^{1/2}D_{\text{coh}}^{\geq c-d_X}(A)$.

Proof. Assume that $K \in {}^{1/2}D_{\mathbb{R}\text{-}c}^{\geq c}(A_X)$. Then for any $M \in {}^{1/2}D_{\text{coh}}^{\leq c'}(A)$, we have $R\mathcal{H}om_A(M_X,K) \in {}^{1/2}_{KS}\mathcal{D}^{\geq c-c'}_{\mathcal{C}G}(A_X).$ Let L be the type of K at a good point p of SS(K). Then $\mathbb{R}\mathcal{H}om_A(M_X,K)$ has type $\mathrm{RHom}_A(M,L)$ at p. Hence, the preceding theorem implies $\text{RHom}_A(M, L) \in D^{\geq c-c'-d_X}_{\text{coh}}(A)$. Since this holds for any $M \in {}^{1/2}D_{\text{coh}}^{\leq c'}(A)$, we conclude $L \in {}^{1/2}D_{\text{coh}}^{\geq c-d_X}(A)$. The converse can be proved similarly.

The case of $\frac{1}{2}D_{\mathbb{C}\text{-}c}^{\leq c}(A_X)$ can be derived from the above case by duality. The condition $K \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{\leq c}(A_X)$ is equivalent to $D_X(K) \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{\geq -c}(A_X)$. Let L be the type of K at a good point p of $SS(K)$. Then $D_X(K)$ has type $D_A(L)[2d_X]$ at p, and it is enough to notice that $D_A(L)[2d_X] \in {}^{1/2}D_{\text{coh}}^{\leq -c-d_X}(A)$ if and only if $L \in {}^{1/2}D^{\geq c-d_X}_{\text{coh}}(A).$

The following proposition can be proved similarly.

Proposition 6.3. Let Y be a closed complex submanifold of a complex manifold X. Then:

(i) The functor $\nu_Y \colon D^b_{\mathbb{C} - c}(A_X) \to D^b_{\mathbb{C} - c}(A_{T_YX})$ sends

$$
^{1/2}{\rm D}^{\leq c}_{\mathbb{C}\text{-}c}(A_{X})\ \ to\ \ ^{1/2}{\rm D}^{\leq c}_{\mathbb{C}\text{-}c}(A_{T_{Y}X})\quad \text{and}\quad\ ^{1/2}{\rm D}^{\geq c}_{\mathbb{C}\text{-}c}(A_{X})\ \ to\ \ ^{1/2}{\rm D}^{\geq c}_{\mathbb{C}\text{-}c}(A_{T_{Y}X}).
$$

(ii) The microlocalization functor $\mu_Y : D^b_{\mathbb{C} - c}(A_X) \to D^b_{\mathbb{C} - c}(A_{T^*_Y X})$ sends

$$
{}^{1/2}D_{\mathbb{C}\text{-}c}^{\leq c}(A_X) \ to \ {}^{1/2}D_{\mathbb{C}\text{-}c}^{\leq c+\mathrm{codim}_{\mathbb{C}}Y}(A_{T_Y^*X}),
$$

$$
{}^{1/2}D_{\mathbb{C}\text{-}c}^{\geq c}(A_X) \ to \ {}^{1/2}D_{\mathbb{C}\text{-}c}^{\geq c+\mathrm{codim}_{\mathbb{C}}Y}(A_{T_Y^*X}).
$$

Proof. Since the proofs are similar, we show only (ii). Let $K \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{\geq c}(A_X)$. Then, for any $M \in {}^{1/2}D_{\text{coh}}^{\leq c'}(A)$, we have $R\mathcal{H}\!\ell\!\ell m_A(M_X,K) \in {}^{1/2}_{KS}D_{\mathbb{C}\text{-}c}^{\geq c-c'}(A_X)$. Hence [\[5,](#page-24-5) Prop. 10.3.19] implies that

$$
\mu_Y(\mathbf{R}\mathcal{H}om_A(M_X,K)) \in {}_{\rm KS}^{1/2}D_{\mathbb{C}\text{-}\mathrm{c}}^{\geq c-c'+\mathrm{codim}_{\mathbb{C}}Y}(A_{T^*_YX}).
$$

Since

$$
R\mathscr{H}\!\mathit{om}_A(M_{T^*_YX}, \mu_YK) \simeq \mu_Y(\mathrm{R}\mathscr{H}\!\mathit{om}_A(M, K)),
$$

we obtain $\mu_Y K \in {}^{1/2}D_{\mathbb{C}\text{-}\mathbb{C}}^{\geq c+\mathrm{codim}_{\mathbb{C}}Y}(A_{T^*_Y X}).$

Assume now that $K \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{<(A_X)}$. Then $\mathsf{D}_XK \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{>(A_X)}$. Since [\[5,](#page-24-5) Prop. 8.4.13] implies $D_{T_Y^*X}(\mu_Y K) \simeq (\mu_Y D_X K)^a[2 \operatorname{codim}_{\mathbb{C}} Y]$, we obtain

$$
\mathsf{D}_{T^*_Y X}(\mu_Y K) \in {}^{1/2} \mathsf{D}_{\mathbb{C}\text{-}\mathrm{c}}^{\geq -c-\mathrm{codim}_{\mathbb{C}} Y}(A_{T^*_Y X}).
$$

 \Box

Hence $\mu_Y K \in {}^{1/2}D_{\mathbb{C}\text{-}\mathrm{c}}^{\leq c+\mathrm{codim}_{\mathbb{C}}Y}(A_{T^*_Y X}).$

The following theorem is proved in [\[5,](#page-24-5) §10.3].

Theorem 6.4 ([\[5,](#page-24-5) Corollary 10.3.20]). Let $K \in \frac{1}{2} \text{RS} \mathcal{D}_{\mathbb{C} \text{-c}}^{< c}(A_X)$ and $L \in \frac{1}{2} \text{RS} \mathcal{D}_{\mathbb{C} \text{-c}}^{< c}(A_X)$. Then $\mu hom(K, L) \in \frac{1}{2} \text{PSD}_{\mathbb{C}\text{-c}}^{\geq c' - c + d_X} (A_{T^*X}).$

As a corollary we obtain the following result.

Theorem 6.5. Let $K \in D_{\mathbb{C}\text{-c}}^{\mathbf{b}}(A_X)$ and $L \in D_{\mathbb{C}\text{-c}}^{\mathbf{b}}(A_X)$. (i) If $K \in {}^{1/2}D_{\mathbb{C}\text{-}c}^{\leq c}(A_X)$ and $L \in {}^{1/2}D_{\mathbb{C}\text{-}c}^{\geq c'}(A_X)$, then $\mu hom(K, L) \in \frac{1/2}{K} \mathcal{D}^{\geq c' - c + dx}_{\mathbb{C} - c} (A_{T^*X}).$

(ii) If $K \in \frac{1}{2}^{1/2} \mathcal{D}^{\leq c}_{\mathbb{C}-c}(A_X)$ and $L \in \frac{1}{2} \mathcal{D}^{\geq c'}_{\mathbb{C}-c}(A_X)$, then

$$
\mu hom(K, L) \in {}^{1/2}D_{\mathbb{C}\text{-}c}^{\geq c'-c+d_X}(A_{T^*X}).
$$

Proof. (i) By Lemma [5.12,](#page-18-1) we have $L \boxtimes D_X K \in \frac{1}{\text{KS}} D_X \underline{D}_{\mathbb{R}-c}^{\geq c'-c}(A_X)$. Let Δ_X be the diagonal of $X \times X$. Then $\mu hom(K, L) = \mu_{\Delta_X}(L \boxtimes \mathsf{D}_X K) \in {}^{1/2}_{\text{KS}}\mathsf{D}_{\overline{\mathbb{C}} \text{-}\mathsf{c}}^{\geq c' - c + d_X}(A_X)$ by [\[5,](#page-24-5) Proposition 10.3.19].

(ii) For any $M \in {}^{1/2}D_{\text{coh}}^{\leq c''}(A)$, we have $R\mathscr{H}\!\mathit{om}(M_X,L) \in {}^{1/2}_{KS}D_{\mathbb{C}\text{-}c}^{\geq c'-c''}(A_X)$. Hence

$$
\text{R}\mathcal{H}om(M_{T^*X}, \mu hom(K, L)) \simeq \mu hom(K, \text{R}\mathcal{H}om(M_X, L))
$$

belongs to ${}_{KS}^{1/2}D_{C-c}^{\geq c'-c''-c+d_X}(A_{T^*X})$ by Theorem 6.4. Consequently, $\mu hom(K, L) \in$
 ${}^{1/2}D_{C-c}^{\geq c'-c+d_X}(A_{T^*X})$ by Lemma 5.11.

Example 6.6. Assume that 2 acts injectively on A. Let M be a finitely generated projective A-module. Let $X = \mathbb{C}^3$ and $S = \{(x, y, z) \in X \mid x^2 + y^2 + z^2 = 0\}$. Let $j: X \setminus \{0\} \to X$ be the inclusion. Since $S \setminus \{0\}$ is homeomorphic to the product of R and the 3-dimensional real projective space $\mathbb{P}^3(\mathbb{R})$, we have

$$
(\mathrm{R}j_*j^{-1}(M_S))_0 \simeq \mathrm{R}\Gamma(S\setminus\{0\};M_S) \simeq M \oplus (M/2M)[-2] \oplus M[-3],
$$

and R $\Gamma_{\{0\}}(M_S)_0 \simeq (M/2M)[-3] \oplus M[-4]$. Hence we have

$$
M_S \in {}^{1/2}D^2_{\mathbb{C}\text{-}\mathrm{c}}(A_X),
$$

and a distinguished triangle

$$
M_0[-1] \to \mathrm{R} j_! j^{-1}(M_S) \to M_S \xrightarrow{+1}.
$$

Consequently,

$$
Rj_!j^{-1}(M_S) \in {}^{1/2}D_{\mathbb{C}\text{-}c}^{[1,2]}(A_X),
$$

$$
{}^{1/2}\tau^{\geq 2}Rj_!j^{-1}(M_S) \simeq M_S,
$$

$$
{}^{1/2}\tau^{<2}Rj_!j^{-1}(M_S) \simeq M_0[-1] \in {}^{1/2}D_{\mathbb{C}\text{-}c}^1(A_X).
$$

Here $^{1/2}\tau$ denotes the truncation functor of the t-structure $^{1/2}D^{\mathrm{b}}_{\mathbb{C}\text{-c}}(A_X)$.

By duality, we have

$$
Rj_*j^{-1}(M_S) \in {}^{1/2}D_{\mathbb{C}\text{-}c}^{[2,3]}(A_X),
$$

$$
{}^{1/2}\tau^{>2}Rj_*j^{-1}(M_S) \simeq M_0[-3] \in {}^{1/2}D_{\mathbb{C}\text{-}c}^3(A_X).
$$

Hence we obtain a distinguished triangle

$$
{}^{1/2}\tau^{\leq 2} \mathrm{R} j_* j^{-1}(M_S) \to \mathrm{R} j_* j^{-1}(M_S) \to M_0[-3] \xrightarrow{+1}.
$$

The canonical morphism $Rj_!j^{-1}(M_S) \to Rj_*j^{-1}(M_S)$ decomposes as

$$
Rj_!j^{-1}(M_S) \longrightarrow Rj_*j^{-1}(M_S)
$$

\n
$$
\downarrow \qquad \qquad \uparrow
$$

\n
$$
M_S \longrightarrow {}^{1/2}\tau {}^{\leq 2}Rj_*j^{-1}(M_S)
$$

and the bottom arrow is embedded into a distinguished triangle

$$
M_S \to {}^{1/2} \tau^{\leq 2} R j_* j^{-1}(M_S) \to (M/2M)_{\{0\}}[-2] \xrightarrow{+1}.
$$

Note that $(M/2M)_{0}[-2] \in {}^{1/2}D_{\mathbb{C}\text{-c}}^{3/2}(A_X)$. Hence $M_S \to {}^{1/2}\tau^{\leq 2}Rj_*j^{-1}(M_S)$ is a monomorphism and an epimorphism in the quasi-abelian category $^{1/2}D_{\mathbb{C}\text{-c}}^2(A_X)$. Moreover, we have an exact sequence

$$
0 \to M_S \to {}^{1/2}\tau^{\leq 2} \mathcal{R} j_* j^{-1}(M_S) \to (M/2M)_{\{0\}}[-2] \to 0
$$

in the abelian category ${}^{1/2}D_{\mathbb{C}\text{-}c}^{[3/2,\,2]}(A_X)$ and an exact sequence

$$
0 \to (M/2M)[-3]_{{0} } \to M_S \to {}^{1/2}\tau^{\leq 2}Rj_*j^{-1}(M_S) \to 0
$$

in the abelian category $\frac{1}{2}D_{\mathbb{C}_{c}}^{[2,5/2]}(A_X)$. Note that we have an isomorphism of distinguished triangles

$$
\varphi_x(M_S) \longrightarrow \varphi_x({}^{1/2}\tau^{\leq 2}Rj_*j^{-1}(M_S)) \longrightarrow \varphi_x((M/2M)_{\{0\}}[-2]) \xrightarrow{+1} \downarrow \downarrow
$$

\n
$$
\downarrow \downarrow \qquad \qquad \downarrow \downarrow
$$

\n
$$
M_{\{0\}}[-2] \longrightarrow M_{\{0\}}[-2] \longrightarrow (M/2M)_{\{0\}}[-2] \xrightarrow{+1} \downarrow
$$

Here φ_x is the vanishing cycle functor.

Acknowledgements

This research was supported by Grant-in-Aid for Scientific Research (B) 15H03608, Japan Society for the Promotion of Science.

References

[1] A. A. Beïlinson, J. Bernstein and P. Deligne, Faisceaux pervers, in Analysis and topol-ogy on singular spaces, I (Luminy, 1981), Astérisque 100 (1982), 5-171. [Zbl 0536.14011](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0536.14011&format=complete) [MR 0751966](http://www.ams.org/mathscinet-getitem?mr=0751966)

- [2] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), 317–345. [Zbl 1137.18008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1137.18008&format=complete) [MR 2373143](http://www.ams.org/mathscinet-getitem?mr=2373143)
- [3] M. Kashiwara, t-structures on the derived categories of holonomic \mathscr{D} -modules and coherent O-modules, Moscow Math. J. 4 (2004), 847–868. [Zbl 1073.14023](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1073.14023&format=complete) [MR 2124169](http://www.ams.org/mathscinet-getitem?mr=2124169)
- [4] ______, Equivariant derived category and representation of real semisimple Lie groups, in Representation theory and complex analysis, Lecture Notes in Math. 1931, Springer, Berlin, 2008, 137–234. [Zbl 1173.22010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1173.22010&format=complete) [MR 2409699](http://www.ams.org/mathscinet-getitem?mr=2409699)
- [5] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss. 292, Springer, Berlin, 1994. [Zbl 00047944](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:00047944&format=complete) [MR 1299726](http://www.ams.org/mathscinet-getitem?mr=1299726)
- [6] J.-P. Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. France (N.S.) 76 (1999), vi+134 pp. [Zbl 0926.18004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0926.18004&format=complete) [MR 1779315](http://www.ams.org/mathscinet-getitem?mr=1779315)