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Finite W -Superalgebras and Dimensional Lower
Bounds for the Representations of Basic Lie

Superalgebras
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Yang Zeng and Bin Shu

Abstract

In this paper we show that the lower bounds of dimensions in the modular representations
of basic Lie superalgebras are attainable, under an assumption on the minimal dimensions
of representations of the finite W -superalgebra U(gC, e) over the field of complex numbers.
The aforementioned lower bounds for modular representations, as a super version of the
Kac–Weisfeiler conjecture [26], were formulated and proved by Wang–Zhao in [35] for
basic Lie superalgebras over an algebraically closed field k of positive characteristic p.
We further conjecture that the assumption is actually satisfied (see Conjecture 1.3). That
is to say, the complex finite W -superalgebra U(gC, e) affords either one-dimensional or
two-dimensional representations, according to the parity of the discriminant number (the
difference of dimensions between the odd part of gC and its subspace centralized by e).
We demonstrate the positivity of the conjecture with examples including all the cases of
type A, and finally reduce the investigation of the conjecture to the case of rigid nilpotent
elements as is the situation for ordinary finite W -algebras (cf. [29]).
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§1. Introduction

This paper is a sequel to [37]. On the basis of the structure theory of finite

W -superalgebras developed there, we study the modular representations of basic

Lie superalgebras, as a remarkable application of finite W -superalgebras.
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§1.1.

A finite W -algebra U(g, e) is a certain associative algebra associated with a

complex semisimple Lie algebra g and a nilpotent element e ∈ g. The study of finite

W -algebras can be traced back to Kostant’s work in the case when e is regular [15],

then a further study was done by Lynch in the case when e is an arbitrary even

nilpotent element (cf. [19]). Premet developed finite W -algebras in full generality

in [27]. On his way to proving the celebrated Kac–Weisfeiler conjecture for Lie

algebras of reductive groups in [26], Premet first constructed the modular version

of finite W -algebras in [27] (they will be called the reduced W -algebras in the

present paper). By means of a complicated but natural “admissible” procedure,

the finite W -algebras over the field of complex numbers were introduced in [27],

which shows that they are filtered deformations of the coordinate rings of Slodowy

slices.

Aside from the advances in finite W -algebras over the field of complex num-

bers, the modular theory of finite W -algebras has also developed excitingly. It is

remarkable that in [29] Premet proved that if the C-algebra U(g, e) has a one-

dimensional representation, then under the assumption p � 0 for the positive

characteristic field k = Fp, the reduced enveloping algebra Uχ(gk) of the modular

counterpart gk of g possesses an irreducible module of dimension d(e) (where χ

is the linear function on gk corresponding to e, and d(e) is half of the dimen-

sion of the orbit Gk · χ for the simple, simply connected algebraic group Gk with

gk = Lie(Gk)), which is a lower bound predicted by the Kac–Weisfeiler conjecture

mentioned above.

The existence of one-dimensional representations for U(g, e) associated with

g = Lie(G) of a simple algebraic group G over C was conjectured by Premet, and

confirmed in the classical cases by Losev in [17, Theorem 1.2.3(1)] (see also [16, §6]).

Goodwin–Röhrle–Ubly [8] proved that the W -algebras associated with exceptional

Lie algebras E6, E7, F4, G2, or E8 with e not rigid, admit one-dimensional repre-

sentations (see also [29]). Finally Premet solved this problem completely in [30].

§1.2.

The theory of finite W -superalgebras was developed at the same time. In the

work of De Sole–Kac [33], finite W -superalgebras were defined in terms of BRST

cohomology under the background of vertex algebras and quantum reduction. The

topics on finite W -superalgebras attracted many researchers (cf. [2, 21, 22, 24, 25,

23, 36, 40]).

In the work of Wang–Zhao [35], they initiated the study of modular repre-

sentations of basic Lie superalgebras over an algebraically closed field of positive
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characteristic, formulating the super Kac–Weisfeiler property for those Lie super-

algebras as well as presenting the definition of modular W -superalgebras.

§1.3.

Based on Premet’s and Wang–Zhao’s work as mentioned above, our previous

paper [37] presents the PBW structure theorem for finite W -superalgebras (along

with reduced W -superalgebras), which shows that the construction of finite W -

superalgebras (and also reduced W -superalgebras) can be divided into two cases by

virtue of the parity of the dimension for a specific subspace of the basic Lie super-

algebra gF, where F is the field of complex numbers or an algebraically closed field

of characteristic p� 0. To some extent, the situation of finite W -superalgebras is

significantly different from that of finite W -algebras.

To be explicit, let g = g0̄ + g1̄ be a basic Lie superalgebra over C excluding

type D(2, 1; a) (a ∈ C is not an algebraic number), and e ∈ g0̄ be a nilpotent

element. Fix an sl2-triple (e, h, f), and define ge := Ker(ad e) in g. The linear

operator adh defines a Z-grading g =
⊕

i∈Z g(i). Define the Kazhdan degree on g

by declaring that x ∈ g(j) is of (j + 2). A finite W -superalgebra is defined by

U(g, e) = (EndgQχ)op,

where Qχ is the generalized Gelfand–Graev g-module associated with e. In [37] we

showed that

Theorem 1.1 ([37]). Under the Kazhdan grading, we have

(1) grU(g, e) ∼= S(ge) as C-algebras when dim g(−1)1̄ is even;

(2) grU(g, e) ∼= S(ge)⊗ C[Θ] as vector spaces over C when dim g(−1)1̄ is odd,

where C[Θ] is the exterior algebra generated by one element Θ.

§1.4.

The main purpose of this paper is to further develop the construction and

representation theory of finite W -superalgebras both over the field of complex

numbers and over the field in prime characteristic. The most important part is the

accessibility of lower bounds in the super Kac–Weisfeiler property. Our approach

is roughly generalizing the “reduction modulo p” method introduced by Premet

for the finite W -algebra case in [29], with careful analysis and examination of

the variation of structural features arising from the parity of dim g(−1)1̄. Let us

explain it roughly below.

In this paper we always assume that g is a basic Lie superalgebra excluding

type D(2, 1; a) (a is not an algebraic number). Let gk and Qχ,k be the modular
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counterparts of g and of the generalized Gelfand–Graev g-module Qχ, respectively.

To simplify notation, we will identify the nilpotent element e ∈ g over C with the

element ē = e⊗1 in gk by “reduction modulo p” in the following. Define the finite

W -superalgebra over k by

U(gk, e) := (EndgkQχ,k)op.

Let T (gk, e) be the transition subalgebra of U(gk, e) that is derived from the

C-algebra U(g, e) by “reduction modulo p”. In our arguments, the transition

subalgebras will play some medium role between the theory of finite W -super-

algebras over C and that of reduced enveloping algebras over k. So in the first

part of the paper, we will investigate the structure of the transition subalgebra

T (gk, e) and the finite W -superalgebra U(gk, e) over k. To be explicit, for any

real number a ∈ R, let dae denote the largest integer lower bound of a, and bac
the least integer upper bound of a (it is notable that this notation also works for

numbers in the prime field Fp). Set di := dim gi − dim gei for i ∈ Z2 = {0̄, 1̄}; then

we have

Theorem 1.2. There is a subspace ak of gk with dim ak = (d0

2 , d
d1

2 e) such that

U(gk, e) ∼= T (gk, e)⊗kZp(ak) as k-algebras, where Zp(ak) is the p-center as usually

defined, with respect to the subspace ak.

In the second part of this paper, we exploit some remarkable applications of

finite W -superalgebras to the modular representations of basic Lie superalgebras.

We provide a super version of Premet’s work, as aforementioned, on the accessibil-

ity of lower bounds of dimensions in the modular representations of reductive Lie

algebras predicted by the Kac–Weisfeiler conjecture. For this, we will formulate

a conjecture about the “small representations” of U(g, e) over C (in the paper,

we call a representation of an algebra “small” if its dimension is minimal among

all the representations of this algebra). By [37, Remark 2.7] we know that d1 has

the same parity as dim g(−1)1̄. As seen before, the variation of the parity of d1

gives rise to a change in the structure of finite W -superalgebras, and as we will see

furthermore, also of the representations of finite W -superalgebras. First, we pro-

vide the following highly plausible conjecture, generalizing a conjecture proposed

by Premet on the representations of finite W -algebras that has already been con-

firmed (cf. [29, 30]).

Conjecture 1.3. Let g be a basic Lie superalgebra over C. Then the following

statements hold:

(1) When d1 is even, the finite W -superalgebra U(g, e) affords a one-dimensional

representation.
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(2) When d1 is odd, the finite W -superalgebra U(g, e) affords a two-dimensional

representation.

So we call d1 the discriminant number as we said in the abstract. For the

case that g is of type A, Conjecture 1.3 is confirmed in the present paper, which

is accomplished by conversion from the verification of the attainableness of lower

bounds of modular dimensions for basic Lie superalgebras of the same type by some

direct computation; see [38] for more details. However, our final result on the lower

bounds of modular dimensions for basic Lie superalgebras is generally dependent

on the above conjecture. In the final section of the paper, we introduce the notion

of rigid nilpotent elements, and reduce the investigation of Conjecture 1.3 to the

case of rigid nilpotent elements, i.e.,

Theorem 1.4. Assume that the statement of Conjecture 1.3 holds for any given

basic Lie superalgebra g and any given rigid nilpotent e ∈ g0̄. Then Conjecture 1.3

is true for all cases.

§1.5.

Assuming Conjecture 1.3, we finally accomplish a super version of Premet’s

work on classical Lie algebras. To be explicit, let (·, ·) be an even nondegenerate

supersymmetric bilinear form on gk (see §2.2.1), and ξ ∈ (gk)∗0̄ be any p-character

of gk corresponding to an element x̄ ∈ (gk)0̄ such that ξ(ȳ) = (x̄, ȳ) for any

ȳ ∈ gk. Now let d0 = dim(gk)0̄ − dim(gx̄
k
)0̄ and d1 = dim(gk)1̄ − dim(gx̄

k
)1̄, where

gx̄
k

denotes the centralizer of x̄ in gk. Recall that the dimension of any irreducible

representation of gk is divisible by p
d0
2 2b

d1
2 c (cf. [35, Theorem 5.6]). The main

result of the present paper is the following theorem.

Theorem 1.5. Let gk be a basic Lie superalgebra over k = Fp, and let ξ ∈ (gk)∗0̄.

If Conjecture 1.3 is established for all the basic Lie superalgebras over C exclud-

ing type D(2, 1; a) (a ∈ C is not an algebraic number), then for p � 0 the

reduced enveloping algebra Uξ(gk) admits irreducible representations of dimen-

sion p
d0
2 2b

d1
2 c.

The main part of the proof of the above theorem will be to deal with the sit-

uation when ξ is nilpotent. In the present work, the arguments in Premet’s work

will be exploited in the super case. The greatest challenge here is to deal with

the structural change arising from the variation of the parity of dim g(−1)1̄ (or

equivalently, the parity of d1). Here we sketch some main ingredients of our proof,

beyond exploiting Premet’s arguments. Based on the PBW structure theorems of

finite W -superalgebras established in [37], we first prove that when dim g(−1)1̄
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is odd, the C-algebra U(g, e) does not admit one-dimensional representations

(Proposition 3.7). The possible two-dimensional modules of U(g, e) will turn out

to be of type Q, with parity involution arising from some special odd element

Θl+q+1 ∈ U(g, e) appearing only in the case of dim g(−1)1̄ being odd (Proposi-

tion 5.2), while what we need to deal with more are lots of arguments involving

the generators and defining relations of U(g, e) associated with Θl+q+1 (see §5.2).

As for the case when the p-character χ ∈ (gk)∗0̄ is nilpotent, corresponding to

a nilpotent element e ∈ (gk)0̄ such that χ(x̄) = (e, x̄) for any x̄ ∈ gk, the following

theorem releases the condition in Theorem 1.5.

Theorem 1.6. Let gk be a basic Lie superalgebra over k = Fp, and let χ ∈ (gk)∗0̄
be a nilpotent p-character, with respect to the element e ∈ (gk)0̄ as described above.

If the corresponding finite W -superalgebra U(g, e) over C affords a one-dimensional

(resp. two-dimensional) representation when d1 is even (resp. odd), then for p� 0

the reduced enveloping algebra Uχ(gk) admits irreducible representations of dimen-

sion p
d0
2 2b

d1
2 c, where d0 = dim(gk)0̄ − dim(ge

k
)0̄ and d1 = dim(gk)1̄ − dim(ge

k
)1̄.

§1.6.

The paper is organized as follows. In §2, some basics on algebraic supergroups,

Lie superalgebras, and finite W -superalgebras are recalled. In §3, the transition

subalgebra T (gk, e) over k is introduced and studied, then follows the structure

relation among the finite W -superalgebras, the transition subalgebras, and the

p-central subalgebras of some subspaces of gk. In §4 and §5, the minimal dimen-

sions for the representations of U(g, e) over C are estimated and conjectured. We

demonstrate that the conjecture is true for some cases, including the whole case

of type A. Then §6 will be devoted to the proof of our main theorems. In §6.2,

we first complete the proof of Theorem 1.6. In §6.3, we improve the result on the

dimensional lower bounds of modular representations for a direct sum of basic

Lie superalgebras with nilpotent p-characters in Proposition 6.5 and Remark 6.6

(note that this conclusion does not depend on Conjecture 1.3), which was origi-

nally discussed by Wang–Zhao in [35, Remark 4.5]. Then the accessibility of the

lower bounds for the refined version is obtained under Conjecture 1.3. Then §6.4

is devoted to the proof Theorem 1.5. By virtue of the results obtained in §6.3, we

further show that the lower bounds in the super Kac–Weisfeiler property with ar-

bitrary p-characters in [35] are also reachable under Conjecture 1.3. The main tool

applied in this section is the method of nilpotent orbit theory, and also the tech-

niques for the modular representation theory of restricted Lie superalgebras. In §7,

we introduce the notion of rigid nilpotent elements, and reduce the investigation

of Conjecture 1.3 to the case of rigid nilpotent elements (see Theorem 1.4).
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§1.7.

Throughout, we work with the field of complex numbers C, or the algebraically

closed field k = Fp of positive characteristic p as the ground field.

Let Z+ be the set of all the nonnegative integers in Z, and denote by Z2

the residue class ring modulo 2 in Z. A superspace is a Z2-graded vector space

V = V0̄ ⊕ V1̄, in which we call elements in V0̄ and V1̄ even and odd, respectively.

Write |v| ∈ Z2 for the parity (or degree) of v ∈ V , which is implicitly assumed to

be Z2-homogeneous. We will use the notation

dimV = (dimV0̄,dimV1̄), dimV = dimV0̄ + dimV1̄.

All Lie superalgebras g will be assumed to be finite-dimensional.

Recall that a superalgebra analogue of Schur’s lemma states that the endo-

morphism ring of an irreducible module of a superalgebra is either one-dimensional

or two-dimensional (in the latter case it is isomorphic to a Clifford algebra), cf.

for example, Kleshchev [14, Chapter 12]. An irreducible module is of type M if its

endomorphism ring is one-dimensional and it is of type Q otherwise.

We consider vector spaces, subalgebras, ideals, modules, and submodules etc.

in the super sense throughout the paper.

§2. Basic Lie superalgebras and finite W -superalgebras

In this section, we will recall some knowledge on basic classical Lie superalge-

bras along with the corresponding algebraic supergroups, and finiteW -(super)alge-

bras for use in the sequel. We refer the readers to [3, 12, 20] for Lie superalgebras,

[5, 31] for algebraic supergroups, and [27, 29, 34, 37] for finite W -(super)algebras.

§2.1. Basic classical Lie superalgebras and the corresponding algebraic

supergroups

2.1.1. Basic classical Lie superalgebras. Following [3, §1], [12, §2.3–§2.4], [13,

§1], and [35, §2], we recall the list of basic classical Lie superalgebras over F for

F = C or F = k. These Lie superalgebras, with even parts being Lie algebras of

reductive algebraic groups, are simple over F (the general linear Lie superalgebras,

though not simple, are also included), and they admit an even nondegenerate

supersymmetric invariant bilinear form in the following sense.

Definition 2.1. Let V = V0̄ ⊕ V1̄ be a Z2-graded space and (·, ·) be a bilinear

form on V .

(1) If (a, b) = 0 for any a ∈ V0̄, b ∈ V1̄, then (·, ·) is called even.
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(2) If (a, b) = (−1)|a||b|(b, a) for any homogeneous elements a, b ∈ V , then (·, ·) is

called supersymmetric.

(3) If ([a, b], c) = (a, [b, c]) for any homogeneous elements a, b, c ∈ V , then (·, ·) is

called invariant.

(4) If one can conclude from (a, V ) = 0 that a = 0, then (·, ·) is called nondegen-

erate.

Note that when F = k is a field of characteristic p > 0, there are restrictions

on p, as shown for example in [35, Table 1]. So we have the following list.

Table 1. Basic classical Lie superalgebras over k

gk g0̄ Restriction of p when F = k

gl(m|n) gl(m)⊕ gl(n) p > 2

sl(m|n) sl(m)⊕ sl(n)⊕ k p > 2, p - (m− n)

osp(m|n) so(m)⊕ sp(n) p > 2

D(2, 1, ā) sl(2)⊕ sl(2)⊕ sl(2) p > 3

F(4) sl(2)⊕ so(7) p > 15

G(3) sl(2)⊕G2 p > 15

Throughout the paper, we will simply call all gF listed above “basic Lie super-

algebras” for both F = C and F = k.

2.1.2. Algebraic supergroups and restricted Lie superalgebras. For a

given basic Lie superalgebra listed in §2.1.1, there is an algebraic supergroup GF
satisfying Lie(GF) = gF such that

(1) GF has a subgroup scheme (GF)ev that is an ordinary connected reductive

group with Lie((GF)ev) = (gF)0̄;

(2) there is a well-defined action of (GF)ev on gF, reducing to the adjoint action

of (gF)0̄.

The above algebraic supergroup can be constructed as a Chevalley supergroup

in [5]. The pair ((GF)ev, gF) constructed in this way is called a Chevalley super

Harish-Chandra pair (cf. [5, Theorem 5.35] and [6, §3.3]). Partial results on GF and

(GF)ev can be found in [1, Ch. 2.2], [5], [6, §3.3] etc. In the present paper, we will

call (GF)ev the purely even subgroup of GF. When the ground field F = k is of odd

prime characteristic p, one easily knows that gk is a restricted Lie superalgebra

(cf. [31, Definition 2.1] and [32]) in the following sense.
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Definition 2.2. A Lie superalgebra gk = (gk)0̄⊕(gk)1̄ over k is called a restricted

Lie superalgebra, if there is a p-th power map (gk)0̄ → (gk)0̄, denoted by (−)[p],

satisfying

(a) (kx̄)[p] = kpx̄[p] for all k ∈ k and x̄ ∈ (gk)0̄;

(b) [x̄[p], ȳ] = (ad x̄)p(ȳ) for all x̄ ∈ (gk)0̄ and ȳ ∈ gk;

(c) (x̄+ ȳ)[p] = x̄[p] + ȳ[p] +
∑p−1
i=1 si(x̄, ȳ) for all x̄, ȳ ∈ (gk)0̄, where isi(x̄, ȳ) is the

coefficient of λi−1 in (ad(λx̄+ ȳ))p−1(x̄).

Let gk be a restricted Lie superalgebra. For each x̄ ∈ (gk)0̄, the element

x̄p − x̄[p] ∈ U(gk) is central by Definition 2.2, and all of them generate a central

subalgebra of U(gk). Let {w̄1, . . . , w̄c} and {w̄′1, . . . , w̄′d} be the basis of (gk)0̄ and

(gk)1̄ respectively. For a given χ ∈ (gk)∗0̄, let Jχ be the ideal of the universal

enveloping algebra U(gk) generated by the even central elements w̄p − w̄[p] −
χ(w̄)p for all w̄ ∈ (gk)0̄. The quotient algebra Uχ(gk) := U(gk)/Jχ is called the

reduced enveloping algebra with p-character χ. We often regard χ ∈ g∗
k

by letting

χ((gk)1̄) = 0. If χ = 0, then U0(gk) is called the restricted enveloping algebra.

It is a direct consequence of the PBW theorem that the k-algebra Uχ(gk) is of

dimension pc2d, and has a basis

{w̄a1
1 · · · w̄acc (w̄′1)b1 · · · (w̄′d)bd | 0 6 ai < p, bj ∈ {0, 1} for all 1 6 i 6 c, 1 6 j 6 d}.

§2.2. Finite W -superalgebras over the field of complex numbers

2.2.1.. Let g be a basic Lie superalgebra over C and h be a typical Cartan sub-

algebra of g. Let Φ be a root system of g relative to h whose simple root system

∆ = {α1, . . . , αl} is distinguished (cf. [13, Proposition 1.5]). Let Φ+ be the corre-

sponding positive system in Φ, and put Φ− := −Φ+. Let g = n− ⊕ h⊕ n+ be the

corresponding triangular decomposition of g. By [5, §3.3], we can choose a Cheval-

ley basis B = {eγ | γ ∈ Φ} ∪ {hα | α ∈ ∆} of g excluding the case D(2, 1; a) with

a /∈ Z. (In the case D(2, 1; a) with a /∈ Z being an algebraic number, one needs

to adjust the definition of a Chevalley basis by changing Z to Z[a] in the range

of construction constants; see [7, §3.1]. Here Z[a] is the Z-algebra generated by

(a).) Let gZ denote the Chevalley Z-form in g and UZ the Kostant Z-form of U(g)

associated with B. Given a Z-module V and a Z-algebra A, we write VA := V ⊗ZA.

Let G be an algebraic supergroup as in §2.1.2, with Lie(G) = g and the super

Harish-Chandra pair (Gev, g). Let e ∈ g0̄ be a nilpotent element. By Dynkin–

Kostant theory we know that adGev.e and (gZ)0̄ have nonempty interaction; then

one can assume that the nilpotent e is in (gZ)0̄. By the same discussion as in [27,

§4.2], for any given nilpotent element e ∈ (gZ)0̄ we can find f, h ∈ (gQ)0̄ such that

(e, h, f) is an sl2-triple in g. In [37, Proposition 2.1] it is shown that there exists
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an even nondegenerate supersymmetric invariant bilinear form (·, ·), under which

the Chevalley basis B of g takes values in Q, and (e, f) = 1. Define χ ∈ g∗ by

letting χ(x) = (e, x) for all x ∈ g; then we have χ(g1̄) = 0.

Following [37, Definition 2.4] we call a commutative ring A admissible if A is

a finitely generated Z-subalgebra of C, (e, f) ∈ A×(= A\{0}) and all bad primes

of the root system of g and the determinant of the Gram matrix of (·, ·) relative

to a Chevalley basis of g are invertible in A. It is clear by the definition that every

admissible ring is a Noetherian domain. Given a finitely generated Z-subalgebra

A of C, denote by SpecmA the maximal spectrum of A. It is well known that for

every element P ∈ SpecmA, the residue field A/P is isomorphic to Fq, where q is

a p-power depending on P. We denote by Π(A) the set of all primes p ∈ N that

occur in this way. Since the choice of A does not depend on the super structure of

g, it follows from the arguments in the proof of [29, Lemma 4.4] that the set Π(A)

contains almost all primes in N. We denote by gA the A-submodule of g generated

by the Chevalley basis B.

Let g(i) = {x ∈ g | [h, x] = ix}, then g =
⊕

i∈Z g(i). By sl2-theory, all

subspaces g(i) are defined over Q. Also, e ∈ g(2)0̄ and f ∈ g(−2)0̄. There ex-

ists a symplectic (resp. symmetric) bilinear form 〈·, ·〉 on the Z2-graded sub-

space g(−1)0̄ (resp. g(−1)1̄) given by 〈x, y〉 := (e, [x, y]) = χ([x, y]) for all x, y ∈
g(−1)0̄ (resp.x, y ∈ g(−1)1̄). There exist bases {u1, . . . , u2s} of g(−1)0̄ and

{v1, . . . , vr} of g(−1)1̄ contained in gQ := gA⊗AQ such that 〈ui, uj〉 = i∗δi+j,2s+1

for 1 6 i, j 6 2s, where

i∗ =

−1 if 1 6 i 6 s,

1 if s+ 1 6 i 6 2s,

and 〈vi, vj〉 = δi+j,r+1 for 1 6 i, j 6 r.
Set m :=

⊕
i6−2 g(i)⊕ g(−1)′ with g(−1)′ = g(−1)′0̄ ⊕ g(−1)′1̄, where g(−1)′0̄

is the C-span of us+1, . . . , u2s and g(−1)′1̄ is the C-span of v r
2 +1, . . . , vr (resp.

v r+3
2
, . . . , vr) when r := dim g(−1)1̄ is even (resp. odd); then χ vanishes on the

derived subalgebra of m. Define p :=
⊕

i>0 g(i),

m′ :=

m if r is even,

m⊕ Cv r+1
2

if r is odd.

Write ge for the centralizer of e in g and define di := dim gi − dim gei for

i ∈ Z2; then r and d1 always have the same parity by [35, Theorem 4.3]. This
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parity is a crucial factor in deciding the structure of finite W -superalgebras (cf. [37,

Theorem 4.5]), which is called the judging parity in [37]. We further have

dimm =

{
(d0

2 ,
d1

2 ) if d1 is even,

(d0

2 ,
d1−1

2 ) if d1 is odd.

After enlarging A one can assume that gA =
⊕

i∈Z gA(i), and each gA(i) :=

gA ∩ g(i) is freely generated over A by a basis of the vector space g(i). Then

{u1, . . . , u2s} and {v1, . . . , vr} are free bases of A-modules gA(−1)0̄ and gA(−1)1̄,

respectively. It is obvious that mA := gA ∩m, m′A := gA ∩m′, and pA := gA ∩ p are

free A-modules and direct summands of gA. Moreover, one can assume e, f ∈ (gA)0̄

after enlarging A possibly; [e, gA(i)] and [f, gA(i)] are direct summands of gA(i+2)

and gA(i−2) respectively; and gA(i+2) = [e, gA(i)] for each i > −1 by sl2-theory.

As in [37, §2] we can choose a basis x1, . . . , xl, xl+1, . . . , xm ∈ (pA)0̄, y1, . . . , yq,

yq+1, . . . , yn ∈ (pA)1̄ of the free A-module pA =
⊕

i>0 gA(i) such that

(a) xi ∈ gA(ki)0̄, yj ∈ gA(k′j)1̄, where ki, k
′
j ∈ Z+ with 1 6 i 6 m and 1 6 j 6 n;

(b) x1, . . . , xl is a basis of (gA)e0̄ and y1, . . . , yq is a basis of (gA)e1̄;

(c) xl+1, . . . , xm ∈ [f, (gA)0̄] and yq+1, . . . , yn ∈ [f, (gA)1̄].

2.2.2.. Recall that a Gelfand–Graev g-module associated with χ is defined by

Qχ := U(g)⊗U(m) Cχ,

where Cχ = C1χ is a one-dimensional m-module such that x.1χ = χ(x)1χ for all

x ∈ m. For k ∈ Z+, define

Zk+ := {(i1, . . . , ik) | ij ∈ Z+}, Λ′k := {(i1, . . . , ik) | ij ∈ {0, 1}}

with 1 6 j 6 k. For i = (i1, . . . , ik) in Zk+ or Λ′k, set |i| = i1 + · · · + ik. For

any real number a ∈ R, let dae denote the largest integer lower bound of a,

and bac the least integer upper bound of a. Given (a,b, c,d) ∈ Zm+ × Λ′n ×
Zs+ × Λ′t (where t := b r2c = bdim g(−1)1̄

2 c), let xaybucvd denote the monomial

xa1
1 · · ·xamm yb11 · · · ybnn u

c1
1 · · ·ucss v

d1
1 · · · v

dt
t in U(g). Set Qχ,A := U(gA) ⊗U(mA) Aχ,

where Aχ = A1χ. By the definition, Qχ,A is a gA-stable A-lattice in Qχ with

{xaybucvd ⊗ 1χ | (a,b, c,d) ∈ Zm+ × Λ′n × Zs+ × Λ′t} being a free basis. Given

(a,b, c,d) ∈ Zm+ × Λ′n × Zs+ × Λ′t, set

|(a,b, c,d)|e :=

m∑
i=1

ai(ki + 2) +

n∑
i=1

bi(k
′
i + 2) +

s∑
i=1

ci +

t∑
i=1

di.
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Set

Yi :=


xi if 1 6 i 6 l,

yi−l if l + 1 6 i 6 l + q,

v r+1
2

if i = l + q + 1,

where Yi ∈ g(mi) with mi ∈ Z and the term Yl+q+1 occurs only when r =

dim g(−1)1̄ is odd. Then there are Lie superalgebra operator identities in the

setting of [Yi, Yj ] =
∑l+q
k=1 α

k
ijYk in ge for 1 6 i, j 6 l + q. Set q′ = q if r (or

equivalently, d1) is even, and q′ = q+ 1 if r is odd. By [37, Theorem 4.7], the finite

W -superalgebra U(g, e) := (EndgQχ)op is generated by Θ1, . . . ,Θl ∈ U(g, e)0̄ and

Θl+1, . . . ,Θl+q′ ∈ U(g, e)1̄ with

Θk(1χ) =

(
Yk +

∑
|a,b,c,d|e=mk+2,
|a|+|b|+|c|+|d|>2

λka,b,c,dx
aybucvd

+
∑

|a,b,c,d|e<mk+2

λka,b,c,dx
aybucvd

)
⊗ 1χ, (2.1)

for 1 6 k 6 l + q, where λka,b,c,d ∈ Q, and λka,b,c,d = 0 if al+1 = · · · = am =

bq+1 = · · · = bn = c1 = · · · = cs = d1 = · · · = dd r2 e = 0. When r is odd, set

Θl+q+1(1χ) = Yl+q+1 ⊗ 1χ = v r+1
2
⊗ 1χ.

By [37, Theorem 4.5], the monomials Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq′

l+q′ with ai ∈
Z+, bj ∈ {0, 1} for 1 6 i 6 l and 1 6 j 6 q′ form a basis of the vector space

U(g, e). The monomial Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq′

l+q′ is said to have Kazhdan degree∑l
i=1 ai(mi+ 2) +

∑q′

i=1 bi(ml+i+ 2). For k ∈ Z+, let FkU(g, e) denote the C-span

of all monomials Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq′

l+q′ of Kazhdan degree 6 k. The subspaces

FkU(g, e) with k > 0 form an increasing exhaustive filtration of the algebra U(g, e),

which is called the Kazhdan filtration. The corresponding graded algebra grU(g, e)

is a polynomial superalgebra in gr Θ1, . . . , gr Θl+q′ . Recall that [37, Theorem 4.7]

shows that there are superpolynomials Fij with i, j = 1, . . . , l + q′ such that the

defining relations on those generators can be described as

[Θi,Θj ] = Fij(Θ1, . . . ,Θl+q′), i, j = 1, . . . , l + q′, (2.2)

while

Fij(Θ1, . . . ,Θl+q′) ≡
l+q∑
k=1

αkijΘk + qij(Θ1, . . . ,Θl+q′) (mod Fmi+mj+1U(g, e))

(2.3)
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for i, j = 1, . . . , l+ q, where qij is a superpolynomial in l+ q′ variables in Q, whose

constant term and linear part are zero. For the case when one of the indices i, j

equals l+q+1, it follows from [37, Remark 3.8] that there are no obvious formulas

for the superpolynomials Fij as shown in (2.3). However, by the same discussion as

in [37, Theorem 4.5], one can still choose the superpolynomials Fij properly such

that the Kazhdan degree for all the monomials in the Fij is less than mi+mj + 2.

Moreover,

Fl+q+1,l+q+1(Θ1, . . . ,Θl+q+1) = 1⊗ 1χ (2.4)

when r is odd.

In fact, some of the defining relations in (2.2) are equivalent to each other.

By the same discussion as in [37, Remark 3.8(4)], after deleting all the redundant

commutating relations in (2.2), the remaining ones are with indices i, j satisfying

1 6 i < j 6 l, l + 1 6 i 6 j 6 l + q′, and 1 6 i 6 l < j 6 l + q′.

In the following arguments, when we consider the corresponding counterparts

of all of the above over the algebraic closured field k = Fp of positive characteris-

tic p, we assume that the prime p is large enough such that the admissible ring A

contains all λka,b,c,d in (2.1) and all coefficients of the Fij in (2.2), thereby the “ad-

missible procedure” developed by Premet for finite W -algebras can be reproduced

in the super case.

For a = (a1, . . . , al) ∈ Zl+ and b = (b1, . . . , bq′) ∈ Λ′q′ , let U(gA, e) be the

A-span of the monomials

{Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq′

l+q′ | (a,b) ∈ Zl+ × Λ′q′}.

2.2.3.. Let Iχ denote the Z2-graded ideal in U(g) generated by all x− χ(x) with

x ∈ mi, i ∈ Z2. By construction, Iχ is a (U(g), U(m))-bimodule. The fixed point

space (U(g)/Iχ)adm carries a natural algebra structure given by (x+Iχ)·(y+Iχ) :=

(xy + Iχ) for all x, y ∈ U(g). Then Qχ ∼= U(g)/Iχ as g-modules via the g-module

map sending 1 + Iχ to 1χ, and Qadm
χ

∼= U(g, e) as C-algebras. Any element of

U(g, e) is uniquely determined by its effect on the generator 1χ ∈ Qχ, and it

follows from [37, Theorem 2.12] that the canonical isomorphism between U(g, e)

and Qadm
χ is given by u 7→ u(1χ) for any u ∈ U(g, e). In what follows we will often

identify Qχ with U(g)/Iχ and U(g, e) with Qadm
χ .

Let w1, . . . , wc be a basis of g over C. Let U(g) =
⋃
i∈Z FiU(g) be the

Kazhdan filtration of U(g), where FiU(g) is the C-span of all w1 · · ·wc with

w1 ∈ g(j1), . . . , wc ∈ g(jc) and (j1 + 2) + · · · + (jc + 2) 6 i. The Kazhdan fil-

tration on Qχ is defined by FiQχ := π(FiU(g)) with π : U(g) � U(g)/Iχ being

the canonical homomorphism, which makes Qχ into a filtered U(g)-module. The

Kazhdan filtration of Qχ has no negative components, and the Kazhdan filtra-
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tion of U(g, e) defined in §2.2.2 is nothing but the filtration of U(g, e) = Qadm
χ

induced from the Kazhdan filtration of Qχ through the embedding Qadm
χ ↪→ Qχ

(see [37, §2.3]).

§2.3. Finite W -superalgebras in positive characteristic

2.3.1.. Pick a prime p ∈ Π(A) and denote by k = Fp the algebraic closure of Fp.
Since the bilinear form (·, ·) is A-valued on gA, it induces a bilinear form on the

Lie superalgebra gk ∼= gA ⊗A k. In the following we still denote this bilinear form

by (·, ·). If we denote by Gk the algebraic k-supergroup of distribution algebra

Uk = UZ ⊗Z k, then gk = Lie(Gk) (cf. [10, §I.7.10] and [31, §2.2]). Note that

the bilinear form (·, ·) is nondegenerate and Ad (Gk)ev-invariant. For x ∈ gA, set

x̄ := x ⊗ 1, an element of gk. To simplify notation we identify e, f , h with the

nilpotent elements ē = e⊗1, f̄ = f ⊗1, and h̄ = h⊗1 in gk, and χ with the linear

function (ē, ·) on gk.

The Lie superalgebra gk = Lie (Gk) carries a natural p-mapping x 7→ x[p]

for all x ∈ (gk)0̄, which is equivariant under the adjoint action of (Gk)ev. The

subalgebra of U(gk) generated by all x̄p− x̄[p] with x̄ ∈ (gk)0̄ is called the p-center

of U(gk) and we denote it by Zp(gk) for short. It follows from the PBW theorem of

U(gk) that Zp(gk) is isomorphic to an (ordinary) polynomial algebra in dim(gk)0̄

variables. For every maximal ideal H of Zp(gk) there is a unique linear function

η = ηH ∈ (gk)∗0̄ such that

H = 〈x̄p − x̄[p] − η(x̄)p | x̄ ∈ (gk)0̄〉.

Since the Frobenius map of k is bijective, this enables us to identify the maximal

spectrum Specm(Zp(gk)) of Zp(gk) with (gk)∗0̄.

For any ξ ∈ (gk)∗0̄ we denote by Jξ the two-sided ideal of U(gk) generated by

the even central elements {x̄p− x̄[p]−ξ(x̄)p | x̄ ∈ (gk)0̄}. Then the quotient algebra

Uξ(gk) := U(gk)/Jξ is called the reduced enveloping algebra with p-character

ξ. We have dimUξ(gk) = pdim(gk)0̄2dim(gk)1̄ by construction. It follows from the

Schur lemma that any irreducible gk-module V is that of Uξ(gk) for a unique

ξ = ξV ∈ (gk)∗0̄. We often regard ξ ∈ g∗
k

by letting ξ((gk)1̄) = 0.

2.3.2.. For i ∈ Z, set gk(i) := gA(i) ⊗A k and put mk := mA ⊗A k, then

[37, Lemma 2.18] shows that mk is a restricted subalgebra of gk. Denote by

m′
k

:= m′A ⊗A k and pk := pA ⊗A k. Due to our assumptions on A, the el-

ements x̄1, . . . , x̄l and ȳ1, . . . , ȳq form bases of the centralizer (ge
k
)0̄ and (ge

k
)1̄

of e in gk, respectively. It follows from [35, §4.1] that the subalgebra mk is p-

nilpotent, and the linear function χ vanishes on the p-closure of [mk,mk]. Set

Qχ,k := U(gk) ⊗U(mk) kχ, where kχ = Aχ ⊗A k = k1χ. Clearly, k1χ is a one-
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dimensional mk-module with the property x̄.1χ = χ(x̄)1χ for all x̄ ∈ mk, and it is

obvious that Qχ,k ∼= Qχ,A ⊗A k as gk-modules. Define the finite W -superalgebra

over k by U(gk, e) := (EndgkQχ,k)op.

Let g∗A be the A-module dual to gA and let (m⊥A)0̄ denote the set of all linear

functions on (gA)0̄ vanishing on (mA)0̄. By the assumptions on A, (m⊥A)0̄ is a free

A-submodule and a direct summand of g∗A. Note that (m⊥A⊗AC)0̄ and (m⊥A⊗Ak)0̄

can be identified with the annihilators m⊥0̄ := {f ∈ g∗0̄ | f(m0̄) = 0} and (m⊥
k

)0̄ :=

{f ∈ (gk)∗0̄ | f((mk)0̄) = 0}, respectively. Let Iχ,A denote the A-span of the left

ideal of U(gA) generated by all x− χ(x) with x ∈ mA.

Given a linear function η ∈ χ+(m⊥
k

)0̄, set the gk-module Qηχ := Qχ,k/JηQχ,k.

Each gk-endomorphism Θ̄i of Qχ,k preserves JηQχ,k, and hence induces a gk-

endomorphism of Qηχ which is denoted by θi. As in [37], we set Uη(gk, e) =

(EndgkQ
η
χ)op, and call it a reduced W -superalgebra.

Since the restriction of η to mk coincides with that of χ, the left ideal of U(gk)

generated by all x − η(x) with x ∈ mk equals Iχ,k := Iχ,A ⊗A k and kχ = kη as

mk-modules. We denote by Imk
the left ideal of Uη(gk) generated by all x − η(x)

with x ∈ mk.

For a (left) Uη(gk)-module M , define

Mmk := {v ∈M | Imk
.v = 0}.

It follows from [37, Proposition 2.21] that Uη(gk, e) can be identified with the k-

algebra Uη(gk)admk/Uη(gk)admk ∩Imk
. Therefore, any left Uη(gk)admk -module can

be considered a Uη(gk, e)-module with the trivial action of the ideal Uη(gk)admk ∩
Imk

. Recall [37, Theorem 2.24] shows that

Theorem 2.3. The correspondence M to Mmk gives rise to a category equivalence

between the category of Uη(gk)-modules and the category of Uη(gk, e)-modules:

Uη(gk)-mod −→ Uη(gk, e)-mod

with the inverse

Uη(gk, e)-mod −→ Uη(gk)-mod, V 7→ Uη(gk)⊗Uη(gk)ad m
k
V.

Furthermore, for any Uη(gk)-module M , [37, Lemma 2.22] shows that Mmk is

a free Uη(mk)-module. By the same discussion as in [35, Proposition 4.2], one can

conclude that there is an isomorphism of vector spaces M ∼= Uη(mk)∗ ⊗kMmk . It

is immediate that

dimMmk =
dimM

dimUη(mk)
. (2.5)

In particular, we have dimUη(gk) = dimUη(mk) · dimUη(gk)admk .



16 Y. Zeng and B. Shu

§3. Transition subalgebras of finite W -superalgebras in prime

characteristic

We will maintain the notation and conventions of §1. In particular, g is a

given basic Lie superalgebra over C, A is an associated admissible ring, and k is

an algebraically closed field of characteristic p ∈ Π(A). Throughout this section,

fix a nilpotent element e ∈ g0̄; then we can define di = dim gi − dim gei for i ∈ Z2.

Further recall that both dim g(−1)1̄ and d1 = dim g1̄−dim ge1̄ have the same parity

by §2.2.1. We always set q′ = q if d1 is even, and q′ = q + 1 if d1 is odd.

In this section we will introduce a so-called transition subalgebra of the finite

W -superalgebra U(gk, e) over k. We present some structure relations between

U(gk, e) and its transition subalgebra that enable us to connect the information

of finite W -superalgebras over C with the modular representations of reduced

enveloping algebras of basic Lie superalgebras over k in the following sections.

This section is somewhat a generalization of the Lie algebra case by Premet

in [29, §2], with a few modifications. The emergence of odd parts in the Lie super-

algebra gk makes the situation complicated.

§3.1. Transition subalgebras

Recall that in §2.2.2 we defined

Zk+ := {(i1, . . . , ik) | ij ∈ Z+}, Λ′k := {(i1, . . . , ik) | ij ∈ {0, 1}}

for k ∈ Z+ with 1 6 j 6 k. For a = (a1, . . . , al) ∈ Zl+ and b = (b1, . . . , bq′) ∈ Λ′q′ ,

U(gA, e) denotes the A-span of the monomials

{Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq′

l+q′ | (a,b) ∈ Zl+ × Λ′q′}

in §2.2.2. Our assumption on A guarantees U(gA, e) to be an A-subalgebra of

U(g, e) contained in (EndgAQχ,A)op. By the definition of Qχ,A in §2.2.2 and Iχ,A in

§2.3.2 we know that Qχ,A can be identified with the gA-module U(gA)/Iχ,A. Hence

U(gA, e) embeds into the A-algebra (U(gA)/Iχ,A)admA ∼= (Qχ,A)admA . As Qχ,A is

a free A-module with basis {xaybucvd ⊗ 1χ | (a,b, c,d) ∈ Zm+ × Λ′n × Zs+ × Λ′t},
an easy induction on Kazhdan degree (based on [37, Lemma 4.3] and the formulas

displayed in [37, Lemma 4.2, Theorem 4.5]) shows that

U(gA, e) = (EndgAQχ,A)op ∼= QadmA
χ,A .

Definition 3.1. Set the k-algebra T (gk, e) := U(gA, e)⊗A k. In the following we

will call T (gk, e) a transition subalgebra.

It is notable that by the definition, T (gk, e) can be naturally identified with a

subalgebra of the finite W -superalgebra U(gk, e) = (EndgkQχ,k)op over k. More-
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over, T (gk, e) has a k-basis consisting of all monomials Θ̄a1
1 · · · Θ̄

bq′

l+q′ , where Θ̄i :=

Θi ⊗ 1 ∈ U(gA, e)⊗A k for 1 6 i 6 l + q′.

Since all the coefficients of the polynomials Fij for 1 6 i, j 6 l + q′ in §2.2.2

are in Q, one can assume the Fij are over A after enlarging A if needed. Given a

superpolynomial g ∈ A[T1, . . . , Tn], let pg denote the image of g in the polynomial

superalgebra k[T1, . . . , Tn] = A[T1, . . . , Tn]⊗A k. By the same discussion as in [37,

Theorem 4.7], we know that there exist superpolynomials pFij of l+ q′ indetermi-

nants over k (i, j = 1, . . . , l + q′) with the first l indeterminants being even, and

the others being odd, such that

[Θ̄i, Θ̄j ] = pFij(Θ̄1, . . . , Θ̄l+q′), i, j = 1, . . . , l + q′,

while the pFij(Θ̄1, . . . , Θ̄l+q′) satisfy the same relations as (2.3) and (2.4).

Theorem 3.2. Maintain the notation above. Then the Θ̄i and the pFij for i, j =

1, . . . , l + q′ constitute a data of generators and defining relations of T (gk, e),

with Θ̄1, . . . , Θ̄l ∈ T (gk, e)0̄ and Θ̄l+1, . . . , Θ̄l+q′ ∈ T (gk, e)1̄ as the generators

of T (gk, e) subject to the relations

[Θ̄i, Θ̄j ] = pFij(Θ̄1, . . . , Θ̄l+q′),

where 1 6 i, j 6 l + q′.

§3.2. Revisiting reduced W -superalgebras with p-characters

η ∈ χ+ (m⊥
k

)0̄

Recall that in §2.3.2 we defined the gk-module Qηχ = Qχ,k/JηQχ,k and the re-

duced W -superalgebra Uη(gk, e)=(EndgkQ
η
χ)op, and §2.2.1 shows that {x1, . . . , xm,

y1, . . . , yn} is an A-basis of pA. Set

Xi :=


xi+l if 1 6 i 6 m− l,
yl+q−m+i if m− l + 1 6 i 6 m+ n− l − q,
ul+q−m−n+i if m+ n− l − q + 1 6 i 6 m+ n− l − q + s,

vl+q−m−n−s+i if m+ n− l − q + s+ 1 6 i 6 m+ n− l − q + s+ t′,

where t′ := d r2e = ddim gk(−1)1̄

2 e.

Conventions 3.3. We will denote d r2e by t′ once and for all. It follows from [35,

Theorem 4.3] that dimUχ(mk) = p
d0
2 2d

d1
2 e and we denote it by δ afterwards. By

the assumption of the notation we have d0

2 = m− l + s and dd1

2 e = n− q + t′.
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For (a,b, c,d) ∈ Zm−l+ × Λ′n−q × Zs+ × Λ′t′ , define

Xa,b,c,d := Xa1
1 · · ·X

am−l
m−l X

b1
m−l+1 · · ·X

bn−q
m+n−l−qX

c1
m+n−l−q+1 · · ·X

cs
m+n−l−q+s

·Xd1

m+n−l−q+s+1 · · ·X
dt′
m+n−l−q+s+t′

and

X̄a,b,c,d : = X̄a1
1 · · · X̄

am−l
m−l X̄

b1
m−l+1 · · · X̄

bn−q
m+n−l−qX̄

c1
m+n−l−q+1 · · · X̄

cs
m+n−l−q+s

· X̄d1

m+n−l−q+s+1 · · · X̄
dt′
m+n−l−q+s+t′ ,

elements of U(gA) and U(gk), respectively. Denote by 1̄χ the image of 1χ ∈ Qχ,k
in Qηχ. For k ∈ Z+, define

Λk := {(i1, . . . , ik) | ij ∈ Z+, 0 6 ij 6 p− 1}

with 1 6 j 6 k.

Lemma 3.4. The right modules Qχ,A and Qηχ with η ∈ χ + (m⊥
k

)0̄ are free over

U(gA, e) and Uη(gk, e) respectively. More precisely,

(1) the set {Xa,b,c,d ⊗ 1χ | (a,b, c,d) ∈ Zm−l+ × Λ′n−q × Zs+ × Λ′t′} is a free basis

of the U(gA, e)-module Qχ,A;

(2) the set {X̄a,b,c,d ⊗ 1̄χ | (a,b, c,d) ∈ Λm−l × Λ′n−q × Λs × Λ′t′} is a free basis

of the Uη(gk, e)-module Qηχ.

Proof. The proof is the same as in the finite W -algebra case, thus will be omitted

here (see [28, Lemma 4.2] and [29, Lemma 2.3]).

§3.3. Transition for finite W -superalgebras

Let ρk denote the representation of U(gk) in EndkQχ,k. Given a subspace

V in gk we denote by Zp(V ) the subalgebra of p-center Zp(gk) generated by all

x̄p − x̄[p] with x̄ ∈ V0̄. Clearly, Zp(V ) is isomorphic to an (ordinary) polynomial

algebra in dimV0̄ variables. We will denote Zp(gk) by Zp for short.

Let ak be the k-span of X̄1, . . . , X̄m+n−l−q+s+t′ in gk and put p̃k = ak ⊕ ge
k

(resp. p̃k = ak ⊕ ge
k
⊕ kv r+1

2
) when d1 is even (resp. odd), then gk = mk ⊕ p̃k.

By our assumptions on xl+1, . . . , xm, yq+1, . . . , yn and the inclusion gf
k
⊆⊕

i60 gk(i), we have that

ak = {x̄ ∈ p̃k | (x̄, gfk) = 0} (resp. ak ⊕ kv r+1
2

= {x̄ ∈ p̃k | (x̄, gfk) = 0})

when d1 is even (resp. odd).
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Theorem 3.5. Let e ∈ (gk)0̄ be any even nilpotent element:

(1) Then ρk(Zp) ∼= Zp(p̃k) as k-algebras.

(2) We have U(gk, e) is a free ρk(Zp)-module of rank pl2q
′
. In particular, U(gk, e)

is generated by its subalgebras T (gk, e) and ρk(Zp).

(3) Furthermore, U(gk, e) ∼= T (gk, e)⊗k Zp(ak) as k-algebras.

This theorem is a generalization of the finite W -algebra case in [29, Theo-

rem 2.1]. Compared with finite W -algebras, the construction of finite W -superalge-

bras is much more complicated. In particular, some new phenomenon occurs when

d1 is odd. Now we will prove the theorem in detail.

Proof. (1) It follows from gk = mk ⊕ p̃k that Zp(gk) ∼= Zp(mk) ⊗k Zp(p̃k) as

k-algebras. As Zp(mk) ∩ Ker ρk is an ideal of codimension 1 in Zp(mk), one

can conclude that ρk(Zp) = ρk(Zp(p̃k)). As the monomials x̄aȳbūcv̄d ⊗ 1χ with

(a,b, c,d) ∈ Zm+ × Λ′n × Zs+ × Λ′t (recall that t = bdim gk(−1)1̄

2 c) form a basis of

Qχ,k, and Zp(p̃k) is a polynomial algebra in {x̄pi − x̄
[p]
i | 1 6 i 6 m} ∪ {ūpj − ū

[p]
j |

1 6 j 6 s}, we have Zp(p̃k) ∩ Ker ρk = {0}. It follows that ρk(Zp) ∼= Zp(p̃k) as

k-algebras. This completes the proof of statement (1).

(2) As the proofs of the remaining statements are the same whether d1 is

even or odd, it is sufficient for us to make arguments under the assumption that

d1 is odd.

First recall that S((p̃k)0̄) ∼= k[χ+(m⊥
k

)0̄] by the discussion of [37, §2.3], hence

Zp(p̃k) ∼= k[(χ+ (m⊥
k

)0̄)(1)], where (χ+ (m⊥
k

)0̄)(1) ⊆ (g∗
k
)
(1)

0̄
is the Frobenius twist

of χ+ (m⊥
k

)0̄. Then we will manage to construct a set of free bases of U(gk, e) as

a ρk(Zp)-module, via the reduced W -superalgebra Uη(gk, e) with η ∈ χ + (m⊥
k

)0̄.

Now we proceed by steps.

(2-i) Let us begin by understanding the Zp(p̃k)-module Qχ,k. As an immedi-

ate consequence of [37, Theorem 4.5(1)], we have

Θ̄p
k(1χ)−

(
x̄pk +

∑
|(a,0,c,0)|e=mk+2

µka,0,c,0x̄
paūpc

)
⊗ 1χ ∈ (Qχ,k)p(mk+2)−1 (3.1)

for 1 6 k 6 l, where µka,0,c,0 ∈ Fp. Since x̄[p] ∈ gk(pi) whenever x̄ ∈ gk(i) for all

i ∈ Z (see the proof of [37, Lemma 2.18]), within the context of the graded algebra

gr(U(gk)) under the Kazhdan filtration, we can obtain that

gr(x̄pi − x̄
[p]
i ) = gr(x̄i)

p, gr(ūpj − ū
[p]
j ) = gr(ūj)

p (1 6 i 6 m; 1 6 j 6 s). (3.2)
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On the other hand, Lemma 3.4(1) implies that the vectors X̄(a,b,c,d)⊗1χ with

(a,b, c,d) = (a1, . . . , am−l; b1, . . . , bn−q; c1, . . . , cs; d1, . . . , dt′)

∈ Zm−l+ × Λ′n−q × Zs+ × Λ′t′

form a free basis of the right T (gk, e)-module Qχ,k. As Qχ,k is a Kazhdan-filtered

T (gk, e)-module, straightforward induction on filtration degree based on (3.1) and

(3.2) shows that Qχ,k is generated as a Zp(p̃k)-module by the set

{X̄(a,b,c,d)Θ̄(i,j) ⊗ 1χ | (a,b, c,d, i, j) ∈ Λm−l × Λ′n−q × Λs × Λ′t′ × Λl × Λ′q+1}.

(2-ii) Let h be an arbitrary element of U(gk, e). By the above discussion we

can assume that

h(1χ) =
∑

fa,b,c,d,i,jX̄
a1
1 · · · X̄

am−l
m−l X̄

b1
m−l+1 · · · X̄

bn−q
m+n−l−q

· X̄c1
m+n−l−q+1 · · · X̄

cs
m+n−l−q+sX̄

d1

m+n−l−q+s+1 · · · X̄
dt′
m+n−l−q+s+t′

· Θ̄i1
1 · · · Θ̄

il
l Θ̄j1

l+1 · · · Θ̄
jq
l+qΘ̄

jq+1

l+q+1(1χ),

where fa,b,c,d,i,j ∈ Zp(p̃k) with (a,b, c,d, i, j) in the set Λm−l×Λ′n−q×Λs×Λ′t′ ×
Λl ×Λ′q+1. For any η ∈ χ+ (m⊥

k
)0̄, the image of fa,b,c,d,i,j in Uη(gk) is a scalar in

k, which shall be denoted by η(a,b, c,d, i, j).

Suppose fa,b,c,d,i,j 6= 0 for a nonzero (a,b, c,d) ∈ Λm−l×Λ′n−q×Λs×Λ′t′ and

some (i, j) ∈ Λl×Λ′q+1. Then there exists η ∈ χ+(m⊥
k

)0̄ such that η(a,b, c,d, i, j) 6=
0. Let hη be the image of h ∈ U(gk, e) in Uη(gk, e) = (EndgkQ

η
χ)op. In [37, Re-

mark 3.9] it is shown that there exist even elements θ1, . . . , θl ∈ Uη(gk, e)0̄ and

odd elements θl+1, . . . , θl+q+1 ∈ Uη(gk, e)1̄ in the same sense as in [37, Corollary

3.6], such that the monomials

θa1
1 · · · θ

al
l θ

b1
l+1 · · · θ

bq+1

l+q+1

with 0 6 ak 6 p− 1 for 1 6 k 6 l and 0 6 bk 6 1 for 1 6 k 6 q + 1 form a k-basis

of Uη(gk, e). Therefore, hη(1̄χ) is a k-linear combination of θi11 · · · θ
il
l θ

j1
l+1 · · · θ

jq
l+q

· θjq+1

l+q+1(1̄χ) with

(i1, . . . , il; j1, . . . , jq; jq+1) ∈ Λl × Λ′q × Λ′1.

By Lemma 3.4(2), the set

{X̄(a,b,c,d) ⊗ 1̄χ | (a,b, c,d) ∈ Λm−l × Λ′n−q × Λs × Λ′t′}

is a free basis of the right Uη(gk, e)-module Qηχ. Since η(a,b, c,d, i, j) 6= 0 and

θi11 · · · θ
il
l θ

j1
l+1 · · · θ

jq
l+qθ

jq+1

l+q+1 is the image of Θ̄i1
1 · · · Θ̄

il
l Θ̄j1

l+1 · · · Θ̄
jq
l+q Θ̄

jq+1

l+q+1 in
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Uη(gk, e), it is now evident that hη(1̄χ) cannot be a k-linear combination of

θi11 · · · θ
il
l θ

j1
l+1 · · · θ

jq
l+qθ

jq+1

l+q+1(1̄χ) with

(i1, . . . , il; j1, . . . , jq; jq+1) ∈ Λl × Λ′q × Λ′1.

This contradiction shows that fa,b,c,d,i,j = 0 unless (a,b, c,d) = 0. As a conse-

quence,

{Θ̄i1
1 · · · Θ̄

il
l Θ̄j1

l+1 · · · Θ̄
jq
l+qΘ̄

jq+1

l+q+1 | (i, j) ∈ Λl × Λ′q+1} (3.3)

generates U(gk, e) as a Zp(p̃k)-module. Specializing at a suitable η ∈ χ + (m⊥
k

)0̄

and applying [37, Remark 3.9] we further deduce that the set

{Θ̄i1
1 · · · Θ̄

il
l Θ̄j1

l+1 · · · Θ̄
jq
l+qΘ̄

jq+1

l+q+1 | (i, j) ∈ Λl × Λ′q+1} (3.4)

is a free basis of the Zp(p̃k)-module U(gk, e). Then U(gk, e) is a free ρk(Zp)-module

of rank pl2q+1. Note that the elements of (3.4) are in the k-algebra T (gk, e); then

the second part of statement (2) follows. We complete the proof of statement (2).

(3) We first claim that

u ∈ T (gk, e) · Zp(ak) for each u ∈ U(gk, e). (3.5)

We proceed with the proof of claim (3.5) by steps, starting with some necessary

preparation.

(3-i) Note that every gk-endomorphism of Qχ,k is uniquely determined by its

value at 1χ. For a nonzero u ∈ U(gk, e) with highest Kazhdan degree n(u), we can

write

u(1χ) =
∑

|(a,b,c,d)|e6n(u)

λa,b,c,dx̄
aȳbūcv̄d ⊗ 1χ,

where λa,b,c,d 6= 0 for at least one (a,b, c,d) with |(a,b, c,d)|e = n(u). For k ∈ Z+

put

Λk(u) := {(a,b, c,d) ∈ Zm+ × Λ′n × Zs+ × Λ′t | λa,b,c,d 6= 0 & |(a,b, c,d)|e = k},

and denote by Λmax(u) the set of all (a,b, c,d) ∈ Λn(u)(u) for which the quantity

n(u)− |a| − |b| − |c| − |d| assumes its maximum value. This maximum value will

be denoted by N(u). For each (a,b, c,d) ∈ Λmax, let x̄i ∈ gk(ki)0̄, ȳj ∈ gk(k′j)1̄

for 1 6 i 6 m and 1 6 j 6 n with ki, k
′
j ∈ Z+; then we have

|(a,b, c,d)|e − |a| − |b| − |c| − |d| =
m∑
i=1

(ki + 2)ai +

n∑
i=1

(k′i + 2)bi +

s∑
i=1

ci +

t∑
i=1

di

− |a| − |b| − |c| − |d|
> 0.
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Consequently, n(u), N(u) ∈ Z+, and n(u) > N(u).

(3-ii) The previous arguments in step (2) along with [37, Theorem 4.5(1)]

show that

Λmax(Θ̄i) = {(ei,0,0,0)} for 1 6 i 6 l,

Λmax(ρk(x̄pi − x̄
[p]
i )) = {(pei,0,0,0)} for 1 6 i 6 m,

Λmax(ρk(ūpj − ū
[p]
j )) = {(0,0, pej ,0)} for 1 6 j 6 s,

Λmax(Θ̄k) = {(0, ek−l,0,0)} for l + 1 6 k 6 l + q,

Λmax(Θ̄l+q+1) = {(0,0,0, et)}.

Here ei = (δi1, δi2, . . . , δij) is a tuple with j entries for j ∈ Z+, and δik is the

Kronecker function for k = 1, . . . , j.

Since Qχ,k is a Kazhdan-filtered U(gk)-module, this implies that

Λmax

(
m∏
i=1

ρk

(
x̄pi − x̄

[p]
i

)ai
·
s∏
i=1

ρk

(
ūpi − ū

[p]
i

)bi
· Θ̄c1

1 · · · Θ̄
cl
l Θ̄d1

l+1 · · · Θ̄
dq
l+qΘ̄

dq+1

l+q+1

)

=

{(
m∑
i=1

paiei +

l∑
j=1

cjej ,

q∑
i=1

diei,

s∑
i=1

pbiei, dq+1et

)}
for all (a1, . . . , am; b1, . . . , bs; c1, . . . , cl; d1, . . . , dq+1) ∈ Zm+ × Zs+ × Λl × Λ′q+1.

Thanks to statement (2), U(gk, e) is generated as a Zp(p̃k)-module by the set

{Θ̄i1
1 · · · Θ̄

il
l Θ̄j1

l+1 · · · Θ̄
jq
l+qΘ̄

jq+1

l+q+1 | (i, j) ∈ Λl × Λ′q+1}.

It follows that for every u ∈ U(gk, e) with (n(u), N(u)) = (d, d′) there exists a

k-linear combination u′ of the endomorphisms

u(a,b, c,d) :=

m∏
i=1

ρk(x̄pi−x̄
[p]
i )ai ·

s∏
i=1

ρk(ūpi−ū
[p]
i )bi ·Θ̄c1

1 · · · Θ̄
cl
l Θ̄d1

l+1 · · · Θ̄
dq
l+qΘ̄

dq+1

l+q+1

for all (a1, . . . , am; b1, . . . , bs; c1, . . . , cl; d1, . . . , dq+1) ∈ Zm+ × Zs+ × Λl × Λ′q+1 with

Λmax(u(a,b, c,d)) ⊆ Λmax(u) such that either n(u−u′) < d, or n(u−u′) = d and

N(u− u′) < d′.

(3-iii) Let Ω := {(n1, n2) ∈ Z2
+ | n1 ≥ n2} be a totally ordered set with

tuples ordered lexicographically. Due to the arguments in (3-i), (n(u), N(u)) ∈ Ω

for all u ∈ U(gk, e). Now we prove claim (3.5) by induction on (n(u), N(u)) in

the totally ordered set Ω. The claim is clearly valid when (n(u), N(u)) = (0, 0).

Assume that u ∈ T (gk, e) ·Zp(ak) for all nonzero u ∈ U(gk, e) with (n(u), N(u)) ≺
(d, d′). Now let u ∈ U(gk, e) be such that (n(u), N(u)) = (d, d′). By the preced-

ing remark we know that there exists u′ =
∑

(a,b,c,d) λa,b,c,du(a,b, c,d) with
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Λmax(u(a,b, c,d)) ⊆ Λmax(u) for all (a,b, c,d) with λa,b,c,d 6= 0 such that

(n(u− u′), N(u− u′)) ≺ (d, d′). Set

v(a,b, c,d) := u((0, . . . , 0, al+1, . . . , am),b,0,0)

·
l∏
i=1

Θ̄pai
i · (Θ̄c1

1 · · · Θ̄
cl
l Θ̄d1

l+1 · · · Θ̄
dq
l+qΘ̄

dq+1

l+q+1).

Using (3.1) it is easy to observe that Λmax(u(a,b, c,d)) = Λmax(v(a,b, c,d)) and

(n(u(a,b, c,d)− v(a,b, c,d)), N(u(a,b, c,d)− v(a,b, c,d)))

≺ (n(u(a,b, c,d)), N(u(a,b, c,d))).

We now put u
′′

:=
∑

(a,b,c,d) λa,b,c,dv(a,b, c,d), an element of T (gk, e) · Zp(ak).

Because (n(u− u′′), N(u− u′′)) ≺ (n(u), N(u)), the equality U(gk, e) = T (gk, e) ·
Zp(ak) follows by induction on the length of (d, d′) in the linearly ordered set

(Ω,≺). We complete the proof of claim (3.5).

Next we will finish the proof of statement (3). By Lemma 3.4(1) and the

procedure of “modular p reduction”, we know that the vectors X̄(a,b,c,d)⊗1χ with

(a,b, c,d) = (a1, . . . , am−l; b1, . . . , bn−q; c1, . . . , cs; d1, . . . , dt′)

∈ Zm−l+ × Λ′n−q × Zs+ × Λ′t′

form a free basis of the right T (gk, e)-module Qχ,k. Since (3.2) shows that X̄p
i

and X̄p
i − X̄

[p]
i have the same Kazhdan degree in U(gk) for 1 6 i 6 m − l and

m+n− l−q+1 6 i 6 m+n− l−q+s respectively, and Qχ,k is a Kazhdan-filtered

U(gk)-module, it follows that the vectors

m−l∏
i=1

m+n−l−q+s∏
j=m+n−l−q+1

ρk(X̄p
i − X̄

[p]
i )aiρk(X̄p

j − X̄
[p]
j )bj · Θ̄c1

1 · · · Θ̄
cl
l Θ̄d1

l+1 · · · Θ̄
dq
l+qΘ̄

dq+1

l+q+1

are linearly independent, where (a,b, c,d) ∈ Zm−l+ × Zs+ × Zl+ × Λ′q+1.

Combining all the above, we have an isomorphism between k-algebras

U(gk, e) ∼= T (gk, e)⊗k Zp(ak).

By the analysis at the beginning of step (2), we complete the proof.

With the above theorem, we can define a “reduced” quotient algebra of

U(gk, e), analogous to the reduced enveloping algebra of a restricted Lie (su-

per)algebra, by

Ũη(gk, e) := U(gk, e)⊗Zp(p̃k) kη.
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Lemma 3.6. For any given η ∈ χ+ (m⊥
k

)0̄, the above “reduced” quotient algebras

are isomorphic to the reduced W -superalgebras, i.e., Ũη(gk, e) ∼= Uη(gk, e).

Proof. The canonical projection Qχ,k � Qχ,k/JηQχ,k = Qηχ gives rise to an alge-

bra homomorphism ρη : Ũη(gk, e)→ (EndgkQ
η
χ)op = Uη(gk, e). As dim Ũη(gk, e) 6

pl2q
′

by Theorem 3.5(2), [37, Remark 3.9] yields that ρη is an algebra isomorphism.

We complete the proof.

§3.4. Transition for minimal-dimensional representations

First notice the following important fact:

Proposition 3.7. Assume that d1 is odd. Then the finite W -superalgebra U(g, e)

over C cannot afford a one-dimensional representation.

Proof. Recall that when d1 is odd, §2.2.2 shows that there is an element Θl+q+1 =

v r+1
2
⊗ 1χ ∈ U(g, e)1̄; then

Θ2
l+q+1(1χ) = v2

r+1
2

⊗ 1χ = 1
2 [v r+1

2
, v r+1

2
]⊗ 1χ = 1

2χ([v r+1
2
, v r+1

2
])⊗ 1χ = 1

2 ⊗ 1χ.

Thus Θ2
l+q+1 = 1

2 id.

For any U(g, e)-module M , let 0 6= v ∈M be a Z2-homogeneous element. We

claim that Θl+q+1.v 6= 0. If not, i.e., Θl+q+1.v = 0, then Θ2
l+q+1.v = 0. However, by

the preceding remark we have Θ2
l+q+1.v = 1

2v, a contradiction. Therefore, Θl+q+1.v

is a nonzero element in M , which obviously shares a different parity from that of v.

Thus the dimension of any U(g, e)-module (as a vector space) is at least two, and

the algebra U(g, e) cannot afford a one-dimensional representation in this case.

Remark 3.8. Recall that in §2.2.3 we obtained an algebra isomorphism

φ : (EndgQχ)op ∼= Qadm
χ ,

Θ 7→ Θ(1χ).

In the paper we will often identify U(g, e) = (EndgQχ)op with Qadm
χ as

C-algebras, which will cause no confusion. For any Z2-homogeneous elements

Θ1,Θ2 ∈ Qadm
χ , since φ(Θ1 ·Θ2) = φ(Θ1)φ(Θ2), we can identify Θ1 ·Θ2 in U(g, e)

with Θ1(1χ) ·Θ2(1χ) in Qadm
χ . When d1 is odd, the element Θl+q+1 in (EndgQχ)op

can be considered as the element v r+1
2
⊗ 1χ in Qadm

χ , and for any Z2-homogeneous

element v in a U(g, e)-module M , we have Θ2
l+q+1.v = 1

2v by Proposition 3.7.

Now we are in a position to talk about the transiting role of the transition

subalgebras for the minimal dimensions of modular representations of basic Lie

superalgebras.
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Proposition 3.9. Keep the above notation. If p � 0 for the field k = Fp, the

following hold.

(1) Assume that d1 is even. Then the following assertions are equivalent:

(1-i) The transition subalgebra T (gk, e) admits one-dimensional representa-

tions.

(1-ii) There exists η ∈ χ+ (m⊥
k

)0̄ such that Uη(gk) admits irreducible repre-

sentations of dimension p
d0
2 2

d1
2 .

(2) Assume that d1 is odd. Then the following assertions are equivalent:

(2-i) The transition subalgebra T (gk, e) admits two-dimensional representa-

tions.

(2-ii) There exists η ∈ χ+ (m⊥
k

)0̄ such that Uη(gk) admits irreducible repre-

sentations of dimension p
d0
2 2

d1+1
2 .

Proof. Let us first prove statement (2).

“(2-i) ⇒ (2-ii)”: Recall that there is a k-algebra isomorphism U(gk, e) ∼=
T (gk, e)⊗k Zp(ak) by Theorem 3.5(3). Thus assumption (2-i) implies that the k-

algebra U(gk, e) affords a two-dimensional representation too; we denote it by ν

with the representation space V .

Let v0̄ ∈ V0̄ be a nonzero even vector in V . The proof of Proposition 3.7

shows that Θl+q+1.v0̄ ∈ V1̄ is a nonzero odd vector, and we denote it by v1̄.

Then V is k-spanned by v0̄ and v1̄ as a vector space. For any x̄ ∈ (gk)0̄, since

x̄p−x̄[p] ∈ Zp(gk) is central in U(gk), we have [ρ(x̄p−x̄[p]),Θl+q+1] = 0. Therefore,

both kv0̄ and kv1̄ are one-dimensional representations of ρk(Zp), decided by the

same function on (gk)0̄. By Theorem 3.5, ρk(Zp)∩Ker ν is a maximal ideal of the

algebra ρk(Zp) ∼= Zp(p̃k) ∼= k[(χ+(m⊥
k

)0̄)(1)]. Then there exists η ∈ χ+(m⊥
k

)0̄ such

that ρk(x̄p − x̄[p] − η(x̄)p) ∈ Ker ν for all x̄ ∈ (gk)0̄. Our choice of η ensures that

the “reduced” quotient algebra Ũη(gk, e) affords a two-dimensional representation.

It follows from Lemma 3.6 and Theorem 2.3 that the k-algebra Uη(gk) has an

irreducible representation of dimension p
d0
2 2

d1+1
2 .

“(2-ii) ⇒ (2-i)”: Conversely, under assumption (2-ii) it follows from The-

orem 2.3 that the reduced W -superalgebra Uη(gk, e) admits a two-dimensional

representation, and so does the k-algebra Ũη(gk, e) by Lemma 3.6, the “reduced”

quotient of U(gk, e). Then the k-algebra U(gk, e) also affords a two-dimensional

representation. Since the transition subalgebra T (gk, e) is a subalgebra of U(gk, e)

by the definition, T (gk, e) also affords a two-dimensional representation.
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The same arguments also go through for the proof of statement (1), which

will be omitted here. We complete the proof.

§4. Conjectural one-dimensional representations for finite

W -superalgebras when d1 is even

In this and the next sections we proceed to investigate small representations

for the finite W -superalgebra U(gF, e) both over the field of complex numbers

F = C and over a field F = k of positive characteristic. We will find that the

parity of d1 plays a key role for the dimensions of the small representations of

U(gF, e), which is significantly different from the case of finite W -algebras. We will

present a plausible conjecture for such dimensions, and demonstrate the conjecture

with some examples. Based on these results, we will discuss the accessibility of the

lower bounds of dimensions predicted in the super Kac–Weisfeiler property [35,

Theorems 4.3 and 5.6] in §6. For simplicity we always assume that the characteristic

of the field k = Fp satisfies p� 0 unless otherwise specified.

For the ordinary finite W -algebra counterpart of the above issue, there are

some remarkable work and exciting progress (cf. [30]). However, when we turn to

the study of the finite W -superalgebra case, the tools available are very limited.

The issue of minimal dimensions for the representations of finite W -superalgebras

over C is in a position of being reasonably estimated, but not being solved, here.

§4.1. On the minimal-dimension conjecture when d1 is even

Recall that the parity of d1 plays a key role in the construction of finite W -

superalgebra U(g, e) in [37, Theorem 4.5]. Based on the different parities of d1, we

will consider each case separately. This section is devoted to the case when d1 is

even.

Conjecture 4.1. When d1 is even, the C-algebra U(g, e) affords a one-dimensional

representation.

Assuming that Conjecture 4.1 holds, we can assume that this one-dimensional

representation O := Cvo is generated by a nonzero vector vo. Now we will investi-

gate the consequences.

§4.2. The analogue of commutative quotients for finite

W -superalgebras in the even case

Recall that the C-algebra U(g, e) is generated by Z2-homogeneous elements

Θ1, . . . ,Θl ∈ U(g, e)0̄ and Θl+1, . . . ,Θl+q ∈ U(g, e)1̄ in [37, Theorem 4.5]. Let M

be any U(g, e)-module. For a given odd element u ∈ U(g, e)1̄ and a homogeneous
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vector m ∈ M , we know that m and u.m have different parity. As O is a one-

dimensional superspace, then Θi.vo = 0 for l + 1 6 i 6 l + q by consideration of

parity. Set Θi.vo = civo for 1 6 i 6 l with ci ∈ C. Recall [37, Theorem 4.7] shows

that the algebra U(g, e) is completely determined by the commuting relations of

Θ1, . . . ,Θl+q (see also §2.2.2). Based on the parity of these generators, we will

consider each case separately.

(i) For 1 6 i < j 6 l, the element [Θi,Θj ] is even since Θi,Θj ∈ U(g, e)0̄. It

is immediate from [Θi,Θj ].vo = (Θi ·Θj−Θj ·Θi).vo = (cicj−cjci).vo = 0 that the

polynomial superalgebra Fij(Θ1, . . . ,Θl+q) in l + q variables acts on O trivially.

When we put each polynomial Fij(Θ1, . . . ,Θl+q) as a C-linear combination of

Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq
l+q, deleting all the terms for which any of the odd elements

Θl+1, . . . ,Θl+q occurs, one can obtain an (ordinary) polynomial in l variables, and

denote it by F ′ij(Θ1, . . . ,Θl). Since Θi.vo = 0 for l+ 1 6 i 6 l+ q by the preceding

remark, then F ′ij(Θ1, . . . ,Θl).vo = 0 for 1 6 i < j 6 l.

(ii) For l + 1 6 i 6 j 6 l + q, the element [Θi,Θj ] is still even since Θi,Θj

are both odd. As Θi.vo = 0 for l + 1 6 i 6 l + q, we have [Θi,Θj ].vo = (Θi ·
Θj + Θj · Θi).vo = 0. By the same discussion as (i) we can also get polynomials

F ′ij(Θ1, . . . ,Θl) for l + 1 6 i 6 j 6 l + q, and the one-dimensional property of O

entails that F ′ij(Θ1, . . . ,Θl).vo = 0.

(iii) For 1 6 i 6 l < j 6 l+ q, the element [Θi,Θj ] is odd since Θi ∈ U(g, e)0̄

and Θj ∈ U(g, e)1̄. As Θi.vo = 0 for l + 1 6 i 6 l + q, we have [Θi,Θj ].vo =

(Θi ·Θj−Θj ·Θi).vo = 0, which entails that Fij(Θ1, . . . ,Θl+q) acts on O trivially. It

is immediate from [Θi,Θj ] = Fij(Θ1, . . . ,Θl+q) that all the Fij(Θ1, . . . ,Θl+q) are

odd elements in U(g, e). Therefore, when we put each polynomial Fij(Θ1, . . . ,Θl+q)

as a C-linear combination of monomials Θa1
1 · · ·Θ

al
l Θb1

l+1 · · ·Θ
bq
l+q, in each given

monomial some odd element Θk with l + 1 6 k 6 l + q will occur at least once.

Since Θk.vo = 0 for l + 1 6 k 6 l + q, the equations Fij(Θ1, . . . ,Θl+q).vo = 0 are

trivial for 1 6 i 6 l < j 6 l + q. In this case no new equations are obtained.

Keep in mind all the polynomials F ′ij(Θ1, . . . ,Θl) from the above arguments.

Actually, since the polynomials Fij(Θ1, . . . ,Θl+q) give rise to the defining relations

of U(g, e), from all the above one can conclude that the one-dimensional mod-

ules of U(g, e) are completely determined by the polynomials F ′ij(Θ1, . . . ,Θl). Set

U(g, e)ab to be the quotient algebra of U(g, e) by R, where R is the ideal of U(g, e)

generated by all the odd generators Θl+1, . . . ,Θl+q and all commutators [a, b]

with a, b ∈ U(g, e). Then U(g, e)ab is isomorphic to the algebra C[T1, . . . , Tl]/Λ,

where C[T1, . . . , Tl] is an (ordinary) polynomial algebra in l variables, and Λ is the

ideal of C[T1, . . . , Tl] generated by all the F ′ij(T1, . . . , Tl) for 1 6 i < j 6 l and
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l + 1 6 i 6 j 6 l + q. Such a commutative quotient in the Lie algebra case is

studied by Premet in [29], which leads to a lot of understanding on the small rep-

resentations of finite W -algebras. Now we exploit this machinery in the super case.

In fact, combining all the discussions above, Hilbert’s Nullstellensatz shows that

the maximal spectrum E := SpecmU(g, e)ab parameterizes the one-dimensional

representations of U(g, e). Denoting by E (C) the set of all common zeros of the

polynomials F ′ij [T1, . . . , Tl] for 1 6 i < j 6 l and l+ 1 6 i 6 j 6 l+ q in the affine

space AlC, we have

Lemma 4.2. When d1 is even, the Zariski closed set E (C) parameterizes the one-

dimensional representations of finite W -superalgebra U(g, e).

Note that for 1 6 i < j 6 l, or l + 1 6 i 6 j 6 l + q, all the coeffi-

cients of the Fij [T1, . . . , Tl] are over the admissible ring A. Thus all the coeffi-

cients of the F ′ij [T1, . . . , Tl] are also over A by the definition. Set pFij [T1, . . . , Tl] :=

F ′ij [T1, . . . , Tl] ⊗A k, the polynomials over k, and denote by E (k) the set of all

common zeros of the polynomials pFij
′[T1, . . . , Tl] in the affine space Al

k
with

1 6 i < j 6 l, or l + 1 6 i 6 j 6 l + q. Since the transition subalgebra T (gk, e)

over k is induced from the C-algebra U(g, e) by “modular p reduction”, Theo-

rem 3.2 and Lemma 4.2 show that the Zariski closed set E (k) parameterizes the

one-dimensional representations of the k-algebra T (gk, e). By the same arguments

as in [29, Theorem 2.2(a)], one can verify that

Lemma 4.3. Assume that d1 is even. If the finite W -superalgebra U(g, e) over

C affords one-dimensional representations, then the transition subalgebra T (gk, e)

over k = Fp also admits one-dimensional representations.

Now we can talk about the small representations for the reduced enveloping

algebra of a basic Lie superalgebra. The following result is an immediate conse-

quence of Proposition 3.9(1) and Lemma 4.3.

Lemma 4.4. When d1 is even, if the finite W -superalgebra U(g, e) over C affords

a one-dimensional representation, then for p� 0 there exists η ∈ χ+ (m⊥
k

)0̄ such

that the reduced enveloping algebra Uη(gk) admits irreducible representations of

dimension p
d0
2 2

d1
2 .

§4.3. Confirmation of Conjecture 4.1 for gl(M |N) and sl(M |N)

In [35] Wang–Zhao gave some explicit description for the Dynkin gradings of

basic Lie superalgebras of all types. In particular, they showed that dim gl(M |N)e1̄
is always an even number for any nilpotent element e ∈ gl(M |N)0̄ (cf. [35, §3.2]). As

the dimension of gl(M |N)1̄ is also even, then d1 = dim gl(M |N)1̄−dim gl(M |N)e1̄ is
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always an even number. It is notable that although Wang–Zhao’s origin arguments

are carried over the field k in positive characteristic (see Table 1 in §2.1.1), as

shown in [35, Remark 3.2], all the discussions there are still valid for the case

of complex numbers. Actually, in order to confirm Conjecture 4.1 for the complex

finite W -superalgebra associated with gl(M |N) and sl(M |N), we will first consider

the transition subalgebra T (gk, e) in positive characteristic.

Lemma 4.5. Let gk be a Lie superalgebra of type gl(M |N) or sl(M |N) with

M,N ∈ Z+. For any nilpotent element e ∈ (gk)0̄, the k-algebra T (gk, e) affords a

one-dimensional representation.

Proof. For the Lie superalgebra gk = gl(M |N) or sl(M |N), in [38] the authors

showed that the reduced enveloping algebra Uχ(gk) admits an irreducible repre-

sentation of dimension p
d0
2 2

d1
2 over k = Fp under the assumption that (i) p > 2

when g = gl(M |N); (ii) p > 2 and p - (M − N) when g = sl(M |N). Since d1 is

even in this case, we have dimm = (d0

2 ,
d1

2 ) by §2.2.1. Hence Proposition 3.9(1)

yields that the k-algebra T (gk, e) admits a one-dimensional representation.

The following result is an immediate consequence of field theory.

Lemma 4.6. Let g be a basic Lie superalgebra over C. When d1 is even, if the

transition subalgebra T (gk, e) with k = Fp affords one-dimensional representations

for infinitely many p ∈ Π(A), then the finite W -superalgebra U(g, e) over C has a

one-dimensional representation.

Proof. Recall Lemma 4.2, and what follows show that the one-dimensional rep-

resentations of finite W -superalgebra U(g, e) over C can be parameterized by the

Zariski closed set E (C), and the transition subalgebra T (gk, e) by E (k). The lemma

follows by the same means as in the Lie algebra case [29, Corollary 2.1], using

knowledge of Galois theory, and thus will be omitted here.

Now we are in a position to introduce the main result of this subsection.

Proposition 4.7. Let g = gl(M |N) or sl(M |N) (M,N ∈ Z+) over C. For

any nilpotent element e ∈ g0̄, the finite W -superalgebra U(g, e) affords a one-

dimensional representation.

Proof. The proposition readily follows from Lemmas 4.5 and 4.6.

§5. Conjectural two-dimensional representations for finite

W -superalgebras when d1 is odd

In this section we will always assume that d1 is odd.
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§5.1. On the minimal-dimension conjecture when d1 is odd

By virtue of Proposition 3.7, we can formulate the following conjecture on the

minimal-dimensional representations of U(g, e) when d1 is odd.

Conjecture 5.1. When d1 is odd, the finite W -superalgebra U(g, e) over C af-

fords a two-dimensional representation of minimal dimension.

In this section, we mainly investigate such two-dimensional modules under

the assumption that the above conjecture holds, and also confirm the conjecture

for the regular nilpotent elements of g = osp(1|2n). Take such a module as in

Conjecture 5.1 and denote it by V . Recall that in [37, §4.4] we introduced the

refined finite W -superalgebra W ′χ := Qadm′

χ over C, a proper subalgebra of U(g, e).

By virtue of this algebra, we can formulate a more precise description for the two-

dimensional representation V of the C-algebra U(g, e).

Proposition 5.2. Any irreducible U(g, e)-module in Conjecture 5.1 is a W ′χ-mod-

ule associated with an odd module automorphism.

Proof. Let V be a two-dimensional representation of the C-algebra U(g, e) in Con-

jecture 5.1. Define the C-mapping

τ : V → V,

v 7→
√

2Θl+q+1.v.

It is easy to verify that the mapping τ is odd and surjective. In fact, τ is also

injective since τ2(v) = 2Θ2
l+q+1.v = v. We claim that τ is a homomorphism of the

W ′χ-module V .

For any Z2-homogeneous elements Θ ∈ W ′χ and v ∈ V , we have τ(Θ.v) =√
2Θl+q+1.Θ.v by definition. Since Θl+q+1 ∈ m′ and Θ ∈ Qadm′

χ , then [Θl+q+1,Θ]

= 0. Moreover, [Θl+q+1,Θ] = Θl+q+1 · Θ − (−1)|Θ|Θ · Θl+q+1. It is immediate

that Θl+q+1 ·Θ = (−1)|Θ|Θ ·Θl+q+1; then Θl+q+1.Θ.v = (−1)|Θ|Θ.Θl+q+1.v, i.e.,

τ(Θ.v) = (−1)|Θ|Θ.τ(v). We complete the proof.

§5.2. The analogue of commutative quotients for finite

W -superalgebras in the odd case

Recall that in [37, Theorem 4.7] we chose the Z2-homogeneous elements

Θ1, . . . ,Θl+q+1 as a set of generators for the C-algebra U(g, e) subject to the

relations

[Θi,Θj ] = Fij(Θ1, . . . ,Θl+q+1), 1 6 i, j 6 l + q + 1.

To simplify notation, we will denote Fij(Θ1, . . . ,Θl+q+1) by Fij for short.
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If the C-algebra U(g, e) affords a two-dimensional representation V , Proposi-

tion 5.2 yields that V is C-spanned by an even element v ∈ V0̄ and the odd element

Θl+q+1.v ∈ V1̄. Hence we can get 4(l + q + 1) variables k0
i , k

1
i ,K

0
i ,K

1
i ∈ C such

that

Θi.v = k0
i v + k1

iΘl+q+1.v, Θi.Θl+q+1.v = K0
i v +K1

i Θl+q+1.v, (5.1)

where 1 6 i 6 l + q + 1.

Similarly, there exist 4(l + q + 1)2 variables (Fij)
0
0̄, (Fij)

0
1̄, (Fij)

1
0̄, (Fij)

1
1̄ ∈ C

with 1 6 i, j 6 l + q + 1 such that

Fij .v = (Fij)
0
0̄v + (Fij)

0
1̄Θl+q+1.v,

Fij .Θl+q+1.v = (Fij)
1
0̄v + (Fij)

1
1̄Θl+q+1.v.

(5.2)

It is worth noting that each polynomial Fij is generated by the Z2-homoge-

neous elements Θ1, . . . ,Θl+q+1 of U(g, e) over Q. After enlarging the admissible

ring A possibly, one can further assume that the Fij for 1 6 i, j 6 l + q + 1

are defined over A. Since the actions of Fij on v and Θl+q+1.v are completely

determined by the constants in (5.1), then (Fij)
0
0̄, (Fij)

0
1̄, (Fij)

1
0̄, (Fij)

1
1̄ can be

written as an A-linear combination of the monomials in k0
i , k1

i , K0
i , K1

i ; thus there

are no new variables appearing in (5.2).

Since each Θi is Z2-homogeneous for 1 6 i 6 l+q+1, it follows that 2(l+q+1)

variables in (5.1) equal zero. More precisely, k1
i = K0

i = 0 for 1 6 i 6 l (in this

case all the Θi are even) and k0
i = K1

i = 0 for l+ 1 6 i 6 l+ q+ 1 (in this case all

the Θi are odd). By the definition it is obvious that all the Fij are Z2-graded and

have the same parity as [Θi,Θj ] for 1 6 i, j 6 l + q + 1. Therefore, 2(l + q + 1)2

variables equal zero in (5.2). More precisely, (Fij)
0
1̄ = (Fij)

1
0̄ = 0 if Fij is even, and

(Fij)
0
0̄ = (Fij)

1
1̄ = 0 if Fij is odd.

By virtue of (5.1), a simple calculation shows that

Θi.Θj .v = (k0
i k

0
j +K0

i k
1
j )v + (k1

i k
0
j +K1

i k
1
j )Θl+q+1.v,

Θi.Θj .Θl+q+1.v = (k0
iK

0
j +K0

iK
1
j )v + (k1

iK
0
j +K1

iK
1
j )Θl+q+1.v

(5.3)

for 1 6 i, j 6 l + q + 1.

Recall that the structure of a C-algebra U(g, e) is completely determined by

a data of generators and defining relations (cf. [37, Theorem 4.7]). Hence, V is

completely decided by the following equalities:

(Θi.Θj − (−1)|Θi||Θj |ΘjΘi − Fij).v = 0,

(Θi.Θj − (−1)|Θi||Θj |ΘjΘi − Fij).Θl+q+1.v = 0
(5.4)

for 1 6 i, j 6 l+ q+ 1. Simple calculation based on (5.3) and (5.4) shows that the

variables k0
i , k1

i , K0
i , K1

i and (Fij)
0
0̄, (Fij)

0
1̄, (Fij)

1
0̄, (Fij)

1
1̄ for 1 6 i, j 6 l + q + 1
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should satisfy the following system of linear equations:

(k0
i k

0
j +K0

i k
1
j )− (−1)|Θi||Θj |(k0

i k
0
j + k1

iK
0
j )− (Fij)

0
0̄ = 0,

(k1
i k

0
j +K1

i k
1
j )− (−1)|Θi||Θj |(k0

i k
1
j + k1

iK
1
j )− (Fij)

0
1̄ = 0,

(k0
iK

0
j +K0

iK
1
j )− (−1)|Θi||Θj |(K0

i k
0
j +K1

iK
0
j )− (Fij)

1
0̄ = 0,

(k1
iK

0
j +K1

iK
1
j )− (−1)|Θi||Θj |(K0

i k
1
j +K1

iK
1
j )− (Fij)

1
1̄ = 0.

It is notable that 4(l+ q+ 1) variables are involved in above equations (recall

that the Fij (1 6 i, j 6 l+ q+ 1) can be written as an A-linear combination of the

monomials in k0
i , k1

i , K0
i , K1

i with 1 6 i 6 l + q + 1), and the remark preceding

(5.3) shows that 2(l + q + 1) variables equal zero. Set

C[X0
1 , X

0
2 , . . . , X

0
l , X

1
l+1, . . . , X

1
l+q+1, Y

1
1 , Y

1
2 , . . . , Y

1
l , Y

0
l+1, . . . , Y

0
l+q+1]

to be an (ordinary) polynomial algebra in 2(l + q + 1) variables over C. For 1 6
i 6 l + q + 1, substitute the constants k0

i , k1
i , K0

i , K1
i for the variables X0

i , X1
i ,

Y 0
i , Y 1

i respectively, and define the polynomials

Aij := (X0
iX

0
j +X1

j Y
0
i )− (−1)|Θi||Θj |(X0

iX
0
j +X1

i Y
0
j )− S0

ij ,

Bij := (X1
iX

0
j +X1

j Y
1
i )− (−1)|Θi||Θj |(X0

iX
1
j +X1

i Y
1
j )− S1

ij ,

Cij := (X0
i Y

0
j + Y 0

i Y
1
j )− (−1)|Θi||Θj |(X0

j Y
0
i + Y 1

i Y
0
j )− T 0

ij ,

Dij := (X1
i Y

0
j + Y 1

i Y
1
j )− (−1)|Θi||Θj |(X1

j Y
0
i + Y 1

i Y
1
j )− T 1

ij ,

for 1 6 i, j 6 l + q + 1, where S0
ij , S

1
ij , T

0
ij , T

1
ij stand for the polynomials over A

obtained by substituting the variables k0
i , k1

i , K0
i , K1

i into the polynomials (Fij)
0
0̄,

(Fij)
0
1̄, (Fij)

1
0̄, (Fij)

1
1̄ for the indeterminate X0

i , X1
i , Y 0

i , Y 1
i , respectively. By the

preceding remark, for the terms in Aij , Bij , Cij , Dij with 1 6 i, j 6 l + q + 1, we

have

(1) X1
i = Y 0

i = 0 for 1 6 i 6 l (in this case the Θi are even);

(2) X0
i = Y 1

i = 0 for l + 1 6 i 6 l + q + 1 (in this case the Θi are odd);

(3) S1
ij = T 0

ij = 0 when 1 6 i, j 6 l, or l+ 1 6 i, j 6 l+ q + 1 (in this case the Fij
are even);

(4) S0
ij = T 1

ij = 0 when 1 6 i 6 l < j 6 l + q + 1, or 1 6 j 6 l < i 6 l + q + 1 (in

this case the Fij are odd).

It follows from (5.3), (5.4), and [37, Theorem 4.7] that there is a 1–1 corre-

spondence between the two-dimensional representations of C-algebra U(g, e) and

the points of all common zeros of the polynomials Aij , Bij , Cij , Dij in 2(l+ q+ 1)

variables for 1 6 i, j 6 l + q + 1 subject to conditions (1)–(4).
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Given a subfield K of C containing A we denote by E (K) the set of all common

zeros of the polynomials Aij , Bij , Cij , Dij for 1 6 i, j 6 l + q + 1 in the affine

space A2(l+q+1)
K subject to conditions (1)–(4). Clearly, the A-defined Zariski closed

set E (C) parameterizes the two-dimensional representations of C-algebra U(g, e).

More precisely,

Lemma 5.3. Assume that d1 is odd. Then the two-dimensional representations of

C-algebra U(g, e) are uniquely determined by all common zeros of the polynomials

Aij , Bij , Cij , Dij (1 6 i, j 6 l + q + 1) subject to conditions (1)–(4) in the affine

space A2(l+q+1)
C .

Similarly, let E (k) be the set of common zeros of the polynomials pAij ,
pBij ,

pCij ,
pDij subject to the “modular p” version of the conditions (1)–(4) in the affine

space A2(l+q+1)
k

with 1 6 i, j 6 l+ q+ 1, where pAij ,
pBij ,

pCij ,
pDij stand for the

polynomials over k obtained from Aij , Bij , Cij , Dij by “modular p reduction”,

i.e.,

k[X0
1 , X

0
2 , . . . , X

0
l , X

1
l+1, . . . , X

1
l+q+1, Y

1
1 , Y

1
2 , . . . , Y

1
l , Y

0
l+1, . . . , Y

0
l+q+1]

= A[X0
1 , X

0
2 , . . . , X

0
l , X

1
l+1, . . . , X

1
l+q+1, Y

1
1 , Y

1
2 , . . . , Y

1
l , Y

0
l+1, . . . , Y

0
l+q+1]⊗A k.

It follows from Theorem 3.2 that the Zariski closed set E (k) parameterizes the

two-dimensional representations of the k-algebra T (gk, e).

Following Premet’s treatment of the Lie algebra case in [29, Theorem 2.2(a)],

we have

Lemma 5.4. When d1 is odd, if the C-algebra U(g, e) affords two-dimensional rep-

resentations, then the transition subalgebra T (gk, e) also admits two-dimensional

representations.

Proof. Taking Lemma 5.3 into account, we can prove the lemma by the same

discussion as in Lemma 4.3. The detailed arguments are omitted here.

As a corollary of the above lemma and Proposition 3.9(2), we have

Lemma 5.5. When d1 is odd, if the finite W -superalgebra U(g, e) over C affords

a two-dimensional representation, then for p � 0 there exists η ∈ χ + (m⊥
k

)0̄

associated with which the reduced enveloping algebra Uη(gk) admits irreducible

representations of dimension p
d0
2 2

d1+1
2 .

§5.3. Confirmation of Conjecture 5.1 for g = osp(1|2n) with regular

nilpotent elements

We first need the following observation:
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Lemma 5.6. Let gk = osp(1|2n) be a basic Lie superalgebra over k. For any

regular nilpotent element e ∈ (gk)0̄, the transition subalgebra T (gk, e) affords a

two-dimensional representation.

Proof. First note that d1 is odd in this case (cf. [25, Corollary 2.10]). Let gk =

n+
k
⊕ hk ⊕ n−

k
denote the canonical triangular decomposition of Lie superalgebra

osp(1|2n). It follows from [35, Corollary 5.8] that

dim n−
k

= dimm′
k

= (dim(mk)0̄,dim(mk)1̄ + 1).

Moreover, the baby Verma module Zχ(λ) of reduced enveloping algebra Uχ(gk)

associated with the regular p-character χ is irreducible (cf. [35, Corollary 5.8]),

and has the same dimension as the vector space Uχ(m′
k
). Theorem 2.3 shows that

Zχ(λ)mk is a Uχ(gk, e)-module, and there is an isomorphism of Uχ(mk)-modules

Zχ(λ) ∼= Uχ(mk)∗ ⊗k Zχ(λ)mk by the proof of [35, Proposition 4.2]. Then we have

dimZχ(λ)mk =
dimZχ(λ)

dimUχ(mk)
=

dimUχ(m′
k
)

dimUχ(mk)
= 2.

Therefore, the algebra Uχ(gk, e) admits a two-dimensional representation. By the

same discussion as the proof of Proposition 3.9(2), one can conclude that the

transition subalgebra T (gk, e) also affords a two-dimensional representation.

Recall that Lemma 5.3 shows that the two-dimensional representations of

finite W -superalgebras over C can be parameterized by the Zariski closed set E (C)

for the case when d1 is odd. By the same consideration as in Lemma 4.6, one can

also obtain

Lemma 5.7. Let g be a basic Lie superalgebra over C. When d1 is odd, if the

transition subalgebra T (gk, e) affords two-dimensional representations for infinitely

many p ∈ Π(A), then the finite W -superalgebra U(g, e) over C has a two-dimen-

sional representation.

Now we are in a position to introduce the main result of this subsection.

Proposition 5.8. Let e ∈ g0̄ be a regular nilpotent element in the Lie super-

algebra g = osp(1|2n) over C; then the finite W -superalgebra U(g, e) affords a

two-dimensional representation.

Proof. The proposition readily follows from Lemmas 5.6 and 5.7.
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§6. The realization of minimal-dimensional representations for

reduced enveloping algebra Uξ(gk)

§6.1. Introduction

This section is devoted to the accessibility of dimensional lower bounds for the

irreducible representations of Uξ(gk) predicted by Wang–Zhao in [35, Theorem 5.6]

as below:

Proposition 6.1 ([35]). Let gk be a basic Lie superalgebra over k = Fp, assuming

that the prime p satisfies the restriction imposed in §2.1 (Table 1). Let ξ be an

arbitrary p-character in (gk)∗0̄. Then the dimension of every Uξ(gk)-module M is

divisible by p
d0
2 2b

d1
2 c.

Therefore, the number p
d0
2 2b

d1
2 c becomes a lower bound of dimensions for the

irreducible modules of the k-algebra Uξ(gk). A natural question is the accessibil-

ity of this number, i.e., whether there is any irreducible module of Uξ(gk) with

dimension equaling such a lower bound.

For the Lie superalgebra gk of type gl(M |N) or sl(M |N) with M,N ∈ Z+, in

[38] the authors showed that every reduced enveloping algebra Uξ(gk) has a “small”

representation of dimension equaling the lower bound. The method applied there

is to construct an appropriate parabolic subalgebra that has a one-dimensional

module, then induce it to an irreducible representation of gk. However, this method

cannot be easily exploited in the general case. Thus the general attainableness of

such lower bounds of dimensions in Proposition 6.1 is an open problem.

Now we first formulate Conjecture 1.3, summarizing the previous two sections:

Conjecture 1.3. Let g be a basic Lie superalgebra over C.

(1) When d1 is even, the finite W -superalgebra U(g, e) affords a one-dimensional

representation.

(2) When d1 is odd, the finite W -superalgebra U(g, e) affords a two-dimensional

representation.

By virtue of Conjecture 1.3, we will prove that the lower bounds of dimensions

in Proposition 6.1 are accessible for p� 0 in this section. In the first part, we will

deal with the case for nilpotent p-character χ ∈ (gk)∗0̄, mainly following Premet’s

treatment for the Lie algebra case in [29, §2.8], with a few modifications. One can

observe that the emergence of the odd part in the Lie superalgebra gk makes the

situation much more complicated. In the second part, we will deal with the case

for arbitrary p-character ξ ∈ (gk)∗0̄, which may be not nilpotent. A lot of precise
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analysis on the modular representations of basic Lie superalgebras has to be done

for the second case.

§6.2. On the dimensional lower bounds for the representations of

basic Lie superalgebras with nilpotent p-characters

6.2.1.. Recall that in Lemmas 4.4 and 5.5 we discussed the representations of

minimal dimensions for the reduced enveloping algebra Uη(gk) associated with

some p-character η ∈ χ+ (m⊥
k

)0̄ based on the parity of d1. It is notable that the p-

character η can be guaranteed only in χ + (m⊥
k

)0̄, with no further information

apparently contributing to Uχ(gk). Owing to Premet’s treatment of finite W -

algebras in [29, Theorem 2.2], one can translate the dimensional lower bounds

for Uη(gk) to those for Uχ(gk) (see Lemma 6.2). Taking such an approach, we will

finally get at the result desired in Theorem 1.6.

Lemma 6.2. Let gk be a basic Lie superalgebra over k. If the k-algebra Uη(gk)

affords a representation of dimension p
d0
2 2b

d1
2 c for some η ∈ χ + (m⊥

k
)0̄, then

Uχ(gk) also admits a representation of dimension p
d0
2 2b

d1
2 c.

Proof. First note that (1) bd1

2 c = d1

2 when d1 is even; and (2) bd1

2 c = d1+1
2

when d1 is odd. Since the proof is similar for both cases, we will consider only the

situation when d1 is odd.

Let (Gk)ev be the reductive algebraic group associated with the even part

(gk)0̄ of the Lie superalgebra gk. For any ξ ∈ (gk)∗0̄, it is well known that the

construction of the k-algebra Uξ(gk) depends only on the orbit of ξ under the

coadjoint action of (Gk)ev up to an isomorphism. Therefore, if ξ′ := (Ad∗g)(ξ) for

some g ∈ (Gk)ev, then Uξ(gk) ∼= Uξ′(gk) as k-algebras.

Let Ξ denote the set of all ξ ∈ (gk)∗0̄ for which the algebra Uξ(gk) contains a

two-sided ideal of codimension pd02d1+1. It follows from [39, Lemma 2.2] that the

set Ξ is Zariski closed in (gk)∗0̄. Moreover, the preceding remark shows that the set

Ξ is stable under the coadjoint action of (Gk)ev.

(i) We claim that t̄ · ξ ∈ Ξ for all t̄ ∈ k×(= k\{0}).

For any ξ ∈ (gk)∗0̄, we can regard ξ ∈ g∗
k

by letting ξ((gk)1̄) = 0. Now let

ξ = (x̄, ·) for some x̄ ∈ (gk)0̄. Let x̄ = s̄+n̄ be the Jordan–Chevalley decomposition

of x̄ in the restricted Lie algebra (gk)0̄ and put ξs̄ := (s̄, ·), ξn̄ := (n̄, ·). Take a

Cartan subalgebra hk of gk that contains s̄, and let gs̄
k

denote the centralizer of s̄

in gk. Let Φ be a root system of gk relative to hk. Then gs̄
k

:= lk = (lk)0̄ + (lk)1̄

also has a root space decomposition lk = hk ⊕
⊕

α∈Φ(lk)(gk)α with Φ(lk) := {α ∈
Φ | α(s̄) = 0}. From [35, Proposition 5.1] we know that there exists a system ∆

of simple roots of gk such that ∆ ∩ Φ(lk) is a system of simple roots for Φ(lk).
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In particular, lk is always a direct sum of basic Lie superalgebras (note that a

toral subalgebra of gk may also appear in the summand). Let bk = hk⊕ nk be the

Borel subalgebra associated with ∆. Then we can define a parabolic subalgebra

pk = lk+bk = lk⊕uk, where uk denotes the nilradical of pk. Recall [35, §5.1] shows

that ξ(uk) = 0, and ξ|lk = ξn|lk is nilpotent. It is notable that all subalgebras here

are naturally restricted subalgebras of gk.

Since x̄ = s̄ + n̄ is the Jordan–Chevalley decomposition of x̄, it follows that

t̄x̄ = t̄s̄ + t̄n̄ is the Jordan–Chevalley decomposition of t̄x̄ for t̄ ∈ k×. Obviously,

we have gt̄s̄
k

= lk.

It follows from [35, Theorem 5.3] that every irreducible Uξ(gk)-module is

Uξ(uk)-projective. Since uk is nilpotent in gk and ξ|uk = 0, it follows from [35,

Proposition 2.6] that the k-algebra Uξ(uk) is local with trivial module as the

unique irreducible module. Then every irreducible Uξ(gk)-module is Uξ(uk)-free,

and the unique maximal ideal Nuk of Uξ(uk) is generated by the image of uk in

Uξ(uk). We put 1̄ξ = 1 + Nuk , the image of 1 in kξ := Uξ(uk)/Nuk . Consider the

k-algebra Uξ(pk), which contains Uξ(uk) as a subalgebra. Set Q0
pk

to be a Uξ(pk)-

module with the ground space Uξ(pk)/Uξ(pk)Nuk , then Q0
pk

= Uξ(pk) · 1̄ξ. For any

q̄ ∈ Q0
pk

there is ū ∈ Uξ(pk) such that q̄ = ū · 1̄ξ. Since [pk, Nuk ] ⊆ Nuk , it follows

from the Jacobi identity that [n̄, ū] ∈ Uξ(pk)Nuk for any n̄ ∈ Nuk . Then

n̄ · q̄ = ([n̄, q̄] + (−1)|n̄||q̄|q̄ · n̄) · 1̄ξ ⊆ Uξ(pk)Nuk

for any Z2-homogeneous elements n̄ ∈ Nuk and q̄ ∈ Q0
uk

. Thus we have the following

algebra isomorphism:

Uξ(pk)/Uξ(pk)Nuk
∼= Uξ(pk/uk).

Define

Q̃ξξ := Uξ(gk)/Uξ(gk)Nuk ,

which is clearly endowed with left Uξ(gk)-module structure. The algebra inclusion

Uξ(uk) ⊆ Uξ(gk) (resp. Uξ(pk) ⊆ Uξ(gk)) gives rise to the canonical embedding

of spaces kξ = k · 1̄ξ ↪→ Q̃ξξ (resp. Q0
pk
↪→ Q̃ξξ). Those embeddings clearly satisfy

the property that for any q̄ ∈ Q0
uk

there is a unique hq̄ ∈ EndgkQ̃
ξ
ξ such that

hq̄(1̄ξ) = q̄. Put

d′0 := 2 dim(uk)0̄ = dim(gk)0̄ − dim(lk)0̄,

d′1 := 2 dim(uk)1̄ = dim(gk)1̄ − dim(lk)1̄.

Since every irreducible Uξ(gk)-module is Uξ(uk)-free, by the same discussion as in

[35, Theorem 4.4] we can obtain a k-algebra isomorphism:

Uξ(gk) ∼= Mat
p
d′0
2 2

d′1
2

((EndgkQ̃
ξ
ξ)

op). (6.1)
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Therefore,

dim(EndgkQ̃
ξ
ξ) = pdim(gk)0̄−d′02dim(gk)1̄−d′1 = pdim(lk)0̄2dim(lk)1̄ .

Since

dimUξ(pk/uk) = pdim(pk)0̄−dim(uk)0̄2dim(pk)1̄−dim(uk)1̄ = pdim(lk)0̄2dim(lk)1̄ ,

it follows that EndgkQ̃
ξ
ξ = {hq̄ | q̄ ∈ Q0

uk
}. Define the mapping

τ : EndgkQ̃
ξ
ξ → Uξ(pk/uk)op,

θ 7→ θ(1̄ξ).

It is obvious that τ is a homomorphism of k-algebras. As both k-algebras have

the same dimension (as vector spaces), one can deduce that τ is an isomorphism.

Taking the opposite algebras for both sides, we have an algebra isomorphism

(EndgkQ̃
ξ
ξ)

op ∼= Uξ(pk/uk) ∼= Uξ(lk). (6.2)

For the p-character t̄ξ, repeating the same arguments as above for ξ, we can

obtain that

(EndgkQ̃
t̄ξ
t̄ξ)

op ∼= Ut̄ξ(lk). (6.3)

And also we have an algebra isomorphism

Ut̄ξ(gk) ∼= Mat
p
d′0
2 2

d′1
2

((EndgkQ̃
t̄ξ
t̄ξ)

op). (6.4)

Recall that lk is a direct sum of basic Lie superalgebras. Set lk = (gk)1⊕· · ·⊕
(gk)r ⊕ t′

k
, where (gk)i is a basic Lie superalgebra for 1 6 i 6 r, and t′

k
is a toral

subalgebra of gk. For each 1 6 i 6 r, let (Gk)i denote the algebraic supergroup

associated with (gk)i. It is well known that the even part of (Gk)i (1 6 i 6 r) is

a reductive algebraic group, and we denote it by ((Gk)i)ev. Since ξ|lk = ξn|lk is

nilpotent, it follows from [11, Lemma 2.10] that k× ·ξ|(gk)i ⊆ (Ad∗((Gk)i)ev)ξ|(gk)i .

For each 1 6 i 6 r, since the reduced enveloping algebra Uξ|(g
k
)i

((gk)i) de-

pends only on the orbit of ξ|(gk)i under the coadjoint action of ((Gk)i)ev, then

Uξ|(g
k
)i

((gk)i) ∼= Ut̄ξ|(g
k
)i

((gk)i) as k-algebras. With i being arbitrary, we have⊗r
i=1 Uξ|(g

k
)i

((gk)i) ∼=
⊗r

i=1 Ut̄ξ|(g
k
)i

((gk)i). As t′
k

is a toral subalgebra of gk,

the reduced enveloping algebra Uψ(t′
k
) is commutative and semisimple for every

ψ ∈ (t′
k
)∗ .(Indeed, t′

k
has a k-basis t1, . . . , td with t

[p]
i = ti for 1 6 i 6 d.

Therefore, Uψ(t′
k
) ∼= A1 ⊗ · · · ⊗ Ad where Ai ∼= k[X]/(Xp − X − ψ(ti)

p) is

a p-dimensional commutative semisimple k-algebra.) From this it is immediate

that Uξ|t′
k

(t′
k
) ∼= Ut̄ξ|t′

k

(t′
k
) as k-algebras. Since lk =

⊕r
i=1(gk)i ⊕ t′

k
, we have

Uξ(
⊕r

i=1(gk)i ⊕ t′
k
) ∼=

⊗r
i=1 Uξ|(g

k
)i

((gk)i)⊗ Uξ|t′
k

(t′
k
) and Ut̄ξ(

⊕r
i=1(gk)i ⊕ t′

k
) ∼=
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⊗r
i=1 Ut̄ξ|(g

k
)i

((gk)i)⊗Ut̄ξ|t′
k

(t′
k
). Therefore, Uξ(lk) ∼= Ut̄ξ(lk) as k-algebras. It fol-

lows from (6.1)–(6.4) that there is a k-algebras isomorphism

Uξ(gk) ∼= Ut̄ξ(gk) (6.5)

for all t̄ ∈ k×. Now claim (i) is an immediate consequence of (6.5), i.e., if ξ ∈ Ξ,

then t̄ · ξ ∈ Ξ for all t̄ ∈ k
×. Moreover, combining with the arguments prior to

paragraph (i), we know that the affine variety Ξ is conical.

(ii) We claim that χ ∈ Ξ.

Recall that the assumptions of the lemma shows that Uη(gk) has an irreducible

module of dimension p
d0
2 2

d1+1
2 , thus η ∈ Ξ. As η ∈ χ + (m⊥

k
)0̄, we can write

η = (e+ ȳ, ·) for some ȳ =
∑
i61 ȳi with ȳi ∈ gk(i)0̄, i 6 1. There is a cocharacter

λ : k× −→ (Gk)ev such that (Adλ(t̄))x̄ = t̄j x̄ for all x̄ ∈ gk(j) (j ∈ Z) and t̄ ∈ k×.

For i 6 1, set ηi = (ȳi, ·); then η = χ+
∑
i61 ηi. For any even element ȳ′ ∈ gk(j)0̄,

by the coadjoint action of λ(t̄) on (gk)∗0̄ one has

(Ad∗(λ(t̄))(η))(ȳ′) = η(Adλ(t̄)−1ȳ′)

= t̄−j
(
e+

∑
i61

ȳi, ȳ
′
)

=

{
t̄2(e, ȳ′) (j = −2),

t̄−j
∑
i61 δi,−j(ȳi, ȳ

′) (j 6= −2).

Note that (t̄2χ+
∑
i61 t̄

iηi)(ȳ
′)=t̄2(e, ȳ′)+

∑
i61 t̄

i(ȳi, ȳ
′). Then we have (Ad∗λ(t̄))η

= t̄2χ +
∑
i61 t̄

iηi, and (Ad∗λ(t̄))−1η = t̄−2χ +
∑
i61 t̄

−iηi. As Ξ is conical and

Ad∗(Gk)ev-invariant by step (i), this implies

t̄2 · (Ad∗λ(t̄))−1η = χ+
∑
i61

t̄2−i(ȳi, ȳ
′) ∈ Ξ

for all t̄ ∈ k×. Since Ξ is Zariski closed, this yields χ ∈ Ξ. Then claim (ii) is proved.

From all above we know that Uχ(gk) admits a two-sided ideal I of codimen-

sion pd02d1+1, and all irreducible modules of the factor algebra Uχ(gk)/I have

dimensions 6 p
d0
2 2

d1+1
2 . Combining with Proposition 6.1, one can conclude that

the k-algebra Uχ(gk) really has an irreducible module of dimension p
d0
2 2

d1+1
2 . We

complete the proof.

6.2.2. Proof of Theorem 1.6. Let g be a basic Lie superalgebra over C and

gk be the corresponding Lie superalgebra over positive characteristic field k. Let
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χ ∈ (gk)∗0̄ be a nilpotent p-character of gk such that χ(ȳ) = (e, ȳ) for any ȳ ∈ gk.

Under the assumption that the finite W -superalgebra U(g, e) over C affords a one-

dimensional (resp. two-dimensional) representation when d1 is even (resp. odd),

we want to prove that the reduced enveloping algebra Uχ(gk) with nilpotent p-

character χ possesses an irreducible module whose dimension is exactly the lower

bound predicted by the super Kac–Weisfeiler property in Proposition 6.1. For the

case of d1 being even, the conclusion follows from Lemma 4.4 and Lemma 6.2. The

odd case can be done by Lemma 5.5 and Lemma 6.2. Then Theorem 1.6 follows.

We complete the proof.

As a corollary of Theorem 1.6, we have the following consequence on the

“small representations” of reduced W -superalgebra Uχ(gk, e).

Corollary 6.3. Let g be a basic Lie superalgebra. When d1 is even (resp. odd),

if the finite W -superalgebra U(g, e) over C affords a one-dimensional (resp. two-

dimensional) representation, then for p� 0, the reduced W -superalgebra Uχ(gk, e)

over k = Fp also admits a one-dimensional (resp. two-dimensional) representation.

Proof. For any Uχ(gk)-module M , it follows from Theorem 2.3 that Mmk is a

Uχ(gk, e)-module. For the case η = χ, (2.5) shows that

dimMmk =
dimM

dimUχ(mk)
=

dimM

p
d0
2 2d

d1
2 e
.

Then the desired result follows from Theorem 1.6.

§6.3. The case of a direct sum of basic Lie superalgebras with

nilpotent p-characters

In this section we will consider the lower bounds of the super Kac–Weisfeiler

property for a direct sum of basic Lie superalgebras with nilpotent p-characters.

6.3.1.. First we make digression to recall some known facts about finite-dimen-

sional superalgebras [14, §12].

Let F be an algebraically closed field. Now we will recall some basics on simple

superalgebras over F (cf. [14, §12.1]). Let V be a superspace with dimV = (m,n);

then M(V ) := EndF(V ) is a superalgebra with dimM(V ) = (m2 + n2, 2mn). The

algebra M(V ) is defined uniquely up to an isomorphism by the superdimension

(m,n) of V . So we can speak of the superalgebra Mm,n. We have an isomorphism

of superalgebras

Mm,n ⊗Mk,l
∼= Mmk+nl,ml+nk. (6.6)

Moreover, [14, Example 12.1.1] shows that Mm,n is a simple superalgebra.
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Let V be a superspace with dimV = (n, n) and J be a degree 1̄ involution in

EndF(V ). Consider the superalgebra Q(V, J) := {f ∈ EndF(V ) | fJ = (−1)|f |Jf}.
Note that all degree 1̄ involutions in EndF(V ) are conjugate to each other by an in-

vertible element in EndF(V )0̄. Hence another choice of J will yield an isomorphism

superalgebra. So we can speak of the superalgebra Q(V ), defined up to an isomor-

phism. Pick a basis {v1, . . . , vn} of V0̄, and set v′i = J(vi) for 1 6 i 6 n. Then

{v′1, . . . , v′n} is a basis of V1̄. With respect to the basis {v1, . . . , vn, v
′
1, . . . , v

′
n}, the

elements of Q(V, J) have matrices of the form(
A B

−B A

)
, (6.7)

where A and B are arbitrary n× n matrices, with B = 0 for even endomorphisms

and A = 0 for odd ones. In particular, dimQ(V ) = (n2, n2). The superalgebra

Q(V, J) can be identified with the superalgebra Qn of all matrices of the form

(6.7). Moreover, [14, (12.6), (12.7)] show that

Mm,n ⊗Qk ∼= Q(m+n)k (6.8)

and

Qm ⊗Qn ∼= Mmn,mn (6.9)

as F-algebras. Moreover, [14, Example 12.1.2] shows that Qn is a simple superal-

gebra.

We say that an irreducible module of a finite-dimensional superalgebra is of

type M if its endomorphism ring is one-dimensional and it is of type Q if its

endomorphism ring is two-dimensional. Given a finite-dimensional superalgebra A

over F, define the parity change functor on A-mod (the A-module category)

Υ : A-mod −→ A-mod.

For an object V , Υ(V ) is the same underlying vector space but with the opposite

Z2-grading. The new action of a Z2-homogeneous element a ∈ A on v ∈ V is

defined in terms of the old action by a · v := (−1)|a|av.

Given left modules V and W over F-superalgebras A and B respectively, the

(outer) tensor product V �W is the space V ⊗W considered as an A⊗B-module

via

(a⊗ b)(v ⊗ w) = (−1)|b||v|av ⊗ bw (a ∈ A, b ∈ B, v ∈ V, w ∈W ).

For the irreducible representations of the F-algebra A⊗B, the following result

was obtained by Kleshchev in [14, Lemma 12.2.13]:
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Lemma 6.4 ([14]). Let V be an irreducible A-module and W be an irreducible

B-module:

(i) If both V and W are of type M , then V �W is an irreducible A⊗B-module

of type M .

(ii) If one of V and W is of type M and the other is of type Q, then V �W is

an irreducible A⊗B-module of type Q.

(iii) If both V and W are of type Q, then V �W ∼= (V ~W )⊕Υ(V ~W ) for an

irreducible A⊗B-module V ~W of type M .

Moreover, all irreducible A⊗B-modules arise as constituents of V �W for some

choice of irreducibles V , W .

6.3.2.. Now we return to the representations of reduced enveloping algebras for

a direct sum of basic Lie superalgebras with nilpotent p-characters. In [35, Re-

mark 4.6], Wang–Zhao showed that the statement in Proposition 6.1 still holds

for the case when lk is a direct sum of basic Lie superalgebras with nilpotent

p-characters.

In fact, their result can be somewhat strengthened. Let lk =
⊕r

i=1(lk)i be

a direct sum of basic Lie superalgebras over k = Fp, where (lk)i is a basic Lie

superalgebra for each 1 6 i 6 r, and the characteristic p of the field k satisfies the

restriction imposed in §2.1 (Table 1). Let χ = χ1 + · · ·+ χr be the decomposition

of nilpotent p-character χ in l∗
k

with χi ∈ (lk)∗i (each χi can be viewed in l∗
k

by

letting χi(ȳ) = 0 for all ȳ ∈
⊕

j 6=i(lk)j) for 1 6 i 6 r. Set ē = ē1 + · · · + ēr to be

the corresponding decomposition of ē ∈ (lk)0̄ with respect to the nondegenerate

bilinear form (·, ·) on lk such that χi(·) = (ēi, ·) for 1 6 i 6 r. Define

d′0 := dim(lk)0̄ − dim(lē
k
)0̄, d′1 := dim(lk)1̄ − dim(lē

k
)1̄,

(d0)i := dim((lk)i)0̄ − dim((lk)ēii )0̄, (d1)i := dim((lk)i)1̄ − dim((lk)ēii )1̄,
(6.10)

where lē
k

denotes the centralizer of ē in lk, and (lk)ēii is the centralizer of ēi in

(lk)i for i ∈ {1, . . . , r}. It is obvious that d′0 =
∑r
i=1(d0)i and d′1 =

∑r
i=1(d1)i.

Rearrange the summands of lk =
⊕r

i=1(lk)i such that each (d1)i is odd for 1 6 i 6 l
(if it occurs) and each (d1)i is even for l + 1 6 i 6 r (if it occurs). In particular,

d′1 and l have the same parity.

Note that all arguments in the preceding sections remain valid for a direct

sum of basic Lie superalgebras. Let mk and m′
k

be the subalgebras of lk as defined

in §2.3.2. Write mk =
⊕r

i=1(mk)i and m′
k

=
⊕r

i=1(m′
k
)i as the decomposition of

mk and m′
k

in lk respectively, where (mk)i, (m′
k
)i ∈ (lk)i for 1 6 i 6 r. As mk

is p-nilpotent and the linear function χ vanishes on the p-closure of [mk,mk], it

follows from [35, Proposition 2.6] that Uχ(mk) has a unique irreducible module
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and Uχ(mk)/Nmk

∼= k, where Nmk
is the Jacobson radical of Uχ(mk) generated by

all the elements x̄− χ(x̄) with x̄ ∈ mk.

Recall that [35, Proposition 4.1] shows that every k-algebra Uχi((mk)i) (1 6
i 6 r) has a unique irreducible module (there is a minor error in [35, §4.1] since this

irreducible module is not necessarily a trivial module) which is one-dimensional

and of type M . Let N(mk)i denote the Jacobson radical of Uχi((mk)i) for 1 6 i 6 r
(which is the ideal of Uχi((mk)i) generated by all the elements x̄ − χ(x̄) with

x̄ ∈ (mk)i). Then Uχi((mk)i)/N(mk)i
∼= k for 1 6 i 6 r.

For the case when (d1)i is odd (i.e., 1 6 i 6 l), the k-algebra Uχi((m
′
k
)i) also

has a unique irreducible module; it is isomorphic to Vi = Uχi((m
′
k
)i)⊗Uχi ((mk)i) 1̄χi ,

which is two-dimensional and of type Q. Let N(m′
k
)i denote the Jacobson radical of

Uχi((m
′
k
)i) (which is the ideal of Uχi((m

′
k
)i) generated by all the elements x̄−χ(x̄)

with x̄ ∈ (mk)i). Then Uχi((m
′
k
)i)/N(m′

k
)i is isomorphic to the simple superalgebra

Q1 for 1 6 i 6 l. For the case when (d1)i is even (i.e., l + 1 6 i 6 r), one

can also define N(m′
k
)i as the Jacobson radical of Uχi((m

′
k
)i). Moreover, we have

Uχi((m
′
k
)i) = Uχi((mk)i) and N(m′

k
)i = N(mk)i for (m′

k
)i = (mk)i by construction;

thus Uχi((m
′
k
)i)/N(m′

k
)i
∼= k.

Since lk =
⊕r

i=1(lk)i, it is easy to verify that

Uχ(mk) ∼=
r⊗
i=1

Uχi((mk)i), Uχ(m′
k
) ∼=

r⊗
i=1

Uχi((m
′
k
)i) (6.11)

as k-algebras. For a Uχ(lk)-module M set

Mmk = {v ∈M | (x̄− χ(x̄)).v = 0 for all x̄ ∈ mk}.

As the finite-dimensional restricted Lie superalgebra lk is a direct sum of basic Lie

superalgebras, an analogous discussion of [35, Proposition 4.2] shows that every

Uχ(lk)-module M is Uχ(mk)-free and M ∼= Uχ(mk)∗ ⊗kMmk as Uχ(mk)-modules.

Let Nm′
k

denote the ideal of Uχ(m′
k
) generated by all the elements x̄ − χ(x̄)

with x̄ ∈ mk; then Mmk is a Uχ(m′
k
)/Nm′

k
-module. Since m′

k
=
⊕r

i=1(m′
k
)i, one

can conclude from (6.11) and the remark prior to it that

Uχ(m′
k
)/Nm′

k

∼= Uχ(m′
k
)⊗Uχ(mk) 1̄χ ∼= Uχ

( r⊕
i=1

(m′
k
)i

)
⊗
Uχ(

r⊕
i=1

(mk)i)
1̄χ

∼=
r⊗
i=1

(Uχi
(
(m′

k
)i
)
⊗Uχi ((mk)i) 1̄χi)

∼=
r⊗
i=1

Uχi((m
′
k
)i)/N(m′

k
)i

∼=
l︷ ︸︸ ︷

Q1 ⊗ · · · ⊗Q1⊗
r−l︷ ︸︸ ︷

k⊗ · · · ⊗ k ∼=
l︷ ︸︸ ︷

Q1 ⊗ · · · ⊗Q1

as k-algebras.
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Now we will introduce the refined super Kac–Weisfeiler property for a direct

sum of basic Lie superalgebras with nilpotent p-characters.

Proposition 6.5. Let lk be a direct sum of basic Lie superalgebras over k = Fp,

and χ ∈ (lk)∗0̄ be a nilpotent p-character. Retain the notation in (6.10) and below,

and assume that the prime p satisfies the restriction imposed in §2.1 (Table 1).

Then the dimension of every Uχ(lk)-module M is divisible by p
d′0
2 2

d′1+l

2 (appoint

l = 0 if the (d1)i are all even for 1 6 i 6 r).

Proof. For each Uχ(lk)-module M , the arguments preceding the proposition show

that the Uχ(mk)-module

M ∼= Uχ(mk)∗ ⊗kMmk (6.12)

is free. Let us first investigate the dimension of Mmk . Since Mmk is a module over

the superalgebra Uχ(m′
k
)/Nm′

k

∼=
l︷ ︸︸ ︷

Q1 ⊗ · · · ⊗Q1, based on the parity of l we will

consider each case separately.

(i) When l is odd, (6.8) and (6.9) imply that

Uχ(m′
k
)/Nm′

k

∼=
l︷ ︸︸ ︷

Q1 ⊗ · · · ⊗Q1
∼= Q

2
l−1
2
.

Since Q
2
l−1
2

is a simple superalgebra whose unique irreducible module is 2 ·2 l−1
2 =

2
l+1
2 -dimensional, it follows from Wedderburn’s theorem [14, Theorem 12.2.9] that

every Q
2
l−1
2

-module has dimension divisible by 2
l+1
2 . In particular, the dimension

of Mmk is divisible by 2
l+1
2 . By the same discussion as in [35, Theorem 4.3] we

can conclude that dimmk = (
d′0
2 ,

d′1−1
2 ); then dimUχ(mk) = p

d′0
2 2

d′1−1

2 . Together

with (6.12) this implies that each Uχ(lk)-module M has dimension divisible by

p
d′0
2 2

d′1−1

2 · 2 l+1
2 = p

d′0
2 2

d′1+l

2 .

(ii) When l is even, it follows from (6.8) and (6.9) that

Uχ(m′
k
)/Nm′

k

∼=
l︷ ︸︸ ︷

Q1 ⊗ · · · ⊗Q1
∼= M

2
l
2
−1,2

l
2
−1 .

Since M
2
l
2
−1,2

l
2
−1 is a simple superalgebra whose unique irreducible module is 2

l
2 -

dimensional, it follows from Wedderburn’s theorem [14, Theorem 12.2.9] that every

M
2
l
2
−1,2

l
2
−1 -module has dimension divisible by 2

l
2 . In particular, the dimension of

Mmk is divisible by 2
l
2 . The same discussion as in [35, Theorem 4.3] shows that

dimmk = (
d′0
2 ,

d′1
2 ); then dimUχ(mk) = p

d′0
2 2

d′1
2 . Together with (6.12) this implies

that each Uχ(lk)-module M has dimension divisible by p
d′0
2 2

d′1
2 · 2 l

2 = p
d′0
2 2

d′1+l

2 .
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The discussions in (i) and (ii) complete the proof.

Remark 6.6. Recall that d′1 and l have the same parity by the preceding discus-

sion. Thus Proposition 6.5 coincides with the consequence obtained by Wang–Zhao

in [35, Remark 4.6] on the special occasion that at most one of the (d1)i is odd for

1 6 i 6 r. However, when more than two of the (d1)i are odd for 1 6 i 6 r, the

dimensional lower bounds of the representations of lk given here should be opti-

mal (see the proof of the forthcoming Theorem 6.7), which are much larger than

those mentioned in [35, Remark 4.6]. Also note that the conclusion we obtained

in Proposition 6.5 does not depend on Conjecture 1.3.

6.3.3.. Assuming Conjecture 1.3, the following theorem shows that the dimen-

sional lower bounds for the representations of reduced enveloping algebra Uχ(lk)

with nilpotent p-character χ ∈ (lk)∗0̄ in Proposition 6.5 are accessible.

Theorem 6.7. Retain the assumptions in Proposition 6.5. If Conjecture 1.3 holds

and p � 0, then the reduced enveloping algebra Uχ(lk) admits irreducible repre-

sentations of dimension p
d′0
2 2

d′1+l

2 (appoint l = 0 when the (d1)i are all even for

1 6 i 6 r).

Proof. For each 1 6 i 6 r, let Qχiχi be the (lk)i-module as defined in §2.3.2, and

denote by Uχi((lk)i, ēi) = (End(lk)iQ
χi
χi)

op the reduced W -superalgebra of basic

Lie superalgebra (lk)i associated with nilpotent element ēi ∈ ((lk)i)0̄. Let Qχχ be

the lk-module with the same definition as in §2.3.2, and Uχ(lk, ē) be the reduced

W -superalgebra of lk associated with nilpotent element ē ∈ (lk)0̄. Then we have

Uχ(lk, ē) = (EndlkQ
χ
χ)op ∼=

(
End r⊕

i=1
(lk)i

r⊕
i=1

Qχiχi

)op

∼=
r⊗
i=1

(End(lk)iQ
χi
χi)

op =

r⊗
i=1

Uχi((lk)i, ēi)

(6.13)

as k-algebras. Now we proceed with the proof by steps.

(1) We first prove the conclusion for the k-algebra
⊗l

i=1 Uχi((lk)i, ei). We

will carry out the proof by induction on l.

(1-i) For the beginning of the induction, let us first look into each single term

(lk)i for 1 6 i 6 l, and make some basic observations on the tensor product of

two terms. Under the assumptions of the theorem, Corollary 6.3 shows that the

k-algebra Uχi((lk)i, ēi) admits two-dimensional representations for 1 6 i 6 l.

Denote by V1 and V2 the two-dimensional irreducible representations (of type
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Q) of the k-algebras Uχ1
((lk)1, ē1) and Uχ2

((lk)2, ē2) (if it occurs), respectively.

Then it follows from Lemma 6.4(iii) that V1 � V2
∼= (V1 ~ V2) ⊕ Υ(V1 ~ V2)

as Uχ1 ((lk)1, ē1) ⊗ Uχ2 ((lk)2, ē2)-modules, where V1 ~ V2 is an irreducible

Uχ1
((lk)1, ē1)⊗Uχ2

((lk)2, ē2)-module of type M . Recall that V1 ~ V2 is the same

underlying vector space as Υ(V1 ~ V2), thereby sharing the same dimension, i.e.,

dimV1~V2 = dim Υ(V1~V2). Since V1�V2 is just V1⊗V2 as vector spaces, from

all of the above we can conclude that V1 ~ V2 is an irreducible Uχ1
((lk)1, ē1) ⊗

Uχ2((lk)2, ē2)-module of type M with dimension 2 = 2
2
2 .

Denote by V3 a two-dimensional irreducible representation (of type Q) of the

k-algebra Uχ3((lk)3, ē3) (if it occurs). It follows from Lemma 6.4(ii) that (V1 ~
V2)� V3 is an irreducible (Uχ1

((lk)1, ē1)⊗ Uχ2
((lk)2, ē2))⊗ Uχ3

((lk)3, ē3)-module

of type Q with dimension 2 · 2 = 4 = 2
3+1

2 .

(1-ii) On the basis of (1-i), we can easily draw the conclusion by induction on

the number of the terms for
⊗l

i=1 Uχi((lk)i, ei), summarizing it as

(1-ii-i) when l is odd, the k-algebra
⊗l

i=1 Uχi((lk)i, ēi) admits an irreducible

representation of type Q with dimension 2
l+1
2 , and we denote it by V ;

(1-ii-ii) when l is even, the k-algebra
⊗l

i=1 Uχi((lk)i, ēi) admits an irreducible

representation of type M with dimension 2
l
2 (assume that l = 0 when

the (d1)i are all even for 1 6 i 6 r), and set it as V ′.

(2) Now we consider the general case with Uχ(lk, ē) ∼=
⊗r

i=1 Uχi((lk)i, ēi).

Under the assumptions of the theorem, Corollary 6.3 shows that the k-algebra

Uχi((lk)i, ēi) admits one-dimensional representations of type M for l + 1 6 i 6 r

(if it occurs). Easy induction based on Lemma 6.4(i) shows that the k-algebra⊗r
i=l+1 Uχi((lk)i, ēi) admits a one-dimensional representation of type M , denoted

by W .

Note that
⊗r

i=1 Uχi((lk)i, ēi) ∼=
⊗l

i=1 Uχi((lk)i, ēi) ⊗
⊗r

i=l+1 Uχi((lk)i, ēi).

Based on the parity of l, we will consider each case separately.

(2-i) When l is odd, (1-ii-i) shows that the k-algebra
⊗l

i=1 Uχi((lk)i, ēi) ad-

mits an irreducible representation V of type Q with dimension 2
l+1
2 , and the k-

algebra
⊗r

i=l+1 Uχi((lk)i, ēi) admits a one-dimensional representation W of type

M by the preceding remark. It follows from Lemma 6.4(ii) that V �W is an irre-

ducible module of type Q with dimension 2
l+1
2 for the k-algebra

⊗l
i=1 Uχi((lk)i, ēi)

⊗
⊗r

i=l+1 Uχi((lk)i, ēi) ∼=
⊗r

i=1 Uχi((lk)i, ēi).

(2-ii) When l is even, (1-ii-ii) shows that the k-algebra
⊗l

i=1 Uχi((lk)i, ēi)

admits an irreducible representation V ′ of type M with dimension 2
l
2 , and the k-

algebra
⊗r

i=l+1 Uχi((lk)i, ēi) admits a one-dimensional representation W of type
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M by the preceding remark. It follows from Lemma 6.4(i) that V ′ �W is an irre-

ducible module of type M with dimension 2
l
2 for the k-algebra

⊗l
i=1 Uχi((lk)i, ēi)

⊗
⊗r

i=l+1 Uχi((lk)i, ēi) ∼=
⊗r

i=1 Uχi((lk)i, ēi).

(3) Keeping in mind the algebra isomorphism

Uχ(lk) ∼= Mat
p
d′0
2 2d

d′1
2
e
(Uχ(lk, ē)) (6.14)

(cf. [35, Remark 4.6]), we can conclude

(3-i) when l is odd, it follows from (2-i) that the k-algebra Uχ(lk) affords irre-

ducible representations of dimension p
d′0
2 2

d′1−1

2 · 2 l+1
2 = p

d′0
2 2

d′1+l

2 ;

(3-ii) when l is even, it follows from (2-ii) that the k-algebra Uχ(lk) affords

irreducible representations of dimension p
d′0
2 2

d′1
2 · 2 l

2 = p
d′0
2 2

d′1+l

2 .

Summing up, we complete the proof.

Remark 6.8. Recall that the dimensional lower bounds introduced in Proposi-

tion 6.5 are much larger than the boundary obtained by Wang–Zhao in [35, Re-

mark 4.6] when more than two of the (d1)i are odd for 1 6 i 6 r (cf. Remark 6.6).

In fact, careful inspection of the proof of Theorem 6.7 shows that Wang–Zhao’s

estimation on these lower bounds can never be reached in this case, and those

introduced in Theorem 6.7 are optimal.

§6.4. Discussion for basic Lie superalgebras with arbitrary

p-characters

In this subsection we will consider the accessibility of the lower bounds of the

super Kac–Weisfeiler property with any p-characters in Proposition 6.1.

6.4.1.. For a given p-character ξ ∈ (gk)∗0̄, we have its Jordan–Chevalley decom-

position ξ = ξs̄ + ξn̄ under the Ad (Gk)ev-equivariant isomorphism (gk)∗0̄
∼= (gk)0̄

induced by the nondegenerate bilinear form (·, ·) on (gk)0̄. That is to say, the de-

composition of ξ can be identified with the usual Jordan decomposition x̄ = s̄+ n̄

when ξ corresponds to x̄ under the isomorphism (gk)∗0̄
∼= (gk)0̄. Let hk be a Cartan

subalgebra of gk that contains s̄ and denote by lk = gs̄
k

the centralizer of s̄ in gk.

Let Φ be the root system of gk and Φ(lk) := {α ∈ Φ | α(s̄) = 0}. By [35, Proposi-

tion 5.1], lk is always a direct sum of basic Lie superalgebras with a system ∆ of

simple roots of gk such that ∆ ∩ Φ(lk) is a system of simple roots of Φ(lk) (note

that a toral subalgebra of gk may also appear in the summand). This is to say,

lk = gs̄
k

=

r⊕
i=1

(gk)i ⊕ t′
k
,
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where each (gk)i is a basic Lie superalgebra for 1 6 i 6 r, and t′
k

is a toral

subalgebra of gk. Then by [35, §5.1], ξn̄ = ξ1 + · · ·+ ξr is a nilpotent p-character

of lk with ξi ∈ (gk)∗i (each ξi can be viewed in l∗
k

by letting ξi(ȳ) = 0 for all

ȳ ∈
⊕

j 6=i(gk)j ⊕ t′
k
) for 1 6 i 6 r. Let n̄ = n̄1 + · · · + n̄r be the corresponding

decomposition of n̄ in lk such that ξi(·) = (n̄i, ·) for 1 6 i 6 r. Then we can

obtain the reduced W -superalgebra Uξi((gk)i, n̄i) of (gk)i associated with nilpotent

element n̄i ∈ (gk)i. It is easily verified that

Uξn̄

( r⊕
i=1

(gk)i, n̄

)
∼=

r⊗
i=1

Uξi((gk)i, n̄i)

by the same discussion as (6.13). Define

d0 := dim(gk)0̄ − dim(gx̄
k
)0̄, d1 := dim(gk)1̄ − dim(gx̄

k
)1̄,

(d0)i := dim((gk)i)0̄ − dim((gk)n̄ii )0̄, (d1)i := dim((gk)i)1̄ − dim((gk)n̄ii )1̄,
(6.15)

where gx̄
k

denotes the centralizer of x̄ in gk, and (gk)n̄ii is the centralizer of n̄i in

(gk)i for each i ∈ {1, . . . , r}. Rearrange the summands of
⊕r

i=1(gk)i such that

each (d1)i is odd for 1 6 i 6 l (if it occurs), and each (d1)i is even for l+ 1 6 i 6 r
(if it occurs).

Let bk = hk ⊕ nk be the Borel subalgebra associated with ∆. Let pk be a

parabolic subalgebra of gk with Levi factor lk, i.e., pk = lk + bk = lk ⊕ uk, where

uk is the nilradical of pk. Set u−
k

to be the complement nilradical of pk such that

gk = pk ⊕ u−
k

= uk ⊕ lk ⊕ u−
k

as vector spaces. Since ξ(uk) = 0 and ξ|lk = ξn̄|lk is

nilpotent by [35, §5.1], any Uξ(lk)-mod can be regarded as a Uξ(pk)-mod with a

trivial action of uk. Wang–Zhao proved that the k-algebras Uξ(gk) and Uξ(lk) are

Morita equivalent in [35, Theorem 5.2], and any irreducible Uξ(gk)-module can be

induced from an irreducible Uξ(lk)-mod (which is also a Uξ(pk)-mod with a trivial

action of uk) by

Uξ(gk)⊗Uξ(pk) − : Uξ(lk)-mod→ Uξ(gk)-mod. (6.16)

6.4.2.. Keep the notation and assumptions as in §6.4.1. We first recall the following

result.

Proposition 6.1 ([35]). Let gk be a basic Lie superalgebra over k = Fp, assuming

that the prime p satisfies the restriction imposed in §2.1 (Table 1). Let ξ be an

arbitrary p-character in (gk)∗0̄. Then the dimension of every Uξ(gk)-module M is

divisible by p
d0
2 2b

d1
2 c.

The above proposition was first verified by Wang–Zhao in [35, Theorem 5.6].

Compared with the proof we present below, Wang–Zhao’s proof in [35] is more
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concise since they did not consider the parity of the (d1)i (1 6 i 6 r) for the

summands of lk = gs̄
k

decomposed into
⊕r

i=1(gk)i ⊕ t′
k
.

As our approach to the main goal of this subsection will be much dependent

on the analysis of the parities of those (d1)i, along with the above result, then we

have to formulate another proof of Proposition 6.1, based on Proposition 6.5. This

will be important for us to get at the goal.

Proof. (1) First note that [35, Theorem 5.6] shows

dim gk − dim gx̄
k

= dim gk − dim ln̄
k

= 2dim u−
k

+ (dim lk − dim ln̄
k
),

(6.17)

where ln̄
k

denotes the centralizer of n̄ in lk. Since lk =
⊕r

i=1(gk)i ⊕ t′
k

and n̄ ∈⊕r
i=1(gk)i, it is obvious that (t′

k
)n̄ = t′

k
; then

dim lk − dim ln̄
k

=

r∑
i=1

(
dim (gk)i − dim (gk)n̄ii

)
+ dim t′

k
− dim (t′

k
)n̄

=

( r∑
i=1

(d0)i,
r∑
i=1

(d1)i

)
.

(6.18)

As dim u−
k

= dim uk, (6.17) shows that

dim(u−
k

)0̄ = dim(uk)0̄ =
d0 −

∑r
i=1(d0)i
2

,

dim(u−
k

)1̄ = dim(uk)1̄ =
d1 −

∑r
i=1(d1)i
2

.

(6.19)

(2) For lk =
r⊕
i=1

(gk)i ⊕ t′
k
, we have an algebra isomorphism

Uξn̄(lk) ∼= Uξn̄

( r⊕
i=1

(gk)i ⊕ t′
k

)
∼= Uξn̄

( r⊕
i=1

(gk)i

)
⊗ U0(t′

k
). (6.20)

Let us first consider the representations of the k-algebra Uξn̄(
⊕r

i=1(gk)i).

Since ξn̄|lk is nilpotent and each (gk)i is a basic Lie superalgebra for 1 6 i 6 r,

it follows from Proposition 6.5 that every Uξn̄(
⊕r

i=1(gk)i)-module is divisible by

p
∑r
i=1(d0)i

2 2
l+

∑r
i=1(d1)i

2 .

Next we look at the k-algebra U0(t′
k
). As t′

k
is a toral subalgebra of gk with

a basis {t1, . . . , td} such that t
[p]
i = ti for all 1 6 i 6 d, then U0(t′

k
) ∼= A⊗d1 where

A1
∼= k[X]/(Xp − X) is a p-dimensional commutative semisimple algebra whose

irreducible representations are one-dimensional (naturally of type M). Hence we

can conclude from Lemma 6.4(i) that all irreducible representations of U0(t′
k
) are

one-dimensional and of type M .
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Recall that Uξn̄(lk) ∼= Uξn̄(
⊕r

i=1(gk)i)⊗U0(t′
k
). Summing up, we can conclude

that any Uξn̄(lk)-module is divisible by p
∑r
i=1(d0)i

2 2
l+

∑r
i=1(d1)i

2 .

(3) Recall that an object in the representation category of Uξ(lk) can be

regarded as one in the representation category of Uξ(pk) with a trivial action of

uk; then it follows from (6.16) and (6.19) that the dimension of every Uξ(gk)-mod

is divisible by

p
∑r
i=1

(d0)i
2 2

l
2 +

∑r
i=1

(d1)i
2 · p

d0−
∑r
i=1(d0)i
2 2

d1−
∑r
i=1(d1)i
2 = p

d0
2 2

d1+l
2 . (6.21)

(4) We now claim that in (6.21) we have l = 0 or 1; that is to say,

at most one of the (d1)i is odd for 1 6 i 6 r. (6.22)

The proof of the claim (6.22) will be given for each case separately. Recall that

for lk = gs̄
k

with a direct-sum decomposition lk =
⊕r

i=1(gk)i ⊕ t′
k
, we have (i) d1

and
∑r
i=1(d1)i share the same parity (see (6.15), (6.17), and (6.18)); (ii) the (d1)i

are odd for 1 6 i 6 l, and the (d1)i are even for l + 1 6 i 6 r (see §6.4.1). It

follows that d1 and l have the same parity. Combining this with the claim (6.22),

Proposition 6.1 follows.

Proof of the claim (6.22). We will complete the proof by steps.

(1) The above discussion shows that we need to consider only the summands

of
⊕r

i=1(gk)i, investigating the situation with nonzero odd parts. Recall that an

explicit list of non-W -equivalent systems of positive roots was found by Kac in

[12, §2.5.4] (a system of simple roots for F (4) is missing; see the remark above [35,

Proposition 5.1]). Note that in the examples given by Kac, the Cartan subalgebra

hk is a subspace of the space D of diagonal matrices; the roots are expressed in

terms of the standard basis εi of D∗ (more accurately, the restrictions of the εi to

hk). In the following we assume that the semisimple element s̄ ∈ hk.

(2) Given any nilpotent element e ∈ sl(M |N)0̄, we have gl(M |N)1̄ =

sl(M |N)1̄ and gl(M |N)e1̄ = sl(M |N)e1̄ for all M,N ∈ Z+, where gl(M |N)e1̄ and

sl(M |N)e1̄ denote the centralizers of e in gl(M |N)1̄ and sl(M |N)1̄, respectively. It

follows from [35, §3.2] that (d1)i (1 6 i 6 r) is always even for the summand (gk)i
that is isomorphic to the basic Lie superalgebra of type A(m,n) with m,n ∈ Z+.

By virtue of this consequence, completely elementary yet tedious case-by-case cal-

culations show the following:
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(i) When gk is of type A(M,N), each summand of
⊕r

i=1(gk)i with nonzero

odd part is always isomorphic to a basic Lie superalgebra of type A(m,n) with

m,n ∈ Z+, thus for 1 6 i 6 r the (d1)i are all even in this case;

(ii) When gk is of type B(M,N), C(M,N), or D(M,N), each summand of⊕r
i=1(gk)i with nonzero odd part is either isomorphic to a basic Lie superalgebra of

type A(m,n) with m,n ∈ Z+; or at most one summand is isomorphic to B(m,n),

C(m,n), or D(m,n) (m,n ∈ Z+) respectively (which is of the same type as gk).

Hence for 1 6 i 6 r, at most one of the (d1)i is odd in this case.

(iii) When gk is of type D(2, 1; ā) or G(3), each summand of
⊕r

i=1(gk)i with

nonzero odd part is either isomorphic to a basic Lie superalgebra of type A(m,n)

with m,n ∈ Z+; or at most one summand is isomorphic to B(m,n) (m,n ∈ Z+).

At the extreme, lk = gs̄
k

equals D(2, 1; ā) or G(3) respectively when s̄ = 0. Hence

for 1 6 i 6 r, at most one of the (d1)i is odd in this case.

(iv) When gk is of type F (4), each summand of
⊕r

i=1(gk)i with nonzero odd

part is either isomorphic to a basic Lie superalgebra of type A(m,n) with m,n ∈
Z+; or at most one summand is either isomorphic to B(m,n) with m,n ∈ Z+, or

to D(2, 1; ā). At the extreme, lk = gs̄
k

= F (4) when s̄ = 0. Hence for 1 6 i 6 r, at

most one of the (d1)i is odd in this case.

Summing up the above discussions, we can conclude that at most one of the

(d1)i (1 6 i 6 r) is odd in the summands of
⊕r

i=1(gk)i. Then we complete the

proof of the claim (6.22).

Remark 6.9. The significance of the above new proof can be seen as below:

(1) From the precise analysis of the proof, one can conclude that the lower

bounds for the dimension of Uξ(gk)-modules critically depend on the parities

of the (d1)i for 1 6 i 6 r. Without careful inspection of the summands of

lk ∼=
⊕r

i=1(gk)i ⊕ t′
k
, we cannot ensure that the lower bounds introduced in [35,

Theorem 5.6] are optimal.

(2) What we are concerned with is the realization of “small representations”

of dimensions equaling the lower bounds in [35, Theorem 5.6], when assuming

Conjecture 1.3. By the above proof, we can demonstrate how to realize the Uξ(gk)-

modules of minimal dimensions by the representation theory of the k-algebra

Uξ(lk); see §6.4.3 for more details.

6.4.3. The proof of Theorem 1.5. Now we are in a position to prove Theo-

rem 1.5, attacking the problem of the accessibility of the lower bounds in the super

Kac–Weisfeiler property [35, Theorem 5.6].
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Proof of Theorem 1.5. Retain the notation in (6.15). For the subalgebra lk = gs̄
k

=⊕r
i=1(gk)i⊕t′k of gk, recall that Theorem 6.7 shows that, assuming Conjecture 1.3,

the k-algebra Uξn̄(
⊕r

i=1(gk)i) admits an irreducible representation of dimension

p
∑r
i=1

(d0)i
2 2

l
2 +

∑r
i=1

(d1)i
2 , and we denote it by V . By the arguments of step (4) in

the proof of Proposition 6.1, one can conclude that

dimV = p

r∑
i=1

(d0)i
2

2
l
2 +

r∑
i=1

(d1)i
2

= p

r∑
i=1

(d0)i
2

2
b
r∑
i=1

(d1)i
2 c

.

Step (2) in the proof of Proposition 6.1 shows that the k-algebra U0(t′
k
) affords

an irreducible representation of dimension one, denoted by W (note that it is

of type M). Thus it follows from Lemma 6.4 that V �W is an irreducible rep-

resentation of the k-algebra Uξn̄(
⊕r

i=1(gk)i) ⊗ U0(t′
k
) ∼= Uξ(lk) with dimension

p
∑r
i=1

(d0)i
2 2b

∑r
i=1

(d1)i
2 c.

Recall that any Uξ(lk)-mod can be regarded as a Uξ(pk)-mod with a triv-

ial action of uk. It follows from (6.16) that the Uξ(gk)-module induced from the

Uξ(pk)-module V �W is irreducible. By (6.19) we can conclude that the dimension

of this induced module is equal to

p
∑r
i=1

(d0)i
2 2b

∑r
i=1

(d1)i
2 c · p

d0−
∑r
i=1(d0)i
2 2

d1−
∑r
i=1(d1)i
2

= p
d0
2 2

d1
2 +(b

∑r
i=1

(d1)i
2 c−

∑r
i=1

(d1)i
2 ).

(6.23)

Owing to (6.15), (6.17), and (6.18),
∑r
i=1(d1)i and d1 have the same parity. Hence,

the desired result follows from (6.23).

Remark 6.10. For the reduced enveloping algebra Uξ(gk) with arbitrary p-char-

acter ξ ∈ (gk)∗0̄, the formulation of the super Kac–Weisfeiler property in Proposi-

tion 6.1 is dependent on the gs̄
k

that equals the direct sum of some basic Lie super-

algebras and a toral subalgebra, and set it to be
⊕r

i=1(gk)i⊕t′k (cf. [35]). However,

after the super Kac–Weisfeiler property for the k-algebra Uξn̄(
⊕r

i=1(gk)i) is re-

fined in Proposition 6.5, one may be worried whether the real minimal dimensions

of the representations of Uξ(gk) are much larger than those introduced in Proposi-

tion 6.1. Fortunately, Theorem 1.5 certifies that they are exactly the real minimal

dimensions of those representations, when assuming Conjecture 1.3.

§7. Reducing Conjecture 1.3 to the rigid nilpotent cases

In the concluding section we will reduce the investigation of Conjecture 1.3 to

the rigid nilpotent cases, generalizing the arguments of [29, §3.2] in the ordinary

finite W -algebra case. We maintain the same notation as used previously.
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§7.1. Rigid nilpotent elements

We first introduce the notion of induced nilpotent elements for basic Lie su-

peralgebras, analogous to the case of reductive Lie algebras (cf. [4], or [18]). Given

a basic Lie superalgebra gC over the field of complex numbers, [5, §3.3] shows that

there is a Chevalley basis B of gC excluding the case D(2, 1; a) with a /∈ Z (in

the case D(2, 1; a) with a /∈ Z being an algebraic number, adjust the definition of

the Chevalley basis by changing Z to Z[a]). Denote the Chevalley Z-form in gC
associated with B by gZ. We continue to assume that the field F is either F = C or

F = k, and p� 0 when k = Fp. Let gF := gZ⊗ZF be a basic Lie superalgebra over

F. Let pF be a parabolic subalgebra of gF with the proper Levi subalgebra lF and

nilradical u+
F . Then we have pF = lF⊕ u+

F . Denote by u−F the opposite nilradical of

pF; then gF = u−F ⊕ lF ⊕ u+
F .

Definition 7.1. Retain the notation above. A nilpotent element e ∈ (pF)0̄ is said

to be induced from a nilpotent element e0 ∈ (lF)0̄ if the following items are satisfied:

(1) [pF, e] = [lF, e0]⊕ u+
F as vector spaces;

(2) geF ⊆ pF, where geF denotes the centralizer of e in gF.

Call e rigid nilpotent if there is no e0 as above such that e is induced from e0.

For a given pair of nilpotent elements (e, e0) in the reducing relation as in

Definition 7.1, one can give a further description as follows.

Proposition 7.2. Retain the notation above, and let e ∈ pF be a nilpotent element

induced from a nilpotent element e′0 ∈ lF. Then there exist nilpotent elements

e0 ∈ lF and e1 ∈ u+
F such that e = e0 + e1, and e can also be considered induced

from e0.

Proof. Since e ∈ pF and pF = lF ⊕ u+
F , there exist e0 ∈ lF and e1 ∈ u+

F such that

e = e0 + e1. Obviously, the elements e0 and e1 are nilpotent. In the following, we

will verify that [pF, e] = [lF, e0]⊕ u+
F .

First note that

[pF, e] = [lF + u+
F , e0 + e1] = [lF, e0] + [lF, e1] + [u+

F , e0] + [u+
F , e1]. (7.1)

Since e0 ∈ lF, e1 ∈ u+
F , and u+

F is the nilradical of pF, we have [lF, e0] ⊆ lF,

[lF, e1] + [u+
F , e0] + [u+

F , e1] ⊆ u+
F .

On the other hand, as e is induced from e′0 ∈ lF, we have

[pF, e] = [lF, e
′
0]⊕ u+

F . (7.2)

Combining (7.1) with (7.2), we have that [lF, e0] = [lF, e
′
0], u+

F = [lF, e1]+ [u+
F , e0]+

[u+
F , e1] as vector spaces. Therefore, (7.1) shows that [pF, e] = [lF, e0]⊕ u+

F , i.e., the



54 Y. Zeng and B. Shu

nilpotent element e can also be considered induced from e0 ∈ lF. This completes

the proof.

In the following we will always assume that e ∈ (pF)0̄ is induced from an

element e0 ∈ (lF)0̄ such that e = e0 + e1 for some e1 ∈ u+
F .

Remark 7.3.

(1) The notions of “induced nilpotent” and “rigid nilpotent” can also be

introduced for odd nilpotent elements. Proposition 7.2 still holds for them.

(2) Hoyt introduced the notion of Richardson elements for a basic Lie su-

peralgebra gF in [9, §4.3]. Our setting in Definition 7.1 includes Hoyt’s definition

of Richardson elements as a special case when e0 = 0, which is parallel to the

relationship between their counterparts in the Lie algebra case.

Now continue to consider the super case. One can easily verify

Proposition 7.4. Keep the above notation. The following are true:

(1) dim geF = dim le0F , where le0F denotes the centralizer of e0 in lF;

(2) dim [gF, e] = dim [lF, e0] + 2dim u+
F .

Proof. (1) Since pF = lF ⊕ u+
F , one can conclude from [pF, e] = [lF, e0]⊕ u+

F that

dim pF − dim [pF, e] = dim lF − dim [lF, e0].

Then it follows from

dim peF = dim pF − dim [pF, e], dim le0F = dim lF − dim [lF, e0]

that
dim peF = dim le0F . (7.3)

On the other hand, since pF is a subalgebra of gF, it is immediate from geF ⊆ pF
that peF = geF. Combining this with (7.3), we have dim geF = dim le0F , proving (1).

(2) Since dim u−F = dim u+
F , we have dim gF = dim lF + 2dim u+

F . Note that

dim geF = dim gF − dim [gF, e]; then we have

dim [gF, e] = dim gF − dim geF = dim lF − dim geF + 2dim u+
F

= dim lF − dim le0F + 2dim u+
F

= dim [lF, e0] + 2dim u+
F ,

where the third equality follows from (1). All these complete the proof of (2).

In the following, we will give an example of the induced nilpotent elements

associated with basic Lie superalgebras.
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Example 7.5. Let V = V0̄ ⊕ V1̄ be a superspace with dimV = (2, 4); then

gl(2|4) = End(V ) is a general linear Lie superalgebra associated with V . Choose

ordered bases of V0̄ and V1̄ that combine to a homogeneous basis for V . Then

parameterize such a basis by the set I(2|4) = {1̄, 2̄; 1, 2, 3, 4}. The elementary ma-

trices are accordingly denoted by ei,j with i, j ∈ I(2|4). With respect to such an

ordered basis, gl(2|4) can be realized as 6× 6 complex matrices of the block form(
a b

c d

)
, (7.4)

where a, b, c, d are respectively 2 × 2, 2 × 4, 4 × 2, 4 × 4 matrices. The even

subalgebra gl(2|4)0̄ consists of matrices of the form (7.4) with b = c = 0, while the

odd space gl(2|4)1̄ consists of those with a = d = 0.

Let h be the typical Cartan subalgebra of g := gl(2|4) consisting all of diagonal

matrices. Let Φ be a root system of g relative to h whose simple root system

∆ = {δ1 − δ2, δ2 − ε1, ε1 − ε2, ε2 − ε3, ε3 − ε4}

is distinguished, where {δi, εj}i,j is the basis of h∗ dual to {eī,̄i, ej,j}i,j for i ∈ {1, 2}
and j ∈ {1, 2, 3, 4}. Consider ∆′ := ∆\{ε2 − ε3}, a subset of ∆. Associated with

∆′, there are a standard Levi subalgebra and a parabolic subalgebra of g, which

are denoted by l and p respectively. Then p = l + u+ with

u+ := Ce1̄,3 ⊕ Ce1̄,4 ⊕ Ce2̄,3 ⊕ Ce2̄,4 ⊕ Ce1,3 ⊕ Ce1,4 ⊕ Ce2,3 ⊕ Ce2,4.

Let e0 := e1̄,2̄ + e1,2 + e3,4 be an element in l. Then e = e0 + e1 for e1 = e2,3 ∈ u+.

One can verify by a direct computation that e ∈ p0̄ is induced from e0 ∈ l0̄.

§7.2. Some conventions

We now make some conventions for accomplishing the “modular p reduction”

in connection with the “induced nilpotent elements”. First recall the notation

in §2.1.2. For a given basic Lie superalgebra g over the field C, there exists an

algebraic supergroup G satisfying Lie(G) = g, and G has an ordinary connected

reductive group Gev with Lie(Gev) = g0̄ such that the action of Gev on g can be

reduced to the adjoint action of g0̄.

Let e ∈ p0̄ be induced from an even nilpotent element e0 in a proper Levi

subalgebra l. Up to an AdGev-isomorphism, Dynkin–Kostant theory ensures that

the nilpotent element e may be assumed in the Z-span of the vectors of a Chevalley

Z-form gZ associated with the distinguished simple root system (cf. [5, §3.3] for

the Chevalley basis of g). What is more, we can further assume that e is also in

the C-span of the positive root vectors relative to a W -equivalent root system of
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the parabolic subalgebra p of g, where W is the Weyl group of g. Put such a root

system as Φ′, with a simple root system ∆′ = {α′1, . . . , α′l} (in contrast to the Lie

algebra case, it is a super phenomenon that all the systems of simple roots, or the

systems of positive roots of g, are not equivalent under the Weyl group, thus ∆′

is not necessarily a distinguished one). Let (Φ′)+ be the corresponding positive

system in Φ′, and set (Φ′)− := −(Φ′)+. Denote by h′ the corresponding Cartan

subalgebra of g such that the root system Φ′ is relative to h′ with simple root

system ∆′. Write gQ := gZ ⊗Z Q for the Q-span of gZ in gC. As e ∈ (gZ)0̄, by the

same discussion as in [27, §4.2] we can find f, h ∈ (gQ)0̄ such that (e, h, f) is an sl2-

triple in g. Then the above settings ensure that h ∈ h′. Let g = (n′)− ⊕ h′ ⊕ (n′)+

be the corresponding triangular decomposition of g, with b′ = h′ ⊕ (n′)+ being

the Borel subalgebra associated with ∆′. Let g = h′ ⊕ (
⊕

α∈Φ′ gα) be the root

space decomposition of g associated with Φ′. By sl2-representation theory, one can

choose a basis of g such that all simple root vectors X±α ∈ gα (α ∈ ∆′), together

with all root vectors Xα ∈ gα (α ∈ Φ′) generated by these simple root vectors,

and also a basis of h′ with α ∈ Φ′ (denote them by Hα ∈ h′), are in the Q-span

of the vectors of the Chevalley Z-form gZ, with e also being in the Q-span of the

positive root vectors Xα ∈ gα with α ∈ (Φ′)+.

Under the above settings, we can assume that ∆′ ∩Φ′(l) is a system of simple

roots for the root system Φ′(l) of l with Φ′(l) being a subsystem of Φ′; then we

have l =
⊕

α∈∆′ CHα⊕(
⊕

α∈Φ′(l) CXα). Let (Φ′(l))+ be the corresponding positive

system of l in Φ′(l). Put p = l+b′ = l⊕u+, where u+ is the nilradical of p. It can be

easily observed that p is the subalgebra of g generated by h′ and all the root spaces

gα with α ∈ ∆′ or−α ∈ ∆′∩Φ′(l). Moreover, we have u+ =
⊕

α∈(Φ′)+\(Φ′(l))+ CXα,

and p =
⊕

α∈∆′ CHα⊕ (
⊕

α∈Φ′(l)∪(Φ′)+ CXα). Since e is in (n′)+ by the preceding

discussion, sl2-representation theory yields that ge ⊆ p.

§7.3. Reduction to the rigid nilpotents: Theorem 1.4 and its proof

Now we can go into the main results of this section. Given a Lie superalgebra

gF over F = C or k = Fp with p � 0, note that we always have dim gC = dim gk,

and so do the subalgebras of gC and gk. Therefore, we will not distinguish between

them in the following discussion.

Proposition 7.6. For a basic Lie superalgebra g over C, let e be an even nilpotent

element in a parabolic subalgebra p of g, which is induced from an even nilpotent el-

ement e0 in a proper Levi subalgebra l. Define d := dim([l, l])1̄−dim([l, l]e0)1̄, where

[l, l]e0 denotes the centralizer of e0 in [l, l]. When d is even (resp. odd), if the finite

W -superalgebra U([l, l], e0) affords a one-dimensional (resp. two-dimensional) rep-
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resentation, then the finite W -superalgebra U(g, e) also admits a one-dimensional

(resp. two-dimensional) representation.

The above proposition is a generalization of [29, Theorem 3.1]. Compared

with the finite W -algebra case, we have to bypass the machinery of nilpotent

orbits for Lie superalgebras in the proof for the lack of related settings. Moreover,

the ramifications of the possible minimal dimension for the representations of finite

W -superalgebras in Conjecture 1.3 (which resulted from the parity of d) makes

the situation much more complicated. So we will still give the details of the proof.

Proof. (1) Let u+ be the nilradical of p such that p = l⊕ u+ as vector spaces. By

Proposition 7.2 one can assume that e = e0 +e1 for an element e1 ∈ u+. Retaining

all the settings in §7.2, we further assume that e, e0, e1 ∈ (gZ)0̄.

Let g =
⊕

α∈∆′ CHα ⊕ (
⊕

α∈Φ′ CXα) be the root space decomposition of g

associated with Φ′ such that all simple root vectors X±α ∈ gα (α ∈ ∆′), together

with all root vectors Xα ∈ gα (α ∈ Φ′) and the semisimple elements Hα ∈ h′

(α ∈ Φ′) generated by them, are in the Q-span of the vectors in the Chevalley

Z-form gZ, with e also being in the Q-span of the positive root vectors Xα ∈ gα
for α ∈ (Φ′)+. Set gQ =

⊕
α∈∆′ QHα ⊕ (

⊕
α∈Φ′ QXα). Denote by h′Q the Q-span

of all the vectors Hα ∈ h′ with α ∈ ∆′, and define lQ := h′Q ⊕ (
⊕

α∈Φ′(l) QXα).

Obviously h′Q and lQ are subalgebras of h′ and l, respectively. One can further

define the Q-subalgebras of u+ and p by

u+
Q :=

⊕
α∈(Φ′)+\(Φ′(l))+

QXα, pQ := lQ ⊕ u+
Q ,

respectively.

We claim that

[pQ, e] = [lQ, e0]⊕ u+
Q . (7.5)

(a) First recall that e = e0 + e1, where e0 ∈ l0̄, e1 ∈ u+
0̄

, and e0, e1 ∈ (gZ)0̄.

By the same discussion as in (7.1), one can show that

[pQ, e] ⊆ [lQ, e0]⊕ u+
Q (7.6)

as vector spaces.

(b) On the other hand, since the base vectors of g that we have chosen can

be written as the Q-span of the vectors in the Chevalley Z-form gZ of g, it follows

from sl2-representation theory that dimC ge = dimQ geQ and dimC le0 = dimQ le0Q .

As ge ⊆ p by Definition 7.1(2), combining this with Proposition 7.4(1), one can
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conclude that dimQ peQ = dimQ le0Q . Thus we have

dimQ [pQ, e] = dimQ pQ − dimQ peQ

= dimQ lQ − dimQ le0Q + dimQ u+
Q

= dimQ [lQ, e0] + dimQ u+
Q .

(7.7)

Then the claim (7.5) is an immediate corollary of (7.6) and (7.7).

(2) Recall that in §2.2.1 we introduced the admissible ring A. Enlarging A if

necessary, one can assume that all the base vectors of g given in step (1) (which

are in the Q-span of the vectors in the Chevalley Z-form gZ of g) are also in the

A-span of the Chevalley basis of g. Let gA, h′A, lA, u+
A, and pA be the A-span

of the corresponding base vectors that define gQ, h′Q, lQ, u+
Q and pQ in step (1),

respectively. Enlarging A further, we may assume [lA, e0] is a direct summand of

lA, and claim (7.5) shows that [pA, e] = [lA, e0]⊕ u+
A. As gk ∼= gA⊗A k (cf. §2.3.1),

one can further define h′
k
, lk, u+

k
, and pk in gk to be the modular counterparts of

h′A, lA, u+
A, and pA in gA, respectively. Define ē := e⊗A 1 and ē0 := e0 ⊗A 1; then

[pk, ē] = [lk, ē0]⊕ u+
k

for all p� 0.

Put χ0 := (ē0, ·) and χ := (ē, ·), which are the linear functions on lk and gk,

respectively. Note that χ vanishes on u+
k

and the restriction of χ to lk equals χ0.

Denote by z(lk) the center of lk in lk. Since lk is a Levi subalgebra of gk, we have

lk = [lk, lk]⊕ z(lk), and

Uχ0
(lk) ∼= Uχ0

([lk, lk])⊗k U0(z(lk)) (7.8)

as k-algebras. As Φ′(l) ⊆ Φ′ is the root system of lk, by knowledge of linear

algebras one can find an element s̄ in the Cartan subalgebra h′
k

of gk such that

gs̄
k

= lk, where gs̄
k

denotes the centralizer of s̄ in gk. Moreover, [lk, lk] is a direct

sum of basic Lie superalgebras, and z(lk) ⊆ h′
k

is a toral subalgebra of gk.

(i) Set dim z(lk) = k. As z(lk) is a toral subalgebra of gk with a basis

{t1, . . . , tk} such that t
[p]
i = ti for all 1 6 i 6 k, then U0(z(lk)) ∼= A⊗d1 where

A1
∼= k[X]/(Xp − X) is a p-dimensional commutative semisimple algebra whose

irreducible representations are one-dimensional. Hence the k-algebra U0(z(lk)) has

a one-dimensional representation; set it as W .

(ii) When

d = dim[l, l]1̄ − dim[l, l]e0
1̄

(7.9)

is even (resp. odd), the C-algebra U([l, l], e0) admits a one-dimensional (resp. two-

dimensional) representation by the assumptions in the proposition. Set

d′ := dim[l, l]0̄ − dim[l, l]e0
0̄
. (7.10)
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Since Proposition 6.1 holds for a direct sum of basic Lie superalgebras in the case

that all the p-characters associated with them are nilpotent (cf. [35, Remark 4.6]),

by the same discussion as the proof of Theorem 1.6 one can check that Theo-

rem 1.6 is also true in this situation. Thus the k-algebra Uχ0
([lk, lk]) affords a

representation of dimension p
d′
2 2b

d
2 c whether d is even or odd; set it as V .

Combining (i) and (ii), one can conclude that V �W is a representation of

the k-algebra Uχ0(lk) ∼= Uχ0([lk, lk])⊗k U0(z(lk)) with dimension p
d′
2 2b

d
2 c whether

d is even or odd; set this module as V ′. Write

d′0 := dim l0̄ − dim lē0
0̄
, d′1 := dim l1̄ − dim lē0

1̄
. (7.11)

Since lk = [lk, lk]⊕ z(lk) and z(lk) is the center of lk, it can be easily observed that

d′0 = d′ and d′1 = d by direct computation.

(3) For the Uχ0(lk)-module V ′, we may regard it as a Uχ(pk)-module with the

trivial action of u+
k

and consider the induced Uχ(gk)-module Ṽ := Uχ(gk)⊗Uχ(pk)

V ′. Set

d0 := dim g0̄ − dim ge0̄, d1 := dim g1̄ − dim ge1̄.

Since

dim gē
k

= dim lē0
k

by Proposition 7.4(1), we have

dim gk − dim gē
k

= dim gk − dim lē0
k

= 2dim u+
k

+ (dim lk − dim lē0
k

). (7.12)

It follows from (7.12) that d′1 and d1 have the same parity. Applying Proposi-

tion 7.4(1) again, it follows from the PBW theorem that

dim Ṽ = pdim(gk)0̄−dim(pk)0̄2dim(gk)1̄−dim(pk)1̄ · p d
′

2 2b
d
2 c

= p
dim(g

k
)0̄−dim(l

k
)0̄+dim(l

k
)0̄−dim(l

ē0
k

)0̄
2 2b

dim(g
k
)1̄−dim(l

k
)1̄+dim(l

k
)1̄−dim(l

ē0
k

)1̄
2 c

= p
dim(g

k
)0̄−dim(gē

k
)0̄

2 2b
dim(g

k
)1̄−(dim gē

k
)1̄

2 c

= p
d0
2 2b

d1
2 c.

Then Proposition 3.9 entails that the reduced W -superalgebra T (gk, ē) admits

one-dimensional (resp. two-dimensional) representations when d1 is even (resp.

odd). Since this holds for all p� 0, Lemma 4.6 (resp. Lemma 5.7) yields that the

finite W -superalgebra U(g, e) affords a one-dimensional (resp. two-dimensional)

representation when d1 is even (resp. odd). As d and d1 have the same parity, this

completes the proof.

Recall that in [29, Theorem 3.1], Premet reduced the problem of the existence

of one-dimensional representations of finite W -algebras to one with rigid elements.
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One may expect that Proposition 7.6 can play the same role for the representations

of finite W -superalgebras. In fact, this idea is indeed feasible. We put it as follows:

Retain all the notation introduced in Proposition 7.6 and its proof. Recall that

[lk, lk] is a direct sum of basic Lie superalgebras, and so is the Lie superalgebra [l, l]

over C. Set [l, l] =
⊕r

i=1 li, where li is a basic Lie superalgebra for each 1 6 i 6 r,
and let e0 = e1 + · · ·+er be the decomposition of e0 with each ei ∈ li for 1 6 i 6 r.
Write

(d0)i := dim(li)0̄ − dim(leii )0̄, (d1)i := dim(li)1̄ − dim(leii )1̄ (7.13)

for 1 6 i 6 r.
Retain the notation of (7.9), (7.10), and (7.13). As d′0 = d′ and d′1 = d, we

have d′0 =
∑r
i=1(d0)i and d′1 =

∑r
i=1(d1)i. For 1 6 i 6 r, denote by Uχi(li, ei)

the finite W -superalgebras over C associated with each pair (li, ei). By the same

discussion as in (6.13), one can conclude that

U([l, l], e0) ∼=
r⊗
i=1

U(li, ei) (7.14)

as C-algebras.

In order to reduce proving Conjecture 1.3 to the case of basic Lie superalgebras

with rigid nilpotent elements, we must start from the representations of the C-

algebras U(li, ei) for 1 6 i 6 r, instead of those of finite W -superalgebra U([l, l], e0)

associated with the direct sum of the li.

Now we will discuss the relationship between the representations of these

algebras. Based on the parity of d, we will consider each case separately.

(a) When d is even, applying (7.14) it can be easily verified that all the C-

algebras U(li, ei) for 1 6 i 6 r afford one-dimensional representations if and only if

the C-algebra U([l, l], e0) has a one-dimensional representation. Therefore, in this

case we have already achieved our goal just by applying Proposition 7.6.

Remark 7.7. Note that when l is a Lie algebra, we have d = 0. Thus the Lie

algebra case belongs to this situation.

(b) When d is odd, the situation becomes much more complicated. In fact,

we cannot just restrict all our attention to the odd case. The major difficulty

comes from the parities of the di for 1 6 i 6 r. What is more, even if all the

C-algebras U(li, ei) for 1 6 i 6 r afford two-dimensional representations, we still

cannot ensure that the C-algebra U([l, l], e0) has a two-dimensional representation

without careful inspection.

Now let us make further investigations of the case when d is odd. Recall that

gs̄
k

= lk = [lk, lk]⊕z(lk) by the proof of Proposition 7.6, and so do their counterparts
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over C, i.e., gs = l = [l, l]⊕ z(l). Then claim (6.22) shows that at most one of the

(d1)i is odd for 1 6 i 6 r. Without loss of generality, we can assume that (d1)1 is

odd, and all the (d1)i are even for 2 6 i 6 r. Since (d1)1 is odd, Proposition 3.7

yields that U(l1, e1) cannot afford a one-dimensional representation. If we assume

that the C-algebra U(l1, e1) has a two-dimensional representation, and each C-

algebra U(li, ei) for 2 6 i 6 r has a one-dimensional representation, by the same

discussion as step (2-ii) in the proof of Theorem 6.7 endowed with l = 1, one

can conclude from (7.14) that the C-algebra U([l, l], e0) has a two-dimensional

representation.

Now we can complete the proof Theorem 1.4, which follows from Proposi-

tion 7.6 and all the considerations as above.
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