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The Homotopy Type of Spaces of Polynomials with
Bounded Multiplicity
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Abstract

We study the homotopy type of the space of all monic polynomials of degree d in C[z]
without roots of multiplicity ≥ n. In particular, for n ≥ 3 we improve the homotopy
stability dimension obtained in [5].

2010 Mathematics Subject Classification: Primary 55P10; Secondary 55P35, 14M25,
55R80.
Keywords: homotopy type, simplicial resolution, Vassiliev spectral sequence.

§1. Introduction

Throughout, X and Y are pointed connected topological spaces. Let Map(X,Y )

(resp. Map∗(X,Y )) denote the space consisting of all continuous maps (resp. base-
point preserving maps) from X to Y with the compact-open topology. When X

and Y are complex manifolds, we denote by Hol(X,Y ) (resp. Hol∗(X,Y )) the
subspace of Map(X,Y ) (resp. Map∗(X,Y )) consisting of all holomorphic maps
(resp. base-point preserving holomorphic maps).

From now on, we identify S2 = C ∪ {∞}. For each integer d ≥ 1, let
Map∗d(S2,CPn−1) = Ω2

dCPn−1 denote the space of all base-point preserving con-
tinuous maps f : S2 → CPn−1 such that [f ] = d ∈ Z = π2(CPn−1), where we
choose ∞ ∈ S2 and [1 : · · · : 1] ∈ CPn−1 as the base points of S2 and CPn−1, re-
spectively. Let Hol∗d(S2,CPn−1) denote the subspace of Ω2

dCPn−1 of holomorphic
maps.
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Let z be the complex variable and let Pd(C) be the space of all monic polyno-
mials f(z) = zd+a1z

d−1 + · · ·+ad ∈ C[z] of degree d, topologized by identifying f
with (a1, . . . , ad) ∈ Cd. Let SPdn ⊂ Pd(C) denote the subspace of polynomials with-
out roots of multiplicity ≥ n. Then the jet map jdn : SPdn → Ω2

dCPn−1 ' Ω2S2n−1

is defined by

jdn(f)(x) =

{
[f(x) : f(x) + f ′(x) : · · · : f(x) + f (n−1)(x)] if x ∈ C,
[1 : · · · : 1] if x =∞,

for (f, x) ∈ SPdn × S2.

Remark 1.1. Note that Hol∗d(S2,CPn−1) can be identified with the space of all
n-tuples (f1, . . . , fn) ∈ Pd(C)n of monic polynomials of the same degree d that have
no common root. With this identification, the image of the map jdn is contained in
Hol∗d(S2,CPn−1).

Remark 1.2. A map f : X → Y will be called a homotopy equivalence (resp.
homology equivalence) up to dimension D if the induced homomorphism f∗ :

πk(X) → πk(Y ) (resp. f∗ : Hk(X,Z) → Hk(Y,Z)) is an isomorphism for any
k < D and an epimorphism if k = D; and f will be called a homotopy equivalence
(resp. homology equivalence) through dimension D if f∗ : πk(X) → πk(Y ) (resp.
f∗ : Hk(X,Z)→ Hk(Y,Z)) is an isomorphism for any k ≤ D.

First, recall the following two results given in [5], [6] and [8].

Theorem 1.3 ([5], [6]). (i) The jet map jdn : SPdn → Ω2
dCPn−1 ' Ω2S2n−1 is a

homotopy equivalence up to dimension (2n − 3)bd/nc if n ≥ 3 and a homology
equivalence up to dimension bd/2c if n = 2, where bxc denotes the integer part of
a real number x.

(ii) If n ≥ 3, there is a homotopy equivalence SPdn ' Hol∗bd/nc(S2,CPn−1).

Theorem 1.4 ([8]). If n ≥ 3, the inclusion map id : Hol∗d(S2,CPn−1)→Ω2
dCPn−1

is a homotopy equivalence through dimension (2n− 3)(d+ 1)− 1.

The main result of this paper improves the stability dimension of SPdn for
n ≥ 3 as follows:

Main Theorem 1.5. If n ≥ 3, the jet map jdn : SPdn → Ω2
dCPn−1 ' Ω2S2n−1 is

a homotopy equivalence through dimension D(d, n) = (2n− 3)(bd/nc+ 1)− 1.

Remark 1.6. Theorem 1.3 suggests that it may be possible to deduce Theorem
1.5 from Theorem 1.4. However, since we do not know whether the homotopy
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equivalence given in (ii) of Theorem 1.3 preserves the C2-structure, there seems to
be no obvious way to do so.

This paper is organized as follows. In §2 we recall the stabilization map sd and
prove the main result (Theorem 1.5) by using the key unstable result (Theorem
2.6). In §3 we recall the basic facts concerning simplicial resolutions. Finally in §4,
we give the proof of Theorem 2.6 by using the Vassiliev spectral sequence induced
from the non-degenerate simplicial resolution of the discriminant Σdn.

§2. Stabilization

In this section we review several definitions and basic results concerning stabiliza-
tion from [5].

Definition 2.1. (i) Let Sd denote the symmetric group on d letters. For a spaceX,
Sd acts on the space Xd = X × · · · ×X (d times) by permuting coordinates. We
denote by SPd(X) the d-th symmetric product ofX, that is, the orbit spaceXd/Sd.

(ii) Let F (X, d) ⊂ Xd denote the subspace of all (x1, . . . , xn) ∈ Xd such that
xi 6= xj if i 6= j. Since F (X, d) is Sd-invariant, we can define the orbit space
Cd(X) = F (X, d)/Sd. The space Cd(X) is usually called the configuration space
of unordered d distinct points in X.

Remark 2.2. Note that each α ∈ SPd(X) can be represented as a formal sum
α =

∑r
k=1 nkxk, where {xk}rk=1 are mutually distinct points in X and the nk

are positive integers such that
∑r
k=1 nk = d. Let SPdn(X) denote the subspace of

SPd(X) consisting of all elements of the form α =
∑r
k=1 nkxk such that nk < n

for any 1 ≤ k ≤ r.
By using this identification, if X = C we can easily see that there is a natural

homeomorphism

(2.1) Pd(C) ∼= SPd(C)

given by Pd(C) 3
∏r
k=1(z − αk)nk 7→

∑r
k=1 nkαk ∈ SPd(C), where (α1, . . . , αr) ∈

F (C, r) and
∑r
k=1 nk = d. By using (2.1), it is also easy to see that there is a

natural homeomorphism

(2.2) SPdn ∼= SPdn(C).

Definition 2.3. For each integer d ≥ 1, let Ud denote the open set {w ∈ C :

Re(w) < d}. Since there is a homeomorphism Ud ∼= C, we have a natural homeo-
morphism SPdn ∼= SPdn(Ud). Then define the stabilization map sd : SPdn → SPd+1

n
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to be the composite

(2.3) SPdn ∼= SPdn(Ud)
s̃d−→ SPd+1

n (Ud+1) ∼= SPd+1
n

where α0 ∈ Ud+1 \Ud is any fixed point and s̃d : SPdn(Ud)→ SPd+1
n (Ud+1) denotes

the map given by s̃d(
∑d
k=1 αk) =

∑d
k=1 αk + α0.

Let SP∞n denote the colimit SP∞n = limd→∞ SPdn taken over the stabilization
maps sd.

Remark 2.4. Note that while the definition of the map sd depends on the choice
of the point α0, its homotopy class does not.

Now recall the following result of [5].

Theorem 2.5 ([5]). Let n ≥ 3 be an integer.

(i) The jet map induces the homotopy equivalence

lim
d→∞

jdn : SP∞n = lim
d→∞

SPdn → lim
d→∞

Ω2
dCPn−1 ' Ω2S2n−1.

(ii) If bd/nc = b(d+1)/nc, the stabilization map sd : SPdn → SPd+1
n is a homotopy

equivalence.

Proof. Assertion (i) can be easily obtained from Theorem 1.3 as d → ∞, and
(ii) follows from [5, Corollary A2].

The key auxiliary result is the following:

Theorem 2.6. If n ≥ 3 and bd/nc < b(d + 1)/nc, then the stabilization map
sd : SPdn → SPd+1

n is a homology equivalence through dimension D(d, n) =

(2n− 3)(bd/nc+ 1)− 1.

We postpone the proof of Theorem 2.6 until §4 and give the proof of Theo-
rem 1.5.

Proof of Theorem 1.5. Assume n ≥ 3. It follows from Theorems 2.5 and 2.6 that
the jet map jdn : SPdn → Ω2

dCPn−1 ' Ω2S2n−1 is a homology equivalence through
dimension D(d, n). However, if n ≥ 3, the spaces SPdn and Ω2S2n−1 are simply
connected. Hence, jdn is a homotopy equivalence through dimension D(d, n).

§3. Simplicial resolutions

In this section, we summarize the definitions of the non-degenerate simplicial res-
olution and the associated truncated simplicial resolutions ([9], [12]).
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Definition 3.1. (i) For a finite set v = {v1, . . . , vl} ⊂ RN , let σ(v) denote the
convex hull of v . Let h : X → Y be a surjective map such that h−1(y) is finite
for any y ∈ Y , and let i : X → RN be an embedding. Let X∆ and h∆ : X∆ → Y

denote the space and the map defined by

(3.1) X∆ = {(y, u) ∈ Y × RN : u ∈ σ(i(h−1(y)))} ⊂ Y × RN , h∆(y, u) = y.

The pair (X∆, h∆) is called the simplicial resolution of (h, i). In particular, it is
called non-degenerate if for each y ∈ Y any k points of i(h−1(y)) span a (k − 1)-
dimensional simplex of RN .

(ii) For each k ≥ 0, let

(3.2) X∆
k = {(y, u) ∈ X∆ : u ∈ σ(v), v = {v1, . . . , vl} ⊂ i(h−1(y)), l ≤ k}.

We identify X with X∆
1 by identifying x ∈ X with (h(x), i(x)) ∈ X∆

1 , and we note
that there is an increasing filtration

(3.3) ∅ = X∆
0 ⊂ X = X∆

1 ⊂ X∆
2 ⊂ · · · ⊂

∞⋃
k=0

X∆
k = X∆.

Since the map h∆ : X∆ → Y is proper, it extends to a map h∆
+ : X∆

+ → Y+ between
the one-point compactifications, where X+ denotes the one-point compactification
of a locally compact space X.

Lemma 3.2 ([12], [13]). Let h : X → Y be a surjective map such that h−1(y) is
finite for any y ∈ Y, and let i : X → RN be an embedding.

(i) If X and Y are semi-algebraic spaces and the two maps h, i are semi-algebraic,
then the map h∆

+ : X∆
+ → Y+ is a homotopy equivalence.

(ii) There is an embedding j : X → RM such that the associated simplicial reso-
lution (X̃∆, h̃∆) of (h, j) is non-degenerate.

(iii) If there is an embedding j : X → RM such that the associated simplicial
resolution (X̃∆, h̃∆) of (h, j) is non-degenerate, then the space X̃∆ is uniquely
determined up to homeomorphism. Moreover, there is a filtration preserving
homotopy equivalence q∆ : X̃∆ → X∆ such that q∆|X = idX .

Remark 3.3. In this paper we only need the weaker assertion that h∆
+ is a ho-

mology equivalence. One can easily prove this by the same argument as in the
second edition of Vassiliev’s book [12, proof of Lemma 1, p. 90].

Remark 3.4. In the first edition of [12] (published in 1992), Vassiliev asserts that
h∆

+ is a homotopy equivalence, but his proof is based on a misuse of Whitehead’s
theorem. This was noted by K. Houston [7, §4.2], who proved a similar result
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for homology and expressed the belief that the homotopy conclusion is probably
true. In the second revised edition of [12] (published in 1994) Vassiliev states
that the homotopy conclusion is true but the proof is more complicated and it
is omitted since it is not needed in the book. Instead he proves that h∆

+ is a
homology equivalence (which is also sufficient for our purposes). The key point of
the proof is to use the well known theorem of Łojasiewicz on the triangulability of
semi-algebraic spaces.1

However, in the 1997 Russian edition of his book [13], Vassiliev sketches a
proof of the stronger statement that the h∆ is a homotopy equivalence [13, proof of
Lemma 1, p. 156]. The key point of the proof is to use a theorem stated in Goresky
and MacPherson’s book [4, Theorem, p. 43] and a theorem on triangulability of
stratified mappings.2 Combining these results we see that the spaces X∆ and Y
can be triangulated in such a way that h∆ is a simplicial map over each simplex of
the target space Y , and h∆ is a trivializable bundle map over each simplex, whose
fibre is a simplex. It can thus be expressed as a composite of maps ki (i ≥ 0) (up
to homotopy) where each ki collapses to a point the fibres over the interiors of all
the strata of dimension i (here we assume that the fibres over the boundaries of
the strata have been collapsed in the previous inductive step). Since each ki is a
homotopy equivalence, so is h∆. It is easy to see that an almost identical argument
can be applied to the map h∆

+ between the one-point compactifications (it is, in
fact, this argument that is described in [13]), leading to the conclusion that h∆

+ is
a homotopy equivalence.

Remark 3.5. Alternatively, one can use the same results to prove that h∆ is a
quasifibration with a contractible fibre and thus it is a homotopy equivalence.

Remark 3.6. Even for a surjective map h : X → Y which is not finite-to-one, it is
still possible to construct an associated non-degenerate simplicial resolution. Recall
that it is known that there exists a sequence {̃ik : X → RNk}k≥1 of embeddings
satisfying the following two conditions for each k ≥ 1 ([12], [13]):

(i) For any y ∈ Y , any t points of the set ĩk(h−1(y)) span a (t − 1)-dimensional
affine subspace of RNk if t ≤ 2k.

(ii) Nk ≤ Nk+1 and if we identify RNk with a subspace of RNk+1 , then ĩk+1 = î◦ ĩk,
where î : RNk → RNk+1 denotes the inclusion.

1Some errors in the first edition of [12] were corrected in the revised edition and some new
material was added. For this reason, in this paper [12] always means the revised 1994 edition.

2No reference to any theorem on triangulability of mappings is given in [13], but the needed
result can be found, for example, in [14].
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In this situation, in fact, a non-degenerate simplicial resolution may be constructed
by choosing a sequence {̃ik : X → RNk}k≥1 of embeddings satisfying the above
two conditions for each k ≥ 1.

Let X∆
k = {(y, u) ∈ Y×RNk : u ∈ σ(v), v = {v1, . . . , vl} ⊂ ĩk(h−1(y)), l ≤ k}.

Then by naturally identifying X∆
k with a subspace of X∆

k+1, we define the non-
degenerate simplicial resolution X∆ of h as the union X∆ =

⋃
k≥1 X∆

k .

§4. The Vassiliev spectral sequence

In this section we consider the Vassiliev spectral sequence induced from the non-
degenerate simplicial resolution and give the proof of Theorem 2.6.

Definition 4.1. (i) Let Σdn denote the discriminant of SPdn in Pd(C) given by the
complement

Σdn = Pd(C) \ SPdn = {f ∈ Pd(C) : f has a root of multiplicity ≥ n}.

(ii) Let Zd ⊂ Σdn × C denote the tautological normalization of Σd consisting
of all pairs (f, x) ∈ Σdn × C such that f(z) is divisible by (z − x)n. Projection on
the first factor gives a surjective map πd : Zd → Σdn.

Our goal in this section is to construct, by means of a non-degenerate simplicial
resolution of the discriminant, a spectral sequence converging to the homology
of SPdn.

Definition 4.2. Let (X d, π∆
d : X d → Σdn) be a non-degenerate simplicial resolu-

tion of the surjective map πd : Zd → Σdn with the natural increasing filtration as
in Definition 3.1,

∅ = X d0 ⊂ X d1 ⊂ X d2 ⊂ · · · ⊂ X d =

∞⋃
k=0

X dk .

By Lemma 3.2, the map π∆
d+ : X d+ → Σdn+ is a homology equivalence. Since

X dk +/X
d
k−1+

∼= (X dk \ X dk−1)+, we have a spectral sequence

{Ek,st;d , dt : Ek,st;d → Ek+t,s+1−t
t;d } ⇒ Hk+s

c (Σdn,Z),

where Ek,s1;d = H̃k+s
c (X dk \ X dk−1,Z) and Hk

c (X,Z) denotes the cohomology group
with compact supports given by Hk

c (X,Z) = Hk(X+,Z).

Since there is a homeomorphism Pd(C) ∼= Cd, by using Alexander duality
there is a natural isomorphism

(4.1) H̃k(SPdn,Z) ∼= H̃2d−k−1
c (Σdn,Z) for any k.
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By reindexing we obtain a spectral sequence

{Et;dk,s, d
t : Et;dk,s → Et;dk+t,s+t−1} ⇒ Hs−k(SPdn,Z),(4.2)

where E1;d
k,s = H̃2d+k−s−1

c (X dk \ X dk−1,Z).

Lemma 4.3. If 1 ≤ k ≤ bd/nc, then X dk \ X dk−1 is homeomorphic to the total
space of a real affine bundle ξd,k over Ck(C) with rank ld,k = 2(d− nk) + k − 1.

Proof. The argument is exactly analogous to the one in [1, proof of Lemma 4.4].
Namely, an element of X dk \X dk−1 is represented by (f, u), where f is a polynomial in
Σdn and u is an element of the interior of the span of the images of k distinct points
{x1, . . . , xk} ∈ Ck(C) such that {xj}kj=1 are the roots of f(z) of multiplicity n

under a suitable embedding. Since the k distinct points {xj}kj=1 are uniquely
determined by u, by the definition of the non-degenerate simplicial resolution,
there are projection maps πk,d : X dk \X dk−1 → Ck(C) defined by ((f1, . . . , fn), u) 7→
{x1, . . . , xk}.

Now suppose that 1 ≤ k ≤ bd/nc. Fix c = {xj}kj=1 ∈ Ck(C) and consider
the fibre π−1

k,d(c). It is easy to see that a polynomial f(z) ∈ Pd(C) is divisible by∏k
j=1(z − xj)n if and only if

(4.3) f (t)(xj) = 0 for 0 ≤ t < n, 1 ≤ j ≤ k.

In general, for each 0 ≤ t < n and 1 ≤ j < n, the condition f (t)(xj) = 0 gives one
linear condition on the coefficients of ft, and it determines an affine hyperplane
in Pd(C). For example, if we set f(z) = zd +

∑d
i=1 aiz

d−i, then f(xj) = 0 for all
1 ≤ j ≤ k if and only if

1 x1 x2
1 x3

1 · · · xd−1
1

1 x2 x2
2 x3

2 · · · xd−1
2

...
...

...
...

. . .
...

1 xk x2
k x3

k · · · xd−1
k

 ·

ad
ad−1

...
a1

 = −


xd1
xd2
...
xdk

 ,

Similarly, f ′(xj) = 0 for all 1 ≤ j ≤ k if and only if
0 1 2x1 3x2

1 · · · (d− 1)xd−2
1

0 1 2x2 3x2
2 · · · (d− 1)xd−2

2
...

...
...

...
. . .

...
0 1 2xk 3x2

k · · · (d− 1)xd−2
k

 ·

ad
ad−1

...
a1

 = −


dxd−1

1

dxd−1
2
...

dxd−1
k

 ,
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and f ′′(xj) = 0 for all 1 ≤ j ≤ k if and only if
0 0 2 6x1 · · · (d− 1)(d− 2)xd−3

1

0 0 2 6x2 · · · (d− 1)(d− 2)xd−3
2

...
...

...
...

. . .
...

0 0 2 6xk · · · (d− 1)(d− 2)xd−3
k

 ·

ad
ad−1

...
a1

 = −


d(d− 1)xd−2

1

d(d− 1)xd−1
2

...
d(d− 1)xd−2

k

 ,
and so on. Since 1 ≤ k ≤ bd/nc and {xj}kj=1 ∈ Ck(C), it follows from the prop-
erties of Vandermonde matrices that condition (4.3) gives exactly nk independent
conditions on the coefficients of f(z). Hence, the space of polynomials f ∈ Pd(C)

which satisfy (4.3) is the intersection of nk affine hyperplanes in general position,
and it has codimension nk in Pd(C). Therefore, the fibre π−1

k,d(c) is homeomorphic
to the product of an open (k − 1)-simplex with the real affine space of dimension
2(d− nk). We see that X dk \ X dk−1 is a locally trivial real affine bundle over Ck(C)

of rank ld,k = 2(d− nk) + k − 1.

Remark 4.4. If k ≥ bd/nc+ 1, then X dk \ X dk−1 = ∅ and thus E1;d
k,s = 0.

Lemma 4.5. If 1 ≤ k ≤ bd/nc, then there is a natural isomorphism

E1;d
k,s
∼= H̃2nk−s

c (Ck(C),±Z),

where the twisted coefficient system ±Z comes from the Thom isomorphism.

Proof. As 1 ≤ k ≤ bd/nc, by Lemma 4.3 there is a homeomorphism (X dk \X dk−1)+
∼=

T (ξd,k), where T (ξd,k) denotes the Thom space of ξd,k. Since

(2d+ k − s− 1)− ld,k = (2d+ k − s− 1)− (2d− 2nk + k − 1) = 2nk − s,

by using the Thom isomorphism there is a natural isomorphism

E1;d
k,s
∼= H̃2d+k−s−1(T (ξd,k),Z) ∼= H̃2nk−s

c (Ck(C),±Z),

and this completes the proof.

Corollary 4.6. For ε ∈ {0, 1}, there is an isomorphism

E1;d+ε
k,s

∼=


Z if (k, s) = (0, 0),

H̃2nk−s
c (Ck(C),±Z) if 1 ≤ k ≤ b(d+ ε)/nc and s ≥ (2n− 2)k,

0 otherwise.

Proof. Note that H̃2nk−s
c (Ck(C),±Z) = 0 if 2nk − s > dimCk(C) ⇔ s ≤

(2n − 2)k − 1. Hence, the assertion easily follows from Lemma 4.5 and Re-
mark 4.4.
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Now recall Ud = {w ∈ C : Re(w) < d} and the map s̃d : SPdn(Ud) →
SPd+1

n (Ud+1) given in (2.3). It naturally extends to an open embedding s̃d :

(Ud+1 \ Ud)× SPd(Ud)→ SPd+1(Ud+1) by the formula

(4.4) s̃d

(
α,

d∑
k=1

αk

)
=

d∑
k=1

αk + α.

Since there is a homeomorphism C ∼= Ud+1 \ Ud, by using the identification (2.2)
the stabilization map sd also extends to an open embedding

(4.5) sd : C× SPdn → SPd+1
n .

Since the open embedding s̃d : (Ud+1 \Ud)× SPdn(Ud)→ SPd+1
n (Ud+1) extends to

an open embedding (Ud+1 \ Ud) × SPd(Ud) → SPd+1(Ud+1) by the same formula
as in (4.4), the embedding (4.5) also naturally extends to an open embedding

(4.6) s̃d : C× Σdn → Σd+1
n

in the same way. Since one-point compactification is contravariant for open em-
beddings, it induces a map s̃d+ : (Σd+1

n )+ → (C×Σdn)+ = S2 ∧Σdn+, and one can
show that there is a commutative diagram

(4.7)

H̃k(SPdn,Z)
sd∗−−−−→ H̃k(SPd+1

n ,Z)

Al

y∼= Al

y∼=
H̃2d−k−1
c (Σdn,Z)

s̃ ∗
d+−−−−→ H̃

2(d+1)−k−1
c (Σd+1

n ,Z)

where ŝ : H̃∗c (Σdn,Z)
∼=−→ H̃∗+2

c (Σd+1
n ,Z) is the suspension isomorphism, Al denotes

the Alexander duality isomorphism, and s̃ ∗d+ is the composite homomorphism

H̃2d−k−1
c (Σdn,Z)

ŝ−→∼= H̃2(d+1)−k−1
c (C× Σdn,Z)

(s̃d+)∗−−−−→ H̃2(d+1)−k−1
c (Σd+1

n ,Z).

By using the universality of non-degenerate simplicial resolutions [9, pp. 286–287],
one can see that the open embedding (4.6) also naturally extends to a filtration
preserving open embedding

(4.8) s̃d : C×X d → X d+1.

It induces a filtration preserving map (s̃d)+ : X d+1
+ → (C×X d)+ = S2 ∧ X d+, and

we obtain a homomorphism of spectral sequences

(4.9) {θtk,s : Et;dk,s → Et;d+1
k,s },

where E1;d+ε
k,s = H̃

2(d+ε)+k−1−s
c (X dk \ X dk−1,Z) for ε ∈ {0, 1}.
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Lemma 4.7. If 1 ≤ k ≤ bd/nc, then θ1
k,s : E1;d

k,s → E1;d+1
k,s is an isomorphism for

any s.

Proof. Suppose that 1 ≤ k ≤ bd/nc. Then it follows from the proof of Lemma 4.3
that there is a homotopy commutative diagram of affine vector bundles

X dk \ X dk−1

πk,d−−−−→ Ck(C)y ‖

X d+1
k \ X d+1

k−1

πk,d+1−−−−→ Ck(C)

Hence, we have a commutative diagram

E1,d
k,s −−−−→∼= H̃2nk−s

c (Ck(C),±Z)

θ1k,s

y ‖

E1,d+1
k,s −−−−→∼= H̃2nk−s

c (Ck(C),±Z)

and the assertion follows.

Proof of Theorem 2.6. Assume that bd/nc < b(d + 1)/nc. Then it is easy to see
that b(d+ 1)/nc = bd/nc+ 1. Consider the homomorphism of spectral sequences
{θtk,s : Et;dk,s → Et;d+1

k,s } given by (4.9). If we consider the differential dt : Et;d+ε
k,s →

Et;d+ε
k+t,s+t−1 for ε = 0 or 1, it follows from Corollary 4.6 and Lemma 4.7 that we

can easily see that θtk,s is always an isomorphism for any (k, s) with any t ≥ 1 as
long as the condition s− k ≤ D(d, n) = (2n− 3)(bd/nc+ 1)− 1 is satisfied. Hence,
θ∞k,s is an isomorphism for any (k, s) if s − k ≤ D(d, n). Thus, sd is a homology
equivalence through dimension D(d, n).
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