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Perverse Results on Milnor Fibers inside
Parameterized Hypersurfaces

by

Brian Hepler and David B. Massey

Abstract

We discuss some results for the cohomology of Milnor fibers inside parameterized hy-
persurfaces which follow quickly from results in the category of perverse sheaves. In
particular, we define a new perverse sheaf called the multiple-point complex of the pa-
rameterization, which naturally arises when investigating how the multiple-point set in-
fluences the topology of the Milnor fiber. We also discuss applications to stable unfoldings
of finite maps with isolated instabilities.
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§1. Introduction

Throughout this paper, U will denote an open neighborhood of the origin in Cn+1,

W will denote an open subset of Cn (or an open subset of a finite number of

disjoint copies of Cn), S will denote a finite set {p1, . . . , pr} of r points in W, and

F : (W, S)→ (U ,0) will denote a finite, complex analytic map which is generically

one-to-one such that F−1(0) = S.

We are interested in the germ of the image of F at the origin. By shrinkingW
and U if necessary, we can, and do, assume thatW consists of r disjoint, connected,

open sets, W1, . . . ,Wr and, for 1 ≤ i ≤ r, F−1(0) ∩ Wi = {pi}. The case where

r = 1 is usually referred to as the mono-germ case, and the case where r > 1 as

the multi-germ case.

In our setting, the Finite Mapping Theorem [GR] tells us that the image of

F is a complex analytic space of dimension n, i.e., is a hypersurface X := V (g)
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in U , for some complex analytic g : U → C. We will continue to use F to denote

the surjection F :W → X.

The multi-germ case allows us to deal with hypersurfaces X which have more

than one irreducible component at the origin, and so in particular we can obtain

results in the case where X is a union of hyperplanes containing the origin.

Another way of thinking of F :W → X is as a finite resolution of singularities.

In particular, F is a small resolution in the sense of Goresky–MacPherson, and

consequently the shifted constant sheaf Z•W [n] on W pushes forward by F to the

intersection cohomology complex I•X on X (see [GM]).

The stalk cohomology of I•X is trivial to describe. For each x ∈ X, let m(x)

denote the number of points in the inverse image of F (without multiplicity), i.e.,

m(x) := |F−1(x)|. Note that m(0) = r. Then the stalk cohomology of I•X is given

by, for all x ∈ X,

Hk(I•X)x ∼=

{
Zm(x) if k = −n,
0 otherwise.

In this paper, we will use general properties and results from the derived cat-

egory and the Abelian category of perverse sheaves to investigate the cohomology

of Milnor fibers of complex analytic functions h : X → C. We outline these results

below.

For k ≥ 1, let Xk := {x ∈ X | m(x) = k} = m−1(k), and let

D :=
⋃
k≥2

Xk,

which is the closure of the image of the double-point (or multiple-point) set with

its reduced structure. Note that, since we are taking the closure, D may contain

points of X1. Later, we shall show that D is contained in the singular set ΣX of X.

Suppose now that we have a complex analytic function h : (X,0)→ (C, 0).

We are interested in results on the Milnor fiber Mh,0 of h at 0. We remind

the reader that, in this context in which the domain of h is allowed to be singular,

a Milnor fibration still exists by the result of Lê [L1], and the Milnor fiber at a

point x ∈ V (h) is given by

Mh,x = B◦ε (x) ∩X ∩ h−1(a),

where B◦ε (x) is the open ball of radius ε, centered at x, and 0 < |a| � ε � 1

(technically, the intersection with X is redundant, but we wish to emphasize that

this Milnor fiber lives in X). We also care about the real link, KX,x, of X at

x ∈ X [Mi], which is given by

KX,x := ∂Bε(x) ∩X = Sε(x) ∩X,

where again 0 < ε� 1.
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We will need to consider the Milnor fiber of h ◦ F at each of the pi and

the Milnor fiber of h restricted to the Xk’s, which are equal to the intersections

Xk ∩Mh,0.

As X itself may be singular, it is important for us to say what notion we will

use for a “critical point” of h. We use the Milnor fiber to define:

Definition 1.1. The topological/cohomological critical locus of h is

Σtoph := {x ∈ V (h) |Mh,x does not have the integral cohomology of a point}.

Remark 1.2. Suppose, for instance, that F is a stable unfolding of a finite map f ,

and that h is the projection onto one of the unfolding parameters. Then a point

x ∈ V (h) is a point in the image of f . If f is stable at x, then h is locally a

topologically trivial fibration in a neighborhood of x; consequently, the Milnor

fiber is contractible, and x 6∈ Σtoph.

Thus, Σtoph is contained in the unstable locus of f .

Now, F induces a finite map F̃ from the union of the Milnor fibers Mh◦F,pi in

the domain of F to the Milnor fiber Mh,0, which can be stratified in the sense of

Goresky and MacPherson [GM] in such a way that the closure of each Xk ∩Mh,0

is a union of strata. From this, via a Riemann–Hurwitz-type argument, it is not

difficult to show that the Euler characteristics are related by∑
1≤i≤r

χ(Mh◦F,pi) =
∑
k≥1

k · χ(Xk ∩Mh,0) = χ(Mh,0) +
∑
k≥2

(k − 1) · χ(Xk ∩Mh,0).

Or, rearranging and writing χ̃ for the Euler characteristic of the reduced cohomol-

ogy (in order to focus on vanishing cohomology), we obtain

(?) χ̃(Mh,0) = r − 1 +
∑
i

χ̃(Mh◦F,pi)−
∑
k≥2

(k − 1) · χ(Xk ∩Mh,0).

Equation (?) is particularly interesting in the case where the reduced coho-

mology of Mh,0 is concentrated in a single degree and the reduced cohomology of

Mh◦F,pi is zero.

In this paper, we show:

1. If s := dim0 Σtoph, then the reduced cohomology of Mh,0 can be non-zero only

in degrees k where n−1−s ≤ k ≤ n−1, and is free Abelian in degree n−1−s.
In particular, if 0 is an isolated point in Σtoph, then Mh,0 has the cohomology

of a bouquet of (n− 1)-spheres.

2. As discussed above, there is a relationship between the reduced Euler charac-

teristics of the Milnor fiber Mh,0, the Milnor fibers Mh◦F,pi , and the Milnor
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fibers of the Xk’s, given by

χ̃(Mh,0) = r − 1 +
∑
i

χ̃(Mh◦F,pi)−
∑
k≥2

(k − 1) · χ(Xk ∩Mh,0).

3. There is a perverse sheaf N•, supported on D, with the following properties:

• For all x ∈ D, the stalk cohomology of N• at x is (possibly) non-zero in a

single degree, −n+ 1, where it is isomorphic to Zm(x)−1.

• With some special assumptions on h, there is a long exact sequence, relating

the Milnor fiber of h, the Milnor fibers of h ◦F , and the hypercohomology of

the Milnor fiber of h restricted to D with coefficients in N•[−n+ 1], given by

· · · → H̃j−1(D ∩Mh,0; N•[−n+ 1])→ H̃j(Mh,0;Z)

→
⊕
i

H̃j(Mh◦F,pi ;Z)→ H̃j(D ∩Mh,0; N•[−n+ 1])→ · · · ,

where the reduced cohomology with coefficients in N•[−n+1] has the special

meaning of reducing the rank by r − 1 in degree zero and having no effect

in other degrees. This long exact sequence is compatible with the Milnor

monodromy automorphisms in each degree.

• In particular, if S ∩Σ(h ◦F ) = ∅, then the reduced cohomology H̃j(Mh,0;Z)

is isomorphic to the reduced hypercohomology

H̃j−1(D ∩Mh,0; N•[−n+ 1]),

by an isomorphism which commutes with the respective Milnor monodromies.

4. Suppose that 0 is an isolated point in Σtoph and that S ∩ Σ(h ◦ F ) = ∅. Then

H̃n−1(Mh,0;Z) ∼= Zω ∼= H̃n−2(D ∩Mh,0; N•[−n+ 1]),

where ω := (−1)n−1[(r − 1)−
∑
k≥2(k − 1)χ(Xk ∩Mh,0)].

5. Suppose that n = 2 and that F is a one-parameter unfolding of a parameteriza-

tion f of a plane curve singularity with r irreducible components at the origin.

Let t be the unfolding parameter and suppose that the only singularities of

Mt,0 are nodes, and that there are δ of them. Recall that X = V (g), and let

g0 := g|V (t). Then we recover the classical formula for the Milnor number of g0,

as given in [Mi, Theorem 10.5]:

µ0(g0) = 2δ − r + 1.
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§2. A standard vanishing result

Before we state the only result of this section, we need to establish a convention

for a degenerate case: the reduced cohomology of the empty set.

Convention. We define the reduced cohomology of the empty set, H̃k(∅;Z), to

be zero in all degrees other than −1, and we define H̃−1(∅;Z) = Z.

We do this so that the stalk cohomology at p of the vanishing cycles of the

constant sheaf along a complex analytic function f : (E, p)→ (C, 0) always yields

the reduced cohomology of the Milnor fiber of f at p, even in the case where f

is identically zero on E. This is true because, if B is the intersection with E of a

small open ball around p in some ambient affine space (after embedding), then

Hk(φfZ•E)p ∼= Hk+1(B,Mf,p;Z).

One then looks at the long exact sequence of the pair (B,Mf,p), paying special

attention to the case where Mf,p = ∅, i.e., where f is identically zero.

The following result is, by now, a well-known consequence of the general theory

of perverse sheaves and vanishing cycles. Nonetheless, we give a quick proof.

Proposition 2.1. If s := dim0 Σtoph, then the reduced integral cohomology

of Mh,0 can be non-zero only in degrees k where n − 1 − s ≤ k ≤ n − 1, and

is free Abelian in degree n− 1− s.
In particular, if 0 is an isolated point in Σtoph, then Mh,0 has the integral

cohomology of a bouquet of (n− 1)-spheres.

Proof. By the result of Lê [L2], if X is a purely n-dimensional local complete

intersection, and S is a d-dimensional stratum in a Whitney stratification of X,

then the complex link of S has the homotopy type of a finite bouquet of (n−1−d)-

spheres.

The cohomological implication is that the constant sheaves Z•X [n] and

(Z/pZ)•X [n], for p prime, are perverse sheaves. Consequently, the shifted vanishing

cycles

φh[−1]Z•X [n] and φh[−1](Z/pZ)•X [n]

are also perverse, and have support contained in the closure Σtoph.

Hence, these vanishing cycles have possibly non-zero stalk cohomology in de-

grees k such that −s ≤ k ≤ 0. This means that the reduced cohomology of the

Milnor fiber of h at 0, with coefficients in Z or Z/pZ, is possibly non-zero in de-

grees n− 1− s through n− 1. This proves the result, except for the free Abelian

claim in degree n− 1− s.
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However, that is the point of the Z/pZ discussion. As H̃n−2−s(Mh,0;Z/pZ)

= 0 for all p, the Universal Coefficient Theorem tells us that H̃n−1−s(Mh,0;Z) has

no torsion.

For a stable unfolding F with an isolated instability and projection h onto

an unfolding parameter, the result above is a cohomological generalization of the

result of Mond [Mo].

Definition 2.2. If 0 is an isolated point in Σtoph, then we define the Milnor

number of h at 0, µ0(h), to be the rank of H̃n−1(Mh,0;Z).

§3. The push-forward of the constant sheaf

General references for the derived category techniques in this section and the next

are [KS], [D], and [GM]. As we are always considering the derived category, we

follow the usual practice of omitting the “R”s in front of right derived functors.

We made the following definition in the introduction.

Definition 3.1. Let I•X denote the (derived) push-forward of the constant

sheaf Z•W [n], that is, I•X := F∗Z•W [n].

In the notation I•X , we will justify subscripting by X, rather than by F , below.

Proposition 3.2. The complex I•X = F∗Z•W [n] has the following properties:

1. I•X is the intersection cohomology complex with the constant Z local system.

2. The stalk cohomology of I•X is given by for all x ∈ X,

Hk(I•X)x ∼=

{
Zm(x) if k = −n,
0 otherwise.

3. The complex I•X is self-Verdier dual, i.e.,

DI•X
∼= I•X .

4. Suppose x ∈ X, and jx denotes the inclusion of x into X. Then

j!xI
•
X
∼= Dj∗xDI•X

∼= Dj∗xI•X ,

and so the costalk cohomology is given by

Hk(j!xI
•
X) ∼=

{
Zm(x) if k = n,

0 otherwise.

5. There is a canonical surjection of perverse sheaves Z•X [n]
c−→ I•X which induces

the diagonal map on the stalk cohomology.
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Proof. 1. As Z•W [n] is the intersection cohomology complex on W, with constant

coefficients, and I•X is its push-forward by a finite map, the support and cosupport

conditions trivially push forward, and I•X is an intersection cohomology complex

on X.

A priori, I•X could have “twisted” coefficients in a non-trivial local system on

the regular part, Xreg, of X. However, as we are assuming that F is generically

one-to-one, F induces a homeomorphism when restricted to a map from a generic

subset of W to a generic subset of Xreg. Thus, on a generic subset of Xreg, the

complex I•X restricts to the shifted constant sheaf, and so I•X is the intersection

cohomology complex with the constant local system.

Alternatively, F is a small resolution of X, and so the push-forward of the

shifted constant sheaf yields intersection cohomology [GM].

2. The formula for the stalk cohomology of I•X is immediate since I•X :=

F∗Z•W [n].

3. With a field for the base ring, the self-duality of I•X would follow from its

being the intersection cohomology complex. However, since we are using Z as our

base ring, we use the fact that

DI•X
∼= DF∗Z•W [n] ∼= F!D(Z•W [n]) ∼= F!Z•W [n] ∼= F∗Z•W [n],

where the last isomorphism follows from the fact that F is finite, and hence proper.

4. Using the self-duality of I•X , we find

j!xI
•
X
∼= Dj∗xDI•X

∼= Dj∗xI•X .

Therefore,

Hk(j!xI
•
X) ∼= Hk(Dj∗xI•X) ∼= Hom(H−k(j∗xI

•
X),Z)⊕ Ext(H−k+1(j∗xI

•
X),Z).

Hence, using our earlier description of the stalk cohomology, we find

Hk(j!xI
•
X) ∼=

{
Zm(x) if k = n,

0 otherwise.

5. There is always a canonical morphism of perverse sheaves from the shifted

constant sheaf to intersection cohomology with the (shifted) constant local system,

i.e., a canonical morphism Z•X [n]
c−→ I•X .

Because we are using Z as our base ring, instead of a field, I•X is not a simple

object in the Abelian category of perverse sheaves of Z-modules. However, I•X
is nonetheless the intermediate extension of the constant sheaf on Xreg, and so

has no non-trivial sub-perverse sheaves or quotient perverse sheaves with support

contained in ΣX. Therefore, since our morphism induces an isomorphism when

restricted to Xreg, its cokernel must be zero, i.e., the morphism c is a surjection.
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The description of the induced map on the stalks follows at once from the

fact that

I•X = F∗Z•W [n] ∼= F∗F
∗Z•X [n].

As an immediate corollary to item 1 above, we have the well-known:

Corollary 3.3. There is a containment D ⊆ ΣX.

The containment above can easily be strict; this is, for instance, the case when

one parameterizes the cusp.

Remark 3.4. We wish to make the costalk cohomology of a complex of sheaves

more intuitive for the reader. We continue with the notation jx from the proposi-

tion.

Suppose that A• is a bounded constructible complex of sheaves on X, and

recall that KX,x denotes the real link of X at x.

Then the cohomology of j!xA
• is isomorphic to the hypercohomology of a pair:

Hk(j!xA
•) ∼= Hk

(
B◦ε (x) ∩X, (B◦ε (x)− {x}) ∩X; A•

)
for 0 < ε � 1, and there exists the usual long exact sequence for this pair, in

which

Hk
(
(B◦ε (x)− {x}) ∩X; A•

) ∼= Hk(KX,x; A•).

In particular,

Hk(j!xZ•X [n]) ∼= H̃n+k−1(KX,x;Z).

Note that, as Z•X [n] is a perverse sheaf, Hk(j!xZ•X [n]) = 0 for k ≤ −1. This

is the cohomological manifestation of the fact that the real link of X is (n − 2)-

connected (see [Mi]).

§4. The multiple-point complex

We let N• denote the kernel of the morphism c from property 5 in Proposition 3.2,

so that, in the Abelian category of perverse sheaves, we have a short exact sequence

(which corresponds to a distinguished triangle in the derived category)

(†) 0→ N• → Z•X [n]
c−→ I•X → 0.

In our current setting, the morphism c is particularly simple to describe on

the level of stalk cohomology. Since

I•X = F∗Z•W [n] ∼= F∗F
∗Z•X [n],

the morphism c agrees with the natural map

Z•X [n]
c−→ F∗F

∗Z•X [n].
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On the stalk cohomology at x, this is just the diagonal inclusion Z ↪→ Zm(x) in

the only non-zero degree, −n. From the long exact sequence on stalk cohomology

for our short exact sequence, we conclude that the perverse sheaf N• has stalk

cohomology given by

Hk(N•)x ∼=

{
Zm(x)−1 if k = −n+ 1,

0 otherwise.

In particular, the support of N• is D. Note that the stalk cohomology of N• at 0

is Zr−1.

Remark 4.1. The reader may be wondering why the morphism c has a non-zero

kernel in the category of perverse sheaves. After all, on the level of stalks, the map c

induces inclusions; it may seem as though c should have a non-trivial cokernel, not

kernel.

It is true that there is a complex of sheaves C• and a distinguished triangle

in the derived category

Z•X [n]
c−→ I•X → C•

[1]−→ Z•X [n]

in which the stalk cohomology of C• is non-zero only in degree −n and, in de-

gree −n, is isomorphic to the cokernel of map induced on the stalks by c. However,

the complex C• is not perverse; it is supported on a set of dimension n − 1 and

has non-zero cohomology in degree −n.

However, we can “turn” the triangle to obtain a distinguished triangle

C•[−1]→ Z•X [n]
c−→ I•X

[1]−→ C•,

where C•[−1] is, in fact, perverse. Thus, in the Abelian category of perverse

sheaves, N• := C•[−1] is the kernel of the morphism c.

Definition 4.2. We refer to the perverse sheaf N• as the multiple-point complex

(of F on X).

We want to list the important features of the multiple-point complex which

we have already discussed.

Theorem 4.3. The multiple-point complex N• has the following properties:

1. In the Abelian category of perverse sheaves on X, there is a short exact sequence

(‡) 0→ N• → Z•X [n]
c−→ F∗Z•W [n]→ 0.

In particular, N• is a perverse sheaf.
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2. The support of N• is D. This implies that N• is the extension by zero of the

perverse sheaf N•|D to all of X.

3. The stalk cohomology of N• at a point x ∈ D is zero in all degrees other than

−n+ 1, and

H−n+1(N•)x ∼= H0(N•[−n+ 1])x ∼= Zm(x)−1.

In particular, in degree 0, the stalk cohomology of N•[−n + 1] at the origin

is Zr−1.

4. The costalk cohomology of N• is given by, for all x ∈ X,

Hk(j!xN
•) ∼=

{
H̃n+k−1(KX,x;Z) if 0 ≤ k ≤ n− 1,

0 otherwise.

Corollary 4.4. D is purely (n−1)-dimensional (which includes the possibility of

being empty).

Proof. This is immediate from D being the support of a perverse sheaf which,

on an open dense set of D, has non-zero stalk cohomology precisely in degree

−n+ 1.

Example 4.5. In general, the data about the stalk and costalk cohomology does

not determine N•; the cohomology sheaves typically would yield non-trivial local

systems on the strata.

However, we can give a simple example using a hyperplane arrangement where

it is easy to describe N•. The arrangement that we use will be the most non-

generic one possible.

Let X be a union of r distinct hyperplanes through the origin in C5, where all

of the hyperplanes contain C3 × {(0, 0)}. In coordinates (x, y, z, v, w) on C5, this

means that X = V (g), where

g(x, y, z, v, w) =

r∏
i=1

(aiv + biw)

and (ai : bi) are distinct points in P1. This describes a product arrangement

obtained by taking an arrangement of lines through the origin in C2 and taking

the product with C3.

Such an X is parameterized by using r disjoint copies of C4 for the domain

of F . We use (iu0,
iu1,

iu2,
iu3) for coordinates on the ith copy of C4, and let Fi be

the restriction of F to this copy. Then

Fi(
iu0,

iu1,
iu2,

iu3) := (iu0,
iu1,

iu2, bi
iu3,−aiiu3).
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Note that D, the support of N•, is C3 × {(0, 0)}. Furthermore, the product

structure on X makes the description of N• easy: N• is the shifted extension by

zero of the constant sheaf on D with stalks Zr−1; to be precise, if we let j denote

the inclusion of D into X, then

N• ∼= j!(Z•D)r−1[3].

We will now define a special notion of reduced hypercohomology, which we

will use throughout the remainder of this paper. The properties described are given

by a technical lemma, which we prove in the appendix, Section 7.

Note that, although N• is perverse, we will usually use the shifted complex

N•[−n + 1] so that the non-zero stalk cohomology is in degree 0; the purpose of

this is to make N•[−n + 1] easier to think of as being analogous to constant Z
coefficients, but with multiplicities.

We remind the reader of our earlier convention: the reduced cohomology

of the empty set, H̃k(∅;Z), is zero in all degrees other than degree −1, and

H̃−1(∅;Z) = Z.

Definition 4.6. We define the (r − 1)-reduced hypercohomology

H̃k(Mh,0 ∩D; N•[−n+ 1])

to be Hk(φhN
•[−n+1])0 and note that this is justified by Lemma 7.1, since, with

this definition:

• If k 6= −1 or 0, then

H̃k(Mh,0 ∩D; N•[−n+ 1]) ∼= Hk(Mh,0 ∩D; N•[−n+ 1]).

• There is an equality of Euler characteristics

χ
(
H̃∗(Mh,0 ∩D; N•[−n+ 1])

)
= χ

(
Hk(Mh,0 ∩D; N•[−n+ 1])

)
− (r − 1).

• If dim0D ∩ V (h) ≤ n− 2, then H̃−1(Mh,0 ∩D; N•[−n+ 1]) = 0 and

rank H̃0(Mh,0 ∩D; N•[−n+ 1]) = rankH0(Mh,0 ∩D; N•[−n+ 1])− (r − 1).

• If r = 1, then H̃−1(Mh,0 ∩D; N•[−n+ 1]) = 0 and

H̃0(Mh,0 ∩D; N•[−n+ 1]) ∼= H0(Mh,0 ∩D; N•[−n+ 1]).

The following theorem is now easy to prove.
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Theorem 4.7. There is a long exact sequence relating the Milnor fiber of h, the

Milnor fibers of h ◦F , and the hypercohomology of the Milnor fiber of h restricted

to D with coefficients in N•, given by

· · · → H̃j−1(D ∩Mh,0; N•[−n+ 1])→ H̃j(Mh,0;Z)

→
⊕
i

H̃j(Mh◦F,pi ;Z)→ H̃j(D ∩Mh,0; N•[−n+ 1])→ · · · .

This long exact sequence is compatible with the Milnor monodromy automorphisms

in each degree.

Proof. We apply the exact functor φh[−1] to the short exact sequence (‡) which

defines N• to obtain the following short exact sequence of perverse sheaves:

0→ φh[−1]N• → φh[−1]Z•X [n]
ĉ−→ φh[−1]F∗Z•W [n]→ 0,

where ĉ = φh[−1]c. As the Milnor monodromy automorphism is natural, the maps

in this short exact sequence commute with the Milnor monodromies.

If we let F̂ denote the restriction of F to a map from (h ◦F )−1(0) to h−1(0),

then there is the well-known natural base change isomorphism (see [KS, Exercise

VIII.15] or [D, Proposition 4.2.11]):

φh[−1]F∗Z•W [n] ∼= F̂∗φh◦F [−1]Z•W [n].

By the induced long exact sequence on stalk cohomology and the lemma, we

are finished.

Example 4.8. To demonstrate Theorem 4.7, we will select a function h and use

the X, g, F , and N• given in Example 4.5; this was the example of a very non-

generic hyperplane arrangement in C5. However, to be more concrete, we will fix

r = 3 and choose specific (ai, bi). Note that n = 4 in this example.

We let X = V (g), where

g(x, y, z, v, w) = vw(v + 2w);

hence, D = C3 × {(0, 0)}.
The finite map F is given by its restrictions Fi, i = 1, 2, 3, to each of the

copies of C4:

F1(1u0,
1u1,

1u2,
1u3) := (1u0,

1u1,
1u2, 0,− 1u3),

F2(2u0,
2u1,

2u2,
2u3) := (2u0,

2u1,
2u2,

2u3, 0),

F3(3u0,
3u1,

3u2,
3u3) := (3u0,

3u1,
3u2, 2(3u3),− 3u3).

We saw earlier that N• is the extension by zero of (Z•D)2[3] to all of X, so that

N•[−n+ 1] ∼= N•[−4 + 1] is the extension by zero of (Z•D)2.
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Now, let h : X → C be given by

h(x, y, z, v, w) := z2 − y3 − xy2 + v2 − w2.

Note that dim0D ∩ V (h) = 2 = n − 2, so that, as described in Definition 4.6,

H̃−1(Mh,0 ∩D; N•[−3]) = 0.

The space Mh,0 ∩D is the Milnor fiber of h̃ := h|D, which is given by

h̃(x, y, z) = z2 − y3 − xy2,

where we have identified C3×{(0, 0)} with C3. The zero locus of the function h̃ is

the Whitney umbrella, presented as a family of nodes degenerating to a cusp, and

it is well-known that the Milnor fiber of this h̃ has the homotopy type of a single

2-dimensional sphere.

We also see that

(h ◦ F1)(1u0,
1u1,

1u2,
1u3) = (1u2)2 − (1u1)3 − 1u0(1u1)2 − (1u3)2,

(h ◦ F2)(2u0,
2u1,

2u2,
2u3) = (2u2)2 − (2u1)3 − 2u0(2u1)2 + (2u3)2,

(h ◦ F3)(3u0,
3u1,

3u2,
3u3) = (3u2)2 − (3u1)3 − 3u0(3u1)2 + 3(3u3)2.

All three of these are what are known as “suspensions” of the Whitney umbrella;

that is, we have the function defining the Whitney umbrella and then we add

a constant times the square of a new variable. By the result of Sebastiani and

Thom [ST], the Milnor fiber at the origin of each of the h ◦ Fi has the homotopy

type of a single 3-dimensional sphere.

Putting all of this together, we find that the only non-zero portion of the long

exact sequence from Theorem 4.7 is⊕
i

H̃2(Mh◦F,pi ;Z) = 0→ Z2 → H̃3(Mh,0;Z)→ Z3 → 0.

Therefore, H̃3(Mh,0;Z) ∼= Z5, while H̃j(Mh,0;Z) = 0 for j 6= 3.

Theorem 4.7 has the following corollary, which gives us a refinement as to

why one should think of

Hk(φhN
•[−n+ 1])0

as the (r − 1)-reduced hypercohomology of Hk(Mh,0 ∩D; N•[−n+ 1]).

Corollary 4.9. Suppose that dim0 Σtoph ≤ n− 2. Then

H̃−1(D ∩Mh,0; N•[−n+ 1]) = 0

and H̃0(D ∩Mh,0; N•[−n + 1]) is free Abelian. Thus, H̃0(D ∩Mh,0; N•[−n + 1])

is obtained from H0(D ∩Mh,0; N•[−n + 1]) by removing r − 1 direct summands

of Z.
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Proof. Note that dim0 Σtoph ≤ n − 2 implies that dim0 V (h) < n. Now, since

dim0 V (h) < n, we have
⊕

i H̃
−1(Mh◦F,pi ;Z) = 0, and part of the long exact

sequence from the theorem is

0→ H̃−1(D ∩Mh,0; N•[−n+ 1])→ H̃0(Mh,0;Z)

→
⊕
i

H̃0(Mh◦F,pi ;Z)→ H̃0(D ∩Mh,0; N•[−n+ 1])→ H1(Mh,0;Z)→ · · · .

Each H̃0(Mh◦F,pi ;Z) is free Abelian and the Universal Coefficient Theorem for

cohomology tells us that H1(Mh,0;Z) is free Abelian.

Since dim0 Σtoph ≤ n− 2, Proposition 2.1 tells us that H̃0(Mh,0;Z) = 0, and

we immediately conclude that

H̃−1(D ∩Mh,0; N•[−n+ 1]) = 0

and H̃0(D ∩Mh,0; N•[−n + 1]) is free Abelian. The final conclusion follows now

from the splitting of the exact sequence in item 3 of Lemma 7.1.

Corollary 4.10. If S ∩ Σ(h ◦ F ) = ∅, then there is an isomorphism

H̃j(Mh,0;Z) ∼= H̃j−1(D ∩Mh,0; N•[−n+ 1]),

and this isomorphism commutes with the Milnor monodromies.

Example 4.11. Suppose that we have a finite map f : (V, S)→ (Ω,0), where V
and Ω are open neighborhoods of S in Cd and of the origin in Cd+1, respectively.

Suppose that T is an open neighborhood of the origin in Cd, and that F : T ×V →
T × Ω is an unfolding of f = f0, i.e., F is a finite analytic map of the form

F (t,v) = (t, ft(v)), where, for each t ∈ T , ft is a finite map from V to Ω.

Let X denote the image of F , continue to write F for the map from T ×V to X,

and let h be the projection onto the first coordinate; thus, (h◦F )(t1, . . . , td,v) = t1.

Then S ∩ Σ(h ◦ F ) = ∅, and so H̃j(Mh,0;Z) is isomorphic to

H̃j−1(D ∩Mh,0; N•[−n+ 1])

by an isomorphism which commutes with the Milnor monodromies.

Before we can prove the next corollary, we need to recall a lemma, which is

well-known to experts in the field. See, for instance, [D, Theorem 4.1.22] (note

that the setting of [D] is algebraic, but that assumption is used in the proof only

to guarantee that there are a finite number of strata).



Milnor Fibers inside Hypersurfaces 427

Lemma 4.12. Let S be a complex analytic Whitney stratification, with connected

strata, of a complex analytic space Y . Suppose that S contains a finite number of

strata. Let A• be a bounded complex of Z-modules which is constructible with

respect to S. For each stratum S, let pS denote a point in S. Then there is the

following additivity/multiplicativity formula for the Euler characteristics:

χ(H∗(Y ; A•)) =
∑
S

χ(S)χ(A•)pS .

Corollary 4.13. The relationship between the reduced Euler characteristics of the

Milnor fiber of h at 0, the Milnor fibers of h ◦ F , and the Xk’s is given by

χ̃(Mh,0) = r − 1 +
∑
i

χ̃(Mh◦F,pi)−
∑
k≥2

(k − 1)χ(Xk ∩Mh,0).

Proof. Via additivity of the Euler characteristic in the hypercohomology long exact

sequence given in Theorem 4.7, we obtain the following relation:

χ̃(Mh,0) =
∑
i

χ̃(Mh◦F,pi)− χ
(
H̃∗(D ∩Mh,0; N•[−n+ 1])

)
= r − 1 +

∑
i

χ̃(Mh◦F,pi)− χ
(
H∗(D ∩Mh,0; N•[−n+ 1])

)
.

We are then finished, provided that we show that

χ(D ∩Mh,0; N•[−n+ 1]) =
∑
k≥2

(k − 1)χ(Xk ∩Mh,0).

For this, we use Lemma 4.12. Take a complex analytic Whitney stratifica-

tion S′ of D such that N•|D is constructible with respect to S′; hence, for each k,

D ∩ Xk is a union of strata. As Mh,0 transversely intersects these strata, there

is an induced Whitney stratification S = {S} on D ∩ Mh,0 and also on each

D ∩Xk ∩Mh,0; these stratifications have a finite number of strata, since the Mil-

nor fiber is defined inside a small ball and S′ is locally finite.

Now, since the Euler characteristic of the stalk cohomology of N•[−n+ 1] at

a point x ∈ Xk is k − 1, Lemma 4.12 yields

χ(D ∩Mh,0; N•[−n+ 1]) =
∑
k

∑
S⊆D∩Xk∩Mh,0

(k − 1)χ(S).

Finally, we “put back together” the Euler characteristics of the Xk’s, i.e.,

χ(Xk ∩Mh,0) =
∑

S⊆D∩Xk∩Mh,0

χ(S),

by again applying Lemma 4.12 to the constant sheaf on Xk ∩Mh,0.
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Remark 4.14. We did not need to use N• to prove the above corollary. It fol-

lows quickly from the base change isomorphism which appears in the proof of

Theorem 4.7, but, having the theorem, it seems natural to use it in the proof.

Intuitively, the base change isomorphism yields the same thing as the general-

ized branched covering argument which we described in the Introduction. However,

there are some technical details that must be dealt with using this branched cov-

ering approach, which are avoided by appealing to the base change isomorphism.

§5. The isolated critical point case

The case where 0 is an isolated point in Σtoph is of particular interest.

Theorem 5.1. Suppose that 0 is an isolated point in Σtoph. Then:

1. For all pi ∈ S, dimpi Σ(h ◦ F ) ≤ 0.

2. H̃∗(D ∩Mh,0; N•[−n+ 1]) is non-zero in (at most) one degree, n− 2, where it

is free Abelian.

3. The reduced integral cohomology of Mh,0 is non-zero in at most one degree,

n− 1, where it is free Abelian of rank

µ0(h) =
[∑
i

µpi(h ◦ F )
]

+ rank H̃n−2(D ∩Mh,0; N•[−n+ 1])

=
[∑
i

µpi(h ◦ F )
]

+ (−1)n−1
[
(r − 1)−

∑
k≥2

(k − 1)χ(Xk ∩Mh,0)
]
.

4. In particular, if 0 is an isolated point in Σtoph and S ∩ Σ(h ◦ F ) = ∅, then

µ0(h) = rank H̃n−2(D ∩Mh,0; N•[−n+ 1])

= (−1)n−1
[
(r − 1)−

∑
k≥2

(k − 1)χ(Xk ∩Mh,0)
]
.

Proof. Except for the last equalities in each line, this follows from Proposition 2.1

and (∗) in the proof of Theorem 4.7, since the hypothesis is equivalent to 0 being

an isolated point in the support of φh[−1]ZX [n], and perverse sheaves which are

supported at just an isolated point have non-zero stalk cohomology in only one

degree, namely 0.

The final equalities in each line follow from Corollary 4.13.

Example 5.2. Let us return to the unfolding situation in Example 4.11, but now

suppose that F is a stable unfolding of f with an isolated instability. As before, if

h is a projection onto an unfolding coordinate, then 0 is an isolated point in Σtoph

and S ∩ Σ(h ◦ F ) = ∅.
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Thus, the stable fiber has the cohomology of a finite bouquet of (n−1)-spheres,

where the number of spheres, the Milnor number, is given by

rank H̃n−2(D ∩Mh,0; N•[−n+ 1]) = (−1)n−1
[
(r− 1)−

∑
k≥2

(k − 1)χ(Xk ∩Mh,0)
]
.

Note, in particular, that this implies that the right-hand side is non-negative,

which is distinctly non-obvious.

Consider the simple, but illustrative, specific example where r = 1, f(u) =

(u2, u3), and the stable unfolding is given by F (t, u) = (t, u2− t, u(u2− t)). Let X

be the image of F , and let h : X → C be the projection onto the first coordinate,

so that (h ◦ F )(t, u) = t. Note that, using (t, x, y) as coordinates on C3, we have

X = V (y2 − x3 − tx2).

Clearly 0 6∈ Σ(h◦F ), and 0 is an isolated point in Σtoph. For k ≥ 2, the onlyXk

which is not empty is X2, which equals the t-axis minus the origin. Furthermore,

X2 ∩Mh,0 is a single point.

We conclude from Theorem 5.1 that Mh,0, which is the complex link of X,

has the cohomology of a single 1-sphere.

As a further application, we recover a classical formula for the Milnor number,

as given in [Mi, Theorem 10.5]:

Theorem 5.3. Suppose that n = 2 and that F is a one-parameter unfolding of a

parameterization f of a plane curve singularity with r irreducible components at

the origin. Let t be the unfolding parameter and suppose that the only singularities

of Mt|X ,0 are nodes, and that there are δ of them. Recall that X = V (g), and let

g0 := g|V (t). Then the Milnor number of g0 is given by

µ0(g0) = 2δ − r + 1.

Proof. We recall the following formula for the Milnor number of g|V (t) at 0 [M3]:

µ0(g|V (t)) = (Γ1
g,t · V (t))0 + (Λ1

g,t · V (t))0,

where Γ1
g,t is the relative polar curve of g with respect to t, and Λ1

g,t is the one-

dimensional Lê cycle of g with respect to t.

Using the fact that the only singularities of Mt|X ,0 are nodes, we immediately

have (Λ1
g,t · V (t))0 = δ. Since the unfolding function F has an isolated instability

at 0, µ0(t|X) is equal to (Γ1
g,t · V (t))0 (see, for example, [M1]).

Now, Corollary 4.13 tells us that

µ0(t|X) = −r + 1 +
∑
k≥2

(k − 1)χ(Xk ∩Mt|X ,0).
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By assumption, χ(X2 ∩Mt|X ,0) is the only non-zero summand in the above equa-

tion, and it is immediately seen to be the number of double points of X ∩ V (t)

appearing in a stable perturbation. Thus,

µ0(g|V (t)) = 2δ − r + 1

as desired.

§6. Questions and future directions

Question/Comment 1. If 0 is an isolated point in Σtoph, then Theorem 5.1

provides a nice way of calculating the only non-zero cohomology group of the

Milnor fiber of h.

However, even if S ∩ Σ(h ◦ F ) = ∅, it is unclear how much effectively calcu-

lable data about the cohomology of Mh,0 one can extract from Corollary 4.10 if

dim0 Σtoph > 0 and n ≥ 3 (so dim0D ≥ 2). Yes, we would know that

H̃j(Mh,0;Z) ∼= H̃j−1(D ∩Mh,0; N•[−n+ 1]),

but the hypercohomology on the right is highly non-trivial to calculate. There is

a spectral sequence that one could hope to use, but that does not seem to yield

manageable data.

So the question is: if dim0 Σtoph > 0 and n ≥ 3, how do we say anything

useful about H̃j−1(D ∩Mh,0; N•[−n+ 1])?

Question/Comment 2. Even when 0 is an isolated point in Σtoph, it is not

clear how to generalize Theorem 5.3 to the case where n > 2, in which g0 has a

singular set of dimension greater than zero.

Using the results of [M2], we can derive a formula which generalizes

µ0(g|V (t)) = (Γ1
g,t · V (t))0 + (Λ1

g,t · V (t))0

to produce formulas for the cohomology of Mg0,0 in all degrees, but these formulas

once again refer to the hypercohomology of a certain perverse sheaf, and we have

no effective means for calculating this hypercohomology.

Of course, part of the question here is: what is the “right” generalization of

the condition that “the only singularities of Mt|X ,0 are nodes”?

We cannot require that the singularities of Mt|X ,0 be stable because the con-

dition that 0 is an isolated point in Σtoph implies that the singular set changes

only on a discrete set.

Question/Comment 3. Another interesting direction of research might be to

eliminate the finite map F altogether. In the setting of this paper, the fact that
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the stalk cohomology of I•X is given by, for all x ∈ X,

Hk(I•X)x ∼=

{
Zm(x) if k = −n,
0 otherwise,

makes it seem as though it might be worthwhile to define, in general, virtually

parameterizable hypersurfaces (VPHs) as those hypersurfaces for which the inter-

section cohomology has such a form. One could then study deformations of a given

VPH via a family of VPHs.

§7. The (r − 1)-reduction lemma

In this section, we prove the lemma which we used to justify the terminology

“(r − 1)-reduced cohomology” in Definition 4.6.

Lemma 7.1.

1. For all k,

Hk(φhZ•X)0 ∼= H̃k(Mh,0;Z),

which is possibly non-zero only for n−s−1 ≤ k ≤ n−1, where s := dim0 Σtoph

≤ n. Furthermore, when k = −1, this cohomology is non-zero if and only if h

is identically zero (so that Mh,0 = ∅).
2. For all k,

Hk(φhF∗Z•W)0 ∼=
⊕
i

H̃k(Mh◦F,pi ;Z),

which is possibly non-zero only for n− ŝ− 1 ≤ k ≤ n− 1, where

ŝ := maxi dimpi Σ(h ◦ F ) ≤ n.

Furthermore, when k = −1, this cohomology is non-zero if and only if h is

identically zero on at least one irreducible component of X.

3. Hk(φhN
•[−n + 1])0 is possibly non-zero only for −1 ≤ k ≤ n − 2. Further-

more, if h is not identically zero on any irreducible component of D, i.e., if

dim0D ∩ V (h) ≤ n− 2, then H−1(φhN
•[−n+ 1])0 = 0. Moreover:

• For k 6= −1 or 0,

Hk(φhN
•[−n+ 1])0 ∼= Hk(Mh,0 ∩D; N•[−n+ 1]).

• If r = 1, then, for all k,

Hk(φhN
•[−n+ 1])0 ∼= Hk(Mh,0 ∩D; N•[−n+ 1]).
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• There is an exact sequence

0→ H−1(φh[−1]N•[−n+ 1])0 → Zr−1

→ H0(Mh,0 ∩D; N•[−n+ 1])→ H0(φh[−1]N•[−n+ 1])0 → 0.

Proof. Let B denote a small open ball around the origin in Cn+1. Then, for every

bounded, constructible complex A• on X, if we let Y = supp A•, then

Hk(φh[−1]A•)0 ∼= Hk(B ∩X,Mh,0; A•) ∼= Hk(B ∩ Y,Mh,0 ∩ Y ; A•),

where this hypercohomology group fits into the hypercohomology long exact se-

quence of the pair (B ∩X,Mh,0).

Consequently, using A• = Z•X [n], we find that Hk(φh[−1]Z•X [n])0 is, in fact,

equal to the standard reduced cohomology of the Milnor fiber H̃k+n−1(Mh,0;Z),

provided that we use our convention on the reduced cohomology of the empty

set.

Suppose instead that we use A• = F∗Z•W [n]. Then, by the base change for-

mula [KS], φh[−1]F∗Z•W [n] is naturally isomorphic to F̂∗φh◦F [−1]Z•W [n], where F̂

denotes the map induced by F from F−1h−1(0) to h−1(0). Therefore,

Hk(φh[−1]F∗Z•W [n])0 ∼=
⊕
i

Hk(φh◦F [−1]Z•W [n])pi ,

which, from our work above, implies that

Hk(φh[−1]F∗Z•W [n])0 ∼=
⊕
i

H̃k+n−1(Mh◦F,pi ;Z).

Now we need to look at the more complicated case where A• = N•. We find

Hk(φh[−1]N•)0 ∼= Hk(B ∩D,Mh,0 ∩D; N•),

and the long exact sequence of the pair, together with the fact that we know

H∗(B ∩D; N•) ∼= H∗(N•)0, gives us the exact sequence

· · · → H−n(Mh,0 ∩D; N•)→ H−n+1(φh[−1]N•)0 → Zr−1

→ H−n+1(Mh,0 ∩D; N•)→ H−n+2(φh[−1]N•)0 → 0

→ H−n+2(Mh,0 ∩D; N•)→ H−n+3(φh[−1]N•)0 → 0→ · · · .

We claim that Hk(Mh,0∩D; N•) = 0 for all k ≤ −n. This follows immediately

from the fact that H−n(Mh,0 ∩D; N•) ∼= H−n+1(ψh[−1]N•)0, and ψh[−1]N• is a

perverse sheaf supported on D − V (h) ∩ V (h), which has dimension less than or

equal to n− 2. Since we also know that Hk(N•)0 = 0 for all k ≤ −n, we conclude

the following:
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• For all k ≤ −n, Hk(φh[−1]N•)0 ∼= Hk(Mh,0 ∩D; N•) = 0.

• For all k ≥ −n+ 3,

Hk(φh[−1]N•)0 ∼= Hk−1(Mh,0 ∩D; N•) ∼= Hk+n−2(Mh,0 ∩D; N•[−n+ 1]).

• We have an exact sequence

0→ H−n+1(φh[−1]N•)0 → Zr−1

→ H−n+1(Mh,0 ∩D; N•)→ H−n+2(φh[−1]N•)0 → 0.

If dim0D∩V (h) ≤ n−2, then φh[−1]N• is a perverse sheaf which is supported

on a set of dimension at most n − 2; the stalk cohomology in degrees less than

−(n− 2) = −n+ 2 is zero. Therefore, in this case,

H−n+1(φh[−1]N•)0 ∼= H−1(φhN
•[−n+ 1])0 = 0.
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