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Remarks on Arithmetic Restricted Volumes and
Arithmetic Base Loci
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Abstract

We collect some fundamental properties of arithmetic restricted volumes (or arithmetic
multiplicities) of adelically metrized line bundles. Every arithmetic restricted volume has
the concavity property and characterizes the corresponding arithmetic augmented base
locus as the null locus. We also establish a generalized Fujita approximation for arithmetic
restricted volumes.
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§1. Introduction

Let K be a number field. We denote the set of all finite places of K by ME., and
set My := ML U{oc}. Let X be a projective variety over K. According to [28, 24],
we consider an adelically metrized line bundle L = (L, (| - |F)venrr,.) on X, which
is defined as a pair of a line bundle L on X and an adelic metric (|- |Z)venr, on L
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T
v,sup

(see §5 for details). For each place v € Mk, we denote by || - ||
norm defined by | - |£. Let

the supremum

TN(L):={s € HOL) : ||s]|Eyup < 1, Yo € ML},
T°(L) i={s € TN(T) : |5 % oup < 1}-

co,sup
We call an element in fss(f) a strictly small section of L, and set
B¥(L) :={z € X : s(x) =0, Vs € [*(mL), Vm > 1}.

An adelically metrized Q-line bundle L is said to be weakly ample, or w-ample for
short, if L is ample and (IS(mL))x = H°(mL) for every sufficiently large m such
that mL is a line bundle (see the beginning of §2 for the notation (- ) ). Let Y be
a closed subvariety of X. We say that L is Y -big if there exist a positive integer m,
a w-ample adelically metrized line bundle 4, and an s € ['**(mL — A) such that
s|y is non-zero.

The purpose of this paper is twofold. First, we give an elementary proof of
Theorem A below, which was first proved by Moriwaki [23, Theorem A and Corol-
lary B] by using Zhang’s technique [27]. (More precisely, Moriwaki [23] treated
only continuous Hermitian line bundles but it is easy to generalize his result to the
form given below). Following Moriwaki’s suggestion, we call this result a “Zhang—
Moriwaki theorem”. The proof given in this paper is very simple and based on
some elementary properties of base loci. We need neither induction on dimension
nor estimates of the last minima.

Theorem A (Theorem 4.3). Let X be a projective variety over K, and let L be an
adelically metrized line bundle on X such that L is semiample. Then the following
are equivalent:

(a) B(L) = 0. )
(b) H°(mL) = (I'*(mL))k for every m > 1.

The celebrated arithmetic Nakai—-Moishezon criterion for arithmetic ample-
ness was first proved by Zhang [27, 28], and later was slightly generalized by Mori-
waki [23] by using the same technique. Theorem A itself is not powerful enough
to recover Zhang’s criterion ([27, Corollary (4.8)], [28, Theorem (1.8)], [23, Theo-
rem 4.2]).

Next, we establish some fundamental properties of arithmetic restricted vol-
umes (or arithmetic multiplicities) of adelically metrized line bundles along closed
subvarieties. A CL-subset of a free Z-module of finite rank is a subset which can
be written as the intersection of a Z-submodule and a convex subset (see [22,
§1.2] for details, where such a subset is referred to as a convez lattice). Given
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an adelically metrized line bundle L and a closed subvariety Y of X, we define
CL x|y (L) as the smallest CL-subset of Tf(Z]y) containing the image of rss(L).
Denote by N the semigroup of all positive integers and set Nx|y (L) := {m € N :
@X‘y(mf) # {0}}. We define the arithmetic restricted volume of L along Y as

Volxy (L) = Tim sup — 28 {CLxy (mI)
XY ) = A S @ Y41/ (dim Y + 1)1

and the arithmetic augmented base locus of L as

B.():= (] B*L-4),
A w-ample

where A runs over all w-ample adelically metrized Q-line bundles on X. In the
literature, we can find several other definitions of B, (L). For example, Moriwaki
[22, §3] defined it by using “small sections”, and Chen [9, §4| used sections having
normalized Arakelov degrees not less than zero. In important cases, these three def-
initions all coincide (Remark 5.5). The definitions given above have some desirable
properties. For example, if X is normal, then
B.D)= |J 7

__zcX

volx|z(L)=0
(Corollary 7.14). By the theory of Okounkov bodies [17, 3], if Y ¢ B(L), we have
the following limit called the multiplicity of L along Y:

dimHO(oy) <Image(H0(mL) — HO(mL\y)»HO(Oy)

e€x Y(L) = /llm o p y
| A m ) ki xy (L)!
where
rxly (L) = tr.deggo o, (@(Image(Ho(mL) — HO(ley))>Ho(oy)) —1.

m>0
The following is an arithmetic analogue of this limit, which we call the arithmetic

multiplicity of L along Y and denote by €X|y(f).

Theorem B (Theorem 7.11 and Lemma 7.4). Let X be a projective variety over
a number field, let Y be a closed subvariety of X, and let L be an adelically metrized
line bundle on X. If Y ¢ B%(L), then the sequence

< log ﬁéixw(mz) >
m”X\Y(L)+1/(f‘<«X|Y<L) + 1)! méeNx |y (L)

converges to a positive real number.
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As an application, we establish a generalized Fujita approximation for arith-
metic restricted volumes, which can be viewed as an arithmetic analogue of [10,
Theorem 2.13]. Let X be a normal projective variety over a number field, let L
be an adelically metrized Q-line bundle on X, and let Z be a closed subvariety
of X. A Z-compatible approzimation for L is a pair (1 : X’ — X, M) consisting of
a projective birational morphism g : X’ — X and a nef adelically metrized Q-line
bundle M on X’ having the following properties:

(a) X' is smooth and p is isomorphic around the generic point of Z.

(b) Denote the strict transform of Z via p by pu;'(Z). Then M is u;'(Z)-big and
w'L — M is a p; 1 (Z)-pseudoeffective adelically metrized Q-line bundle.

We denote by 5) z(L) the set of all Z-compatible approximations for L.

Theorem C (Theorem 8.4). Let X be a normal projective variety over a number
field, let Z be a closed subvariety of X, and let L be an adelically metrized Q-line
bundle on X. If L is Z-big, then for every closed subvariety Y containing Z,

Oy (@)= oy de(M],crn) ).
(1, M)e®z (L)

This paper is organized as follows: We give a definition and properties of
adelically metrized line bundles in Section 2 (Definition 2.9) and of the augmented
base loci of general graded linear series in Section 3 (Definition 3.1). As an in-
terlude, we give the proof of Theorem A (Theorem 4.3) in Section 4, which is
independent of the previous sections except Lemma 3.7. In Section 5, we give a
definition of the arithmetic augmented base locus of an adelically metrized line
bundle (Definition 5.1) and characterize it as the minimal exceptional locus of a
Kodaira-type map (Theorem 5.6). Sections 6 and 7 are devoted to giving a def-
inition of the arithmetic restricted volume of an adelically metrized line bundle
along a closed subvariety, and the proof of Theorem B (Theorem 7.11). The ar-
guments here are based on Yuan’s idea [25] and the general theory of Okounkov
bodies [17, 3]. In Section 8, we establish the generalized Fujita approximation for
arithmetic restricted volumes (Theorem 8.4).

§2. Preliminaries

Let M be a module over a ring R and let I' be a subset of M. We denote by
(') g the R-submodule of M generated by T'. Let K be a number field and let Og
be the ring of integers. Denote by M}, the set of all finite places of K and set
Mg := M% U {oo}. For each P € le(, we denote the P-adic completion of K by
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Kp, a uniformizer of Kp by wp, and set

Ok /P)~odr(@ ifae KJ
(2.) alp = {“ x/P) € K,

ifa=0

for a € Kp. We denote the valuation ring of Kp by Ok, , and the residue field
of Kp by Kp. For v = 00, we set K, := C and denote by |- |« the absolute value
on C.

Adelically normed linear series. Let V be a finite-dimensional K-vector space.
We set Vg, ==V ®x K, for v € M&, and Vo, :=V ®q C. An adelic norm on V
is a collection (|| - ||4)venr, of norms such that

(a) if v € M%, then || - ||, is a non-Archimedean (K,,| - |,)-norm on Vg,
B) || lloo is @ (Koo, |+ |oo)-norm on Vi __, and

(c) for each s € V, ||sl, <1 for all but finitely many v € M.

An adelically normed K -vector space is a pair V = (V, (|| - IV)venr, ) of a finite-

dimensional K-vector space V and an adelic norm (|| - ||¥),enr, on V such that
the following equivalent conditions are satisfied (see [6, Proposition 2.4]):

(a) TE(V) = {s e V : Is|V <1, Vo e ML} is a finitely generated Og-module
that spans V over K.

(b) T5(V) :={s e TX(V) : ||s||L < 1} is a finite set.

(c) T5(V) :={s e T*(V) : ||s]|', < 1} is a finite set.

Note that the above definition of an adelically normed K-vector space is strictly
weaker than the classic one as given in [28, (1.6)], [12, Definition 3.1]. We do not
require the existence of an integral model of V' that induces all but finitely many
Il - |lv, which corresponds to condition (b) of [28, (1.6)] and to condition 1) of [12,
Definition 3.1].

Let X be a projective variety over K, that is, a projective, reduced, and
irreducible scheme over K. Let L be a line bundle on X. A K -linear series belonging
to L is a K-subspace V of H(L). The base locus of V is defined as

BsV = [|{z € X : s(z) = 0}.

seV

We consider endowing V with an adelic norm (|| - ||y)venr, such that V :=
(Vi (Il - ll)vensy) is an adelically normed K-vector space in the above sense. An
adelically normed graded K -linear series V., belonging to L is a graded K-linear
series V, = €P,,,~o Vim endowed for each m > 0 with an adelic norm (|| - 1V ™) wens
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on V,, in such a way that

(2.2) s @[+ < Y5l - (1]l

for every v € Mg, s € Vj, t € V,,, and m,n > 0. Given an adelically normed
graded K-linear series V,, we have a graded K-linear series @,,~(I'**(V.n))x
belonging to L, and set

(2.3) Bs' (V) = Bs(I’(V,))x and B'(V,):= () Bs(T

m>1

form > 1 and ? = ss or s.

Adelically metrized line bundles. Let X be a projective variety over K. For
each v € le( (respectively, v = o0), we denote the Berkovich analytic space
(respectively, complex analytic space) associated to Xr, := X Xgpec(i) Spec(Ky)
(respectively, Xc := [],.x,c X Xspec(k),s SPec(C)) by (X5, p, : XJ* = Xk,)
(see [1, §3.4]). If W = Spec(A) is an affine open subscheme of X, , then a point
r € Wa = p-1(W) corresponds to a multiplicative seminorm |- |, on A whose
restriction to K, is | - |,, and the morphism p,|wa : W23 — W is given by
x — Ker| - |, (see [1, Remark 3.4.2]). In particular, the multiplicative seminorm
| - |~ defines a norm on the residue field k(p,(x)) at p,(x) (that is, the field of
fractions of A/Ker| - |,), which we also denote by |- |,.

Let L be a line bundle on X. For each v € Mk, we set L2 := piL,.
A continuous metric | -|L» on L2 is a collection (|- \ﬁv)xexdn such that, for every
re X3 |-|Lvisa (k(py(x)),] - |o)-norm on L2%(z) = Lk, (p,(x)) and, for every
local section s of Lk, , Lo (x) = |s(py(z ))

v is continuous in the

T

Berkovich topology.

We consider a finite subset S of M, and set U = Spec(Of) \ S. A U-model
of X is a flat, projective, reduced, and irreducible U-scheme 2y such that 2y xy
Spec(K) is K-isomorphic to X. A U-model of the pair (X, L) is a pair (2y, Zv)
of a U-model 2y of X and a Q-line bundle %y on 2y such that Zy|x = L
as Q-line bundles. Let (2y,-Zy) be a U-model of (X, L), and let v € U. Given
an ¢ € X2", by using the valuative criterion we can uniquely extend the natural
morphism Spec(k(p,(x))) = Xk, to

(2.4) te : Spec(Og(p, (2))) = Lok, = Zu xv Spec(Ok, ),

where Oy, (2)) = {f € k(pu(z)) : |flo < 1}. Let n > 1 be an integer such that

nZLo, is a line bundle on Zo, . For £ € L3"(x), we have (®" € (nZo,, ) ®0x,
k(py(z)) and we set

(25) [090x (@) = [0 = inf{|f[Y/": | € K(pu()), €57 € ft5(n Loy, )},
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which does not depend on the choice of n. Let Red,, (x) be the image of the
closed point of Spec(Oy(y(2))) under t,. The map

(2.6) Redg?foKv : Xs‘n — %OK,, XSpec(Oxc, ) SpeC(Kv)

is called the reduction map (see [1, §2.4]). Let 1 be a local frame of .%o, around
Red gy, (). For £ € L3"(x), choose an f € k(p,(x)) such that (" = fn(z) in
(nL)2™(x). We then have

(2.7) o %ex (a) = [ I,

Lemma 2.1. (1) Redg,, s anti-continuous.

(2) |- |#°x0 is a continuous metric on L.

(3) Let v : X — Zy be the natural morphism and assume that Zy is integrally
closed in 1.Ox (see [13, §6.3]). Then s®™ extends to a global section of nZy
if and only if

sup |s|“Oxu () <1 for every v € U.
zeXan

Definition 2.2. We say that 2y is relatively normal in X if the condition in

Lemma 2.1(3) is satisfied. Given any U-model 27, there exists an integral mor-

phism v : 2, — Zu of U-models of X such that 2}, is relatively normal in X

(see [13, §6.3]). We call Z7; a relative normalization of £y in X. Since the nor-

malization v : % — 2y is a finite morphism, we can see that v is also finite.

Proof of Lemma 2.1. (1): We cover Zo,. with finitely many affine open sub-
schemes Spec( ) such that each 7 is a finitely generated Ok -algebra. Set A; :=
;R0 Ky and ;1= ®0,, K. It is sufficient to show that Reda,  [spec(a;)en

Spec(4;)® — Spec(«) is anti-continuous for each i. Every closed subset of

Spec(4) can be written in the form
Viay={pe Spec(,;z’%:) : ]?J(p) =0 for all 5},

where @ is an ideal of 7 generated by finitely many J:"; € . Choose fj € < whose
image in & is f;. One can see that x € Spec(A;)*" satisfies f;(Reda,, (2)) =0
if and only if f; € Og(,,(x)) belongs to the maximal ideal. So

Redy,, (V(a)) = {z € Spec(A4;)™ : |f;]. < 1 for all j},

which is open.

(2): Let n > 1 be an integer such that n.%p, is a line bundle on 20, . Let
W’ be an open subscheme of X and let s be a local section of Lg, over W’'. We
are going to show that W'*" — R, z s |s|“xu (), is continuous.
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For each x € W', we choose an affine open neighborhood # = Spec(&)
of Reday, (r) such that n%p, 1is trivial over #'. Set A := & ®o,, K, and
W := Spec(A). Since Red oy, (z) is contained in the Zariski closure of p,(z)
in Zoy,, W contains p,(z). Fix a local frame 1 of n.Zp, over #, and write
s = fnlw with f € A. Then

|s|“0 () = |1/

is continuous over W?" by definition of the Berkovich topology. So we are done.

(3): Tt suffices to show the “if” part. We can assume s # 0. The section s®"
can be regarded as a non-zero rational section of n.%y on 2y, so it suffices to
show that the Cartier divisor div gy, (s¥™) on 2 is effective.

Claim 2.3. It suffices to show
(2.8) ordz(divg (s¥")) > 0
for every vertical prime divisor Z on Zy .

Proof of Claim 2.3. There exists a non-empty open subset U’ C U such that s®»
extends to a global section on Zy+. Let # = Spec(«/) be an affine open subscheme
of 2y such that n.%y is trivial with local frame 1. We can write s®™ = fn with a
rational function f on #'. The domain of f contains # N 2y and all the generic
points of the vertical fibers of #'. So, by Lemma 2.4(3) below, we have f € /. [

Suppose that Z is lying over a place v € U. We define | - |z by

~ _ _ordgz(¢) .
(tK,) =T i ¢ #0,
if =0

9|z ==

for ¢ € Rat(Xk, ), where Rat(X, ) denotes the field of rational functions on X, .
Then |-|z gives a norm on Rat(Xk, ) extending |- |, on K, so ||z corresponds to a
point zz € X3". Note that p,(zz) is the generic point of X, and Redap, ., (xz)
is the generic point of Z, so xz belongs to the Shilov boundary of X3" (see [1,
Proposition 2.4.4]). Let f be a local equation defining div g, (s®") around the
generic point of Z. Then

~  ordg(f)
(Isl“0me (22))" = [s®" "0 (22) = |f|2 = (HK,) "= <1,

so ordz(divg (s®™)) = ordz(f) > 0. O

Lemma 2.4. Let A be a Noetherian integral domain and let S be a multiplicative
subset of A\ {0}. Suppose that A is integrally closed in S~1A.
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(1) Let a € A\ {0} and let p be a prime ideal of A associated to aA. If pN S is

non-empty, then A, is a discrete valuation ring and p has height one.

(2) For any prime ideal B of A such that PN S # 0, one has
depth(Ayp) > min {ht(0), 2}.

(3) One has
A=S7An () Ay
PNSHAD
b () =1

Proof. (1): Let w € pN S. There exists a b € A such that p = {z € A: zb € aA}.
So pA, ={x € Ay : 2b € aA,} and wb € aA,.

Claim 2.5. pA, is an invertible ideal of Ay.

Proof of Claim 2.5. We have ba™t € (pAy) ™' N Ay[1/w] and ba~! ¢ A,. Suppose
that (ba—')pA, is contained in pA,. Since A, is Noetherian, we can see by the “de-
terminant trick” (see 21, Theorem 2.1]) that ba~! € A,[1/w0] is integral over A,.
On the other hand, by the hypothesis, A, is integrally closed in A,[1/w], which is
a contradiction. Hence (ba™1)pA, = A,. O

By Claim 2.5 and [21, Theorem 11.4], A, is a discrete valuation ring and p has
height one.

(2): Since PN S # 0, Ap has depth > 1. Suppose that ht(P) > 2. Let
T €PNS. P C UpeASSA(A/zlA) p, then P C p for a p € Assa(A/z1A) (see [21,
Exercise 1.6]), which contradicts (1). So one can take an

z2 € P\ U p.

pEAssa(A/z1A)

By [21, Theorem 6.1(ii)], z2 € PAg is (A /21 Agp)-regular. So, Ay has depth > 2.
(3): Let a € A\ {0} and let

ad= () I

pEAssa(A/aA)
be a reduced primary decomposition of aA, where I(p) is p-primary in A.

Claim 2.6. One has

(2.9) S~HaA)N A= N I(p).
pEAssa(A/aA)NSpec(S—1A)
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Proof. Since
§7H(ad) = N S~ (p),

pEAssa(A/aA)NSpec(S—1A)
it suffices to show S~ I(p)NA = I(p) for p € Assa(A/aA)NSpec(S~1A). Suppose
that sx € I(p) for s € S and z € A. If © ¢ I(p), then s is a zero-divisor for A/I(p)
and s ¢ p, so it is a contradiction. Hence, « € I(p). O

On the other hand, by (1),
(2.10) I(p)=aA,NA
for every p € Assa(A/aA) \ Spec(S~tA). So

(2.11) aA=(aSTTANA)N N (ady N A).
PEAssa(A/aA)\Spec(S~1A)
If
ba”t € STTAN (] Ag,
PBNSAD
ht(P)=1
then by (2.11) we have
be (aSTTANA)N N (aAp N A) = aA,

PeAssa(A/aA)\Spec(S—1A)
and so ba"! € A. ]

Lemma 2.7. Let L be a line bundle on X.

(1) There exists an Og-model (Z',%) of (X,L) such that £ is a line bundle
on 4.

(2) Let U be a non-empty open subset of Spec(Ok) and let (Zy,Zy) and
(2, ;) be two U-models of (X,L). There then exists a non-empty open
subset Ug C U such that 2y, and 27 are Ug-isomorphic and Ly, = <7, as
Q-line bundles.

Proof. (1): Since X is projective, L can be written as a difference Ly — Ly of two
effective line bundles. Each —L; endowed with a non-zero global section of L; can
be regarded as a locally principal ideal sheaf I; of Ox.

Let 27 be an Og-model of X, let J; be the kernel of O, — Ox /I, and let
w1 : o — 27 be the blow-up along J;. So & := J10 4, is invertible and 25 is
an Og-model of X. Let Jo be the kernel of Oy, — Ox /I, let uy : 23 — 25 be
the blow-up along Js, and let % := J304,. Then 2 := 23 is an Og-model of X
and .2 = pu34 ® f2®(71) is an invertible sheaf extending L.
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(2): Let n > 1 be an integer such that both n.Zyy and n.Z}; are line bundles.
Let 2/ be the Zariski closure of the diagonal idx x idx : X — 2y xu 2}
in 2y xy Z7,. We then have two birational projective U-morphisms 2y -2
27 Yo, 2. The two line bundles ¢y, (n.%y ) and ¢f; (n.Z};) on 2} are isomorphic
over the generic fiber X. So, by [15, Corollaires (8.8.2.4) et (8.8.2.5)], one can find a
Uy C U such that ¢y, and ¢y, are isomorphisms and o7, (n%7,) and 9, (n27,)
are isomorphic. O

Lemma 2.8. Let j : Y — X be a morphism of projective varieties over K and
let L be a line bundle on X. Let U C Spec(Og) be a non-empty open subset.
Let (Zu,%y) be a U-model of (X, L), let %y be a U-model of Y, and let jy :
%y — Xy be a U-morphism that extends j. Then, for any P € U, any local section
s of L, and any y € Y3",

k1T 2 .
5PV TORe (y) = || %P (5B ().

Proof. Set z := j¥(y). Note that

pr(z) =j(pp(y)) and Reda,, (z)=ju(Reds,, (y))-

Let n > 1 be an integer such that n.Zy is a line bundle. Let n be a local frame
of n%o,., around RedgyoKP () and set s(pp(x)) = fn(pp(x)) in LY (z) with
f € k(pp(x)). Then jin is a local frame of ji;(nZo, ) around Redg/OKP (y), and
() (pp(y)) = (57 1) GEm(pp(y)). So

s 1I0L - Z
57770k (y) = 157 fly = flo = [s]7 % (2). .

Definition 2.9. Let S be a finite subset of Mk containing co. An S-adelically
metrized line bundle on X is a pair L = (L, (|-|%)yenr\s) of a line bundle L on X

and a collection (| - |£),e My \s of metrics having the following properties:

(a) For every v € Mg \ S, | - £ is a continuous metric on L2".

(b) There exist a non-empty open set U C Spec(Ox )\ S and a U-model (2, £17)
of (X, L) such that |- |5(z) = |- |$OKP (x) on X@" for every P € U.

By Lemma 2.7, there exist a non-empty open subset U C Spec(O ) and a U-model
(Zu,Zy) of (X, L) such that (Zy, L) satisfies condition (b) above and % is
a line bundle on 2. We call such a U-model a U-model of definition for L.

An adelically metrized line bundle on X is a pair L = (L, (| - |)venr, ) such

that T .= (L, (]- |UZ)U6M§() is an {oo}-adelically metrized line bundle on X and

| -|% is a continuous Hermitian metric on L2 such that for every x € X" and
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every local section s of L3,
(2.12) |Foos| (@) = |s](x),

where Fo, : ¢ — T is complex conjugation on X3. The Z-module of all adelically
metrized line bundles on X is denoted by Pic(X), and an element in Picg(X) :=
Pic(X) ®z Q is called an adelically metrized Q-line bundle on X.

Let L = (L, (|- |UZ)U€MK\S) be an adelically metrized line bundle on X, let s be

an
v

a non-zero rational section of L, and let v € M. Suppose that x ¢ Supp(div(s))
50 py () ¢ Supp(div s). Let f be a regular function defined around p, (z) such that
fs is a local section of L around p,(x) and f(p,(z)) # 0. Then we can define

|sls (@) = |fsly (2)/|fa
which does not depend on the choice of f.

Remark 2.10. (1) Let L be an adelically metrized Q-line bundle in our sense, let
n > 1 be an integer such that nL is an adelically metrized line bundle, and let s
be a non-zero rational section of nL. Then

(1/71) (diV(S), (72 log |S|ZL)UEJWK)
is an adelic arithmetic R-divisor in the sense of Moriwaki [24].

(2) Let Kx := H°(Ox) and let K C K’ C Kx be a subextension. Given a
finite place v of K and a point z € X2, we can restrict | - |, to K’ and obtain a
place w of K’ lying over v. Thus we have

e =X
wlv
where w runs over all finite places of K’ lying over v. So, in particular, the notion
of adelically metrized line bundles does not depend on the choice of K.
(3) Let 2 be a projective arithmetic variety over Ok, let £ be a Q-line

bundle on £, and let n > 1 be an integer such that n.%x is a line bundle on 2.
To .£ we can associate an {oo}-adelically metrized line bundle

2= (1/n) (n L, (| - ["7Oxr Jpentt,):

and to a continuous Hermitian Q-line bundle .Z on 2" we can associate an adeli-
cally metrized Q-line bundle

—ad n.Z neg
P = (1) (nZic, (| 2050 Y g U (|- [22)).
(4) For each v € M, we define the trivial metric || on 0%, as the collec-

—triv

tion (|- |4)zexan of the norms |- |, on k(py(2)). Then Oy := (Ox, (|- [¥)yenry ) is
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an adelically metrized line bundle on X. For any continuous function A : X" — R,
we set

Ox(A[P]) := (Ox, (lwp ] - 1B U (| 5™ )versi\1P})
and for any continuous function A : X3 — R that is invariant under the complex
conjugation, we set

0x (A[oe]) := (Ox, (exp(=N)| - &) U (|- [ )venrs, )-
Let m : 2" — Spec(Ok) be an Og-model of X. If A € Q, then the adelically
metrized Q-line bundle on X associated to A(Q o (7~1(P)), | - |%1V) is Ox (A[P]).

Let L = (L, (|- |E)yenr, ) be an adelically metrized line bundle on X. For each
v € My, we define the supremum norm of s € H°(L) @ K, by

(213) ||S||1€,sup = sup |S|1l;/(x)
zEXan
Then
(2.14) Vo= H (L), (|| - 1% aup)oerre)
m>0

is an adelically normed graded K-linear series belonging to L, and we write, for
short, Tf(mL) :=T(V,,),

I'(mL):=T"(V,,), Bs'(mL):=Bs"(V,,), and BY(L):=B'(V.),
where 7 = ss or s. We refer to a section in fss(f) as a strictly small section of L.
Since B’(mL) = BY(L) for every m > 1, we can define B”(L) for every adelically
metrized Q-line bundle L.

Let (Zv, %) be a U-model of definition for f{oo} and let vy : 2, — Zu be
a relative normalization in X (Definition 2.2). Then we have a natural injection

(2.15) (L) — H(vj, %)
(Lemma 2.1(3)).

Definition 2.11. The arithmetic volume of an adelically metrized line bundle L
is defined as

—~ logﬁfss(mf)
(2.16) vol(L) := linjgop T X (dim X 1)1

(Note that in the original definition in [24], Moriwaki uses IS(mL) instead of
['ss(mL). These two definitions are actually equivalent by continuity of the volume
function.) We recall the following results (see [24] for details).
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(1) The limsup in (2.16) is actually a limit.
(2) For any adelically metrized line bundle L and for any a > 1, \T&(af) =

qdim X+1 @(Z). In particular, we can define vol for adelically metrized Q-line
bundles on X.

Positivity notions for adelically metrized Q-line bundles are defined as follows.

(effective): An adelically metrized line bundle L on X is said to be effective if
I'S(L) # {0}. For Ly, Ly € Pic(X), we write Ly < Ly if Ly — Ly is effective.
(big): We say that an adelically metrized Q-line bundle L is big if \a(f) > 0.

(pseudoeffective): We say that an adelically metrized Q-line bundle L is pseu-
doeffective if L + A is big for every big adelically metrized Q-line bundle A.
For Lq,Ls € Picg(X), we write Ly = Ly if Ly — L is pseudoeffective.

Example 2.12. Unlike the geometric case (Zariski’s theorem on removable base
loci), B**(L) can contain an isolated closed point. Let 2" := P% be the projec-
tive space and let .Z := O 4 (1) be the hyperplane line bundle. We consider the

Hermitian metric | - | on .Z defined by

ENE

Xoyxozu-:de::
Kol ( ) max{ad|zo|?, ..., a3|zq?}’

d

and set Z = (L, |- |9). If a; > 1for j #iand 0 < a; < 1, then Bs(Z") =

{(0:~~~:O:i:0:~~~:0)}.

Proposition 2.13. Let L = (L, (|- |HZ)U€M§{) be an {oco}-adelically metrized line

bundle on X and let U be a non-empty open subset of Spec(Ok).

(1) For any U-model of definition (Zy, Ly) for L and for any € > 0, there exists
an Og-model (22, Z.) such that Z: Xgpec(o) U is U-isomorphic to 2y,
Ll oy, = Ly as Q-line bundles, and

gg T :ZE
exp(—e)| - [77%r (2) < |- [B(2) < exp(e)] - [T %P ()
for every P € Spec(Ok) \ U and every v € X¥".
(2) If L is nef, then the following are equivalent:

(a) For any U-model of definition (2v,Ly) for L and for any € > 0, there
exists an O -model (22, Z.) such that 2z Xgpec(0y) U is U-isomorphic
to Zu, ZLela, = ZLu as Q-line bundles, Z. is relatively nef, and

exp(—e)| - [ Oxr (2) < |- [B(z) < exp(e)| - |Oxr ()

for every P € Spec(Ok) \ U and every x € X3".
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(b) For any U-model of definition (Zy, £y) for L and for any rational € > 0,
there exist O -models (22, Z. 1) and (2=, 2. 1) such that 22 Xgpec0,)U
is U-isomorphic to Zy, Leila, = Zu as Q-line bundles, Z. ; are rela-
tively nef, and

exp(—e)|-[B(z) < |7 0%p () < |- (2) < [ 729> (2) < exp(e)]|5 ()

for every P € Spec(Ok) \ U and every x € X3".

Proof. For (1), we refer to [24, Theorem 4.1.3] (see also [7]). We are going to show
the equivalence (a)<(b) in (2). The implication (b)=-(a) is clear since we can take
a rational 0 < &’ < ¢ and set £, := 2 1.

(a)=-(b): By (a), given any rational € > 0 we can find an Og-model (Z;,.Z.)
such that 27 Xgpec(0y) U is U-isomorphic to 2y, Z2| 2, = £y as Q-line bundles,
%, is relatively nef, and

! Ze, T o ..
jwrlp] - [Z0ke (2) < |- [B(2) < |wplp] - |70k ()

for every P € Spec(Ok)\ U and = € X", where €’ is a rational number such that
€

0<e' < —nv7——.
—log|wp|p

Let 7. : 2z — Spec(Og) denote the structure morphism and set

Ley=L— Y 0y (r7'(P)) and Lpi=L+e Y Oy (n7'(P)).
P¢U PgU
Then
25 ga
|- | -]

1.0k, |WP|§D/| . |$E’OKP and 20K, |wP|;>E/| ) Ifg,OKP . 0

Definition 2.14. Let L = (L, (| - |%)venr, ) be an adelically metrized line bundle
on X and let * € X(K) be an algebraic point on X. Let K(x) be a field of
definition for = such that K(x)/Q is finite, that is, K (z) is a number field that
contains the residue field k(z) of the image of . For each P € M}, we have
a canonical isomorphism K(z) @ Kp = @le K(z)q (see [8, Chap. VI, §8.2,
Corollary 2]), so

(2.17) [K(aj):K]:[K(m)@KKp:Kp]:Z[K(m)Q:Kp].
QP

We can choose a non-zero rational section s of L such that z ¢ Supp(div(s)). For
v e ML, we set

(2.18) deg, (div(s)|,) = — D _[K(2), : K] log|s[E(2®),

wlv
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where w runs over all finite places of K (z) lying over v, and 2% € X3 is the point
corresponding to (k(2)w, w|k(z)). For v = oo,

(2.19) deg (div(s)l,) :=— > logls|% (27).
o:K(z)—C
We then define the height of x by

(220) @) = o O ARV,
veEMK

which does not depend on the choice of K (z) and s. For L, M & f/’i:c\(X), we have
ht  57(%) = hp(x) + hyp(z), so we can define h(x) for every L € Picg(X).
(nef): We say that L € Pic(X) is nef if:

(a) L is nef.

(b) The {oo}-adelically metrized line bundle Tt satisfies the equivalent
conditions in Proposition 2.13(2).
(¢) The curvature current of (L2, |- |L) is semipositive.

(d) For every x € X(K), the height hi(x) is non-negative.

An adelically metrized Q-line bundle L is said to be nef if some multiple of L
is nef.

(integrable): We say that L € lgi\cQ(X) is integrable if L is a difference of two
nef adelically metrized Q-line bundles. Denote the Q-vector space of all the
integrable adelically metrized Q-line bundles on X by Int(X).

Proposition 2.15. (1) There exists a unique map
deg : Picg(X) x Int(X)*dmX R,
(Lo; Ly, - -+, Laim x) = d/%(fo Ly Laim x),

having the following properties:

(a) deg is multilinear and the restriction deg : h/;t(X)X(dimX+1) — R s

symmetric.
(b) If L€ ﬁQ(X) is mef, then (Te\g( = ;(;l(f).
(c) If Lo is pseudoeffective and Ly, ..., Laim x are nef, then

z'(dimX-&-l))

d/e\g(ZO'zl"'zdimX) > 0.
(2) For A€ R and for Ly,...,Laimx € I/n\t(X), we have

d/e\g(6x()\[oo}) 'Zl . 'ZdimX) = [K : Q])\degK(Ll . "LdimX>-
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(3) Suppose that X is normal, and let ¢ : X' — X be a birational projective
K-morphism. Then

].Si\CQ(X/) « I/n\t(X/)xdimX &) R

Lp*x(dim X+1)T
deg

Picg(X) x Int(X)*dimX =€,

18 commutative.

Remark 2.16. The above map d/e\g gives a unique extension of the classical arith-
metic intersection numbers of C°°-Hermitian line bundles.

If Ly,...,Laimx and My, ..., Mgim x are nef adelically metrized Q-line
bundle on X and L; < M; for every 4, then, by the successive use of property
(c) of Proposition 2.15(1), we obtain

(T%(fo - Laimx) < fTeTg(MO oo M gim x)-

Proof of Proposition 2.15. (1): We refer to [24, §4.5], [16, proof of Lemma 2.6],
and [24, Proposition 4.5.4].

(2): If L; are associated to C°°-Hermitian line bundles on some Ox-model
of X, then the assertion is clear. In general, we can show the result by approxima-
tion (Proposition 2.13).

(3): If L; are associated to continuous Hermitian line bundles on an O x-model
of X, then the assertion follows from the projection formula [18, Proposition 2.4.1]
(see also [16, Lemma 2.3]). In general, we can assume that Ly, ..., Lqim x are nef
and approximate them by nef continuous Hermitian line bundles on a suitable
Og-model of X. O

§3. Basic properties of base loci

In this section, we collect some elementary properties of the augmented base loci
of general graded linear series. Let X be a projective variety over a field k, and let
L be a line bundle on X. Recall that the base locus, the stable base locus, and the
augmented base locus of L are respectively defined as

Bs(L) :=BsH(L), B(L):= (] Bs(mL), By(L):=()|B(aL - A),

where A is a fixed ample line bundle on X and B, (L) does not depend on the
choice of A. By homogeneity, we can define the stable base locus and the augmented
base locus for all Q-line bundles on X.
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To a k-linear series V. C HY(L), we can associate a k-morphism denoted by
(3.1) Dy X\ BsV = P(V).

A graded k-linear series V, = @mZO Vi belonging to L is a graded k-subalgebra of
D..>0 H°(mL). Let V, be a graded k-linear series belonging to L, let A be a line
bundle on X, and let @ > 1 be an integer. We define a k-linear series belonging to
alL— A as

) Image(Ho(pA) 87, Ho(paL)) C Vpa>
k

(3.2) A(V,; A a) = <S
for every sufficiently large p

It is clear that Bs A(V,;nA,na) C BsA(V,; A, a) for every n > 1. Thus, if we set

(3.3) B(V,; A a) := ﬂ BsA(V,;nA, na),
n>1
then B(V,; A, a) = Bs A(V,;nA, na) for every sufficiently divisible n.
Let p: X’ — X be a birational k-morphism of projective k-varieties and let
V., be a graded k-linear series belonging to a line bundle L on X. If X is normal,

then H°(mL) w HO(u*(mL)) for every m > 1. We define the pull-back of V, via
W as

(3.4) WV, = @ Image(Vm LN Ho(p*(mL)))

m>0

Definition 3.1 (see [9, Definition 2.2|). We define the augmented base locus of V,

as
(3.5) B.(V.):= [) BsA(Vi;4,a),
A ample
a>1

where the intersection is taken over all ample line bundles A on X and all positive
integers a.

Lemma 3.2. Let V, be a graded linear series belonging to L.

(1) If A, B are line bundles on X, then for a,b>1,
B(V.;4,a) C B(V.; B,b) UB((1/0) B — (1/a)A).

(2) BL(V,) =B(V,; A, a) for any ample line bundle A and every a > 1.
(3) If A is semiample, then Bs A(V,; A,a) D B(V,) for every a > 1.
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(4) Let p: X' — X be a birational k-morphism of projective k-varieties. If X is
normal, then
BsA(u*V.;p*A,a) = p~ ' BsA(V,; A, a).
(5) The following are equivalent:

(a) L is ample and V,,, = H°(mL) for every sufficiently divisible m > 1.
(b) For some a > 1, ®y, : X — Pp(V,) is a closed immersion.
(c) BL(V.)=0.

Proof. (1): Suppose that = ¢ B(V,; B,b) UB((1/b)B — (1/a)A). There exists an
n > 1 such that « ¢ Bs(n(aB — bA)) and x ¢ Bs A(V,;naB,nab). We can find an
s € A(V,;naB,nab) and a t € H°(n(aB — bA)) such that s(z) # 0 and t(z) # 0.
Set s’ :==s®t € H(nb(aL — A)). Then s'(z) # 0 and

Image(HO(pnbA) &, H°(pnaB) LN HO(pnabL)) C Vpnab

for every p > 1.
(2): Since X is a Noetherian topological space, there exist ample line bundles
Bi, ..., B, and positive integers b1, ..., b, such that

B, (V.) = [ BsA(Vi; Bi, by).
i=1
We can find an ag > 1 such that (1/b;)B; —(1/ag)A is ample for all i. Then by (1),
we have B, (V,) = Bs A(V}; A, a) for every a > ag.

(3): Suppose that = ¢ BsA(V,; A,a). Since A is semiample, there exist a
p>1,atec H'(pA), and an s € H(aL — A) such that t(x) # 0, s(z) # 0, and
t ® s®P € Vp,. Thus = ¢ B(V,). Assertion (4) is clear.

(5): The implications (a)=(b) and (a)=-(c) are clear.

(b)=(a): Let P :=Py(V,) and let Op(1) be the hyperplane line bundle on P.
Since aL = @}, Op(1), H*(Op(p)) = Symj, Vo — H°(palL) is surjective for every
p>> 1. Thus V,, = H(palL) for every p > 1.

(¢)=>(b): One can find a very ample line bundle A and an ¢ > 1 such that

B, (V,) =BsA(V.; A a) = 0.
There exist sg,...,s, € H’(aL — A) and a p > 1 such that
{reX:so(z)=-=s.(x)=0}=0

and
®s2P
Image (HO(pA) — Ho(paL)> C Vpa
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s®P. Since

 Er

for all i. Denote by ® : X — P} the k-morphism defined by s?p, e

X 2250 b (HO(pA)) x i PL S22y (HO(pA) @y (sEP, ..., sBP)) is a closed
immersion, so is Py, . O

Let p: X’ — X be a morphism of k-varieties. The exceptional locus of p is
defined as the minimal Zariski closed subset Ex(u) C X’ such that

(36) /’["X’\Ex(p) (X! \ EX(M) —- X

is an immersion. If p: X’ — p(X’) is not birational, then Ex(u) is defined as X’.

Lemma 3.3. Let pu: X' — X be a birational projective k-morphism of k-varieties.
If X is normal, then

Ex(p) = U Z'.
z'cX’
dim Z’'>dim pu(Z’)
Proof. The inclusion D is clear, so we are going to show the reverse. By [14,
Proposition (4.4.1)], one has

Ex(p) = {2’ € X" : dimg p~ (p(2")) > 1}

and =t (u(Ex(p))) = Ex(p). Given any closed point 2’ € Ex(u), there exists
an irreducible component Z’ of p~(u(z’)) such that Z’ passes through z’ and
dim Z' > 1. Since u(2’) is a closed point of X, one has dim Z’ > dimp(Z'). O

Lemma 3.4. Suppose that X is normal. Let V, be a graded k-linear series belong-
ing to a line bundle L on X.

(1) B+(Va) = Nu.xrmx #(By(n*W)), where the intersection is taken over all
projective birational k-morphisms p onto X.

(2) Let p: X' — X be a birational k-morphism of projective k-varieties. Then
By (Vo) = p "By (V.) UEx(p).

Proof. (1): The inclusion D is obvious by definition. The reverse follows from the
following claim.

Claim 3.5. For any p: X' — X, we have B (V,) C u(B,(*W,)).

Proof of Claim 3.5. Let A be an ample line bundle on X. Suppose that = ¢
w(B(u*V,; A’,a)) for a positive integer a and an ample line bundle A’ on X’ such
that A’ — u* A is ample. Since

pIB(Ves Asa) = B(u'Vis p* A a) € B(u'Vi; A a)
by Lemma 3.2(1), (4), we have = ¢ B(V,; A, a). O



RESTRICTED VOLUMES AND BAse Locr 455

(2): Suppose that 2’ ¢ B(u*V,; A’, a) for an ample line bundle A’ on X’ and an
a > 1. Since B(u*V,; A',a) D B(u*L—(1/a)A’) D Ex(u) (see [19, Lemma 3.39(2)]),
we see that 2’ ¢ Ex(u). Thus by (1), we have u(z’) ¢ B4 (V).

To show the reverse, we assume that 2’ ¢ u='B_ (V,)UEx(u). By [4, Proposi-
tion 2.3], we can find an ample line bundle A on X, an ample line bundle A" on X',
and an a > 1such that z’ ¢ Bs(u*A—A") = Ex(u) and that 2’ ¢ B(u*V,; u*A,a) =
p B4 (V,). Thus 2’ ¢ B(u*V,; A’,a) by Lemma 3.2(1). O

Lemma 3.6. (1) For positive integers m,n,

EX((I)V

mn

YUBS(Vinn) C Ex(®y,,) UBs(V,y,).
(2) For every sufficiently divisible n,

Ex(®y,) UBs(V,) = (1] (Ex(®v,,) UBs(Vin)).

m>1

Proof. (1): Set Q := Coker(V,2"™ — V,,,,,). Considering the commutative diagram

X\ (Ex(@v,,) UBS(Vin)) — 25 Py (Vinn) \ Pi(Q)

Segre emb.
Pe (V)" P PL (V")

we find that Py,

mn

: X\ (Ex(®y,,) UBs(Vi)) = Pi(Viny) is an immersion.
(2): Since X is a Noetherian topological space, one can find positive integers
mq, ..., m, such that

T

() (Ex(®v,,) UBs(Vin)) = [ (Ex(®v,,,) UBS(Von,)).

m>1 =1

Thus by (1) we have

() (Ex(®v,,) UBs(Vin)) = Ex(®v,,,. ...) UBS(Vam,.m,.)

m>1

for every a > 1. O
Lemma 3.7. For any graded k-linear series V, belonging to L,

B, (V.) D () (Ex(®y,,) UBs(V,)).

m2>1

Proof. We choose a very ample line bundle A on X and an a > 1 such that
B(V,) = Bs(V,) and B4 (V,) = BsA(V,; A, a). Fix a basis s, ..., s, for A(V,; A,a)
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and take a p > 1 such that
®s®p
Image(HO(pA) — Ho(paL)) C Vpa

for all i. Let ® : X\Bs A(V,; A, a) — P}, be the k-morphism defined by 557, ..., s&P
and set Q := Coker(HO(pA) @y, (s§7,...,52P);, — V,q). Considering the commu-
tative diagram

Pvpa

X\ Bs(Vpa) Pe(Vpa) \ Pr(Q)

T |

P, [} egre
X\ BsA(Va; 4, 0) XS B (HO (pA)) x4 B —25% PL(HO(pA) @1 (57, s57)1)

we conclude that ®y,, is an immersion over X \ B, (V}). O
The following was proved in [10, 5].

Theorem 3.8. Suppose that X is normal, and let L be a line bundle on X.

(1) BL(L) is characterized as the minimal Zariski closed subset of X such that
the restriction of the Kodaira map

.1 0 X \ Bs(mL) — Py (H(mL))
to X \ BL (L) is an immersion for every sufficiently divisible m > 1.
(2) B.(L)= |J =z
ZcX
volx|z(L)=0
Proof. If k = H°(Ox), then by passing to the algebraic closure k, we can apply
[5, Theorems A and B]. In general, since the natural morphism P o ) (H°(mL))

— P, (H®(mL)) xj Spec(H°(Ox)) is a closed immersion, we can easily deduce the
result from the case of k = H°(Ox). O

Remark 3.9. In Theorem 5.6 and Corollary 7.14, we show results analogous to
Theorem 3.8 under the conditions that X is a normal projective variety over a
number field K and V, = @mZO<FSS(mf)>K for an L € Pic(X).

§4. A result of Zhang—Moriwaki

In this section, we give a simple proof of the Zhang—Moriwaki theorem (see [23,
Corollary B] and Theorem 4.3 below). The proof is independent of the previous
sections except Lemma 3.7. Our method can recover [23, Theorem A] but is not
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powerful enough to recover the arithmetic Nakai-Moishezon criterion (see [23,
Theorem 3.1]). Let X be a projective variety over a number field K, and let L be
a line bundle on X.

Lemma 4.1. Let V, be an adelically normed graded K-linear series belonging
to L. If 'V, is Noetherian, then the following are equivalent:

(1) Vi = TV ,)) i for every m > 1.
(2) For some integer a > 1, Vg = (I (Vna)) k for every m > 1.
Proof. The implication (1)=(2) is clear, so we are going to show (2)=-(1).

Claim 4.2. The Veronese subalgebra

(4.1) V) = P Vna

m>0
is also Noetherian and V, is a finitely generated V.® -module.
Proof. This is well-known (see [8, Chap. III, §1.3, Proposition 2]). O

By [8, Chap. III, §1.3, Proposition 3|, we can replace a with a high multiple
of a and assume that V® is generated by V, over Vj and V,, = (T**(V,)) k.
Let aq,...,ap € Vy be generators of V) over K and let

(Vo) \ {0} = {s1,...,5}.

By Claim 4.2, we can take generatorst; € Vy,,,...,t, € V,,, of V, asa V.(“)—module.
Then

Vi = Z (Ka1+...+Kaq)s?il®...®s;®iq®tj
a(ir+-+ig)+n;=m
for every m > 1. If 41 + - - - 4+ i, is sufficiently large, we can see that
sPh @@ 5P @ (anty) € (T¥(Vi)) i
for every k,j. So V,,, = <fSS(Vm)>K for every m > 1. O

Theorem 4.3. Let X be a projective variety over a number field K, and let L be a
line bundle on X . Let V, be an adelically normed graded K -linear series belonging
to L. Suppose that:

(a) V., is Noetherian.

(b) B=(V.) = 0.

Then Vi, = (T55(V )V i for every m > 1.
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Proof. Thanks to Lemma 4.1, we can assume Bs(V,,) = ]/B\SSS(Vm) = () for every

m > 1. We divide the proof into two steps.

Step 1. First, we suppose that V, is generated by Vi over K, so, in particular,
Vo = K. Let P := Pg(V1), let Y := &y, (X) be the image, and decompose the
morphism @y, into X 2V — P. Let Op(1) (respectively Oy (1)) be the hy-
perplane line bundle on P (respectively Y). For every m > 1, the image of the
homomorphism

(4.2) 5 HO(Op(m)) = Symp Vi =5 HO(Oy (m)) 2 HO(mL)

coincides with V,,.
For each m > 1, let

(4.3) Wi 1= (@) 7 (T5(Vn)) )

a K-subspace of H°(Oy(m)). Then W, forms a graded K-linear series belonging
to Oy (1). We can choose an a > 1 such that the restriction

(4.4) H%(0p(m)) — H"(Oy(m))

is surjective for every m > a, and the homomorphism
(4.5) Symf H%(0y (a)) - H(Oy (pa))
is surjective for every p > 1.

Claim 4.4. For any y € Y, there exists an s € Wiy such that s(y) # 0 and
O*s € I'5(Vy).

Proof of Claim 4.4. We can find an so € H°(Op(1)) such that so(y) # 0 and
®}. 5o € I*5(V1). Then the restriction s := soly has the desired properties. O

Claim 4.5. Lety € Y and s € Wy be as in Claim 4.4. There exists an integer
b > 1 such that

s®pb
tmage( H*(Oy (pa)) 2 HO(Oy (p(a + b)) € Wiaty
for every p > 1. In other words, s®* € A(W,; Oy (a),a +b).

Proof of Claim 4.5. Fix a K-basis e1,...,e, for H%(Oy(a)). By (4.2) and (4.4),
®*e; € V, for every j. Hence we can find a b > 1 such that

" (e; @ 57°) = (B"e;) @ (275)°" € ([ (Vars))
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for every j. Since by (4.5), Symh H°(Oy(a)) — H%(Oy(pa)) is surjective for
every p, the claim follows. O

By Claim 4.5, we have y ¢ BsA(W,; 0Oy (a),a + b), and B, (W,) = (. By
Lemma 3.7, a K-morphism Y — Q := Pg(W.) associated to W, is a closed
immersion for some ¢ > 1. Let Og(1) be the hyperplane line bundle on Q. Since
the top horizontal arrow of the diagram

H(0g(m)) = Sym§ (W) —=—— H°(0y (mc))
J |-
<fss (Vmc»K Vmc

is surjective for every m > 1, we have (fSS(VmC»K = Vine for every m > 1. By
using Lemma 4.1 again, we conclude the proof.

Step 2. Next, we consider the general case. By [8, Chap. III, §1.3, Proposition 3|
and Lemma 4.1, we can assume without loss of generality that V, is generated
by V1 over Vy. Let W, be the graded K-subalgebra of V, generated by V;. Each
W,, (m > 0) is endowed with the subspace norms (|| - || ),ear, induced from

(- 1)

vEMK -

We choose a suitably small & > 0 and replace ||- |V with exp(em)]|- || . By
applying the above arguments, we can find an mg > 1 such that, for every m > my,
W,, is generated over K by its strictly small sections with || - ||
Let o,...,ap € ff(Vo) be generators of V over K. Then

m < exp(—em).

Vin = (Kay + -+ Ka,)W,,
is generated by its strictly small sections for every m with

log J|ot ]| 5 log [l oy || 5 } =

PR

m > maxy mo
€ €

Remark 4.6. There are many graded linear series V, such that V, are Noetherian,
B(V,) =0, and V,,, # H°(mL) for every m > 1. Suppose that a line bundle L on
X is free and let 1 : Y — X be a morphism such that H(mL) — H°(u*(mL)) is
not surjective for every m > 1. Then @, #*(H°(mL)) gives an example.

In the rest of this section, we apply Theorem 4.3 to the case of adeli-
cally metrized line bundles (Corollary 4.10). Suppose that X is normal. Let
L = (L,(] - |Y)venry) be an adelically metrized line bundle on X such that

Iss(mL) # {0} for some m > 1. For each m > 1, let

(4.6) by = Image((fss(mf»K ®K (—mL) = Ox)
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be the ideal sheaf on X. Let py, : X, — X be the normalized blow-up along /b\m, let
Fp := Homo, (b,0x,,,0x,,), and let 1, € H(F,,) be the natural inclusion.

m?

Progosition 4.7. For each m > 1, we can endow F,, with an adelic metric
(| - |1E™)venrs such that, for each v € ML and each v € X2»

m,v’

(4.7) 1r, 5 (@) = max_ [s|;*" (i, (@)
sels(mL)

and, for each x € X737,
5122 (i oo ()
mL
00,sup

@)=

(4.8) £,

selss(mL) HS|
We set Frn i= (Fm, (| - |F™)oerry ) and M, := p,(mL) — Fp,.
(1) We have

®

(4.9)  T=(M,,) “=" Image(T™(mL) — H(u%,(mL))) and Bs*(M,,) = 0.

(2) M,, is a nef adelically metrized line bundle on X,,.

Proof. We take an affine open covering {Wy} of X,,, such that %, (mL)|w, is trivial
with local frame 7y, and Supp(1x,, )NW) is defined by a local equation fy. Since any
s € (IS(mI))k satisfies s € HO(mL®b,y,), we can find an s € HO(uf, (mL) — Fy,)
such that pfs =¢ ® 1, . So we can write p,s|lw, = @s.x - fr - nx on Wy, where
¢s,x is a regular function on Wy and {x € Wy : ¢sA(z) =0, Vs € Iss(mL)} = 0.
For each v € M, and each x € X"

m,v?

max_ || (ugn (@) = ( max_|oual(@)) - 1l (@) - I (@),
) L)

selss(mL selss(m

Therefore we can define |15, |F () by (4.7), which gives a continuous metric
on I, (see Section 2). In the same way, we can show that (4.8) defines a contin-
uous Hermitian metric on F" .

Let (Zv,-Zv) be a U-model of definition for ! (Definition 2.9). Since X is
normal, we can assume that 27 is also normal. By Proposition 2.13(1), given any
€ > 0, we can find an Og-model (2%, .Z;) such that 27 is normal, 27 Xgpec(0,) U
is U-isomorphic to 2y, Z.|2, = Zu as Q-line bundles, and

(4.10) |- 17050 (@) < |- [B(w) < exp(e)] - [0 (x)

for P € Spec(Ok) \ U and x € X3". For each ¢, we fix an integer n = n, > 1
such that n.%. is a line bundle on 2. By Lemma 2.1(3), we have I'f(mnL) C
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HOY(mnZ.). Let vmne: Zmne — Z= be the normalized blow-up along
Em,w = Image(Sym’éK <fss(mf)>oK Rox (—mn.) — Oggg).

Note that Emm,EOX = (Em)” Choose a normal Og-model £, . of X, dominating
Zm.n,e, 50 that we have a morphism

wvn,n,s
(4.11) Pt Zme ——

Vm,n,e
Zmne —— X
whose restriction to the generic fiber is p,, : X,,, — X. Let
ym,n@ = %Omngm,n_’E (bm7n7go%m,n,57 Og{'m,n,z)’

and let F,, o = (1/n)Y), - Fmne and Moy, o = py, (MZL2) — Fp e be Q-line
bundles on 25, .. Then (Zin.c, Fm,e) is an Ox-model of (X,,, F,).

Claim 4.8. (1) For every P € Spec(Ok) and every x € X' p,

F e mZe, n
Lp, |7 5%%e (2) = max_ |s|"%e (u3! p()).
selss(mL)
(2) For every P € U and every x € X;'p, | - E’” () =" |ﬁm’5'oKP (z).
(3) For every P € Spec(Ok) \ U and every x € X' p,

ym.s, 77—,1, 9m,s,
| [Tk (@) < |- [ () < exple)] TR (2).

In particular, (Zm.e.vs Fmev) and (Zme v, Mm.ev) give U-models of definition
for F;{noo} and M,{noo}, respectively.

Proof of Claim 4.8. Tt suffices to show (1). We decompose u,, as X, M

X = X according to (4.11). For z € X3 p, we set o' := 42 p(r) and

a" = pit p(v). By Lemma 2.8 and (2.5), we have

Lp, |75 0ke (2) = inf{| f|(«") /" : f € k(pp(a")), Lz, € FEoFmmeon, )
= max{|f|(z")/" : f € k(pp(a")), f € t2rbmnc0n, }
= max_ |s|™% 0k (27). O

selss(mI)

By Claim 4.8, the collection (|- [F),enr, is in fact an adelic metric on F,.
(1): It is obvious that I'**(M,,) C {s' : s € I*(mL)}, and, by Claim 4.9
below, we have I'**(M,,,) = {s' : s € I'*S(mL)}.

Claim 4.9. To each s € (I(mL))k, we associate an s' € H(M,,) as above.

15 > sl -

(1) For any v € Mg, we have ||s
(2) If s € T(mL), then ||s'|[ X, = [|s[|IZE,, < 1.

00,sup 00,sup



462 H. Ixoma

Proof of Claim 4.9. Assertion (1) is clear since |[1f,, ||Em p < 1 for every v € Mk,
so we are going to show (2). For each x € (X,,, \ Supp(1r,,))22,

b mT : [
‘3/|£m($) = ‘S‘OOL(Mm(a?)) . min — =8P < O

telss(mI) [¢2F (pm (2))

— H ||oo ,sup*

(2): We are going to verify conditions (a)-(d) in Definition 2.14. Condition (a)
is clear, and (d) follows from (4.9). Since n.#,, . is free, (b) follows from Claim 4.8.
(c): For each z € X2 . we choose a A and an sy € I'*(mL) such that

e Wi and ¢4, A (z) # 0, where {Wy} and {¢, »} are chosen as in the proof of

OO
Propomtlon 4.7. Then s, gives a local frame of M,, around x, and

—log 5|3 (2)? = max_ {108 65,3/ D501 1(2)” = log([ls % 5up)*}

is plurisubharmonic over {z" € W : ¢, x(2") # 0}. O

Corollary 4.10. Let X be a normal projective variety that is geometrically ir-
reducible over K, and let L be an adelically metrized line bundle on X. If
D..>0 H°(mL) is a finitely generated K -algebra, then the following are equiva-
lent:

(a) HO(mL) = (US(mL))x for every m > 1.
(b) There exists an a > 1 such that H°(aL) generates D50 H°(maL) over K
and

Image(H%(aL) ®k (—al) — Ox) = Image((fss(af»l{ ®k (—aLl) = Ox).

Proof. By [8, Chap. III, §1.3, Proposition 3], there exists an e > 1 such that
@D,,~o H(mneL) is generated by H°(neL) over H°(Ox) = K for every n > 1. So
(a)=(b) is obvious.

We are going show the reverse. For m > 1, we set

by, := Image(H(mL) ® (—mL) — Ox).

Since Sym} H%(aL) — H°(mal) is surjective, we have b, = (b )™ for every
m > 1. Let pg : Xqo — X, M,, F, be as in Proposition 4.7. Since BSSS( a) =0,
Theorem 4.3 says that HO(mMa) = (I(mM,))x C (I(maL))x for every
m > 1. Since fiqg(—mF,) D (by)™, we have

H(mM,) = H(maL ® piae(—mF,)) D H'(maL ® (b,)™) = H°(mal)

for every m > 1. Thus H°(maL) = (I**(malL))x for every m > 1. We conclude
the proof by invoking Lemma 4.1. O
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§5. Arithmetic augmented base loci

Definition 5.1. Let X be a projective variety over a number field K. Let L be
a line bundle on X, and let V, be an adelically normed graded K-linear series
belonging to L. We define the arithmetic augmented base locus of V, as

(5.1) B, (V.) =B, (([*(V.)k),

which clearly does not depend on K (see Definition 3.1). If L is an adelically
metrized line bundle on X and V, is given by (2.14), then we write By (L) :=
B, (V,). Since By (mL) = B, (L) for every m > 1, we can define B, (L) for every

o~

L € Picg(X). Let L be an adelically metrized line bundle on X.

semiample): We say that L is free if the homomorphism
( ple) y p
(T(D))k ©K Ox — L

is surjective. We say that an L € P/’i\cQ(X) is semiample if some multiple of L
is free.

(w-ample): We say that L is weakly ample or w-ample for short if L is ample
and H°(mL) = (fss(mf»K for every m > 1. We say that an L € lgi\cQ(X)
is w-ample if some multiple of L is w-ample. If L is ample in the sense of
Moriwaki [22, §0.3, (7)] or ample in the sense of Zhang ([27, Corollary (4.8)],
[28, (1.3) and Theorem (1.8)]), then L is w-ample.

Remark 5.2. The notion of w-ampleness does not depend on the choice of K. In
fact, by Theorem 4.3, the following are equivalent:

(a) L is w-ample.

(b) L is ample and there exist an m > 1 and sy, ..., sy € I**(mL) such that
{reX:s1(z)=--=sn(x)=0}=0.
We denote by 63’ i the Kodaira map

(5.2) ) : X\ Bs®(L) = Pr (T(1)) k)

(T==(D)) x
associated to (fss(f»K.
Lemma 5.3. Let A be an adelically metrized line bundle on X.
(1) The following are equivalent:

(a) A is w-ample.

(b) aA is w-ample for an a > 1.



464 H. Ixoma

(¢c) Forana>1,

50 X = Pre((T(ad) k)
is a closed immersion.

(d) Given any adelically Tetrized line bundle L on X, mA + L is very ample
and H(mA + L) = (I'(mA + L))k for every m > 1.

(e) Given any adelically metrized line bundle L on X, mA+ L is w-ample for
every m > 1.

(f) Given any adelically metrized line bundle L on X, mA + L is semiample
for every m > 1.

(2) If A is w-ample and F is semiample, then A+ F is w-ample.

Proof. (1): The implications (a)=-(b), (a)=(c), (¢)=-(b), and (e)=-(f) are trivial.
The implication (b)=-(a) is obvious (see for example Remark 5.2).

(¢)=(a): By the implication (b)=(a), we can assume a = 1. Let P :=
]P’K(@SS(Z)}K), and let Op(1) be the hyperplane line bundle on P. Since A is

o~

isomorphic to ¢% O p(1), the homomorphism
HO(0p(m)) = Sym (T (A)) x — H(mA)

is surjective for every m > 1. Hence (I*S(mA))x = H°(mA) for every m > 1.

(a)=-(d): There exists an & > 0 such that A — Ox (g[o0]) is also w-ample. We
can find positive integers a,b such that (I'5(ma(A4 — Ox(e[od)))x = H®(maA)
for every m > 1, mA + L is very ample for every m > a, and

H°(maA) @k H((ab+7r)A+ L) — H°((m +b)a+r)A+ L)
is surjective for all m,r with m > 1 and 0 < r < a. Then
(fss(ma(Z— Ox(e[oo))))kx @k H((ab+7r)A+ L) — H(((m +b)a+7r)A+ L)

is surjective for all m,r with m > 1 and 0 < r < a, so we have <fss(mz+f)>K =
HY(mA + L) for every m > 1.

The implication (d)=-(e) is clear by (c¢)=(a).

Before proving the implication (f)=-(a), we show (2). Take an m > 1 such
that </Ism1 K 1s a closed immersion and mF is free. Set

Qum = Coker (T (mF)) x @ (T(mA)) x — T=(m(A + F))) ).
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By considering the commutative diagram

o (@4+F) . K ~ _

Pr((IT(m(A +
A))

X
X

we find that C/ISm(; L) K 182 closed immersion.

(f)=-(a): Let B be a w-ample adelically metrized line bundle on X. By the
condition (f), mA — B is semiample for every m > 1. Thus by (2), mA is w-ample
for every m > 1. O

) k) \Pr(Qm)
|

K @k (T=(mF))k)

(Segre emb.)o(®,, 5 1 X, 7 1)

P (D% (mA)

Proposition 5.4. Let L be an adelically metrized line bundle on X.

(1) The augmented base locus of L satisfies
B.(I)= () B*T-7)=B,(L)uB“(D),
A w-ample
where the intersection is taken over all w-ample adelically metrized Q-line

bundles A on X. In particular, given any w-ample adelically metrized line
bundle A, B, (L) = Bbb( —eA) for every sufficiently small rational € > 0.

(2) Let M be another adelically metrized line bundle on X. If s € T5(M), then
B, (L+ M) c B (L) USupp(s).

(3) L is w-ample if and only if B. (L) = 0.

(4) Let Ay,..., A, be w-ample adelically metrized line bundles on X. Then there
exists an € > 0 such that

B,(L)=B.(L—e14; — - —¢c,4,)

for any rational €1, . ..,&, with 0 < ¢g; < €.

(5) Let Ay, ..., A, be adelically metrized line bundles on X . If L is w-ample, then
there exists a § > 0 such that L+8, A1 +---+06,A, is w-ample for any rational
01y, 0p with |6;] < 6. In particular, w-ampleness is an open condition.

Proof. (1): Let V, be as in (2.14). For any a > 1 and for any w-ample adelically
metrized line bundle A on X, we have H’(aL — A) D A(I*(V,))k;A,a) D
(I*3(aL — A)) . Thus by Lemma 3.2(3),

(5.3) B (L)UB(I)cBL(T*(V.))x)C (| B=T-4).

‘A w-ample
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Suppose that = ¢ B (L) UB*(L). We can find a w-ample adelically metrized line
bundle 4 on X, an s € [*(bL), and a ¢ € [*(cL — A) such that s(z) # 0 and
t(z) # 0. For a p > 1, we have

s @t e I*((pb+ )L — A).

Thus ¢ Bs*((pb+c)L—A). This implies that the inclusions in (5.3) are equalities.
Assertion (2) is clear since

B*(L + M — A) c B*(L — A) U Supp(s)

for every w-ample adelically metrized Q-line bundle A.

(3): If T is w-ample, then B (L) = 0. Conversely, if B, (L) = 0, then there
exists a w-ample Q-line bundle A on X such that BSb( — A) = (. Thus by
Lemma 5.3(2), L is w-ample.

(4): The inclusion C is clear. Since A; + --- + A, is w-ample, there exists a
rational € > 0 such that

B, (L)=B®(L—c(A +---+4,)).
Then for any e1,...,&, with 0 < ¢; < ¢, we have
B, (L) cB®(L—eA, — - —,4,) CBS(L—e(A, +---+A4,)).

Hence the assertion follows.

(5): Since every adelically metrized line bundle is a difference of two w-ample
adelically metrized line bundles (Lemma 5.3(1)), we can assume that A, ..., A,
are all w-ample. By (3) and (4) above, there exists an € > 0 such that

ﬁ+(f—5121 e — Ep r)—@
for any e1,...,&, with 0 < &; < e. Then, for any é1,...,0, with é; > —¢,
L+ 614, +---+ 6,4, is w-ample. O

Remark 5.5. There are several different definitions of the arithmetic augmented
base locus. For an adelically metrized line bundle L, we set

T3(L) i={s € HO(L) : ||s]|fup < 1, V0 € M},

A section in T(I) is referred to as a small section of L. In [22, §3], Moriwaki
defined R R
BT- () B,
A w-ample
where the intersection is taken over all w-ample adelically metrized Q-line
bundles 4 (see Section 2). We easily see that By (L) UB*(L) ¢ B/.(L) c B4 (L).
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Hence Moriwaki’s ]/?\:g_ (L) is identical to our B (L). Of course, BS(L) c B*(L)
and the inclusion is strict in general.

In [9, §4], Chen defined the augmented base locus by using sections with
normalized Arakelov degree not less than zero. If L is associated to a continuous
Hermitian line bundle on an Og-model of X, then by [6, Remark 3.8(ii)] one can
see that Chen’s definition also coincides with ours.

Theorem 5.6. Let X be a normal projective variety over a number field and let
L be an adelically metrized line bundle on X. The arithmetic augmented base locus
]§+(f) is characterized as the minimal Zariski closed subset of X such that the
restriction of the Kodaira map

@zt X \BsS(mI) = Prc((T=(mI))xc)
to X\ ]§+(Z) is an immersion for every sufficiently divisible m > 1.
Proof. We choose an a > 1 such that ﬁss(f) = ]/B\SSS(maf) and
Ex(®,,,7 ;) UBs™(maL) = () (Ex(®,7 ;) UBs™(nL))
n>1
for every m > 1 (Lemma 3.6(2)). By Lemma 3.7,
(5.4) B.(L) D Ex(®,,,7 ;) UBs™(mal)

for every m > 1. To show the reverse inclusion, let p, : X, — X, Fg, and M, be
as in Proposition 4.7 and let 1z, € I'*(F,) be the natural inclusion. Then M, is
free. By Theorems 4.3 and 3.8, there exists a p > 1 such that

- ~

(5.5) B, (11,) = Ex(@,57, ) = B2 (M),
Set YV := (/ﬁpaf,K(X) and Y/ := &\)pﬁa,K(Xa)' We consider the commutative dia-
gram

@ Mg, K
X, — e Ly

X—-=-=- +Y
Proposition 5.4(2) applied to the decomposition pu’(aL) = pM, + pF, yields
(5.6) B (puj(aL)) C By (pM,) USupp(15F).
Since

1 = 5 oss - Ha = B oss - Cppaf,K
Xa \ pig  (Ex(®,,1 i) UBs®(pal)) = X \ (Ex(®,,1 ;) UBs™(pal)) ==Y
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is an immersion, we have

(57) Ex(ipﬁa,K> C u;l (Ex(apaf,K) U BSSS (paz)) ‘
Moreover,
(5.8) B, (1,L) = uy "B (D)

thanks to Lemma 3.4(2). Therefore,
pig B (L) C pg ' (Ex(®,,7 x) U Bs™(pal))

by (5.5)-(5.8), and L N . B
By (L) C Ex(®,,7 k) UBs™(pal). O

§6. Yuan’s estimation

The main result of this section is Theorem 6.7, which is the key to proving Theo-
rem B and the fundamental properties of arithmetic restricted volumes and arith-
metic multiplicities. The ideas to construct arithmetic Okounkov bodies can be
traced back to Yuan’s paper [25]. Later, Yuan [26] largely simplified the construc-
tion, and Boucksom—Chen [6] presented another method. In this paper, we rewrite
the arguments in [25, 22] with necessary changes. We remark that most of the
arguments in [26] are also applicable to the general case except some relations
preceding [26, Lemma 3.2].

The arithmetic restricted volumes we study below were first introduced by
Moriwaki [22]. Let M be a free Z-module of finite rank. A subset I' of M is
called a CL-subset of M if the following equivalent conditions are satisfied (see
[22, Proposition 1.2.1(2)]):

(a) There exist a Z-submodule N of M and a convex subset A C M ®z R such

that ' = NN A.

(b) Let (I')g be the R-vector subspace of M ®7 R generated by I' and let
Convry, (I') be the minimal convex body containing I'" in (I')g. Then

I' = (I')z N Conv py, ().
Note that (I')z ®z R = (I')g in this case.
© I'=Usiin+-+w)/lez:m,....,m €T}
A subset S C M ®z R is said to be symmetric if v € S implies —y € S. Given any
subset S in M, we define the CL-hull of S in M as the smallest CL-subset of M
containing S, which we shall denote by CL;(.5). Moreover, we set

(6.1) mxS:={n+- - +Ym:y,..,Ym €S}

for every integer m > 1 and every subset S of M.



RESTRICTED VOLUMES AND BAse Locr 469

Lemma 6.1 (|25, Proposition 2.8|, [22, Lemma 1.2.2]). Let M be a free Z-module
of finite rank, and let r : M — N be a surjective homomorphism of Z-modules.

(1) Let T be a symmetric finite subset of M. Then
log " — log #(Ker(r) N (2% T')) < logf#r(T") < log#(2+T') — log(Ker(r) NT).

(2) Let A be a bounded symmetric convexr subset of M ®z R, and let a > 1 be a
real number. Then

0 <logH(M NaA) —log (M NA) <log([2a]) rky M.

Lemma 6.2. Let K be a number field, let M be a projective O -module of finite
rank, and let T' be a finite subset of M. Then

ko <F>OK <rkg <F>Z < [K : Q] ko <F>OK'

Proof. The first inequality is clear. Since (I')z C (I')o,, we have rkz(I')z <
I‘kz<r>OK = [K : Q] I‘kOK <F>0K. O

In the rest of this section, let X be a projective variety that is geometrically
irreducible over a number field K. Let U be a non-empty open subset of Spec(Og)
and let 7y : 2y — U be a U-model of X, so that 2y is reduced and irreducible
and 7y is flat and projective.

Definition 6.3. A flag on Zy is a sequence of reduced irreducible closed sub-
schemes of 27,

Fo:Zy=F 2R 2F 2 2 Fanx = {¢},

such that each F; has codimension i + 1 in 2y, Fqim x consists of a closed point
& € 2y, and each Fj11 is locally principal in F; around €. The closed point € = &g,
is called the center of the flag F,.

Let U be a Zariski closed subset of 2. We say that F, is a ¥-good flag on Zy
over a prime number p if:

(a) There exists a prime ideal p € U such that p N Z = pZ and [Og, /pOk, : )]
=1.

(b) Fy =7!(p) and the center ¢ is F,-rational.

(¢) The center ¢ is not contained in P.

An (-good flag will be simply called a good flag (see [22, §1.4]). Note that Fy is a
Cartier divisor on 2y and Fy, ..., Faim x are all geometrically irreducible over F,,.
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Let Rat(X) be the field of rational functions on X and let F, : Zy = F_1 D
Fy D -+ D Fiimx = {&} be any flag on 2. We then define the valuation map
wr, : Rat(X)* — Z4mX+1 a550ciated to F, as follows. For each i = 0, ..., dim X,
we fix a local equation f; defining F; in F;_; around £. For ¢ € Rat(X)*, we set
b0 := ¢, wo(¢) = ordp, (¢o),

¢ = (0 D )lp,, wi(d) == ordg, ()

for i =1,...,dim X, inductively. Then define

(6'2> Wwr, <¢) = (wO((b)? w1(¢)7 s ’wdimx(¢))7
which does not depend on the choice of fy,..., faim x- Note that
(6.3) vp, (¢1) = (Wi(@), ..., Waim x (¢))

is the valuation vector of ¢1 € Rat(Fp)* associated to the flag Fy D -+ D Fyim x
on Fy (see [20, §1.1]).

Lemma 6.4. Let Z}; be another U-model of X and let oy : X, — Zu be a
projective birational U-morphism.

(1) Let V' be a Zariski closed subset of &, and let F! : 5 D F§ D -+ D Fiin x
= {¢'} be a ¥'-good flag on X7, over a prime number p. If gy is isomorphic
around &', then the sequence of images

ou(F) : Zu D pu(Fy) D+ D ou(Faimx) = {ev(€)}

is a oy (¥')-good flag on 2y over p, and wy,, (p;) = Wr, © @f-

(2) Let U be a Zariski closed subset of Zy and let F, : £y D Fo D -+ D Faim x
= {&} be a ¥-good flag on Zy over a prime number p. If py is isomorphic
around &, then the sequence of strict transforms

e (F) 2 28 D epa(Fo) D - D v, (Faimx) = {pg ()}
is a gol}l(\ll)-good flag on ZY; over p and W, -1 (p,) © ©F = wr, .

Lemma 6.5 (|25, §2.2], [22, Proposition 1.4.1]). Given any Zariski closed sub-
set U of Zy such that ¥ #= Zy, there exist V-good flags on X over all but
finitely many prime numbers.

Proof. Let gy : &y — Zu be a projective birational U-morphism such that X' :=
2y xy Spec(K) is smooth and geometrically irreducible over K. Set 7}, := myopy
and U := @i (V) U Ex(pr). We can choose a sequence of reduced irreducible
closed subschemes of 27, #, : 27 2 Fo 2 -+ 2 Fdim x—1, such that, for any
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i=0,...,dimX — 1, 1|z, : # — U is flat, %, x = %, Xy Spec(K) is smooth
of codimension 7+ 1 in X, and .%; is not contained in ¥. Let Uy C U C Spec(Ok)
be the set of all prime ideals p such that

(a) the prime ideal pZ := p N Z completely splits in K,

(b) Z Nna' " (p) is smooth and is not contained in U, for every i, and

(¢) #(ZFdimx-1N \ff) < p+1—2g,/p, where g is the genus of the smooth curve
Fdim X —1,K-

Thanks to Chebotarev’s density theorem, Spec(Ox )\ Uy is a finite set. By (c) and

Weil’s theorem, given any p € Uy, we can take a £ € Fqim x—1(Fp) that is not
contained in W. Therefore, for each p € Uy, the sequence

ﬂ-;]_l(p) ) ‘?0 mﬂ-;j_l(p) D) tg\dimX—l mﬂ'b_l(p) D {g}

is a ¢, (¥)-good flag on 27, over p and ¢y is isomorphic around ¢. Thus the
assertion follows from Lemma 6.4(1). O

Let R be an order of K such that Spec(Og) — Spec(R) is isomorphic over U.
Let 2" be an R-model of X that extends 2y (for example, embed Zy into a
projective space Py over U and take as 2  the Zariski closure of 2y in Pg).
Let v : £ — Z be a relative normalization in X and let F, be a flag on 27).
Let L be an adelically metrized line bundle on X such that (2y,.%y) gives a
U-model of definition for f{oo}. We fix a local frame 1 of v*.% around £ = &p,.
Any s € T(T) \ {0} can be written as v*s = ¢n with a non-zero local function ¢
around £. We define the valuation map associated to F, as

(6.4) wp, : TNI) — HOW* L) — 29X s s (wo(6), . . ., waim x (9)),
(see (2.15)), which does not depend on the choice of the frame 7.

Lemma 6.6. (1) Let o/ be any ample line bundle on 2 . Then for every m > 1,
the image wr, (H°(ma/) \ {0}) contains all of the vectors

(O""70)’(1’07"'70)7"'7(07"'7071) GZdimX+1.

(2) The valuation map wr, : Rat(X)* — Z4mX+L s syrjective.

(3) Let E be a subextension of Rat(X)/K. Then wg, (E*) is a free Z-module of
rank tr.degy, E + 1.

Proof. Assertion (1) is nothing but [22, Lemma 5.4], and (2) follows from (1).
(3): The restriction of wp, to K* is the same as the usual p-adic val-
uation. Thus rkz wp, (K*) = 1. The map wp, satisfies the axiom of valua-
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tions [8, Chap. VI, §3.1], so by the arguments in [8, Chap. VI, §10.3, Theo-
rem 1] we deduce that rkz(wp, (Rat(X)*)/wg, (E*)) < tr.deggRat(X) and
rkz(wp, (EX)/wr, (K*)) < tr.degy E. Since

rkz w, (Rat(X)™) = rkz wr, (™) + rkz(wpr, (Rat(X) ™) /wg, (E))
< tr.degy E + 1+ tr.degy Rat(X) = tr.degy Rat(X) + 1,

we have rky w,(E*) = tr.deg, F + 1. O

Given any adelically metrized line bundle L on X, we set

— — —.dimX
— deg (L -A )
6.5 6(L) :=inf ——+=
(6.5) (D) = ot S
(see Proposition 2.15(1)), where the infimum is taken over all nef adelically
metrized line bundles A on X such that vol(A) is positive.

Theorem 6.7 ([25, §2.4], [22, Theorem 2.2|). Let X be a projective variety that
is geometrically irreducible over K and let L be an adelically metrized line bundle
on X having a U-model of definition (Zvy, Zu). Let F, be a good flag on 2}, over
a prime number p. Let T be any symmetric CL-subset of T¥(L) such that T # {0}.
Set B :=prko, (T)o, > 2. Then

I'kZ <F>Z
log(p) -

Proof. We borrow the ideas from [25, 22]. We divide the proof into four steps.

log " — fwp, (T'\ {0}) log(p)| < (6(L) log(4) + log(4p) log(43))

Step 1. Set Fy := Ox([p]) (Remark 2.10(4)), which is the adelically metrized line
bundle on X associated to the Hermitian line bundle (04 (Fp),| - [%V) on 2.
Set M := (I')z c T*(L) and A := Convry, (I'). Then A is a compact symmetric
convex body in (I')g. For each n > 0, we set

(6.6) M, :={s € M :ordg,(s) >n} = M NI — nFy)

and let

ro : THE = nFy) = HO(V* Ly — 10 g (Fo)) ~= HO(v* Lyl g, — 10 2y (Fo)| )
be the natural homomorphism. Then

(6.7) twr, (D\ {0}) = ) tor, (ra (M, N &)\ {0}).

n>0
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Step 2. In this step, we show that for each n > 0,

(6.8)  log#(M, N (1/8)A) — log (M1 N (2/8)A)
< tor, (ra (M, 0 A)\ {0}) log(p)
< log §(My, N 28A) — log (M1 N BA).

First, we have

(6.9)  fvp, (ra(Mn N A)\ {0})log(p) = fvr, ((re (M N A))r, \ {0})log(p)
= 10g ﬁ(rn(Mn N A)>IF,,

thanks to [20, Lemma 1.4]. We choose {s1,..., s} C M,, N A such that the image
forms an Fp-basis for (r,(M, N A))r,. Since | < rko, (I')o, and r, maps

l
S:z{;aisi:aizo,...,p—l}CMnﬂﬂA

onto (ry (M, N A))r,, we have
(6.10) log #(rn (Mp N A))g, < logtr,(S) <logtr,(M, N BA).

Note that 2 x (M, N BA) C M, N 2BA and Ker(r,) = M,4:. By applying
Lemma 6.1(1) to r, (M, N SA), we obtain

(6.11) log #r, (M, N BA) < log#(M, N28A) —log #(M,1+1 N BA).

By (6.9)—(6.11), we have the second inequality of (6.8).
Next, we choose {t1,...,ty} C M, N (1/8)A such that the image forms an
[Fp-basis for (r,(M, N (1/8)A))g,. Since I < ko, (I')o, and 7, maps

l/
S/ = {Zajtjlaj:(),...,p—l}CMnﬂA
j=1

onto (r, (M, N (1/8)A))r,, we have
(6.12)  fop, (ra(MnNA)\{0})log(p) = for, (ra(S)\{0})log(p)
— tor, ((ra(Ma 01 (1/)A))s, \ {0) log(p)
= log #(rn (M, N (l/ﬂ)A»F,}
> log ir,, (M, N(1/8)A)
thanks to [20, Lemma 1.4] again. By applying Lemma 6.1(1) to r, (M, N (1/5)A),
(6.13)  logtrn(M, N (1/B)A) = logt(M, N (1/B8)A) —log§(Mny1 N (2/B8)A).
By (6.12)—(6.13), we have the first inequality of (6.8).
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Step 3. From (6.7) and (6.8), we obtain

(6.14) log#(M N (1/8)A) = Y (log #(M, N (2/8)A) — log §(M,, N (1/5)A))

n>1

< twp, (I'\ {0}) log(p)
<log#(M N2BA) + Z (logﬁ(Mn N2BA) —log (M, N ﬁA))

n>1

Thanks to Lemma 6.1(2) we have, for each n > 1,

(6.15) log (M N 28A) < logtl + log(48) rky, M,
(6.16) log (M N (1/8)A) > log I’ — log(28) rky M
and

(6.17) log #(M,, N 28A) — log #(M,, N BA) < log(4) rkz M,
(6.18)  log#(M, N (2/8)A) — log (M, 1 (1/8)A) < log(4) ks M.

Weset T:={n>1:M,N28A #{0}} D{n>1:M,Nn(2/58)A # {0}}. Then,
by (6.14)—(6.18), we have

(6.19) — (log(28) + T log(4)) rky M
< twp, (['\ {0}) log(p) — log iT" < (log(4f) + £T'log(4)) rkz M.
Step 4. If M,, N 2BA # {0}, then L — nFy + Ox (log(28)[00]) is pseudoeffective
and
—-dim X

(6.20) deg((L — nFy + Ox (log(28)[x])) - 4 )>0

for every nef adelically metrized line bundle A on X (Proposition 2.15(1)). Suppose
that vol(A) > 0. By (6.20) and Lemma 6.8 below,

d/eTg(f ) Z -dim X)
( vol(A)

" log(zm) —

n < ,
log(p)

so 471" has the same upper bound. Therefore,

fwr, (T'\ {0}) log(p) — log fT|
d/ég(z.z-dimX)
= ( vol(4)

I‘kZ M
log(p)

log(4) + log(4p) 1og<4ﬂ>)

for every nef adelically metrized line bundle A on X with vol(A) > 0. O
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Lemma 6.8. Let X be a projective variety that is geometrically irreducible
over K. For any p € Spec(Ox) and any nef adelically metrized line bundle A
on X,

— — -dim X

deg(Ox([p]) - A ) = vol(A) log(4Ox /p).
Proof. Fix a rational ¢ > 0. Thanks to Proposition 2.13(2), we can find a finite
subset S C M, and Ox-models (2”,.%4) and (2", o%) of (X, A) such that the

of; are relatively nef and
(621) (@ |h) <A< (e ] 1D) < (@] D) +e Y Ox([P)).
PeS

Let © : 27 — Spec(Og) denote the structure morphism and fix an adelically
metrized line bundle H associated to an ample C*°-Hermitian line bundle J#
on 2. By invariance of degree, we have

deg(Ox ([p]) - (77" + 672™) W™ XY = vol (e + 5.H) -1 (py) log (0 /p)
= vol(A + dH)log(8Ok /p)

for every rational § > 0 and for i = 1,2. Therefore, by continuity,

deg(Ox (p]) - (72") ™ X) = vol(A) log(tOx /p)

fori =1,2. Set \:= —(¢/[K : Q]) ¥ peglog|@p|p. Then o7, + O x (A[oc]) is nef.
By Proposition 2.15(1), (2),

deg (O x ([p]) - (71) 4™ XY = deg(Ox (p]) - (" + Ox (A[oc])) HimX)
< deg(Ox ([p]) - (A + Ox (A[oc])) 4 X)
— deg(Ox () - A™)
< deg(Ox([p)) - (37) ).
Hence we get the assertion. B

§7. Numbers of restricted sections

In this section, we study the asymptotic behavior of the numbers of restricted
strictly small sections in general, and show Theorem B (Theorems 7.11).

Definition 7.1. Let X be a projective variety over a number field K, let Y be a
closed subvariety of X with number field Ky := H°(Oy ), and let L be an adelically
metrized line bundle on X. We set

(7.1) Ty (L) == Image(T" (L) — T*(Zly))
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for 7 = s or ss, and set
(7.2) CLX|Y( ) = CLpf(L\ )(FX|Y(L))

where Ff(L|y) is regarded as a free Z-module containing l")?‘Y(L). Moreover, we
set

(7.3) NX|Y ={meN: FX\Y( L) #{0}}

and

(7.4)  Fxy (D) = {tr'degKv (Do Ty (ML))iey) =1 i Nigiye( )7’53’

L

Then we define the arithmetic restricted volume of L along Y as

~ = log 1CLx|y (mL)
7.5 Lyjy (L) :=1i - -
(7.5) volx |y (L) ISP o dim Y+ /(dimY + 1)!

(Y-effective): We say that an adelically metrized line bundle L is Y -effective if
there exists an s € fs(f) such that s|y is non-zero. We write L; <y Lo if
Ly — L is Y-effective.

(Y-big): We say that an adelically metrized Q-line bundle L is Y -big if there
exist an @ > 1 and a w-ample adelically metrized line bundle A such that
al >y A.

(Y-pseudoeffective): We say that an adelically metrized Q-line bundle L is
Y -pseudoeffective if L + A is Y-big for every Y-big adelically metrized Q-line
bundle A. We write L1 <y L if Ly — L; is Y-pseudoeffective.

Remark 7.2. Let L be an adelically metrized line bundle on X.

(1) If s € @X|y(mf) and t € éi)qy(nf), then s ®t € éi;qy((m +n)L). In
fact, we can write s = ) a;s; and t = ) b;t;, where a;,b; € Q>0 with )" a; =
Ybj=1,s¢€ Fg?ly(mf), and t; € I‘ley(nf). Then s®t =) a;bjs; ®t; and
Zaibj =1.

(2) For any subfield K’ of Ky,

tr.deg (@< S (mD))x ) 1
m>0
does not depend on the choice of K’ and coincides with & x|y (L).

(3) In |22], Moriwaki defined the arithmetic restricted volume of L along Y as

solleon (D) o= limsup EF SiftnTin) Uy (mE))
Xy (&) = I sup mdmY+1/(dim Y + 1)!

Obviously, vol x|y (L) < vol X‘y( ), and equality holds if L is Y-big.
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Lemma 7.3. (1) Let Ly, Ly € ITI\C(X) If Li <y Lo, then

\axw(fl) < \751)(|Y(f2) and  Rx|y(L1) < Rxjy(L2).

(2) Suppose that X is normal and let L € ].:/’I\C(X) Let ¢ : X' — X be a bira-
tional projective K-morphism and let Y' be a closed subvariety of X' such
that o(Y') =Y. Then

VOlX/lY/((P*Z) = Vle‘y(f) and EX/‘Y/(SQ*Z) = Exly(L)

Proof. (1): An s € T5(Ly — L;) with s|y # 0 determines for all m > 1 injections

~ _ s Xm .
F%Y(le) BT, Fi?ly(ng). This yields the assertion.

(2): Since X is normal, H°(L) = H°(¢* L) as K-vector spaces. Since |-[£"E ()
= |- o (g3 (x)) for z € X,™ and v € M,

(7.6) @ (HOL), (| 17 sup)oenta) = (HO(*L), (|| - 11£ stip) venaxc)
as adelically normed K-vector spaces. By considering the commutative diagram

HO(mLly) —————— H%(¢*(mL)ly’)

T T

H(mL) ———————— H°(¢*(mL))
we find that f%y(mf) = f??/‘y/@*(mf)) for every m > 1. O
Set H)O(lY(L) := Image(H°(L) — H°(Lly)),
(7.7) Nxy(L) := {m € N: Hy,(mL) # {0}},
and

(7.8) HX\Y(L) — tr'degKy(®m20<H§\Y(mL)>K}’) -1 ?f NX|Y(L) #0,
—0o0 if NX|y(L) = @
Lemma 7.4. We have

fay (D) = L (D) Y ¢ BE(D),
A —o0 if Y ¢ BS(D).

Proof. We can assume that Y ¢ B (L) and the inequality < is obvious. Since
kxly(al) = kxjy(L) and EX|y(af) = EX‘Y(Z) for every a > 1, we can also
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assume that fgay(f) 35 #0. Set

E, = {Z € Rat(Y) : 3m > 1 such that ¢(s|y)®™, ¥ (s]y)®™ € (H)%ly(mL»KY },

E, = {Z € Rat(Y) : 3m > 1 such that ¢(s|y)®™, ¥ (s|ly)®™ € (Aiﬁly(mf)ﬁ(y

Then
Ey(T) = Frac (@) (HY )y (D), ), Q(T) = Qsly),

m>0
and
Ey(T) — Frac( @ (™(mD))iy ), QT) = Qlsly),
m>0
give isomorphisms of fields of finite type over Ky. So what we hzive to show is
E; = E5. Given any t € (H)O(ly(mL»Ky, we have t ® (s|y)®? € (Fi?‘y(mf)h(y
for sufficiently large p > 1. This yields the assertion. O

Let X be a projective variety over K, let Y be a closed subvariety of X,
and let L be an adelically metrized line bundle on X. Set Ky := H°(Oy) and
M = Ll|y. In the rest of this section, we fix models of X and (Y, M) as follows.
By Lemma 2.7(1), there exists an Og-model (%£,.%) of (X, L) such that 2 is
relatively normal in X and .Z is a line bundle on 2. Let # be the Zariski closure
of Yin 2 and let # = £|g. By Lemma 2.7(2), one can find a non-empty
open subset Uy of Spec(O) such that (%y,, #y,) gives a Up-model of definition

for H{m}, where we have set
(79) WUO =% X Spec(Ok) Up.

By Lemma 2.7 and Remark 2.10(2), one can also find a non-empty open subset U
of Spec(Og,, ) such that the morphism Spec(Og,, ) — Spec(H°(0)) is isomorphic
over U, U is mapped into Uy via Spec(Og,. ) — Spec(Ok ), and (¥, #yy) gives a

U-model of definition for M{Oo}, where we have set
(7.10) Yy =X X Spec(HO(Og)) U C @UD.

Let v : #' — % be a relative normalization in Y. Then %’ — Spec(Og)
factorizes through Spec(Ok, ) (see [13, (6.3.3)]). We fix a good flag

(7.11) F,:@[}DFODFlD-'-DFdimyz{f}

/ .
on %, over a prime number p.
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Definition 7.5. As in (6.4), for each m > 1 we denote the valuation map associ-
ated to F, by wp, : I'(mM) — HO(v*(m.#y)) — Z9™ Y+ Let

§X\Y(f) = {(m7wp,(s)) im € 1/\\TX|Y(Z)7 s € fiﬁ‘y(mf) \ {o}} C N x zdimY+1

Let pry : R x RImY+L 5 R and pr, : R x RImY+L 5 RAmY+1 he the natural
projections, and set S|y (L) = Sx|y (L)Npry " (m) for m > 1. The base Sx|y (L)
is defined as

3X|Y(f) = ( U l§X|Y(Z)m) C RAmYHL

m
m>1

Rdim Y+1

and the affine space in spanned by A X|y(f) is

Aff(Sx |y (L)) := pry ((Sx|y (D))r N pryt(1)).

The underlying R-vector space ﬁ(gxw(f)) = pr2(<§X‘y(Z)>R Npr; 1(0)) has the
natural integral structure defined by
Afta(Sx v (D) = pra (S (D)) Npry (0)

(see [3] for details).
If EX|Y(Z) = dimY, then we define |SX‘Y(Z)\ to be the volume of the fun-

damental domain of ﬁz(?x‘y(f)) C RYmY+1 measured by volgaimv 41, and if
E}Qy(f) < dle, then we set |Sx|y(f)| = 0.

Lemma 7.6. Suppose thatY ¢ Bss (L), or equivalently EX‘Y(Z) >0.
(1) For every sufficiently large m € ﬁ;qy(f),

Rxy(@) = max dim®, 7 (V) =dim®, . (Y).
meNxy (L) ’ ’

(2) Suppose that there exist an mo > 1 and an so € I™(moL) such that the
restriction soly € I'(moL|y) C H(mo.#y) does not vanish at the center &
of F,. Then

dimg (Sx |y (L))r = Rxy (L) + 2.

Proof. (1): We have

Zar

(7.12) Ry (L) = dim Tmage(®p Y -=» P (T3 (mL)) k)

for every sufficiently large m € N X‘y(f) by applying the arguments in [5,
Lemma 2.3] and [11, §8.2.1, Theorem A] (see also [3, Théoréme 3.15]). Since
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(TS(mL)) g — <f§\y(mf)> K 1s surjective, we have a commutative diagram

X — — 2 S PR ((T(mD))k)

.

Y — = I S PR (T (mL)) k)

and </15m’K is the restriction of ffmf x to Y for each m € Nx‘y(f).

(2): We write £ := Kx|y(L). Let .#" be a line bundle on %" such that
(%5, ;) is a Up-model of definition for M and M < 7 For every a > 1,
we then have I'f(aM) C HO(a.#"). We choose an a > 1 such that mq divides a,
]/S\SSS(af) = B*(L), and the Zariski closure of </Isa7 k(YY) has Krull dimension k
(see (1)). Let s € I*5(aL) be the tensor power of so. The Kodaira map

o 1Y - Q= Pr((T )y (aL)) k)
extends to a Kodaira map
Dy0,: Y -2 2C 2,

where 2 := }P’OK(@?‘Y(LZZ»OK) and & = HJ’OK(<fSS(aZ)>OK). By the hypothe-
sis, $a,OK is defined at £. Let 2 be the hyperplane line bundle on . For every
b > 1, we then have H?(b.7) = SymbOK T(aL))o, -

Let % be the Zariski closure of ®, o, (%) and let Z, := {y € Z : s(y) # 0}.
Let E be the field of rational functions on 2 and let R := H°(O,). Note that
Ow, = Hlw, ¢ — ¢(s|z,), is isomorphic. Since the field of fractions of R
is E, and E is a subextension of Rat(Y)/K, one can find, by Lemma 6.6(3),
¢0,- .., ¢ € R\ {0} such that wg, (¢o), ..., wr,(¢.) are Z-linearly independent.
For some b > 1, ¢;(s|2)®" extends to a global section of b.# |4 for every i, and
the restriction H°(bs#) — H°(b#|«) is surjective.

For each i, we choose a lift of ¢;(s|#)®® € HO(bJ#|%) to HO(b#), and let e;
be the image of the lift via

HO(b.) = Sym%, (T (aL))o, — (T (abL))oy -

By tensoring by s, we have e = ¢; ® s®° € fss(a(b + ¢)L) for every i. The
restriction sly € I'*(aM) C H°(a.#") gives a local frame of a.#' on the open
neighborhood % of £. By construction,

(a,wr, (sy)), (a(b+c), wr,(eoly)), -, (alb +¢), wr, (ex]y))
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are, respectively, equal to

(a,0,...,0), (a(b+ ¢),wr,(¢0)), ..., (a(b+ ¢),wr, (dx))-
So they are Z-linearly independent. O

Lemma 7.7. LetY be a closed subvariety of X and let L be an adelically metrized
line bundle on X.

1) If L is Y-big, thenNXy L)D>{meN:m>Ily} for somely > 1.
|
(2) The following are equivalent:

(a) L is Y-big.
(b) Given any adelically metrized line bundle N, mL + N is Y -effective for
every m > 1.

(©) ¥ ¢ B, (D).
(3) If L is Y -big, then x|y (L) = dimY.
(4) If L is Y-big, then §X|y(f) generates 7, x Z4mY+1,

Proof. (1): There exist a free and w-ample adelically metrized line bundle A and
an a > 1 such that aL >y A. By Lemma 5.3(1), there exists a b > 1 such that
L+ bA is free. Thus aL and (ab + 1)L are both Y-effective. The assertion follows
from the following claim.

Claim 7.8. Let a,b € N be coprime positive integers. Then there exists a co > 1
such that
{ax+by:z,ye N} D{ceN:c> ¢y}

Proof of Claim 7.8. We may assume that a,b > 1, and axzg — byg = 1 for some
x0,Y0 € N. For every 0 < ¢ < b and every y > cyo, we have

c+by = claxg — byy) + by € {ax + by : z,y € N}
So we can set ¢o := b(b — 1)yo. O

(2): (b)=(a) is clear.

(a)=>(b): There exist an a > 1 and a w-ample adelically metrized line
bundle A such that aL >y A. By Lemma 5.3(1), mA + N is free for every m > 1.
So maL + N is Y-effective for every m > 1. By (1), (ma + r)L is Y-effective
for r = 0,1,...,a — 1 and every m > 1. Thus (ma + )L + N is Y-effective for
r=0,1,...,a—1 and every m > 1.

(a)=(c): There exist an a > 1 and a w-ample adelically metrized line
bundle A such that aL >y A. Then Y ¢ B*(L — (1/a)A).
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(c)=>(a): There exists a w-ample adelically metrized Q-line bundle A such
that Y ¢ ﬁss(f — A). Thus there exists an a > 1 such that aL >y aA.

(3): By Lemmas 3.7, 7.6, and assertions (1), (2), Rx|y (L) = dim @, 7 ,(Y) =
dimY for every sufficiently large m € N xv (D).

(4): Let 2 be the Ox-model of X fixed before. By Lemma 6.6(1), one can
find an ample line bundle & on Z°, and

505,51, S8dimY+1 EHO(W), Séff(z{m}-i-ﬂ{ad)
such that H°(&) — H°(</ |4 ) is surjective,

WFE, (80|y) = (0, .. .,O),

’wF.(81|y) = (1,0,.. .,0), ey wF.(Sdimy+1|y) = (0, .. .,0, ].)

in Z4mY+1 and s does not vanish at the center ode.. One can choose a sgitable
metric on &/ such that sg,...,Sqimy+1 € FSS(EaL ) and s € Fss(f-l—gd ). Set
_ —ad ~ = —

A:= " By (2), there exist an a > 1 and a t € [*(aL — A) such that t|y # 0.
Then

(a4 1,wr, ((s@1t)|y)) — (a,wr, ((so @t)]y)) = (1,0,...,0) € Z x Z4m Y+l
and
(@, wr, (5 ® 8)]y)) — (@ wr, (50 ® B)]y)) = (0,...,0,1,0,...,0) € Z x ZImY+1
fori=1,...,dimY + 1. O

Proposition 7.9. (1) £X|y(f) is a compact convex body in ﬁ(é}qy(f)).
(2) Let volgx‘y(f) be the Euclidean measure on Aff(:S'\X‘y(f)) normalized by the
integral structure ﬁz(gxw(f)). Then

S twp, (T, (mI) \ {0
(713)  volg.  (Axy(D) =  lim il )f‘Y(f ASCH
x|y (L) meNx |y () mExy (D)+1
m—00

€ Ro.

Proof. Let Fy := Oy ([p]) (Remark 2.10) and choose an adelically metrized line
bundle A4 := Ead that is associated to an ample C°-Hermitian line bundle .o/
on %’ For any non-zero section s € I*(mM) \ {0}, mM — wq(s)Fp is pseudoef-
fective. Thus, by Proposition 2.15(1),

-~ ,— —-dimY
wo(s) _ deg(31-A™")

m = deg((#|p,)dmY)
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On the other hand, by using a general result [3, Lemme 3.5], one can find a constant
b” > 0 such that

w;(s) < (my + ma)b”
for i = 1,....,dimY, my,my > 1, and every s € H°(v*(mi.#v)|r, +
m20a (= Fo)|r,) \ {0} Set b:= (1 +b)b". Then w;(s) <mb fori=0,...,dimY,
m > 1, and every s € [(mM) \ {0}. The last formula (7.13) follows from (1),
Lemma 7.6(2), and [3, Théoréme 1.12]. O

We write
Rxpy (D). == P Ty (mD) iy -

m>0

Then H(ﬁ;qy(f).) = Rx|y(L). By arguing over an algebraic closure of Ky and
applying [3, Théoréme 3.7] (or [17, Corollary 3.11]), the sequence

(7.14) ( dimicy Ry (D

mﬁm”/ﬁxY(L>!>meﬁxy<m
converges to a positive real number e(ﬁx‘y(z).).
Proposition 7.10. Set

D = Dxy (L) := log(4)[Ky : Q6(Lly) - M

(see (6.5) for definition of S6(L|y)). Suppose that there exists an sy €
Fiay(mof) \ {0} for an mg > 1. Let U := {y € % : so(y) = 0} and let F,
be a U-good flag on %, over a prime number p. Then

log ﬁ(/jiny(mZ) B fwr, (f§?|y(mz) \ {0}) log(p) < D
mExy(L)+1 mExy (L)+1 ~ log(p)

lim sup

mEﬁxw(f)
m—r0o0
Proof. Set

Dy, = (log(4)3(mLly) + log(4p) log(4p dim e, (T y (mID)) k. ))
x [Ky : Q] dimge, (T%)y (mL)) ey

Then, by Theorem 6.7 and Lemma 6.2,

(7.15) [log CLx |y (mL) — fwp, (%) (mI) \ {0}) log(p)| <

log(p)
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Given any € > 0,

~ Ry (D). -
(7.16) dimge, Ty (M) ey < e( f'Y( ) TE (@)
Hx‘y(L)!

for every sufficiently large m € N X‘y(f) by the arguments above. Therefore, given
any € > 0, D,, < (D +¢)m*x1v B+ for every sufficiently large m € NX|Y(Z)- O

Theorem 7.11. Let X be a projective variety over a number field and let Y be a
closed subvariety of X.

(1) For every adelically metrized line bundle L on X with Rx|y (L) > 0, the se-
quence

mFxy (D) Ry (D)
converges to a positive real number.

(2) Let L be an adelically metrized line bundle on X such that either L is Y -big
or T%X‘y(f) < dimY. Then the sequence

log ﬁéi)qy(mf)
mAm Y+ /(dimY + 1)1 ) -,

converges to \781X|y(f).

Definition 7.12. Suppose that Kx|y (L) > 0. We define the arithmetic multiplic-
ity of L along Y as

_ log $CL L
ex|y(L) = lim 08 XlY(mi)

B! B — — — e R>O
meNyy (B) mFx1y D+ /(F o (L) + 1)!
m— 00

By Theorem 7.11(1), there exists a positive constant ¢ > 0 such that
e LmFxiy (D)+1 < log ﬁéix\y(mz) < emBxy (D)+1

for every m € ﬁX|y(Z).

Proof of Theorem 7.11. (1): Let D := Dy (L) be as in Proposition 7.10. We can
find an sp € f%y(mof) \ {0} for an mo > 1. Set ¥ := {y € ¥} : so(y) = 0}.
Given any € > 0, we can find a prime number p such that there exists a ¥-good
flag F, on %} over p and

(7.17)
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(Lemma 6.5). By Propositions 7.10 and 7.9, we have

log #CLx |y (mL)

log ¢CLy (ML) _
mﬁx\y(f)-‘rl '

lim inf — <
mRX\Y(L)-‘rl

meﬁx\y(f)
m—00

0 < limsup
meﬁx\y(f)
m— o0
This implies the assertion.
(2): If Fgﬁly(mf) = {0} for every m, then the assertion is obvious. If L is

Y-big, then the assertion is nothing but (1) (see Lemma 7.7(1)). If 0 < Rxy (L) <
dimY’, then by (1),

0< logﬁ@X\Y(mz) _ logﬁ?/i)c\z(mf) (L dim Y ~Rx v (L) L .
mdimY+1 m'ix\y(L)-i-l m

Theorem 7.13. Let X be a projective variety over a number field, let Y be a
closed subvariety of X, and let L, M be adelically metrized line bundles on X.

(1) If x)y (L) > 0, then for every integer a > 1,

expy (aL) = a™¥DHL gy (T).
(2) For every integer a > 1,

voly |y (aL) = a™™ Y+ vol )y (I).

(3) If x|y (L) =dimY and Kx)y (M) >0, then x|y (L + M) = dimY and

~ T v Y - = dim Y +1
(18x v (T + )| - voly |y (T + B1)) /@Y
dim Y +1)

T —\ 1/(dim Y41 Ny Y w1
> (1Sxiy (D) - voy (D)) Y 4 (S (AD)] - vollyy (A1) /41,
where |§X‘y(')| is defined in Definition 7.5.
Proof. Note that Ry (aL) = Rx|y (L) by Lemma 7.6(1). Since

IOg ]iéi;qy(maf) IOg ]iéi;qy(maf)

— = gFxiy D)+, lim =
meﬁx‘y(af) mExy (aL)+1 meﬁx‘y(af) (ma)fﬁxw(lf)""l
m—00 m—00

)

we obtain (1).

(2): If Kx|y (L) < dim Y, then both sides are zero. If K x|y (L) = dimY, then
the assertion is nothing but (1).

(3): The first assertion follows from Lemma 7.3(1). If Ryxy (M) < dimY,
then \70\1X|Y(M) = 0 and the assertion is clear by Lemma 7.3(1). Suppose that
Rx|y(M)=dimY. Let Dx)y(L+ M), Dx|y(L), and Dxy (M) be as in Proposi-
tion 7.10, and set D := maX{DX‘y(Z—i—M), D;qy(f), DX‘Y(M)}. We can find an
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mo > 1, an 5o € T%)y (moL) \ {0}, and a to € Ty (mo M) \ {0}. Set
U= {y ey :so(y) =0} U{y € ¥ :to(y) =0}

Given any € > 0, we can find a prime number p such that there exists a ¥-good
flag F, on %} over p and

(7.18) log(p) =c

(Lemma 6.5). By using Propositions 7.9 and 7.10 and by applying the Brunn—
Minkowski inequality to the convex bodies

Axy(T) + Axy (BI) C Axyy (T + )

in RE™Y+1 we obtain

~ - —  —\1/(dimY+1
(1Sx v (T + BI)| - voly |y (T + 31)) /" )
~ — —\1/(dim Y +1 ~ — — \1/(dimY +1
> (18x )y (D) - volxy (B)) ™ Y 4 (18 yy (1) - volxpy (B1)) /Y 3¢,
and the assertion follows. O

Corollary 7.14. Let X be a normal projective variety over a number field and let
L be an adelically metrized line bundle on X .

(1) We have
By (L) = U Z = U A
_ Zcx zZcx
volx|z(L)=0 Rx|z(L)<dim Z

(2) For any prime divisor Y on X, \ﬁx‘y(f) > 0 if and only if Rx)y(L) =
dim X — 1.

Proof. (1): By Proposition 5.4(1), we have B, (L) = B, (L) UB=(L). If Z C
B®(L), then clearly voly|z(L) = 0. If Z is a component of B4 (L) and is not
contained in B**(L), then by [5, Theorem B| we have

KX|Z(L) < dim Z.

Thus Zx|z(L) < dim Z and volx|z(L) = 0. On the other hand, if Z ¢ B (L),
then, by Lemma 7.7(2), (3), we have K x|z (L) = dim Z and \7(;1X|Z(f) > 0.
Assertion (2) results from (1). O

Corollary 7.15. (1) For any Y -big adelically metrized Q-line bundle L and for
any adelically metrized Q-line bundles A1, ..., A,,

lim \ax‘y(z+51zl++€r2r) :‘70\1X|Y(Z)

e1—0,...,e,—0
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(2) If Li,Ly are Y-big adelically metrized Q-line bundles and Ly — Ly is Y-
pseudoeffective, then
VO]X|y(L1) < V01X|y(L2).

Proof. Note that the cone of all Y-big adelically metrized Q-line bundles is open by
Lemma 5.4(4). Assertion (1) results from Theorem 7.13(3) and standard arguments
(see [10, Theorem 5.2], [22, Proposition 1.3.1]).

(2): Let A be a Y-big adelically metrized line bundle. For any € € Q~¢, some
sufficiently large multiple of Ly — L, +¢A becomes a Y-effective adelically metrized
line bundle, so

@X\Y(Zﬂ < \751X|Y(z2 +e4)
by Lemma 7.3(1). By letting ¢ — 0+, we obtain (2). O

Theorem 7.16. Let X be a projective variety over a number field, let Y be a
closed subvariety of X, and let L, M be two adelically metrized line bundles on X .

(1) If L <y M and Rx)y (L) =Rx|y (M), then exy (L) < ex|y (M).
(2) If Y ¢ B=(L), then

lim €x )y (L + Ox (A[oo])) = €x|y (L)-

Proof. (1): We may assume that Kx|y (L) = Rx|y (M) > 0. Since éi)qy(mf) C

(/]ix‘y(mﬁ) for every m > 1 and //%X|y(f) 2X|Y(M),
5 log ﬁéiX\Y (mL)
lim  —= — —
mENx |y (L) mKX‘Y(L)Jrl/(HXlY(L) + 1)!
m—o0 — R
. log fCL x|y (mM)
< lim — — — .
meNx |y (L) mKX‘Y(M)+1/(//%X|Y(M) + 1)!
m—r 00

(2): We start the proof with the following claims.

Claim 7.17. There exists a rational A\g > 0 such that, for every A € R with
A > =g,
Rx|y (L + Ox(A[ec])) = x|y (L).

Proof. Take an a > 1 and s1,...,sy € I**(aL) such that {z € X : s1(z) = -+ =
sy(z) = 0} = B=(L). Let Ao be rational with 0 < A < min;{—log ||s;||sup}. For
every A with A > — ), all s;’s belong to I (Z+0 x (A[oc])) and B (Z+0 x (A[o0]))
c B (L). Therefore the claim follows from Lemma 7.4. O

Claim 7.18. If Y ¢ ﬁss(f), then there exists an mg > 1 such that, for every
AE Q with A < )\0, mof >y )\6){([00])
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Proof. We take an a > 1 and an s € I*%(aL) such that s|y # 0. We can choose an

mo > 1 such that exp(Xo)||s[|72, < 1. Then moL >y Ox(A[oc]) = AOx ([oc]) for

every A € Q with A < Ag. O

By Theorem 7.13(1), Claims 7.17 and 7.18, and (1), we have

(1 5o (@ = e ((1- 52)T)
< expy (L4 \0x([>d)))

o Rxy (L)+1 .
<€X|Y<<1+7;:0|)\|>L> = <1+T;§)|)\|) ~ex|y (L)

for every A € Q with |A\| < Ag/mg. Hence the assertion follows. O

)gxy(LH‘l

§8. Generalized Fujita approximation

In this section, we obtain a formula expressing an arithmetic restricted volume
as a supremum of heights of projective varieties (Theorem 8.4). We can regard
Theorem 8.4 as an arithmetic analogue of the generalized Fujita approximation
proved in [10, Theorem 2.13] (in our case, dimY can be zero).

Proposition 8.1. Let X be a smooth projective variety over K and let L be an
adelically metrized line bundle on X. If L is nef and Y -big, then

volxy (T) = deg((T|y) @mY+1),

Proof. If L is associated to an ample C°°-Hermitian line bundle on an Ox-model
of X, then the assertion follows from [22, Corollary 7.2(1)]. We assume that L
is associated to a nef continuous Hermitian line bundle on some Og-model 2
of X. Fix an adelically metrized line bundle H associated to a Y-effective ample
C°°-Hermitian line bundle .2 on 2. For every rational number ¢ > 0, there exists
a non-negative continuous function A. : X2» — R such that ||A;||sup < € and
L +eH + 0x()\[oq]) is associated to an ample C*°-Hermitian line bundle on 2~
[2, Theorem 1]. We then have

volx |y (L + eH + 0x(A[¢])) = deg (T + eH + Ox (Ac[oo])) |14 1)
for every rational € > 0. By Corollary 7.15,
voly|y (L) < volxy (L +eH + Ox (A:[]))

< volxy (T +eH + 0 ([d])) =% voly|y ().
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On the other hand, by Proposition 2.15(1),

d/e\g((f‘y)(dimYJrl))
< deg (T + = + Ox (Ac[o0])) [ )

S d/(;g((f-i-eﬁ—i-e@)(([oo])) i(/dimY—i-l)) ﬂ d/e\g((L| ) dle+1))

This yields the assertion in this case.

In general, thanks to Proposition 2.13(2), there exists a finite subset S C M]f(
such that, for any rational ¢ > 0, one can find Og-models (£, Z.1) and
(Zz, % 2) of (X, L) such that .Z. ; are relatively nef and

L-eY 0x(P) < (Lo |- 12) ST (L |- L) <T+e Y Ox(P
Pes PeS
Claim 8.2. We have
— — —ad _ —ad _ —
81) L-e) O0x([P)<y Z.i<yL<y Z.y<yL+e) 0x(P].
pPcs Pcs
Proof. We can write the four differences in the form of
(x> AelP]),
Pes
where Ap : X% — Ry>( is a non-negative continuous function on X3'. Then

1 € H°(Ox) is a small section satisfying 1|y # 0. O
Set A := —(¢/[K : Q]) Y peglog|wp|p. Then 2.1 + Ox(A\[oc]) is nef. By

(8.1) and Proposition 2.15(1), (2), we have

‘781X|Y($5 1)+ [K QA deg((Ly) ™)

(Z2 1y + Oy (Aloc])) @™ Y41 < deg((Zly + Oy (Aloc])) (m Y +1)

(LI ) (@mYHD) 4 (K : QJAdeg((Lly) ™)

(L2l ) @Y HD) 4 [K - QA deg((Lly) ™)

= v01X|y<$;2> + [ = QA deg((Lly) ),

)
= deg(
= deg(

(

< deg

volxyy (T =2 30 Ox([P))) < volxy (Z25) < deg((Tly) @Y +D)
PeSs

<volyy (L. ) < V01X|Y(L —€ Z OX([P])>
PeS

for every rational € > 0, and we conclude the proof by invoking Corollary 7.15. O
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Let X be a normal projective variety over K, let L be an adelically metrized
Q-line bundle on X, and let Z be a closed subvariety of X. A Z-compatible approx-
imation for L is a pair (u : X’ — X, M) of a projective birational K-morphism
i X' — X and a nef adelically metrized Q-line bundle M on X’ having the
following properties.

(a) X' is smooth and p is isomorphic around the generic point of Z.

(b) Let u;(Z) be the strict transform of Z via y. Then M is u;!(Z)-big and
w*L — M is a p; 1 (Z)-pseudoeffective adelically metrized Q-line bundle.

We denote by 5) z(L) the set of all Z-compatible approximations for L.
Lemma 8.3. (:)Z(f) £ (0 if and only if L is Z-big.

Proof. If (u: X' — X, M) € @Z(f) then p*L is pu;1(Z)- big. By Lemmas 3. 4(2)
and 7.7, we have u;1(Z) ¢ p='B, (L) UEx(p). Thus Z ¢ B+( ). The “if” part is
obvious. O

Theorem 8.4. Let X be a normal projective variety over K, let Z be a closed
subvariety of X, and let L be an adelically metrized Q-line bundle on X. If L is
Z-big, then, for every closed subvariety Y containing Z,

volyy (L) = sup deg((ﬂ|ﬂ*_1(y))'(dim Y“)).
(1,M)€O 7 (L)
Proof. The inequality > is obvious (Lemma 7.3(1), (2) and Proposition 8.1), so it
suffices to show that

volyy (L)< sup  voly, -1y (M).
(1, M)€®z(L)
We can assume that L is an adelically metrized line bundle on X. Let p,, :
Xm — X, M,,, and F,, be as in Proposition 4.7. Without loss of general-
ity, we can assume that the X,, are all smooth. Let Z,, := u,1(Z) (respec-
tively, Yy, := p,,L(Y)) be the strict transform of Z (respectively, Y) via pi,. If
Egss(mf) ﬁss(f) then Z,, is contained neither in ]§+(M ) C ,u*1]§+(f) nor
in B=(F,,) C p;;'B*(L). So M,y, is Zn-big and F,, is Z,-effective. The theorem
follows from Proposition 8.5 below. O

Proposition 8.5. We have

-3 T . VOIX m IYm ( 7”)
volxy (L) = __  lim_ dim Y +1
Bs®(mL)=B*(@L) M
m—00

Proof. First, we show the convergence of the sequence.
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Claim 8.6. The sequence

mdim Y +1 Bsss (mL)=B*(T)

converges.
Proof. Take positive integers m,n such that I/B\SSS(mZ) = ]/B\SSS(nf) = B=(L).
Then Bs*((m + n)L) = B*(L). Let # : X — X be a birational projective K-
morphism such that i dominates all of pi, pin, and fm4n, and @ is isomorphic

over X \ ﬁss(f). In particular, we have a diagram

Xm

/ \mwl
v3 Hm+
v2

X' Xonin X

N

X
Let Z be the strict transform of Z via 1. We are going to show that
(8.2) ViFn, +vsF, >z Vs E min.

Since v{1p,, ® v31p, vanishes along v; ' Supp(lr,,,,), there exists a section ¢ €
HO(vi F,, + Vi F,, — V3 F,,1y) such that

vilp, ®vslp, =v3lp, ., ®¢ and  Supp(t) C ﬁflﬁss(f).
For each v € M}, and z € X/*",
|L|51*Fm+u;rfn—ugfm+n (z)
max, e ) |15 (5™ (@) - max, o) 37 (557 (2))

m-+n f ~
MAX, Foe gy IS (R ()

<1

In the same way, we can see that ||L||£F’”+V;f"_ygfm+" < 1. Thus, we obtain
(8.2).
By Theorem 7.13(3), Lemma 7.3, and (8.2), we have

volx,, v, (M) /Y HD 4voly |y, (M) (Y +Y

N S Vi 1/(dimY +1
< VOle+n|Ym+n(Mm+n) /(dim ¥+ )'

By standard arguments, the sequence converges to its supremum. O
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We fix an integer ¢ > 1 such that lé\sss(af) = B*(L) and there exists an
50 € Fi?ly(af) \ {0}. By Claim 8.6, it suffices to show that

3 T . ‘7(;1XMG|Y"W (Mma)
(8.3) voly|y (L) = Jim (ma)dim Y +1

We fix models and flags as follows. Let (27, %) be an Og-model of (X, L) such that
Z is normal, .Z is a line bundle on £, and L < EZa Up be a non-empty open

subset of Spec(O ) such that (Zy,, Ly, ) gives a Uy-model of definition for Tt
For each m > 1, let

bym,0x = Image((T(mL)) o, Qo (—m.ZL) = O)

and let pnm, 04 @ i — £ be a normalized blow-up such that 27, k is smooth and
Em,oKO%m is Cartier. Let 7, := Homg,, (/b\m,oKOggm,O%m) and let .#,, :=
u;"n,OK (mZL) — Fm. Then (Zm,vys Fm.v,) and (Zm vy, Hm,u,) give Up-models of
definition for F;{noo} and M;{noo}, respectively (Claim 4.8).

Let % (respectively, %;,) be the Zariski closure of Y (respectively, Y,,) in 2
(respectively, Z,,). Let

vy W' =% and ve, ¥ — Y,

be the relative normalizations in Y and in Y,,, respectively, and let ), : %) — &’
be the induced morphism. Let U be the inverse image of Uy via Spec(Ok,. ) —
Spec(Ok). Then (%, La,) and (Zh.u, M,
for (L]y)>} and (M,,y,, ){>}, respectively.
Let D := Dxjy(aL) be as in Proposition 7.10, and let ¥ := {y € & :
s0(y) = 0}. Given any € > 0, we can find a prime number p such that there exists

%, ) give U-models of definition

a U-good flag F, on %} over p and

D
log(p)
(Lemma 6.5). By Lemma 6.4(2), u/ 1(F,) is a u/1(¥)-good flag on %/ for every
m > 1, and plo X (W) = {y € &, : uk . (s8™)(y) = 0} (see Proposition 4.7).

(8.4) <

Wl M

Claim 8.7. For every m > 1,
8(Mply,,) <md(Lly).

Proof of Claim 8.7. For any nef adelically metrized line bundle A on Y with
vol(A4) > 0, we have

d/e\g(ﬁmh’m . (.um|Ym)*ZVdimy) d/e\g(mﬂy 'Z.dimy)

5(M,, <
(Monl.) < vl (il A) <)
by Proposition 2.15(3). O
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Claim 8.8. For everym > 1,

e(Rx,,.1vme Mma).) < ppdimY e(Rxy(aL).)

7%X,,,m [Yia (Mma)| E)qy(af)'
Proof of Claim 8.8. Note that EX|y(af) = RX,1a|Vima (M o) = dim Y. Since

EXma\Yma(Mma)- C éx (tpa(mal)), = §X|Y(maz)-

ma‘Yma
as graded Ky-algebras, we obtain the assertion. O
For m > 1 we set
T(m) = {(km w1 o) (5 ® (Le,., |y, )0
k>0,s¢€CLx,. |y, (kMmna)\ {0}}

(Lemma 6.4(2)) and

a0m = (U izt o (Ot 6] O} 11 ) )

Then T'(m) C §X‘y(af) and §X|y(af)m C T'(m) by Proposition 4.7 and Lem-
ma 6.4(2). Thanks to [3, Théoréme 1.15]|, there exists an mg > 1 such that

(85)  volg(u (Am)) log(p) > volg . (Bxy (aD) log(p) — </3

for every m > mg. By Proposition 7.10, Claims 8.7 and 8.8, and (8.4),

(8.6) volg (1) (Bx|y (L)) log(p) = volxy (aL) —&/3,
@Xma Yia (Mma)
(8.7) = e 00 > Vol (A(m) log(p) — €/3.

Therefore, by (8.5)—(8.7),

‘TEIX ma|Yma (Mma)

(ma)im 71 2;51)(|y(f) —¢ for every m > my. O
ma
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