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Kato’s Inequality for Magnetic Relativistic
Schrödinger Operators

by

Fumio Hiroshima, Takashi Ichinose and József Lőrinczi

Abstract

Kato’s inequality is shown for the magnetic relativistic Schrödinger operator HA,m de-
fined as the operator-theoretical square root of the self-adjoint, magnetic nonrelativistic
Schrödinger operator (−i∇−A(x))2 + m2 with an L2

loc vector potential A(x).
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§1. Introduction

Consider the magnetic relativistic Schrödinger operator

(1.1) HA,m :=
√

(−i∇−A(x))2 +m2

in d-dimensional space Rd with vector potential A(x) := (A1(x), . . . , Ad(x)) and

rest mass m ≥ 0, which may be thought of as a quantum Hamiltonian correspond-

ing to the classical relativistic Hamiltonian symbol
√

(ξ −A(x))2 +m2, (ξ, x) ∈
Rd × Rd. It is known that when A(x) is an Rd-valued function belonging to

[L2
loc(Rd)]d ≡ L2

loc(Rd;Rd), it becomes a self-adjoint operator in L2(Rd), which is

essentially self-adjoint on C∞0 (Rd) so that HA,m has a domain containing C∞0 (Rd)
as an operator core (see, e.g., [CFKiSi87, p. 9]). We shall assume that d ≥ 2,

since in the case d = 1 any magnetic vector potential can be removed by a gauge
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transformation. For A = 0 we put H0,m =
√
−∆ +m2, where −∆ is the minus-

signed Laplacian −
(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

)
, as well as a nonnegative self-adjoint operator

realized in L2(Rd) having the Sobolev space H2(Rd) as its domain.

The aim of this paper is to show Kato’s inequality for this magnetic relativistic

Schrödinger operator HA,m or HA,m −m, when A is an Rd-valued L2
loc-function

in Rd.

Theorem 1.1 (Kato’s inequality). Let m ≥ 0 and assume A ∈ [L2
loc(Rd)]d. If

u ∈ L2(Rd) with HA,mu ∈ L1
loc(Rd), then the following distributional inequality

holds:

(1.2) Re[(sgnu)HA,mu] ≥ H0,m|u|,
or

(1.3) Re[(sgnu)[HA,m −m]u] ≥ [H0,m −m]|u|.

Here sgn is a bounded function in Rd defined by

(sgnu)(x) =

{
u(x)/|u(x)| if u(x) 6= 0,

0 if u(x) = 0.

Note here that HA,mu with u ∈ L2(Rd) makes sense as a distribution in Rd

(for this, see Lemma 2.2 with α = 1 and a few lines after its proof). A character-

istic feature in this situation is that HA,m is a nonlocal operator defined by the

operator-theoretical square root of a nonnegative self-adjoint operator. It is not a

differential operator, and neither an integral operator nor a pseudo-differential op-

erator associated with a certain tractable symbol. The point that becomes crucial

is how to go without knowledge on the regularity of the weak solution u ∈ L2(Rd)
of equation HA,mu = f for a given f ∈ L1

loc(Rd). Thus the present inequal-

ity (1.2)/(1.3) differs from an abstract form of Kato’s inequality such as in [Si77]

by being substantially sharp.

An immediate corollary is the following theorem, which is already known

(e.g., [FLSei08, HILo12]; cf. [I93]).

Theorem 1.2 (Diamagnetic inequality). Let m ≥ 0 and assume A ∈ [L2
loc(Rd)]d.

Then it holds that for f, g ∈ L2(Rd),

(1.4) |(f, e−t[HA,m−m]g)| ≤ (|f |, e−t[H0,m−m]|g|).

Once Theorem 1.1 is established, we can apply it to show the following theo-

rem on essential self-adjointness of the relativistic Schrödinger operator with both

vector and scalar potentials A(x) and V (x):

(1.5) HA,V,m := HA,m + V.
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Theorem 1.3. Let m ≥ 0, assume that A ∈ [L2
loc(Rd)]d and let V ∈ L2

loc(Rd) with

V (x) ≥ 0 a.e. Then HA,V,m = HA,m + V is essentially self-adjoint on C∞0 (Rd)
and its unique self-adjoint extension is bounded below by m.

We shall show inequality (1.2)/(1.3), basically following the idea and method of

Kato’s original proof in [K72] for the magnetic nonrelativistic Schrödinger operator
1
2 (−i∇−A(x))2. As a matter of fact, we follow the method of proof modified for the

existing form of Kato’s inequality in [I89, ITs92] for another magnetic relativistic

Schrödinger operator, which is defined as a Weyl pseudo-differential operator as-

sociated with the same relativistic classical symbol
√

(ξ −A(x))2 +m2. However,

this is not sufficient, and we need further modifications using operator theory, since

pseudo-differential calculus does not seem useful. Starting from the assumption of

the theorem that u ∈ L2 and HA,mu ∈ L1
loc, it appears to be impossible to show the

regularity of u such that ∂ju ∈ L1
loc, 1 ≤ j ≤ d, and/or H0,mu ∈ L1

loc, which may

be due to the fact that the operators ∂j ·(−∆+m2)−1/2, 1 ≤ j ≤ d are not bounded

from L1 to L1, though they are bounded from L1 to weak L1-space. Therefore we

make a detour by going via the case of the fractional power (HA,m)α with α < 1.

Verifying that the assumption implies that (HA,m)αu ∈ L1
loc for 0 < α < 1, we

show the asserted inequality first for the case 0 < α < 1, i.e., inequality (1.2)/(1.3)

with the pair HA,m , H0,m replaced by the pair (HA,m)α, (H0,m)α, respectively,

and then for the case α = 1, appealing to the fact, to be shown, that (HA,m)αu

converges to HA,mu in L1
loc as α ↑ 1. The proof is presented separately according

to m > 0 and m = 0, in a self-contained manner.

A comment is in order on our starting assumption for u, namely, why the

theorem is formulated with the assumption that u ∈ L2 and HA,mu ∈ L1
loc, but

not that both u and HA,mu are L1
loc. For this question, recall that the original form

of Kato’s inequality for nonrelativistic Schrödinger operators 1
2 (−i∇ − A(x))2 is

formulated under the assumption that both u and 1
2 (−i∇−A(x))2u are L1

loc. The

answer is simply because of avoiding inessential complexity coming from the fact

that HA,m is a nonlocal operator.

The relativistic Schrödinger operator H0,m =
√
−∆ +m2 without vector po-

tential was first considered in [W74, He77] for spectral problems. The magnetic

relativistic Schrödinger operator HA,m like (1.1) is used to study problems re-

lated to “stability of matter” in relativistic quantum mechanics in [LSei10]. On

the other hand, the problem of representing the relativistic Schrödinger semi-

group with generator HA,m by a path integral has also been studied. A result is a

formula of Feynman–Kac–Itô type (cf. [Si279/05]), earlier in [DeRiSe91, DeSe90]

and also in [N00], which has recently been extensively studied in [HILo12, HILo13]

(cf. [LoHBe11]). The problem is connected with a Lévy process obtained by subor-
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dinating Brownian motion ([Sa99, Ap04/09]). A weaker version of Kato’s inequality

as well as the diamagnetic inequality was given in our paper [HILo12], to which

the present work adds further results.

In Section 2 we give some technical lemmas that will be used in the proof of

theorems. They concern some basic inequalities in L2 and Lp connected with the

semigroups and/or inverse (resolvent) for the magnetic nonrelativistic (but not

relativistic) Schrödinger operator (−i∇ − A)2 + m2, which is the square of our

magnetic relativistic Schrödinger operator HA,m. For the sake of regularization of

HA,m, its fractional powers (HA,m)α with 0 < α < 1 are also considered through

the semigroup of the magnetic nonrelativistic Schrödinger operator to estimate,

in a local L1-norm, a kind of difference, being a distance in a particular sense,

between (HA,m)α and (H0,m)α, each applied to a function.

In Section 3 we prove the theorems. Section 4 is to make concluding remarks

about how the issue is going with the other two magnetic relativistic Schrödinger

operators associated with the same symbol. Appendix A provides an explicit ex-

pression of the integral kernel (heat kernel) of the semigroup e−t[(H0,m)α−mα] for

the free fractional power (H0,m)α together with the density (function) of the

associated Lévy measure nm,α(dy). For basic facts on the magnetic relativistic

Schrödinger operator, we refer, e.g., to [LLos01, BE11].

Finally, we note that we have defined the fractional powers of HA,m mainly

through the magnetic nonrelativistic Schrödinger semigroup. However, an alterna-

tive way is to define them through the Dunford integral via the resolvent of the

magnetic nonrelativistic Schrödinger operator.

§2. Technical lemmas

Throughout this paper, we denote by (·, ·) the Hilbert space inner product which

is sesquilinear, i.e., conjugate-linear in the first argument and linear in the second

(the physicist’s convention), and by 〈·, ·〉 the bilinear inner product which is linear

in both the arguments.

Our main concern is the operator HA,m := [(−i∇−A)2 +m2]1/2 in (1.1) with

the assumption that A ∈ [L2
loc(Rd)]d, which is a self-adjoint operator in L2(Rd)

defined as the square root of the nonnegative self-adjoint (Schrödinger) operator

(−i∇ − A)2 + m2 in L2(Rd). For m = 0, HA,0 = | − i∇ − A|. Among them, the

following identity holds:

‖HA,mu‖2L2 =
(
u, (HA,m)2u

)
=
(
u, [(−i∇−A)2 +m2]u

)
=
∑d

j=1
‖(−i∂j −Aj)u‖2L2 +m2‖u‖2L2 = ‖HA,0u‖2L2 +m2‖u‖2L2 ,(2.1)
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with u ∈ C∞0 (Rd) for all five expressions and with u in the domain of HA,m

for the first, fourth and fifth expressions. The nonrelativistic Schrödinger opera-

tor (−i∇ − A)2 + m2 concerned is the self-adjoint operator associated with this

quadratic form (2.1), which has C∞0 (Rd) as a form core (e.g., [CFKiSi87, 1.3,

pp. 8–9]). As a result, HA,m has C∞0 (Rd) as an operator core; in other words,

HA,m is a nonnegative self-adjoint operator in L2(Rd) having domain D[HA,m] :=

{u ∈ L2(Rd); (i∂j+Aj)u ∈ L2(Rd), ∂j := ∂/∂xj , 1 ≤ j ≤ d}, being essentially self-

adjoint on C∞0 (Rd). Though i∇+A ≡ (i∂1 +A1, . . . , i∂d+Ad) is a closed linear op-

erator of [L2(Rd)]d into itself with domain D[i∇+A] := {(u1, . . . , ud) ∈ [L2(Rd)]d;
(i∂j +Aj)u ∈ L2(Rd), ∂j := ∂/∂xj , 1 ≤ j ≤ d}, we will also slightly abuse notation

to write the first term of the fourth expression of (2.1) as ‖(−i∇−A)u‖2L2 .

For the proof of Theorem 1.1, however, we need to consider HA,m on Lp-

spaces also, and moreover, the fractional powers (HA,m)α, 0 < α < 1 of HA,m.

The aim of this section is to derive some estimates that will be used below.

As for the constant m, unless otherwise stated, we assume in this section that

m > 0, and keep assuming it in Section 3 also, until we come to consider the case

that includes m = 0 at the final stage of the proof of Theorem 1.1. Therefore, in

the case m > 0, the operator HA,m has bounded inverse (HA,m)−1, and [(−i∇−
A)2 +m2] has bounded inverse [(−i∇−A)2 +m2]−1 as well.

§2.1. Some inequalities related to magnetic nonrelativistic

Schrödinger operators on Lp

The operators HA,m may be considered not only in L2 but also in Lp, 1 ≤ p <∞,

in particular, for p = 1. The square of HA,m becomes a magnetic nonrelativistic

Schrödinger operator (−i∇ − A)2 + m2. Some basic inequalities are given that

are related to the magnetic nonrelativistic Schrödinger semigroup e−t(HA,m)2 and

inverse (resolvent) ((HA,m)2)−1 on Lp, though not with the magnetic relativistic

Schrödinger semigroup e−tHA,m and inverse (resolvent) (HA,m)−1. They will be

useful throughout the paper.

To begin with, we recall the notation to be used throughout:

(HA,m)2 = (−i∇−A)2 +m2, (HA,0)2 = (−i∇−A)2,

(H0,m)2 = −∆ +m2, (H0,0)2 = −∆.

Lemma 2.1. Assume A ∈ [L2
loc(Rd)]d. Then the following inequalities hold.

(i) Let 1 ≤ p ≤ ∞. For m ≥ 0,

‖e−t(HA,m)2‖Lp→Lp ≤ ‖e−t(H0,m)2‖Lp→Lp ≡ ‖e−t(−∆+m2)‖Lp→Lp

≤ e−m
2t ≤ 1, t > 0.
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For m > 0 and β > 0,

‖((HA,m)2)−β‖Lp→Lp ≤ ‖((H0,m)2)−β‖Lp→Lp , t > 0.

(ii) Let 1 ≤ p < ∞. The operators e−t(H0,0)2(−i∇) and e−t(H0,0)2(−∆) can be

extended to be bounded operators on [Lp(Rd)]d and Lp(Rd):

‖e−t(H0,0)2(−i∇)‖[Lp]d→[Lp]d ≤ C1pt
−1/2,

‖e−t(H0,0)2(−∆)‖Lp→Lp ≤ C2pt
−1, t > 0,

with constants C1p > 0 and C2p independent of t.

(iii) Let m ≥ 0. The operators HA,me
−(HA,m)2 and (HA,m)2e−t(HA,m)2 can be

extended to be bounded operators on L2(Rd):

‖HA,me
−t(HA,m)2‖L2→L2 ≤ (2et)−1/2,

‖(HA,m)2e−t(HA,m)2‖L2→L2 ≤ (et)−1, t > 0.

(iv) The operators e−t(−i∇−A)2(i∇+A) and (i∇+A)e−t(−i∇−A)2 can be extended

to be bounded operators on [L2(Rd)]d:

‖e−t(−i∇−A)2(i∇+A)‖[L2]d→[L2]d ≤
(
d

2et

)1/2
,

‖(i∇+A)e−t(−i∇−A)2‖[L2]d→[L2]d ≤
(
d

2et

)1/2
, t > 0.

Assertion (ii) of Lemma 2.1 may be an Lp-version of (iii) or (iv) above, though

only for the special case of the minus-signed Laplacian −∆ without vector poten-

tial A(x).

Proof of Lemma 2.1. (i) This is due to the ingenious observation given for the

magnetic nonrelativistic Schrödinger operator (−i∇−A(x))2 with A∈L2
loc in [Si79,

Thm. 2.3, p. 40], [Si82, Sec. B13, p. 490], since (HA,m)2 = (−i∇−A(x))2 +m2 is

nothing but a magnetic (nonrelativistic) Schrödinger operator plus the constant

m2. Following the arguments there we have, for 1 ≤ p < ∞ and for every u ∈
C∞0 (Rd),

|e−t(HA,m)2u| ≤ e−t(H0,m)2 |u| = e−m
2te−t(−∆)|u|, pointwise a.e.,

so that e−(HA,m)2Lp(Rd) ⊆ L∞(Rd) ∩ Lp(Rd). In fact, for u ∈ Lp(Rd),

‖e−t(HA,m)2u‖Lp ≤ e−m
2t‖e−t(−∆)|u|‖Lp ≤ e−m

2t‖u‖Lp ≤ ‖u‖Lp , t ≥ 0.

Thus we can consider e−t(HA,m)2 also as a bounded linear operator mapping Lp(Rd)
into itself. Moreover, it is seen to be a contraction semigroup. We may use the



Kato’s Inequality 85

notation (HA,m)2, HA,m also to mean operators (HA,m)2
p, (HA,m)p in Lp when

there is no risk of confusion. Furthermore, for the crucial assertion (i), we refer

to [Si82, Cor. B.13.3, p. 491].

(ii) In fact, e−t(−∆) becomes a holomorphic semigroup on Lp(Rd), 1 ≤ p <∞,

for Re t > 0. Then for any f ∈ Lp(Rd), v(t) := e−t(−∆)f gives a unique solution

of the heat equation ∂
∂tv(t) = ∆v(t) (see, e.g., [K76, IX.§1.8, p. 495] and [K76,

IX.§1.6, Rem. 1.22, p. 492]). This implies that e−t(−∆) has range in the domain

D[(−∆)] of (−∆), equivalently that te−t(−∆)(−∆) is uniformly bounded from

Lp(Rd) into itself for real t > 0, and so is t1/2e−t(−∆)(−i∂j) for each j = 1, 2, . . . , d.

(iii) For functions in L2, the assertions are evident by the spectral theorem,

because (HA,m)2 and HA,m are nonnegative self-adjoint operators in the Hilbert

space L2(Rd). Indeed, it is easy to see that for u ∈ C∞0 (Rd),

‖e−t(HA,m)2HA,mu‖2L2 = (u, (HA,m)2e−2t(HA,m)2u)

≤ sup
λ≥0

λe−2tλ‖u‖2L2 = (2et)−1‖u‖2L2 ,

‖e−t(HA,m)2(HA,m)2u‖2L2 = (u, (HA,m)4e−2t(HA,m)2u)

≤ sup
λ≥0

λ2e−2tλ‖u‖2L2 = (et)−2‖u‖2L2 .

This shows (iii).

(iv) These inequalities follow from (ii). Indeed, for the first one, since

‖e−t(−i∇−A)2(i∇+A)ϕ‖2L2 :=

d∑
j=1

‖e−t
∑d
k=1(−i∂k−Ak)2(i∂j +Aj)ϕj‖2L2

for ϕ = (ϕ1, . . . , ϕd) ∈ [C∞0 (Rd)]d, we have only to show that for each j,

‖e−t(−i∇−A)2(i∂j +Aj)ϕj‖2L2 ≤ (2et)−1‖ϕj‖2L2 .

This is seen as follows: For m > 0, we have by (ii),

‖e−t(−i∇−A)2(i∂j +Aj)ϕj‖2L2 = e2m2∥∥[e−tH
2
A,mHA,m][H−1

A,m((i∂j +Aj)
2+m2)1/2]

× [((i∂j +Aj)
2 +m2)−1/2(i∂j +Aj)]ϕj

∥∥2

L2

≤ e2m2

(2et)−1
∥∥[H−1

A,m((i∂j +Aj)
2 +m2)1/2]

× [((i∂j +Aj)
2 +m2)−1/2(i∂j +Aj)]ϕj

∥∥2

L2

≤ e2m2

(2et)−1‖ϕj‖2L2 .

Letting m ↓ 0, we have the result.

The second result is shown similarly. This shows (iv), ending the proof of

Lemma 2.1.
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Remark. The nontriviality of assertion (ii) of this lemma lies in that i∇+A does

not commute with the operator (i∇+A(x))2 =
∑d
j=1(i∂j +Aj(x))2 or (HA,m)2.

§2.2. Estimate of a kind of difference between (HA,m)α and (H0,m)α in

a local L1-norm

In this subsection, we consider the operators given by the fractional powers

(HA,m)α := [(−i∇ − A)2 + m2]α/2, 0 < α ≤ 1, and provide several lemmas to

estimate in a local L1-norm a kind of difference between (HA,m)α and (H0,m)α,

each applied to a function u. They are needed to prove Theorem 1.1. Of course,

the case for α = 1 turns out to be our operator itself: (HA,m)1 ≡ HA,m =

[(−i∇−A)2 +m2]1/2.

Given a positive self-adjoint operator S in a Hilbert space L2(Rd) with domain

D[S], we adopt the following definition of its fractional powers Sα, suggested from

the identity for the gamma function Γ(β), s−β = 1
Γ(β)

∫∞
0
tβ−1e−st dt with t > 0

and 0 < β ≤ 1: for 0 ≤ α < 1,

Sαu = S−(1−α) · Su =
1

Γ(1− α)

∫ ∞
0

t−αe−tS Sudt, u ∈ D[S].

We shall use these formulas, taking for S the nonrelativistic Schrödinger op-

erator [(−i∇ − A)2 + m2] = (HA,m)2 and/or [−∆ + m2] = (H0,m)2, but not the

relativistic Schrödinger operator HA,m and/or H0,m. Thus for f ∈ L2(Rd),

(HA,m)−βf = [(−i∇−A)2 +m2]−β/2f

=
1

Γ(β2 )

∫ ∞
0

tβ/2−1e−t[(−i∇−A)2+m2]f dt (0 < β ≤ 2),(2.2)

and similarly for (H0,m)−β ≡ [−∆ + m2]−β/2 in the case A = 0. Therefore, for

u ∈ C∞0 (Rd), we have

(HA,m)αu = [(−i∇−A)2 +m2]α/2u

=
1

Γ( 2−α
2 )

∫ ∞
0

t(2−α)/2−1e−t[(−i∇−A)2+m2][(−i∇−A)2 +m2]u dt

=
1

Γ( 2−α
2 )

∫ ∞
0

t−α/2e−t(HA,m)2(HA,m)2u dt, (0 ≤ α < 2),(2.3)

for u in the domain of (HA,m)2, and similarly for (H0,m)α ≡ [−∆ +m2]α/2 in the

case A = 0. Here note that HA,m/H0,m, as well as S = (−i∇−A)2 +m2/ (−∆ +

m2), has bounded inverse, since we are assuming in this section that m > 0. It may

be instructive to recognize that, for 0 < α < 1, the last integral of (2.3) exists not
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only for u ∈ D[(HA,m)2] but also for u ∈ D[HA,m], because by Lemma 2.1(iii),

t−α/2‖e−t(HA,m)2(HA,m)2u‖L2 ≤ t−α/2‖e−t(HA,m)2HA,m‖ ‖HA,mu‖L2

= O(t−(1+α)/2).

Lemma 2.2. Let 0 < α ≤ 1. Assume that A ∈ [L2
loc(Rd)]d. If ϕ ∈ C∞0 (Rd), then

(HA,m)αϕ ∈ L2(Rd). In fact, it holds for every compact subset K in Rd that

(2.4)

‖(HA,m)αϕ‖L2 ≤ |K|1/2
[
((m2+1)1/2+1)+‖ |A| ‖L2(K)

] [
‖∇ϕ‖L∞(K)+‖ϕ‖L∞(K)

]
,

for all ϕ ∈ C∞0 (Rd) with suppϕ ⊆ K, where |K| denotes the volume (Lebesgue

measure) of K.

Proof. Let ϕ ∈ C∞0 (Rd) with suppϕ ⊆ K. Then for 0 < α ≤ 1, we have

‖(HA,m)αϕ‖2L2 =
(
ϕ, (HA,m)2αϕ

)
=
(
ϕ, [(−i∇−A)2 +m2]αϕ

)
≤
(
ϕ, [(−i∇−A)2 +m2 + 1]αϕ

)
≤
(
ϕ, [(−i∇−A)2 +m2 + 1]ϕ

)
= ‖(−i∇−A)ϕ‖2L2 + (m2 + 1)‖ϕ‖2L2

= ‖HA,(m2+1)1/2ϕ‖2L2 .(2.5)

Here for the first term of the second-to-last line recall our informal notation men-

tioned after (2.1). Hence,

‖(HA,m)αϕ‖L2 ≤ ‖∇ϕ‖L2 + ‖Aϕ‖L2 + (m2 + 1)1/2‖ϕ‖L2

≤ |K|1/2‖∇ϕ‖L∞(K) + ‖ |A| ‖L2(K)‖ϕ‖L∞(K)

+ (m2 + 1)1/2|K|1/2‖ϕ‖L∞(K) <∞,

which is finite by assumption on A and ϕ. This shows the desired assertion.

By this lemma, for 0 < α ≤ 1 we can define a distribution (HA,m)αu for

u ∈ L2(Rd) by

〈 (HA,m)αu, φ 〉 = 〈u, (H−A,m)αφ 〉 =

∫
(u(H−A,m)αφ)(x) dx,

or

( (HA,m)αu, φ ) = (u, (HA,m)αφ ) =

∫
(ū(HA,m)αφ)(x) dx,

for φ ∈ C∞0 (Rd), because, for every compact set K in Rd, we have

|( (HA,m)αu, φ )| = |(u, (HA,m)αφ )| ≤ ‖u‖L2‖(HA,m)αφ‖L2
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≤ ‖u‖L2

[
(|K|1/2((m2 + 1)1/2 + 1)) + ‖ |A| ‖L2(K)

]
×
[
‖∇φ‖L∞(K) + ‖φ‖L∞(K)

]
,

for all φ ∈ C∞0 (Rd) with suppφ ⊆ K. This says that (HA,m)αu is a continuous

linear functional on C∞0 (Rd), and thus a distribution on Rd.

Next, we study some properties of (HA,m)α in the case A ≡ 0, namely,

(H0,m)α ≡ (−∆ + m2)α/2, 0 < α ≤ 1. This is the α
2 -power of the nonnegative

self-adjoint operator H0,m ≡ −∆ + m2 on L2(Rd) or also a pseudo-differential

operator defined through Fourier transform having the symbol (|ξ|2 + m2)α/2.

The function ξ 7→ (|ξ|2 + m2)α/2 − mα is conditionally negative definite in Rd

(e.g., [ReSi78, App. 2 to XIII.12, pp. 212–222], [IkW81/89, p. 65]), so that, for

each fixed t > 0, the function e−t[(|ξ|
2+m2)α/2−mα] is positive definite. We note

that this is a specific case of a Bernstein function, providing the kinetic term of

more general nonlocal Schrödinger operators that we studied in [HILo12].

As a result, its Fourier transform is a nonnegative function for each t > 0,

which is nothing but the integral kernel km,α0 (t, x) of the semigroup e−t[(H0,m)α−mα]

satisfying
∫
Rd k

m,α
0 (t, x)dx = 1. Furthermore, we see that the operator (H0,m)αu,

say with u ∈ C∞0 (Rd), has an integral operator representation:

((H0,m)αu)(x) ≡ ([−∆ +m2]α/2u)(x) ≡ (F−1(|ξ|2 +m2)α/2Fu)(x)

= mαu(x)−
∫
|y|>0

[u(x+ y)− u(x)− I{|y|<1} y · ∇xu(x)]nm,α(dy),(2.6)

where nm,α(dy) is a σ-finite measure on Rd \ {0} depending on m ≥ 0 and 0 <

α ≤ 1, called Lévy measure, that satisfies
∫
|y|>0

|y|2
1+|y|2n

m,α(dy) < ∞. The Lévy

measure is known [IkW62, Exa. 1, p. 81] to be given from km,α0 (t, x) through

(2.7)
1

t
km,α0 (t, dy) → nm,α(dy), t ↓ 0.

In our case, it has density nm,α(dy) = nm,α(y) dy.

For the expressions for the integral kernel km,α0 (t, x) of e−t[(H0,m)α−mα] and

the density function nm,α(y), see Appendix A, (A.2). For α = 1, they are explicitly

given (e.g., [I89, (2.4ab), (2.2ab), pp. 268–269], [LLos01, 7.11 (11)]) as

km,10 (t, x) =

2
(
m
2π

)(d+1)/2 temtK(d+1)/2(m(x2+t2)1/2)

(x2+t2)(d+1)/4 , m > 0,

Γ
(
d+1
2

)
π(d+1)/2

t
(x2+t2)(d+1)/2 , m = 0,

(2.8)

nm,1(y) =

2
(
m
2π

)(d+1)/2 K(d+1)/2(m|y|)
|y|(d+1)/2 , m > 0,

Γ
(
d+1
2

)
π(d+1)/2

1
|y|d+1 , m = 0,

(2.9)
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where Kν(τ) is the modified Bessel function of the third kind of order ν, which

satisfies 0 < Kν(τ) ≤ C max{τ−ν , τ−1/2}e−τ , τ > 0 with a constant C > 0 when

ν ≥ 1
2 .

For our later use, let us calculate the commutator
[
(HA,m)2, ψ

]
with ψ ∈

C∞0 (Rd). Here, for two operators U and V , their commutator is denoted by [U, V ]

:= UV − V U . We have[
(HA,m)2, ψ

]
= (−i∇−A)2ψ − ψ(−i∇−A)2

= (i∇+A)(i∇ψ) + (i∇ψ)(i∇+A)(2.10a)

= [(∆ψ) + 2(i∇+A)(i∇ψ)] or [(−∆ψ) + 2(i∇ψ)(i∇+A)],(2.10b)

as quadratic forms, i.e., for suitable functions u, v on Rd,(
u,
[
(HA,m)2, ψ

]
v
)

=
(
(i∇ψ)(i∇+A)u, v

)
+
(
u, (i∇ψ)(i∇+A)v

)
=
(
u, (∆ψ)v

)
+ 2
(
u, (i∇+A)(i∇ψ)v

)
or
(
u, (−∆ψ)v

)
+ 2
(
u, (i∇ψ)(i∇+A)v

)
.

Here, note that [i∇ + A,ψ]v = (i∇ψ)v, as well as [i∇ + A, (i∇ψ)]v = (−∆ψ)v.

In fact, it holds more generally with two Rd-valued functions A and B that for a

function v in Rd,

[(HA,m)2ψ − ψ(HB,m)2]v = (i∇+A)
(
(i∇ψ) + ψA

)
v

+
(
(i∇ψ)− ψB

)
(i∇+B)v

+ ψA(i∇v)− i∇(ψBv).

(2.11)

Indeed, the left-hand side of (2.11) can be seen to be equal to[
(−i∇−A)2ψ − ψ(−i∇−B)2]v

=
[
(i∇+A)(i∇+A)ψ − ψ(i∇+B)(i∇+B)]v

= (i∇+A)
[(

(i∇ψ) + ψA
)
v +

(
i∇(ψv)− (i∇ψ)v

)]
+
[(

(i∇ψ)− ψB
)
−
(
ψ(i∇) + (i∇ψ)

)]
(i∇+B)v

= (i∇+A)
(
(i∇ψ) + ψA

)
v + (i∇+A)(ψi∇v)

+
(
(i∇ψ)− ψB

)
(i∇+B)v − i∇

(
ψ(i∇+B)v

)
= (i∇+A)

(
(i∇ψ) + ψA

)
v +

(
(i∇ψ)− ψB

)
(i∇+B)v

+ ψA(i∇v)− i∇(ψBv).

This shows (2.11). Taking B = A in (2.11) yields (2.10a), which implies (2.10b).

For the next lemma, we briefly mention the weak L1-space L1
w(X), given a

measurable subset X of Rd. It is by definition the linear space of all measurable
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functions f on X such that

(2.12) ‖f‖L1
w

:= sup
a>0

a |{x ∈ X; |f(x)| > a}|

is finite, where |Y | denotes the volume (Lebesgue measure) of the measurable set

Y ⊆ Rd. Note that L1
w(X) is not a Banach space, because ‖f‖L1

w
is not a norm but

a quasi-norm, as it does not satisfy the triangle inequality. However, it holds that

‖f+g‖L1
w
≤ 2(‖f‖L1

w
+‖g‖L1

w
). It is shown that L1

w(X) is a quasi-normed complete

linear space (see, e.g., [G10, Def. 1.1.5, pp. 5–6]). We have ‖f‖L1
w
≤ ‖f‖L1 , so that

L1(X) ⊆ L1
w(X). If fn → f in L1

w, then the {fn} converges to f in measure

(e.g., [G10, Prop. 1.1.9, p. 7]). We say “f is locally in L1
w”, if for every compact

set K in Rd, f belongs to L1
w(K). In some literature L1

w(X) may also be denoted

by L1,∞(X) (Lorentz space).

Lemma 2.3. Let 0 < α ≤ 1. Let ψ ∈ C∞0 (Rd). Then, for the commutator

[(H0,m)α, ψ], with a constant Cα dependent on ψ and α but independent of m ≥ 0,

it holds that

(i) for 1 < p <∞,

(2.13) ‖[(H0,m)α, ψ]u‖Lp = ‖(H0,m)α(ψu)− ψ(H0,m)αu‖Lp ≤ Cα‖u‖Lp ,

for all u ∈ Lp(Rd). Therefore if both u and (H0,m)α(ψu) are in Lp, then

ψ(H0,m)αu is in Lp, and

‖ψ(H0,m)αu‖Lp ≤ Cα‖u‖Lp + ‖(H0,m)α(ψu)‖Lp ;

(ii) for p = 1,

(2.14) ‖[(H0,m)α, ψ]u‖L1
w

= ‖(H0,m)α(ψu)− ψ(H0,m)αu‖L1
w
≤ Cα‖u‖L1 ,

for all u ∈ L1(Rd).

Remark. Inequality (2.13) does not hold for p = 1, and instead we have (2.14)

with the L1-norm on the left-hand side replaced by the L1
w-quasi-norm. This is

dependent on the Calderón–Zygmund theorem (for this see Proposition 2.4 below).

Proof of Lemma 2.3. (i) As the second-half assertion follows from the first, i.e.,

inequality (2.13), we have only to show (2.13), and even only for u ∈ C∞0 (Rd),
since C∞0 (Rd) is dense in L2(Rd). The proof for the case α = 1 was given in [ITs92,

p. 274, Lem. 2.3] by using the integral operator representation (2.6) of H0,m =√
−∆ +m2. The proof for the case 0 < α < 1 is similar. So we give only an outline.
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Use (2.6) to rewrite [(H0,m)α, ψ] as

([(H0,m)α, ψ]u)(x)

= −
∫
|y|>0

[ψ(x+ y)− ψ(x)− I{|y|<1}y · ∇xψ(x)]u(x+ y)nm,α(dy)

−
∫

0<|y|<1

y · ∇xψ(x)[u(x+ y)− u(x)]nm,α(dy)

=: (I1u)(x) + (I2u)(x).(2.15)

We estimate the Lp-norms of I1u and I2u in the last line.

First, rewrite I1u as

(I1u)(x) = −
∫

0<|y|<1

[ψ(x+ y)− ψ(x)− I{|y|<1}y · ∇xψ(x)]u(x+ y)nm,α(dy)

−
∫
|y|≥1

[ψ(x+ y)− ψ(x)]u(x+ y)nm,α(dy).

Hence

|(I1u)(x)| ≤ ‖∇2ψ‖L∞
∫

0<|y|<1

|y|2|u(x+ y)|nm,α(dy)

+ 2‖ψ‖L∞
∫
|y|>1

|u(x+ y)|nm,α(dy),

so that for 1 ≤ p <∞,

‖I1u‖Lp =
(∫
|(I1u)(x)|pdx

)1/p

≤
(
nm,α1 ‖∇2ψ‖L∞ + 2nm,α∞ ‖ψ‖L∞

)
‖u‖Lp ,

where

(2.16) nm,α∞ :=

∫
|y|≥1

nm,α(dy), nm,ακ :=

∫
0<|y|<1

|y|1+κnm,α(dy),

where the former is finite, and the latter is finite for all 0 < κ ≤ 1.

Next, for I2u we use the following known fact for an operator T on Lp(Rd) with

Calderón–Zygmund kernel K : Rd \ {0} → C (e.g., [St70, II.3, pp. 35–42], [G10,

Thm. 5.3.3, p. 359], [MSc13, Def. 7.1, Prop. 7.4, Thm. 7.5, pp. 166–172]). It is the

integral kernel that satisfies, for some constant B > 0, the following conditions:

(i) |K(x)| ≤ B|x|−d for all x ∈ Rd;
(ii)

∫
|x|≥2|y| |K(x)−K(x− y)| dx ≤ B for all y 6= 0;

(iii)
∫
R1<|x|<R2

K(x) dx = 0 for all 0 < R1 < R2 <∞.
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Proposition 2.4. Let

(Tf)(x) := lim
ε↓0

∫
|x−y|≥ε

K(x− y)f(y) dy.

Then

‖Tf‖Lp ≤ Cp‖f‖Lp , 1 < p <∞,
‖Tf‖L1

w
≡ sup

a>0
a
∣∣{x ∈ Rd; |(Tf)(x)| > a}

∣∣ ≤ C1‖f‖L1 , p = 1.

This proposition is going to be used just in the proof of Lemma 2.3(i).

We continue the proof of Lemma 2.3(i). It still remains to deal with I2u, which

is rewritten as

(I2u)(x) = −
d∑
j=1

lim
ε↓0

∫
ε≤|y|<1

∂xjψ(x) (xj − yj)nm,α(x− y)u(y) dy.

Here each xj · nm,α(x), 1 ≤ j ≤ d, is a Calderón–Zygmund kernel (see Appendix

A, (A.2)), so that we have by Proposition 2.4 with 1 ≤ p <∞ that there exists a

constant Cp > 0 such that

‖I2u‖Lp ≤ Cp‖∇ψ‖L∞‖u‖Lp , 1 < p <∞,
‖I2u‖L1

w
= supa>0 a

∣∣{x ∈ Rd; |(I2u)(x)| > a}
∣∣ ≤ C1‖∇ψ‖L∞‖u‖L1 , p = 1.

Thus we obtain

‖[(H0,m)α, ψ]u‖Lp ≤ ‖I1u‖Lp + ‖I2u‖Lp
≤
(
nm,α1 ‖∇2ψ‖L∞ + 2nm,α∞ ‖ψ‖L∞ + Cp‖∇ψ‖L∞

)∥∥u‖Lp ,
showing (i) for 1 < p <∞.

Next, for (ii) for p = 1, we have

‖[(H0,m)α, ψ]u‖L1
w
≤ 2
(
‖I1u‖L1

w
+ ‖I2u‖L1

w

)
≤ 2‖I1u‖L1 + 2‖I2u‖L1

w

≤ 2
(
nm,α1 ‖∇2ψ‖L∞ + 2nm,α∞ ‖ψ‖L∞ + C1‖∇ψ‖L∞

)∥∥u‖L1 ,

because ‖I1u‖L1
w
≤ ‖I1u‖L1 . This shows (ii), ending the proof of Lemma 2.3.

When A ∈ L2
loc, our self-adjoint operator S := (−i∇−A)2 +m2 was originally

defined as the self-adjoint operator in L2(Rd) associated with the closed quadratic

form (2.1). As already noted in the proof of Lemma 2.1(i), it also makes sense as an

operator in the spaces Lp(Rd), 1 ≤ p <∞, referring to the results [Si79, Thm. 2.3]

or [Si82, Sec. B13] that the Schrödinger semigroup e−tS = e−t[(−i∇−A)2+m2] sat-

isfies

(2.17) |e−t[(−i∇−A)2+m2]g| ≤ e−t[−∆+m2]|g|
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pointwise for any g ∈ L2(Rd). This yields that for 1 ≤ p < ∞, e−t(HA,m)2 is a

bounded operator of Lp(Rd) into itself for all t > 0, which also is a contraction

semigroup.

Thus, the fractional powers of S such as S
α
2 = (HA,m)α in (2.3) make equal

sense in Lp(Rd).

Now, we give two crucial Lemmas 2.5 and 2.6.

Lemma 2.5. Let 0 < α < 1 and assume that A ∈ [L2
loc(Rd)]d. Then

(i) if u ∈ L2(Rd), one has for χ, ψ ∈ C∞0 (Rd),

‖χ[(H0,m)αψ − ψ(HA,m)α]u‖L1

≡
∥∥χ([−∆ +m2]α/2ψ − ψ[(−i∇−A)2 +m2]α/2

)
u
∥∥
L1

≤ Cα,A,m,χ,ψ‖u‖L2 ,(2.18)

where Cα,A,χ,ψ is a constant that depends on 0 < α < 1, A, m > 0, χ and

ψ, and that tends to ∞ as α ↑ 1;

(ii) in particular, when A = 0, (2.18) reads, if u ∈ L2(Rd), one has

(2.19) ‖χ[(H0,m)α, ψ]u‖L1 ≤ Cα,0,m,χ,ψ‖u‖L2 .

For A = 0, inequality (2.19) appears more useful in comparison with (2.14).

Proof of Lemma 2.5. (i) We have only to show (2.18) when u ∈ C∞0 (Rd), since

C∞0 (Rd) is dense in L2(Rd). Note then that H0,mu and HA,mu belong to L2(Rd).
We use formula (2.3) for (H0,m)α as well as (HA,m)α to calculate

[(H0,m)αψ − ψ(HA,m)α]u

=
1

Γ( 2−α
2 )

∫ ∞
0

t−α/2
[
e−t(H0,m)2(H0,m)2ψ − ψ(HA,m)2e−t(HA,m)2

]
u dt

=
1

Γ( 2−α
2 )

∫ ∞
0

dt t−α/2
(
− d

dt

)[
e−θt(H0,m)2ψe−(1−θ)t(HA,m)2

]θ=1

θ=0
u

= − 1

Γ( 2−α
2 )

∫ ∞
0

dt t−α/2
d

dt

∫ 1

0

dθ
d

dθ

[
e−θt(H0,m)2ψe−(1−θ)t(HA,m)2

]
u

=
1

Γ( 2−α
2 )

∫ ∞
0

dt t−α/2

× d

dt

(
t

∫ 1

0

dθ
[
e−θt(H0,m)2

[
(H0,m)2ψ − ψ(HA,m)2

]
e−(1−θ)t(HA,m)2

]
u
)
.
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Then by integration by parts,

[(H0,m)αψ − ψ(HA,m)α]u

=
1

Γ( 2−α
2 )

(2.20a)

×

[
t−(α/2)+1

∫ 1

0

(
e−θt(H0,m)2

[
(H0,m)2ψ − ψ(HA,m)2

]
e−(1−θ)t(HA,m)2

)
u dθ

]t=∞
t=0

+
α

2Γ( 2−α
2 )

×
∫ ∞

0

dt t−α/2
∫ 1

0

dθ
(
e−θt(H0,m)2

[
(H0,m)2ψ − ψ(HA,m)2

]
e−(1−θ)t(HA,m)2

)
u

=
α

2Γ( 2−α
2 )

(2.20b)

×
∫ ∞

0

dt t−α/2
∫ 1

0

dθ
(
e−θt(H0,m)2

[
(H0,m)2ψ − ψ(HA,m)2

]
e−(1−θ)t(HA,m)2

)
u.

Here we make two observations related to (2.20). First for (2.20a), the boundary

value at t→∞ of the first term also vanishes, because the part

e−θt(H0,m)2
[
· · ·
]
e−(1−θ)t(HA,m)2 = e−θt(−∆+m2)

[
· · ·
]
e−(1−θ)t[(−i∇−A)2+m2]

contains the factor e−m
2t. Second for (2.20b), note that the middle factor in the

integrand is, by (2.11) with A := 0, B := A, equal to

(2.21) [(H0,m)2ψ − ψ(HA,m)2] =
[
i∇
(
(i∇ψ)− ψA

)
+
(
(i∇ψ)− ψA

)
(i∇+A)

]
as quadratic forms.

Substituting (2.21) into (2.20), we have with χ ∈ C∞0 (Rd),

χ[(H0,m)αψ − ψ(HA,m)α]u

=
α

2Γ( 2−α
2 )

∫ ∞
0

dt t−α/2
∫ 1

0

dθ χ
(
e−θt(H0,m)2i∇

(
(i∇ψ)− ψA

)
e−(1−θ)t(HA,m)2

)
u

+
α

2Γ( 2−α
2 )

∫ ∞
0

dt t−α/2

×
∫ 1

0

dθ χ
(
e−θt(H0,m)2

(
(i∇ψ)− ψA

)
(i∇+A) e−(1−θ)t(HA,m)2

)
u

=: I3u+ I4u.

(2.22)
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We estimate the L1-norm for I3u and I4u in (2.22). Note that e−t(−i∇−A)2 , t ≥ 0

is a contraction on Lp(Rd), 1 ≤ p ≤ ∞.

First, for I3u, integrate its absolute value in x to get

‖I3u‖L1 ≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

∫ 1

0

dθ

×
∥∥χ[e−θt(−∆)(i∇)]

(
(i∇ψ)− ψA

)
e−(1−θ)t(−i∇−A)2u

∥∥
L1 .(2.23)

Then by Lemma 2.1(ii) for p = 1, the Schwarz inequality and Lemma 2.1(i) we

obtain

‖I3u‖L1 ≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

∫ 1

0

dθ‖χ‖L∞‖e−θt(−∆)(i∇)‖[L1]d→[L1]d

× ‖
(
(i∇ψ)− ψA

)
e−(1−θ)t(−i∇−A)2u

∥∥
L1→[L1]d

≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

∫ 1

0

dθ

× ‖χ‖L∞C11(θt)−1/2‖(i∇ψ)− ψA‖L2 ‖e−(1−θ)t(−i∇−A)2u‖L2

≤ C11α

2Γ( 2−α
2 )

∫ ∞
0

t−(1+α)/2e−m
2tdt

∫ 1

0

dθ

θ1/2
‖χ‖L∞‖(i∇ψ)− ψA‖L2‖u‖L2 .

Here recall that ‖(i∇ψ)− ψA
∥∥
L2 <∞ by assumption on A and notice also that∫ ∞

0

t−(1+α)/2e−m
2tdt = Γ( 1−α

2 )m−(1−α)/2,

which diverges as α ↑ 1 with m > 0. Thus we have

‖I3u‖L1 ≤
C11αΓ( 1−α

2 )

Γ( 2−α
2 )m(1−α)/2

∥∥(i∇ψ)− ψA
∥∥
L2‖χ‖L∞

∥∥u∥∥
L2 .(2.24)

Next for I4u, in a similar way, we have from (2.22)

‖I4u‖L1 ≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

∫ 1

0

dθ
∥∥χ(e−θt(−∆)

(
(i∇ψ)− ψA

)
× [(i∇+A) e−(1−θ)t(−i∇−A)2 ]

)
u‖L1 .(2.25)

Then by the Schwarz inequality and Lemma 2.1(iv),

‖I4u‖L1 ≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

∫ 1

0

dθ‖χ‖L∞‖e−θt(−∆)‖L1→L1

× ‖
(
(i∇ψ)− ψA

)
[(i∇+A) e−(1−θ)t(−i∇−A)2 ]

)
u‖L1
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≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

×
∫ 1

0

dθ‖χ‖L∞‖e−θt(−∆)‖L1→L1‖(i∇ψ)− ψA‖L2

× ‖(i∇+A) e−(1−θ)t(−i∇−A)2 ]u‖L2

≤ α

2Γ( 2−α
2 )

∫ ∞
0

t−α/2e−m
2tdt

×
∫ 1

0

dθ‖χ‖L∞‖(i∇ψ)− ψA‖L2

( d

2e(1− θ)

)1/2

‖u‖L2

=
( d

2e

)1/2 α

2Γ( 2−α
2 )

∫ ∞
0

t−(1+α)/2e−m
2tdt

×
∫ 1

0

dθ

(1− θ)1/2
‖χ‖L∞‖(i∇ψ)− ψA‖L2‖u‖L2 .

Then we have

(2.26) ‖I4u‖L1 ≤
( d

2e

)1/2 αΓ( 1−α
2 )

Γ( 2−α
2 )m(1−α)/2

∥∥(i∇ψ)−ψA
∥∥
L2‖χ‖L∞‖χ‖L∞‖u‖L2 .

Putting (2.24) and (2.26) together in view of (2.22), we have

‖χ[(H0,m)αψ − ψ(HA,m)α]u‖L1

≤ 2
(
‖I3u‖L1 + ‖I4u‖L1

)
≤ 2

C11 +
(
d
2e

)1/2
m(1−α)/2

αΓ( 1−α
2 )

Γ( 2−α
2 )

∥∥(i∇ψ)− ψA
∥∥
L2‖χ‖L∞

∥∥u∥∥
L2 .(2.27)

This yields (2.18), showing Lemma 2.5(i).

(ii) Inequality (2.19) is immediately derived by putting A = 0 in (2.18).

This shows Lemma 2.5(ii), completing the proof of Lemma 2.5.

From Lemma 2.5 we have the following result that we shall need, particularly

assertion (ii), in the proof of Theorem 1.1.

Lemma 2.6. Let 0 < α < 1. Assume that A ∈ [L2
loc(Rd)]d.

(i) If u ∈ (C∞ ∩ L2)(Rd), then (HA,m)αu is locally in L1(Rd).
(ii) If u ∈ L2(Rd) with (HA,m)αu ∈ L1

loc(Rd), then (H0,m)αu is locally in L1(Rd).

Proof. (i) Let u ∈ (C∞ ∩ L2)(Rd). Then for ψ ∈ C∞0 (Rd),

ψ(HA,m)αu = (H0,m)α(ψu) +
(
ψ(HA,m)α − (H0,m)αψ

)
u.
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Put K = suppψ. Then, since ψu is in C∞0 (Rd), the first term (H0,m)α(ψu) on

the right-hand side belongs to L2(Rd), as we can see from (2.6) (with ψu instead

of u) or Lemma 2.2, (2.4) with A = 0 (with ψu instead of ϕ). For the second

term restricted to K, it belongs to L1(K), as we can see by Lemma 2.5, (2.18).

Therefore ψ(HA,m)αu is in L1(K), so that (HA,m)αu is locally in L1(Rd). This

proves assertion (i).

(ii) Let u ∈ L2 with (HA,m)αu ∈ L1
loc and let K be an arbitrary compact

subset of Rd. Take χ, ψ ∈ C∞0 (Rd) with 0 ≤ χ(x) ≤ 1 such that χ(x) = ψ(x) = 1

on K. Then since

ψ(H0,m)αu− ψ(HA,m)αu = −[(H0,m)α, ψ]u+
(
(H0,m)αψ − ψ(HA,m)α

)
u,

we have by Lemma 2.5, (2.18) with A = 0 as well as with nonzero A,

‖(H0,m)αu− ψ(HA,m)αu‖L1(K)

= ‖χψ[(H0,m)αu− (HA,m)αu]‖L1(K)

≤ ‖χ[(H0,m)α, ψ]u‖L1 + ‖χ
(
(H0,m)αψ − ψ(HA,m)α

)
u‖L1

≤ (Cα,0,m,χ,ψ + Cα,A,m,χ,ψ)‖u‖L2 <∞.

Since, by assumption, (HA,m)αu is locally in L1(Rd), we have that (H0,m)αu

is locally L1(Rd). This proves assertion (ii), ending the proof of Lemma 2.6.

§3. Proof of the theorems

We show only Theorem 1.1 and Theorem 1.2. As for Theorem 1.3, the essential

self-adjointness of HA,V,m follows from Theorem 1.1 by its standard application in

Kato’s original paper [K72]. In fact, it can be shown in the same way as in [I89,

Thm. 5.1]. So the proof is omitted. The assertion that HA,V,m = HA,m + V ≥ m

is trivial because HA,m ≥ m.

In this section, we continue to assume that m > 0 until we come to the final

part (iii) of the proof of Theorem 1.1.

§3.1. Proof of Theorem 1.1

The proof will proceed similarly to Kato’s original proof [K72] (e.g., [ReSi75,

Thms. X.27 (p. 183), X.33 (p. 188)]) for the magnetic nonrelativistic Schrödinger

operator 1
2m (−i∇−A(x))2 and to a modified one [I89, ITs92] for another magnetic

relativistic Schrödinger operator. However, if one could show the assumption of

the theorem that u ∈ L2 with HA,mu ∈ L1
loc implies that ∂ju ∈ L1

loc, 1 ≤ j ≤ d,

and/or H0,mu ∈ L1
loc , there should be no problem. The obstruction seems to come
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from the fact that the operators ∂j · (−∆ +m2)−1/2, 1 ≤ j ≤ d are not bounded

from L1 to L1, though they are bounded from L1 to L1
w. The strategy we adopt

to cope with this difficulty is, at the beginning, to make a detour by considering

the case (HA,m)α for α < 1, leaving the case α = 1 aside, in order to handle local

convergence in L1. In fact, in the first stage (Lemmas 3.1 and 3.2), we show first

that if (HA,m)αu ∈ L1
loc, then (HA,m)αuδ → (HA,m)αu locally in L1 as δ ↓ 0, and

making use of Lemma 2.6 saying that (H0,m)αu is locally in L1. Next we show

that the assumption HA,mu ∈ L1
loc implies that (HA,m)αu ∈ L1

loc for 0 < α < 1,

and (HA,m)αu converges to HA,mu in L1
loc as α ↑ 1. In the second and main stage,

with m > 0, we show first for 0 < α < 1 that the asserted inequality, i.e.,

(3.1) Re((sgnu)[(HA,m)α −mα]u) ≥ [(H0,m)α −mα]|u|,

holds, and next for α = 1, using the just-mentioned fact that (HA,m)αu→ HA,mu

in L1
loc as α ↑ 1. The final stage will deal with the remaining case for m = 0 and

α = 1.

We provide two lemmas playing a crucial role in the proof of Theorem 1.1.

For a function f locally in L1(Rd), we write its mollifier as fδ = ρδ ∗ f ,

0 < δ ≤ 1, where ρδ(x) := δ−dρ(x/δ), and ρ(x) is a nonnegative C∞ function Rd

with compact support supp ρ ⊆ {x; |x| ≤ 1} and
∫
ρ(x)dx = 1.

Lemma 3.1. Let 0 < α < 1. Let u ∈ L2(Rd), so that uδ := ρδ ∗ u → u in L2

as δ ↓ 0. If (HA,m)αu ∈ L1
loc(Rd), then (HA,m)αuδ = [(−i∇− A)2 + m2]α/2uδ →

(HA,m)αu = [(−i∇−A)2 +m2]α/2u locally in L1(Rd) as δ ↓ 0.

Proof. Let u ∈ L2 and (HA,m)αu ∈ L1
loc(Rd). Then by Lemma 2.6(ii), (H0,m)αu is

locally in L1 and since uδ ∈ C∞∩L2, we have by Lemma 2.6(i) that (HA,m)αuδ is

locally in L1. The important point is that, thanks to the integral operator repre-

sentation (2.6) of the operator (H0,m)α, the convolution commutes with (H0,m)α.

Therefore we have ((H0,m)αu)δ = (H0,m)αuδ, which converges to (H0,m)αu lo-

cally in L1 as δ ↓ 0. Then for a compact subset K in Rd, let χ, ψ ∈ C∞0 (Rd) with

0 ≤ χ(x) ≤ 1 on Rd and χ(x) = ψ(x) = 1 on K. We have

‖(HA,m)αuδ − (HA,m)αu‖L1(K)

= ‖χψ(HA,m)α(uδ − u)‖L1(K)

= ‖χ
[
− (H0,m)αψ +

(
(H0,m)αψ − ψ(HA,m)α

)]
(uδ − u)‖L1(K)

≤ ‖χ(H0,m)αψ(uδ − u)‖L1 + ‖χ[(H0,m)αψ − ψ(HA,m)α](uδ − u)‖L1 .
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The second term in the last line of the above inequality is, by Lemma 2.5, (2.18),

estimated from above by Cα,A,m,χ,ψ‖uδ − u‖L2 . The first term is equal to

‖χ
(
[(H0,m)α, ψ] + ψ(H0,m)α

)
(uδ − u)‖L1

≤ ‖χ[(H0,m)α, ψ](uδ − u)‖L1 + ‖χψ[(H0,m)αuδ − (H0,m)αu]‖L1

≤ Cα,0,m,χ,ψ‖uδ − u‖L2 + ‖((H0,m)αu)δ − (H0,m)αu‖L1 ,

where, for the first term, we have used Lemma 2.5, (2.19) for A = 0, and for the

second the fact that (H0,m)αuδ = ((H0,m)αu)δ because, by assumption, (H0,m)αu

is locally in L1 and u ∈ L2. It follows that

‖(HA,m)αuδ − (HA,m)αu‖L1(K) ≤ Cα,0,m,χ,ψ‖uδ − u‖L2

+ ‖ψ‖L∞‖((H0,m)αu)δ − (H0,m)αu‖L1

+ Cα,A,m,χ,ψ‖uδ − u‖L2 ,

which approaches zero as δ ↓ 0. This proves Lemma 3.1.

Lemma 3.2. Let 0 < α ≤ 1. Let u ∈ L2(Rd) and HA,mu ∈ L1
loc(Rd). Then

(HA,m)αu = [(−i∇−A)2+m2]α/2u is also in L1
loc(Rd), and {(HA,m)αu} converges

to HA,mu in L1
loc(Rd) as α ↑ 1. Namely, for any ψ ∈ C∞0 (Rd), ‖ψ(HA,m)αu‖L1

is uniformly bounded for 0 < α ≤ 1, and {ψ(HA,m)αu} converges to ψHA,mu in

L1(Rd) as α ↑ 1.

Proof. Let 0 < α < 1. To begin with, suppose with ψ ∈ C∞0 (Rd) that some

u ∈ L2(Rd) satisfies the equality

(3.2) ψ(HA,m)αu = (HA,m)−(1−α)ψHA,mu+ [ψ, (HA,m)−(1−α)]HA,mu.

This holds at least if u ∈ D[HA,m], and hence, in particular, if u = φ ∈ C∞0 (Rd).
Note here that (HA,m)α has D[HA,m] as an operator core, while HA,m has C∞0 (Rd)
as an operator core.

Now, let u ∈ L2(Rd) with HA,mu ∈ L1
loc(Rd), just what is assumed by

Lemma 3.2. The first term on the right-hand side of (3.2) is in L1(Rd), since by

Lemma 2.1(i) with p = 1, (HA,m)−(1−α) is a bounded operator that is a contrac-

tion mapping L1(Rd) into L1(Rd), bounded uniformly for 0 < α ≤ 1 and strongly

continuous there, so long as m > 0. The term on the left-hand side of (3.2) exists

as a distribution. The second term on the right-hand side lies in the dual space of

the space D[HA,m], considered as a Hilbert space equipped with the graph norm

‖v‖2L2 + ‖HA,mv‖2. Here recall (2.1) and note that for φ ∈ C∞0 (Rd),

‖(HA,m)αφ‖L2 = ‖(HA,m)−(1−α)HA,mφ‖L2 ≤ ‖HA,mφ‖L2 .
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Thus all the three terms on the left- and right-hand sides of (3.2) exist also as

distributions.

To show the assertion of the lemma, take a C∞ cutoff function χ with compact

support, a similar one of which has already been used, such that 0 ≤ χ(x) ≤ 1 in Rd

with χ(x) = 1 on suppψ. As ψ = χψ holds, so does ψ(HA,m)αu = χψ(HA,m)αu.

Then consider (3.2) multiplied by χ, i.e.,

(3.3) ψ(HA,m)αu = χ (HA,m)−(1−α)ψHA,mu+ χ [ψ, (HA,m)−(1−α)]HA,mu.

The first term on the right of (3.2) (and hence (3.3)) converges to ψHA,mu as α ↑ 1,

since (HA,m)−(1−α) is an operator on L1(Rd), bounded uniformly for 0 < α ≤ 1

and strongly continuous there, so long as m > 0. So we have only to show the

second term of (3.3), i.e., χ[ψ, (HA,m)−(1−α)]HA,mu lies in L1(Rd), being uniformly

bounded, and converges to 0 in L1 as α ↑ 1.

Use formula (2.2) to rewrite this second term on the right of (3.3) as

χ[ψ, (HA,m)−(1−α)]HA,mu

=
1

Γ( 1−α
2 )

∫ ∞
0

dt t((1−α)/2)−1 χ
[
ψe−t(HA,m)2 − e−t(HA,m)2ψ

]
HA,mu

= − 1

Γ( 1−α
2 )

∫ ∞
0

dt t−(1+α)/2 χ

∫ 1

0

dθ
d

dθ

[
e−θt(HA,m)2ψe−(1−θ)t(HA,m)2

]
HA,mu

=
1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2
[
(HA,m)2, ψ

]
e−(1−θ)t(HA,m)2HA,mu.

(3.4)

Recall identity (2.10b) for the commutator
[
(HA,m)2, ψ

]
, in fact, the first of the two

expressions there, and substitute it into the
[
(HA,m)2, ψ

]
in the last line of (3.4).

Then

χ[ψ, (HA,m)−(1−α)]HA,mu

=
1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθ χ e−θt(HA,m)2(∆ψ) e−(1−θ)t(HA,m)2HA,mu

+
2

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθ χ e−θt(HA,m)2

× (i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu

=: I5u+ I6u.

(3.5)

We estimate the L1-norms of I5u and I6u in (3.5).
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First for I5u, integrate its absolute value in x; then we have by the Schwarz

inequality

‖I5u‖L1

≤ 1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθ
∥∥χ e−θt(HA,m)2(∆ψ) e−(1−θ)t(HA,m)2HA,mu

∥∥
L1

≤ 1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθ
∥∥χ∥∥

L2

×
∥∥e−θt(HA,m)2 (∆ψ) e−(1−θ)t(HA,m)2HA,mu

∥∥
L2

≤ 1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθ
∥∥χ∥∥

L2

∥∥e−θt(HA,m)2
∥∥
L2→L2

×
∥∥∆ψ

∥∥
L∞

∥∥e−(1−θ)t(HA,m)2HA,m

∥∥
L2→L2

∥∥u∥∥
L2

≤ 1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθ
∥∥χ∥∥

L2e
−(m2/2)θt∥∥e−(θt/2)(HA,m)2

∥∥
L2→L2

×
∥∥∆ψ

∥∥
L∞

e−(m2/2)(1−θ)t∥∥e−((1−θ)t/2)(HA,m)2HA,m

∥∥
L2→L2

∥∥u∥∥
L2 .

Then by Lemma 2.1(iii) we have the bound

‖I5u‖L1

≤ 1

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2e−(m2/2)t
∫ 1

0

dθ
∥∥χ∥∥

L2‖∆ψ
∥∥
L∞

( 1

2e( 1−θ
2 )t

)1/2∥∥u∥∥
L2

≤ 1

Γ( 1−α
2 )

∫ ∞
0

dt t−α/2e−(m2/2)t (2e)−1/2

∫ 1

0

dθ

( 1−θ
2 )1/2

∥∥χ∥∥
L2‖∆ψ

∥∥
L∞

∥∥u∥∥
L2

≤ 23/2(2e)−1/2 Γ
(

2−α
2

)
Γ
(

1−α
2

)( 2

m2

)(2−α)/2∥∥χ∥∥
L2

∥∥∆ψ
∥∥
L∞

∥∥u∥∥
L2 .

(3.6)

Next for I6u, we are going to show a similar bound,

(3.7) ‖I6u‖L1 ≤ 4π(2e)−1/2 Γ
(

2−α
2

)
Γ
(

1−α
2

)( 2
m2

)(2−α)/2
Cχ,A

∥∥∇ψ∥∥
L∞

∥∥u∥∥
L2 ,

with a constant, depending only on χ and A,

(3.8) Cχ,A :=
[
‖∇χ‖2L2 +m2‖χ‖2L2 + ‖χA‖2L2

]1/2
,

which is bounded since A ∈ L2
loc(Rd). The proof is to integrate the absolute value

of I6u in x to get

‖I6u‖L1 ≤ 2

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2

∫ 1

0

dθXA,m(t, θ;χ, ψ, u),(3.9)
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where we put

XA,m(t, θ;χ, ψ, u) =
∥∥χ e−θt(HA,m)2(i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu

∥∥
L1 .

(3.10)

Somewhat crucial is the estimate of XA,m(t, θ;χ, ψ, u) in (3.10) which we are going

to do, where the parentheses
(
·, ·
)

below stand for the L2 inner product:

XA,m(t, θ;χ, ψ, u)

=
∣∣(χ, e−θt(HA,m)2(i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu

)∣∣
=
∣∣(χ, e−θt(HA,m)2HA,m · (HA,m)−1(i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu

)∣∣
=
∣∣(e−θt(HA,m)2HA,m χ, (HA,m)−1(i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu

)∣∣
≤
∥∥e−θt(HA,m)2HA,m χ‖L2

∥∥(HA,m)−1(i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu
∥∥
L2 .

(3.11)

In the last line of (3.11), the first factor and the second are estimated as follows:∥∥e−θt(HA,m)2HA,m χ‖L2 ≤ e−m
2θt
∥∥HA,mχ

∥∥
L2

= e−m
2θt

[ d∑
j=1

‖(i∂j +Aj)χ‖2L2 +m2‖χ‖2L2

]1/2

≤ e−m
2θt
[
‖∇χ‖2L2 + ‖χA‖2L2 +m2‖χ‖2L2

]1/2
= e−m

2θt Cχ,A ;(3.12)

∥∥(HA,m)−1(i∇+A)(i∇ψ)e−(1−θ)t(HA,m)2HA,mu
∥∥
L2

≤
∥∥(HA,m)−1(i∇+A)

∥∥
L2→L2

∥∥(i∇ψ)
∥∥
L∞

∥∥e−(1−θ)t(HA,m)2HA,m

∥∥
L2→L2

∥∥u∥∥
L2

≤
∥∥∇ψ∥∥

L∞
e−(m2/2)(1−θ)t∥∥e−((1−θ)t/2)(HA,m)2HA,m

∥∥
L2→L2

∥∥u∥∥
L2

≤
∥∥∇ψ∥∥

L∞
e−(m2/2)(1−θ)t

( 1

2e (1−θ)t
2

)1/2∥∥u∥∥
L2 .

(3.13)

In (3.12) and (3.13) we have used (2.1), Lemma 2.1(iii) and the estimate∥∥(HA,m)−1(i∇+A)
∥∥
L2→L2 ≤ 1. From (3.12) and (3.13) we obtain

‖I6u‖L1

≤ 2

Γ( 1−α
2 )

∫ ∞
0

dt t(1−α)/2e−(m2/2)t
∫ 1

0

dθ
( 1

2e (1−θ)t
2

)1/2

Cχ,A
∥∥∇ψ∥∥

L∞

∥∥u∥∥
L2
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≤ 2

Γ( 1−α
2 )

∫ ∞
0

dt t−α/2e−(m2/2)t
∫ 1

0

dθ

(1− θ)1/2
(2e)−1/2Cχ,A

∥∥∇ψ∥∥
L∞

∥∥u∥∥
L2 ,

the last line of which yields (3.7) with (3.8).

Thus, taking (3.5) into account and putting together (3.6) and (3.7), we see

the L1-norm of the second term on the right-hand side of (3.3) is estimated as

‖χ[ψ, (HA,m)−(1−α)]HA,mu‖L1

≤ ‖I5u‖L1 + ‖I6u‖L1

≤
Γ
(

2−α
2

)
Γ
(

1−α
2

)( 2

m2

)(2−α)/2

×
[
23/2(2e)−1/2

∥∥χ∥∥
L2

∥∥∆ψ
∥∥
L2 + 4π(2e)−1Cχ,A‖∇ψ‖L∞

]
‖u‖L2 .(3.14)

Since the last line of (3.14) tends to zero as α ↑ 1, because Γ(z) ↑ ∞ as z ↓ 0 and

hence 1
Γ( 1−α

2 )
→ 0 as α ↑ 1, we see the left-hand side is uniformly bounded for

0 < α < 1, and convergent to zero as α ↑ 1. This shows the desired assertion of

Lemma 3.2.

Now we are in a position to prove Theorem 1.1.

Completion of proof of Theorem 1.1.

As (1.2) and (1.3) are equivalent, we have only to show (1.3). The proof is

divided into three parts:

(i) the case where m > 0 and 0 < α < 1,

(ii) the case where m > 0 and α = 1,

(iii) the case where m = 0 and α = 1.

(i) The case where m > 0 and 0 < α < 1. We prove this in two steps: first

step (i-I) for u ∈ (C∞ ∩ L2)(Rd), and next step (i-II) for general u ∈ L2 with

(HA,m)αu ∈ L1
loc.

(i-I) For u ∈ (C∞ ∩ L2)(Rd) (0 < α < 1).

For a function v(x) ∈ C∞(Rd) and ε > 0, put vε(x) =
√
|v(x)|2 + ε2. Then

note that vε(x) ≥ ε, and, since vε(x)2 = |v(x)|2 + ε2, we have

(3.15) − |v(x)||v(x+ y)|+ |v(x)|2 ≥ −vε(x)vε(x+ y) + vε(x)2.

Then we will show that uε =
√
|u|2 + ε2, ε > 0, satisfies

(3.16) Re[u(x)([(HA,m)α −mα]u)(x)] ≥ uε(x)
(
[(H0,m)α −mα], (uε − ε)

)
(x),
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pointwise a.e., which amounts to the same thing as

(3.17) Re

[
u(x)

uε(x)
([(HA,m)α −mα]u)(x)

]
≥
(
[(H0,m)α −mα](uε − ε)

)
(x),

pointwise a.e., and thus in the distribution sense. Here note that the function uε−ε
is nonnegative, C∞, and has the same compact support as u.

We show (3.16) or (3.17) first for u ∈ C∞0 (Rd) and then for u ∈ (C∞∩L2)(Rd).
To do so, we employ analogous arguments to those used in [I93, p. 223, Lem. 2]

for the case α = 1, i.e., for HA,m − m. We will use the same notation S as in

Section 2 for the self-adjoint operator (−i∇−A(x))2 +m2 in L2(Rd), which may

be considered as the magnetic nonrelativistic Schrödinger operator with mass 1
2

with constant scalar potential m2. Then we have HA,m = S1/2. Since the domain

of HA,m includes C∞0 (Rd) as the operator core, the operator [HA,m −m]u can be

written as s-limt↓0t
−1
(
1−e−t[HA,m−m]

)
u. It is known from the theory of fractional

powers of a linear operator (see, e.g., [Y78, IX, 11, pp. 259–261]) that the semigroup

e−t[(HA,m)α−mα] with generator (HA,m)α = Sα/2 is obtained from the semigroup

e−tS with generator S as

(3.18) e−t[(HA,m)α−mα]u =

{
em

αt
∫∞

0
ft,α/2(λ)e−λSu dλ, t > 0,

u, t = 0,

where for t > 0 and 0 < α ≤ 1, ft,α/2(λ) is a nonnegative function of exponential

growth in λ ∈ R given by

(3.19) ft,α/2(λ) =

{
(2πi)−1

∫ σ+i∞
σ−i∞ ezλ−tz

α/2

dz, λ ≥ 0,

0, λ < 0,

with σ > 0, where the branch of zα/2 is so taken that Re zα/2 > 0 for Re z > 0.

In passing, we note that equation (3.18) is valid even for 1 < α < 2, though we do

not need this case in the present paper.

We continue our preceding arguments and recall that |e−tSu| ≤ e−t[−∆+m2]|u|
pointwise a.e., what is referred to in (2.17). It follows with (3.18), (3.19), that

|e−t[(HA,m)α−mα]u| ≤ em
αt

∫ ∞
0

ft,α/2(λ)|e−λSu| dλ

≤ em
αt

∫ ∞
0

ft,α/2(λ)e−λ(−∆+m2)|u| dλ

= e−t[(H0,m)α−mα]|u|,(3.20)
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pointwise a.e. Hence for t > 0,

(3.21)

Re
[
u(x)

(1− e−t[(HA,m)α−mα]

t
u
)

(x)
]
≥ |u(x)|

(1− e−t[(H0,m)α−mα]

t
|u|
)

(x),

pointwise a.e. Now put nm,α(t, y) := 1
t k
m,α
0 (t, y), taking account of the rela-

tion (2.7) between the integral kernel km,α0 (t, y) of e−t[(H0,m)α−mα] and the density

(function) nm,α(y) of the Lévy measure.

Then we see by (2.6), that the right-hand side of (3.21) is equal to

|u(x)|
∫
|y|>0

[|u(x)| − |u(x+ y)|] k
m,α
0 (t, y)

t
dy

= −
∫
|y|>0

[
|u(x)||u(x+ y)| − |u(x)|2

]
nm,α(t, y) dy

≥ −
∫
|y|>0

[
uε(x)uε(x+ y)− uε(x)2

]
nm,α(t, y) dy

= uε(x)
[
−
∫
|y|>0

[
uε(x+ y)− uε(x)− I{|y|<1}y · ∇uε(x)

]
nm,α(t, y) dy

]
,

for every ε > 0, where we have used (3.15) and the y-rotational invariance of

km,α0 (t, y) or nm,α(t, y). Notice that the integral
[
−
∫
|y|>0

. . .
]

in the last line is

equal to that with (uε − ε) in place of uε, i.e.,(1− e−t[(H0,m)α−mα]

t
(uε − ε)

)
(x).

Thus we have from (3.21),

(3.22)

Re
[
u(x)

(1− e−t[(HA,m)α−mα]

t
u
)

(x)
]
≥ uε(x)

(1− e−t[(H0,m)α−mα]

t
(uε − ε)

)
(x).

Then letting t ↓ 0 on both sides of (3.22), we obtain (3.16). Indeed, recalling

that the function uε − ε has compact support, the right-hand side tends to that

of (3.16). For the left-hand side, since u is in the domain of (HA,m)α − mα, we

have t−1[1 − e−t[(HA,m)α−mα]]u → [(HA,m)α −mα]u in L2, and pointwise a.e. by

passing to a subsequence. This shows (3.16)/(3.17) for u ∈ C∞0 (Rd).

Next we show (3.16)/(3.17) when u ∈ (C∞∩L2)(Rd). Take a sequence {un} ∈
C∞0 (Rd) such that un → u in (C∞ ∩ L2)(Rd), i.e., in the topology of C∞(Rd) as

well as in the norm of L2(Rd), as n→∞. Then from the case u ∈ C∞0 (Rd) above,

we have for all ε > 0,

Re

[
un(x)

un,ε(x)

(
[(HA,m)α −mα]un

)
(x)

]
≥
(
[(H0,m)α −mα](un,ε − ε)

)
(x),
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pointwise, and hence for any ψ ∈ C∞0 (Rd) with ψ(x) ≥ 0,

Re

〈
ψ,

un
un,ε

(
[(HA,m)α −mα]un

)〉
≥
〈
ψ, [(H0,m)α −mα](un,ε − ε)

〉
for all ε > 0. Here the bilinear inner product 〈·, ·〉 is an integral with respect to the

Lebesgue measure dx, and also considered as the bilinear inner product between the

dual pair of the test functions and the distributions:
〈
C∞0 (Rd), D′(Rd)

〉
. Therefore,

Re

〈
[(HA,m)α −mα]

( un
un,ε

ψ
)
, un

〉
≥
〈

[(H0,m)α −mα]ψ, un,ε − ε
〉
.

Since we have that un → u and un,ε → uε in (C∞ ∩ L2)(Rd) as n→∞, we have

that
(
un
un,ε

)
ψ →

(
u
uε

)
ψ. It follows by Lemma 2.2 that

[(HA,m)α −mα]
( un
un,ε

)
ψ → ([HA,m)α −mα]

( u
uε

)
ψ

in L2 as n→∞, so that

Re

〈
[(HA,m)α −mα]

( u
uε
ψ
)
, u

〉
≥
〈

[(H0,m)α −mα]ψ, (uε − ε)
〉
.

Thus we obtain

(3.23) Re

[
u(x)

uε(x)

(
[(HA,m)α −mα]u

)
(x)

]
≥
(
[(H0,m)α −mα](uε − ε)

)
(x),

pointwise a.e., and so in distributional sense, and hence (3.17) follows for u ∈
(C∞ ∩ L2)(Rd).

(i-II) For general u ∈ L2(Rd) with (HA,m)αu ∈ L1
loc(Rd) (0 < α < 1).

Put uδ = ρδ ∗ u. Then uδ ∈ C∞ ∩ L2, so by (3.23) in step (i-I) above,

(3.24) Re

[
uδ

(uδ)ε

(
[(HA,m)α −mα]uδ

)]
≥ [(H0,m)α −mα]

(
(uδ)ε − ε

)
,

pointwise a.e., and also in distributional sense, for all ε > 0 and all δ > 0.

For fixed ε > 0, we first let δ ↓ 0, and next ε ↓ 0. In fact, if δ ↓ 0, then uδ → u

in L2 as well as a.e. by passing to a subsequence of {uδ}. Hence uδ/(uδ)ε → u/uε
a.e. and by Lemma 3.1, (HA,m)αuδ → (HA,m)αu locally in L1, and therefore also

a.e. by passing to a subsequence. Since
∣∣ uδ

(uδ)ε

∣∣ ≤ 1, it follows by the Lebesgue

dominated convergence theorem that on the left-hand side of (3.24),

uδ

(uδ)ε
[(HA,m)α −mα]uδ → u

uε
[(HA,m)α −mα]u
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locally in L1 as δ ↓ 0. On the other hand, for the right-hand side, since∣∣((uδ)ε − ε)− (uε − ε)
∣∣ ≤ ∣∣(uδ)ε − uε∣∣ ≤ ∣∣|uδ| − |u|∣∣ ≤ |uδ − u|,

we have (H0,m)α
(
(uδ)ε − ε

)
→ (H0,m)α(uε − ε) in D′ (in the distribution sense).

This shows that (3.23) holds for u ∈ L2(Rd) with (HA,m)αu ∈ L1
loc(Rd). Next let

ε ↓ 0. Then u/uε → sgnu a.e. with |u/uε| ≤ 1, so that the left-hand side of (3.23)

converges to Re((sgnu)[HA,m−m]u) a.e., while the right-hand side of (3.23) con-

verges to [(H0,m)α−mα]|u| in D′. Thus we get (3.1), showing the desired inequality

for 0 < α < 1.

(ii) The case where m > 0 and α = 1.

Once the inequality (3.1) is established for 0 < α < 1, we let α ↑ 1, with

u ∈ L2(Rd) with HA,mu ∈ L1
loc(Rd). Then, as α ↑ 1, by Lemma 3.2 we have

(HA,m)αu→ HA,mu in L1
loc and also trivially mα → m. The left-hand side of (3.1)

converges to Re((sgnu)[HA,m −m]u) in L1
loc, while the right-hand side converges

to [H0,m − m]|u| in distributional sense, so that we have shown the desired in-

equality (1.3).

(iii) The case where m = 0 and α = 1.

This follows from the case (ii) for m > 0, i.e., by letting m ↓ 0 in the equal-

ity (1.3) with m > 0. To see this, let u ∈ L2(Rd) with HA,0u ∈ L1
loc(Rd). Then,

noting that HA,0 = | − i∇ − A|, we see by the argument made around (2.1)

that the domains of the operators HA,m and HA,0 coincide. We also see that

HA,0u ∈ L1
loc(Rd) with u ∈ L2(Rd) implies HA,mu ∈ L1

loc(Rd). In fact, we can

show the following fact.

Lemma 3.3. Let u ∈ L2(Rd). Then HA,mu ∈ L1
loc(Rd) if and only if HA,0u ∈

L1
loc(Rd). In fact, for ψ ∈ C∞0 (Rd) it holds that

(3.25)
∣∣‖ψHA,mu‖L1 − ‖ψHA,0u‖L1

∣∣ ≤ C(d)m2‖ψ‖L2d/(d+2)‖u‖L2

with a constant C(d) depending only on d.

Proof. We have for φ ∈ C∞0 (Rd),

HA,mφ−HA,0φ = ((−∇−A)2 +m2)1/2φ − | − i∇−A|φ

=
[
((−∇−A)2 + θm2)1/2φ

]θ=1

θ=0
(3.26)

=

∫ 1

0

d

dθ

[
((−∇−A)2 + θm2)1/2φ

]
dθ

=
m2

2

∫ 1

0

((−∇−A)2 + θm2)−1/2φdθ.
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Multiply by ψ ∈ C∞0 (Rd) with ψ(x) ≥ 0, and integrate the absolute value in x;

then we have∥∥ψHA,mφ− ψHA,0φ
∥∥
L1 ≤

m2

2

∫ 1

0

∥∥ψ((−∇−A)2 + θm2)−1/2φ
∥∥
L1 dθ

≤ m2

2

∫ 1

0

∥∥ψ(−∆ + θm2)−1/2|φ|
∥∥
L1 dθ

=
m2

2

∫ 1

0

∫
Rd

[
ψ(−∆ + θm2)−1/2|φ|

]
(x) dx dθ,(3.27)

where the second inequality is due to Lemma 2.1(i) with β = 1
2 and p = 1. Note

also that the operator (−∆ +m2)−1/2 in (3.27) has the following positive integral

kernel:

(3.28) (−∆ +m2)−1/2(x) =
2md−1

(2π)(d+1)/2

K(d−1)/2(m|x|)
(m|x|)(d−1)/2

, m > 0,

with Kν(τ) the modified Bessel function of the third kind of order ν, which was also

referred to around (2.8)/(2.9). In fact, using the expression (2.9) for the integral

kernel of e−tH0,m = e−[−∆+m2]−1/2

and integrating it in t on (0,∞), then we have

(−∆ +m2)−1/2(x) =

∫ ∞
0

km,10 (t, x) · e−mt dt

=

∫ ∞
0

2
(m

2π

)(d+1)/2 tK(d+1)/2(m(x2 + t2)1/2)

(x2 + t2)(d+1)/4
dt.

Change the variables τ = m(x2 +t2)1/2, so that 2t dt = 2τ
m2 dτ , and use d

τdτ
Kν(τ)
τν =

−Kν+1(τ)
τν+1 ; then we see that the last line above is equal to∫ ∞

m|x|

m(d+1)/2

(2π)(d+1)/2

K(d+1)/2(τ)

(τ/m)(d+1)/2

2τ

m2
dτ

= − 1

(2π)(d+1)/2

∫ ∞
m|x|

md+1 d

τ dτ

[K(d−1)/2(τ)

τ (d−1)/2

] 2τ

m2
dτ

=
2md−1

(2π)(d+1)/2

K(d−1)/2(m|x|)
(m|x|)(d−1)/2

,

which yields (3.28).

Since it holds that 0 < Kν(τ) ≤ C[τ−ν ∨ τ−1/2]e−τ , τ > 0 with a constant

C > 0 when ν > 0, we obtain

K(d−1)/2(θ1/2m|x|)
(θ1/2m|x|)(d−1)/2

≤ C 1

(θ1/2m|x|)(d−1)
.
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Then we see from (3.27) by the Hardy–Littlewood–Sobolev inequality (see,

e.g., [LLos01, Chap. 4, Sec. 4.3]), noting that p = 2d
d+2 satisfies the relation

1
p + d−1

d + 1
2 = 2,∥∥ψHA,mφ− ψHA,0φ

∥∥
L1

≤ md+1

(2π)(d+1)/2

∫ 1

0

dθ θ(d+1)/2

∫∫
Rd×Rd

ψ(x)
K(d−1)/2(θ1/2m|x− y|)
(θ1/2m|x− y|)(d−1)/2

|φ(y)| dx dy

≤ C(d)

2

md+1

(2π)(d+1)/2

∫ 1

0

dθ θm−(d−1)‖ψ‖L2d/(d+2)‖φ‖L2

= C(d)
m2

(2π)(d+1)/2
‖ψ‖L2d/(d+2)‖φ‖L2 ,

(3.29)

with a constant C(d) > 0 depending on d.

Now, to show the desired inequality (3.25), let u ∈ L2(Rd) and assume that

either HA,mu or HA,0u in L1
loc(Rd), consider, for instance, the latter: HA,0u ∈

L1
loc(Rd). There exists a sequence {φn}∞n=1 in C∞0 (Rd) convergent to u in L2 as

n→∞. We see by (3.29) that {(ψHA,m−ψHA,0)φn}∞n=1 is a Cauchy sequence in

L1, so that there exists v ∈ L1(Rd) to which it converges in L1:

(ψHA,m − ψHA,0)φn → v, n→∞.

Since ψD[HA,0] ⊆ D[HA,0], we see that {ψHA,0φn} converges to ψHA,0u ∈ L1(Rd)
in the weak topology defined by the dual pairing 〈L1(Rd), D[HA,0]〉. So {ψHA,mφn}
becomes a Cauchy sequence also in this weak topology σ(L1(Rd), D[HA,0]), con-

verging to v−ψHA,0u, which also belongs to L1(Rd). Therefore the existing limit

of {ψHA,mφn} should be written as ψHA,mu to satisfy

v = ψHA,mu+ ψHA,0u.

Thus we have seen that (3.29) implies

(3.30) ‖ψHA,mu− ψHA,0u‖L1 ≤ C(d)m2‖ψ‖L2d/(d+2)‖u‖L2 .

Hence using the triangle inequality
∣∣|a| − |b|∣∣ ≤ ∣∣a − b

∣∣, we obtain (3.25). This

shows (3.25) for the general u, ending the proof of Lemma 3.3.

Finally, we come back to the proof of Theorem 1.1, continuing case (iii), where

m = 0 and α = 1. We show that, as m ↓ 0, the left-hand side and the right-hand

side of (1.3) with m > 0 converge to those with m = 0.
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As for the left-hand side, the sequence { ‖[HA,m−m]u‖2L2 } of quadratic forms

is increasing as m decreases and converges to ‖HA,0u‖2L2 as m ↓ 0, because

[HA,m −m] =
(−i∇−A)2

HA,m +m
≤ (−i∇−A)2

Hm′
A +m′

= [Hm′

A −m′] ≤ HA,0 = | − i∇−A|

for m ≥ m′ > 0. This shows the convergence of the left-hand side of (1.3). As for

the right-hand side, it is easy to see that, as m ↓ 0, H0,m|u| ≡ (−∆ + m2)1/2|u|
converges to H0

0 |u| ≡ (−∆)1/2|u| in the distribution sense, because one can show

that, for any ψ ∈ C∞0 (Rn), {H0,mψ} converges to H0
0ψ as m ↓ 0, by using their

integral operator representation formula (2.6) with α = 1; in fact, it is due to

the convergence of the Lévy measure nm,1(dy) to the Lévy measure n0,1(dy) on

Rd \ {0}, which amounts to the same thing as (observing (2.9)) the convergence

of density nm,1(y) to density n0,1(y). This shows the case m = 0, completing the

proof of Theorem 1.1.

Remark. From the proof of Theorem 1.1 above, in particular, the step (i-II), which

relies on Lemma 3.1, we see that Theorem 1.1 (Kato’s inequality) also holds for

(HA,m)α, (H0,m)α in place of HA,m, H0,m with 0 < α < 1; i.e., (3.1) holds for

0 < α < 1 if u ∈ L2(Rd) with (HA,m)αu ∈ [L1
loc(Rd)]d. As a result, Theorem 1.2

(diamagnetic inequality) also holds for (HA,m)α, (H0,m)α.

Proof of Theorem 1.2. This has already been implicitly shown in the proof of

Theorem 1.1. In fact, by the same argument used to get (3.20) from (3.18), (3.19),

even for all 0 < α ≤ 1, we have for f, g ∈ C∞0 (Rd),

|(f, e−t[(HA,m)α−mα]g)| ≤ em
αt

∫ ∞
0

ft,α/2(λ)|(f, e−λSg)| dλ

≤ em
αt

∫ ∞
0

ft,α/2(λ)(|f |, |e−λSg|) dλ

≤ em
αt

∫ ∞
0

ft,α/2(λ)(|f |, e−λ(−∆+m2)|g|) dλ

= (|f |, e−t[(H0,m)α−mα]|g|).

Then this is, of course, also valid for f, g ∈ L2(Rd).

§4. Concluding remarks

In the literature there are three kinds of relativistic Schrödinger operators for a

spinless particle of mass m ≥ 0 corresponding to the classical relativistic Hamilto-

nian symbol
√

(ξ −A(x))2 +m2 with magnetic vector potential A(x), dependent

on how to quantize this symbol. Of course, one of them is HA,m in (1.1), treated in



Kato’s Inequality 111

this paper, and the other two are defined as pseudo-differential operators, differing

from HA,m which is defined as an operator-theoretical square root. In [I12, I13],

their common and different properties were discussed mainly in connection with

the corresponding path integral representations for their semigroups.

The other two relativistic Schrödinger operators are defined by oscillatory

integrals, for f ∈ C∞0 (Rd), as

(H
(1)
A,mf)(x) :=

1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·ξ
√(

ξ −A
(x+ y

2

))2

+m2 f(y) dy dξ

=
1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+A((x+y)/2))
√
ξ2 +m2 f(y) dy dξ ;(4.1)

(H
(2)
A,mf)(x) :=

1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·ξ

√(
ξ −

∫ 1

0

A((1− θ)x+ θy) dθ
)2

+m2

× f(y) dy dξ

=
1

(2π)d

∫ ∫
Rd×Rd

ei(x−y)·(ξ+
∫ 1
0
A((1−θ)x+θy) dθ)

√
ξ2 +m2 f(y) dy dξ.(4.2)

Equality (4.1) is a Weyl pseudo-differential operator with midpoint prescription

given in [ITa86] (also [I89, NaU90]), and (4.2) is a modification of (4.1) given

in [IfMP07]. Note thatH
(1)
A,m andH

(2)
A,m are denoted in [I12, I13] by slightly different

notation, H
(1)
A and H

(2)
A , respectively, while our HA,m in (1.1) is denoted by H

(3)
A .

In this section we should like to call attention to the fact that the distributional

form of Kato’s inequality is missing for H
(3)
A,m or our HA,m in (1.1), although it

already exists for the other two, H
(1)
A,m in (4.1), H

(2)
A,m in (4.2). Indeed, it has been

shown in [I89, ITs92] for H
(1)
A,m under some suitable conditions on A(x) (which

differ from A ∈ L2
loc), and can be shown in the same way for H

(2)
A,m (cf. [I13]).

Therefore, at least the case of Theorem 1.1 with A = 0 turns out to be already

known.

Let us briefly mention here some known facts for H
(1)
A,m, H

(2)
A,m and H

(3)
A,m.

1◦. With suitable reasonable conditions on A(x), they all define self-adjoint op-

erators in L2(Rd), which are bounded below. For instance, they become self-

adjoint operators defined as quadratic forms, for H
(1)
A,m and H

(2)
A,m when A ∈

L1+δ
loc (Rd;Rd) for some δ > 0 (cf. [I89, I13, IfMP07]), and for H

(3)
A,m when

A ∈ L2
loc(Rd;Rd) (e.g., [CFKiSi87, pp. 8–10] or [I13]).

Furthermore, they are bounded below by the same lower bound, in particular,

H
(j)
A,m ≥ m, j = 1, 2, 3.
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2◦. H
(2)
A,m and H

(3)
A,m are covariant under gauge transformation, i.e., for every ϕ ∈

S(Rd) it holds that H
(j)
A+∇ϕ = eiϕH

(j)
A,me

−iϕ, j = 2, 3. However, H
(1)
A,m is not.

3◦. All these three operators are different in general, but coincide if A(x) is linear

in x; i.e., if A(x) = Ȧ · x with Ȧ : d× d real symmetric constant matrix, then

H
(1)
A,m = H

(2)
A,m = H

(3)
A,m. So, this holds for uniform magnetic fields with d = 3.

Appendix A.

Our aim is to derive the following expressions for integral kernel km,α0 (t, x) of

semigroup e−t[(H0,m)α−mα] and density function nm,α of Lévy measure nm,α(dy)

for 0 < α ≤ 1, which are mentioned around formulas (2.7), (2.8)/(2.9):

km,α0 (t, x) =
em

αt

π(2π)d/2|x|d/2−1

∫ ∞
0

e−tr
α/2 cos (α/2)π sin(trα/2 sin(α2 π))

× (m2 + r)(d/2−1)/2Kd/2−1((m2 + r)1/2|x|) dr,(A.1)

nm,α =
21+(α/2) sin

(
α
2 π
)
(2π)α/2Γ(α2 + 1)

π

(m
2π

)(d+α)/2K(d+α)/2(m|x|)
|x|(d+α)/2

.(A.2)

Equality (A.2) is essentially the same as νm in [ByMaRy09, (2.7), p. 4877],

which is established for the heat semigroup e−t[(−∆+mα/2)α/2−m] instead of our

e−t[(H0,m)α−mα]. Indeed, putting m = m′
(1/α)

in (A.2) to rewrite it with Euler’s

reflection formula Γ(z)Γ(1 − z) = π
sin(πz) yields eq. (2.7) in this reference with m

replaced by m′.

To show (A.1) and (A.2), we use another formula (3.18)/(3.19) to express the

semigroup e−t(H0,m)α ≡ e−t(−∆+m2)(α/2) (0 < α ≤ 1) for the fractional power:

(e−t(H0,m)αu)(x) =

∫
Rd

(∫ ∞
0

ft,α/2(s)e−s(−∆+m2)ds u

)
(y) dy,

where e−t(−∆+m2) is the heat semigroup multiplied by e−m
2t:

(e−t(−∆+m2)u)(x) =
1

(4πt)d/2

∫
Rd
e−m

2t−((x−y)2/4t)u(y) dy.

Then ft,α/2(s) in (3.19) is rewritten as

ft,α/2(s) =
1

π

∫ ∞
0

esr cos θ−trα cos (α/2)θ sin(sr sin θ − trα/2 sin α
2 θ + θ) dr

(t > 0, s ≥ 0),

where the integration path is deformed to the union of two paths re−iθ(−∞ <

−r < 0) and reiθ(0 < r <∞), where π
2 ≤ θ ≤ π (see [Y78, IX, 11, pp. 259–263]).
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Then we take θ = π to have

(e−t(H0,m)α)(x)

=

∫ ∞
0

ds
1

π

1

(4πs)d/2
e−m

2s−(x2/4s)
∫ ∞

0

e−sr−tr
α/2 cos (α/2)π sin(trα/2 sin α

2 π) dr

=
1

π(4π)d/2

∫ ∞
0

dr e−tr
α/2 cos (α/2)π sin(trα/2 sin α

2 π)(m2 + r)d/2−1

×
∫ ∞

0

e−s−((m2+r)x2/4s)

sd/2
ds

=
1

π(2π)d/2|x|d/2−1

∫ ∞
0

e−tr
α/2 cos (α/2)π sin(trα/2 sin α

2 π)(m2 + r)(d/2−1)/2

×Kd/2−1((m2 + r)1/2|x|) dr,

where we have used the representation formula of the modified Bessel function of

the third kind, Kν(z) [GrR94, Sec. 8.432. 6, p. 969]:

Kν(z) = 1
2

(
z
2

)ν ∫ ∞
0

e−t−(z2/4t) t−ν−1 dt, ν > − 1
2 , z > 0.

It follows that the integral kernel km,α0 (t, x) of the semigroup e−t[(H0,m)α−mα] turns

out to be

km,α0 (t, x) := e−t[(H0,m)α−mα](x)

=
em

αt

π(2π)d/2|x|d/2−1

∫ ∞
0

e−tr
α/2 cos (α/2)π sin(trα/2 sin α

2 π)

× (m2 + r)(d/2−1)/2Kd/2−1((m2 + r)1/2|x|) dr.

This shows (A.1).

Next, we have

d

dt
km,α0 (t, x) =

1

π(2π)d/2|x|(d−1)/2

∫ ∞
0

dr
d

dt

[
et(m

α−rα/2 cos (α/2)π) sin(trα/2 sin α
2 π)

× (m2 + r)(d/2−1)/2Kd/2−1((m2 + r)1/2|x|)
]

=
1

π(2π)d/2|x|(d−1)/2

∫ ∞
0

dr
[
(mα − rα/2 cos α2 π) sin(trα/2 sin α

2 π)

+ rα/2 sin α
2 π cos(trα/2 sin α

2 π)
]
et(m

α−rα/2 cos (α/2)π)

× (m2 + r)(d/2−1)/2Kd/2−1((m2 + r)1/2|x|).
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Then by the fact (2.7), we have, as t ↓ 0,

nm,α(t, x) =
1

t
km,α0 (t, x)

→ d

dt
km,α0 (t, x)

∣∣∣
t=0

=: nm,α(x)

=
sin α

2 π

π(2π)d/2|x|d/2−1

∫ ∞
0

dr (m2 + r)(d/2−1)/2rα/2Kd/2−1((m2 + r)1/2|x|).

Here, the integral in the last line above is equal to∫ ∞
0

(m2 + τ2)(d/2−1)/2ταKd/2−1((m2 + τ2)1/2|x|) 2τ dτ (r := τ2)

= 2

∫ ∞
m

ad/2−1(a2 −m2)(1+α)/2Kd/2−1(a|x|) a

(a2 −m2)1/2
da

(a := (m2 + τ2)1/2)

=
2

|x|1/2

∫ ∞
m

a(d−1)/2(a2 −m2)α/2Kd/2−1(a|x|) (a|x|)1/2 da.

Then we use the following formula [EMOT54, Chap. X (K-Transforms), 10.2.(13),

p. 129]:∫ ∞
a

x1/2−ν(x2 − a2)µKν(xy)(xy)1/2 dx = 2µaµ−ν+1y−µ−1/2Γ(µ+ 1)Kµ−ν+1(ay),

y > 0, µ > −1,

with µ = α
2 , −ν = d

2 − 1 and with “ν” in place of “−ν” because K−ν(τ) = Kν(τ),

to finally obtain

nm,α(x) =
sin α

2 π

π(2π)d/2|x|d/2−1
2α/2+1m(d+α)/2|x|−(α/2+1)Γ(α2 + 1)K(d+α)/2(m|x|)

=
21+α/2 sin

(
α
2 π
)
(2π)α/2Γ(α2 + 1)

π

(m
2π

)(d+α)/2 K(d+α)/2(m|x|)
|x|(d+α)/2

.

If α = 1, this expression reduces to

nm,1(x) = 2
(m

2π

)(d+1)/2 K(d+1)/2(m|x|)
|x|(d+1)/2

,

which is nothing but the first formula of (2.9), and we see that nm,α(x) tends to

nm,1(x), as α ↑ 1 since Γ( 1
2 + 1) = π1/2

2 .
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