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New Realization of Cyclotomic ¢-Schur Algebras

by

Kentaro WADA

Abstract

We introduce a Lie algebra gq(m) and an associative algebra Uy, q (m) associated with the
Cartan data of gl,, which is separated into r parts with respect to m = (ma, ..., m,) such
that mi + --- + m, = m. We show that the Lie algebra gq(m) is a filtered deformation
of the current Lie algebra of gl,,, and we can regard the algebra U; q(m) as a “g-
analogue” of U(gq(m)). Then, we realize a cyclotomic g-Schur algebra as a quotient
algebra of U, q(m) under a certain mild condition. We also study the representation
theory for gq(m) and U, q(m), and we apply it to representations of the cyclotomic
g-Schur algebras.
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80. Introduction

0.1. Let 7, , be the Ariki-Koike algebra associated with the complex reflection
group of type G(r, 1, n) over a commutative ring R with parameters ¢, Qo, ..., Qr—1
€ R, where ¢ is invertible in R. Let .#, ,(m) be the cyclotomic g-Schur algebra
associated with 77, , introduced in [DJM], where m = (mq,...,m,) is an r-tuple
of positive integers. By [DJM], it is known that .7}, ,(m)-mod is a highest weight
cover of 7, ,-mod in the sense of [R] if R is a field and m is large enough.

In [RSVV] and independently in [L], it is proven that .#, ,(m)-mod is equiv-
alent to a certain highest weight subcategory of an affine parabolic category O in
a dominant case of an affine general linear Lie algebra as a highest weight cover of
A, -mod. It is also equivalent to the category O of a rational Cherednik algebra
with the corresponding parameters. In the argument of [RSVV], the monoidal
structure on the affine parabolic category O (more precisely, the structure of O
as a bimodule category over the Kazhdan—Lusztig category) has an important
role.

For r = 1, it is known that the g-Schur algebra .7}, 1(m) is a quotient algebra
of the quantum group Uy (gl,,) associated with the general linear Lie algebra gl,,,
and Eano Zn,1(m)-mod is equivalent to the category Cio(% ) consisting of finite-
dimensional polynomial representations of Uy(gl,,) ([BLM], [D] and [J]). The cat-

egory CEO( has a (braided) monoidal structure which comes from the structure
q

>0

UQ(g[m

with the monoidal structure on the Kazhdan—Lusztig category by [KL]. However,

aln)
of Uy(gl,,) as a Hopf algebra. The monoidal structure on C

) is compatible
for cyclotomic g-Schur algebras and 7 > 1 such structures are not known, although
we may expect they exist through the equivalence in [RSVV]. This is a motivation
of this paper.

In [W1], we obtained a presentation of cyclotomic ¢-Schur algebras by gener-
ators and defining relations. The argument in [W1] is based on the existence of the
upper (resp. lower) Borel subalgebra of the cyclotomic g-Schur algebra .7, ,(m)
which is introduced in [DR]. In [DR], it is proven that the upper (resp. lower) Borel
subalgebra of ., (m) is isomorphic to the upper (resp. lower) Borel subalgebra of
Fn,1(m) (i.e. the case where r = 1) which is a quotient of the upper (resp. lower)
Borel subalgebra of the quantum group U, (gl,,) (m = >, _, my) if m is large
enough. The presentation of .}, .(m) in [W1] is applied to the representation the-
ory of cyclotomic g-Schur algebras in [W2] and [W3]. However, this presentation is
not so useful in general since, in the presentation, we need some non-commutative
polynomials which are computable, but we cannot describe them explicitly (see
[W1, Lemma 7.2]). Hence, we can hope there is a more useful realization of cyclo-
tomic ¢g-Schur algebras, like the fact that the g-Schur algebra .7}, 1(m) is a quotient
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of the quantum group Uy,(gl,,,) in the case where r = 1. In this paper, by extending
the argument in [W1], we give such a realization.

0.2. Let Q = (Q1,...,Q,—1) be an r—1-tuple of indeterminates over Z, and Q(Q)
be the field of rational functions in variables Q. In §2, we introduce a Lie algebra
gq(m) with parameters Q associated with the Cartan data of gl,,, (m = Y, _, mx)
which is separated into r parts with respect to m (see paragraph 1.3). Then, in
Proposition 2.13, we prove that gq(m) is a filtered deformation of the current Lie
algebra gl [z] = Q(Q)[z] ® gl,,, of the general linear Lie algebra gl,,,.

In Corollary 2.8, we see that gg(m) has a triangular decomposition

go(m)=n"@n’@n’.

Thus we can develop a weight theory to study representations of gg(m) in the
usual manner (see §3). Let Cq(m) be the category of finite-dimensional gg(m)-
modules which have weight space decompositions, and all eigenvalues of the action
of n% belong to Q(Q). Then we see that a simple gq(m)-module in Cq(m) is a
highest weight module.

There exists a surjective homomorphism of Lie algebras gg(m) — gl,, (see
(2.16.1)) which can be regarded as a special case of evaluation homomorphisms
(see Remark 2.17). Let Cq, be the category of finite-dimensional gl,,-modules
which have weight space decompositions. Then Cyq  is a full subcategory of Cq(m)
through the above surjection (see Proposition 3.7).

Let Q = (Qo,Q1,...,Qr—-1) be an r-tuple of indeterminates over Z, and @(Q)
be the field of rational functions in variables Q. Set 9g(m) = QQ) Ro(qQ) 9q(m),
and define the category Cgq(m) in a similar way. Let S (m) be the cyclotomic
g-Schur algebra over Q(Q) with parameters ¢ = 1 and Q. In Theorem 8.4, we
prove that there exists a homomorphism of algebras

s : Ulgg(m)) = 2, (m),

where U(gg(m)) is the universal enveloping algebra of gg(m). Assume that
my > n for all k = 1,...,r — 1. Then ¥y is surjective, and .} (m)-mod is a
full subcategory of Cg(m) through the surjection Wy (see Theorem 8.4(ii)). We
expect that the surjectivity of ¥y also holds without the condition on m. (We
need this condition for a technical reason—see Remark 8.2.)

It is known that .} (m) is semisimple, and the set {A(X) | A € /Tj{r(m)} of
Weyl (cell) modules gives a complete set of (representatives of) isomorphism classes
of simple .#,} .(m)-modules (see §6 and [DJM] for definitions). The characters of
the Weyl modules, denoted by ch A(X) (A € /T:;T(m)), are studied in [W2]. We
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see that ch A(X\) (A € /Tj[r(m)) is a symmetric polynomial in variables Xu,. Set
X;O’T(m) = U,>0 /le‘r(m) Then, for A\, pu € /Tgoﬂa(m), it was conjectured in [W2]
that

(0.2.1) chA(A\)chA(u)= > LR, chA(v),

yeﬁgw(m)

where LR, is the product of the Littlewood-Richardson coefficients with respect
to A, and v (see §9 for details). We prove this conjecture in Proposition 9.4. We
remark that the characters of Weyl modules of a cyclotomic g-Schur algebra do
not depend on the choice of the base field and parameters.

By using the usual coproduct of the universal enveloping algebra U(gg(m))
of gé(m), we can consider the tensor product M ® N in U(gé(m))—mod for
M,N € U(gg(m))-mod. We regard S (m)-modules (n > 0) as U(gg(m))-
modules through the homomorphism ¥,. Take n,nq,ne € Z~o with n = ny + ns.
Then, in Proposition 10.1, we prove that, for A € /T;‘L‘M(m) and p € AF | (m),

n2,r

(0.2.2) AN @ Ap) = @ LRY, A(v)

VG/Tf{YT(m)

as U(gg(m))-modules if my, > n for all k=1,...,r — 1, where LR}, A(v) means
the direct sum of LR, copies of A(v). In particular, A(\)®A(v) € &, »(m)-mod.
The decomposition (0.2.2) gives an interpretation of formula (0.2.1) in the category
Cs(m). We expect that (0.2.2) also holds without the condition on m. (Note that

Q
we prove (0.2.1) without the condition on m in Proposition 9.4.)

0.3. Set A = Z[q,¢"1,Q1,...,Q,_1], where ¢,Q1,...,Q,_1 are indeterminates
over Z, and let K = Q(q,Q1,...,Qr—1) be the quotient field of A. In §4, we
introduce an associative algebra U, q(m) with parameters ¢ and Q associated
with the Cartan data of gl,, which is separated into r parts with respect to m.

Let Uy , o(m) be the A-subalgebra of U, q(m) generated by the defining
generators of U, q(m) (see paragraph 4.11). We regard Q(Q) as an A-module
through the ring homomorphism A — Q(Q) sending ¢ to 1, and we consider the
specialization Q(Q) ®a Ug , (m) using this ring homomorphism. Then we have
a surjective homomorphism of algebras

(0.3.1) Ulgq(m)) = Q(Q) @4 U 4 q(m)/3,

where J is a certain ideal of Q(Q) ®a Uy , q(m) (see (4.11.2)). We conjecture
that (0.3.1) is an isomorphism. Then we can regard U, q(m) as a “g-analogue” of
U(gq(m)). Dividing by the ideal J in (0.3.1) means that the Cartan subalgebra
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U(n°) of U(gq(m)) deforms to several directions in U, q(m) (see paragraph 4.11
and Remark 4.12).
We find that U, q(m) has a triangular decomposition

(0.3.2) Uy q(m) =UUUT

in a weak sense (see (4.6.1)). We conjecture that the multiplication map U~ ®x
U g Ut — Uy.q(m) gives an isomorphism of vector spaces. More precisely, we
expect the existence of a PBW type basis of U, q(m) which is compatible with a
PBW basis of U(gg(m)) through the homomorphism (0.3.1).

Anyway, thanks to the triangular decomposition (0.3.2), we can develop weight
theory to study U, q(m)-modules in the usual manner (see §5). Let C; q(m) be
the category of finite-dimensional U, g (m)-modules which have weight space de-
compositions, and all eigenvalues of the action of ¢° belong to K. Then a simple
Uy.q(m)-module in C,; g(m) is a highest weight module.

There exists a surjective homomorphism of algebras Uy, q(m) — U,(gl,,) (see
(4.9.1)) which can be regarded as a special case of evaluation homomorphisms (see
Remark 4.10). Let Cy, (41, ) be the category of finite-dimensional U, (gl,,)-modules
which have weight space decompositions. Then Cy, (41, ) is a full subcategory of
Cq,q(m) through the above surjection (see Proposition 5.6).

Set K = K(Qo), A= A[Qo], and qu@(m) = K ®xk Z/Iq7Q(m). Let Z/IA,q,Q(m)
be the A-form of U, q(m) involving divided powers (see paragraph 4.13), and set
Uz ,q(m) = A®y U§7q7Q(m). LethfET(m) (resp. yﬁr(m))Nbe the cyclotomic
g-Schur algebra over K (resp. over A) with parameters ¢ and Q. In Theorem 8.1,
we prove that there exists a homomorphism of algebras

VU, q(m)— Yfr(m).

By~restricting ¥ to Uz , g(m), we obtain a homomorphism Wy : Uy  &(m) —
yﬁr(m). Then we can specialize ¥; to any base ring and parameters. If m; > n
forallk =1,...,r—1, then ¥ (resp. ¥;) is surjective (see also Remark 8.2 for sur-
jectivity of ¥). In Theorem 8.3, we prove that fg,.(m)—mod is a full subcategory
of C, 5(m) through the surjection ¥ if m is large enough.

We conjecture that Uq@(m) has the structure of a Hopf algebra, and that the
decomposition (0.2.2) also holds for Weyl modules of yﬁz’r(m) (n > 0) through the
homomorphism ¥ and the Hopf algebra structure of i, g (m). (Note that formula
(0.2.1) holds for .#X, (m) with n > 0.)

It is also an interesting problem to obtain a monoidal structure for i, q(m)
(resp. Ua q,q(m) and its specialization) which should be related to the monoidal
structure on the affine parabolic category O.
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81. Notation
1.1. For a condition X, set
1 if X is true,
O(x) = .
0 if X is false.
We also set d;; = d(;—;) for simplicity.

1.2. g¢-integers. Let Q(g) be the field of rational functions over Q in variable g. For
deZ,set[d = (¢"—q¢/(qg—q ') € Qq). For d € Z~y, set [d]! = [d][d—1]...[1],
and [0]! = 1. For d € Z and ¢ € Z~o, set

{d] _ 4] [d[c_][i]”i][.d.._[ff 1 m .

It is well-known that all [d], [d]! and [¢] belong to Z[g, ¢~ ']. Thus we can specialize

Cc

these elements to any ring R and ¢ € R such that ¢ is invertible in R, and we
denote them by the same symbols.

1.3. Cartan data. Let m = (mq,...,m,) be an r-tuple of positive integers.
Set m = Y ,_,mi. Let P = @.", Ze; be the weight lattice of gl,,, and let
PV =@ | Zh; be its dual with the natural pairing (, ) : P x P¥Y — Z such that
(i, hj) = 0;5. Write P>o = @, Z>0&;-

Set a; = e; —egipr fori=1,...om—1. Then Il = {o; | 1 < i < m—1}

m

is the set of simple roots, and @ = @1:711 Zoy; is the root lattice of gl,,. Write
Q" =@ Zxoai.
Set f =h; —hipp fori=1,...,m—1. Then IV ={a) | 1 <i<m—1}is
the set of simple coroots.
We define a partial order > on P, called the dominance order, by A > p if
A—peqQr.
Set I'(m) = {(i,k) | 1 <i<my, 1 <k<r}and I"(m)=T(m)\ {(m,,r)}.
We identify I'(m) with {1,...,m} by the bijection
k—1
(1.3.1) y:D(m) = {1,....m},  (i,k)— > mj+i.
j=1
Thus, I''(m) gets identified with {1,...,m — 1}. Under the identification (1.3.1),
for (i,k), (4,1) € I'(m), we define

(i, k) > (4,0) i v((6 k) >~(G0), (k) £ (1) = (00 k) £ (0, 1)

We also have (my + 1,k) = (L,k+1) for k = 1,...,r — 1 (resp. (1 — 1,k) =
(mg—1,k—1) for k=2,...,7).



NEW REALIZATION OF CSA 503

We may write
P = @ ZE(“C), PY = @ Zh(i,k)a Q= @ Za(ivk)'
(i,k)€ T (m) (i,k)E T (m) (i,k)el" (m)
For (i,k) € I'"(m), (j,1) € I'(m), define a¢; x)(;1) = (k) Ajoy)- Then
1 if (4,0 = (i, k),
aikGn =4 —1 i (G 0) = (i +1,k),

0 otherwise.
Set
Pt ={\eP| <)\,a(vi’k)> € Z>o for all (i,k) € I''(m)},
Pl={\eP| <)"O‘E/z',k)> € Z>o for all (i,k) € I'(m) \ {(mg, k) |1 <k <r}}

and PJ is the set of
dominant integral weights for the Levi subalgebra gl,, @ --- @ gl,, of gl,, with

Then P7 is the set of dominant integral weights for gl

m?

respect to m = (my,...,m,).

§2. The Lie algebra gq(m)

In this section, we introduce a Lie algebra gg(m) with r — 1 parameters Q =
(Q1,...,Q.—1) associated with the Cartan data of paragraph 1.3. Then we study
some basic structures of gg(m). In particular, we prove that gq(m) is a filtered
deformation of the current Lie algebra gl,,[z] of the general linear Lie algebra gl,,,.

2.1. Let Q = (Q1,...,Qr—1) be an r — 1-tuple of indeterminates over Z. Let
Z[Q] = Z|Q1,...,Q,—1] be the polynomial ring in variables Q,...,Q,_1, and
Q(Q) =Q(Q1,...,Qr—1) be the quotient field of Z[Q].

Definition 2.2. We define the Lie algebra g = gq(m) over Q(Q) by the following
generators and relations:

Generators: X(fk)’t, T ((4,k) € I'(m), (4,1) € I'(m), t > 0).
Relations:

(LY)  [Zgwy,s: Zijayel = 0,

+ +
L2) [Zga.s X(i,k:),t] = Fagi k) ()X k)50

B J(i k), s+t if i # my,
(L3) [X(tk),t, X(N),s] = 0(i,k),(5.0) { e
—QkT e k),s+t + Ty k) set41  if 1= my,
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(L4) (X e XESJ=00 0 (D) # (i 1,k),
(L5) (X (i,k), t+1’X(zi1 k), J= [X(—;,k),t’x(-:'_il,k),s+l]’

[sz)t+17 (zilk),] [(;k)ﬁ (;ilk),erl]’
(L6) [X, zk)s’[ X ),t’X(i:tl,k),u]] [X(; )s’[X(;,k),t’X(;:tl,k),u]]:0’

where we have set j(i,k),t = I(i7k)7t — I(i+1,k)7t.

2.3. For 7 € Q(Q), let Vr = D 1yerm) QQ)v1) be the Q(Q)-vector space
with a basis {v(; ) | (j,1) € I'(m)}. We can define an action of g on V. by

TV, k) if (7,1) = (i + 1,k) and i # my,
X(?km ) = (=Qk + T)T (8 if (4,1) = (1,k+1) and i = my,
0 otherwise,

- S Tage 1 (4,1) = (4, k),
(i,k),t " Y0 — .
0 otherwise,

Tt’U(j 1) if (.77 l) = (7’7 k)v
Lo v = {O otherwise

We can check that the action is well-defined by direct calculations.

2.4. For (i, k), (j,1) € I'(m) and ¢t > 0, we define an element E(ti’k)(j ;) €9 by

Liiky e if (5,1) = (i, k),
t _ e .
5(i,k)7(j,l) - [X(-l'_k)’oa [X(-l'_+1 k),00 [X(—;fgyl)ﬁoa X(—; 1 l),t] s H if (]a l) > (Z, k),
(X100 [Kim2py00 0 (XG0 Xl - G < (6 F);
in particular, 5(z k), (i41,k) = X(l k).t and £(z+1 k). (k) = X(:k)

If (4,1) > (i, k), we have

t _ vt t _ et +
€. = X w00 €l G0] = €y -1 XG-1,0)
If (4,1) < (i, k), we have
t _ — _ —
Eli. ) = X1 1,00 Elim10.G0) = €, X o
Lemma 2.5. (i) For (i,k), (j,1) € I'(m) such that (j,1) > (i, k), we have

5(tz i) k), (4,1) if (a,¢) = (i —1,k),
+ ¢ _ : ‘
(25.1) X o0 €GmGnl =\ —€00 Gy (a0 = (1),

0 otherwise,
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ga_l:),(j,l) if (a,c) = (i, k),
(252)  [Ziaoys Ehnyonl = —EG0.Ga i (:0) = (.,
0 otherwise,
(253) (XG0 Eimy. )
Stjs) Gk T S(t:ffl k), (i41,5) if £=1,(a,c) = (i,k) and i # my,
t+ t+ t4+s+1 t+s+1
QuE iy ), ma) ~ €1, 141) ~ Er, )+ EQ R, (k1)
if £=1,(a,c) = (i k) and i = my,
_ St:fl k) (] ) if £>1,(a,c) = (i,k) and i # my,
Qk 1k+1) (D) —|—5€1+ZE) G if £>1,(a,c) = (i,k) and i = my,
—Stj,:) G—1.0) if £>1,(a,¢)=(—1,1) and j —1 # my,
QZE(Z 2y, (mal) Sf;',:)'i'&%l) if £>1,(a,¢)=(—1,1) and j—1=my,
0 otherwise,
where we have set £ = (4,1) — (i, k).

(ii) For (i,k),(4,1) € I'(m

) such that (j,1) <

(i,k), we have

Gy (a0) = (k)
- t _ s . .
[Xareror €m0 = § €y o1y ¥ (a0) = (= 1,1),
0 otherwise,
g(tj_ks) G,) if (a,c) = (i,k),
t s ‘ .
[I(a,c),s, g(i,k),(j,l)] = g(t:rk) (4,0 Zf (aa C) = (ja l)a
0 otherwise,
+ t
[X(a,c) s? 5(1 k),(j,l)]
5(2 k) L) Ef:,:),(i7k) if £=1,(a,c)=(i—1,k) andi—1# my,
t+s t+s t+s+1 t+s+1
_Qk(g(mk k),(my,k) (1,k+1),(1,k+1)) + g(mk,k),(mk,k:) T Y(1,k+1),(1,k+1)
if £=1,(a,c)=(i—1,k) and i —1 =my,
B 5(751@(]71) if £>1,(a,c)=(i—1,k) andi—1%# my,
—Qkft;i 0, +5(t:zi;1),(j,z) if £>1,(a,c)=(i—1,k) and i —1 = my,
5(%:) (+1,0) if £>1,(a,c)=(j4,1) and j # my,
QZSHS L(L1+1) g(t:rlcs)+(11 14+1) if £>1,(a,c) = (j,1) and j = my,
0 otherwise,

where we have set £ = (i, k) —

(4:1)-
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(iii) For (i,k) € I'(m), we have

[I(a,C),S’gé,k),(i,k)} =0,
[X(-Z,C),S7 S(tl,k),(z,k)} - 70’(11,0)(i,k‘)g(t;—’j)y(a+17c)7
- ¢
[X(a,c),s’ g(tivk)v(iak)] = a(a>c)(i7k)5(:j170),(a,c)'
Proof. We prove (2.5.1) by induction on (4,1) — (¢, k).

(i
The case (j,1) — (i,k) = 1 follows from (L4) and (L5). Assume now that
(4,1) — (i, k) > 1. We have

[X(Jcruc),wgfi,k)’(j,l)] = [X(Z,c),s’ [X(j,k),O’5€i+1,k),(j,l)”

- [X(tk)vo’ [X(:c),s’ €€i+1,k)7(j,l)]] + [[X(:c),s’ X(Jir,k),o]’ €€i+1,k),(j,l)]'

Applying the inductive assumption, we obtain

(254) (X 00 €G]
[X(Jir,k) 0’5(t;r1:) i) if (a,c) = (i, k),
—W* G ) if (a,¢) = (4,1),
=S [l (z 1,k), s’X(i,k),o]’6(i+17k),(j,l)] if (a,c) = (1 —1,k),
H ke Xaw.ob Eim.gnl I (a0) = (G +1,k),
otherwise.

We also have
[ (a,c),s’ g(z k), } [X(Z’C) s) [5& k),(7—1,1)> X(JJF 1,0), 0]]
— + +
B [[X(jflvl)’o’ X(a c) 5] 5(1 k), (5—1 l)] [[X(a,c),s’ gfi,k),(j—l,l)]v X(jfl’l)yo]'

Applying the inductive assumption, we obtain

(25.5) (X 0.0 €G]
(X100 Xy €y o) 3 (@) = (4,0),
[[X(JJr 1,1),0’X(J]r 2,1, NE 5(1 k),(j—1 l)] if (a,c) = (5 —2,1),
= GG z)aX(J;_u),o] if (a,c) = (i — 1,k),
(€65, 6.0 XG-1..0) if (a,¢) = (j — 1,0),
0 otherwise.
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By (2.5.4) and (2.5.5),

E kG if (a,c) = (i —1,k),
gtz_‘—ks) (41,0 if (a, C) = (]7 l),

[X(erk) O’S(i-t_k),(i-i-Q,k)] if (a,¢) = (i,k) = (j — 2,1),
[X(a c),s’ 5(1 B.Gol = HX(J;H k),s’ X(Jir,k),oL Ef¢+1,k),(i+3,k)]
if (G/,C) = (Z+ 17k) = (] - 27l)a

(Xm0 Eamiraml i (a0)=(+1k) = (- 11,
0 otherwise.

By direct calculations using (L4)—(L6), we also get

X+

+ t+ + ¢
[X . g (i+1,k),s’ X(l k), o]a 6‘(i—i-l k), (i+3,k)]

(4,k),0° (i,k),(z’+2,k)] =l
t+s
=X, O’S(jk) (ir2.m] =0
Thus we have proved (2.5.1).
We prove (2.5.2) by induction on (4,1) — (¢, k). The case (j,1) — (i, k) = 1 is
just (L2). Assume that (4,1) — (i, k) > 1. We have
[I(a,c),mg(ti’k),(j,l)] = [I a,c),s» [X(j}k)’wg(tiJrl,k),(j,l)]]
= ['/Y(Jir,k),o7 [I(%C)w‘” ggiJrl,k),(j,l)“ + [[I a,c),s» X(Jir’k),(]}v ggiJrl,k),(j,l)}'

By the inductive assumption,

Zasc).sr €y, (i)
[ ()agtz+51 k) (] l)] [X(tk),s’gé‘/i—i-l,k),(j,l)] lf (aa C) = (7’ + ]-7 k),

_ [X(i,k)p:5(14_17@,(]‘71)] if (a,c) = (4,1),
[X(zk),s’ g(ti+1’k)7(jvl)] lf ((L, C) = (7’7 k)?
0 otherwise.

Thus, we get (2.5.2) by applying (2.5.1).
We prove (2.5.3) by induction on £ = (4,1) — (i, k). For £ = 1,2, we can show
(2.5.3) by direct calculations. Assume that ¢ > 2. Then

_ + + t
[X(a,c)s’g(i’k),(j,l)] X, (a €),s? [ (i7k)707g(i+1,k),(j,l)]]
- [X(i’k)ﬁo’ [X(;C)’s’géﬂ,k)»(j,l)“ + [[X(;,c),s7 X(Jir,k),o]7ggiJrl,k),(j,l)}'

Applying the inductive assumption, we obtain
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[ (a c), 575(2 k),(J, l)}

[X(er,k) 0 (z+2 k), (j l)] if (a,c) = (i+1,k) and i+1 # my,

[X(tk 5fl+z+1) (.l 5&?211) G )] if (a,¢) = (i+1,k) and i+1 = my

(X y.00 g(t:ﬂ k), (— 11)] if (a,¢) = (j—1,1) and j—1 # my,
_ (X .00 QUEG iy ey~ EGiamy.ameny] 1 (@) = (—1,0) and j—1 = my,

- Liiky,s TL(i41,k),50 5(i+1 k),(j,l)] if (a,c) = (i,k) and i # my,

QT k).s = Z(1h41).5) = Lomek).st1 F L kA1) 41 E(L 1), (0]

if (a,c) = (i, k) and i = my,
0 otherwise.

Thus, (2.5.3) follows by applying (2.5.1) and (2.5.2).
(ii) is proven in a similar way. (iii) is just the relations (L1) and (L2). O

By Lemma 2.5, g is spanned by {Sfi’k)(jyl) | (i,k),(j,0) € I'(m), t > 0} as a
Q(Q)-vector space. In fact, this set is a basis of g:
Proposition 2.6. {&(, ;) | (i,k),(j,1) € I'(m), ¢t > 0} is a basis of g =
gQ(m).
Proof. We have to show that the elements of {Efi,k%(j’l) | (3, k), (5,)) e '(m), t>0}
are linearly independent.

For 7 € Q(Q), let V, = ®(j,l)eF(m) Q(Q)v(j,y be the g-module given in 2.3.
Then

EmGD) " Ve = O G YR GHT Uik,

where

I[ —@+7 ifi-k>o0,
Yak)G) = p=0

1 otherwise.

Thus, if 32 ), .erem) 120 (i) G0 Gk, = O (for some 7, 4y € Q(Q)),
then

t t
> ’"(zpk)(j,z)g(i,k),(j,l)) *V(a,c)

(i,k),(4,0)€l’ (m),t>0
- Z wlk)(Jl)(Zr(zk: (a,c) )U(zk)—o

(i,k)€ (m) t>0
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Hence, for any (i,k), (4,1) € I'(m) and any 7 € Q(Q), we have
bamun (X rhmen™) =0
>0
This implies that T%i,k)(j,l) =0 for any (i,k),(j,!) € I'(m) and any t > 0. O
2.7. Let nt, n~ and n° be the Lie subalgebras of g generated by
(X, | GB) € T'm). £ 20}, (X7, | (k) € I'(m), £> 0} and
{Zg.e | (G:0) € I'(m), t > 0}

respectively. Then we have the following triangular decomposition as a corollary
of Proposition 2.6.

Corollary 2.8. We have the triangular decomposition
g=n"on’®n"  (as vector spaces).

2.9. A current Lie algebra. Let Q[z] be the polynomial ring over Q, and let
gl,,[2] = Q[z] ® gl,,, be the current Lie algebra associated with the general linear
Lie algebra gl,, over Q. The Lie bracket on gl,,[z] is defined by

l[a®g,b@h]=ab®[g,h] (a,b€Q[z], g,h € gl,).

Let E;; € gl,, (1 < 4,7 < m) be the elementary matrix having 1 at the
(¢,7)-entry and O elsewhere. Set e; = E; 11, fi = Eit1,; and K; = E; ;. Then
Q[z] ® gl,, is generated by

e, '@ fi, ' 9K; (1<i<m-1,1<j<m,t>0).

2.10. For r = 1 (m = m), the Lie algebra g(m) over Q is generated by Xiﬂ; and

Zit (1<i<m—1,1<j<m,t>0) with the defining relations (L1)-(L6) (for
(i,1) € I'(m), we denote (4, 1) simply by ¢). In this case, the relation (L3) is just
(X5, X = 00 (Tie — Tiga)-

Lemma 2.11. There exists an isomorphism of Lie algebras

®:g(m) — gl,,[2] (Xft — 2t ® ey, X o' ® fi, Tis— 1t @ Kj).

In particular, the relations (L1)—(L6) (for r = 1) give defining relations of gl,,[z]
through the isomorphism ®.

Proof. We can show that ® is well-defined by checking the defining relations of
g(m) directly.
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For i,j € {1,...,m} and t > 0, we see that ®(£/;) = =' ® E; ;. Clearly,
{z' @ E; ; |1<i,5 <m,t>0}is a basis of gl,,[z]. Thus, Proposition 2.6 implies
that ® is an isomorphism. O

2.12. For r > 2, we can regard g = gq(m) as a deformation of the current Lie
algebra Q(Q) ®q gl,,,[x] as follows.
For t > 0, write

Vi =A{X 4y L | (6k) € IV (m), (5,1) € I'(m)}.
Let g; be the Q(Q)-subspace of g spanned by

p
{0 Moo Dy Y3 | Vi €20, Dt 2t p > 1)
b=1

Then

g=9g0201 002> .
By the defining relations (L1)—(L6), we see that
(2.12.1) (95, 0t) C gstt (5,6 >0).

For t > 0, let oy : g¢ — 9¢/g:+1 be the natural surjection. By (2.12.1), we can
define the structure of a Lie algebra on grg = @, g:/gi+1 by

[05(9),00(h)] = osiellg, h]) (9 €8s, B € g0).
Then we see that gr g is generated by
01(XEy ) ol Tne) (k) € I'(m), (5,1) € D(m), ¢ > 0),
and gr g has a basis {0¢(£(; 1y ;) | (i,k), (4.1) € I'(m), t > 0}.
Proposition 2.13. There exists an isomorphism of Lie algebras

V:Q(Q) ®q o[z = gro =P ot/
>0

such that

ot (X k1) if @ F# my,
Qi lou(X,, ) if i =my,
' @ fig Ut(X(;k),t)’

' @ Ky ot( L)

' ® €(i,k) — {

where we use the identification (1.3.1) for the indices of the generators of gl,,[x].
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Proof. We can show that U is well-defined by checking the defining relations of
gl,,,[z] directly (see Lemma 2.11). We also see that

V(@' @ Bary, (1) = Y600 (EG a6y

where

l—k—1
(—Qpi,) ifl—k>0,

VG =3 »

[}

1 otherwise.
Thus, ¥ is an isomorphism. O

As a corollary, we have the following isomorphism between Q(Q) ®qg(m) and
grgq(m).

Corollary 2.14. There exists an isomorphism of Lie algebras

U :Q(Q) ®g g(m) — grog(m) = P ar/ai

t>0
such that
y+ s {Ut(X(?k)yt) if i # my,
i,k), — .
O Qe (X, ) i =

Xiwe ™ Ut(X(;k),t)’ L = oe(Zi ),
where we use the identification (1.3.1) for the indices of the generators of g(m).

2.15. We also have some relations between the Lie algebra gg(m) and the general
linear Lie algebra gl,,,. Let gl,,, ©---@gl,, be the Levi subalgebra of gl,, associated
with m = (my,...,m,). Then generators of g, @©--- @ gl,, are given by e ),
Jaor 1 <i<mp—1,1<k<r)and K ((j,1) € I'(m)), where we use the
identification (1.3.1) for indices.

Proposition 2.16. (i) There exists a surjective homomorphism of Lie algebras

such that
€(i,k) if i@ # my, _
o) = {le( W i i =my 9(Xn0) = Fay
M, )

9(ZGn0) =Ky 9(XG.) =9Zne) =0 fort>1.
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(ii) There exists an injective homomorphism of Lie algebras
(2.16.2) vigl, © - ®gl, — gq(m)
such that v(eq k) = X(—;k),o’ t(feiky)) = X(Z,k),o and (K1) = L0

Proof. We can check that g and ¢ are well-defined by direct calculations. Clearly
®---®gl,, — gl, be the natural embedding. Then,
by investigating the images of generators, we see that ' = g o +. This implies that

g is surjective. Let ¢/ : gl

¢ is injective. O

Remark 2.17. The surjective homomorphism ¢ in (2.16.1) can be regarded as a
special case of evaluation homomorphisms. However, we cannot define evaluation
homomorphisms for gg(m) in general, although we can consider gq(m)-modules
corresponding to some evaluation modules. They will be studied in a subsequent

paper.

§3. Representations of gq(m)

Thanks to the triangular decomposition in Corollary 2.8, we can develop a weight
theory to study representations of gg(m) in the usual manner.

3.1. Let U(g) = U(gq(m)) be the universal enveloping algebra of the Lie algebra
gq(m). Then, by Corollary 2.8 together with the PBW theorem, we have the
triangular decomposition

(3.1.1) Ul 2Um ) eUn)Un").
Thanks to this decomposition, we can develop a weight theory for U(g)-modules.

3.2. Highest weight modules. For A € P and a multiset ¢ = (@, | (4,1) €
I'(m), t > 1) (¢, € Q(Q)), we say that a U(g)-module M is a highest weight
module of highest weight (X, ) if there exists vg € M such that:

(i) M is generated by vy as a U(g)-module,
(ii) X(J{’k)i -vg =0 for all (i,k) € I"(m) and ¢t > 0,
(lll) I(j,l),O'UO = <>\, h(j7l)>vo and I(j,l),t'v() = P,1),tY0 for (], l) € F(m) and ¢ > 1.

If vg € M satisfies (ii) and (iii), we say that vg is a maximal vector of weight (X, @).
In this case, the submodule U(g) - vo of M is a highest weight module of highest
weight (A, ). If a maximal vector vy € M satisfies (i), we say that vg is a highest
weight vector.

For a highest weight U(g)-module M of highest weight (A, ) with a highest
weight vector vg € M, we have M = U(n~) - vy by the decomposition (3.1.1).
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Thus, the relation (L2) implies the weight space decomposition

(3.2.1) M =DM, suchthat dimgq)My=1,

neP
HSA

where M, = {v € M | I 1.0-v = (1, h¢)v for (j,1) € I'(m)}.

3.3. Verma modules. Let U(n=Y) be the subalgebra of U(g) generated by U (n°)
and U(n™). Then, by Proposition 2.6 together with the proof of Lemma 2.5, we
see that U(n™) (resp. U(n™)) is isomorphic to the algebra generated by {X(tk)’t |
(i,k) € I'"(m), t > 0} (resp. {X(;k%t | (i,k) € IT"(m), ¢ > 0}) with the defin-
ing relations (L4)—(L6), U(n°) is isomorphic to the algebra generated by {Z(; ). |
(4,0) € I'(m), t > 0} with the defining relations (L1), and U(n=?) is isomorphic
to the algebra generated by {X(f;k)t,l(j’l)t | (i,k) € I"(m), (4,1) € I'(m), t > 0}
with the defining relations (L1)—(L6) except (L3). Then we have a surjective ho-
momorphism of algebras

(3.3.1) Un=% — Un% such that XF

Gt ™ 0 Lo = L.

For A € P and a multiset ¢ = (¢(;),+), we define a (1-dimensional) simple
U (n%)-module O = Q(Q)vo by

Z(in,0 -vo = (A hign)vo, (g, Vo = 9(j,0),£00

for (4,1) € I'(m) and ¢ > 1. Then we define the Verma module M (X, ) as the
induced module

M(Aﬂ SO) = U(g) ®U(n20) @()\,Lp)v

where we regard O, ) as a left U(n=°)-module through the surjection (3.3.1).

By the definitions, the Verma module M (), ) is a highest weight mod-
ule of highest weight (A, ) with a highest weight vector 1 ® vg. Any highest
weight module of highest weight (A, ) is a quotient of M (A, ), by the univer-
sality of tensor products. Moreover, M (), ¢) has the unique simple top L(\, ¢) =
M(A, ) /rad M (A, @) from the weight space decomposition (3.2.1).

By using the homomorphism ¢ : U(gl,,, @ --- @ gl,, ) — U(g) induced from
(2.16.2), we have a necessary condition for L(), ¢) to be finite-dimensional:

Proposition 3.4. For A € P and a multiset ¢ = (p@),¢), if L\ @) is finite-
dimensional, then \ € Pg..

Proof. Assume that L(\, ) is finite-dimensional. Let vg € L(\, o) be a highest
weight vector. When we regard L(A, ¢) as a U(gl,,, @ --- @ gl,,, )-module through
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the injection ¢ : U(gl,,, ©---®gl,, ) — U(g), we see that the U(gl,, ©---®gl,, )-
submodule of L(\, ) generated by vy is a (finite-dimensional) highest weight
Ulgl,,, ® -+ @ gl,, )-module of highest weight . Thus, the proposition follows
from well-known facts about U(gl,,, @ ---® gl,, )-modules. O
3.5. The category Cq(m). Let Cq(m) (resp. Cgo(m)) be the full subcategory
of U(g)-mod consisting of U(g)-modules satisfying the following conditions:
(i) If M € Cq(m) (resp. M € Cgo(m))7 then M is finite-dimensional.

(ii) If M € Cq(m) (resp. M € Cgo(m)), then M has the weight space decompo-

sition

M = @M)\ (resp. M = @ M,y),
AeP AEPs5

where M) = {U eM | I(j,l),O ‘U= <)\, h(j7l)>v for (],l) S F(m)}
(i) If M € Cq(m) (resp. M € Cgo(m))7 then all eigenvalues of the action of

T ((4,0) € I'(m), t > 0) on M belong to Q(Q).
By the usual argument, we have the following lemma.

Lemma 3.6. Any simple object in Cq(m) is a highest weight module.

By using the surjection g : U(g) — U(gl,,,) induced from (2.16.1), we obtain
the following proposition.

Proposition 3.7. Let Cq(, be the category of finite-dimensional U(gl,,)-modules
which have a weight space decomposition. Then:

(i) Cqi,, is a full subcategory of Cq(m) through the surjection g : U(g) — Ul(gl,,).
(ii) For X € PT, the simple highest weight U(gl,,)-module Agy (X\) of highest
weight X\ is the simple highest weight U(g)-module of highest weight (\,0)

through the surjection g : U(g) — Ul(gl,,), where 0 means @+ = 0 for all
(j,0) € I'(m) and t > 1.

§4. The algebra U, q(m)

In this section, we introduce an algebra U, q(m) with parameters ¢ and Q =
(Q1,--.,Qr—1) associated with the Cartan data of paragraph 1.3. Then we study
some basic structures of U, q(m). In particular, we can regard U, q(m) as a
“g-analogue” of the universal enveloping algebra U(gg(m)) of the Lie algebra
gq(m) introduced in §2.

4.1. Set A = Z[Q][qaq_l] = Z[qaq_lv Ql) e aQT—l]a where q, Q17 sy QT—l are
indeterminates over Z, and let K = Q(q, @1, ..., Qr—1) be the quotient field of A.
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Definition 4.2. We define the associative algebra U = U, q(m) over K by the
following generators and relations:

Generators: X(l k).t (?l)i’ IC?;J) ((i,k) € I'"(m), (4,1) € I'(m), ¢t > 0).

Relations:
— + 2 _ —I\7F
R1)  Kf)KGy =G0k, z) =1 (KGp)" =1£(a—-a)Ljy 0
(R2) [’C(l k) ’Cz; l)] []Ct k)’ ] 1), t] [I(i,k),svzgj,l),t] =0 (o, o' € {+-1,
(R3) K &G Ky = €2 ONO0XG ) s
Eai, kG, _ ag; 7
Ra) CRODTE ) 0X gy — aTOHOD A )tIu Do = RGNk 0
i,k) (4, tag Js
qreene ”I(],)o (k) — 4 HEmG DX )t (3,1)0 = (i.k) (G0 X )00
+ +ag;, + ag, +
(R5) (260,010 Xy o) = PTG ) Xk pr =T DX TG e
+ — ac; A - +ag; i, +
[ZG 1y 510 Xigy ] = PO ”I( D5 Xgy i1 —C PO X G TG s
(R6)  [X .00 X))
i \71 k),s if 4 7é mi,
= 0(i,k),(3.D) { (k) k) et
—Qk K(mk k) T k) s+t T ]C (M, k)tj(mk,k) st1if 1 =my,
(R7)
[X(jz:k),ﬁ X(:‘ij:’l)”g] = O lf (.]7 l) 7é (Za k)7 (Z :t 17 k);
+ + ErxE + 424t + + +
X(z k), t+1X(i,k),s - X( k), X(i,k),t+1 =4 X(i,k),tX(i,k),erl - X(i,k),erlX(i,k),t’
(i,k),t+1 (1’+1,k),s X(7+1 k),s X(—l‘_k) t+1
+ + +
X(z k), tX(i-i-l,k),s—i-l - qX(i-i—l,k),s—i—lX(i,k),t’
— — _1 — —
X(i+1,k),sX(i,k),t+l X( )t+1X(i+1,k),s
= Xiv10), 50180000 — 900 4 X 1,0), 5410
(R8)
+ + + + +
X(i:ﬁ:l,k),u(X(i,k:),sX(i,k:) X(z k).t (z k),s ( (2,k), sX(z k), t+X(’L k).t X( ),S)X(i:tl,k),u

)+
_ 1y +
=(g+a )Xy, X(z:i:l k), X(i,k),t + X(l k), tX(lzi:l 1w (ig).s)
Xie1 )Xk s Xyt T Xk e Xk, s) T (Xny s Xy £ X m), tX(;k) DX 1 5

st
1 — _
= (0 +a )X s Xm0 Xyt T Xn) e X100 K k)5

where we have set K?g’k) = IC+ IC(;+1 Ky IC(; K = /C(l k)lC(ZH K and
Tkt
I(Jg’k),o ~Zasmotla- q_l)I(Jg,k),OI(;+1,k),O ift=0,

—trt tr— -1 —t+2br+ .
4 Lirye =9 Lrame —(@—a )Zq LG Lisrme >0
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Remark 4.3. The relation (R4) follows from (R1) and (R3) in U, q(m). Thus,
we do not need (R4) among the defining relations of i, q(m). However, (R4) does
not follow from (R1) and (R3) in the integral forms Uf , o(m) and Uy 4q(m)
defined below. Therefore, we keep (R4) as a defining relation of U, q(m).

4.4. By (R1), for (i,k) € I'"(m), we have

/6 -K;
(3,k) (z k)
4.4.1 T,
(4.4.1) Ky T, a—q
Thus, when s = ¢ = 0, we can replace (R6) by
n _
(442) [X(i,k:),o’ X(jJ))O]
Kt —K:
M if & # my,
s q—q
= 0(i,k), (5,1 = -
(4,k),(34,0) ’C?;nk,k IC(mk B sy
_Qk —q +’C kk)jmkk)l le—mk
By (R8), if s =t, we have
(4.4.3)
N a2 —1y p+ + + AT =
Mz )Xy = 0+ )Gk Xz u¥iny.e  (Xan) Vizrmu =0
_ - 2 -1y py— - - ” X
A1 Xa )"~ OF X 1 Xz wine + (Ko o) Xz =0

By (R4) and (R5), we have

+ - + +
(4.4.4) [I(—;',l),l’X(i,k),t] = [I(j,l),l’X(i,k),t] = ia(i7k)(]'7l)X(i,k),t+l'

By induction on s using (R6), for s > 1 we can show that

+ +
(4.4.5) [I(] D). X(i’k),t]

ia(l £, l)(s 1)X+

= O(i,k) (4,19 (i,k),t+s

+ag, 1) v+ Tt
tag k) Zq S (P )X(z Rt 5—p

Fagi, k)G, z)(‘S 1)X+

= a’(i’k)(j l)q (i,k),t+s

: 1)+
£ Qi) qu PO PTVTE | bt

and
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:|: —
(446)  [ZE,) . X

= —aG kG pd OO AG

(i,k),t+s
a;, 1 — +
Faumon(a—aq Zlﬁ @G (P )X(Z 1)t L(ud) s —p

:ta(t,k)(],l)(‘s Dy

= —a3,k) (5,04 (k) t+s
s—1
-1 tag ki (p—1)7E —
FaarGn(a—a )Z greenu (P )I(j,l),spr(i,k),ter'
p=1

4.5. Let UT = L{;:Q(m), U™ =U, q(m) and Ud = Z/IS,Q(m) be the subalgebras
of U generated by
{X(jk)t | (i,k) € I"(m), t >0},  {X;, ,|(i,k) € I"(m), ¢t >0} and
{ (][ t? (ijJ)l(jvl)EF(m)thO}

respectively. Then, we have the following triangular decomposition of U from the
relations (R1)—(R8), (4.4.5) and (4.4.6).

Proposition 4.6.
(4.6.1) U=UUur.

Remark 4.7. We conjecture that the multiplication map U~ @g U° @x UT — U
(x®y®z +— zyz) is an isomorphism of vector spaces. More precisely, we expect the
existence of a PBW type basis of U (cf. Proposition 2.6 and (4.11.2) with Remark
4.12).

4.8. We have some relations between the algebra U/ and a quantum group associ-
ated with the general linear Lie algebra.

Let Uy(gl,,) be the quantum group associated with the general linear Lie
algebra gl,,, over K. Namely, U,(gl,,) is the associative algebra over K generated
bye;, fi (1<i<m-—1)and K]i (1 < j < m) with the following defining relations:

(Q1) K+K+ K+K”r KfK =K K =1,

(Q2) K;rein =q*e,;, K*fin =q “f;, where a;; = (o, hj),
KfK;, - KK},
(Q3)  eifj— fiei=0i; ;rl_ p= -,

(Q4)  eix1el — (q+q Heieirie; +etear =0,  eiej =eje;  (Ji— 7| > 2),
(Q5)  fixrf? —(q+a D fifixrfi+ f2 iz =0,  fifi=fifi (li—j|>2).
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Let Ug(gl,,, ®---@gl,, ) = Ug(gl,,) ®---®@Ug(gl,, ) be the Levi subalgebra
of Uq(gl,,) associated with the Levi subalgebra gl,, @& --- @ gl,, of gl,. Then
generators of Uy (gl,,, ® - @ gl, ) are given by e xy, fin) (1 <i<mgp —1,1 <

k <r)and Ké ) ((4,1) € I'(m)), where we use the identification (1.3.1) for indices.

Proposition 4.9. (i) There exists a surjective homomorphism of algebras

(4.9.1) g : Ug,q(m) — Uy(gl,,)
such that
€(i,k) if i # my, _
9( Xy 0) = 9(X7 ) = fims
(X .0) {le(mk,k) if i m, (X ky0) = fiik)

9K = K5y 9(Xi ) =9T5n,) =0 fort>1.
(ii) There exists an injective homomorphism of algebras
(4.9.2) t:Uq(gl,, ©---@gl, ) = Uyq(m)

_ ot _ - + \_ et
such that v(eq k) = Xm0 t(feiky)) = X0 and L(K(jJ)) =KG -

Proof. We can check that g and ¢ are well-defined by direct calculations. Clearly
g is surjective. Let o' : Uy(gl,,, ®---@gl,, ) — Uy(gl,,) be the natural embedding.
Then, by investigating the images of generators, we see that +/ = go¢. This implies
that ¢ is injective. O

Remark 4.10. The surjective homomorphism ¢ in (4.9.1) can be regarded as
a special case of evaluation homomorphisms. However, we cannot define evalua-
tion homomorphisms for U, g(m) in general although we can consider Uy, q(m)-
modules corresponding to some evaluation modules. They will be studied in a
subsequent paper.

4.11. Let Uy = U , (m) be the A-subalgebra of U, q(m) generated by

+ + +
X Lo K | (

5ot i,k) € I'"(m), (j,1) € I'(m), t > 0}.

Then U} is an associative algebra over A generated by the same generators with the
defining relations (R1)-(R8). We regard Q(Q) as an A-module through the ring
homomorphism A — Q(Q) (¢ — 1), and we consider the specialization Q(Q) @l
using this ring homomorphism. Let J be the ideal of Q(Q) ®a Uy generated by

(4.11.1) {K+

G~ L LG I;n. | (@0) € I'(m), t >0}

Gt
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Let U(gq(m)) be the universal enveloping algebra of the Lie algebra gg(m)
defined in Definition 2.2. Then we can check that there exists a surjective homo-
morphism of algebras

(4.11.2) U(gq(m)) — Q(Q) ®a U , o(m)/T

+ + + =
such that X5, = A5 and ey = 10 (= I(M),t).

Remark 4.12. We conjecture that (4.11.2) is an isomorphism, so we may regard
Uy.q(m) as a g-analogue of U(gq(m)).

We also remark that (ICE;.J))Q = 1 in U} by (R1). On the other hand, there
exists an algebra automorphism of U such that IC?;.J) — —IC?;J) and the other
generators map to the same generators. Thus, the choice of signs for ICE;,l) in
(4.11.1) will not cause any troubles.

4.13. To end this section, we define the A-form of U/ involving divided powers.
For (i,k) € I'"(m) and t,d € Z>q, set

+(d
X(i,gc){t = (X(fk),t)d/[d]! eu.
For (j,1) € I'(m) and d € Zs, write

d + b+l = b1
a0 1] K Kow?™ )
d qb _ q—b

b=1
Let Uy = Uy, q.q(m) be the A-subalgebra of U generated by all X(ﬁg)t, Iél),t?
K% and [KW);O].
(€20 d

§5. Representations of U, q(m)

Thanks to the triangular decomposition (4.6.1) of U = U, q(m), we can develop
a weight theory to study ¢/-modules in the usual manner.

5.1. Highest weight modules. For A € P and a multiset ¢ = (ga(j; i |
(4,1) e I'(m), t > 1) (L‘Oal)i € K), we say that a U-module M is a highest weight
module of highest weight (X, ) if there exists vo € M such that:

(i) M is generated by vy as a U-module,

(i) Xz, vo=0forall (i,k) € I"(m) and t >0,

(iii) ICE;,Z) g = ¢MPanyy and I(?l)’t “vg = ‘P?;',z),tvo for (4,1) € I'(m) and ¢t > 1.
If vo € M satisfies (ii) and (iii), we say that vy is a mazimal vector of weight (X, ).
In this case, the submodule U - vy of M is a highest weight module of highest weight
(A, ). If a maximal vector vo € M also satisfies (i), we say that vy is a highest

weight vector.
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If vg € M is a maximal vector of weight (), ¢), for (j,1) € I'(m) we have

Ii

Goo v =470 gple, where Ay = (A hgp),

by (R1).

For a highest weight U-module M of highest weight (), ¢) with a highest
weight vector vg € M, we have M = U~ - vy by the triangular decomposition
(4.6.1). Thus, the relation (R3) implies the weight space decomposition

(5.1.1) M =DM, suchthat dimg My =1,

peP
pn<A

where M, = {v e M | IC(+j U= ¢‘hanly for (4,1) € I'(m)}.

5.2. Verma modules. Let /° be the associative algebra over K generated by

Ial)’t and IC?;J) for all (4,1) € I'(m) and ¢ > 0 with the defining relations (R1)

and (R2). We also define the associative algebra Uu=° generated by X(Jirk) . Ié 0.t

and IC?;. y) for all (i,k) € I'"(m), (4,1) € I'(m) and ¢t > 0 with the defining relations
(R1)—(R8) except (R6). Then we have a homomorphism of algebras

7 />0 + + + +
(5.2.1) U=" — U such that Xiwt ™ Xaww Lo = LG
and a surjective homomorphism of algebras
>0 770 + + + + +
(5.2.2) U=" = U" such that X(i)k))t — 0, I(M))t > I(j,l),t’ IC(].J) — IC(j,l)‘

For A € P and a multiset ¢ = (go?; ) ;), we define a (1-dimensional) simple

U°-module O(x,) = Kvg by
+ _ Mk + _ &+
Ky vo = a0, I, w0 =9 0o

for (4,1) € I'(m) and t > 1. Then we define the Verma module M (), ¢) as the
induced module

M()‘7 90) =U ®ZZZO 9(A,Lp)7

where we regard Oy o (resp. U) as a left (resp. right) U="-module through the
homomorphism (5.2.2) (resp. (5.2.1)).

By the definitions, the Verma module M (A, ¢) is a highest weight mod-
ule of highest weight (), ¢) with a highest weight vector 1 ® vg. Every high-
est weight module of highest weight (\,¢) is a quotient of M (X, ¢), by the
universality of tensor products. Moreover, M (), ¢) has the unique simple top
LA\ @) = M(\, ¢)/rad M (), ¢) from the weight space decomposition (5.1.1).
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By using the homomorphism ¢ : U,(gl,,,, & --- @ gl,, ) — U of (4.9.2), we get
the following necessary condition for L(\, ¢) to be finite-dimensional, in a similar
way to Proposition 3.4.

Proposition 5.3. For A € P and a multiset ¢ = (go(ij’l)’t), if L(\, ) is finite-
dimensional, then \ € PJ..
5.4. The category C, q(m). Let C; g(m) (resp. C;g(m)) be the full subcategory
of U-mod consisting of U-modules satisfying the following conditions:

(i) f M € Cyq(m) (resp. M € C;g(m)), then M is finite-dimensional.

(ii) If M € Cy.q(m) (resp. M € Cig(m)), then M has the weight space decom-
position

M= @ M, (resp. M = @ M),
AEP AEP>q
where My ={ve M | ICE;‘,I) -m = ¢MPranly for (4,1) € I'(m)},

(iii) If M € Cqq(m) (resp. M € C;g(m)), then all eigenvalues of the action of

I(ﬁ;.l) , ((4,1) € I'(m), t > 0) on M belong to K.

By the usual argument, we have the following lemma.
Lemma 5.5. Any simple object in Cq.q(m) is a highest weight module.

By using the surjection g : U, q(m) — U,(gl,,) of (4.9.1), we obtain the
following proposition.

Proposition 5.6. Let Cy, (q1,) be the category of finite-dimensional U,(gl,,)-
modules which have a weight space decomposition. Then:

(i) Cu,(q1,,) s a full subcategory of Cq.q(m) through the surjection (4.9.1).

(ii) For A € P, the simple highest weight Uy(gl,,,)-module Ay, (g1 (\) of highest
weight X is the simple highest weight U-module of highest weight (X, 0) through
the surjection (4.9.1), where 0 means @(ij,l),t = 0 for all (3,1) € I'(m) and
t>1.

86. Review of cyclotomic g-Schur algebras

In this section, we recall the definition and some fundamental properties of the
cyclotomic g-Schur algebra .7, ,(m) introduced in [DJM]. See [DJM] and [M1] for
details.

6.1. Let R be a commutative ring, and take parameters q,Qo,Q1,...,@r—1 € R
such that ¢ is invertible in R. The Ariki-Kotke algebra 3¢, , associated with the
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complex reflection group &,, x (Z/rZ)" is the associative algebra with 1 over R
generated by Ty, Th,...,T,—1 with the following defining relations:

(To—Qo)(To—Q1) .- - (To—Qr—1) =0, (Li—q)(Ti+¢ ')=0 (1<i<n-1),
TohToTh =TTohh'Ty, TiTinTi=TipmTiTiyw (1<i<n-2),
LT =171 (i —jl = 2).

The subalgebra of 777, . generated by T1,...,T,_; is isomorphic to the Iwahori—
Hecke algebra 7, associated with the symmetric group &,,. For w € &,,, we denote
by ¢(w) the length of w, and by Ty, the standard basis of .7, corresponding to w.

6.2. Set L1 = TO and Lz = i—lLi—lTi—l for i = 2,...,7’l. Then L17~-~7Ln
are called the Jucys—Murphy elements of 7, , (see [M2] for their properties).
The following lemma is well-known, and one can easily check it from the defining
relations of J7, .

Lemma 6.3. (i) L; and L; commute with each other for any 1 <i,j < n.

(ii) T; and L; commute with each other if j # i,i+ 1.

(iil) T; commutes with both L;L;+1 and L; + Liy1 for any 1 <i<n—1.

(iv) LT = (q—q ) S g LIS Le + TLLE for any1<i<n—1andt> 1.
(V) LTy = (¢ —q )Xo  L°Le  + TLL, | forany1<i<n—1andt>1.

s=1

6.4. Let m = (mq,...,m,) € ZL, be an r-tuple of positive integers. Set
k k m

T m k
D k=1 2i—1 :“g '=n
AY (m) = {p € A, (m) | ,ugk) > > uﬁ,’fz >0foreach k=1,...,r}.

Anﬂ‘(m) - {M = (:u(l)7 ce aM(T))

We regard A, -(m) as a subset of the weight lattice P = @ ; 1)cr(m) Ze(i,k) Via

the injection A, ,(m) — P such that 11— >~ 1ycrim) ugk)s(i7k). Then we see that
A (m) = 4, (m) N B
For p € A, »(m), set

r—1 ag

(6.4.1) my = ( S q“w)Tw) (H [T - Qk)),

wES,, k=11i=1

where &, is the Young subgroup of &,, corresponding to u, and aj = Z§:1 |9,
The following fact is well known:

(6.4.2) m, T = ¢"m, ifwe6,.
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The cyclotomic q-Schur algebra .7, (m) associated with .77, , is defined by

(6.4.3) Yn’r(m):End%W( @ muf%”n,r).

HEA, r(m)
For convenience, we set m, = 0 for p € P\ A, ,(m).

6.5. Write /Tjr(m) = Af ((n,...,n,m,)). It is clear that /T:[T(m) = A}, (m) if
my, > n forall k = 1,...,r — 1. If my < n for some k < r, then A} (m) is a
proper subset of /T;‘L‘r(m)

In [DJM] (see also [M1] for the case where my, < n for some k), it is proven that
Zn.r(m) is a cellular algebra with respect to the poset (/Tj;w >). For A € /Tj;r(m),
let A(A\) be the Weyl (cell) module corresponding to A constructed in [DIJM] (see
also [M1] and [W3, Lemma 1.18]). By the general theory of cellular algebras in
[GL], {A(N) | A e /T;[T(m)} gives a complete set of representatives of isomorphism
classes of simple .7, (m)-modules if .7, ,(m) is semisimple. It is also proven in
[DIM] that ., .(m) is a quasi-hereditary algebra such that {A(X) | X € A}, (m)}
is a complete set of (representatives of isomorphism classes of) standard modules
if Risa field and mp >nforall k=1,...,r — 1.

From the construction of A(A) in [DJM], A(A) has a basis indexed by the set
of semistandard tableaux. Since we use them in the later argument, we recall the
definition from [DJM].

For \ € /Tir(m), the diagram [A] of X is the set

N ={(keZ¥|1<i<mp,1<j<AP 1<k<r)
For x = (i,j, k) € [A], define
res(z) = ¢?U9Qp_1.
For A € /T;‘L‘T,(m) and p € A, (m), a tableau of shape A\ with weight 4 is a map
T:N—={(a,0)€eZxZ|a>1,1<c<r}

such that ugk) =t{x € [\ | T(z) = (i,k)}. We define the order on Z x Z by
(a,¢) > (d’,) if either ¢ > ¢/, or ¢ = ¢’ and a > «’. For a tableau T of shape A
with weight p, we say that T is semistandard if:

(i) Whenever T'((4,4,k)) = (a,c¢), then k < c.

(i) T((i,4,k)) <T((i,7+1,k)) if (4,7 + 1,k) € [A].
(iii) T((z’,j, k:)) < T((i + 1,7, k)) if (i + 1,7, k) IS [)\].
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For A\ € /Tjw(m), € Ay (m), we denote by To(A, ) the set of semistandard
tableaux of shape A with weight . Then, from the cellular basis of .7, ,(m) in
[DIM], we see that

{or | T € To(A, p) for some pu € Ay - (m)}
is a basis of A(N). (See [DJM] for the definition of ¢r.)

87. Generators of cyclotomic ¢-Schur algebras

In this section, we define some generators of the cyclotomic ¢-Schur algebra, and we
obtain some relations among them which will be used to obtain a homomorphism
from Uy q(m) in the next section.

7.1. A partition A is a non-increasing sequence A = (A1, Ag,...) of non-negative
integers. For a partition A = (A1, g, ... ), we denote by £(\) the length of A, which
is the maximal integer ! such that A\; # 0. If Zf(:)‘l) Ai = n, we write A - n. For an

integer k and a partition A - n such that ¢(\) < k, set

6/6')‘:{(//&17"'7/’(%) Ezlgolui Z)\g(i), UEGk}.

7.2. For integers t,k > 0, we define symmetric polynomials <I>§E(a:1, ce,TE) €
R[z1,...,2)%" of degree t in variables 1, ..., 7} as
(7.2.1) O (w1, ) = > (1= ") N my (2, an),
At
(N)<k
where my(z1,...,2) = Zu:(m,m,uk)GGk-/\ xi* ... x}* is the monomial symmetric

polynomial associated with the partition . For convenience, we also define
(7.2.2) OE(xy, ... xp) = ¢TFEE].

From the definition, we have

(7.2.3) dE(xy, ..., ) =21+ +a, and OF(xy) =2t

The polynomials <I>ti (21,...,x) satisfy the following recursive relations which will
be used to calculate some relations between generators of ., - (m).

Lemma 7.3. Fort >0,

k—1
(7.3.1) OF (w1, .., 2p) = Z OE(z1,..., 26z — g2 Z DE(x1,.. ., 26)Tep1
s=1

k
=it 4+ Z (DF (21,. .., a8)ws — ¢T2F (21, .., 25-1)75)
s=2
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and

(7.3.2)  ®F(z1,...,2%) — OF (22, ..., 2p)
= 131(@?:(931, e 7Ik) - q:FQq)?:(‘TQ? e 7$k))

Proof. For t =0, we can check the statements by direct calculations.
Assume that ¢ > 1. From the definition, we have

(I’it—&-l(xlw”;xk): Z (l—qﬂ)z()‘)_1 Z itk

AFt+1 HESLA
(<K
k
B SO el
s=1 At+1 HES A
L(N)<s s 70
k
= Z Z (1- q$2)€(>‘)_1 Z otk
s=1 AFt+1 HES A
L(N)<s ps=1
k
+ Z Z (1- q¥2)£()‘)71 Z e
s=1 AFt+1 HES A
LN)<s ps>2
k
LY 0O Y e,
s=1 Art HEG A
L(N)<s ps=0
k
+ Z Z (1- q:FQ)Z()‘)f1 Z ot
s=1 At HES A
Z()\)SS s
k
(S G S ),
s=1 Akt HES A
L(N)<s
k
— (X A= Y el e,
s=2 At HEG A
Z(A)SS ns=0
k k-1
= Z @ti(xl, e L)X — qt? Z @ti(xl, e L) Tgg-
s=1 s=1

We can easily check the second equality of (7.3.1).
We prove (7.3.2) by induction on t. For ¢ = 1, we can check (7.3.2) directly
by using (7.3.1) together with (7.2.3). Assume that ¢t > 1. By (7.3.1),
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@ti+1(x1, R <I>§E+1(x2, cey TE)
k k—1
= (Z O (x1,...,x5)xs — qT2 Z DE (21, ... ,xs)xsﬂ)
s=1 s=1
k k—1
- (Z OF (w9, .., x5)Ts — qT2 Z D (g, ... ,xs)xs+1>
s=2 5=2
k
= OF (21)x1 — ¢T20F (x1)ze + Z(@ti(xl, @) — BF (20, 1y)) Ty
s=2

k—1
—gF ) (D (w1, ) — B (0, 74)) Top1
s=2
Applying the inductive assumption, we get

q)it-‘rl(xl? . 'a'rk‘) - ‘I)i_l(xg, N 7l‘k)

= xltbil(ml)xl — q¢2x1¢>ti71(m1)x2

k
+ le (@f_l(xl, cey Xg) — qﬁ(I)ft_l(acg, ... ,xs))ms
s=2

k-1
—q*? Z w1 (@ (21, as) — qT2F | (2o, ..o, 25) )Tt
§=2
k k—1
= 3?1{ (Z OF (w1, .., x5)Ts — qT2 Z oE (21,29, .. ,ms)x5+1>
s=1 s=1

k k—1
—q¢*? (Z DE (z9,...,5)Ts —qT2 Z L (zo,... ,xs)msﬂ) }
s=2 s=2

Applying (7.3.1), we obtain (7.3.2). O

Remark 7.4. At first, the author defined the polynomials @ft(xh ..., Zg) by
using (7.3.1) inductively. The definition (7.2.1) was suggested by Tatsuyuki Hikita.

7.5. For p € A, -(m) and (j,1) € I'(m), set

-1 J
— l
Ny = 2 W+
c=1 p=1

For (j,1) € I'(m) and an integer ¢t > 0, we define elements IC?; ) and 7=

G Oof
y(n,r)(m) by

+ +ul?
KGao(mu) = ¢ my,
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qt_lﬂluq)t+ (LN“

if 1,0
(jJ),LNu 1"“’LN“1)*M§I)+1> 1f,uj 750,

5 .(m,) = G G,
(g,0),tN R i Mg_z) —0,

q_H—lmuq); (LN“

. 1)
L L if
G’ N(‘Lj,l)—la ; Nﬁj,l)7“§l)+1> ,LLJ # 0)

Z,,(m,)=
@2t ! if ,U/gl) = 0,
for each p € A, »(m).

It is clear that the IC(j;. ) are well-defined. For p € Ay r(m) and (j,1) € I'(m)

O] +
such that p;” # 0, we see that ®; (LN(MJ_J),LN(MJ_J)_D ceey LN(;;J)_/LEZ)J’_l) commutes
. . + .
with T, for any w € &, by Lemma 6.3 since ®; (LN(/;‘,U’ . .,LN&J)i#;z)H) is a

symmetric polynomial in the variables L NP Thus,
VEL

& (L ..., L .
t( N(j,l)’ 5 N(”j l)_M§)+1)

The following lemma is immediate from the definitions.

Lye _q,...,L Do q-
) NGy N —n

commutes with m,,, and the Ié ), are well-defined.

Lemma 7.6. For (i,k),(4,1) € I'(m) and s,t > 0, we have:
NN i ol o
0 Kinkan =KgpkGpy =1
(i) (G4 K] = K a0 L.l = LG sy, LGyl = 0 (0,0" € {+,-1).

We also have the following lemma by direct calculations.

Lemma 7.7. For (j,1) € I'(m), we have
+ _
(]C(j7l))2 =1+(¢g—q¢ 1)1(?1),0-

7.8. For (i,k) € I"(m) and an integer ¢ > 0, we define elements /E?; gy and T gy ¢
of .7, r(m) by

ot _ * T
’C(i,k) = ’C(i,k)’C(i+1,k)’
I(t}k),o _I(;+1,k),0+(q_q_l)I(Jg,k),OI(:‘H,k),o if t =0,

Tkt = =l

) —t7+ tr— -1 —t4+2b7+ - :

LG4 (i+1,k),t_(q_q )Zq LGy = L4100, if £>0.
b=1

Lemma 7.7 has the following corollary.

Corollary 7.9. For (i,k) € I'"(m), we have

_ 7+ - \2q—
J(ik)0 = I(i,k),o - (K(i,k)) I(z‘+1,k),0'
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7.10. For N € Z>¢ and . € Z~q, write

p—1
TN, ] = 1+ thTNJrlTNJrQ oo Ingn N+ p<n,
L B h=1
0 otherwise,
p—1
TN - = 1+ thTN—lTN—Q L Inop fn>N2>p,
D B h=1
0 otherwise.

For convenience, we set [T; N,0]* = 0 for any N € Zsx.
For N, € Z>o and d € Z~, write

. +
[T =N+ (d=1),p— (A= DI [N + 1,0 = ¥ [T N, ],
(B0 =N = (d=1),p = (d=1)]" ... [T3N =1L, u =17 [T;N, 4]
We also set [T;J(;f,y]JF = [T?gf’“]f =1 for any N, u € Z>o.
For N € Z>¢ and d € Z~, write

d—1

1+ Z " Tnra-nTnvd—(h-1) - - TN+d—2TN+a—1 if N+d<n,
. + _
(Tv Na d) - h=1
0 otherwise,
d—1
_ 1+ Z thN—d+hTN—d+(h—1) cee TN—d+2TN—d+1 if n >N > d,
(Ta Na d) = h=1
0 otherwise.

We also define
(T;N,d)*! = (T;N,d)*(T; N,d — 1)* ... (T; N,1)~.
The following lemma follows from Lemma 6.3 immediately.

Lemma 7.11. For N, € Z>q:

(i) L; commutes with [T; N, u]* unless N +pu >1i> N+ 1.
(ii) L; commutes with [T; N, pu]~ unless N >i> N — pu+ 1.

Lemma 7.12. (i) For N,y € Z>o such that N + p < n and p > 3, we have

(0" *TnsoTnts - Inpu—1) (@ " InpiTnio . Tnsp—1)

= (¢" "Tnt1Tn+2 o Tngp—1)(@* 2 Tns1Tnso - Tnpp—2)-



NEW REALIZATION OF CSA 529
(ii) For N,u € Z>¢ such that N > p > 3, we have
(" *Tn—oTn—3. .. Tn—ps1) (@ Tn1Tn—2 ... Tn—ps1)
= (q“ilTN_lTN_Q .. .TN_#+1)(q#72TN_1TN_2 . TN_#_A'_Q).
(ili) For N,u,c € Z>o such that p > ¢ > 1, we have

[T;N + 1, (¢"Tni1 TNz - Tngn) = (@ T Tz - T[T N, o
[T; N —1, C]i(qHTN_lTN_Q e TN—,u) = (q'uTN_lTN_g e TN—M)[T§ N, C]i.

Proof. (i) and (ii) follow from the defining relations of 77, .. We can prove (iii) by
induction on c. 0

Lemma 7.13. For N,j € Z>q and d € Z~q, we have

(TN, ([T
n—d
[T”J’”T = + Z(thN+dTN+d+1 o TNydrn-1) [T;Nf_ﬁh_lr) if p>d,
h=1
0 if u<d,
(T N,y ([T
_ pn—d B
(B = + Z(thN—dTN—d—l o Tvegeng) [ TN ) if p>d,
h=1
0 if u<d.

Proof. In the case where p < d, we see that [ = 0 from the definitions.

First, we prove that if u > d,

(7.13.1) [T%J;’v#]Jr — [T;N(,iu—l]Jr

_ N1+
+ (TN, d) " (0" T gaTnsasr - Tnepr) [ 0047

T;]J’“} +

by induction on d. The case d = 1 is clear by definitions. Assume that d > 1. Then

(TN = TN+ (= 1) = (= D[]

Applying the inductive assumption, we obtain

[T”j’“T ={[I'N+(d—1),p—d" + (" TnsaTN+as1- - Tnip-1)}

([T (TN 1) (0 a1 T T ) [P35

Then, by using Lemmas 7.11 and 7.12, we see that
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[T;N,u]+
d
Nu—17+ - +
=[T;N+d- 17M—d]+[T’gLI1 1] + (¢* dTN+dTN+d+1-~-TN+M71)[T2’I§ 1}
- +
+(T;N,d—1)+(q# d+1TN+d_1TN+d...TN_;,_M_l)[T;N—'-d—Q,/},—dP_[T]E\ZI#Q 1}

+ (TN, d = D) (" "M TngaaTnga - Tngp-1) (@ Tnya1Tnvd - Tnp—2)
TN, u—11+
x [Tty ]

Noting that
[T; N+d- 2, n— d]+ + q“_dTNer,lTNer N TNJFH,Q
=[T;N+d—2,u—d+1]"
and [T; N +d—2,u—d+ 1}+[T‘2]L’“1]+ = [T‘N”Fl}i we have

[Ty

a [N

+ (A + (TN, d = 1) (qTnra-)) (@ Ty saTnrars - Tniu—1) [T;]JL"l_l]+~

By definition, we see that 1 + (T; N,d — 1)*(¢Tn+a—1) = (T; N,d)*. This yields
(7.13.1).
Next, we prove that

(7.13.2) [TNA)T = (TN, ayt [T T

by induction on d. For d = 1, this is clear from the definitions. Assume that d > 1.
Noting that [TNd}+ = [Té]jidrr, by (7.13.1), we have

[T = [P+ (TN d = ) @ Tvaa-) [T5]T
— (14 (T; N, d— 1) (qTnpar)) [ T4 T
(TNd) [TNd 1]+.

Next we prove that if ;4 > d, then

(7.13.3) [T

d
p—d
: —171+ . 114+
:(T;N,d)*([T’ff;dl 3 @ vy rasn - Tivarn-1) [TV )
h=1

by induction on g — d. The case p = d is just (7.13.2). Assume that p > d.
By applying the inductive assumption to the right-hand side of (7.13.1), we get
(7.13.3).

The case of [T*]" is similar. O
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We have the following corollary which will be used in Theorem 8.1 to consider
divided powers in cyclotomic g-Schur algebras.

Corollary 7.14. For N, u,d € Z>o, there exists 9T (N, u,d) € . such that
. +
[T#]T = (TN, )P 19* (N, 1, d).

Proof. Noting that TnqdTN+d+1 -+ TN+d+h—-1 (resp TNn_dTN_—qg-1.-.-TNn_q— h+1)
commutes with (T; N,d — 1)*! (resp. (T; N,d —1)~!), we argue by 1nduct10n ond
using Lemma 7.13. O

7.15. For (i,k) € I'(m), we define elements X( k0 and X o of S, (m) by

—ul® k
X(;k)’o(m#) =4q HZ+1+1ml"+Oé(i,k)[T; N( k)’ /~L§+)1} )

— —p k)_;’_l
Xii k0 (mu) =g " T mpag ) G,k )[T NG

(k)]—
(i.k)

for each p € A, »(m), where we have written “gf;)ﬁl ugkﬂ) if ¢ = my, and
h'“ 1 if ¢ 75 mg,
R T Y Lw = Qp if i =my.

(mje k)
Note that myta,, = 0if p :t agiky & An,r(m).
By [W1, Lemma 6.10], X (Z k.0 18 well-defined (it is denoted by gp(l y in [W1]).
For (i, k) € I'"(m) and t € Z~(, we define /'\f( ot € &, (m) inductively by

(7.15.1) Xiwrr = ZimaXin -1~ Xire1Zim 10
Xt =~ ZamaXim -1 — Xary—1Zama)-

Lemma 7.16. For (i,k) € I''(m), (j,1) € I'(m) and t > 0, we have

Tag,men

Kt xt k)t

G X, K

Gn =4
Proof. The case t = 0 comes directly from the definitions. Then we argue by
induction on ¢ using (7.15.1) together with Lemma 7.6. O

We can describe the elements X(f k).t of .7, »(m) precisely as follows.
Lemma 7.17. For (i,k) € I"(m), t > 0 and p € A,, -(m), we have:

. ) A
() X o (mi) = @ gy L k)+1[T NG gy T

(1%
- O (k)
(i) X(i,k),t(mu) =q " +1mu—%=k>L§V(‘;,k)h/ﬁ(i,k) [ N(Z k) Hi I
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Proof. We prove (i). We can easily show that X(';k)’t(m“) =0 if /‘Ei)l = 0 by

induction on t using (7.15.1). Assume that ugi)l # 0. If t = 0, then (i) is just

the definition of /Y(Jirk) o- We now use induction on ¢. Noting that (u + a(iyk))gk) =
Mgk) + 1 and Né;:?“*“ = N, g 1 by the inductive assumption we have

(k)
+ + P
I(i,k),l‘)((i,k),t—l(mﬂ) =q T T Mptag gy

X . " . X
(Envg yrr + L Iy 1 e LN(‘Z,M*#EMH)

t—1 L ATH (k) 1+
X LN{i-,k)Jrl[T’ N(’M),MH} .

On the other hand,

+ + _ —u® 41 t—1 ) (k) 1+
X(i,k),tflz(i,k),l(m#) = 5(H§k>¢0)q it ml"“ra(i,k)LN(I’;‘k)J’_l[T’ N(l;,k),ﬂiﬂ]

X(Lyr +Lyv _44+---4+1L k .
(Lvg ) Lg, )1 N{ ) —hs 1)

Thus, by (7.15.1) and Lemma 7.11, we obtain (i). The proof of (ii) is similar. [
Proposition 7.18. For (i,k),(j,1) € I'"(m) and s,t > 0, we have:

(1) [X(:;k),t’X(:;l),s] =0 Zf (jal) 7£ (ivk), (Z + 17k)

(ii) X(:;k),tJrlX(:;k),s - qﬂX(ﬂiE,k),sX(ﬂiE,k),tJrl
= TG 1 Xy oer — Xy w1 X a0
(iii) X(Jir,k),t-ﬁ-lX(Jir-i—l,k),s - q_lXJ-i-l,k),sX(jiL,k)J-i-l
= X kM, a1~ X a1 X 0
Xivrny s Xamy s — O Xany 1 Xarin.e
= X(;—i-l,k),s-&-lx(;,k),t - qX(;k),tX(;+1,k),s+1'

Proof. (i) follows from Lemma 7.17 using Lemma 6.3.
We prove (ii). We may assume that ¢t > s by multiplying by —1 on both sides
if necessary. We prove

+ + 2+ +
(718.1) X k) 11 Ximy.e = 4 Xk Xy e

2
= X1 X iw,s01 ~ X1 Vi o
Write N = N(l;,k)' By Lemma 7.17 together with Lemma 7.11, for y € A, ,(m),

+ +
(7.18.2) X(z‘,k),t+1X(z‘,k),s(mM)

—o,F) k k
= ¢ 2, 0 L N IT N + 1l — 107 (15 N ) )
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Thus, we may assume that ,u(+)1 > 2since my42q; ,, = 01if ugi)l < 2. By induction

on /h(' +)1, we can show that
(7.18.3)  TylT:N + 1y — H [T N, )]
k k
= q[Ts N + 1, py = 1T N )

We also have, by Lemma 6.3,
(7.18.4) Nl = (LN+1LN+2)S(TN+1LN+1TN+1)L}tv?fz

= TN+1(LN+1LN+2)SLN+1{LN+1TN+1 +(q@—q Z Li\/il pL]varg}

= TN+1LN+1LN+2TN+1 + (q —q TN+1 Z L?V—f;rl‘[’ﬁ\;rf?
Then (7.18.2) follows by using (6.4.2), (7.18.3) and (7.18.4). Moreover

+ +
X(z k), t+1X(¢ k),s (my)

(k) k k
= 27, e, k)inlLN+2[T N+1, p = 14T N, )

_ (k) s k k
+q(q—q 1)q i ts Myut2a; 5 ZLYEVETILJ\;Z [T; N+1, /‘E ) 1*[T; N, :uz(+)1]+

- QQX(Jir,k),sX(Jz‘r,k),t+1(mu)
+ CI((]—q_l)q_zuﬁi)l+3mu+2a(z‘,k> ti Lg\rfTIL}q\rtfz [T; N+1, /1’5-]7-)1 —1*[T; N, Nz('i)l]+
p=1
Similarly,
X(z k), tX(—l‘_k) s+1(mu)

—2,(F) k
= g2 a o TN D Dy o T [T N +1, a8, =107 (1 N, 1

1+

(k) k

=4 P im0 Ly i LV [T N+ i =1 N, )

") t—s

— —2u) s k k
+q(g—q l)q 2H1+1+3mu+2a(i,k> Z L?vfflLsz[T; N+1, /J’z(‘+)1_1]+[T; N, ,uz('+)1]+
p=1

_ oyt +
= X(i,k),s+1X(i,k),t(m#)

— (k) s k k
+qlg—q l)q 2 td Mpt2a; k) ZLﬁvf#LJ\j& [T N+1a/l§+)1*1]+[T§ N, Mz(+)1]+

Thus, we obtain (7.18.1). The other case of (ii) is proven in a similar way.
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We now prove (iii). Write N = N/t . When pM =0, by Lemma 7.17
together with Lemma 7.11 we see that

+ + -1 p+ +
(7.18.5) (X1 Xatmys =T Xigm,s Vi o) (M)
(vt + + +
= (X X151~ IX 10,001 X, 0) (M00)
) s k
=q M1+2+1mﬂ+a(i,k)+a(i+l’k)LN+$-1~_1[T;N’ “§+)2]+'

Assume now that ,ugi)l # 0. By Lemmas 7.17 and 7.11, we have

(7.18.6) (XJ,@,tHXJH,k),S —qtxt

+
(i+1,k),sX(i,k),t+1)(mu)

—n—n L (M Ty T T )L*

= i i m . . i ..

q pto e +air,n N+1\d N+14N+2 N‘HJEIj-)l N+H§i)1+1
. (k) | (k) 1+

X [T7N+Ni+1n“i+2]

and

+ + + +
(7.18.7) (X(i,k),tX(i+1,k),s+1 - qX(i+1,k),s+1X(i,k),t)(mu)
(k) (k)

_ S SR TR TR 2] t s+1
- (q q )q R TR ml~b+a(i,k-,)+0¢(i+1,k)LN+1LN+M(_T1+1
. (&) 1+ . (k) (k) 1+
X [Ty N, pisa ] T [T5 N + 4 fio)
(k) (k) (k)
AR Taos S ¢ t I s+1
F g TR g g v (4 +1TN+1TN+2'"TN+u§i)1)LN+u<'i)1+1
k2

k k
x [T; N + :u7(j+)17:u’z('+)2}+'

By induction on ;Ll(?l using Lemma 6.3, we can prove that

(TN+1TN+2 - TN+u§i)1)LN+u§T1+1

=Lnyi1(Tns1TNy2 - - TN+u§i)1)+5(u§i)122) (—q ) Lns2(Tns2Tns - .TN+M<_1«,) )

i+1
#51&72
+(g—qh) Z (Tn41TN+2 - TN4p) LN gpr2(TN4pr2TNpts - - TN+M§?1)
p=1
-1
H @ —a )TN Tz Ty o )Ly 00 4

By using Lemma 6.3 and (6.4.2), this equality implies

(k)
t o,
(7.18.8) Myt +acssm v (@ INa TNz TN+M§,'$ )LN+u§'i)1+1

(k)
— t+1 o,
- mﬂ+a(i,k)+a(1‘,+1,k)LN+1(q TN TN2 - TN+“1('?1)

k)}JrL

-1 t ) (
+aq(g—q )ml‘+a(i,k)+0£(i+1,k)LN+l [T; N, Hit1 N+M5’jr>l+1'
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Thus, (7.18.7) and (7.18.8) imply

(7'18'9> (X(tk),tX(Jir+1,k),s+1 - qX(JirJrl,k),sﬂXJ,k),t)(m#)

—u 1 L (¢ Ty T T L
=4q Mpyto my+agit,r N+1(q N+1LN42--- N+#Ei)1) N+H§i)1+1

k k
x [T; N + M§+)1’Mz(’+)2]+'

By (7.18.5), (7.18.6) and (7.18.9), we obtain

+ + 1+ +
Xim 1 Xrms =0 Xivim s Mm e
_ oyt + + +
= X(i,k),tX(iJrl,k),erl - qX(i+1,k),s+1X(i,k),t'
The other case of (iii) is proven in a similar way. O

Proposition 7.19. For (i,k) € I''(m) and s,t,u > 0, we have the followings.

@) Xir ) (X sXam e T Xary . Xar).s)

+ (X0 0 sk T Xiory 1K p, )X 1 1)
=(q¢+ q_l)(X(Zk),sX(?ﬂ,k),uX(tk),t + X(j,k),tx(jil,k),uX(—l'_,k),S)'
Xy T X eXim.s)

+ (Xiony,s Xt T Xan) e X k), s) X1,y 0
= (0 + 0 )Xk s X w1 ) wXimy e T Xor) s X1 ) X ik),o)-

Proof. By Lemmas 7.17 and 7.11,

(ii) X(;:I:l,k),u(X(Zk)»s

+ + + + + +
(729.1) (X 0wk, e~ XG0, s X1k g ) (700)
_— (k) ST+u k
= _5(H§’1>1:1)q #Z+2+2mu+20¢(i,k)+a(i+17k)L§V+1LJ\}:-2[T; N+ 17#1('+)2]+
o) ) .
0, 22) T2, g o L D
L) k u k k
X (ghi+ 1TN+2TN+3 . "TN+uET1)[T; N, /~‘1(+)1}+LN+#§§31+1[T§N + /%(‘+)1vﬂz(‘+)2]+
and
+ + + 1+ + +
(X(Lk)75X(i7k),tX(i+17k),u —q X(i,k),sX(iJrl,Ic),uX(i,k),t)(mﬂ)

(k) (k)
R TS R GO R t s
=4q L T mu+2a(i,k)+a(i+1,k)LN+1LN+2

. (F) 14 (")
X [T;N 4+ 1,0 (@ T Tvga - Ty, oo )L

u . (k) (k) 1+
CUNAp N+H§i)1+l[T7N+M ] ’

i+10 Hit2

Applying Lemma 7.12(iii), we obtain
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-1
(7.19.2) (X(Jir,k),sX(Jir,k),tX(JirJrl,k),u —4q X(Jf,k),SX(J{+1,k),uX(J¢r,k),t)(mu)
(k) | (k) ]+

(k)
— —tiyptl t s u .
=0 (i, =1)4 2 M0 iy DNp1 DN a2 TN 1 LN o[ T3 N + 133015 fi o

(k) (k)
—2p; 0 — e t3
+ 0 (k) >2q TR I 4 200y Fagig, k)LN+1LN+2TN+1

k k
[T; N + NE+)17 M§+)2]

< k
X (Q‘““ "TnioTngs - - TN+#EX)1)[T;N;ME+)1]+L?V+ ) 4

We see that

t S S t
Myp4200; 1)+ (it1,x) (LN+1LN+2 + LN+1LN+2)TN+1
_ t s s t
= Mput20 0 +agusm LN+ (Dvp1 Lvgs + Ly Ly o)
s t
= qMput2a(; km+agine (L +1Liye + i1 Livgo)

by Lemma 6.3 and (6.4.2). Then (7.19.1) and (7.19.2) imply

Xt Xt

+ + + + + + + +
(i18)u L RN L IR AR b o O S A L A N AN L AR A

(i,k),s
—1
= (q +q )(X(tk),s‘)c‘(j':}l,k),u')((i,k) X(z k), tX(7,+1 k), uX(z k),s )
The other cases are proven in a similar way. O

By direct calculations, we get the following lemma.
Lemma 7.20. For (i,k) € I'"(m), (j,1) € I'(m), t > 0, we have:

(i) g=eemo ”I( 0, ()X(z k)t

(ii) gFeama. l)I( 0,0 (z k).t

— TG, Z)X( "), tI(] 1,0 = Q3,k) (3, l)X(tk) t

+a, -
— MR, Z)X( )t (_]l)O —ag(, k)(Jl) (1 k),t*

We also have the following proposition.

Proposition 7.21. For (i,k) € I'"(m), (4,1) € I'(m), s,t > 0, we have:

- N + _ D, +
(1) (G s Xy = GOOWEOTE ) XEy ) = qToemEnXE T
— I — _ tag - +
() [Z5 0,010 Xl = aFOODUDTE ) X py oy = @HOODUDXG T

Proof. By Lemmas 7.17 and 6.3, we see that

251y .0 Xyl =0 if (G.1) # (i k), (i + 1K),

where 0,0’ € {4, —}. Thus, it is enough to handle the cases where (j,1) = (4, k)
or (5,1) = (i + 1, k). We will prove

+ + _ Tt + 1+ +
(7.21.1) [I(i,k),s+1’ X(i,k),t] =L 15Xy — O Xy 1 Lin,s
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For pu € A,, ,(m), write N = N(‘; yy- Then, by Lemmas 7.17 and 7.11, we have

)
X+ X+ I+ )(ml’«) = qs Hz+1+1m#+a(iwk)

(I+ (3,k),t — -(i,k),t" (3,k),s+1

(2,k),s+1
X ((I):+1(LN+1, LN,LN—la ey LN_HEIC)_FI) — @:+1(LN,LN_1, ey LN_HEIC)+1))
k
X L$V+1[T§ N, :uz('+)1]+~
By (7.3.2), we have
+ + + -+
(I(i,k),s+1X(i,k),t - X(i,k),tz(i,k),s-i-l)(mﬂ)

Sfﬂgi)lJrl

=gq mu-‘r(x(i,k)

% L1 (9 (Livsr, Ly, ..., LN_M(_M_H) —q 20 (Ln,Lyn_1,. .. ,LN—W«)-H))

k
x Liy1[T5 N, #’(+)1]+
s=1)—pih)
e /‘z+1+1mu+a(i,k)
k
x {q®F (L1, Ly - - ,LNWEMH)L?\Jﬁll[T; N, M§+)1]+

— g LT N, u e (L, Ly, Ly y41)}
— (aT+ + —1p+ +
= (qI(i,k),sX(i,k),tH -4 X(i,k),t—i—lz(i,k),s)(mﬂ)'
Thus we have proved (7.21.1). The other cases are proven in a similar way. O
Proposition 7.22. For (i,k),(j,1) € I'"(m) such that (i, k) # (4,1) and s,t > 0,
Xy.s

Proof. By Lemma 7.17, for u € A, ,(m),

+ —
[X(Lk),t, ]=0.

+ — R O Ry *) 12
X(i,k),tX(j,l),s(mu)_q 1y —(p—agn)ith Mo~
t AR TG (k) 1+ Iz . ATH O
X LN(“;O)‘(J‘,L)_"_l[T? N(z’,k) (- O‘(j,l))zdrl} ?\f(ﬂj,l)h_(“)[TaN(j,l)aﬂj ]
and
- + _ a8 ()2
X 0,5 X ipy o (M) = a7 (rrem); Mptagky—ag.
% L* h“+a(hk)[T. N/‘Jra‘(i:k) ( 4y )(l)]th [TNM (k) ]+
N(“_':;’(i,k) —(4,0) P4V (4,0) y (BT Qi) ) 5 Nl 41 (i,ky Fig1l -
Js

Since (4, k) # (4,1), we have

o aTHTOGD B ATHTOGLR)
Niwy=Nawy " Ny =Ny

W fm G # G+ L),
(h—agn)its = (k) el .
/-LiJrl_l if (],l):(2+1,k),
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l . . .
G+ ) = {MP it (7,D) # (i LK),
7, 7

M;'l) Lif (j,l) = (Z+1>k)’
VL Fa#ms,
—(3,0) =0 Lyw —Q if j=my.

Then, by Lemma 7.11,

—Q, k s
(T3 NGLS 0 (1= aga)fh) L | B

(i’k) (4,1 7(j7l)
s pn—ag, k
= Livg, P lTs Ny (1 = G,
ptog, )— . e i, Dy—
[T Niin 8 (o O‘(i,k))g' )] L?\r(‘;’k)ﬂ = L?V(“i,k)+1[T7 Niin “0 (et 0‘(2@’@))5‘ )] -

Thus, it is enough to show that
—Qgy, k 1)—
(7.22.1)  [T5N(SO0, (1= aga) TN ) 6]

Fag, — k
= [T NS (ot o)) T N i)

If (4,1) # (i + 1, k), we see easily that (7.22.1) holds since the product is commu-

tative on each side. When (j,1) = (i + 1, k), we can prove (7.22.1) by induction

on ug_lf_)l. O

Remark 7.23. There is an error in the proof of [W1, Proposition 6.11(i)] (the
case where (j,1) = (¢ + 1, k)). The above argument also proves [W1, Proposition
6.11(i)] as a special case.

We prepare some technical lemmas.

Lemma 7.24. For p € A, ,(m) and (i,k) € I'(m), we have:

(i) Fort >0 andlgpgu(k),

i

t N — _ 2p—2 +
mNLN(“i,k) [T’N(i,k)’p] =q P mM(I)t (LN(‘:;,k)’LN&,k)717”.7LN(“7’,,k)7p+1).
(ii) Fort >0 and 1 <p< ugi)l,
¢ N +_ -
muLive 1 [T5NG Pl = mu®y (L s Dy oo v p)-

Proof. For t =0, we get (i) and (ii) from (6.4.2).
We now prove (i) for t > 0. Write N = N(‘; gy For 1 < h < Mgk) — 1, by

induction on h together with Lemma 6.3 and (6.4.2), we can show that
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(7241) m“Lgv(TN_lTN_g e TN—h)

mﬂ{(q—q ¢"'Liy +Z (—q¢ "Ly (Tn1Tn-2- . Tn—s11)Ln—ot1

L (T T .. .TN,h)LN,h}.
We will prove that

(7242) muLI;\/'(TN_lTN_Q e TN—h)
=mu(¢"®f (Ln, Ly—1,-..,Ln-n) = ¢"?®f (Ln,Ln-1,..., Ln—p41))

by induction on ¢. For ¢ = 1, by (7.24.1) together with (6.4.2), we have
mHLN(TNflTNfg . Tth)
h
= mu{(q —q "IN+ (-0 )" e Iy + thN—h}

s=2
=m,(¢"® (Ln,Ln—1,...,Ln—p) — " *®f (Ln,Ly—1,..., Ln—p+1)).

Assume that ¢ > 1. Applying the inductive assumption to (7.24.1), we get
mu LY (Tn-1TN—-2 ... Tn—pn)
:mu{(q—q "Ly +Z (¢—a " (¢ '/ (Ln,Ln-1,..., Ln—s41)
—¢**® ((Ln,Ln—1,-- -, LN—s+2))LN—s11
+ (" (Ln,Ln-1,.--, Ln—pn) —¢"2®F ((Ln,Ly—1,. .., LN—h+1))LN_h}-
Setting s’ = s — 1, we have

mHLgv(TN_lTN_Q . TN—h)

h
= mu{qh (L];V + Z((I)j—l(LNaLNfla .. -7LN75’)LN73’

s=1
—q @ _1(Ly,Ln—1,- .-, LN75’+1)LN75’))
h—1
— qh_2 (LIJSV + Z(q)?_—l(LN’ LN—17 e 7LN—s’)LN—s’
s=1

—q @ 1 (Ln, Ln-1,. -+, LN—s’+1)LN—s’)) }

Applying (7.3.1) to the right-hand side, we get (7.24.2). Hence
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p—1
my, Liy[T; N,p]~ =m, Ly (1 + Z " Tn-1Tn—2.. -TN—h)
h=1

p—1

=y {07 (L) + (07 (v, Ly, L)
h=1
. q2h72q);r(LN7LN717...,LN7h+1))}
— q2p_2mp‘q)j(LN7 LN*lu R LN*P)'

Thus we have obtained (i).
Fort >0and 1 < h < ,ugi)l — 1, by induction on h using Lemma 6.3 and
(6.4.2) we can show that

(7243) m#Lgv+1(TN+1TN+2 e TN+h)
h—1
= q_hm#Lﬁvjil{(l ) (1 + Z TN TNye ... TN+s)
s=1

+¢"Tni1Tnsa - TN+h}LN+h+1~

We prove (ii) by induction on ¢. The case where ¢ = 0 has already been dealt
with.
Assume that ¢t > 0. By (7.24.3), we have

p—1
mﬂL’}V_H[T; N,p|t = m;LL§v+1 (1 + Z thN+1TN+2 .. -TN+h)
h=1

p—1 h-1
= muLﬁvjl{LNﬂ + Z{(l — %) (1 + Z Ty TNy2 - TN+5)
h=1 s=1

+¢"Tn i1 Tngs - TN+h}LN+h+1 }

P p—1
= m“Lﬁ\,_jl{Z[T; N,h*Lyin—q* > [T;N, h]+LN+h+1}-
h=1 h=1

Applying the inductive assumption, we get

p
my, Ly 1 [T5 N, p] ™ = mu{z ®, (LNt+1, Lnt2, s LNtn) LNt

h=1
p—1

—¢*> 0 (Lys1,Lnga,- ., LN+h)LN+h+1}-
h=1

In view of (7.3.1), we have

must+1[T;N,p]+:qu);(LN_,_l,LN_,_g,...,LN+p). D
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Lemma 7.25. For y € A, .(m) and (i,k) € I'"(m), set N = N/

(i7k)'
() If Mgk) # 0, then
& k
mu LT N — 1, 5%+ 14T N, )~
k) _g
:qQHi mﬂq)t (LNaLN717"' LN H(k)+1)

+0 mu Ly (TN + 1,57 + 1]~ = DT N, p ]

(1), #0) i+1

(i) If u{¥) #£0, then

mu LT N = 1,58, 410+ Ly [T N, M)

(k)
2 —2
=dq Hi mH(I)t+1(LNaLN—17"'7LN_,UI‘(L_’€)+1)

_ 5(“51&#0)((1 _ q—1)q2u§k>_1muq>j(LN,LN,l, . .,Lngk)H)
X By (Lyvr, Lz Ly )
+mu Ly L1 (TN = 1, plfy + 1% = [T N, p?)
(iii) 1 u{¥, #0, then

muT3 N+ 1,8 4 17 L4 [T N, )1

(]. +9 t#o)( g 1)) (I);(LN+1,LN+2,. .. LN+/L(k) )

i+1

()
+6(#(k)¢0 q—q Zmuq 1(1)+ (LN,LN717...7LN7#§I¢)+1)

X By (Lyver, Lz Ly )
+m, LN (TN + 1,65 417 = 01 Nl ]
(iv) If p™) # 0, then
My Ly1 [T N + 1, + 17 Ly [T N, pf) )
=1+ 5(t¢0)(qzu§k> —1))mu®, (L1, Lnyo, - - - LN%,&)
+00,040) (@ Zm s —1<1>t+7b(LN,LN_1,...,LNWEMH)
X By (Lver Lz Ly )

+my I (TN + 1,0 +1)7 = [T N, )
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(k)l, we can prove that

Proof. By induction on p;’)

k)1— k — k
= [T; N, "] +5(Mgi>l¢o)([T;N+Lu§ DT = DTN, T

Thus

mu LT N = 1, )+ 14T N, ™)
= m, AT N, M)~ 46

%

k _ k
0y (5N + 1,0 417 = DTN, w1
Applying Lemma 7.24(i) yields (i).

We now prove (ii). By Lemma 6.3,
(75N = 1 + 1) Ly
= Ly + Ly ([N =1, +1)7 - 1) - O(uth, 20)2(a = ¢ )Ly [T N, u )

Thus,

mu LT N = 1,58, 410+ Ly [T N, ]
= m, LT N ) 4 my Dy Ly (T3 N = 1,058, 41+ = 1)1 N, 6]

A A

_ k k)71—
=00, 40y 0@ = @Yy Ly Ly [T5 N, w3 (T N, )

Applying (6.4.2), Lemma 7.11, Lemma 7.24 and (7.25.1), we get (ii).
Next, we prove (iii). By Lemma 6.3,
[N + 1,5 + 1)L gy = Ly, + LA (TN + 1,68 +1)7 = 1)

i
t

_ — k)1—
b=1

Thus,

k — k
mu[T5 N 41, + 1] L [T N, )]
k k _ k
= my L o [T5 N, g0+ my, L ([T N + 1,0 +1)7 = 1)[T5 N, 1))

t
+ 0,0 20)0(a = a7 ) Y mu L Ly [T N, w15 N, ]
b=1
k
= muL§v+1[T5 N, Nz('+)1]+

+ 5(H§k)¢0)6(t7é0)q(q - q_l)muLﬁ\,H[T; N, ,ugk)]_[T; N, Mgi)l]"'
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t—1
_ _ k)y— k
+ 804080 = a71) Y mu L L [T5 N, u (15 N, )
b=1
+mu Ly (T3 N + 1,5 +1)7 = DT N, 6]

Applying (6.4.2), Lemma 7.11 and Lemma 7.24, we get (iii).
Finally, we prove (iv). By Lemma 6.3,

mu Ly [T5 N + 1, 1™ 417 L, [T N, ) F
= my LY T3 N, ) +muL Laa(ITsN + 1 +1)7 = DTN, )]

i+1
k k
B a0 = 7)Y L L 15N N,
b=1
Applying (6.4.2) and Lemmas 7.11 and 7.24, we get (iv). ]

Proposition 7.26. For (i,k) € I'"(m) and s,t > 0, we have

(X X ] = {’CZ,MM,M P
i,k),t? , ~ B i
(i,k) (4,k),s *Qk’cak,k)j(mk,k),s-i-t + K?_mk,k)&mk,k),s-&-t.t,_1 if i = my.

Proof. Assume that s = 0 and t > 0. For u € A, ,(m), write N = N},

(k) BY
Lemma 7.17,

(7.26.1) XL, Xk .0(m0)

-5 Hgk)*”fi)lJrlmﬂLf\,[T;N 1 u( ) + 1]+h“ [T N, /J’z( )]

(1P 20) i+1

and

- +
(7.26.2) X(i7k)70X(i k), J(my,)

(k) _,, (k) Tag &
6( 7(?1750)(] e hu (zali) PN 41 ”( )+ 17 L N41[T5N, N£+)1]

Assume that i # my,. By (7.26.1) and (7.26.2) together with Lemma 7.25,
(X(J{,k) tX(;k) 0~ X(;.k) X(—;—,k) t)(mu)

(k>7 (k) —_
=q M Bipitly, {5( ““);éo)q 2(1)+(LN,LN 1,...,LN7M519>+1)

( )

_ 5(#5?1#0)(1 + (5(15#0)( — 1))(13; (LN+1, Lyio,..., LN""I‘E%)
2L( )_1 +
5( (k);éo)(s(u(k) 3&0) Zq F o (Ln,Ln— 1""’LN7;L§]°)+1)

X @ (L1, Ivsas oy Ly )}

i+1
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(k) _ (k) —t t—15+
= gM M+1mu{5(u(k)¢0)q q P (LN’LN_l""’LNf;LEk)Jrl)

(k) (k)

= 00,09, 20y (@ 00 (1= a7 ))g' g7 O (Lvgr, I, Ly o)
t—1
. —t+2b t—b—1
_5(u§k>¢0)5(u<k> 201 =4 );q t+2b gt <I>f_b(LN7LN717-~’LN—;L§’”+1)
x g "M (Lvy1, Lnsa, - - LN+u§i)1)}

= ’Eak)J(iyk),t(mu)-

Thus, [X; (i), t’X(;,k),O] = Iﬁéz;’k)j(i’k)’t if i # my. (Note Corollary 7.9 in the case
where t = 0.)

In a similar way, by (7.26.1) and (7.26.2) together with Lemma 7.25, we
also have [X(tn,g,k),t’ X(:nk,k),o] = _leczrmk k)‘7(mk’k)75+t + ’C(mk 1y T (i k), s+t4+1 if
i = my. Thus we have proved the proposition in the case where s = 0 and ¢ > 0.

Now, we use induction on s. The case s = 0 is already proved. Assume that

s> 0. By (7.15.1), we have

+ - o — -
[X(i,k),ﬁ X(i,k),s] - X(z k), t( I(z k),1 X(z k),s—1 + & (1 k),s— 1I(z k),1 )
= (L)1 X i1 T Xakys—1Zam), I)X(i,k),t'

Applying Proposition 7.21 together with Lemma 7.20, we obtain

[0 .o
Xigys—1 T

X(Jg,k),tI(;,k),l

X(z k).t X(z k),s— II(z k),1

- X(i,k),sflx(i,k)JJrl

= i, 1X(Jirk) ¥ s-1 X(Jir,k),tﬂ
_ _ P

T L0y aXm),s— 1%kt — Xak),s—1

- [X(Jir,k),wl’x(i,k),sq]

- I(i,k),l[X(i,k),t’ X(i,k),s—l] + [X(i,k),ﬁ X(i,k),s—l]z(i,k),l

Then, by the inductive assumption together with Lemma 7.6, the proposition
follows. O

Lemma 7.27. For (i,k) € I''(m), we have:
(i) If ¢ — ¢! is invertible in R, then
_ KGw K@m

(lk)j’bk q_q

(ii) If g =1, then

ot _ T+ —
K(i,k)‘Y(i’k)vO - I(i,k),o - I(i+1,k),o-
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Proof. For € A, ,(m), by the definitions together with Corollary 7.9,

’C?;7k)«7(i,k),o(m ) = ’Ca k) (I(—;k),o - (K(l k)) I(_H_l k),0 )(mu)

) _ (k) (k) o, ) (g
=g (g [ = g g ) my,
k k
= (1 " N§+)1]m;t
If ¢ — ¢! is invertible in R, we have
) _ () By ) e -
[lu(k’) B 'u(k) ]m _ qlh Piy1r q [ e . K:(z k) IC(Z k) (m )
i 110 q- q_l no— q—q ws
proving (i).
If ¢ = 1, we have
k k k k _
18 = pdm = (= nE i = T4 0 = Tasay0) (7)),
which yields (ii). O

In the case where ¢ = 1, we have the following lemma.

Lemma 7.28. Assume that ¢ = 1. Then, for (j,1) € I'(m) and t > 0, we have:

+
1) KGoy =

(ii) Z;

Gt =L

(4,0t
Proof. If ¢ =1, we see that

(7.28.1) OE(xy, ... ) =at + -+l
in particular ®; (z1,...,2x) = ®; (x1,...,23). Thus, the lemma follows from the
definitions. O

§8. The cyclotomic ¢-Schur algebra as a quotient of U/, g(m)

Let Q = (Qo,Q1,-..,Qr—1) be an r-tuple of indeterminates over Z, and Q(Q) =
Q(Qo, Q1,...,Qr—_1) be the quotient field of Z[Q] = Z[Qo, Q1, - - ., @r—1]. Set A =

Zlq,q 7Q0,Q17~-~7Qr—1], and let K = Q(q,Qo, Q1,...,Qr_1) be the quotient
field of A, where ¢ is an indeterminate over Z. Define
Q(Q) ®g(q) 9q(m),
Uq)é(m) =K @k Uy q(m), Z/{&q’é(m) = A ®pUp qq(m).

oo
fali

g
I
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We define a full subcategory Cg(m) and Cgo(m) (resp. C, g(m) and Ci% (m)) of
U(gg(m))-mod (resp. U, (m)-mod) in a similar manner to Cq(m) and Céo(m)
(resp. Cq,q(m) and Ci%(m)).

Let L%’jlffr (resp. L%’jgr) be the Ariki-Koike algebra over K (resp. over A) with
parameters ¢, Qo, Q1,-..,Qr_1, and let YET(m) (resp. Yfr(m)) be the cyclo-
tomic g-Schur algebra associated with %ﬁlﬂyfr (resp. L%”,gr).

Theorem 8.1. We have a homomorphism of algebras
(8.1.1) VU, 5(m) = .7 (m)

+ + + + + +
defined by W(XG 1)) = Xy VTG00 = Lo ond VKG ) = K-

restriction of ¥ to Uz . Q(m) gives a homomorphism of algebras

The

\If& : uqu’Q(m) — %ﬁr(m)
Moreover, if my, > n for allk =1,...,r —1, then ¥ (resp. ¥3) is surjective.

Proof. That ¥ is well-defined follows from Lemmas 7.6, 7.7 and 7.16, Propositions
7.18 and 7.19, Lemma 7.20, and Propositions 7.21, 7.22, and 7.26. ~

Note that %, (resp. .72, (m)) is an A-subalgebra of JZ, (resp. .7, (m))
by the definitions. In particular, in order to see that ¢ € yﬁr(m) belongs to
A (m), it is enough to show that ¢(m,,) € %, for any € A, ,(m).

For p € Ay r(m) and d € Zso, we see that

o : 0!

j, 1) kitimy, it d<p;’,

(8.1.2) {’Cu,z)v 0] (= 4 [ Jmw 1= N
d 0 if d> Nj ,

in Yﬁr(m). This implies that \IJ([’QJ;;);O]) € Ygr(m).
For (i,k) € I'"(m) and t,d € Z>o, we see that

+ d
(XG1y,0) (M)
— o d(d+1)/2 (L L L )t[T;N{Z kyugi)l]
=dq Mytdo N{LMH N(“ivk)+2~-- N(“Mﬁd "

_ o —dui® +d(d+1)/2

t
q Mytdoe iy (gt 1D yo - Dg )

k
X (T3 Nfs o, d) I (N ) d)

by Lemmas 7.17 and 7.11 and Corollary 7.14. We also see that (T} N(’; k),d)Jr!

commutes with (LN<u_ k)+1LN(“. A2 LN<u_ k)+d)t by Lemma 6.3(iii), and see that

Mytda iy (T5 Nij gy )T = g™ D2 1dlmy, 4 go, ) by (6.4.2). Thus
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(X(‘;k))t)d(m“)
= [d)tg— i+ (L L L YN d)
-q Myptdo N(“i’k)qtl N{‘i’k)+2 ce. N(“i’k)qtd (i,k) Hivts

in LS”EST(m). This implies that \D(X(tgcd))t) € Yf}’r(m) since $HT (N k),,ugi)l,d) €

l,

N
%, by the proof of Corollary 7.14. Similarly, \I/(X(;%)’t) € % .(m). Thus, the
restriction of ¥ to Uy | (m) gives a homomorphism W;.

The last assertion follows from [W1, Proposition 6.4]. O

Remark 8.2. In order to prove the surjectivity of ¥ (resp. ¥;), we use [W1,
Proposition 6.4]. In fact, in [W1] we only considered the case where my = n for

all k = 1,...,r. However, we can apply the result to the case where my > n for
all k =1,...,r — 1 without any change since the surjectivity in [W1, Proposition
6.4] follows from [DR]. The reason we assume my > n for all k =1,...,7r — 1 to

establish the surjectivity of W is just the use of the results of [DR]. We expect that
¥ is also surjective without this condition.

Theorem 8.3. Assume that mi >n for allk=1,...,r — 1. Then:

(i) YET(m)-mod is a full subcategory of CqZ%(m) through the surjection ¥ in
(8.1.1).

(i) The Weyl module A(X) € X, (m)-mod (A € A ,.(m)) is the simple high-
est weight L{q Q(m) -module of highest weight (X, @) through the surjection U,

where the multiset p = (cp(i] Dt € K | (j,1) € I'(m), t > 1) is given by

D (25— 1 _ M _¢(25— l
Pla = Qioaa® N IS and ¢ ) = Qf_ya IR

Proof. For A € A, ,(m), let 15 be the element of y,gr(m) that is the iden-
tity on M* and 1)(M*") = 0 for any pu # A. Then we have 1)1, = 6,1, and
2 xed, (m) Ir = 1. Thus, for M € yffr—mod, we have the decomposition

(8.3.1) M= & 1M
HeAn,'r‘(m)

Moreover,

1,M={meM | K(t‘,l) -m = q“y)m for (j,1) € I'(m)}

from the definition of ¥. Thus, any object M of fnﬂzﬂq—mod has the weight space
decomposition (8.3.1) as a u, é(m)—module, where A,, ,(m) C P>o.

For M ¢ Ygr(m)—mod, in order to see that all eigenvalues of the action of
I(jg Dt ((j,) € I'(m),t > 0) on M belong to K, it is enough to show that for
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A(X) (A € A .(m)) since YET(m) is semisimple and {A(X) | A € A} (m)} gives
a complete set of representatives of isomorphism classes of simple Yﬁr-modules.
Recall that {@r | T € To(A, p) for some p € A, .(m)} gives a basis of A(N).
. + .
Noting that ; (LN(Hj,l)7LN(Hj,L)_1’...7LN(“j,l)—ll«§vl)+1) commutes with T, for
any w € 6, by Lemma 6.3, for T' € To(A, ), we have

(8.3.2)
_ = . !
. =D EE (ves )T + Z rsps  (rs € K) if M§) #0,
I(j,l),t s = ST

0 if ut =0

J - 9
by a similar argument to the proof of [JM, Theorem 3.10], where
oF (res¢joyr) = D (res(z1), ... ,res(xmz)))
J

with {z4,... ’Iu(-’)} ={zx e [N |T(z)= (4,1)}, and > is a partial order on To(A, )
defined in [JM, Definition 3.6]. This implies that all eigenvalues of the action of

Ié ).c o A(}) belong to K. Thus we have proved (i).

We now prove (ii). For A € AF

n,r

tableau of shape A with weight A. Then we see easily that ¢ is a highest weight
vector of A()). Noting that there is no tableau such that S > T, we have

(m), let T* be the unique semistandard

— . s O
(83.3) ‘P?;,l),t =V (Qrd® 7, Qrd®* D, Qud* N )
by (8.3.2). Then (ii) follows by induction on ¢ using (8.3.3) and (7.3.1). O

Let .7} .(m) be the cyclotomic g-Schur algebra over Q(Q) with parameters
q= 1, QO’Q]&"'?Q’I‘*]&

Theorem 8.4. (i) We have a homomorphism of algebras
(8.4.1) Uy : U(gg(m)) = 7, (m)

defined by W1 (X7, ) = Xy, and a(Tn ) = I8, (= I5,,)- More-
over, if mp >n forallk=1,...,r —1, then ¥y is surjective.

(i) Assume that my > n for all k =1,2,...,r — 1. Then .} (m)-mod is a full
subcategory of Cgo (m) through the surjection ¥q. Moreover, the Weyl module
A(N) € S (m)-mod (A € Af) is the simple highest weight U(gg(m))-
module of highest weight (X, @) through the surjection Uy, where the multiset

e = (G € QAQ) | (4,1) € I'(m), t > 1) is given by

DG = qu)\y)-
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Proof. Invoking Lemmas 7.27 and 7.28, we can argue in a similar way to the proof
of Theorems 8.1 and 8.3. O

89. Characters of Weyl modules of cyclotomic ¢g-Schur algebras

In this section, we study the characters of Weyl modules of cyclotomic ¢-Schur
algebras as symmetric polynomials. In particular, we prove the conjecture given
in [W2] (formula (9.2.1) below) which will be understood as the decomposition of
the tensor product of Weyl modules in the case where ¢ = 1.

9.1. Characters. For k =1,...,r, let xfn) = (Z(1,k)s -+ » T(my,k)) bE a set of my,
independent variables, and write xm = (J;_; x| Let Z[xE] (vesp. Z[xm]) be the
ring of Laurent polynomials (resp. the ring of polynomials) in variables Xy,. For
A € P, we define the monomial 2* € Z[xZ] by 2* = [[,_, [} = (b))

Llik)
For M € Cq(m) (resp. M € C, 5(m)), we define the character of M by

(9.1.1) ch M =" dim Mya™ € Z[x5].
AEP
It is clear that ch M € Z[xu] if M € Céo(m) (resp. M € qu(%(m)).

When we regard M € Cq(m) as a U(gl,,, @--- & g[mr’)—module through the
injection (2.16.2), ch M defined by (9.1.1) coincides with the character of M as a
Ugl,,, ©--- @ gl,,, )-module since M) is also the weight space of weight A\ as a
Ul(gl,,, ®---@gl,, )-module. Thus, by the known results for U(gl,,, @---®gl,, )-
modules, we see that

ch M € RQZ[x{E|Sm if M e cgo(m),

k=1
where Z[X&?]G""k is the ring of symmetric polynomials in variables Xsﬁ), and we
regard ®? Zx (k)]Gmk as a subring of Z[Xy] through the multiplication map
o1 Z MNSme — Z[Xpm] (@5, f(x (k)) = [Ty f( )) The situation is simi-

lar for M € Cq’Q( m) through the injection (4.9.2).

9.2. The character of the Weyl module A(\) € ., -(m) (A € /T;fr(m)) is studied
in [W2]. Note that ch A(X) (A € /T* ~(m)) does not depend on the choice of the
base field and parameters. Set /1>0 T( m) = J,>o /Tj{ (m). For A\, u € /1>0 ,(m),
the following formula was conjectured in [W2, Conjecture 2]:

(921)  chAN)chA(p)= > LR¥,chA(y) for A\ pe AL, (m),

VE/T;O,T(m)
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) ) . . .
where LRY,, = [T},—, LRK(:W(,@, and LRK(ZW(’»‘J is the Littlewood—Richardson co-
efficient for the partitions A®), (®) and v*). We now prove this conjecture.

9.3. For A= (\M, ... A("M) e /wa,(m), we denote

Nk,

0,...,0,A® 0,...,0) € A5 (m)
N——

k—1

by (0,...,A®) ..., 0), where nj, = >"7"% )\gk) (i.e. A*) appears in the k-th compo-
nent in (0,...,A®) ... 0)). Let

Sy (xB) U UxD) € ZxB) U - U x(0)]8 G U Ux)

be the Schur polynomial for the partition A*) in variables Xsﬁ) U-- -Ux,(rrrl), where we
regard Z[x,(rﬁ) U---u xﬁﬁ)]6<x$)u"‘ux$>> as a subring of @ _, Z[Xsﬁ)]g""k C Z[Xm]
in the natural way. Set S)(xm) = ch A(X) (A € A;O’T(m)).

Proposition 9.4. For \,u € /T'Z*'O,r(m), we have:

(i) g(o,.‘.,,\w),“.,o) (%m) = Sy (xE U~ ux{).
(ii) Sx(xm) = H S0 At...0)(Xm)-
k=1

(iii) Sx(xm)Su(xm)= > LR¥, S, (%Xm).

yE/Tgoﬂl(m)

Proof. (i) By the definition of the cellular basis of ., (m) in [DJM], for A €
A} (m) we have

(9.4.1) Sa(xm) =chAN) = > #To(\ p)z*.
HEAy - (m)

Thus,

(9.4.2) S, oyEm) = Y #T((0,..., A8 0), wat,

MGAnkﬂ'(m)
where ng = > 1% )\Ek). We see that
/"L(l) == N(k_l) =0 lf%((077>\(k)770)7u) 7é 0

by the definition of semistandard tableaux. Thus, §(0,...,>\(’“),...70)(Xm) €
R Z[xQ]S . Write

AZF (m) = {p= (W, ., u) ey, (m) | p® =0 fori=1,... . k—1}.

Nk,
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Set m' = myg + -+ + m,. We identify the set A,, 1(m’) with AZ* (m) by the

Nk ,T
bijection 6% : A, 1(m') — A%}ir(m) such that

k41 i if =0,
(O () = { |
Hmp+mppa+-4mepi_1+i ifl1<li<r—k,

for pp = (p1, ..., ms) € Ay, 1(m’). It is well-known that we can describe the Schur
polynomial S ) (xgi) U---u xﬁﬁ)) as

(9.4.3) SywERU-uxi) = Y 4B, pat,
HEAnkvl(m,)

nwo_ mE g r—k yym;  Hmptmp+ootmp g+ iy
where o = T2 o/ TL=y TTZh @i . From the definition of

semistandard tableaux, we see that
4o (AW, 1) = £75((0,.. . AM) ..., 0), 6% (u))

for u € A, 1(m'). Thus, by comparing the right hand sides of (9.4.2) and of
(9.4.3), we obtain (i).
(ii) First we prove that

(9.4.4) g(,\(lg,\(z),“,,xr))(Xm) = g(,\(l),o,...,o) (Xm)g(o,/\m,...,/\(”)(Xm)'
By (9.4.1),
(9.4.5) Soma@ e (Xm) = Y {To(A\ p) ot

HEAp, r(m)

On the other hand,

(9.4.6) S o,...,0)(Xm)S >, A0y (Xm)
:< 3 ﬁ%((A(l),O,...,O),V)x”>< 3 m((o,A@),...,A<7‘>),T);f)

vEA,, (m) T€A, s ,.(m)

n’,r

= > (X OD0,. 0T (0P, XD), 7))t

p€An r(m) vEAn r(m)
TEA"/,T,(m)

v+T=p

where n; = Z?ill )\(1) and n’ = n — n;. From the definition of semistandard

%

tableaux, we can check that

047 tTop = > tT((AM,0,...,0),)iT((0,A®,... A"), 7).

uEAnl’T(m)
TEAn/,T(m)

v+T=40
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Thus, (9.4.5)—(9.4.7) imply (9.4.4). By applying a similar argument to
S0,A® ..., A (Xm) inductively, we obtain (ii).
By (i) and (ii), we have

§,\(xm = (H S0, A0, ) (H S0,...u® . 0)(X ))
= (klillS/\m x®y... UxSQ)) (IESHUC) x®y...u xf,ﬁ)))

"
= H Sk (Xgi) U---u XS,;))SM(k)(XEE) U--- UXE:;))

r

H ( Z LRV&;MM Sy (X QIR Xg‘)))

k=1 "y E/ﬁo L(mp+-Fmy)

Z ( H LR,\(kmuc) ) ]]:[1 §(07---,v(’“>,-~70)(xm)

VEAJ;U (m)

> LRY, S, (%m),

ueAJ;U ..(m)

where if £(A*)) > my, 4 --- + m,. for some k, then S, (xﬁf,’) U---uJ xg,)) =0 and
To(A, ) = 0 for any p € A, -(m). This yields (iii). O

810. Tensor products for Weyl modules of cyclotomic ¢g-Schur algebras
at ¢q=1

By using the comultiplication A : U(gg(m)) — U(gg(m)) ® U(ggs(m)) (A(z) =
z®1+1®x), we define the U(ggz(m))-module M @ N for U(gg(m))-modules
M and N. We regard ., . (m)-modules (n > 0) as U(gg(m))-modules through
the homomorphism ¥y of (8.4.1). Note that .. (m) is semisimple, and {A() |
A € Al (m)} gives a complete set of representatives of isomorphism classes of
simple ., . (m)-modules if my >n forall k =1,...,r — 1.

Proposition 10.1. Assume that my > n forallk =1,...,r—1. Let n1,ny € Z~g
with n = ny + na. For X € /1,11 H(m) (resp. p € AL (m)), let A(X) (resp. A(u))
be the Weyl module of .7}, ,.(m) (resp. .7}, .(m)) corresponding to X (resp. ).
Then

(10.1.1) AN) @ Ap) = @ LR}, A(v)  as U(gg(m))-modules,
vEAY . (m)



NEW REALIZATION OF CSA 553

where A(v) is the Weyl module of .}, (m) corresponding to v, and LRY, A(v)
means the direct sum of LRY, copies of A(v). In particular, A(\) @ A(u) €
S (m)-mod.

Proof. For 7 € P>, set
T(r) = (170, |7)) € Z%,,

where || = Z;.'Zl(T, h(jp) for I =1,...,r. We denote by > the lexicographic
order on Z% . Then we have the weight space decomposition
(10.1.2) ANeAw = @ (AN eAwW).

TEAn,T (m)
Tm (T) <Tm (/\+N)

On the other hand, it is clear that A(X) ® A(u) € Cgo(m). Thus,

(1013) AN @AW= Y D dlLe) i Ko(CZ(m)),
veAl  (m) ®
T (V) STm (A1)

where d,, ,, is the composition multiplicity of the simple highest weight U (gé(m))—
module L(v, ¢) of highest weight (v, ) in A(X) @ A(p).

Note that L;1T; = T;L; and L;T; = T;L;11 since ¢ = 1. Then, for (j,1) €
I'(m) and t > 1, we see that

(10.1.4) T v=Qf_ v for any ve (AN @ Au)),

if Tm(v) = Tm(A + p) by the argument in [JM, proofs of Proposition 3.7 and
Theorem 3.10]. This implies that

(10.1.5) Lv,p) 2 A(v) ifdy, #0and mm(v) = mm(A+p)
by Theorem 8.4(ii). By Proposition 9.4(iii) together with (10.1.3) and (10.1.5),

(10.1.6)  ch(A(N) @A) = Sx(xm)Su(xm) = > LR, Sy (xm)

VEA:L—,T(m)
= Z d,S, (Xm) + Z Zd"v‘P ch L(v, o),
veAl  (m) veAf (m) @
T (V) =Tm (A+p) Tm (V) <t (A1)

where d,, is the composition multiplicity of A(v) in A(A) ® A(u). Note LRY, =0
unless mm (V) = Tm(A+4). Then (10.1.6) implies d, = LR, if 7m (V) = mm (A1),
and dy,p = 0 if Ty (V) < T (A + ). Thus,

(10.1.7) AN @A) = > LR§,[AW)].

veAL . (m)
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By (10.1.2), for any k=1,...,7 — 1 and any ¢ > 0, we have

(10.1.8) e (B @WAW),) =0

l/eAn,r(m)
Tm (V) =mm (A+p)

since Tm (¥ + Q(m, k) > Tm(v). Then, by (10.1.4) and (10.1.8) together with the

relation (L2), we see that

(10.1.9) {ve (AN @A)y | Xy, v forall (i,k) € I'"(m) and ¢ > 0}
={ve (AN @A)y | e - v for all (i, k) € I'(m) \ {(my, k) | 1 <k <r}}

for v € AY (m) with (V) = T (X + 1), where e(; iy € U(gl,, ©--- @ gl,, )

acts on A(X) ® A(p) through the injection (2.16.2). On the other hand,

Docnn(m), o (v)=rm i) (AA) @A) B8 2 Ulgly, & -+ @ gly,, )-submodule
of A(A) ® A(u) and

(10.1.10)
b AN @AW = P IR, Aq, VM) @04y, (V)
V€A, r(m) vEAL . (m)

T () =T (A+12)

as U(gl,,, @ ---® gl,, )-modules by comparing the character (note [W2, Lemma
2.6]). By (10.1.7), (10.1.9) and (10.1.10), we see that

AN@Ap = @ LR{,A@v)

vEAL .(m)
as U(gg(m))-modules. O

Remarks 10.2. (i) For M, N € C5(m), we see that ch(M @ N) = ch(M) ch(N)
by definition of characters. Then the decomposition (10.1.1) gives an interpretation
of formula (9.2.1) (Proposition 9.4(iii)) in the category Cg(m).

(ii) We conjecture that U, g (m) has the structure of a Hopf algebra. We also
conjecture that the tensor product of Weyl modules of Ygr(m) (n > 0) has a
similar decomposition to (10.1.1).
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