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Self-dual t-structure

by

Masaki Kashiwara

Abstract

We give a self-dual t-structure on the derived category of R-constructible sheaves over
any Noetherian regular ring by generalizing the notion of t-structure.
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Introduction

LetX be a complex manifold and let Db
C-c(kX) be the derived category of sheaves of

k-vector spaces on X with C-constructible cohomology. Here k is a given base field.

Then the t-structure (pD≤0
C-c(kX), pD≥0

C-c(kX)) on Db
C-c(kX) with middle perversity

is self-dual with respect to the Verdier dual functor DX = RHom( • , ωX). Namely,

the Verdier dual functor exchanges pD≤0
C-c(kX) and pD≥0

C-c(kX). However, on a real

analytic manifold X (of positive dimension), no perversity gives a self-dual t-

structure on the derived category Db
R-c(kX) of R-constructible sheaves on X. In

this paper, we construct such a self-dual t-structure after generalizing the notion of

t-structure. This generalized notion already appeared in the paper of Bridgeland [2]

on stability conditions (see also [4]). This construction can also be applied to the

derived category Db
coh(A) of finitely generated modules over a Noetherian regular

ring A. We construct a (generalized) t-structure on Db
coh(A) which is self-dual with

respect to the duality functor RHomA( • , A).

Let us explain our results more precisely with the example of Db
R-c(kX). Let

X be a real analytic manifold. Recall that a sheaf F of k-vector spaces is called

R-constructible if X is a locally finite union of locally closed subanalytic sub-

sets {Xα}α such that all the restrictions F |Xα are locally constant with finite-

dimensional fibers. Let Db
R-c(kX) be the bounded derived category of R-construc-
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tible sheaves. Let DX = RHom( • , ωX) be the Verdier dual functor. For c ∈ R, we

define

(0.1)

1/2D≤cR-c(kX) := {K ∈ Db
R-c(kX) | dim Supp(HiK) ≤ 2(c− i) for any i ∈ Z},

1/2D≥cR-c(kX) := {K ∈ Db
R-c(kX) | DXK ∈ 1/2D≤−cR-c (kX)}.

Then, the pair ((1/2D≤cR-c(kX))c∈R, (
1/2D≥cR-c(kX))c∈R) satisfies the axioms of (gen-

eralized) t-structure (Definition 1.2). In particular, (1/2D≤cR-c(kX), 1/2D>c−1
R-c (kX))

is a t-structure in the ordinary sense for any c ∈ R. Here 1/2D>c
R-c(kX) :=⋃

b>c
1/2D≥bR-c(kX). Therefore, for any K ∈ Db

R-c(kX) and c ∈ R, there exists a dis-

tinguished triangle K ′ → K → K ′′
+1−−→ in Db

R-c(kX) such that K ′ ∈ 1/2D≤cR-c(kX)

and K ′′ ∈ 1/2D>c
R-c(kX).

Note that 1/2D≤cR-c(kX) = 1/2D≤sR-c(kX) for s ∈ 1
2Z such that s ≤ c < s+ 1/2,

and 1/2D≥cR-c(kX) = 1/2D≥sR-c(kX) for s ∈ 1
2Z such that s− 1/2 < c ≤ s.

This paper is organized as follows. In Section 1, we generalize the notion

of a t-structure. In Section 2, we recall the result of [4] on a t-structure on the

derived category of a quasi-abelian category. In Section 3, we give the t-structure

associated with a torsion pair on an abelian category.

In Section 4, we define a self-dual t-structure on the derived category of co-

herent sheaves on a Noetherian regular scheme.

In Section 5, we give two t-structures on the derived category of the abelian

category of R-constructible sheaves of A-modules on a subanalytic space X. Here

A is a Noetherian regular ring. One is purely topological and the other is self-dual

with respect to the Verdier duality functor.

In Section 6, we study the self-dual t-structure on the derived category of

the abelian category of sheaves of A-modules on a complex manifold X with C-

constructible cohomology. The main result is its microlocal characterization (The-

orem 6.2).

Convention. In this paper, all subanalytic spaces and complex analytic spaces

are assumed to be Hausdorff, locally compact, countable at infinity and with finite

dimension.

§1. (Generalized) t-structure

Since the following lemma is elementary, we omit its proof.

Lemma 1.1. Let X be a set.

(i) Let (X≤c)c∈R be a family of subsets of X such that X≤c =
⋂
b>cX

≤b for any

c ∈ R. Set X<c :=
⋃
b<cX

≤b. Then
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(a) X<c =
⋃
b<cX

<b,

(b) X≤c =
⋂
b>cX

<b.

(ii) Conversely, let (X<c)c∈R be a family of subsets of X such that X<c =⋃
b<cX

<b for any c ∈ R. Set X≤c :=
⋂
b>cX

<b. Then

(a) X≤c =
⋂
b>cX

≤b,

(b) X<c =
⋃
b<cX

≤b.

(iii) Let (X≤c)c∈R and (X<c)c∈R be as above. Let a, b ∈ R be such that a < b. If

X<c = X≤c for any c such that a < c ≤ b, then X≤a = X≤b.

Let us recall the notion of t-structure (see [1]). Let T be a triangulated cate-

gory. Let T ≤0 and T ≥0 be strictly full subcategories of T . Here, a subcategory C′

of a category C is called strictly full if it is full, i.e. HomC′(X,Y ) = HomC(X,Y )

for any X,Y ∈ C′, and any object of C isomorphic to some object of C′ is an object

of C′.
For n ∈ Z, we set T ≤n = T ≤0[−n] and T ≥n = T ≥0[−n]. Let us recall that

(T ≤0, T ≥0) is a t-structure on T if:

(1.1) (a) T ≤0 ⊂ T ≤1 and T ≥1 ⊂ T ≥0,

(b) HomT (X,Y ) = 0 for X ∈ T ≤0 and Y ∈ T ≥1,

(c) for any X ∈ T , there exists a distinguished triangle X0 → X → X1
+1−−→

in T such that X0 ∈ T ≤0 and X1 ∈ T ≥1.

We shall generalize this notion.

Definition 1.2. Let (T ≤c) c∈R and (T ≥c) c∈R be families of strictly full sub-

categories of a triangulated category T , and set T <c =
⋃
b<c T ≤b and T >c =⋃

b>c T ≥b. We say that ((T ≤c)c∈R, (T ≥c)c∈R) is a (generalized) t-structure (cf. [2])

if

(1.2) (a) T ≤c =
⋂
b>cT

≤b and T ≥c =
⋂
b<cT

≥b for any c ∈ R,

(b) T ≤c+1 = T ≤c[−1] and T ≥c+1 = T ≥c[−1] for any c ∈ R,

(c) HomT (X,Y ) = 0 for any c ∈ R, X ∈ T <c and Y ∈ T >c,
(d) for any X ∈ T and c ∈ R, there exist distinguished triangles X0 →

X → X1
+1−−→ and X ′0 → X → X ′1

+1−−→ in T such that X0 ∈ T ≤c,
X1 ∈ T >c and X ′0 ∈ T <c, X ′1 ∈ T ≥c.

Note that under conditions (a)–(c), the distinguished triangles in (d) are

unique up to a unique isomorphism.
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If ((T ≤c)c∈R, (T ≥c)c∈R) is a generalized t-structure, then the pairs

(T ≤c, T >c−1) and (T <c, T ≥c−1) are t-structures in the original sense for any c ∈ R.

Hence, T ≤c ∩ T >c−1 and T <c ∩ T ≥c−1 are abelian categories.

Assume that ((T ≤c)c∈R, (T ≥c)c∈R) is a generalized t-structure. Then the in-

clusion functors T ≤c −→ T and T <c −→ T have respective right adjoints

τ≤c : T −→ T ≤c and τ<c : T −→ T <c.

Similarly, the inclusion functors T ≥c −→ T and T >c −→ T have respective left

adjoints

τ≥c : T −→ T ≥c and τ>c : T −→ T >c.

We have distinguished triangles functorially in X ∈ T :

τ≤cX −→ X −→ τ>cX
+1−−→ and τ<cX −→ X −→ τ≥cX

+1−−→ .

These four functors are called the truncation functors of the generalized t-structure

((T ≤c)c∈R, (T ≥c)c∈R).

For any a, b ∈ R, we have isomorphisms of functors

τ≤a ◦ τ≤b ' τ≤min(a,b), τ≥a ◦ τ≥b ' τ≥max(a,b), τ≤a ◦ τ≥b ' τ≥b ◦ τ≤a.

In the last formula, we can replace τ≥a with τ>a or τ≤b with τ<b. For any c ∈ R,

we have

(1.3)

T ≤c = {X ∈ T | HomT (X,Y ) ' 0 for any Y ∈ T >c},
T <c = {X ∈ T | HomT (X,Y ) ' 0 for any Y ∈ T ≥c},
T ≥c = {Y ∈ T | HomT (X,Y ) ' 0 for any X ∈ T <c},
T >c = {Y ∈ T | HomT (X,Y ) ' 0 for any X ∈ T ≤c}.

We set T c := T ≤c ∩ T ≥c. Then T c is a quasi-abelian category (see [2] and

[6]). More generally, for a ≤ b, we set

T [a,b] := T ≤b ∩ T ≥a.

Then T [a,b] is a quasi-abelian category if a ≤ b < a+ 1.

A t-structure (T ≤0, T ≥0) is regarded as a generalized t-structure by setting

(1.4)
T ≤c = T ≤0[−n] for n ∈ Z such that n ≤ c < n+ 1,

T ≥c = T ≥0[−n] for n ∈ Z such that n− 1 < c ≤ n.

Hence, a t-structure is nothing but a generalized t-structure such that T ≤0 = T <1

and T ≥1 = T >0, or equivalently T c = 0 for any c /∈ Z.

In the following, we call a generalized t-structure simply a t-structure.
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Remark 1.3. In the examples we give in this paper, the t-structures also satisfy

the following condition:

(e) for any c ∈ R we can find a and b such that a < c < b and

(1) T <c = T ≤a, T ≤c = T <b,
(2) T >c = T ≥b, T ≥c = T >a.

More precisely, in the examples in this paper, we can take a = max{s ∈ 1
2Z | s < c}

and b = min{s ∈ 1
2Z | s > c}. Hence T c = 0 if c 6∈ 1

2Z.

§2. t-structure on the derived category of a quasi-abelian category

For more details, see [4, §2].

Let C be a quasi-abelian category (see [6]). Recall that, for a morphism

f : X → Y in C, Im f := Ker(Y → Coker f) and Coim f := Coker(Ker f → X).

Hence, we have a diagram

Ker f // X //

f

((
Coim f // Im f // Y // Coker f.

Let C(C) be the category of complexes in C, and D(C) the derived category of C
(see [6]). Let us define various truncation functors for X ∈ C(C):

τ≤nX : · · · → Xn−1 → Ker dnX → 0→ 0→ · · · ,
τ≤n+1/2X : · · · → Xn−1 → Xn → Im dnX → 0→ · · · ,

τ≥nX : · · · → 0→ Coker dn−1
X → Xn+1 → Xn+2 → · · · ,

τ≥n+1/2X : · · · → 0→ Coim dnX → Xn+1 → Xn+2 → · · · ,

for n ∈ Z. Then we have morphisms functorial in X:

τ≤sX −→ τ≤tX −→ X −→ τ≥sX −→ τ≥tX

for s, t ∈ 1
2Z such that s ≤ t. We can easily check that the functors

τ≤s, τ≥s : C(C) → C(C) send morphisms homotopic to zero to morphisms homo-

topic to zero and quasi-isomorphisms to quasi-isomorphisms. Hence, they induce

functors
τ≤s, τ≥s : D(C)→ D(C)

and morphisms τ≤s → id→ τ≥s.

For s ∈ 1
2Z, set

D≤s(C) = {X ∈ D(C) | τ≤sX → X is an isomorphism},
D≥s(C) = {X ∈ D(C) | X → τ≥sX is an isomorphism}.

Then {D≤s(C)}s∈ 1
2Z

is an increasing sequence of strictly full subcategories of D(C),
and {D≥s(C)}s∈ 1

2Z
is a decreasing sequence of strictly full subcategories of D(C).
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The functor τ≤s : D(C) → D≤s(C) is a right adjoint functor of the inclusion

functor D≤s(C) ↪→ D(C), and τ≥s : D(C) → D≥s(C) is a left adjoint functor of

D≥s(C) ↪→ D(C).
For c ∈ R, we set

(2.1)
D≤c(C) = D≤s(C) where s ∈ 1

2Z satisfies s ≤ c < s+ 1/2,

D≥c(C) = D≥s(C) where s ∈ 1
2Z satisfies s− 1/2 < c ≤ s.

Proposition 2.1 ([6], see also [4]). ((D≤c(C))c∈R, (D≥c(C))c∈C) is a t-structure.

We call it the standard t-structure on D(C). The triangulated category D(C) is

equivalent to the derived category of the abelian category D≤c(C) ∩D>c−1(C) for

every c ∈ R. The full subcategory D0(C) := D≤0(C) ∩D≥0(C) is equivalent to C.
If C is an abelian category, then the standard t-structure is

D≤c(C) = {X ∈ D(C) | Hi(X) = 0 for any i > c},
D≥c(C) = {X ∈ D(C) | Hi(X) = 0 for any i < c}.

§3. t-structure associated with a torsion pair

Let C be an abelian category. A torsion pair is a pair (T,F) of strictly full subcat-

egories of C such that

(3.1) (a) HomC(X,Y ) = 0 for any X ∈ T and Y ∈ F,

(b) for any X ∈ C, there exists an exact sequence 0→ X ′ → X → X ′′ → 0

with X ′ ∈ T and X ′′ ∈ F.

Let (T,F) be a torsion pair. Then

T' {X ∈ C | HomC(X,Y ) = 0 for any Y ∈ F},
F' {Y ∈ C | HomC(X,Y ) = 0 for any X ∈ T}.

Moreover, T is stable under taking quotients and extensions, while F is stable

under taking subobjects and extensions.

For any integer n, we define

(3.2)
pD≤n(C) := {X ∈ D(C) | Hi(X) ' 0 for any i > n},

pD≤n−1/2(C) := {X ∈ D(C) | Hi(X) ' 0 for any i > n and Hn(X) ∈ T},
pD≥n−1/2(C) := {X ∈ D(C) | Hi(X) ' 0 for any i < n},

pD≥n(C) := {X ∈ D(C)≥n−1/2 | Hi(X) ' 0 for any i < n and Hn(X) ∈ F}.

For any c ∈ R, we define pD≤c(C) and pD≥c(C) by (2.1).
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Since the following proposition can be easily proved, we omit the proof.

Proposition 3.1. ((pD≤c(C))c∈R, (pD≥c(C))c∈R) is a t-structure.

We have

T ' pD−1/2(C), F ' pD0(C), and C ' pD[−1/2,0](C).

Moreover, D(C) is equivalent to the derived category of the abelian category
pD[0,1/2](C).

Note that

D≤c(C) ⊂ pD≤c(C) ⊂ D≤c+1/2(C) and D≥c+1/2(C) ⊂ pD≥c(C) ⊂ D≥c(C).

§4. Self-dual t-structure on the derived category of coherent sheaves

Let X be a Noetherian regular scheme. Consider the duality functor DX :=

RHomOX ( • ,OX). Let Db
coh(OX) be the bounded derived category of OX -modules

with coherent cohomology. We denote by ((D≤ccoh(OX))c∈R, (D
≥c
coh(OX))c∈R) the

standard t-structure on Db
coh(OX).

Recall that, for any coherent OX -module F , its codimension is defined by

codim F := codim Supp(F ) = inf
x∈Supp(F)

dim OX, x.

Here we understand codim 0 = +∞.

We set

1/2D≤ccoh(OX) := {F ∈ Db
coh(OX) | codimHi(F ) ≥ 2(i− c) for any i ∈ Z},

1/2D≥ccoh(OX) := {F ∈ Db
coh(OX) | DXF ∈ D≤−ccoh (OX)}

= {F ∈ Db
coh(OX) | codimHi(DXF ) ≥ 2(i+ c) for any i ∈ Z}.

These satisfy condition (a) of Definition 1.2. Note that

1/2D≤ccoh(OX) = {F ∈ Db
coh(OX) | Fx ∈ D≤c+

1
2 dim OX,x(OX,x) for any x ∈ X}.

We also have

1/2D<c
coh(OX) :=

⋃
b<c

1/2D≤bcoh(OX)

= {F ∈ Db
coh(OX) | codimHi(F ) > 2(i− c) for any i ∈ Z},

1/2D>c
coh(OX) :=

⋃
b>c

1/2D≥bcoh(OX)

= {F ∈ Db
coh(OX) | codimHi(DXF ) > 2(i+ c) for any i ∈ Z}.
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Lemma 4.1. Let F ∈ Db
coh(OX). Then F ∈ 1/2D≥ccoh(OX) if and only if we have

HiRΓZF = 0 for any closed subset Z and i < c+ (codimZ)/2.

Proof. We shall use the results in [3]. Let us define the systems of support

Φn = {Z | codimZ ≥ 2(n+ c)},
Ψn = {Z | n < c+ 1 + (codimZ)/2}.

Then it is enough to show that

(4.1) (Φ ◦Ψ)n :=
⋃

i+j=n

(Φi ∩Ψj) = {Z | codimZ ≥ n}.

Indeed,

1/2D≤−ccoh (OX) = ΦD≤0
coh(OX)

:= {F ∈ Db
coh(OX) | Supp(Hk(F )) ∈ Φk for any k ∈ Z},

and hence [3, Theorem 5.9] along with (4.1) implies that 1/2D≥ccoh(OX) coincides

with

ΨD≥0
coh(OX) := {F | Hi(RΓZF ) = 0 for any Z ∈ Ψi+1}

= {F | Hi(RΓZF ) = 0 for any i < c+ (codimZ)/2}.

Let us show (4.1) Assume that Z ∈ Φi ∩Ψj with i+ j = n. Then

2 codimZ ≥ 2(i+ c) + (2(j − c− 1) + 1) = 2n− 1

and hence codimZ ≥ n.

Conversely, assume that codimZ ≥ n. Then take an integer i such that i ≤
(codimZ)/2− c < i+ 1. Then i > (codimZ)/2− c− 1 and

j := n− i < codimZ − ((codimZ)/2− c− 1) = c+ 1 + (codimZ)/2.

Hence Z ∈ Φi ∩Ψj ⊂ (Φ ◦Ψ)n.

Proposition 4.2. ((1/2D≤ccoh(OX))c∈R, (
1/2D≥ccoh(OX))c∈R) is a t-structure on

Db
coh(OX).

Proof. This follows from [3]. Indeed, (1/2D<c+1
coh (OX), 1/2D≥ccoh(OX)) coincides with

(ΨDb
coh(OX)≤0,ΨDb

coh(OX)≥0) by the proof of the preceding proposition.

Corollary 4.3. For F ∈ 1/2D≤ccoh(OX) and G ∈ 1/2D≥c
′

coh(OX), we have

RHomOX (F ,G ) ∈ D≥c
′−c

coh (OX).
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Conversely, for any c′ ∈ R,

1/2D≥c
′

coh(OX) = {G ∈ Db
coh(OX) | RHomOX (F ,G ) ∈ D≥c

′−c
coh (OX)

for any c ∈ R and F ∈ 1/2D≤ccoh(OX)},

and for any c ∈ R,

1/2D≥ccoh(OX) = {F ∈ Db
coh(OX) | RHomOX (F ,G ) ∈ D≥c

′−c
coh (OX)

for any c′ ∈ R and G ∈ 1/2D≥c
′

coh(OX)}.

Proposition 4.4. For F ,G ∈ Db
coh(OX), we have:

(i) if F ∈ 1/2D≤ccoh(OX) and G ∈ D≤c
′

coh(OX), then F
L
⊗OX G ∈ 1/2D≤c+c

′

coh (OX),

(ii) if F ∈ D≤ccoh(OX) and G ∈ 1/2D≥c
′

coh(OX), then

RHomOX (F ,G ) ∈ 1/2D≥c
′−c

coh (OX),

(iii) if F ∈ 1/2D≥ccoh(OX) and G ∈ D≤c
′

coh(OX), then

RHomOX (F ,G ) ∈ 1/2D≤c
′−c

coh (OX),

(iv) if F ∈ 1/2D≥ccoh(OX) and G ∈ 1/2D≥c
′

coh(OX), then F
L
⊗OX G ∈ D≥c+c

′

coh (OX).

Proof. (i) For any H ∈ 1/2D≥c
′′

coh (OX), we have RHomOX (F ,H ) ∈ D≥c
′′−c

coh (OX)

by Corollary 4.3. Hence,

RHomOX (F
L
⊗OX G ,H ) ' RHomOX (G ,RHomOX (F ,H ))

belongs to D≥c
′′−c−c′

coh (OX). Since this holds for an arbitrary H ∈ 1/2D≥c
′′

coh (OX),

we conclude that F
L
⊗OX G ∈ 1/2D≤c+c

′

coh (OX) by (1.3).

(ii) Since F
L
⊗OXDXG ∈1/2D≤c−c

′

coh (OX) by (i), it follows that RHomOX (F ,G )

' DX(F
L
⊗ DXG ) belongs to 1/2D≥c

′−c
coh (OX).

(iii) Since RHomOX (F ,G ) ' (DXF )
L
⊗OX G , (iii) follows from (i).

(iv) follows from Corollary 4.3 and F
L
⊗OX G ' RHomOX (DXF ,G ).

Let A be a Noetherian regular ring and X = Spec(A). We write Db
coh(A),

1/2D≤ccoh(A) and 1/2D≥ccoh(A) for Db
coh(OX), 1/2D≤ccoh(OX) and 1/2D≥ccoh(OX), respec-

tively.
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Remark 4.5. (i) A similar construction is possible for a complex manifold X and

coherent OX -modules.

(ii) For any c ∈ R, we have

D≤ccoh(OX) ⊂ 1/2D≤ccoh(OX) ⊂ D
≤c+dimX/2
coh (OX),

D
≥c+dimX/2
coh (OX) ⊂ 1/2D≥ccoh(OX) ⊂ D≥ccoh(OX).

(iii) If F is a Cohen–Macaulay OX -module with codim F = r, then we have

F ∈ 1/2D
−r/2
coh (OX).

(iv) Assume that A is a Noetherian regular integral domain of dimen-

sion 1, and K the fraction field of A. Let C = Modcoh(A). We take as

T ⊂ C the subcategory of torsion A-modules, and as F the subcategory of

torsion free A-modules. Then the t-structure ((pD≤c(C))c∈R, (pD≥c(C))c∈R) as-

sociated with the torsion pair (T,F) (see §3) coincides with the t-structure

((1/2D≤ccoh(A))c∈R, (
1/2D≥ccoh(A)))c∈R). Hence we have

(4.2)

1/2D≤ncoh(A) = D≤ncoh(A),

1/2D
≤n−1/2
coh (A) = {X ∈ D≤ncoh(A) | K ⊗A X ∈ D≤n−1(K)},

1/2D
≥n−1/2
coh (A) = D≥ncoh(A),

1/2D≥ncoh(A) = {X ∈ D≥ncoh(A) | Hn(X) is torsion free}.

for any n ∈ Z.

Let F be the quasi-abelian category of finitely generated torsion free

A-modules. Then Db(F) ' Db
coh(A), and the t-structure ((1/2D≤ccoh(A))c∈R,

(1/2D≥ccoh(A))c∈R) coincides with the standard t-structure of Db(F).

§5. Self-dual t-structure: real case

§5.1. Topological perversity

Let X be a subanalytic space (cf. [5, Exercise IX.2]). A subanalytic space is called

smooth if it is is locally isomorphic to a real analytic manifold as a subanalytic

space.

A subanalytic stratification X =
⊔
α∈I Xα of X is a locally finite family of

locally closed smooth subanalytic subsets {Xα}α∈I (called strata) such that the

closure Xα is a union of strata for any α. A subanalytic stratification X =
⊔
α∈I Xα

is called good if it satisfies the following condition:

(5.1) for any K ∈ Db(ZX) such that K|Xα has locally constant cohomology for

all α, (RΓXαK)|Xα has locally constant cohomology for all α.
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Let X =
⊔
α∈I Xα and X =

⊔
α∈I′ X

′
β be two stratifications. We say that

X =
⊔
α∈I Xα is finer than X =

⊔
β∈I′ X

′
β if any Xα is contained in some X ′β .

The following fact guarantees that there exist enough good stratifications:

(5.2) For any locally finite family {Zj}j of locally closed subsets, there exists a

good stratification such that any Zj is a union of strata.

A regular subanalytic filtration of X is an increasing sequence

∅ = X−1 ⊂ · · · ⊂ XN = X

of closed subanalytic subsets Xk of X such that X̊k := Xk \ Xk−1 is smooth of

dimension k. We say that it is a good filtration if {X̊k} satisfies (5.1). Note that

any subanalytic stratification X =
⊔
α∈I Xα gives a regular subanalytic filtration

defined by Xk :=
⊔

dimXα≤kXα.

Let A be a Noetherian regular ring. Denote by ModR-c(AX) the category of

R-constructible AX -modules, and by Db
R-c(AX) the bounded derived category of R-

constructible AX -modules. Let ((D≤cR-c(AX))c∈R, (D
≥c
R-c(AX))c∈R) be the standard

t-structure of Db
R-c(AX), that is,

D≤cR-c(AX) = {K ∈ Db
R-c(AX) | Hi(K) = 0 for any i > c},

D≥cR-c(AX) = {K ∈ Db
R-c(AX) | Hi(K) = 0 for any i < c}.

We define

(5.3)

1/2
KS D≤cR-c(AX) = {K ∈ Db

R-c(AX) | dim Supp(Hi(K)) ≤ −2(i− c)
for any i},

1/2
KS D≥cR-c(AX) = {K ∈ Db

R-c(AX) | HiRΓZ(K) = 0 for any closed

subanalytic subset Z and i < c− 1
2 dimZ}.

Proposition 5.1. The pair ((
1/2
KS D≤cR-c(AX))c∈R, (

1/2
KS D≥cR-c(AX))c∈R) is a t-struc-

ture on Db
R-c(AX).

Proof. Indeed, (
1/2
KS D<c+1

R-c (AX),
1/2
KS D≥cR-c(AX)) coincides with the t-structure asso-

ciated with the perversity p(n) = dc− n/2e (see e.g. [5, Definition 10.2.1]).

Lemma 5.2 ([5, Proposition 10.2.4]). Let K ∈ Db
R-c(AX) and let X =

⊔
αXα be

a subanalytic stratification of X such that (DXK)|Xα has locally constant coho-

mology for any α. Then K ∈ 1/2
KS D≥cR-c(AX) if and only if

(RΓXαK)x ∈ D
≥c−dimXα/2
coh (A) for any α and x ∈ Xα.
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§5.2. Self-dual t-structure: R-constructible case

As in the preceding subsection, X is a subanalytic space and A is a Noetherian

regular ring. Let DX be the duality functor

DX(K) = RHomA(K,ωX) for K ∈ Db
R-c(AX),

where ωX = a !
XApt with the canonical projection aX : X → pt.

For F ∈ ModR-c(AX), we set

(5.4) mod-dim(F ) = sup
m≥0

(
dim{x ∈ X | codimFx = m} −m

)
,

where codimFx denotes the codimension of Supp(Fx) ⊂ Spec(A). Hence if X =⊔
αXα is a subanalytic stratification with connected strata and F |Xα is locally

constant for any α, then

mod-dim(F ) = sup{dimXα − codimFxα | F |Xα 6= 0},

where xα is a point of Xα. We understand mod-dim 0 = −∞.

We set

(5.5)

1/2D≤cR-c(AX) = {K ∈ Db
R-c(AX) | mod-dim(Hi(K)) ≤ −2(i−c) for any i},

1/2D≥cR-c(AX) = {K ∈ Db
R-c(AX) | DXK ∈ 1/2D≤−cR-c (AX)}.

Note that, when A is a field, they coincide with
1/2
KS D≤cR-c(AX) and

1/2
KS D≥cR-c(AX).

Lemma 5.3. Let K ∈ Db
R-c(AX) and c ∈ R. Let X =

⊔
αXα be a subanalytic

stratification such that K|Xα has locally constant cohomology. Then the following

conditions are equivalent:

(a) K ∈ 1/2D≤cR-c(AX),

(b) dim{x ∈ X | Kx 6∈ 1/2D
≤c−k/2
coh (A)} < k for any k ∈ Z,

(c) Kx ∈ 1/2D
≤c−(dimXα)/2
coh (A) for any α and x ∈ Xα.

Proof. (a)⇔(c). It is obvious that K ∈ 1/2D≤cR-c(AX) if and only if

dimXα − codim Supp(Hi(K)x) ≤ −2(i− c) for any α, x ∈ Xα and i ∈ Z.

The last condition is equivalent to

codim Supp(Hi(Kx)) ≥ 2(i− c+ (dimXα)/2),

or equivalently Kx ∈ 1/2D
≤c−(dimXα)/2
coh (A).

(b)⇔(c). (b) is equivalent to

for any x ∈ Xα, Kx /∈ 1/2D
≤c−k/2
coh (A) implies dimXα < k,
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which is equivalent to

for any x ∈ Xα, dimXα ≥ k implies Kx ∈ 1/2D
≤c−k/2
coh (A).

This is obviously equivalent to (c).

Lemma 5.4. Let K ∈ Db
R-c(AX) and c ∈ R. Let X =

⊔
αXα be a subanalytic

stratification such that (DXK)|Xα has locally constant cohomology. Then the fol-

lowing conditions are equivalent:

(a) K ∈ 1/2D≥cR-c(AX),

(b) for any c′ ∈ R and M ∈ 1/2D≤c
′

coh(A), we have

RHomA(MX ,K) ∈ 1/2
KS D≥c−c

′

R-c (AX),

(c) RΓZ(K)x ∈ 1/2D
≥c−dimZ/2
coh (A) for any closed subanalytic set Z and x ∈ Z,

(d) (RΓXαK)x ∈ 1/2D
≥c−dimXα/2
coh (A) for any α and x ∈ Xα,

(e) dim{x ∈ X | (RΓ{x}K)x 6∈ 1/2D
≥c+k/2
coh (A)} < k for any k ∈ Z≥0.

Proof. Let iα : Xα → X be the inclusion.

(a)⇔(d). By (a)⇔(c) in the preceding lemma, condition (a) is equivalent to

(DXK)x ∈ 1/2D
≤−c−(dimXα)/2
coh (A) for any α and x ∈ Xα.

On the other hand, we have i−1
α DXK ' DXαi

!
αK. Hence i !αK has locally constant

cohomology. Since

(DXK)x ' (DXαi
!
αK)x ' RHomA((i !αK)x, A)[dimXα],

the above condition is equivalent to

RHomA((i !αK)x, A) ∈ 1/2D
≤−c+(dimXα)/2
coh (A),

which is again equivalent to (i !αK)x ∈ 1/2D
≥c−(dimXα)/2
coh (A).

(a)⇔(e). (a) is equivalent to DXK ∈ 1/2D≤−cR-c (kX). By the preceding lemma,

this is equivalent to

dim{x ∈ X | (DXK)x 6∈ 1/2D
≤−c−k/2
coh (A)} < k for any k ∈ Z≥0.

Since (DXK)x ' DA((RΓ{x}K)x), the condition (DXK)x 6∈ 1/2D
≤−c−k/2
coh (A) is

equivalent to (RΓ{x}K)x 6∈ 1/2D
≥c+k/2
coh (A).

(d)⇔(b). Condition (d) is equivalent to

(5.6) RHomA(M, (RΓXαK)x) ∈ D
≥c−(dimXα)/2−c′
coh (A) for any M ∈ 1/2D≤c

′

coh(A),

α and x ∈ Xα.
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Since RHomA(M, (RΓXαK)x) ' (RΓXαRHomA(MX ,K))x, the last condition

(5.6) is equivalent to (b) by Lemma 5.2.

(c)⇒(d) is obvious.

(b)⇒(c). For any c′ ∈ R and M ∈ 1/2D≤c
′

coh(A), we have

(RΓZRHomA(MX ,K))x ∈ D
≥c−c′−(dimZ)/2
coh (A).

Since RHomA(M, (RΓZK)x) ' (RΓZRHomA(MX ,K))x, we obtain (c).

We shall prove the following theorem in several steps.

Theorem 5.5. ((1/2D≤cR-c(AX))c∈R, (
1/2D≥cR-c(AX))c∈R) is a t-structure on

Db
R-c(AX).

It is obvious that conditions (a) and (b) in Definition 1.2 are satisfied. Let us

show (c).

Lemma 5.6. For c ∈ R, K ∈ 1/2D≤cR-c(AX) and L ∈ 1/2D≥c
′

R-c (AX), we have

RHom(K,L) ∈ D≥c
′−c

R-c (AX).

Proof. Let us take a good regular subanalytic filtration ∅ = X−1 ⊂ · · · ⊂ XN = X

such that K and L have locally constant cohomology on each X̊k := Xk \Xk−1.

We may assume that X̊k is smooth of dimension k.

Let ik : X̊k → X be the inclusion.

Let us first show that

i !kRHom(K,L) ' RHom(i−1
k K, i !kL) belongs to D≥c

′−c
R-c (AX̊k).(5.7)

Since i−1
k K, i !kL have locally constant cohomology,

(i !kRHom(K,L))x ' RHomA(((ik)−1K)x, (i
!
kL)x)

for any x ∈ X̊k. Hence it is enough to show that

(5.8) RHomA((i−1
k K)x, (i

!
kL)x) ∈ D≥c

′−c
R-c (A).

This follows from Corollary 4.3 and

(i−1
k K)x ∈ 1/2D

≤c−k/2
coh (A) and (i !kL)x ∈ 1/2D

≥c′−k/2
coh (A).

Now we shall show by induction on k that

RΓXkRHom(K,L) ∈ D≥c
′−c

R-c (AX).
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By the induction hypothesis RΓXk−1
RHom(K,L) ∈ D≥c

′−c
R-c (AX). We have the

distinguished triangle

RΓXk−1
RHom(K,L) −→ RΓXkRHom(K,L) −→ RΓX̊kRHom(K,L)

+1−−→ .

Since RΓX̊kRHom(K,L) ' R(ik)∗i
!
kRHom(K,L) belongs to D≥c

′−c
R-c (AX), we ob-

tain RΓXkRHom(K,L) ∈ D≥c
′−c

R-c (AX).

Now we shall show condition (d) of Definition 1.2 in a special case.

Lemma 5.7. Let X be a smooth subanalytic space, and c ∈ R. Let K ∈ Db
R-c(AX)

and assume that K has locally constant cohomology. Then there exists a distin-

guished triangle

K ′ −→ K −→ K ′′
+1−−→

with K ′ ∈ 1/2D≤cR-c(AX) and K ′′ ∈ 1/2D>c
R-c(AX). Moreover K ′ and K ′′ have locally

constant cohomology.

Proof. We argue in three steps.

(i) Such a distinguished triangle exists locally. Indeed, for any x ∈ X, there

exist an open neighborhood U of x and M ∈ Db
coh(A) such that K|U 'MU . Take

a distinguished triangle M ′ →M →M ′′
+1−−→ such that M ′ ∈ 1/2D

≤c−(dimX)/2
coh (A)

and M ′′ ∈ 1/2D
>c−(dimX)/2
coh (A). Then M ′U → MU → M ′′U

+1−−→ gives the desired

distinguished triangle.

(ii) If Ui is an open subset of X and K ′i −→ K|Ui −→ K ′′i
+1−−→ is a distinguished

triangle with K ′i ∈ 1/2D≤cR-c(AUi) and K ′′i ∈ 1/2D>c
R-c(AUi) (i = 1, 2), then there ex-

ists a distinguished triangle K ′ −→ K|U1∪U2
−→ K ′′

+1−−→ with K ′ ∈ 1/2D≤cR-c(AU1∪U2
)

and K ′′ ∈ 1/2D>c
R-c(AU1∪U2).

Indeed, by the uniqueness of such a distinguished triangle, we haveK ′1|U1∩U2
'

K ′2|U1∩U2 . Denote both by K0 ∈ Db(AU1∩U2). Let i0 : U1 ∩ U2 → U1 ∪ U2 and

ik : Uk → U1 ∪ U2(k = 1, 2) be the open inclusions. Then embed a morphism

(i0) !K0 → (i1) !K
′
1 ⊕ (i2) !K

′
2 into a distinguished triangle

(i0) !K0 → (i1) !K
′
1 ⊕ (i2) !K

′
2 → K ′

+1−−→ .

Then K ′|Uk ' K ′k. Since the composition (i0) !K0 → (i1) !K
′
1⊕(i2) !K

′
2 → K|U1∪U2

vanishes, the morphism (i1) !K
′
1 ⊕ (i2) !K

′
2 → K|U1∪U2

factors through K ′. Hence,

there exists a morphism K ′ → K|U1∪U2 which extends K ′i → K|Ui (i = 1, 2).

Embedding this morphism into a distinguished triangle K ′ −→ K|U1∪U2
−→ K ′′

+1−−→,

we obtain the desired distinguished triangle.

(iii) By (i) and (ii), there exist an increasing sequence of open subsets

{Un}n∈Z≥0
with X =

⋃
n∈Z≥0

Un and a distinguished triangle K ′n → K|Un →
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K ′′n
+1−−→ with K ′n ∈ 1/2D≤cR-c(AUn) and K ′′n ∈ 1/2D>c

R-c(AUn). Let in : Un → X

be the inclusion. By the uniqueness of such distinguished triangles, we have

K ′n+1|Un ' K ′n. Hence, we have a map βn : (in) !K
′
n → (in+1) !K

′
n+1. Let K ′

be the hocolim of the inductive system {(in) !K
′
n}n∈Z≥0

, that is, the third term of

a distinguished triangle⊕
n∈Z≥0

(in) !K
′
n

f−→
⊕
n∈Z≥0

(in) !K
′
n −→ K ′

+1−−→ .

Here f is such that the following diagram commutes for any a ∈ Z≥0:

(ia) !K
′
a

id(ia) !K
′
a
⊕ (−βa)

//

��

(ia) !K
′
a ⊕ (ia+1) !K

′
a+1

��⊕
n∈Z≥0

(in) !K
′
n

f //⊕
n∈Z≥0

(in) !K
′
n.

Then K ′|Un ' K ′n. Since the composition⊕
n∈Z≥0

(in) !K
′
n

f−−→
⊕
n∈Z≥0

(in) !K
′
n −→ K

vanishes, the morphism
⊕

n∈Z≥0
(in) !K

′
n −→ K factors through K ′. Hence there is

a morphism K ′ → K which extends (in) !K
′
n → K. Embedding this morphism into

a distinguished triangle K ′ −→ K −→ K ′′
+1−−→, we obtain the desired distinguished

triangle.

Finally we shall complete the proof of condition (d) of Definition 1.2.

Lemma 5.8. Let K ∈ Db
R-c(AX) and c ∈ R. Then there exists a distinguished

triangle K ′ −→ K −→ K ′′
+1−−→ with K ′ ∈ 1/2D≤cR-c(AX) and K ′′ ∈ 1/2D>c

R-c(AX).

Proof. Let us take a good regular subanalytic filtration ∅ = X−1 ⊂ · · · ⊂ XN = X

such that K has locally constant cohomology on each X̊k := Xk \Xk−1. We may

assume that X̊k is a smooth subanalytic space of dimension k. We shall prove

that

(5.9)k there exists a distinguished triangle K ′ −→ K|X\Xk −→ K ′′
+1−−→ with K ∈

1/2D≤c(AX\Xk) and K ′′ ∈ 1/2D>c
R-c(AX). Moreover, K ′|X̊j and K ′′|X̊j have

locally constant cohomology for j > k,

by descending induction on k.

Assuming (5.9)k, we shall show (5.9)k−1. Let K ′ −→ K|X\Xk −→ K ′′
+1−−→ be

a distinguished triangle as in (5.9)k. Let j : X \ Xk → X \ Xk−1 be the open

embedding and i : X̊k → X \ Xk−1 the closed embedding. The morphism K ′ →
K|X\Xk induces j !K

′ → K|X\Xk−1
. We embed it into a distinguished triangle
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in Db
R-c(AX\Xk−1

)
j !K

′ → K|X\Xk−1
→ L

+1−−→ .

By Lemma 5.7, there exists a distinguished triangle

(5.10) L′ −→ i !L −→ L′′
+1−−→

with L′ ∈ 1/2D≤cR-c(AX̊k) and L′′ ∈ 1/2D>c
R-c(AX̊k). We embed the composition

i !L
′ → i ! i

!L→ L into a distinguished triangle

(5.11) i !L
′ → L→ K̃ ′′

+1−−→ .

Finally, we embed the composition K|X\Xk−1
→ L → K̃ ′′ into a distinguished

triangle

K̃ ′ → K|X\Xk−1
→ K̃ ′′

+1−−→ .

Let us show that

K̃ ′ ∈ 1/2D≤cR-c(AX\Xk−1
) and K̃ ′′ ∈ 1/2D>c

R-c(AX\Xk−1
).

By the construction, we have K̃ ′′|X\Xk ' L|X\Xk ' K ′′ and K̃ ′|X\Xk ' K ′.

Hence it is enough to show that i−1K̃ ′ ∈ 1/2D≤cR-c(AX̊k) and i !K̃ ′′ ∈ 1/2D>c
R-c(AX̊k).

Applying the functor i ! to (5.11), we obtain a distinguished triangle

L′ −→ i !L −→ i !K̃ ′′
+1−−→ .

By the distinguished triangle (5.10), we have i !K̃ ′′ ' L′′ ∈ 1/2D>c
R-c(AX̊k).

By the octahedral axiom of a triangulated category, we have a diagram

K̃ ′

""

��

j !K
′

::

��

i !L
′+1oo

��

K|X\Xk−1

$$

// K̃ ′′

+1

OO

+1

YY

L

<<

+1

[[

and a distinguished triangle

j !K
′ −→ K̃ ′ −→ i !L

′ +1−−→ .

This implies i−1K̃ ′ ' L′ ∈ 1/2D≤cR-c(AX̊k).

This completes the proof of Theorem 5.5.
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Recall the full subcategory of Db
R-c(AX):

1/2D
[a,b]
R-c (AX) := 1/2D≤bR-c(AX) ∩ 1/2D≥aR-c(AX)

for a ≤ b.

Proposition 5.9. Assume that a, b ∈ R satisfy a ≤ b < a + 1. Then X ⊃ U 7→
1/2D

[a,b]
R-c ((AU ) is a stack on X.

Proof. (i) Let K,L ∈ 1/2D
[a,b]
R-c (AX). Since RHomA(K,L) ∈ D≥a−bR-c (AX) =

D≥0
R-c(AX), the presheaf

U 7→ Hom1/2D
[a,b]
R-c (AU )

(K|U , L|U ) ' Γ(U ;H0(RHomA(K,L)))

is a sheaf. Hence, U 7→ 1/2D
[a,b]
R-c (AU ) is a separated prestack on X.

(ii) Let us show the following statement:

• Let U1 and U2 be open subsets of X such that X = U1 ∪ U2, and let

Kk ∈ 1/2D
[a,b]
R-c (AUk) (k = 1, 2). Assume that K1|U1∩U2

' K2|U1∩U2
. Then there

exists K ∈ 1/2D
[a,b]
R-c (AX) such that K|Uk ' Kk (k = 1, 2).

Set U0 =U1 ∩ U2 and K0 =K1|U1∩U2
'K2|U1∩U2

∈ 1/2D
[a,b]
R-c (AU0

). Let jk : Uk→X

be the open inclusion (k = 0, 1, 2). Then we have βk : (j0) !(K0) → (jk) !Kk (k =

1, 2). We embed the morphism (β1, β2) : (j0) !(K0) → (j1) !K1 ⊕ (j2) !K2 into a

distinguished triangle

(j0) !(K0) −→ (j1) !K1 ⊕ (j2) !K2 −→ K
+1−−→ .

Then K satisfies the desired condition.

(iii) Let us show the following statement:

• Let {Un}n∈Z≥0
be an increasing sequence of open subsets of X such that X =⋃

n∈Z≥0
Un. Let Kn ∈ 1/2D

[a,b]
R-c (AUn) (n ∈ Z≥0) and Kn+1|Un ' Kn. Then there

exists K ∈ 1/2D
[a,b]
R-c (AX) such that K|Un ' Kn (n ∈ Z≥0).

The proof is similar to the proof of Lemma 5.7. Let jn : Un → X be the open

inclusion, and let (jn) !Kn → (jn+1) !Kn+1 be the morphism induced by the

isomorphism Kn+1|Un ' Kn. Let K be the hocolim of the inductive system

{(jn) !Kn}n∈Z≥0
. Then K ∈ 1/2D

[a,b]
R-c (AX) satisfies the desired condition.

(iv) By (i)–(iii), we conclude that U 7→ 1/2D
[a,b]
R-c (AU ) is a stack on X.

Proposition 5.10. Let f : X → Y be a morphism of subanalytic spaces, and

d ∈ Z≥0. Assume that dim f−1(y) ≤ d for any y ∈ Y . Then:

(i) If G ∈ 1/2D≤cR-c(AY ), then f−1G ∈ 1/2D
≤c+d/2
R-c (AX).

(ii) If G ∈ 1/2D≥cR-c(AY ), then f !G ∈ 1/2D
≥c−d/2
R-c (AX).
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(iii) If F ∈ 1/2D≥cR-c(AX) and Rf∗F ∈ Db
R-c(AY ), then Rf∗F ∈ 1/2D

≥c−d/2
R-c (AY ).

(iv) If F ∈ 1/2D≤cR-c(AX) and Rf!F ∈ Db
R-c(AY ), then Rf!F ∈ 1/2D

≤c+d/2
R-c (AY ).

Proof. (i) Assume G ∈ 1/2D≤cR-c(AY ). Then

dim{x ∈ X | (f−1G)x /∈ 1/2D
≤c+d/2−k/2
coh (A)}

= dim f−1({y ∈ Y | Gy /∈ 1/2D
≤c+d/2−k/2
coh (A)})

≤ dim{y ∈ Y | Gy /∈ 1/2D
≤c+d/2−k/2
coh (A)}+ d < (k − d) + d = k.

(ii) follows from (i) by duality.

(iii) For any G ∈ 1/2D
<c−d/2
R-c (AY ),

HomDb
R-c(AY )(G,Rf∗F ) ' HomDb

R-c(AX)(f
−1G,F )

vanishes because f−1G ∈ 1/2D<c
R-c(AX) by (i). Hence Rf∗F ∈ 1/2D

≥c−d/2
R-c (AY )

by (1.3).

Similarly, (iv) follows from (ii).

We shall give relations between the two t-structures:

((
1/2
KS D≤cR-c(AX))c∈R, (

1/2
KS D≥cR-c(AX))c∈R),

((1/2D≤cR-c(AX))c∈R, (
1/2D≥cR-c(AX))c∈R).

Lemma 5.11. Let K ∈ Db
R-c(AX) and c ∈ R.

(i) The following conditions are equivalent:

(a) K ∈ 1/2D≤cR-c(AX),

(b) for any c′ ∈ R and M ∈ 1/2D≥c
′

coh(A), we have

RHomA(K,M ⊗ ωX) ∈ 1/2
KS D≥c

′−c
R-c (AX).

(ii) The following conditions are equivalent:

(a) K ∈ 1/2D≥cR-c(AX),

(b) for any c′ ∈ R and M ∈ 1/2D≤c
′

coh(A), we have

RHomA(MX ,K) ∈ 1/2
KS D≥c−c

′

R-c (AX).

Proof. (ii) is already proved in Lemma 5.4; and (i) follows from (ii) because

RHomA(K,M ⊗ ωX)'RHomA(DX(M ⊗ ωX),DXK)

'RHomA((DAM)X ,DXK),

where DAM := RHomA(M,A).
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Lemma 5.12. Let X and Y be subanalytic spaces. Let K ∈ 1/2D≥cR-c(AX) and

L ∈ 1/2D≥c
′

R-c (AY ). Then

K
L
� L ∈ 1/2

KS D≥c+c
′

R-c (AX×Y ).

Proof. Let X =
⊔
αXα and Y =

⊔
β Yβ be good subanalytic stratifications such

that K|Xα and L|Yβ are locally constant. Then (RΓXαK)x ∈ 1/2D
≥c−(dimXα)/2
coh (A)

and (RΓYβL)y ∈ 1/2D
≥c′−(dimYβ)/2
coh (A) for x ∈ Xα and y ∈ Yβ . Hence by Proposi-

tion 4.4(iv),

(RΓXα×Yβ (K
L
� L))(x,y) ' (RΓXαK)x

L
⊗ (RΓYβL)y ∈ D

≥c+c′−(dim(Xα×Yβ))/2
coh (A).

This yields the conclusion.

Remark 5.13. We have

1/2
KS D≤cR-c(AX) ⊂ 1/2D≤cR-c(AX), 1/2D≥cR-c(AX) ⊂ 1/2

KS D≥cR-c(AX).

§6. Self-dual t-structure: complex analytic variety case

§6.1. Middle perversity in the complex case

Let X be a complex analytic space. We denote by dimCX the dimension of X.

Hence dimCX = (dimXR)/2 where XR is the underlying subanalytic space. For

a complex submanifold Y of a complex manifold X, we denote by codimC Y the

codimension of Y as complex manifolds. We sometimes write dX for dimCX.

Let Db
C-c(AX) be the bounded derived category of the abelian category of

sheaves of A-modules with C-constructible cohomology. It is a full subcategory of

Db
R-c(AX) and it is easy to see that the self-dual t-structure on Db

R-c(AX) induces

a self-dual t-structure on Db
C-c(AX). More precisely, if we define

1/2D≤cC-c(AX) := Db
C-c(AX) ∩ 1/2D≤cR-c(AX),

1/2D≥cC-c(AX) := Db
C-c(AX) ∩ 1/2D≥cR-c(AX),

then ((1/2D≤cC-c(AX))c∈C, (
1/2D≥cC-c(AX))c∈C) is a t-structure on Db

C-c(AX). Simi-

larly, the t-structure ((
1/2
KS D≤cR-c(AX))c∈C, (

1/2
KS D≥cR-c(AX))c∈C) induces the t-struc-

ture ((
1/2
KS D≤cC-c(AX))c∈C, (

1/2
KS D≥cC-c(AX))c∈C) on Db

C-c(AX).

Note that the t-structure (
1/2
KS D≤0

C-c(AX),
1/2
KS D≥0

C-c(AX)) in the original sense is

denoted by (pD≤0
C-c(X), pD≥0

C-c(X)) in [5, §10.3].

In [5, §10.3], various properties of (
1/2
KS D≤0

C-c(AX),
1/2
KS D≥0

C-c(AX)) are studied.

By using Lemma 5.11, in the next subsection we obtain similar properties for

((1/2D≤cC-c(AX))c∈C, (
1/2D≥cC-c(AX))c∈C).
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§6.2. Microlocal characterization

Let X be a complex manifold. Let K ∈ Db
C-c(AX). Then the microsupport SS(K)

is a Lagrangian complex analytic subset of the cotangent bundle T ∗X (see [5]).

A point p of SS(K) is called good if SS(K) equals the conormal bundle T ∗YX

on a neighborhood of p for some locally closed complex submanifold Y of X. The

complement of the set of good points of SS(K) is a nowhere dense closed complex

analytic subset of SS(K). For a good point p of SS(K), there exists L ∈ Db
coh(A)

such that K is microlocally isomorphic to LY [− codimC Y ] on a neighborhood of p.

We call L the type of K at p. (Note that in [5, §10.3], L is called the type of K

at p with shift 0.)

The type can be calculated by the vanishing cycle functor. If f is a holo-

morphic function such that f |Y = 0 and df(x0) = p, then we have ϕf (K)x0
'

L[− codimC Y ]. Here, x0 ∈ X is the image of p by the projection T ∗X → X, and

ϕf is the vanishing cycle functor from Db
C-c(AX) to Db

C-c(Af−1(0)). Note that

ϕf (K) ' RΓ{x|Re(f(x))≥0}(K)|f−1(0).

The following theorem is proved in [5, §10.3].

Theorem 6.1 ([5, Theorem 10.3.2]). Let K ∈ Db
C-c(AX). Then the following con-

ditions are equivalent:

(a) K ∈ 1/2
KS D≤cC-c(AX) (resp. K ∈ 1/2

KS D≥cC-c(AX)),

(b) the type of K at any good point of SS(K) belongs to D≤c−dXcoh (A) (resp. belongs

to D≥c−dXcoh (A)).

As a corollary, we can derive the following microlocal characterization of

((1/2D≤cC-c(AX))c∈C, (
1/2D≥cC-c(AX))c∈C).

Theorem 6.2. Let K ∈ Db
C-c(AX). Then the following conditions are equivalent:

(a) K ∈ 1/2D≤cC-c(AX) (resp. K ∈ 1/2D≥cC-c(AX)),

(b) the type of K at any good point of SS(K) belongs to 1/2D≤c−dXcoh (A) (resp.

belongs to 1/2D≥c−dXcoh (A)).

Proof. Assume that K ∈ 1/2D≥cR-c(AX). Then for any M ∈ 1/2D≤c
′

coh(A), we have

RHomA(MX ,K) ∈ 1/2
KS D≥c−c

′

C-c (AX). Let L be the type of K at a good point p

of SS(K). Then RHomA(MX ,K) has type RHomA(M,L) at p. Hence, the pre-

ceding theorem implies RHomA(M,L) ∈ D≥c−c
′−dX

coh (A). Since this holds for any

M ∈ 1/2D≤c
′

coh(A), we conclude L ∈ 1/2D≥c−dXcoh (A). The converse can be proved

similarly.



292 M. Kashiwara

The case of 1/2D≤cC-c(AX) can be derived from the above case by duality. The

condition K ∈ 1/2D≤cC-c(AX) is equivalent to DX(K) ∈ 1/2D≥−cC-c (AX). Let L be

the type of K at a good point p of SS(K). Then DX(K) has type DA(L)[2dX ]

at p, and it is enough to notice that DA(L)[2dX ] ∈ 1/2D≤−c−dXcoh (A) if and only if

L ∈ 1/2D≥c−dXcoh (A).

The following proposition can be proved similarly.

Proposition 6.3. Let Y be a closed complex submanifold of a complex mani-

fold X. Then:

(i) The functor νY : Db
C-c(AX)→ Db

C-c(ATYX) sends

1/2D≤cC-c(AX) to 1/2D≤cC-c(ATYX) and 1/2D≥cC-c(AX) to 1/2D≥cC-c(ATYX).

(ii) The microlocalization functor µY : Db
C-c(AX)→ Db

C-c(AT∗YX) sends

1/2D≤cC-c(AX) to 1/2D≤c+codimC Y
C-c (AT∗YX),

1/2D≥cC-c(AX) to 1/2D≥c+codimC Y
C-c (AT∗YX).

Proof. Since the proofs are similar, we show only (ii). Let K ∈ 1/2D≥cC-c(AX).

Then, for any M ∈ 1/2D≤c
′

coh(A), we have RHomA(MX ,K) ∈ 1/2
KS D≥c−c

′

C-c (AX).

Hence [5, Prop. 10.3.19] implies that

µY (RHomA(MX ,K)) ∈ 1/2
KS D≥c−c

′+codimC Y
C-c (AT∗YX).

Since

RHomA(MT∗YX
, µYK) ' µY (RHomA(M,K)),

we obtain µYK ∈ 1/2D≥c+codimC Y
C-c (AT∗YX).

Assume now that K ∈ 1/2D≤cC-c(AX). Then DXK ∈ 1/2D≥−cC-c (AX). Since

[5, Prop. 8.4.13] implies DT∗YX(µYK) ' (µY DXK)a[2 codimC Y ], we obtain

DT∗YX(µYK) ∈ 1/2D≥−c−codimC Y
C-c (AT∗YX).

Hence µYK ∈ 1/2D≤c+codimC Y
C-c (AT∗YX).

The following theorem is proved in [5, §10.3].

Theorem 6.4 ([5, Corollary 10.3.20]). LetK∈1/2
KS D≤cC-c(AX) andL∈1/2

KS D≥c
′

C-c (AX).

Then µhom(K,L) ∈ 1/2
KS D≥c

′−c+dX
C-c (AT∗X).

As a corollary we obtain the following result.



Self-dual t-structure 293

Theorem 6.5. Let K ∈ Db
C-c(AX) and L ∈ Db

C-c(AX).

(i) If K ∈ 1/2D≤cC-c(AX) and L ∈ 1/2D≥c
′

C-c (AX), then

µhom(K,L) ∈ 1/2
KS D≥c

′−c+dX
C-c (AT∗X).

(ii) If K ∈ 1/2
KS D≤cC-c(AX) and L ∈ 1/2D≥c

′

C-c (AX), then

µhom(K,L) ∈ 1/2D≥c
′−c+dX

C-c (AT∗X).

Proof. (i) By Lemma 5.12, we have L
L

� DXK ∈ 1/2
KS D≥c

′−c
R-c (AX). Let ∆X be the

diagonal of X ×X. Then µhom(K,L) = µ∆X
(L

L

�DXK) ∈ 1/2
KS D≥c

′−c+dX
C-c (AX) by

[5, Proposition 10.3.19].

(ii) For any M ∈ 1/2D≤c
′′

coh (A), we have RHom(MX , L) ∈ 1/2
KS D≥c

′−c′′
C-c (AX).

Hence

RHom(MT∗X , µhom(K,L)) ' µhom(K,RHom(MX , L))

belongs to
1/2
KS D≥c

′−c′′−c+dX
C-c (AT∗X) by Theorem 6.4. Consequently, µhom(K,L) ∈

1/2D≥c
′−c+dX

C-c (AT∗X) by Lemma 5.11.

Example 6.6. Assume that 2 acts injectively on A. Let M be a finitely generated

projective A-module. Let X = C3 and S = {(x, y, z) ∈ X | x2 + y2 + z2 = 0}. Let

j : X \ {0} → X be the inclusion. Since S \ {0} is homeomorphic to the product

of R and the 3-dimensional real projective space P3(R), we have

(Rj∗j
−1(MS))0 ' RΓ(S \ {0};MS) 'M ⊕ (M/2M)[−2]⊕M [−3],

and RΓ{0}(MS)0 ' (M/2M)[−3]⊕M [−4]. Hence we have

MS ∈ 1/2D2
C-c(AX),

and a distinguished triangle

M0[−1]→ Rj!j
−1(MS)→MS

+1−−→ .

Consequently,

Rj!j
−1(MS) ∈ 1/2D

[1,2]
C-c (AX),

1/2τ ≥2Rj!j
−1(MS)'MS ,

1/2τ <2Rj!j
−1(MS)'M0[−1] ∈ 1/2D1

C-c(AX).

Here 1/2τ denotes the truncation functor of the t-structure 1/2Db
C-c(AX).

By duality, we have

Rj∗j
−1(MS) ∈ 1/2D

[2,3]
C-c (AX),

1/2τ >2Rj∗j
−1(MS)'M0[−3] ∈ 1/2D3

C-c(AX).
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Hence we obtain a distinguished triangle

1/2τ ≤2Rj∗j
−1(MS)→ Rj∗j

−1(MS)→M0[−3]
+1−−→ .

The canonical morphism Rj!j
−1(MS)→ Rj∗j

−1(MS) decomposes as

Rj!j
−1(MS) //

��

Rj∗j
−1(MS)

MS
// 1/2τ ≤2Rj∗j

−1(MS)

OO

and the bottom arrow is embedded into a distinguished triangle

MS → 1/2τ ≤2Rj∗j
−1(MS)→ (M/2M){0}[−2]

+1−−→ .

Note that (M/2M){0}[−2] ∈ 1/2D
3/2
C-c(AX). Hence MS → 1/2τ ≤2Rj∗j

−1(MS) is a

monomorphism and an epimorphism in the quasi-abelian category 1/2D2
C-c(AX).

Moreover, we have an exact sequence

0→MS → 1/2τ ≤2Rj∗j
−1(MS)→ (M/2M){0}[−2]→ 0

in the abelian category 1/2D
[3/2, 2]
C-c (AX) and an exact sequence

0→ (M/2M)[−3]{0} →MS → 1/2τ ≤2Rj∗j
−1(MS)→ 0

in the abelian category 1/2D
[2, 5/2]
C-c (AX). Note that we have an isomorphism of

distinguished triangles

ϕx(MS) //

o��
ϕx(1/2τ ≤2Rj∗j

−1(MS)) //

o��
ϕx((M/2M){0}[−2])

+1 //

o��
M{0}[−2]

2 // M{0}[−2] // (M/2M){0}[−2]
+1 //

Here ϕx is the vanishing cycle functor.
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