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Self-dual t-structure

by

Masaki KASHIWARA

Abstract

We give a self-dual t-structure on the derived category of R-constructible sheaves over
any Noetherian regular ring by generalizing the notion of t-structure.
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Introduction

Let X be a complex manifold and let DE_(kx ) be the derived category of sheaves of
k-vector spaces on X with C-constructible cohomology. Here k is a given base field.
Then the t-structure (pDé_(i(kX), pDg_oc(kx)) on D__(kx) with middle perversity
is self-dual with respect to the Verdier dual functor Dx = R#Zom(«,wx). Namely,
the Verdier dual functor exchanges pDé(i(k x) and pD%_(l(k x ). However, on a real
analytic manifold X (of positive dimension), no perversity gives a self-dual t-
structure on the derived category Dp_.(kx) of R-constructible sheaves on X. In
this paper, we construct such a self-dual t-structure after generalizing the notion of
t-structure. This generalized notion already appeared in the paper of Bridgeland [2]

on stability conditions (see also [4]). This construction can also be applied to the

b
coh

derived category D, (A) of finitely generated modules over a Noetherian regular

ring A. We construct a (generalized) t-structure on D, (A) which is self-dual with
respect to the duality functor RHom4(«, A).

Let us explain our results more precisely with the example of D (kx). Let
X be a real analytic manifold. Recall that a sheaf F' of k-vector spaces is called
R-constructible if X is a locally finite union of locally closed subanalytic sub-
sets {X,}o such that all the restrictions F|x_ are locally constant with finite-

dimensional fibers. Let Di_.(kx) be the bounded derived category of R-construc-
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tible sheaves. Let Dx = R#om(+,wx) be the Verdier dual functor. For ¢ € R, we
define

12D (ky) := {K € DR_(kx) | dim Supp(H'K) < 2(c—1) for any i € Z},

(0.1) ‘ K
12D (kx) == {K € DR (kx) | DxK € /?D5 _“(kx)}.

Then, the pair ((1/2D5 (kx))eer, (/2DzS (kx))cer) satisfies the axioms of (gen-
eralized) t-structure (Definition 1.2). In particular, (Y/2Dg* (kx), /2D ! (kx))
is a t-structure in the ordinary sense for any ¢ € R. Here /?Dg¢(kx) :=
Up~. /?Dg" (kx). Therefore, for any K € Dp_(kx) and ¢ € R, there exists a dis-
tinguished triangle K’ — K — K" =5 in D (kx) such that K’ € '/2D5¢ (ky)
and K" € /D¢ (kx).

Note that 1/2D§_cc(kx) = 1/2D§_Sc(kx) for s € 37 such that s < ¢ < s+1/2,
and 1/2D§_cc(kx) = 1/QDH%_SC(kX) for s € 1Z such that s —1/2 < ¢ < s.

This paper is organized as follows. In Section 1, we generalize the notion
of a t-structure. In Section 2, we recall the result of [4] on a t-structure on the
derived category of a quasi-abelian category. In Section 3, we give the t-structure
associated with a torsion pair on an abelian category.

In Section 4, we define a self-dual t-structure on the derived category of co-
herent sheaves on a Noetherian regular scheme.

In Section 5, we give two t-structures on the derived category of the abelian
category of R-constructible sheaves of A-modules on a subanalytic space X. Here
A is a Noetherian regular ring. One is purely topological and the other is self-dual
with respect to the Verdier duality functor.

In Section 6, we study the self-dual t-structure on the derived category of
the abelian category of sheaves of A-modules on a complex manifold X with C-
constructible cohomology. The main result is its microlocal characterization (The-
orem 6.2).

Convention. In this paper, all subanalytic spaces and complex analytic spaces
are assumed to be Hausdorff, locally compact, countable at infinity and with finite
dimension.

§1. (Generalized) t-structure

Since the following lemma is elementary, we omit its proof.

Lemma 1.1. Let X be a set.

(i) Let (X=¢).cr be a family of subsets of X such that X<¢ = ﬂb>cX5b for any
ceR. Set X<¢:=J,.,X=. Then
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(a) X<¢=Up X<,
(b) X=° =, X"

(ii) Conversely, let (X<%).cr be a family of subsets of X such that X<¢ =
Upce X <P for any c € R. Set X=¢:= ﬂb>cX<b. Then

(a) X50 =), X",
(b) X< =, X<

(iii) Let (X=°).er and (X <¢).cr be as above. Let a,b € R be such that a < b. If
X<¢ = X=¢ for any c such that a < ¢ < b, then X<% = X =0,

Let us recall the notion of t-structure (see [1]). Let T be a triangulated cate-
gory. Let 7=0 and 72° be strictly full subcategories of 7. Here, a subcategory C’
of a category C is called strictly full if it is full, i.e. Home/ (X,Y) = Home (X, Y)
for any X,Y € C’, and any object of C isomorphic to some object of C’ is an object
of C'.

For n € Z, we set T=" = T<[—n] and T=" = T=2°—n]. Let us recall that
(T=°,72%) is a t-structure on T if:

(1.1) (a) TS 7=t and T2 Cc 729,
(b) Hom7(X,Y) =0for X € 7<% and Y € 721,

(¢) for any X € T, there exists a distinguished triangle Xo — X — X RN
in 7 such that X, € 7<0 and X; € 721

We shall generalize this notion.

Definition 1.2. Let (7=¢) .cg and (72¢).cg be families of strictly full sub-
categories of a triangulated category 7, and set 7<¢ = (J,., T<t and T>¢ =
Upse 720 We say that ((T=)cer, (T=°)cer) is a (generalized) t-structure (cf. [2])
if
(12) (a) T=¢=Nye T=" and T=¢ =), T=" for any c € R,
(b) T=ett = T=¢[-1] and T=t! = T=¢[—1] for any ¢ € R,
(¢) Homy(X,Y)=0foranyce R, X e T<¢and Y € 77,
(d) for any X € T and ¢ € R, there exist distinguished triangles X, —
X = X, +—1>a1[1dX{J - X = X] +—1>inTsuchthatX0 € T=e°,
X; € T>¢and X{) € T<¢, X{ € T2

Note that under conditions (a)—(c), the distinguished triangles in (d) are
unique up to a unique isomorphism.
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If ((TS%ecer, (TZ%)eer) is a generalized t-structure, then the pairs
(T=¢, 7> 1) and (T<¢,TZ1) are t-structures in the original sense for any ¢ € R.
Hence, T=¢NT>¢"1 and T<¢N T2 are abelian categories.

Assume that ((75)cer, (T2)cer) is a generalized t-structure. Then the in-
clusion functors 7=¢ — T and 7 <¢ — T have respective right adjoints

7SC T 5 TS and 75¢: T — T<°

Similarly, the inclusion functors 72¢ — T and 7~¢ — T have respective left
adjoints
26T 5 T72¢ and 77 T — T°¢.

We have distinguished triangles functorially in X € 7
TSX X - 77X T and 79X = X - r2eX T

These four functors are called the truncation functors of the generalized t-structure

(T=)cers (TZ)cer)-

For any a,b € R, we have isomorphisms of functors

TSa O’rgb ~ Tgmm(a,b), ,7_211 072” ~ ,rzmax(a,b)7 Tga o 7_217 ~ TZb OTSa.

In the last formula, we can replace 72¢ with 7% or 7= with 7<°. For any ¢ € R,

we have
T=¢={X €T |Homs(X,Y) ~0 for any Y € T~},
13) T<¢={X €T |Homy(X,Y) ~0 for any Y € 7=},
T2¢={Y € T | Hom7(X,Y) ~ 0 for any X € T<},

(X
T>¢={Y € T |Homp(X,Y) ~0 for any X € T=}.

We set T¢ := T=¢N T=¢ Then T¢ is a quasi-abelian category (see [2] and
[6]). More generally, for a < b, we set

Tt =Tt nT="

Then T1*% is a quasi-abelian category if a < b < a + 1.
A t-structure (7=0,729) is regarded as a generalized t-structure by setting

T<¢=7T<0—n] forn € Zsuch that n <c < n+ 1,

1.4
(14) T2¢=T2%-n] forn € Zsuchthatn—1<c<n.

Hence, a t-structure is nothing but a generalized t-structure such that 7=0 = 7<!
and 72 = 729, or equivalently 7¢ = 0 for any ¢ ¢ Z.
In the following, we call a generalized t-structure simply a t-structure.
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Remark 1.3. In the examples we give in this paper, the t-structures also satisfy
the following condition:

(e) for any ¢ € R we can find a and b such that a < ¢ < b and
(1) T<c — 7‘§a7 Tgc — 7‘<b7
(2) 7’>c — 7’21)7 Tzc — T>a-

More precisely, in the examples in this paper, we can take a = max{s € %Z | s < ¢}
and b =min{s € $Z | s > c}. Hence T¢ =0 if ¢ ¢ 1 Z.

§2. t-structure on the derived category of a quasi-abelian category

For more details, see [4, §2].
Let C be a quasi-abelian category (see [6]). Recall that, for a morphism
f: X =Y inC, Imf := Ker(Y — Coker f) and Coim f := Coker(Ker f — X).

Hence, we have a diagram
f \

Ker f —— X —— Coim f Im f Y Coker f.

Let C(C) be the category of complexes in C, and D(C) the derived category of C
(see [6]). Let us define various truncation functors for X € C(C):

TSPX s XM S Kerdy 500 -
pSF2x s L X S X s Tmdy - 0 — -

72X s =0 Cokerdy h — X" o X
rZF2X 50— Coimdy — X" X2

for n € Z. Then we have morphisms functorial in X:

THX 57X 5 X 577X - X

for s,t € %Z such that s < t. We can easily check that the functors
7% 72%: C(C) — C(C) send morphisms homotopic to zero to morphisms homo-
topic to zero and quasi-isomorphisms to quasi-isomorphisms. Hence, they induce

functors
unctors TSS,TZSZ D(C) — D(C)

and morphisms 7% — id — 72°.
For s € 37, set
D=*(C) = {X € D(C) | 7S*X — X is an isomorphism},
D2°(C) = {X € D(C) | X — 72°X is an isomorphism}.

Then {D=*(C )}se 1z is an increasing sequence of strictly full subcategories of D(C),
and {DZS(C)}SE%Z is a decreasing sequence of strictly full subcategories of D(C).
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The functor 7=%: D(C) — D=%(C) is a right adjoint functor of the inclusion
functor D=%(C) — D(C), and 72°: D(C) — DZ*(C) is a left adjoint functor of
DZ5(C) — D(C).

For ¢ € R, we set
D=¢(C) =D=*(C) where s € 37 satisfies s < ¢ < s+ 1/2,
D=¢(C) =D=%(C) where s € 1Z satisfies s — 1/2 < ¢ < s.

Proposition 2.1 ([6], see also [4]). ((D=¢(C))cer, (D=¢(C))cec) is a t-structure.

We call it the standard t-structure on D(C). The triangulated category D(C) is
equivalent to the derived category of the abelian category D=¢(C) N D>*~1(C) for
every ¢ € R. The full subcategory D°(C) := D<°(C) N D=%(C) is equivalent to C.

If C is an abelian category, then the standard t-structure is

D=¢(C) = {X € D(C) | H'(X) = 0 for any i > c},
D2¢(C) = {X € D(C) | H'(X) = 0 for any i < c}.

83. t-structure associated with a torsion pair

Let C be an abelian category. A torsion pair is a pair (T, F) of strictly full subcat-
egories of C such that

(3.1) (a) Home(X,Y)=0forany X € Tand Y € F,

(b) for any X € C, there exists an exact sequence 0 - X' - X - X" — 0
with X’ € T and X" € F.

Let (T,F) be a torsion pair. Then
T~{X €C|Hom¢(X,Y) =0 for any Y € F},
F~{Y €C|Home(X,Y) =0 for any X € T}.

Moreover, T is stable under taking quotients and extensions, while F is stable
under taking subobjects and extensions.
For any integer n, we define

(3.2) Sn(C) :={X e D(C) | H(X) ~ 0 for any i > n},
ppSn— 1/2(6) ={X eD(C)| H(X) ~0 for any i >n and H"(X) € T},
PD>"1/2(C) 1= (X € D(C) | H'(X) 0 for amy i < ).
PD2"(C) 1= {X € D(C)>" /2 | H'(X) ~ 0 for any i < n and H'(X) € F}.

For any ¢ € R, we define PD=¢(C) and PD=(C) by (2.1).
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Since the following proposition can be easily proved, we omit the proof.
Proposition 3.1. ((°D=%(C))ccr, (PDZ(C))eer) is a t-structure.
We have
T~PD"Y2(C), F~PDYC), and C~PDI¥/20((),

Moreover, D(C) is equivalent to the derived category of the abelian category
pD[O,l/Q](C)_
Note that

D=¢(C) c PD=¢(C) ¢ D=**Y2(C) and D=°*'/2(C) c PD2°(C) c DZ°(C).

84. Self-dual t-structure on the derived category of coherent sheaves

Let X be a Noetherian regular scheme. Consider the duality functor Dx :=
RAom e, (+,O0x). Let DE, (Ox) be the bounded derived category of &x-modules

coh

with coherent cohomology. We denote by (D% (€x))ecr, (D= (Ox))ecr) the

coh coh
standard t-structure on D2, (Ox).

Recall that, for any coherent &x-module .#, its codimension is defined by

codim.Z := codim Supp(.#) = Sinf(gz) dim Ox .
z€Supp

Here we understand codim 0 = +oo.

We set
12D2¢ (Gx) == {F € D2, (Ox) | codim H(F) > 2(i — ¢) for any i € Z},
2D (0x) == {F € Deon(0x) | DxF € D3 (0x)}
= {Z € DL, (Ox) | codim H (Dx.%) > 2(i + ¢) for any i € Z}.

These satisfy condition (a) of Definition 1.2. Note that

1/2DSC

coh

(Ox) ={F €DV, (Ox) | F, € DScT3IMIxa (G ) for any z € X}.

coh

We also have

V2D (0x) = | /?D3] (0x)
b<c
= {Z €D’ (Ox) | codim H'(F) > 2(i — ¢) for any i € Z},
Y2Dz5 (0x) = | /?DZ} (6x)
b>c

= {Z e Db, (Ox) | codim H (Dx.Z) > 2(i + ¢) for any i € Z}.

coh
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Lemma 4.1. Let .# € D2, (0x). Then F € /2D=¢ =n(Ox) if and only if we have
H'RI' z.# =0 for any closed subset Z and i < ¢+ (codim Z)/2.

Proof. We shall use the results in [3]. Let us define the systems of support

" ={Z|codimZ > 2(n+c)},
U ={Z|n<c+1+ (codimZ)/2}.

Then it is enough to show that

(4.1) (@ow)":= | (@ NW)={Z|codimZ >n}.
i+j=n

Indeed,

V2D C(0x) = "D (Ox)

coh coh

= {7 € DL, (Ox) | Supp(H*(F)) € ®* for any k € Z},

and hence [3, Theorem 5.9] along with (4.1) implies that /2DZ (€x) coincides
with

YD (Ox) == {F | H(RT'zF) = 0 for any Z € ¥}
={F | H(RI'zF) =0 for any i < ¢+ (codim Z)/2}.

Let us show (4.1) Assume that Z € ®' N W/ with i + j = n. Then
2codimZ > 2(i+c¢)+(2(j—c—1)+1)=2n-1

and hence codim Z > n.
Conversely, assume that codim Z > n. Then take an integer i such that ¢ <
(codimZ)/2 —¢ < i+ 1. Then i > (codim Z)/2 — ¢ — 1 and

ji=n—i<codimZ — ((codimZ)/2 —c—1) =c+ 1+ (codim Z)/2.
Hence Z € @' NW C (®o W)™, O

Proposition 4.2. ((Y/2DZ (0x))eer, (V?DZ5 (Ox))ecr) is a t-structure on
COh(ﬁX)

Proof. This follows from [3]. Indeed, (*/2D55H (0x), 1/2D>" 1 (Ox)) coincides with
(YDP, (Ox)=0,¥YDP, (0x)Z%) by the proof of the preceding proposition. O

Corollary 4.3. For .7 € '/?D=5 (0x) and 4 € 1/2Dc>il(ﬁ’x) we have

RAome, (F,9) € D25 (0x).

coh
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Conversely, for any ¢’ € R,

1/2D>c

coh

(0x) = {% € D5, (0x) | RAomey (F,9) € D25 °(Ox)

coh

for any c € R and F 1/2DC<O°h(ﬁ )}
and for any c € R,

1/2D>('

coh

(0x) = {F € Dly(Ox) | RAomo (7,9) € D5 °(0x)

coh

forany ¢ €R and G € 1/2Dc>oil(ﬁx)}.
Proposition 4.4. For 7,4 € D2, (Ox), we have:

L L
(i) if F € V/2D=C (0x) and G € D= (Ox), then F ¢y G € /2D (0x),
(i) if F € DS (Ox) and 4 € V/12DZ (Ox), then

Rotome, (F,9) € 12D ~(0x),

coh
(iii) if F € V/2DZS (Ox) and 4 € DS (Ox), then

RAome, (F,9) € /2D ~¢(0x),

coh

(iv) if F € 1/2D2¢ (Ox) and & € Y/2DZS (Ox), then F Gy @ € D2 ().

coh

(Ox), we have R#om e, (F, #) € D25 ~%(Ox)

coh

Proof. (i) For any J € 1/2D2¢

coh

by Corollary 4.3. Hence,

L
RAtOMme (F Qoy G, ) ~ Rtome, (9, RHome, (F,H))

belongs to D¢ ~¢~¢ ( x ). Since this holds for an arbitrary ¢ € 1/2D;Ch (Ox),

coh

we conclude that ®ﬁx G € 1/2DC<C+c (Ox) by (1.3).
(ii) Smce F ®5X Dx% €/2D=¢"¢ (6x) by (i), it follows that R#ome, (F,9)

coh

~ Dx(F ® Dx¥) belongs to 1/2pn2¢ “(Ox).

coh
L
(iii) Since R#om g, (F,9) ~ (DxF) Ry ¥, (iii) follows from (i).
L
(iv) follows from Corollary 4.3 and .% ®¢ ¥ ~ R#ome, (Dx #,9). O

Let A be a Noetherian regular ring and X = Spec(A). We write D, (A),
1/2D=¢ (A) and /2DZS (A) for D2, (Ox), Y?DZS (Ox) and /2D (Ox), respec-

coh

tively.
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Remark 4.5. (i) A similar construction is possible for a complex manifold X and
coherent &'x-modules.

(ii) For any ¢ € R, we have
(ﬁ ) C D<c+dlmX/2(ﬁX),

coh

(0x) C DZ5(0x).

D=¢

coh

(ﬁX) 1/2D<c

coh

DZC+dimX/2(ﬁx) 1/2D>c

coh coh

(iii) If .# is a Cohen-Macaulay Ox-module with codim.# = r, then we have

7 € 12D %(0x).

(iv) Assume that A is a Noetherian regular integral domain of dimen-
sion 1, and K the fraction field of A. Let C = Modcon(A4). We take as
T C C the subcategory of torsion A-modules, and as F the subcategory of
torsion free A-modules. Then the t-structure ((PD=¢(C))cer, (PDZ(C))ccr) as-
sociated with the torsion pair (T,F) (see §3) coincides with the t-structure

((*/2D=5 (A))eer, (/2DZ5 (A)))cer). Hence we have

Y2DI(A) = DS (A),
wy DI = {X € DIA) | K 94X € DHK)),
' V2DZETYP(A4) = DI (A),
12D2" (A) = {X € D} (A) | H™(X) is torsion free}.

for any n € Z.
Let F be the quasi-abelian category of finitely generated torsion free
A-modules. Then DP(F) =~ D’ (A), and the t-structure (("/2DZS(A)).cr,

coh
(1/2DZ¢ (A)).cr) coincides with the standard t-structure of DP(F).

85. Self-dual t-structure: real case
85.1. Topological perversity

Let X be a subanalytic space (cf. [5, Exercise IX.2]). A subanalytic space is called
smooth if it is is locally isomorphic to a real analytic manifold as a subanalytic
space.

A subanalytic stratification X = | |,.; Xo of X is a locally finite family of
locally closed smooth subanalytic subsets {X, }qocr (called strata) such that the

closure X, is a union of strata for any a.. A subanalytic stratification X = | | _; Xa

acl
is called good if it satisfies the following condition:

(5.1) for any K € DP(Zx) such that K|x_ has locally constant cohomology for
all a, (RT'x, K)|x, has locally constant cohomology for all a.
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Let X = | e; Xo and X = ||, Xj be two stratifications. We say that
X = yes Xa is finer than X = | |5, X} if any X, is contained in some Xj.
The following fact guarantees that there exist enough good stratifications:

(5.2) For any locally finite family {Z;}, of locally closed subsets, there exists a
good stratification such that any Z; is a union of strata.

A regular subanalytic filtration of X is an increasing sequence
=X, ,1C---CXny=X

of closed subanalytic subsets X}, of X such that )D(k = Xj \ Xk—1 is smooth of
dimension k. We say that it is a good filtration if {X} satisfies (5.1). Note that
any subanalytic stratification X = | | .; Xo gives a regular subanalytic filtration
defined by X, := |—|dirnXa<k X,.

Let A be a Noetherian regular ring. Denote by Modg..(Ax) the category of
R-constructible A x-modules, and by DE_(Ax) the bounded derived category of R-
constructible Ax-modules. Let (D5 (Ax))eer, (D (Ax))eer) be the standard
t-structure of Dp_.(Ax), that is,

DE%(Ax) = {K € DR (Ax) | H'(K) =0 for any i > c},
DZ¢(Ax) = {K € D} .(Ax) | H/(K) = 0 for any i < ¢}.
We define
YaDEC (Ax) = {K € D} (Ax) | dim Supp(H'(K)) < ~2(i — )
for any i},

12D2° (Ax) = {K € DY (Ax) | H'RIz(K) = 0 for any closed
subanalytic subset Z and i < ¢ — %dim Z}.

(5.3)

Proposition 5.1. The pair ((1K/S2 DH%_C (Ax))cer, (IK/S2 DH%_CC(AX))CE]R) is a t-struc-

C
ture on Dp_(Ax).

Proof. Indeed, (i(/s Dyt (Ax), i(/sz DZ¢ (Ax)) coincides with the t-structure asso-

ciated with the perversity p(n) = [¢ — n/2] (see e.g. [5, Definition 10.2.1]). O

Lemma 5.2 ([5, Proposition 10.2.4]). Let K € D _(Ax) and let X = ||, X be
a subanalytic stratification of X such that (DxK)|x, has locally constant coho-
mology for any a. Then K € 1(/52 DD%_CC(AX) if and only if

(RTx, K), € D257 Xe/204y  for any a and z € X,.

coh
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85.2. Self-dual t-structure: R-constructible case

As in the preceding subsection, X is a subanalytic space and A is a Noetherian
regular ring. Let Dx be the duality functor

Dx(K) = R#oma(K,wx) for K € DR (Ax),

where wx = aé(Apt with the canonical projection ax: X — pt.
For F € Modg_.(Ax), we set

(5.4) mod-dim(F) = sup (dim{z € X | codim F, = m} — m),
m>0

where codim F,; denotes the codimension of Supp(F;) C Spec(A). Hence if X =
L], Xo is a subanalytic stratification with connected strata and F|x, is locally
constant for any «, then

mod-dim(F') = sup{dim X, — codim F,_ | F|x_, # 0},

where z,, is a point of X,. We understand mod-dim 0 = —oo.
We set
12D=¢ (Ax) = {K € DE_(Ax) | mod-dim(H*(K)) < —2(i —¢) for any i},

(5.5) . .
2Dg’,(Ax) = {K € Dp.o(Ax) | DxK € V2DE “(Ax)}.
Note that, when A is a field, they coincide with 1/2 (AX) and 1/2 (AX).

Lemma 5.3. Let K € D (Ax) and ¢ € R. Let X = L], Xa be a subanalytic
stratification such that K|x_ has locally constant cohomology. Then the following
conditions are equivalent:

(a) K €/2D3" (Ax),
(b) dim{r € X | Kw. ¢ 1/2D§)61:k/2(14)} <k for any k € Z,
(c) Ky € 1/2D§)Ch_(dlmX°)/2(A) for any a and x € X,.

Proof. (a)<(c). Tt is obvious that K € /D3¢ (Ax) if and only if
dim X, — codim Supp(H*(K),) < —2(i —c) for any a, x € X,, and i € Z.
The last condition is equivalent to
codim Supp(H'(K,)) > 2(i — ¢ + (dim X,,)/2),

or equivalently K, € 1/2D<C (dim Xa )/Q(A).
(b)e(c). (b) is equivalent to

for any x € X, K, ¢ 1/2pses k/z(A) implies dim X, < k,

coh
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which is equivalent to

for any z € X,, dimX, >k implies K, € 1/QDSC#C/Q(A).

coh

This is obviously equivalent to (c). O

Lemma 5.4. Let K € D (Ax) and ¢ € R. Let X = ||, X, be a subanalytic
stratification such that (Dx K)|x, has locally constant cohomology. Then the fol-
lowing conditions are equivalent:

(a) K € /?DZ¢ (Ax),

(b) for any ¢ € R and M € 1/2DC§OC}: (A), we have

Rtoma(Mx, K) € [[2DZ (Ax),

(¢c) RI'z(K)s € 1/ZDCZOCh_Clinl Z/2(A) for any closed subanalytic set Z and x € Z,
(d) RI'x, K), € 1/2Dic}:dimx“/2(A) for any « and z € X,,
(e) dim{z € X | (RT sy K), & Y2DZSH2(A)} < k for any k € Zso.

coh

Proof. Let io: X0 — X be the inclusion.
(a)<(d). By (a)<(c) in the preceding lemma, condition (a) is equivalent to

(DxK), € aps e (dimXa)/20 Ay for any o and © € Xa.

coh

On the other hand, we have i 'Dx K ~ Dy, i} K. Hence i, K has locally constant
cohomology. Since

(DxK), ~ (Dx, i} K), ~ RHoma((i\,K)., A)[dim X,],
the above condition is equivalent to
RHom, (14K, A) € /2D 502 ),

which is again equivalent to (i} K), € /2DZ¢ (@M Xe)/2( 4y,
(a)e(e). (a) is equivalent to Dx K € /D3 _“(kx). By the preceding lemma,
this is equivalent to

dim{z € X | (DxK), € '/*D=7F/2(A)} <k for any k € Zxo.

coh
Since (DxK), =~ Da((RT(4K),), the condition (DxK), ¢ /D5, *?(4) is
equivalent to (R[';3 K), & 1/QDCZOCthk/Q(A).
(d)<(b). Condition (d) is equivalent to
(5.6) RHomu (M, (RTx, K),) € D25 @mXa)/2=¢" 4y g1 any M € /2D (4),
aand z € X,.
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Since RHomyu (M, (Rlx_ K),) ~ (RIx RA#oma(Mx,K)),, the last condition
(5.6) is equivalent to (b) by Lemma 5.2.

(¢)=(d) is obvious.

(b)=(c). For any ¢ € R and M € 1/2DC§OC};(A), we have

(RDZRAoma(My, K)), € D25« @972 4),
Since RHomy (M, (RT'zK),) ~ (RTzR#Zoma(Mx, K)),, we obtain (c). O

We shall prove the following theorem in several steps.

Theorem 5.5. ((/?D3%(Ax))ecer, (V?D3(Ax))ecr) s a t-structure on
DE_o(Ax).

It is obvious that conditions (a) and (b) in Definition 1.2 are satisfied. Let us
show (c).

Lemma 5.6. Forcc R, K € '/2D5° (Ax) and L € 1/2D]§_CC/ (Ax), we have
R#om(K,L) € D% °(Ay).

Proof. Let us take a good regular subanalytic filtration ) = X ; C--- C Xy =X
such that K and L have locally constant cohomology on each )O(k = X\ Xk-1-
We may assume that )Z'k is smooth of dimension k.

Let 4p: Xk — X be the inclusion.

Let us first show that

(5.7) i{RAom(K, L) ~ Room(i;; 'K, i}L) belongs to D3% “(Ay, ).
Since i,:lK , i}cL have locally constant cohomology,
(ifR#om (K, L))y ~ RHoma(((ix) " K) e, (it L))
for any = € )ofk. Hence it is enough to show that
(5.8) RHom 4 (i) 'K)a, (it L)) € DZS7C(A).
This follows from Corollary 4.3 and
(ir K)o € V/*DIF(4) and (ifL), € VD2, TMP(4).

Now we shall show by induction on k that

RIx, R#om (K, L) € D¢ ~°(Ax).
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By the induction hypothesis RI'x, ,R#om(K,L) € DH%CC/_C(AX). We have the
distinguished triangle

RIx, ,R#om(K, L) — RTx,RA#om(K, L) — RT y, RA#om(K, L) = .

Since RI ¢, RA#om (I, L) ~ R(ix).i} R#om(K, L) belongs to DF ~“(Ax), we ob-
tain RT x, RA#om (K, L) € D¢ ~¢(Ax). O

Now we shall show condition (d) of Definition 1.2 in a special case.

Lemma 5.7. Let X be a smooth subanalytic space, and c € R. Let K € DE_C(AX)
and assume that K has locally constant cohomology. Then there exists a distin-
guished triangle

K - K- K'
with K' € Y/?D5° (Ax) and K" € '/?DZ¢.(Ax). Moreover K' and K" have locally
constant cohomology.

Proof. We argue in three steps.

(i) Such a distinguished triangle exists locally. Indeed, for any x € X, there
exist an open neighborhood U of # and M € DP, (A) such that K|y ~ M. Take
a distinguished triangle M’ — M — M" = such that M’ € UQD?()T(dimX)/z (A)
and M" € 1/2D6>Oclf(dimX)/Z(A). Then M, — My — M}, *% gives the desired
distinguished triangle.

(ii) If U; is an open subset of X and K] — K|y, — K/ *Ly s a distinguished
triangle with K! € /2D3¢ (Ap,) and K! € /2D (Ap,) (i = 1,2), then there ex-
ists a distinguished triangle K’ — K|y, 0, — K” - with K’ € 12D=¢ (A, uw,)
and K" € 2Dz (Ap,ur,)-

Indeed, by the uniqueness of such a distinguished triangle, we have K|y, nv, =~
K§|UmU2~ Denote both by Ky € Db(AUlmUQ). Let ig: Uy N Uy — U; U Uy and
ix: U, — Uy UUs(k = 1,2) be the open inclusions. Then embed a morphism
(i0)1 Ko = (i1)1 K1 & (i2)1 K} into a distinguished triangle

(i0)1 Ko — (1) K| @ (io) K — K T |

Then K'|y, ~ Kj,. Since the composition (ig)1 Ko — (i1)1 K] @ (i2)1 K5 = K|y, uv,
vanishes, the morphism (i1) K] & (i2)1 K5 — K|y, uu, factors through K’. Hence,
there exists a morphism K’ — K|y,uu, which extends K — Kly, (i = 1,2).
Embedding this morphism into a distinguished triangle K" — K|y, uy, — K" A,
we obtain the desired distinguished triangle.

(iii) By (i) and (ii), there exist an increasing sequence of open subsets
{Un}nezs, with X = U,z Un and a distinguished triangle K, — K|y, —
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K/ L with K/, € Y2D5°(Ay,) and K!! € Y2DZ%(Ay,). Let in: U, — X

be the inclusion. By the uniqueness of such distinguished triangles, we have
K} . 1|lu, ~ K. Hence, we have a map S,: (in)1 K], — (int1)1 K], ;. Let K’
be the hocolim of the inductive system {(i,)1 K] }nez.,, that is, the third term of
a distinguished triangle B

P kL L @ )ik, - K
n€lxo n€l>o

Here f is such that the following diagram commutes for any a € Z>¢:

id(ig), k2 @ (—Ba)
(ia)1 K, fali (ta)1 K} ® (ta1)1 Ky

! !

@nelzo (in) K, @nEZEU (in) 1 I,

Then K'|y, ~ KJ,. Since the composition

D K, L P () K, — K

TLEZZO nEZZO

f

vanishes, the morphism €P,,c;_ (i) K, — K factors through K’. Hence there is
a morphism K’ — K which extends (i, ) K|, — K. Embedding this morphism into
a distinguished triangle K/ — K — K" F1, we obtain the desired distinguished
triangle. O

Finally we shall complete the proof of condition (d) of Definition 1.2.

Lemma 5.8. Let K € DD]%_C(AX) and ¢ € R. Then there exists a distinguished
triangle K' — K — K" % with K’ € /2D (Ax) and K" € Y/2DZ¢ (Ax).

Proof. Let us take a good regular subanalytic filtration ) = X_; C --- C Xy = X
such that K has locally constant cohomology on each Xp = Xp \ Xi—1. We may
assume that Xy is a smooth subanalytic space of dimension k. We shall prove
that

(5.9)r there exists a distinguished triangle K’ — K|x\x, — K" 2 with K €
12D=¢(Ax\ x,) and K" € /?Dg¢ (Ax). Moreover, K'|¢, and K"|; have
locally constant cohomology for j > k,

by descending induction on k.

Assuming (5.9), we shall show (5.9);_1. Let K" — K|x\x, — K" L be
a distinguished triangle as in (5.9);. Let j: X \ X — X \ X;_1 be the open
embedding and i: )o(k — X \ Xj_1 the closed embedding. The morphism K’ —
K|x\x, induces jiK' — K|x\x, ,- We embed it into a distinguished triangle
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in DH%—C(AX\Xk—1) oy +1
WK = Klx\x,., = L —.
By Lemma 5.7, there exists a distinguished triangle

(5.10) L' —i'L -1t

with L' € UZDE_CC(AX,C) and L” € /?Dg%(Ax, ). We embed the composition
iyL' = 4,i'L — L into a distinguished triangle

(5.11) WL —»L— K"

Finally, we embed the composition K|x\x, , — L — K" into a distinguished
triangle

K' = Klx\x,_, = K" .
Let us show that

K' e '?D3%(Ax\x,_,) and K" € Y?DZ%(Ax\x,_,)-

By the construction, we have I?"|X\Xk ~ Lix\x, ~ K" and I?’|X\Xk_ ~ K’
Hence it is enough to show that i 1K’ € 1/QDﬂ%_CC(AXk) and i' K" € 1D (Ag, ).

C

Applying the functor i' to (5.11), we obtain a distinguished triangle
L —i'L —»i'K" X

By the distinguished triangle (5.10), we have i'K” ~ L" € 1/2DH§_CC(A)=()C).
By the octahedral axiom of a triangulated category, we have a diagram

[?/

1y

+1

WK i
l>{ J
1

KlX\Xk_l 11

N

GIWK' = K — i L LN

and a distinguished triangle

This implies i~ 1K' ~ L' € V2D (Ay,). -

This completes the proof of Theorem 5.5.
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Recall the full subcategory of Dp_.(Ax):
2D (Ax) s= VDL (Ax) 0 ADR! (Ax)
for a < b.

Proposition 5.9. Assume that a,b € R satisfy a < b < a+1. Then X DU —
UQD%@S}((AU) is a stack on X.

Proof. (i) Let K,L € Y/2DI""(Ay). Since R#oma(K,L) € DZ% %(Ax) =
D% (Ax), the presheaf

U — Hom, ;e (K|, Lly) ~ T(U; H*(RAom (K, L)))

R.‘Cb] (AU)

is a sheaf. Hence, U UQD%_’S] (Ap) is a separated prestack on X.
(ii) Let us show the following statement:

e Let U; and Uy be open subsets of X such that X = U; U U, and let
K € 1/2D£§_’5] (Ay,) (k=1,2). Assume that K1|y,nu, =~ Ka|u,~u,- Then there
exists K € /2D (Ax) such that K|y, ~ K, (k= 1,2).

Set Uy =Uy N Uy and Ko =K1 |v, 0, ~ K|, nv, € /2D (Ay). Let ji: Uy — X

be the open inclusion (k = 0,1,2). Then we have 8x: (jo)1(Ko) — (ju)1 Ki (k =

1,2). We embed the morphism (81, 52): (jo)1(Ko) — (J1)1K1 @ (j2)1 K2 into a

distinguished triangle

(o)1 (Ko) = (1) K1 @ (j2) Ko — K+

Then K satisfies the desired condition.

(iii) Let us show the following statement:

o Let {Un}nezzo be an increasing sequence of open subsets of X such that X =
Unez., Un- Let K, € 1/2D]£g_’f] (Au,) (n € Z>o) and K, 41|v, ~ K,. Then there
exists K € 1/2D£§_’i’] (Ax) such that K|y, ~ K, (n € Z>).

The proof is similar to the proof of Lemma 5.7. Let j,: U, — X be the open

inclusion, and let (j,)1 K, — (jnt1)1Kny1 be the morphism induced by the

isomorphism K, 11|y, ~ K,. Let K be the hocolim of the inductive system

{(Un)1Kn}nez.,- Then K € 1/2D][Ra_’cl’](AX) satisfies the desired condition.

(iv) By (i)—(iii), we conclude that U 1/2D][§_’f] (Ay) is a stack on X. O
Proposition 5.10. Let f: X — Y be a morphism of subanalytic spaces, and
d € Z>q. Assume that dim f~'(y) < d for anyy € Y. Then:

(i) If G € Y2D5° (Ay), then f~1G € V/2DZF?(Ay).
(i) If G € Y/2DZ° (Ay), then f'G € V2D Y2 (Ay).
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(iii) If F € Y/2DZ° (Ax) and Rf.F € DY (Ay), then Rf.F € Y/2DZ"%(4y).
(iv) If F € V2D (Ax) and RfiF € D (Ay), then RAF € Y/2DS2(Ay).
Proof. (i) Assume G € '/2D3 (Ay ). Then

dlm{ﬂ? cX I (f_lG)‘L ¢ 1/2DSc+d/2fk/2(A)}

coh
=dim f ({y €Y | Gy ¢ /2D ()}
<dim{yeY |G, ¢ PDEFTRE(A) fd < (k—d)+d =k

(ii) follows from (i) by duality.
(iii) For any G € 1/QDH?_C;d/Z(Ay)7

Hompy (4,)(G,Rf.F) ~Hompy (4 (f7'G,F)
vanishes because f~'G € /?Dg"(Ax) by (i). Hence Rf.F € 1/2D]§_ccfd/2(z4y)

by (1.3).
Similarly, (iv) follows from (ii). O

We shall give relations between the two t-structures:
(48 DE%(Ax))eers (45 DR (Ax)Jeen).
(("/*DE%(Ax))eer, (V*DES(Ax))cer)-
Lemma 5.11. Let K € D} (Ax) and ¢ € R.
(i) The following conditions are equivalent:
(a) K € /D" (Ax),
(b) for any ¢ €R and M € 1/2D0200h/ (A), we have
RAomA(K, M @ wx) € 4 D35 (Ax).
(ii) The following conditions are equivalent:
(a) K €'°DE’ (Ax),
(b) for any ¢ € R and M € 1/2D§C,(A), we have

coh
RAoma(Mx, K) € }/2DZ7¢ (Ax).
Proof. (ii) is already proved in Lemma 5.4; and (i) follows from (ii) because

RffomA(K,M@wX) ER%TRA(D)((M ®wX), DxK)
ZR%mA((DAM)X, DxK),

where Do M := RHomy (M, A). O
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Lemma 5.12. Let X and Y be subanalytic spaces. Let K € 1/QDH%_CC(AX) and
Le 1/2D§_CC/ (Ay). Then

KRLe V2DZH (Ax oy ).

Proof. Let X =[], Xqo and Y = | |3 Y5 be good subanalytic stratifications such
that K|x, and Lly, are locally constant. Then (RI'x_ K), € 1/2D§0Ch_(dim Xa)/2 (A)
and (RTy, L), € UQDiﬁ;_(dim YB)/Q(A) for x € X, and y € Y. Hence by Proposi-
tion 4.4(iv),

(RTx. vy, (K 8 L))(0 = (RT'x. K), & (RTy, L), € D25 ~@mXaxy/2 gy

coh

This yields the conclusion. O
Remark 5.13. We have

1/2 1/2

USDES(Ax) € VPDES(Ax),  MPDEL(Ax) C SR (Ax).

86. Self-dual t-structure: complex analytic variety case
§6.1. Middle perversity in the complex case

Let X be a complex analytic space. We denote by dim¢ X the dimension of X.
Hence dim¢ X = (dim Xg)/2 where Xg is the underlying subanalytic space. For
a complex submanifold Y of a complex manifold X, we denote by codim¢ Y the
codimension of Y as complex manifolds. We sometimes write dx for dim¢ X.

Let D (Ax) be the bounded derived category of the abelian category of
sheaves of A-modules with C-constructible cohomology. It is a full subcategory of
DL .(Ax) and it is easy to see that the self-dual t-structure on Dp_.(Ax) induces
a self-dual t-structure on D (Ax). More precisely, if we define

2DZ¢ (Ax) := DR (Ax) N /*DE% (Ax),
/2DZ¢ (Ax) := DR (Ax) N '/*Dg% (Ax),

then ((/2DZ¢(Ax))eecs (1/2D>C (Ax))eec) is a t-structure on D (Ax). Simi-
larly, the t- Structure ((¥§ “(Ax))eec, (1/2 “(Ax))cec) induces the t-struc-
ture ((2DE5(Ax))cee. (L2 DE: :(Ax))eec) on Dc o(Ax).

Note that the t-structure (1/2 (AX),IK/S2 (AX)) in the original sense is
denoted by (pD<0 (X), pD>0(X)) in [5 §10. 3]

In [5, §10.3], various properties of (1/2 (Ax),lK/S2 % (Ax)) are studied.
By using Lemma 5.11, in the next subsectlon we obtain sumlar properties for

(2DE%(Ax))eec, (V?DZ5(Ax))eec)-
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86.2. Microlocal characterization

Let X be a complex manifold. Let K € D@ .(Ax). Then the microsupport SS(K)
is a Lagrangian complex analytic subset of the cotangent bundle T* X (see [5]).

A point p of SS(K) is called good if SS(K') equals the conormal bundle T3 X
on a neighborhood of p for some locally closed complex submanifold Y of X. The
complement of the set of good points of SS(K) is a nowhere dense closed complex
analytic subset of SS(K). For a good point p of SS(K), there exists L € D, (A)
such that K is microlocally isomorphic to Ly [— codim¢ Y] on a neighborhood of p.
We call L the type of K at p. (Note that in [5, §10.3], L is called the type of K
at p with shift 0.)

The type can be calculated by the vanishing cycle functor. If f is a holo-

coh

morphic function such that f|y = 0 and df(z¢) = p, then we have ¢s(K)y, =~
L[— codim¢ Y]. Here, oy € X is the image of p by the projection T*X — X, and
¢y is the vanishing cycle functor from D (Ax) to Dg_o(A;-1(p)). Note that

5 (K) = RE (g Re(s () 203 (K =2 0)-
The following theorem is proved in [5, §10.3].

Theorem 6.1 ([5, Theorem 10.3.2]). Let K € D@ (Ax). Then the following con-
ditions are equivalent:

(a) K € {3DE%(Ax) (resp. K € {5 DE5(Ax)),
(b) the type ofK at any good point of SS( ) belongs to D;Ch 4X(A) (resp. belongs
to D=5 (A)).

coh

As a corollary, we can derive the following microlocal characterization of
((*?DE%(Ax))eec, (V2DE%(Ax))eec)-

Theorem 6.2. Let K € D}E_C(AX). Then the following conditions are equivalent:

(a) K €/2DZ¢ (Ax) (resp. K € V/2DZ¢ (Ax)),
(b) the type of K at any good point of SS(K) belongs to /?D=S~ AX(A) (resp.
belongs to 1/2D=57% (4)).

coh

Proof. Assume that K € /2DZ¢(Ax). Then for any M € /2D=¢ (A), we have
RAtoms(Mx,K) € ¥§ >C ¢ (Ax). Let L be the type of K at a good point p
of SS(K). Then R%”omA(MX,K) has type RHomA(M L) at p. Hence, the pre-
ceding theorem implies RHomy (M, L) € D;fh ¢ —dx (A). Since this holds for any

M € 1/QDCSOCh (A), we conclude L € Y/2DZ5" 9X(A). The converse can be proved
similarly.
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The case of 1/?DZ(Ax) can be derived from the above case by duality. The
condition K € /2DZ¢ (Ax) is equivalent to Dx(K) € /?DZ_“(Ax). Let L be
the type of K at a good point p of SS(K). Then Dx(K) has type Da(L)[2dx]
at p, and it is enough to notice that Da(L)[2dx] € /2D, “ %X (A) if and only if
L e /2D (A). O

The following proposition can be proved similarly.

Proposition 6.3. Let Y be a closed complex submanifold of a complex mani-
fold X. Then:

(i) The functor vy : Dg_(Ax) — Dg_(Ar, x) sends
Y2DZ% (Ax) to V?DE% (A, x) and Y/?DZS(Ax) to V/*DES (Ary x).
(ii) The microlocalization functor uy : D (Ax) — D}E_C(AT;X) sends
12DEC (Ax) to 1/2Dé_cc+codich(AT;X>7

V2DES(Ax) to PDETONmEY (Agy ).

Proof. Since the proofs are similar, we show only (ii). Let K € 1/ZD([Z:_CC(AX).

Then, for any M € 1/QDSCI(A), we have R#oma(Mx,K) € i(/SZD%_CC_C/(AX).

coh

Hence [5, Prop. 10.3.19] implies that
1/2 [>e—c' dimc Y
py (Rotom 4 (Mx, K)) € {3DZ5C0meY (A ).

Since
R%TRA(MT;X, ,U,yK) ~ uy(R%mA(M, K)),
we obtain uy K € UQD%_?COdimCY(AT;X)
Assume now that K € 1/2D(§_°;(AX). Then DxK € 1/QDE_;C(AX). Since
[5, Prop. 8.4.13] implies D7y x (uy K) =~ (uy Dx K)“[2 codimc Y], we obtain

>—c—codim¢c Y
Dry x (uy K) € /?DE, (Ary x).
Hence puy K € V2DESHo™eY (Aq. y). O
The following theorem is proved in [5, §10.3].

Theorem 6.4 ([5, Corollary 10.3.20]). LezﬁKelK/S2 DE“.(Ax) andLei(/S2 D%_CC/ (Ax).
Then phom(K, L) € }2DZ% T (Ap. x).

As a corollary we obtain the following result.
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Theorem 6.5. Let K € D@ (Ax) and L € D@ (Ax).

(i) If K € V/2DE°(Ax) and L € Y/?DZ< (Ax), then
phom(K, L) € 2DZE X (Ap. x).

(il) If K € /2D5° (Ax) and L € Y/2DZ% (Ax), then

phom(K, L) € Y/?D3% =T (Ap. x).

Proof. (i) By Lemma 5.12, we have L @ DxK 6 1/2 >c “"“(Ax). Let Ax be the

diagonal of X x X. Then phom(K, L) = ua, (L@ DxK) € i(/sz D%_CCLC“{X (Ax) by
[5, Proposition 10.3.19].
(ii) For any M € /2DZ¢ (A), we have R#om(Mx, L) € i(/SQ D>C ~(Ax).
Hence
R%m(MT*X, phom(K, L)) ~ phom(K,R#om(Mx, L))
belongs to K/SQ D>C —¢—etdx (A7« x) by Theorem 6.4. Consequently, phom (K, L) €
1/2DZC =% (Ag. ) by Lemma 5.11. O

Example 6.6. Assume that 2 acts injectively on A. Let M be a finitely generated
projective A-module. Let X = C? and S = {(2,9,2) € X | 22 +y? + 22 = 0}. Let
j: X\ {0} — X be the inclusion. Since S\ {0} is homeomorphic to the product
of R and the 3-dimensional real projective space P3(R), we have

(Rjxj ™" (Ms))o = RT(S\ {0}; Ms) =~ M & (M/2M)[~2] & M[-3],
and RI'(oy(Ms)o =~ (M/2M)[-3] & M[—4]. Hence we have
Ms € '*DE o (4x),
and a distinguished triangle
Mo[-1] — Rjij " (Ms) — Mg =
Consequently,
Rjij ™ (Ms) € '*Dg:d (Ax),
V2r22Rjj~ (Ms) ~ M,
V2 <2Rj i H(Ms) = Mo[—1] € VD¢ . (Ax).

Here /27 denotes the truncation functor of the t-structure /2D _(Ax).
By duality, we have

Rj.j ' (Ms) € I/QD([CQ_’S] (Ax),
V27 >2Rg, 57 (Ms) ~ Mo[—3] € /?DE_ (Ax).
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Hence we obtain a distinguished triangle

V22 2R, 51 (M) — Ry~ (Mg) — Mo[—3] 5 .

The canonical morphism Ryj;j~1(Mg) — Rj.j 1 (Mg) decomposes as

Rjij~1(Ms) Rj.j~!(Ms)

| T

Mg V21 <2Rj, 57 (My)

and the bottom arrow is embedded into a distinguished triangle

Ms = "7 =R j " (Ms) = (M/2M)(0y[~2] T .

Note that (M/2M)oy[~2] € />D¥?(Ax). Hence Mg — /27 <2Rj,j~*(Ms) is a
monomorphism and an epimorphism in the quasi-abelian category !/ 2D(2C_C(A X)-
Moreover, we have an exact sequence

0 — Ms — Y21 =?Rj,j 7 (Ms) — (M/2M)(0y[~2] — 0
in the abelian category !/ QDE_/CZ’Z] (Ax) and an exact sequence

0 — (M/2M)[-3]10y = Ms — Y27 =*Rj.j ' (Ms) = 0

in the abelian category '/ 2D([C2_’C5/ 2 (Ax). Note that we have an isomorphism of

distinguished triangles

‘Pa:(MS) - ‘Pw(l/27§2Rj*j_l(MS)) - pr((M/QM){O}[—Q]) i>

T o

Moy [-2] Moy (2] (M/2M) (0 [~2] ———

Here ¢, is the vanishing cycle functor.
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