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Abstract

In this paper, we consider a two-sided notion of dialogue category which we call dia-
logue chirality and which we formulate as an adjunction between a monoidal category A
of proofs and a monoidal category B of counter-proofs equivalent to its opposite cate-
gory A op(0,1). The two-sided formulation of dialogue categories is compared to the origi-
nal one-sided formulation by exhibiting a 2-dimensional equivalence between a 2-category
of dialogue categories and a 2-category of dialogue chiralities. The resulting coherence
theorem clarifies in what sense every dialogue chirality may be strictified to an equivalent
dialogue category.
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Foreword. This paper is part of an ongoing research program at the interface of

logic, algebra and computer science, whose purpose is to investigate the interactive

and game-theoretic nature of continuations in programming languages. The paper

is guided by the insight that the interactive content of continuations is secretly

concealed in their description in the language of categories and functors. This

primary intuition leads us to the idea of formulating a dialogue category C as a

dialogue chirality consisting of a category A of proofs (or programs) confronted

with a category B of refutations (or environments). In order to justify this two-

sided and properly symmetric formulation of dialogue categories, one needs to

compare it with the original and traditional one-sided formulation. The purpose

of the paper is precisely to develop this comparison in full detail, by exhibiting

(§7.5, Thm. 3) a 2-dimensional equivalence between a pair of appropriately defined

2-categories of dialogue categories and of dialogue chiralities.

§1. Introduction

Deformation of algebraic structures. A strict monoidal category is defined as

a category C equipped with a functor

⊗ : C × C → C

and an object e satisfying the associativity and unity equations

(1) (x⊗ y)⊗ z = x⊗ (y ⊗ z), e⊗ x = x = x⊗ e

for all objects x, y, z of the category C . It is well-known that a strict monoidal cate-

gory may be alternatively defined as a monoid object in the cartesian category Cat

of categories and functors. Hence, an interesting question is to characterize the al-

gebraic structure inherited by a category D equivalent (in the categorical sense)

to a strict monoidal category C . Recall that by categorical equivalence, one means
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an adjunction

C

L

""⊥

R

bb D

whose unit and counit

η : Id⇒ R ◦ L, ε : L ◦R⇒ Id

are invertible. The answer to this question is provided by MacLane’s coherence

theorem, which states that a category D is equivalent to a strict monoidal category

precisely when it is a monoidal category. By this, one means a category equipped

with a functor ⊗ and with an object e together with three families of isomorphisms

(x⊗ y)⊗ z α−→ x⊗ (y ⊗ z), e⊗ x λ−→ x
ρ←− x⊗ e

natural in x, y, z and making the two diagrams

(w ⊗ x)⊗ (y ⊗ z)
α
,,

((w ⊗ x)⊗ y)⊗ z

α 22

α⊗z
��

w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z α // w ⊗ ((x⊗ y)⊗ z)

w⊗α
OO

x⊗ y

(x⊗ e)⊗ y

ρ⊗y
99

α // x⊗ (e⊗ y)

x⊗λ
ee

commute for all objects w, x, y, z of the category D . It is instructive to analyze this

result from a 2-categorical point of view. A monoidal category is the same thing as a

pseudo-monoid in the cartesian 2-category Cat of categories, functors and natural

transformations. Moreover, in any monoidal 2-category, every object D equivalent

to a monoid object C inherits from C the structure of a pseudo-monoid object.

This general result applied to the specific case of the cartesian 2-category Cat

implies that every category D equivalent to a strict monoidal category C is a

monoidal category. The converse property is not true in an arbitrary monoidal

2-category W , since it is possible in general that a given pseudo-monoid object D

is not equivalent to any monoid object C in the 2-category W . However, the

coherence theorem tells us that the converse property holds in the particular case

when W is the cartesian 2-category Cat . As a matter of fact, establishing this

converse property is the difficult part of the coherence theorem: the theorem states
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that every pseudo-monoid object D in the 2-category Cat inherits its structure

from an equivalence with a monoid object C , that is, a strict monoidal category.

At this stage, it is interesting to notice that a purely homotopic account of the

coherence theorem is possible: the idea is to identify the theorem as an instance of

the Boardman–Vogt W-construction of an algebraic theory modulo deformation.

In this case, the deformation should be performed in the category Cat of categories

equipped with the “folk” model structure, whose weak equivalences are provided by

the categorical equivalences (see for instance Berger and Moerdijk [6] or Weiss [46,

Section 4.2]). This enables one to see the notion of monoidal category as a formal

deformation of the notion of strict monoidal category.

Deformation of dual structures. The purpose of this article is to understand

how the idea of formal deformation may be applied to dialogue categories and

other notions of categories equipped with a duality. A dialogue category is defined

as a monoidal category C equipped with an object ⊥ together with two functors

C op → C , C op → C ,

x 7→ ⊥� x, x 7→ x( ⊥,

and two families of bijections

C (x,⊥� y) ∼= C (x⊗ y,⊥) ∼= C (y, x( ⊥)

natural in x and y. The notion of dialogue category is preserved by equivalence,

in the sense that every category D equivalent to a dialogue category C is also a

dialogue category. This implies that the idea of relaxing the notion of dialogue

category by deformation is apparently meaningless... unless one applies a different

and even stronger notion of deformation than categorical equivalence! A first step

in that direction is to observe that any notion of self-dual category relates the

category C to its opposite category C op. This leads us to the idea that one should

think of the ambient 2-category Cat as an “involutive” 2-category equipped with

a 2-functor

(2) (−)op : Cat → Catop(2)

which transports every category C to its opposite category C op. Here, the target

2-category Catop(2) is the 2-category Cat where the 2-cells have been reversed.

This reversal reflects the fact that the 2-functor (−)op transports every natural

transformation

θ��
C

F

  

G

@@ D
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to a natural transformation in the opposite direction:

C op

F op

  

Gop

@@ Dop
θop
KS

Now, every dialogue category C is related to its opposite category C op by an

adjunction

(3) C

L

""⊥

R

bb C op

defined by the two functors

L(x) = ⊥� x and R(x) = x( ⊥

and by the families of bijections

C op(x( ⊥, y) ∼= C (x⊗ y,⊥) ∼= C (x,⊥� y).

natural in x and y. This leads us to the main idea of the paper which is that

the formal deformation of the dialogue category C should be decorrelated from

the formal deformation of its opposite category C op. This means that we should

study and characterize the pairs (A ,B) of categories equivalent to a pair (C ,C op)

consisting of a dialogue category C and of its opposite category C op. In other

words, the deformation of a dialogue category C should not be performed inside

the 2-category Cat ... but inside the larger 2-category Cat ×Catop(2). We will see

that this decorrelation of C and C op provides an additional “degree of freedom”

in the deformation process. This reveals hidden structures of dialogue categories,

in the same way as traditional deformation by categorical equivalence does for

strict monoidal categories. This decorrelated point of view also enables one to

think of the two categories C and C op in a symmetric and unbiased way, where

the category C is not given priority over the category C op. Such a pair (A ,B) is

called a chirality because of the mirror-symmetry phenomena occurring between

the two components A and B.

Cartesian closed chiralities. The method is not limited to dialogue categories,

as we illustrate below with cartesian closed categories. For that purpose, we define

a cartesian closed chirality as a pair (A ,B) where A is equivalent to a cartesian

closed category C (and thus is a cartesian closed category itself) and B is equiv-
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alent to its opposite category C op. A cartesian closed chirality (A ,B) is easily

characterized as a pair consisting of

• a category A with finite products, with the binary products denoted (a1, a2) 7→
a1 ∧ a2 and with a terminal object true,

• a category B with finite sums, with the binary sums denoted (b1, b2) 7→ b1 ∨ b2
and with an initial object false,

equipped with:

• an equivalence of categories between A and Bop, which transports every ob-

ject a of A to an object ∼ a of B and every object b of B to an object ∼ b
of A ,

• a pseudo-action

(4) ∨ : B ×A → A

of the monoidal category (B,∨, false) on the category A ,

• a bijection

(5) A (a1 ∧ a2, a3) ∼= A (a2, (∼ a1) ∨ a3)

natural in a1, a2 and a3,

• a pseudo-action

(6) ∧ : B ×A → B

of the monoidal category (A ,∧, true) on the category B,

• a bijection

(7) B(b1, b2 ∨ b3) ∼= B(b1 ∧ (∼ b3), b2)

natural in b1, b2 and b3.

In this unbiased and two-sided formulation of cartesian closed categories, the two

pseudo-actions (4) and (6) are inherited from the functor

(8) ⇒ : C op × C → C

which transports every pair (x, y) of objects to the hom-object x ⇒ y. The two

canonical isomorphisms

(9) (x1 × x2)⇒ y ∼= x1 ⇒ (x2 ⇒ y) 1⇒ x ∼= x

of the cartesian closed category C are themselves translated as the two isomor-

phisms

(b1 ∨ b2) ∨ a ∼= b1 ∨ (b2 ∨ a), false ∨ a ∼= a,
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which make the operation (b, a) 7→ b∨ a a pseudo-action of B over A . Symmetri-

cally, and at the same time, the two canonical isomorphisms (9) are translated as

the two isomorphisms

b ∧ (a1 ∧ a2) ∼= (b ∧ a1) ∧ a2, b ∧ true ∼= b,

which make the operation (b, a) 7→ b ∧ a a pseudo-action of A over B. An unex-

pected outcome of the deformation of the category C into the chirality (A ,B) is

that the intuitionistic implication functor (8) factors as

A op ×A
∼×A−−−−→ B ×A

∨−→ A

in just the same way as the implication P ⇒ Q of two logical propositions factors

in classical logic as the disjunction

(10) P ⇒ Q = (∼P ) ∨ Q

where ∼P denotes the negation of the proposition P . This phenomenon is familiar

and well-documented in monoidal categories equipped with a sufficiently strong

notion of self-duality. Typically, the hom-object x( y = [x, y] may be defined as

• the object x∗ ⊗ y in a ribbon category, where x∗ is the right dual of x (see

[43, 21, 22] for details),

• the object x∗ ℘y in a ∗-autonomous category, where x℘ y is itself defined as

(∗y ⊗ ∗x)
∗

where ∗x is the left dual of x (see [3, 30] for details).

However, it is the first time that the decomposition (10) is examined for cartesian

closed categories. In that respect, our two-sided formulation of a cartesian closed

category C reveals that the decomposition of implication P ⇒ Q as (∼P ) ∨Q is

not limited to the familiar case of self-dual monoidal categories where the cate-

gory C is equivalent to its opposite category C op. Since cartesian closed categories

encode minimal intuitionistic logic, our approach etablishes the decomposition of

implication (10) as a general principle of logic, valid both in intuitionistic logic

and in classical logic. In particular, contrary to popular belief, what differentiates

classical logic from intuitionistic logic is not the ability to decompose implication,

into disjunction and negation, but the algebraic nature of the conjunction and

of the disjunction connectives which define the logic: the connectives are actions

of one side (A ,∧, true) or (B,∨, false) of the cartesian closed chirality in the

case of intuitionistic logic, whereas they are tensor and cotensor products ∧ = ⊗
and ∨ = M of a ∗-autonomous category C in the case of linear logic, and finite

products ∧ and finite sums ∨ of a boolean algebra in the case of classical logic.
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It is worth mentioning that, in order to be complete, the characterization of

cartesian closed chiralities requires in addition that the two coherence diagrams

A (a1 ∧ a2 ∧ a3, a4) //

��

A (a3,∼ (a1 ∧ a2) ∨ a4)

(∗)

��

A (a2 ∧ a3,∼ a1 ∨ a4) // A (a3,∼ a2 ∨ ∼ a1 ∨ a4)

(11)

A (true ∧ a1, a2) //

��

A (a1,∼ true ∨ a2)

(∗)

��

A (a1, a2) // A (a1, false ∨ a2)

(12)

commute, where the isomorphisms (∗) from ∼ (a1 ∧ a2) to ∼ a2 ∨ ∼ a1 and from

∼ true to false are deduced from the fact that the equivalence ∼ transports finite

products of A into finite sums of B. A similar pair of coherence diagrams is also

required to commute for the pseudo-action (6).

Remark. We choose this specific formulation of cartesian closed chiralities in

order to keep a perfect symmetry between the two sides A and B of the chirality.

However, an easy calculation shows that in any cartesian closed chirality, there

exists a natural family of isomorphisms ∼ (b ∧ a) ∼= ∼ a∨∼ b which relates the two

pseudo-actions (4) and (6). For that reason, it would be harmless to remove the

pseudo-action (6) as well as the bijection (7) from our characterization of cartesian

closed chiralities. Alternatively, one could remove the pseudo-action (4) as well

as the bijection (5) and still have a proper characterization of cartesian closed

chiralities. This point will be discussed in our section 9.2 on mixed chiralities.

A useful convention. Before going any further in our two-sided formulation of

dialogue categories, we would like to introduce a useful convention. Since negation

tends to reverse the orientation of the tensors, we find convenient to replace the

opposite category C op(1) by the category C op(0,1) where the 0-dimensional cells

(the objects) as well as the 1-dimensional cells (the morphisms) have been reversed.

By “reversing the objects”, we simply mean that the orientation of tensors is

reversed in the following way:

x⊗op(0,1) y := y ⊗ x.

The notation and terminology reflect the fact that a monoidal category C may be
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seen as a 2-category ΣC (more precisely, a bicategory) with one object, called its

suspension. Now, the 1-cells of the suspension 2-category ΣC are the 0-cells of the

category C . Hence, reversing the 0-cells in C means reversing the 1-cells in ΣC ,

or equivalently, reversing the orientation of the tensor product in the category C .

One benefit of this convention on 0-cells is that the expected equality holds:

(ΣC )op(1,2) = Σ(C op(0,1))

where (ΣC )op(1,2) is the 2-category ΣC where the orientations of the 1-cells and

of the 2-cells have been reversed.

Dialogue chiralities. As already mentioned, the main purpose of the article is

to characterize the pairs (A ,B) obtained by deforming a dialogue category C into

a category A , and by deforming at the same time but independently its opposite

category C op into a category B. Every pair (A ,B) obtained in this way is called

a dialogue chirality. A preliminary observation is that in every dialogue chirality:

• the category A inherits a tensor product 7 and a unit true, reflecting the tensor

product ⊗ and the unit e of the category C ,

• the category B inherits a tensor product 6 and a unit false from the very same

monoidal structure, but considered this time in the opposite category C op(0,1)

where the orientations of objects and morphisms have been reversed.

Equality in the category C induces a monoidal equivalence

(13) (A ,7, true)

(−)∗

""monoidal
equivalence

∗(−)

cc (B,6, false)op(0,1)

which transports every object a of the category A into the corresponding object a∗

of the category B, and symmetrically, every object b of the category B into the

corresponding object ∗b of the category A . By monoidal equivalence, one means

that the functors (−)
∗

and ∗(−) are equipped with natural isomorphisms

(a1 7 a2)
∗ ∼= a2

∗ 6 a1
∗, true∗ ∼= false,

∗(b1 6 b2) ∼= ∗b2 7 ∗b1, ∗false ∼= true,

making the expected coherence diagrams commute. It should be stressed that our

notation is directly inspired by logic, just as in the case of the notation (negation,

conjunction and disjunction) used for cartesian closed chiralities. The idea is that

the functors (a 7→ a∗) and (b 7→ ∗b) are involutive forms of negation transporting

objects of A into objects of B and conversely. Accordingly, the tensor product 7
is interpreted in the category A as a conjunction with its unit denoted true,
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whereas the tensor product 6 is interpreted in the category B as a disjunction

with its unit denoted false.

Another important observation on dialogue chiralities is that the two cate-

gories A and B are related by an adjunction

(14) A

L

  ⊥

R

`` B

inherited from the original adjunction (3) between the categories C and C op. This

adjunction enables one to construct the functor

〈− |− 〉 : A op ×B → Set

also called the distributor or the A B-module, defined as

(15) 〈 a | b 〉 = A (a,R b).

For aesthetic reasons, we will consider in §5 the more general notion of dispute

chirality where the pair of adjoint functors L a R is replaced by the distribu-

tor 〈− |− 〉. A dialogue chirality will then be identified in §6 as a dispute chirality

where the distributor 〈− |− 〉 is generated by an adjunction L a R in the sense of

Equation (15). In particular, the coherence theorem (Theorem 3) established at

the end of §7 states that every dialogue chirality may be strictified to a dialogue

category.

Deformations of dialogue categories. One motivation for deforming strict

monoidal categories into monoidal categories is to encompass natural examples

arising in algebra and in topology. Typically, a cartesian category like Set is mo-

noidal, but not strict monoidal, because the two sets X×(Y ×Z) and (X×Y )×Z
are isomorphic, but not equal. One feels the need for a similar deformation of di-

alogue categories related to their duality structure in order to understand better

their relationship to ∗-autonomous categories. Let us explain why. As we have just

explained, every dialogue category C may be seen as a dialogue chirality (C ,C op)

where the two functors (−)
∗

and ∗(−) are defined as the identity on the cate-

gory C . By convention, we call “strict” every dialogue chirality (C ,C op) obtained

in this way. Note that for every strict dialogue chirality (A ,B), one has the equal-

ity B = A op with the adjunction

A = C

L

""⊥

R

bb C op = B
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defined as the adjoint pair L a R between the two negation functors

L : x 7→ ⊥� x : A → B, R : x 7→ x( ⊥ : B → A .

The construction applies to dialogue categories in general, and in particular to

∗-autonomous categories. However, the shift from dialogue categories to dialogue

chiralities enables us to think of ∗-autonomous categories in another fundamentally

different way. We call a dialogue chirality (A ,B) “self-dual” when the two sides A

and B are equal to the same category C , and when the two functors L and R are

the identity functors:

A = C

L=id

""⊥

R=id

bb C = B

Every ∗-autonomous category C may be seen as such a self-dual dialogue chiral-

ity (C ,C ) where A = C and B = C . The two operations a 7→ a∗ and b 7→ ∗b

are provided in that case by the involutive negations of the ∗-autonomous cate-

gory. Note that the ∗-autonomous category B = C on the right-hand side of the

adjunction is equivalent but not equal in general to the opposite A op = C op of

the category A = C on the left-hand side of the adjunction. In that respect, the

dialogue chirality (C ,C ) induced by a ∗-autonomous category is self-dual but not

strict in general. However, as we will see in the course of the paper, the self-dual

dialogue chirality (C ,C ) is equivalent (in the sense of dialogue chiralities) to the

strict dialogue chirality (C ,C op) associated to the ∗-autonomous category C . As

such, the self-dual dialogue chirality (C ,C ) may be seen as a “deformation” of its

strict counterpart (C ,C op).

This example of ∗-autonomous categories lies at the heart of our work on

tensorial logic and dialogue categories. It illustrates our claim that the notion of

dialogue chirality plays a similar role for dialogue categories to the notion of mo-

noidal category for strict monoidal categories. In particular, shifting from dialogue

categories to dialogue chiralities enables us to capture new examples of interest

like those self-dual dialogue chiralities (C ,C ) associated to a ∗-autonomous cate-

gory C . The discussion may be summarized in a table:

Strict notions Notions up to deformation

strict monoidal categories monoidal categories
cartesian closed categories cartesian closed chiralities

dialogue categories dialogue chiralities

Polarities and symmetrization of logic. One purpose of this work is to pro-

vide a categorical explanation for the notion of polarity in logic. The notion



370 P.-A. Melliès

emerged in the early 1990s in the work of Andreoli on focalization in proof search [1]

and of Girard on the semantics of classical logic [14]. The notion of polarity then

became prominent in the linear logic circles, in particular after the definition of

ludics [15] and of polarized linear logic [29]. The basic principle of polarization is

to distinguish two classes of formulas, called positive and negative, and to apply

logical connectives only when the formulas are of appropriate polarity. Because

of its origins in Girard’s work [14], the notion of polarity is often believed to be

intrinsically connected to classical logic. This is misleading and one purpose of the

present work is to clarify this issue by observing the situation from the angle of

higher dimensional algebra. One benefit of our 2- and 3-categorical approach is

to explain in what sense polarities are entirely independent of the intuitionistic

or classical nature of the underlying logic. It appears that the effect of polarities

is not to alter the logic but to provide a symmetric and two-sided point of view

on it, where the original category C of denotations is replaced by a pair of cate-

gories (A ,B) consisting of a “positive” category A of proofs (or programs) and

of a “negative” category B of counter-proofs (or counter-programs). Understood

in this way, the idea of polarity is sufficiently general to work for any reasonable

notion of category C with structure, as already illustrated by our chiral reformula-

tion of cartesian closed categories. In retrospect, the polarity table introduced by

Girard after his discovery of the interpretation of classical logic (LC) in correlation

spaces [14] is not intrinsic since it mainly reflects the structure of a specific dialogue

chirality (A ,B) induced by the dialogue category C of correlation spaces:

+⊕+ = + +⊗+ = + ! (−) = +

−&− = − −M− = − ? (+) = −

In this dialogue chirality, the category A of positive correlation spaces or com-

mutative ⊗-comonoids has cartesian products ⊗ and finite sums ⊕ while the cat-

egory B of negative correlation spaces or commutative M-monoids has cartesian

products & and finite sums M. The negation or shift functors L and R are then

defined by the exponential modalities

L = ? : A → B, R = ! : B → A .

Since the polarity table reflects the structure of a dialogue category D with finite

sums, it makes sense to rewrite it according to our notation for dialogue chiralities.

One obtains in this way the polarity table

+⊕+ = + + 7 + = + R (−) = +

−&− = − −6− = − L (+) = −
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As expected, this polarity table is different from the polarity table associated to a

monoidal closed category C with finite sums:

+⊕+ = + + 7 + = + + 7− = −
−&− = − −6− = − −6 + = +

Indeed, in just the same way as for cartesian closed chiralities, the polarity table

of a monoidal closed chirality (A ,B) includes a pseudo-action

6 : A ×B → A

of the “negative” category B on the “positive” category A as well as a pseudo-

action

7 : A ×B → B

of the “positive” category A on the “negative” category B. This alternative po-

larity table is interesting for its own sake and different from the original polarity

table introduced by Girard. The polarity table also happens to describe several

computational situations of interest, with a close connection to the notion of stack

in programming languages (see §9 for a discussion).

A microcosm principle for duality. One last motivation for this work is to

establish a “microcosm principle” for dialogue categories and similar notions of

categories with dualities. Indeed, a distinctive property of dialogue categories is

that the two negation functors A 7→ A( ⊥ and A 7→ ⊥ � A are contravariant.

For this reason, as already mentioned, the two functors cannot be expressed in

the 2-category Cat without mentioning the self-duality 2-functor C 7→ C op. This

phenomenon is similar to the fact that one needs the monoidal structure of Cat

provided by finite products of categories C ,D 7→ C × D in order to define the

very notion of monoidal category; and that, more generally, one needs a monoidal

category in order to define a monoid object in it. This “microcosm principle” for

monoidal categories has been recognized and extensively studied on n-dimensional

categories equipped with various monoidal (or algebraic) structures, in particular

by Baez and Dolan [2]. One point of the article is that the microcosm principle is

not limited to monoidal structures, and that it also regulates the definition of dia-

logue categories and other algebraic structures equipped with a duality. In partic-

ular, there exists an operation C 7→ C op(k) which transforms every n-dimensional

category C into the n-dimensional category C op(k) where the directions of the k-

dimensional cells have been formally reversed, for k ≤ n. An interesting question

is thus to understand what are the dualities required in higher dimensions in order

to define the dual structures in lower dimensions. One purpose of the article is to

investigate this microcosm principle in the special case of dialogue categories, and
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to clarify along the way how the traditional dualities of logic based on negation are

incorporated inside the first ladders (dimensions 1, 2 and 3) of higher dimensional

algebra.

Related work. As already mentioned, our purpose is to provide a 2-categorical

foundation to the notion of polarity introduced by Girard in his work on classical

logic (LC) and on correlation spaces [14]. The connection between LC and con-

tinuation passing style (CPS) translations of classical logic into intuitionistic logic

was recognized and investigated for the first time by Murthy [38] after the seminal

work by Griffin [16]. The semantic study of a new CPS translation inspired by a

connection between an early manuscript by Lafont [27] and Krivine’s account of

Gödel’s translation [25] was independently developed by Lafont, Reus and Stre-

icher [28]. The duality between call-by-name and call-by-value translations was

then observed by Reus and Streicher in subsequent work [41]. The duality be-

tween the LKQ and LKT proof systems for classical logic emerged at about the

same time in the work by Danos, Joinet and Schellinx [10] whose purpose was

to replay Girard’s work on classical logic in the framework of linear logic, and to

clarify the relationship between LC and Parigot’s λµ-calculus [39].

Our definition of dialogue chirality is based on the fact that negation induces

an adjunction between the category C and its opposite category C op. This fact

was observed by A. Kock in his study of dualities in monoidal categories [24]. It

was then rediscovered and promoted by Thielecke [42] in his study of continuations

prompted by the early observation by Filinski [12] of a duality between the call-

by-name and call-by-value evaluation mechanisms. Inspired by the completeness

theorem established by Hofmann and Streicher [20] for the continuation models of

the λµ-calculus, Selinger introduced the notion of control category, and formulated

this duality between call-by-name and call-by-value as a duality between control

and co-control categories [40]. Much work was devoted in the late 1990s by Curien

and Herbelin [8, 9] and more recently by Munch [37] to developing programming

languages and abstract machines based on this duality. The reader is advised to

read the nice account of this line of work by Wadler [44, 45]. Note also that similar

ideas were recently developed by Carraro, Ehrhard and Salibra in a calculus of

stacks [11].

One distinctive feature of our work on tensorial logic [35, 32] compared with

Girard’s original work on LC [14] and the subsequent work by Laurent on polarized

linear logic [29] is that we decorrelate the exponential modality A 7→ !A from the

tensorial negation A 7→ ¬A. To that end, we focus on a system of linear rather

than intuitionistic continuations, in a spirit closer to ludics [15]. In doing so, we

carry on a line of work on linear continuations initiated and developed by Berdine,
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O’Hearn, Reddy and Thielecke [5, 4] as well as M. Hasegawa [18, 19] who considered

linear continuations both in a call-by-value and in a call-by-name scenario.

The idea of describing a category of dialogue games C as a pair of opposite

categories A = C and B = C op related by an adjunction L a R emerged in our

work when we were studying the categorical properties of asynchronous games [31].

The notion of dialogue chirality (A ,B) then became an essential ingredient of our

connection between dialogue categories, dialogue games and string diagrams [32].

A similar line of research on polarized categories and game semantics was indepen-

dently pursued by Cockett and Seely [7] with somewhat different purposes. The

interested reader will find in the recent work by Munch [36] a development of the

categorical framework described twelve years ago in [31] in connection to the work

by Führmann on the computational λ-calculus [13].

Plan of the article. Before analyzing the specific case of dialogue categories and

dialogue chiralities, we find it instructive to study the simpler case of categories

and chiralities. We thus establish in §2 a coherence theorem (Thm. 1) for categories

and chiralities, formulated as a biequivalence of the 2-categories Cat and Chir .

This preliminary coherence theorem provides us with the organizing and recurrent

pattern of the article. We carry on in this 2-categorical spirit and establish in §3
a similar coherence theorem (Thm. 2) between monoidal categories and monoidal

chiralities. The remainder of the paper is then devoted to an adaptation of these

two coherence theorems to the more sophisticated case of dialogue categories. We

prepare the work by defining the 2-category DiaCat of dialogue categories in §4,

the 2-category DisChir of dispute chiralities in §5 and the 2-category DiaChir of

dialogue chiralities in §6. The next section §7 is entirely devoted to the construction

of a biequivalence between the 2-categories DiaCat of dialogue categories and

DiaChir of dialogue chiralities. This leads us to our main theorem (Thm. 3)

stated at the end of §7. We then do some reverse engineering in §8 and explain

the notion of dispute category corresponding to the notion of dispute chirality. We

conclude the article in §9 with a series of side remarks on the notion of dialogue

chirality.

§2. The basic case: categories and chiralities

The main result of the article (Thm. 3) is established at the end of §7. The the-

orem states that the notions of “dialogue category” and of “dialogue chirality”

are equivalent in an appropriate 2-categorical sense. The proof is not particularly

difficult in itself, but it requires a great care in the definitions, and thus spans

Sections 4–7 of the paper. Instead of going directly into the proof of this coherence

theorem, we find it convenient to first establish a similar coherence theorem for
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the much simpler case of categories and chiralities. The argument will then be

adapted in §3 to the case of monoidal categories and monoidal chiralities.

Definition 1 (chirality). A chirality is defined as a pair (A ,B) of categories

equipped with an equivalence of categories:

A

(−)∗

  equivalence

∗(−)

aa Bop

As in the case of dialogue chiralities discussed in the introduction, one defines

Definition 2 (strict chirality). A chirality (A ,B) is called strict when B is equal

to A op and when the two functors (−)
∗

and ∗(−) are equal to the identity functor

on the category A .

Note that there is an obvious one-to-one relationship between categories

and strict chiralities, where every category C is associated to the strict chiral-

ity (C ,C op). Hence, a rudimentary coherence theorem for chiralities would state

that every chirality (A ,B) is equivalent to the strict chirality (A ,A op) in the

2-category Cat ×Catop(2). This assertion is true but essentially straightforward,

and not particularly useful for the applications we have in mind. As a matter of

fact, our main interest in this work is to understand what notions of 1-cell and

2-cell between chiralities should replace the familiar notions of functor and natural

transformation between categories. In that respect, it makes little sense to consider

chiralities as specific objects of the 2-category Cat × Catop(2) since the equiva-

lence between A and Bop disappears when one considers the chirality (A ,B) as

an object of the 2-category Cat × Catop(2). Consequently, the notions of 1-cell

and 2-cell are too liberal in the 2-category Cat ×Catop(2) since a 1-cell

F = (F•, F◦) : (A1,B1)→ (A2,B2)

is defined there as a pair of entirely decorrelated functors F• : A1 → A2 and

F◦ : B1 → B2, and similarly for the notion of 2-cell. This discussion leads us to

construct the 2-category Chir of chiralities, chirality functors and chirality natural

transformations, defined as follows.

The 1-dimensional cells. A chirality functor

(A1,B1)→ (A2,B2)

is defined as a triple (F•, F◦, F̃ ) consisting of two functors

F• : A1 → A2, F◦ : B1 → B2
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and a natural isomorphism

F̃ : (−)
∗ ◦ F• ⇒ F op

◦ ◦ (−)
∗

depicted as

A1
F• //

(−)∗

��

F̃

A2

(−)∗

��
��

Bop
1 F op

◦

// Bop
2

Note that an alternative and unbiased formulation of the same notion of chirality

functor would be to equip the pair of functors (F•, F◦) with a pair of natural

isomorphisms

(−)
∗ ◦ F• ⇒ F op

◦ ◦ (−)
∗
, F• ◦ ∗(−)⇒ ∗(−) ◦ F op

◦

together with a coherence diagram ensuring that the second natural isomorphism

coincides with the mate of the first one, in the sense of Kelly and Street [23]. The

two definitions are equivalent, and so we pick the simplest formulation.

The 2-dimensional cells. A chirality natural transformation

θ : F ⇒ G : (A1,B1)→ (A2,B2)

is defined as a pair of natural transformations

θ•
��

A1

F•

  

G•

@@ A2 B1

F◦

  

G◦

@@ B2θ◦

KS

satisfying

(16)

θ•��
A1

F•

&&

G•

88

(−)∗

��

A2

(−)∗

��

G̃

��Bop
1

Gop
◦

77
Bop

2

=

A1

F•

&&

(−)∗

��

A2

(−)∗

��

F̃

��

θop◦��
Bop

1

F op
◦

''

Gop
◦

77
Bop

2



376 P.-A. Melliès

This defines a 2-category Chir with chiralities as objects, chirality functors as

1-cells and chirality natural transformations as 2-cells, with the expected compo-

sition and identity laws.

Remark. Every functor F : C → D induces a chirality functor

(17) (F•, F◦, F̃ ) : (C ,C op)→ (D ,Dop)

where the natural transformation F̃ is equal to the identity idF and where F• = F

and F◦ = F op. This translation defines a one-to-one relationship between func-

tors F and chirality functors (F•, F◦, F̃ ) where F̃ is equal to the identity. Moreover,

every natural transformation

θ : F ⇒ G : C → D

induces a chirality natural transformation

(θ•, θ◦) : (F, F op, idF )⇒ (G,Gop, idG) : (C ,C op)→ (D ,Dop),

and once again this relation is one-to-one. This means that the 2-category Cat is

isomorphic to the sub-2-category of Chir consisting of strict chiralities (C ,C op)

and chirality functors F = (F•, F◦, id) with a trivial natural isomorphism F̃ = id

between them, leaving the chirality natural transformations unconstrained. On the

other hand, the natural transformation F̃ is not required to be the identity in the

definition of a chirality functor (F•, F◦, F̃ ). Consequently, there are in general more

chirality functors of the form (17) than functors F : C → D . This implies that the

functor Cat → Chir obtained by translating categories into strict chiralities does

not define an equivalence of categories, since such an equivalence would be fully

faithful. This observation justifies climbing one step of the n-dimensional ladder

and to move to 2-categories where we can establish that the translation defines a

biequivalence between the 2-categories Cat and Chir .

A biequivalence of 2-categories. In order to establish the biequivalence be-

tween Cat and Chir , we construct a pair of 2-functors

F : Cat → Chir , G : Chir → Cat

in the following way. The 2-functor F transports

• every category C to the strict chirality (C ,C op) with ∗(−) = (−)
∗

defined as

the identity functor on C ,

• every functor F to the chirality functor (F, F op, idF ),

• every natural transformation θ to the chirality natural transformation (θ, θop),
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while the 2-functor G transports

• every chirality (A ,B) to the category A ,

• every chirality functor F = (F•, F◦, F̃ ) to the underlying functor F•,

• every chirality natural transformation θ = (θ•, θ◦) to the natural transforma-

tion θ•.

This leads us to the following coherence theorem:

Theorem 1 (coherence theorem). The pair of 2-functors F and G defines a bi-

equivalence between the 2-categories Cat and Chir.

Proof. The composite 2-functor G ◦ F is equal to the identity on the 2-category

Cat . In order to establish the coherence property, it is thus sufficient to construct

a pair of pseudo-natural transformations

Φ : Id→ F ◦ G, Ψ : F ◦ G → Id

between the identity 2-functor on Chir and the 2-functor F ◦ G, and to show

that their components Φ(A ,B) and Ψ(A ,B) define together an equivalence in the

2-category Chir . The pseudo-natural transformation Φ is defined as follows. To

every chirality (A ,B), one associates the 1-dimensional cell

Φ(A ,B) : (A ,B)→ (A ,A op)

defined as the chirality functor consisting of the two functors

(Φ(A ,B))• : A
id−→ A , (Φ(A ,B))◦ : B

(∗(−))op−−−−−→ A op

equipped with the natural isomorphism

Φ̃(A ,B) =

A
id //

(−)∗

��

A

id

��

η

��

Bop
∗(−)

// (A op)op

defined as the unit η of the equivalence (−)
∗ a ∗(−) between A and Bop. Then,

to every 1-dimensional cell F : (A1,B1) → (A2,B2) one associates the chirality

natural transformation

ΦF : FG(F ) ◦ Φ(A1,B1) ⇒ Φ(A2,B2) ◦ F : (A1,B1)→ (A2,A
op

2 )
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defined as the pair of natural isomorphisms

id
��

(ΦF )• = A1

F•

  

F•

@@ A2

(ΦF )◦ =

A op
1

((−)∗)op

��

(F•)
op

// A op
2

((−)∗)op

��

id // A op
2

εop
KS

F̃ op

KS
ηop
KS

B1

(∗(−))op
@@

id
// B1

F◦

// B2

(∗(−))op

@@

where ε denotes the counit of the equivalence between A1 and Bop
1 while η denotes

the unit of the equivalence between A2 and Bop
2 . One checks that the pair of nat-

ural isomorphisms satisfy (16) and thus define a chirality natural transformation.

Moreover, since the chirality natural transformation ΦF consists of two reversible

natural transformations, it defines a reversible 2-cell in the 2-category Chir . Then,

it is not difficult to show that Φ defines a pseudo-natural transformation, be-

cause

• the 2-cell ΦG◦F associated to the composite of two 1-cells F and G pasted along

the 0-cell (A ,B) coincides with the composite of the 2-cells ΦG and ΦF pasted

along the 1-cell Φ(A ,B),

• the 2-cell Φid : Φ(A ,B) ⇒ Φ(A ,B) associated to the identity 1-cell id : (A ,B)→
(A ,B) coincides with the identity 2-cell on the 1-cell Φ(A ,B) : (A ,B) →
(A ,A op),

• for every 2-cell θ : F ⇒ G, the 2-cell ΦF pasted to the 2-cell FG(θ) along the

1-cell FG(F ) is equal to the 2-cell ΦG pasted to the 2-cell θ along the 1-cell G.

Note that establishing this last property requires the coherence diagram (16).

The pseudo-natural transformation Ψ is defined as follows. To every chiral-

ity (A ,B), one associates the 1-cell

Ψ(A ,B) : (A ,A op)→ (A ,B)

defined as the chirality functor consisting of the two functors

(Ψ(A ,B))• : A
id−→ A , (Ψ(A ,B))◦ : A op ((−)∗)op−−−−−→ B

equipped with the natural isomorphism
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Ψ̃(A ,B) =

A
id //

id

��

A

(−)∗

��

id

��

(A op)op

(−)∗
// Bop

To every 1-dimensional cell F : (A1,B1)→ (A2,B2) one associates the reversible

2-cell

ΨF : F ◦Ψ(A1,B1) ⇒ Ψ(A2,B2) ◦ FG(F )

defined as the chirality natural transformations consisting of the two natural iso-

morphisms

id
��

(ΨF )• = A1

F•

  

F•

@@ A2

B1 F◦

!!(ΨF )◦ = A op
1

((−)∗)op 11

F op
•
,,

B2

A op
2 ((−)∗)op

==(F̃−1)op

KS

It is not difficult to check that Ψ defines a pseudo-natural transformation in the

same way as for Φ. Once this property has been established, there simply remains

to show that the pair Φ(A ,B) and Ψ(A ,B) defines an equivalence in the 2-category

Chir . The proof of this last statement is essentially immediate. This concludes

the proof of the coherence theorem for chiralities.

Remark. It is worth mentioning that there exists a simpler proof that the 2-

categories Cat and Chir are equivalent. First, one proves that the 2-functor F is

a local equivalence, in other words, that every functor

F(C ,D) : Cat(C ,D)→ Chir(FC ,FD)

is an equivalence of categories. Then, one proves that every chirality (A ,B) is

equivalent in Chir to a chirality of the form FC = (C ,C op). Both facts are easy

to establish, and together they imply that the 2-functor F is a biequivalence (see

[17] for details). This alternative proof works but it is less explicit, since it does

not exhibit the 2-functor G nor the pseudo-natural transformations Φ and Ψ as in

the proof of Theorem 1.

Strictification. Theorem 1 is inspired by a similar coherence result for monoidal

categories, where one constructs a biequivalence between

• the 2-category of strict monoidal categories, strict monoidal functors and mo-

noidal natural transformations, and

• the 2-category of monoidal categories, monoidal functors and monoidal natural

transformations.
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From that point of view, the 1-cell Φ(A ,B) should be understood as the operation

of strictifying the chirality (A ,B) into the strict chirality (A ,A op). As already

mentioned, the category of 1-cells and 2-cells between two chiralities (A1,B1)

and (A2,B2) is equivalent but in general not isomorphic to the category of functors

between the categories A1 and A2. As a matter of fact, the functor F is faithful,

but not full; conversely, the functor G is full, but not faithful.

§3. Monoidal categories and chiralities

Now that we have established a coherence theorem (Thm. 1) for categories and

chiralities, we move to the notion of monoidal chirality which provides a two-sided

and symmetric formulation of the notion of monoidal category.

Definition 3 (monoidal chirality). A monoidal chirality is defined as a pair of

monoidal categories

(A ,7, true), (B,6, false)

equipped with a monoidal equivalence

A

(−)∗

  monoidal
equivalence

∗(−)

aa Bop(0,1)

In order to establish the equivalence of this notion with the familiar notion

of monoidal category, we adapt the proof of Theorem 1 to this situation. We thus

proceed as in §2 and define the 2-category MonCat with monoidal categories

as 0-dimensional cells, lax monoidal functors as 1-dimensional cells and monoidal

transformations as 2-dimensional cells. Recall that a lax monoidal functor

(F,m) : (C ,⊗, e)→ (D ,⊗, e)

between monoidal categories is a functor F : C → D equipped with morphisms

mx,y : Fx⊗ Fy → F (x⊗ y), me : e→ F (e)

natural in x, y and satisfying the expected coherence diagrams. A monoidal natural

transformation

θ : (F,m)⇒ (G,n) : (C ,⊗, e)→ (D ,⊗, e)

between lax monoidal functors is a natural transformation

θ : F ⇒ G : C → D
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making the following diagrams commute:

Fx⊗ Fy
mx,y

//

θx⊗θy

��

F (x⊗ y)

θx⊗y

��

Gx⊗Gy
nx,y

// G(x⊗ y)

F (e)

θe

��

e

me

==

ne !!

G(e)

for all objects x, y of the category C . This defines the 2-category MonCat . One

defines in the same way the 2-category OpMonCat with monoidal categories as

0-dimensional cells, oplax monoidal functors as 1-dimensional cells and monoidal

transformations as 2-dimensional cells. Recall that an oplax monoidal functor

(F,m) : (C ,⊗, e)→ (D ,⊗, e)

between monoidal categories is defined as a lax monoidal functor except for the

orientation of the coercion morphisms defined as families of morphisms

mx,y : F (x⊗ y)→ Fx⊗ Fy, me : F (e)→ e

natural in x, y and satisfying the expected coherence diagrams. In order to adapt

the equational argument of Theorem 1 to the case of monoidal categories and

chiralities, we observe that the operation

C 7→ C op(0,1)

of taking the opposite of a monoidal category defines a pair of isomorphisms be-

tween the 2-categories:

(18) MonCat

(−)op(0,1)

  isomorphism

(−)op(0,1)

aa OpMonCatop(2)

This basic observation enables us to define the 2-category MonChir with mo-

noidal chiralities as 0-dimensional cells, and the following notions of 1-cells and

2-cells.

The 1-dimensional cells. A 1-dimensional cell in MonChir

F : (A1,B1)→ (A2,B2)

is defined as a triple (F•, F◦, F̃ ) consisting of a lax monoidal functor

F• : (A1,71, true1)→ (A2,72, true2)
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an oplax monoidal functor

F◦ : (B1,61, false1)→ (B2,62, false2)

and a monoidal natural isomorphism

A1
F• //

(−)∗

��

F̃

A2

(−)∗

��
��

B
op(0,1)
1

F
op(0,1)
◦

// B
op(0,1)
2

The 2-dimensional cells. A 2-dimensional cell in MonChir

θ : F ⇒ G : (A1,B1)→ (A2,B2)

is defined as a pair (θ•, θ◦) of monoidal natural transformations

θ•
��

A1

F•

  

G•

@@ A2 B1

F◦

  

G◦

@@ B2θ◦

KS

satisfying

(19)

θ•��
A1

F•

''

G•

88

(−)∗

��

A2

(−)∗

��
G̃

��B
op(0,1)
1

G
op(0,1)
◦

55
B

op(0,1)
2

=

A1

F•

''

(−)∗

��

A2

(−)∗

��

F̃


�

θ
op(0,1)
◦��

Bop
1

F
op(0,1)
◦

))

G
op(0,1)
◦

77
B

op(0,1)
2

The 1-dimensional and 2-dimensional cells are then composed by pasting the un-

derlying lax monoidal functors and natural transformations in the same way as in

the case of the 2-category Chir . Put together, these data define the announced

2-category MonChir of monoidal chiralities.

A biequivalence of 2-categories. In order to establish the biequivalence be-

tween MonCat and MonChir , we proceed as in §2 except that the original invo-

lution (2) between categories is replaced by the involution (18) between monoidal
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categories. More specifically, we construct a pair of 2-functors

F : MonCat →MonChir , G : MonChir →MonCat

where the 2-functor F transports

• every monoidal category (C ,⊗, e) to the monoidal chirality (C ,C op(0,1)) where
∗(−) = (−)

∗
are defined as the identity functor on (C ,⊗, e),

• every lax monoidal functor F to the 1-dimensional cell (F, F op(0,1), idF ),

• every monoidal natural transformation θ to the 2-dimensional cell (θ, θop),

and where the 2-functor G transports

• every monoidal chirality (A ,B) to the monoidal category A ,

• every 1-dimensional cell F = (F•, F◦, F̃ ) to the lax monoidal functor F•,

• every 2-dimensional cell θ = (θ•, θ◦) to the monoidal natural transformation θ•.

In the same way as for categories and chiralities, this leads us to the following

coherence theorem for monoidal categories and chiralities:

Theorem 2 (coherence theorem). The pair of 2-functors F and G defines a bi-

equivalence between the 2-categories MonCat and MonChir.

Note that the argument works in the same way for other notions of category

with structure, like braided or symmetric monoidal categories.

§4. Dialogue categories

We have established a coherence theorem for categories and chiralities (§2, Thm. 1)

followed by a similar coherence theorem for monoidal categories and chiralities (§3,

Thm. 2). In the remainder of the article, we adapt these two inaugural theorems

to the more sophisticated case of dialogue categories. To that end, we follow the

same pattern as in §2 and §3 and start by constructing a 2-category DiaCat of

dialogue categories, dialogue functors and dialogue natural transformations.

§4.1. Definition

We start by recalling the definition of a dialogue category.

Definition 4 (tensorial pole). A tensorial pole in a monoidal category C is an

object ⊥ equipped with a representation

ϕx,y : C (x⊗ y,⊥) ∼= C (y, x( ⊥)
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of the presheaf functor

y 7→ C (x⊗ y,⊥) : C op → Set

for each object x, and with a representation

ψx,y : C (x⊗ y,⊥) ∼= C (x,⊥� y)

of the presheaf functor

x 7→ C (x⊗ y,⊥) : C op → Set

for each object y.

Definition 5 (dialogue category). A dialogue category is a monoidal category

equipped with a tensorial pole.

Terminology: the objects x ( ⊥ and ⊥ � x in a dialogue category C are

called the tensorial negations of the object x.

§4.2. The 2-category DiaCat of dialogue categories

We construct the 2-category DiaCat with dialogue categories as 0-cells, dialogue

functors as 1-cells and dialogue natural transformations as 2-cells.

The 1-dimensional cells. A dialogue functor

(F,⊥F ) : (C ,⊥C )→ (D ,⊥D)

between dialogue categories is defined as a lax monoidal functor

F : C → D

equipped with a morphism

⊥F : F (⊥C )→ ⊥D .

The 2-dimensional cells. A dialogue natural transformation

θ : (F,⊥F )⇒ (G,⊥G)

is defined as a monoidal natural transformation

θ : F ⇒ G
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making the diagram

(20)

F (⊥C )

θ⊥C

��

⊥F

''
⊥D

G(⊥C )

⊥G

77

commute.

Remark. The reader will notice that, somewhat surprisingly, neither the nega-

tions (x 7→ x( ⊥) and (x 7→ ⊥� x) nor the natural bijections ϕ and ψ appear

in the definition of a dialogue functor and of a dialogue natural transformation.

This is unnecessary because a canonical map

F (⊥C � x)→ ⊥D � F (x)

can be deduced from the composite map

F (⊥C � x)⊗ Fx→ F ((⊥C � x)⊗ x)→ F (⊥C )→ ⊥D ,

and similarly for the canonical map

F (x( ⊥C )→ F (x)( ⊥D .

Moreover, the resulting two maps make the expected coherence diagrams

C (x⊗ y,⊥C )
ϕx,y

//

F
��

C (y, x( ⊥C )

F
��

D(F (x⊗ y), F (⊥C ))

monoidality of F
��

D(Fy, F (x( ⊥C ))

(∗)
��

D(Fx⊗ Fy,⊥D)
φF (x),F (y)

// D(Fy, Fx( ⊥D)

C (x⊗ y,⊥C )
ψx,y

//

F
��

C (x,⊥C � y)

F
��

D(F (x⊗ y), F (⊥C ))

monoidality of F
��

D(Fx, F (⊥C � y))

��

D(Fx⊗ Fy,⊥D)
ψF (x),F (y)

// D(Fx,⊥D � Fy)

commute for all objects x, y of the category C . Typically, the commutativity of

the first diagram is established by replacing the map (∗) by its definition as the
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unique morphism making the diagram

D(Fy, F (x( ⊥C ))

Fx⊗−

��

(∗)
// D(Fy, Fx( ⊥D)

D(Fx⊗ Fy, Fx⊗ F (x( ⊥C ))

monoidality of F

��

D(Fx⊗ Fy,⊥D)

φFx,Fy

OO

D(Fx⊗ Fy, F (x⊗ (x( ⊥C ))
F (eval)

// D(Fx⊗ Fy, F (⊥C ))

⊥F

OO

commute in Set for all objects x, y of the category C .

§4.3. An adjunction between negation and itself

In every dialogue category, the family of objects (x( ⊥)x∈obj(C ) defines a functor

x 7→ (x( ⊥) : C op → C

uniquely determined by the requirement that the bijection ϕx,y is natural in x

and y. This property is established by a simple argument based on the Yoneda

lemma. Similarly, the family of objects (⊥� y)y∈obj(C ) defines a functor

y 7→ (⊥� y) : C → C op

uniquely determined by the requirement that the bijection ψx,y is natural in x

and y. Moreover, the two functors

L(x) = ⊥� x and R(x) = x( ⊥

are related by an adjunction

(21) C

L

""⊥

R

bb C op

induced by the series of natural bijections

C (y, x( ⊥) ∼= C (x⊗ y,⊥) defined by ϕx,y
∼= C (x,⊥� y) defined by ψx,y

= C op(⊥� y, x) by definition of C op.
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Remark. The choice of the negation (x 7→ ⊥ � x) rather than the nega-

tion (x 7→ x ( ⊥) as left adjoint functor is somewhat arbitrary, because the

2-functor (−)op transports the adjunction (21) into its companion adjunction

C

Rop

""⊥

Lop

bb C op

where the roles of the two functors (x 7→ ⊥ � x) and (x 7→ x ( ⊥) have

been interchanged. This second adjunction is witnessed by the series of natural

bijections

C (x,⊥� y) ∼= C (x⊗ y,⊥) defined by ψx,y
∼= C (y, x( ⊥) defined by ϕx,y

= C op(x( ⊥, y) by definition of C op.

This notion of companionship between dialogue categories and dialogue chiralities

will be further discussed in §8.

§5. Dispute chiralities

In this section, we formulate a notion of dispute chirality in §5.1 and construct a

2-category DisChir of dispute chiralities in §5.2. The notion of dispute chirality

is introduced here to prepare the notion of dialogue category formulated in the

next section. We believe however that the notion is interesting for its own sake, as

a simpler and more primitive variant of the notion of dialogue chirality. We will

also see in §8 that it corresponds to a notion of dispute category in the same way

as the notion of dialogue chirality corresponds to the notion of dialogue category.

§5.1. Definition

Definition 6 (dispute chirality). A dispute chirality is defined as a pair of mo-

noidal categories

(A ,7, true), (B,6, false)

equipped with a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc Bop(0,1)

with a distributor, or categorical bimodule,

〈− |− 〉 : A op ×B → Set
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and with a family of bijections

χm,a,b : 〈m7 a | b 〉 → 〈 a |m∗ 6 b 〉

natural in a and b. The family χ is moreover required to make the diagram below

commute:

(22)

〈 (m7 n) 7 a | b 〉
χm7n

//

associativity

��

〈 a | (m7 n)
∗ 6 b 〉

〈m7 (n7 a) | b 〉
χm // 〈n7 a |m∗ 6 b 〉

χn // 〈 a |n∗ 6 (m∗ 6 b) 〉

associativity
monoidality of

negation

OO

Remark. The coherence diagram below provides a nullary counterpart to the

diagram (22) and the careful reader may thus find it unexpected not to see it

mentioned in our definition of a dispute chirality.

〈 true 7 a | b 〉

χtrue

��

associativity
// 〈 a | b 〉

associativity

��

〈 a | true∗ 6 b 〉 〈 a | false 6 b 〉
monoidality
of negation

oo

The reason is that the diagram always commutes in a dispute chirality: this fact

is established by instantiating the coherence diagram (22) at m = n = true and

by applying the naturality of the bijection χ and the coherence properties of the

monoidal categories A and B.

§5.2. The 2-category DisChir of dispute chiralities

Now that the notion of dispute chirality has been introduced, we are ready to

define the 2-category DisChir with dispute chiralities as 0-cells, and the following

notions of 1-cell and 2-cell between them:

The 1-dimensional cells. A 1-dimensional cell in DisChir

F : (A1,B1)→ (A2,B2)

is defined as a quadruple (F•, F◦, F̃ , F ) consisting of

• a lax monoidal functor F• : A1 → A2,

• an oplax monoidal functor F◦ : B1 → B2

• a monoidal natural isomorphism F̃ : (−)
∗ ◦ F• ⇒ (F◦)

op(0,1) ◦ (−)
∗
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together with a natural transformation

Set

F

19

A op
1 ×B1

F op
• ×F◦

//

〈− |− 〉1

BB

A op
2 ×B2

〈− |− 〉2

\\

making the diagram

(23)

〈m7 a | b 〉
χm //

F
��

〈 a |m∗ 6 b 〉

F
��

〈F•(m7 a) |F◦(b) 〉

monoidality of F•

��

〈F•(a) |F◦(m∗ 6 b) 〉

monoidality of F◦
��

〈F•(a) |F◦(m∗) 6 F◦(b) 〉

F̃
��

〈F•(m) 7 F•(a) |F◦(b) 〉
χF•(m)

// 〈F•(a) |F•(m)
∗ 6 F◦(b) 〉

commute for all objects a,m in A and b in B.

The 2-dimensional cells. A 2-dimensional cell in DisChir

θ : F ⇒ G : (A1,B1)→ (A2,B2)

is defined as a pair (θ•, θ◦) of monoidal natural transformations

θ• : F• ⇒ G• : A1 → A2, θ◦ : G◦ ⇒ F◦ : B1 → B2

making the diagram (19) as well as the diagram below commute:

Set

F

2:

A op
1 ×B1

F op
• ×F◦

66

〈− |− 〉1

CC

A op
2 ×B2

〈− |− 〉2

[[

=

Set

G 2:

θop• ×θ◦
��

A op
1 ×B1

Gop
• ×G◦

((

F op
• ×F◦

77

〈− |− 〉1

CC

A op
2 ×B2

〈− |− 〉2

[[
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The 1-dimensional and 2-dimensional cells are then composed by pasting the un-

derlying functors and natural transformations in the same way as for Chir in §2
and for MonChir in §3. Put together, these data define the announced 2-category

DisChir of dispute chiralities.

Remark. The coherence diagram (23) in the definition of a 1-dimensional cell

ensures that the natural transformation F may be recovered from the induced

natural transformation

〈 a | false 〉1
F−→ 〈F•(a) |F◦(false) 〉2

monoidality−−−−−−−→ 〈F•(a) | false 〉2

together with the combined data of the lax monoidal functor F•, the monoidal

natural transformation F̃ and the natural bijection χ.

§6. Dialogue chiralities

Although the notion of dispute chirality is nice and primitive, we prefer to focus

on the notion of dialogue chirality which provides a two-sided and properly sym-

metric formulation of the notion of dialogue category. The purpose of the section

is to introduce the notion and to construct the 2-category DiaChir of dialogue

chiralities.

Definition 7 (dialogue chirality). A dialogue chirality is a pair of monoidal cate-

gories

(A ,7, true), (B,6, false)

equipped with a monoidal equivalence

A

(−)∗

""monoidal
equivalence

∗(−)

cc Bop(0,1)

with an adjunction

A

L

""⊥

R

bb B

and with a family of bijections

χm,a,b : 〈m7 a | b 〉 → 〈 a |m∗ 6 b 〉

natural in a and b, where 〈 a | b 〉 is defined as

〈 a | b 〉 = A (a, R b).
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The family χ is moreover required to make the diagram

(24)

〈 (m7 n) 7 a | b 〉
χm7n

//

associativity

��

〈 a | (m7 n)
∗ 6 b 〉

〈m7 (n7 a) | b 〉
χm // 〈n7 a |m∗ 6 b 〉

χn // 〈 a |n∗ 6 (m∗ 6 b) 〉

associativity
monoidality of

negation

OO

commute.

One way to think of a dialogue chirality is to understand it as a particular

kind of dispute chirality (A ,B) whose evaluation bracket 〈− |− 〉 is induced by an

adjunction L a R. The picture is essentially correct. One should be careful however

that the adjunction L a R is an additional structure rather than an additional

property of the dispute chirality. Interestingly, we will establish in Proposition 8

below that the 2-category DiaChir is obtained by translating in the language of

dialogue chiralities the definitions of 1-cells and 2-cells between dispute chiralities

defined in the 2-category DisChir .

The 1-dimensional cells. A 1-dimensional cell in DiaChir

F : (A1,B1)→ (A2,B2)

is defined as a quadruple F = (F•, F◦, F̃ , F ) consisting of

• a lax monoidal functor F• : A1 → A2,

• an oplax monoidal functor F◦ : B1 → B2

• a monoidal natural isomorphism F̃ : (−)
∗ ◦ F• ⇒ (F◦)

op(0,1) ◦ (−)
∗

together with a natural transformation

A1
F• // A2

F
+3

B1
F◦

//

R

OO

B2

R

OO

making the diagram
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(25)

A1(m7 a,R b)
χm //

F•
��

A1(a,R(m∗ 6 b))

F•
��

A2(F•(m7 a), F•Rb)

F
��

A2(F•(a), F•R (m∗ 6 b))

F
��

A2(F•(m7 a), RF◦(b))

monoidality of F•

��

A2(F•(a), RF◦(m
∗ 6 b))

monoidality of F◦
��

A2(F•(a), R (F◦(m
∗) 6 F◦(b)))

F̃
��

A2(F•(m) 7 F•(a), RF◦(b))
χF•(m)

// A2(F•(a), R (F•(m)
∗ 6 F◦(b)))

commute for all objects a,m in A1 and b in B1.

The 2-dimensional cells. A 2-dimensional cell in DiaChir

θ : F ⇒ G : (A1,B1)→ (A2,B2)

is defined as a pair (θ•, θ◦) of monoidal natural transformations

θ• : F• ⇒ G• : A1 → A2, θ◦ : G◦ ⇒ F◦ : B1 → B2

making the diagram (19) as well as the diagram (26) below commute:

(26)

A1
F• // A2

F
-5

B1
F◦

//

R

OO

B2

R

OO

=

θ•
��A1

F•

��

G•

// A2

G
-5

B1
G◦ //

F◦

??

R

OO

θ◦
��

B2

R

OO

The following proposition is essentially straightforward:

Proposition 8. The operation of forgetting the adjunction L a R in a dialogue

chirality defines a 2-functor

U : DiaChir→ DisChir

which is fully faithful in the sense that the hom-functors

DiaChir((A1,B1), (A2,B2))→ DisChir(U(A1,B1), U(A2,B2))

are categorical isomorphisms for all dialogue chiralities (A1,B1) and (A2,B2).
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§7. The coherence theorem

In this section, we construct a 2-dimensional equivalence between the 2-

category DiaCat of dialogue categories and the 2-category DiaChir of dialogue

chiralities. Among other properties, this result implies that every dialogue chiral-

ity (A ,B) is equivalent in the 2-category DiaChir to the strict dialogue chiral-

ity (C ,C op) associated to a dialogue category C . This establishes the coherence

theorem claimed in the introduction, as well as a recipe to strictify any dialogue

chirality into a dialogue category.

§7.1. From dialogue categories to dialogue chiralities

We start by constructing a 2-functor

F : DiaCat → DiaChir

from the 2-category DiaCat of dialogue categories to the 2-category DiaChir of

dialogue chiralities.

The 0-dimensional cells. To every dialogue category C , the 2-functor F asso-

ciates the dialogue chirality defined as

(A ,7, true) := (C ,⊗, e), (B,6, false) := (C ,⊗, e)op(0,1),

where the monoidal equivalence between A and Bop(0,1) is trivially defined as the

identity functor on the monoidal category C , since

A = C = Bop(0,1).

The two adjoint functors L and R are defined as

L : x 7→ ⊥� x, R : x 7→ x( ⊥,

with the adjunction L a R witnessed by the series of bijections

A (x,R(y)) = C (x, y( ⊥)

∼= C (y ⊗ x,⊥)

∼= C (y,⊥� x)

= B(L(x), y)

natural in x and y. Finally, the natural bijection χm,x,y is defined as the composite
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C (m⊗ x, y( ⊥)

ϕ−1
x⊗m,y

��

C (x, (y ⊗m)( ⊥)

C (y ⊗ (m⊗ x),⊥)
associativity

// C ((y ⊗m)⊗ x,⊥)

ϕy⊗m,x

OO

It is not difficult to show that this definition makes the family χ satisfy the equal-

ity (24) required in the definition of a dialogue chirality.

The 1-dimensional cells. To every dialogue functor

(F,⊥F ) : (C ,⊥C )→ (D ,⊥D)

the 2-functor F associates the 1-dimensional cell F(F ) defined as the quadruple

consisting of the lax monoidal functor

F(F )• : C
F−→ D ,

the oplax monoidal functor

F(F )◦ : C op(0,1) F op(0,1)

−−−−−→ Dop(0,1),

the monoidal isomorphism F̃(F ) defined as the identity on the functor F , and the

natural transformation

F(F ) : R ◦ F → F ◦R

whose component

F (x( ⊥C )→ F (x)( ⊥D

is associated by currification ϕF (x),F (x(⊥C ) to the morphism

F (x)⊗ F (x( ⊥C )→ F (x⊗ (x( ⊥C ))→ F (⊥C )→ ⊥D .

The monoidality of the functor F implies that this definition of the quadruple F(F )

satisfies the equality (25) required of a 1-cell between dialogue chiralities.

The 2-dimensional cells. To every dialogue natural transformation

θ��
C

F

  

G

== D

the 2-functor F associates the 2-dimensional cell F(θ) defined as the pair of mo-

noidal natural transformations
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F(θ)• = θ
��

A1 = C

F

  

G

== D = A2

F(θ)◦ = B1 = C op(0,1)

F

""

G

<< Dop(0,1) = B2θop(0,1)

KS

In order to establish that this pair of monoidal natural transformations define a 2-

dimensional cell in the 2-category DiaChir , one needs to show that (19) and (26)

are satisfied; this is essentially immediate for (19), and follows from the naturality

of χ for (26).

§7.2. From dialogue chiralities to dialogue categories

Now that the 2-functor F has been constructed, we go in the reverse direction,

and define a 2-functor

G : DiaChir → DiaCat

from the 2-category of dialogue chiralities to the 2-category of dialogue categories.

The 0-dimensional cells. The 2-functor transports every dialogue chirality

(A ,B) to the dialogue category defined as

(C ,⊗, e) := (A ,7, true)

equipped with the tensorial pole

⊥ := R(false)

together with the functors

⊥� x = ∗(L(x)), x( ⊥ = R(x∗).

The natural bijections ϕ and ψ are defined by composing the series of natural

bijections

C (x⊗ y,⊥) = A (x7 y,R(false)) by definition of C and of ⊥
∼= A (y,R(x∗ 6 false)) by applying χx,y,false
∼= A (y,R(x∗)) by applying the unit law in B
∼= B(L(y), x∗) by the adjunction L a R
∼= A (x, ∗(L(y))) by the adjunction (−)

∗ a ∗(−)

= C (x, ∗(L(y))) by definition of C ;
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C (x⊗ y,⊥) = A (x7 y,R(false)) by definition of C and of ⊥
∼= A (y,R(x∗ 6 false)) by applying χx,y,false
∼= A (y,R(x∗)) by applying the unit law in B

= C (y,R(x∗)) by definition of C .

The 1-dimensional cells. Every 1-dimensional cell

F = (F•, F◦, F̃ , F ) : (A1,B1)→ (A2,B2)

is transported to the dialogue functor (F•,⊥F ) consisting of the functor

F• : A1 → A2

and the morphism

⊥F : F•(⊥A1)→ ⊥A2

defined as the composite

F• ◦R(false)
F false−−−−→ R ◦ F◦ (false)

monoidality−−−−−−−→ R (false).

The 2-dimensional cells. Every 2-dimensional cell θ = (θ•, θ◦) is transported

to the dialogue natural transformation θ•. One easily checks that the monoidal

natural transformation θ• makes the diagram (20) commute.

§7.3. The pseudo-natural transformation Φ

As in the introductory case of categories and chiralities investigated in §2, the

composite 2-functor

DiaCat
F−→ DiaChir

G−→ DiaCat

coincides with the identity on the 2-category DiaCat of dialogue categories. In

order to establish that the 2-categories DiaCat and DiaChir are biequivalent,

we proceed in the same way as in the proof of Theorem 1: we construct a pair of

pseudo-natural transformations

Φ : Id→ F ◦ G, Ψ : F ◦ G → Id

between the identity 2-functor on Chir and the 2-functor F ◦ G, and we show

that their components Φ(A ,B) and Ψ(A ,B) define an equivalence in the 2-category

DiaChir , for every dialogue chirality (A ,B). To achieve this, it is important to

describe very precisely the dialogue chirality (A ,A op(0,1)) obtained by applying

the 2-functor F ◦ G to a given dialogue chirality (A ,B). First of all, the dialogue
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chirality (A ,A op(0,1)) is equipped with the trivial monoidal equivalence

A

id

""monoidal
equivalence

id

cc (A op(0,1))op(0,1)

and with the adjunction obtained by composing the two adjunctions

A

L

!!⊥

R

bb B

(∗(−))op(0,1)

!!⊥

((−)∗)op(0,1)

bb A op(0,1)

From this follows that

〈 a1 | a2 〉(A ,A op(0,1)) = A (a1, R (a2
∗)) = 〈 a1 | a2

∗ 〉(A ,B)

Moreover, the natural transformation χ(A ,A op(0,1)) at instance (m, a, b) is defined

as the composite function

〈m7 a1 | a2
∗ 〉

��

〈 a1 | (a2 7m)
∗ 〉

〈m7 a1 | a2
∗ 6 false 〉

(χ(A ,B))
−1

��

〈 a1 | (a2 7m)
∗ 6 false 〉

OO

〈 a2 7 (m7 a1) | false 〉 // 〈 (a2 7m) 7 a1 | false 〉

χ(A ,B)

OO

By using the fact that the dialogue chirality (A ,B) satisfies the coherence dia-

gram (24), one establishes that the diagram below commutes:

(27)

〈m7 a1 | a2
∗ 〉

χ(A ,B)

ww

χ
(A ,Aop(0,1))

''

〈 a1 |m∗ 6 a2
∗ 〉

monoidality
// 〈 a1 | (a2 7m)

∗ 〉

We are now ready to define the pseudo-natural transformation Φ.

The 1-dimensional cells Φ(A ,B). To every dialogue chirality (A ,B) one asso-

ciates the 1-dimensional cell

Φ(A ,B) : (A ,B)→ (A ,A op(0,1))
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defined as the pair of lax and oplax monoidal functors

(Φ(A ,B))• : A
id−→ A , (Φ(A ,B))◦ : B

(∗(−))op(0,1)−−−−−−−−→ A op(0,1)

together with the monoidal natural isomorphism

Φ̃(A ,B) =

A
id //

(−)∗

��

A

id

��

η

��

Bop(0,1)
∗(−)

// (A op(0,1))op(0,1)

and the natural transformation

Φ(A ,B) =

A
id // A

εop(0,1)
)1 B

R

OO

B
(∗(−))op(0,1)

//

R

OO

A op(0,1)

((−)∗)op(0,1)

OO

where η and ε denote the unit and the counit of the adjunction (−)
∗ a ∗(−). Using

the fact that the diagram (27) commutes, one readily checks that this definition

of Φ(A ,B) makes the diagram (25) commute, and thus provides a valid definition

of a 1-cell in the 2-category DiaChir .

The 2-dimensional cells ΦF . To every 1-dimensional cell in DiaChir

F : (A1,B1)→ (A2,B2)

one associates the 2-cell in DiaChir

ΦF : Φ(A2,B2) ◦ F ⇒ FG(F ) ◦ Φ(A1,B1)

defined as the pair of monoidal natural transformations

id
��

(ΦF )• = A1

F•

  

F•

== A2
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(ΦF )◦ =

A op
1

((−)∗)op

��

(F•)
op

// A op
2

((−)∗)op

��

id // A op
2

εop
KS

F̃ op

KS
ηop
KS

B1

(∗(−))op
@@

id
// B1

F◦

// B2

(∗(−))op

@@

Note that the 2-cell ΦF is defined in the same way as the corresponding 2-cell ΦF
in the proof of Theorem 1 in §2. One checks that the definition makes the dia-

grams (19) and (26) commute, and thus defines a 2-cell in the 2-category DiaChir .

Moreover, the family Φ defines a pseudo-natural transformation.

§7.4. The pseudo-natural transformation Ψ

The 1-dimensional cells Ψ(A ,B). To every dialogue chirality (A ,B), one as-

sociates the 1-dimensional cell Ψ(A ,B) defined as the pair of functors

(Ψ(A ,B))• : A
id−→ A , (Ψ(A ,B))◦ : A op(0,1) ((−)∗)op(0,1)−−−−−−−−→ B

equipped with the trivial monoidal natural isomorphism

Ψ̃(A ,B) =

A
id //

id

��

A

(−)∗

��

id

��

(A op(0,1))op(0,1)

(−)∗
// Bop(0,1)

and with the trivial natural transformation

Ψ(A ,B) =

A
id // A

id )1B

R

OO

A op(0,1)

((−)∗)op(0,1)

OO

((−)∗)op(0,1)
// B

R

OO

Just as in the case of Φ(A ,B), one establishes that this definition of Ψ(A ,B)

makes the diagram (25) commute, using the fact that the diagram (27) com-

mutes. As such, Ψ(A ,B) provides a valid definition of a 1-dimensional cell in the

2-category DiaChir .

The 2-dimensional cells ΨF . To every 1-dimensional cell F in DiaChir

F : (A1,B1)→ (A2,B2)
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one associates the reversible 2-cell in DiaChir

ΨF : F ◦Ψ(A1,B1) ⇒ Ψ(A2,B2) ◦ FG(F )

defined as the pair of monoidal natural transformations

id
��

(ΨF )• = A1

F•

��

F•

@@ A2

B1 F◦

$$(ΨF )◦ = A
op(0,1)

1

((−)∗)op(0,1) 11

F
op(0,1)
•

**

B2

A
op(0,1)

2 ((−)∗)op(0,1)

;;(F̃−1)op(0,1)

KS

One easily checks that the natural transformations (ΨF )◦ and (ΨF )• satisfy the

equality (19) of §5.2 as well as the equality (26) of §6. It is also not difficult to see

that Ψ defines a pseudo-natural transformation, in the same way as in the proof

of Theorem 1 in §2.

§7.5. Main theorem

At this stage of the proof, it only remains to show that for every dialogue chiral-

ity (A ,B), the pair of 1-cells Φ(A ,B) and Ψ(A ,B) defines an equivalence in the

2-category DiaChir . This statement is essentially immediate to establish. This

leads us to the main result of the article:

Theorem 3 (Coherence theorem). The pair of 2-functors F and G defines a bi-

equivalence between the 2-categories DiaCat and DiaChir.

This coherence theorem is important in our work because it enables us to re-

place dialogue categories by dialogue chiralities whenever an unbiased and properly

two-sided description of proofs and counter-proofs appears necessary. The alterna-

tive formulation of dialogue categories is an essential ingredient in our 2-categorical

reconstruction of game semantics in the language of string diagrams [32] as well as

in our description of dialogue categories as a lax notion of Frobenius algebras [33].

§8. Back to dispute chiralities and categories

Now that the main theorem of the paper (Thm. 3 in §7.5) has been established, it

makes sense to look backwards at our definition of a dispute chirality. We describe

in §8.1 the one-sided notion of dispute category corresponding to the two-sided
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and symmetric notion of dispute chirality introduced in §5. We then formulate in

§8.2 and §8.3 what we call the companion of a dialogue chirality and of a dispute

chirality.

§8.1. Dispute categories

A dispute category is defined as a pair (C ,⊥C ) consisting of a monoidal category C

together with a presheaf functor

⊥C : C op → Set .

The 2-category DisCat is then defined as the 2-category with dispute categories as

objects, dispute functors as 1-cells, and dispute natural transformations as 2-cells.

The 1-dimensional cells. A dispute functor

(F,⊥F ) : (C ,⊥C )→ (D ,⊥D)

between dispute categories is defined as a lax monoidal functor

F : C → D

equipped with a natural transformation

⊥F : ⊥C ⇒ ⊥D ◦ F op.

The 2-dimensional cells. A dispute natural transformation

θ : (F,⊥F )⇒ (G,⊥G)

is defined as a monoidal natural transformation

θ : F ⇒ G

satisfying

Set

⊥F 2:

C op

F op

99

⊥C

EE

Dop

⊥D

YY

=

Set

⊥G 2:

θop

��
C op

Gop

&&

F op

::

⊥D

EE

Dop

⊥D

YY

Every dispute category (C ,⊥C ) induces a dispute chirality (A ,B) defined as the

pair of monoidal categories
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(A ,7, true) := (C ,⊗, e), (B,6, false) := C op(0,1)

with monoidal equivalence ∗(−) and (−)
∗

defined as the identity between the

monoidal category A and itself, and with distributor

〈− |− 〉 : A op ×B → Set

defined as the composite

C op × C op ⊗op

−−→ C op ⊥C−−→ Set .

We let the reader check that the resulting 2-functor DisCat → DisChir induces

a biequivalence between the 2-category of dispute categories and the 2-category of

dispute chiralities. This biequivalence is moreover consistent with the biequivalence

established earlier (Thm. 3 in §7.5) between the 2-category DiaCat of dialogue

categories and the 2-category DiaChir of dialogue chiralities. This justifies con-

sidering the notions of dispute category and of dispute chirality as equivalent.

§8.2. The companion of a dialogue chirality

We have seen in §4.3 that every dialogue category C defines an adjunction between

the left adjoint functor

L : x 7→ (⊥� x) : C → C op(0,1)

and the right adjoint functor

R : x 7→ (x( ⊥) : C op(0,1) → C .

A subtle point about dialogue categories already mentioned in §4.3 is that another

choice of adjunction is possible, given by the functor

Rop(1) : x 7→ (x( ⊥) : C op(0) → C op(1)

left adjoint to the functor

Lop(1) : x 7→ (⊥� x) : C op(1) → C op(0)

A simple way to understand this alternative choice between the pair of adjunctions

L a R and Rop(1) a Lop(1) is to notice that every dialogue category C comes

together with another dialogue category H(C ) = C op(0) which we find convenient

to call its companion dialogue category. As a matter of fact, it is not difficult to

see that the operation H defines a 2-functor

H = (−)op(0) : DiaCat → DiaCat .
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This together with the coherence theorem (§7.5, Thm. 3) ensures that there exists

a corresponding bifunctor (it is in fact a 2-functor)

H′ : DiaChir → DiaChir

which transports every dialogue chirality (A ,B) to what we call its companion

dialogue chirality. We find it instructive to describe this 2-functor here because it

sheds light on the secret nature of dialogue categories and chiralities. The 2-functor

is defined as follows:

H : (A ,B) 7→ (A op(0),Bop(0))

where the dialogue chirality (A op(0),Bop(0)) has its adjunction L a R defined as

the composite of the three adjunctions below:

A

(−)∗

!!⊥

∗(−)

bb Bop

Rop

!!⊥

Lop

bb A op

(−)∗

!!⊥

∗(−)

bb B

The right adjoint functor is thus defined as R = ∗(−) ◦ Lop ◦ ∗(−). The natural

bijection

χm,a,b : A (m7op a,Rb)→ A (a,R(m∗ 6op b))

which implements currification in the companion dialogue chirality H′(A ,B) is

defined by the series of bijections

A (m7op a, ∗(L(∗b)))∼= A (a7m, ∗(L(∗b))) by definition of 7op

∼= B(L(∗b), (a7m)
∗
) by equivalence (−)

∗ a ∗(−)
∼= B(L(∗b),m∗ 6 a∗) by monoidality
∼= A (∗b, R(m∗ 6 a∗)) by adjunction L a R
∼= A (m7 ∗b, R(a∗)) by currification χm
∼= A (∗(m∗) 7 ∗b, R(a∗)) by equivalence (−)

∗ a ∗(−)
∼= A (∗(b6m∗), R(a∗)) by monoidality of equivalence
∼= A (∗(m∗ 6op b), R(a∗)) by definition of 6op

∼= B(L(∗(m∗ 6op b)), a∗) by adjunction L a R
∼= A (a, ∗(L(∗(m∗ 6op b)))) by equivalence (−)

∗ a ∗(−),

natural in the objects m, a in the category A and in the object b in the category B.

Note that the natural bijection χ may also be written

χm,a,b : A (a7m,Rb)→ A (a,R(b6m∗)).

For that reason, the companion dialogue chirality may be seen as the original

dialogue chirality (A ,B) where currification on the left has been replaced by



404 P.-A. Melliès

currification on the right, at the price of changing R to R. It is also interesting to

notice that the canonical isomorphism which lives in any dialogue category C

e( ⊥ ∼= ⊥� e

is reflected in every dialogue chirality (A ,B) by a canonical isomorphism

(28) R(false) ∼= R(false).

This isomorphism may be derived from the Yoneda lemma, together with the series

of bijections natural in a:

A (a,R(false))∼= A (a7 true, R(false)) by the unit law
∼= A (true, R(a∗ 6 false)) by currification χa
∼= A (true, R(a∗)) by the unit law
∼= B(L(true), a∗) by the adjunction L a R
∼= A (a, ∗L(true)) by the equivalence (−)

∗ a ∗(−)
∼= A (a,R(false)) by monoidality of equivalence.

§8.3. The companion of a dispute chirality

The previous construction on dialogue categories and chiralities generalizes to

dispute categories and chiralities. The reason is that there exists a 2-functor

H : DisCat → DisCat

which transports a dispute category (C ,⊥C ) to the dispute category (C op(0),⊥C )

where the orientation of tensors has been reversed. As in the case of dialogue

categories, the coherence theorem induces the existence of a bifunctor (in fact a

2-functor)

H′ : DisChir → DisChir

which transports every dispute chirality (A ,B) to a companion dispute chirality

(A op(0),Bop(0)) equipped with the monoidal equivalence

A op(0)

(−)~

""monoidal
equivalence

~(−)

cc Bop(1)

obtained by taking the opposite of degree 0 of the original monoidal equivalence
∗(−) a (−)

∗
between the monoidal categories A and Bop(0,1). As expected, the

dispute chirality is equipped with the distributor

〈〈− |− 〉〉 : A op ×B → Set
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defined as the composite

A op ×B
(−)∗×∗(−)−−−−−−−→ B ×A op permute−−−−−→ A op ×B

〈− |− 〉−−−−−→ Set

together with the natural bijection

χm,a,b : 〈〈m7op a | b 〉〉 → 〈〈 a |m∗ 6op b 〉〉

defined as the unique function making the diagram below commute:

〈〈m7op a | b 〉〉
χm,a,b

//

definition

〈〈 a |m∗ 6op b 〉〉

〈〈 a7m | b 〉〉

definition

〈〈 a | b6m∗ 〉〉

definition

〈 ∗b | (a7m)
∗ 〉

monoidality

〈 ∗(b6m∗) | a∗ 〉

definition

〈 ∗b |m∗ 6 a∗ 〉 〈m7 ∗b | a∗ 〉

monoidality

χm,∗b,a∗
oo

One easily checks that χm satisfies the two coherence axioms required of a dispute

chirality. In the same way as in the previous §8.2, the isomorphism (28) is reflected

by a family of isomorphisms

〈 a | false 〉 ∼= 〈〈 a | false 〉〉

natural in a. The family of isomorphisms is defined as the composite:

〈〈 a | false 〉〉= 〈 ∗false | a∗ 〉 by definition of 〈〈 a | b 〉〉
∼= 〈 true | a∗ 〉 by monoidality of ∗(−)
∼= 〈 true | a∗ 6 false 〉 by associativity
∼= 〈 a7 true | false 〉 by applying the isomorphism χa
∼= 〈 a | false 〉 by associativity.

Moreover, in the particular case of a dispute chirality induced from a dialogue

chirality (A ,B), the series of natural bijections

〈〈 a | b 〉〉= 〈 ∗b | a∗ 〉 by definition of 〈〈− |− 〉〉
∼= A (∗b, R(a∗)) by definition of a special distributor
∼= B(L(∗b), a∗) by adjunction L a R
∼= A (a, ∗(L(∗b))) by adjunction ∗(−) a (−)

∗

establishes that the notion of companionship for dispute chiralities coincides with

the notion of companionship for dialogue chiralities in §8.2.
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§9. Final remarks

We conclude with a series of remarks and variations on the notions of dialogue

category and of dialogue chirality studied in the article.

§9.1. Dialogue categories

The notion of dialogue category considered in this article was chosen for its simplic-

ity. It is designed to provide an elementary and tractable notion of a category with

a tensorial negation. In particular, it is likely that a more general and satisfactory

notion of dialogue category should be equipped with a functor

C op × C op → C , (x, y) 7→ x( ⊥� y,

and a family of bijections

C (x⊗ y ⊗ z,⊥) ∼= C (y, x( ⊥� z)

natural in x, y and z. In a companion paper we establish that this is the case when

the underlying monoidal category C is balanced or symmetric, and more generally

when the tensorial pole ⊥ is pivotal (see [34] for details). This is also the case

when the monoidal category C is biclosed, that is, for every object x of C , each

of the two endofunctors

y 7→ x⊗ y, y 7→ y ⊗ x
has a right adjoint denoted y 7→ x( y and y 7→ y � x respectively. In that case,

there exists a canonical isomorphism

(x( ⊥) � y ∼= x( (⊥� y)

natural in x and y, and the object x( ⊥� y may thus be defined as one of these

two objects in the category C .

§9.2. Mixed chiralities

Although this aspect is not really explored in the article, it is possible to relax the

requirement that the category B is equivalent to A op in the two-sided description

of any category C with duality. This relaxation is often useful, and enables one

to consider situations where the category B of counter-proofs is not equivalent

to the opposite of the category A of proofs. In that case, we speak of a mixed

chirality (A ,B) in order to distinguish that kind of chiralities from the notion

of pure chirality introduced in the present article. A typical illustration of such

a mixed chirality is provided by the notion of exponential ideal B in a monoidal

category A . By definition, a closed monoidal chirality is a monoidal chirality

(A ,B) in the sense of §3 equipped moreover with a pair of pseudo-actions
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(29) 6 : A ×B → A , 7 : A ×B → B

related by an isomorphism of pseudo-actions

∗(a7 b) ∼= ∗b6 a∗

together with a bijection

(30) A (a1 7 a2,
∗b) ∼= A (a1,

∗(a2 7 b))

natural in a1, a2 and b and making the diagrams

A ((a1 7 a2) 7 a3,
∗b) //

��

A (a1 7 a2,
∗(a3 7 b))

��

A (a1,
∗(a2 7 (a3 7 b)))

��

A (a1 7 (a2 7 a3), ∗b) // A (a1,
∗((a2 7 a3) 7 b))

(31)

A (a7 true, ∗b) //

""

A (a, ∗(true 7 b))

{{

A (a, ∗b)

(32)

commute for all objects a, a1, a2, a3 of A and all objects b of B. This definition of

monoidal closed chirality characterizes the chiralities (A ,B) where the category A

is monoidal closed. Now, the familiar definition of a monoidal category A equipped

with an exponential ideal B is recovered by relaxing the definition of monoidal

closed chirality just given, in the following way:

• one removes the monoidal structure (B,6, false) of the category B,

• one removes the pseudo-action 6 and the functor (−)
∗

: A → Bop(0,1),

• one keeps the pseudo-action 7 and the functor ∗(−) : Bop → A .

In that way one shifts from a pure chirality where Bop(0,1) is equivalent to A to a

mixed chirality (A ,B) corresponding to the familiar notion of exponential ideal:

Definition 9 (exponential ideal). An exponential ideal in a monoidal category A

is a category B equipped with a functor ∗(−) : Bop → A together with a pseudo-

action (29) and a natural bijection (30) making the coherence diagrams (31)

and (32) commute.
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The notion of exponential ideal is important, in particular due to its role in

the categorical semantics of linear logic. Recall that a model of intuitionistic linear

logic is defined as a symmetric monoidal adjunction

M

Lin

""⊥

Mult

bb L

where the category (M ,×, 1) is cartesian and where the category (L ,⊗, e) is

symmetric monoidal closed. In that case, it is easy to show that the functor

Mult : L →M

together with the pseudo-action

(P,A) 7→ Lin(P )( A : M op ×L → L

defines an exponential ideal L op on the cartesian category M equipped with the

natural bijection

M (P ×Q,Mult(A)) ∼= M (Q,Mult(Lin(P )( A)).

In the case of tensorial logic, the symmetric monoidal closed category L is replaced

by a dialogue category D . It appears that the category D induces an exponential

ideal for the category M , this time defined by the composite functor

Mult ◦ ¬ : Dop → D →M

together with the pseudo-action

(P,A) 7→ Lin(P )⊗A : M ×D → D

and the natural bijection

M (P ×Q,Mult¬A) ∼= M (Q,Mult¬ (Lin(P )⊗A)).

Besides this connection to linear logic and to tensorial logic, the two-sided for-

mulation of intuitionistic implication ⇒ as a pseudo-action ⊗ of the cartesian

category A of proofs on the category B of refutations sheds light on the notion of

stack which plays a fundamental role in the compilation of programming languages

as well as in the description of abstract machines (see [9] for instance). Indeed,

suppose that the formula a living in A is the “negation” of the formula b living

in the category B in the sense that a = ∗b . In that case, the formula

F = a1 ⇒ (a2 ⇒ · · · (an ⇒ a) · · · )
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which lives in the category A of proofs and programs may be reformulated as the

negation F = ∗G of the formula

G = a1 ⊗ (a2 ⊗ · · · (an ⊗ b) · · · )

which lives in the category B of counter-proofs and counter-programs. The fact

that the connective ⊗ describes a pseudo-action of A on B implies that the

formula G in the category B is provided by a stack of objects a1, . . . , an of the

category A “pushed” on the single object b of the category B. This brings to light

an interesting and somewhat unexpected connection between the notion of stack

in computer science and the familiar notion of action in algebra.

Interestingly enough, this specific pattern underlies the description of types

in Krivine’s classical realizability [26]. There, every formula A is interpreted as a

set ‖A‖ of stacks of “attackers”, where a stack is defined as a sequence of λ-terms

t1, . . . , tn “pushed” on top of a stack constant π in the following way:

t1 � (t2 � . . . (tn � π) . . . ).

The main ingredient of classical realizability is provided by an orthogonality re-

lation ⊥ between λ-terms and stacks which describes when a λ-term t may be

safely confronted with a stack π. The orthogonality relation is required to satisfy

an appropriate closure condition with respect to reverse evaluation (see [26] for de-

tails). The interpretation |A| of the formula A is then defined as the set of λ-terms

orthogonal to its set of attackers:

|A| = {t | ∀π ∈ ‖A‖, t ⊥ π}.

Although Krivine’s classical realizability is not expressed at this stage in the lan-

guage of category theory, orthogonality plays in his work the same role as negation

in our setting. In particular, the type A ⇒ B is interpreted as the orthogonal

|A ⇒ B| of the set of stacks ‖A ⇒ B‖ := |A| ⊗ ‖B‖ obtained by pushing a λ-

term t ∈ |A| realizing the formula A on top of a stack π ∈ ‖B‖ attacking the

formula B.
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