
Publ. RIMS Kyoto Univ. 53 (2017), 119–139
DOI 10.4171/PRIMS/53-1-4

Two-Weight Norm, Poincaré, Sobolev and
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Abstract

We establish two-weight norm inequalities for singular integral operators and fractional
integral operators on Morrey spaces. As a consequence of these inequalities, we obtain
two-weight Poincaré and Sobolev inequalities on Morrey spaces. Moreover, we also es-
tablish the Stein–Weiss inequality, the Hardy inequality and the Rellich inequality on
Morrey spaces.
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§1. Introduction

The main results of this paper are the two-weight norm inequalities and some

important inequalities in partial differential equations, namely, Poincaré inequali-

ties, Sobolev inequalities, Stein–Weiss inequalities, Hardy inequalities and Rellich

inequalities on Morrey spaces.

The two-weight norm inequality is a natural extension of the weighted norm

inequality in analysis [14]. The main theme of the two-weight norm inequali-

ties is the characterization of those weight functions such that the correspond-

ing two-weight inequalities for the maximal function [6, 21, 40], singular inte-

gral operators [5, 8, 7, 10, 13, 27, 32, 34, 41, 48] and fractional integral opera-

tors [24, 26, 33, 42] hold.

On the other hand, the two-weight norm inequality also plays a significant

role in the study of partial differential equations. In particular, the two-weight
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Poincaré and Sobolev inequalities are consequences of the two-weight inequalities

of fractional integral operators. The two-weight Poincaré and Sobolev inequalities

have profound applications for partial differential equations such as eigenvalues

estimation [22], the regularity of degenerate second-order elliptic differential oper-

ators [4, 12] and unique continuation for differential inequalities [3].

In this paper, we further extend two-weight norm inequalities to Morrey

spaces. Morrey spaces were introduced by Morrey for the study of solutions of

some quasi-linear elliptic partial differential equations [25]. The introduction of

Morrey spaces has been one of the most important extensions of Lebesgue spaces.

Most recently, the study of two-weight norm inequalities has been extended to

Morrey spaces. The two-weight norm inequality for Morrey spaces was introduced

by Tanaka in [46]. In [46], some conditions on weights so that two-weight norm

inequalities for maximal functions are valid on Morrey spaces are identified.

The results in [46] give us the motivation to study two-weight norm inequali-

ties for singular integral operators and fractional integral operators.

In this paper, we find that, roughly speaking, whenever two-weight norm

inequalities for singular integral operators and fractional integral operators are

valid for Lebesgue spaces, they are also valid for Morrey spaces. Therefore, the

main result of this paper shows that two-weight norm inequalities on Morrey spaces

follow from the corresponding inequalities on Lebesgue spaces.

By using this principle, we establish two-weight norm inequalities for singu-

lar integral operators and fractional integral operators on Morrey spaces. These

inequalities yield two-weight Poincaré and Sobolev inequalities on Morrey spaces.

Furthermore, this principle also gives an extension of Stein–Weiss inequal-

ities for fractional integral operators to Morrey spaces. In turn it yields Hardy

inequalities and Rellich inequalities on Morrey spaces.

This paper is organized as follows. We give some preliminary results for

weighted Lebesgue spaces in Section 2. Two-weight norm inequalities for singu-

lar integral operators on Morrey spaces are presented in Section 3. We establish

two-weight norm inequalities for fractional integral operators on Morrey spaces in

Section 4. The two-weight Poincaré and Sobolev inequalities on Morrey spaces are

given in Section 5. In Section 6, we have Stein–Weiss inequalities, Hardy inequal-

ities and Rellich inequalities on Morrey spaces.

§2. Preliminaries

Let B(z, r) = {x ∈ Rn : |x− z| < r} denote the open ball with center z ∈ Rn and

radius r > 0. Let B = {B(z, r) : z ∈ Rn, r > 0}. For any Lebesgue-measurable
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set E, let |E| and χE be the Lebesgue measure and the characteristic function of

E, respectively.

For any nonnegative locally integrable function u, we call u a weight. The

weighted Lebesgue spaces consist of those Lebesgue-measurable functions f satis-

fying

‖f‖Lp(u) =
(∫

Rn

|f(x)|pu(x) dx
)1/p

<∞.

Notice that Lp(u) is not necessarily a Banach function space [2, Chapter 1,

Definition 1]. More specifically, for any unbounded Lebesgue-measurable set E

with finite measure |E| <∞, ‖χE‖Lp(u) is not necessarily finite.

Next, we present some duality results for Lp(u) with respect to Lebesgue

measure.

By using the Hölder inequality, we find that∫
Rn

|f(x)g(x)| dx ≤
(∫

Rn

|f(x)|pu(x) dx
)1/p(∫

Rn

|g(x)|p
′
u(x)−p

′/p dx
)1/p′

= ‖f‖Lp(u)‖g‖Lp′ (u
−p′/p),

where p′ is the conjugate of p.

Moreover, we also have the norm conjugate formulas for the pair Lp(u) and

Lp′(u
−p′/p).

Lemma 2.1. Let 1 < p < ∞ and u be a nonnegative locally integrable function.

We have

‖f‖Lp(u) = sup

{∫
Rn

|f(x)g(x)| dx : ‖g‖Lp′ (u
−p′/p) ≤ 1

}
,(2.1)

‖f‖Lp′ (u
−p′/p) = sup

{∫
Rn

|f(x)g(x)| dx : ‖g‖Lp(u) ≤ 1

}
.(2.2)

The above results follow from the norm conjugate formulas for the Lebesgue

spaces Lp.

Recall that the Hardy–Littlewood maximal operator M is defined as

(Mf)(x) = sup
B3x

1

|B|

∫
B

|f(y)| dy, f ∈ L1
loc,

where the supremum is taken over all balls B ∈ B containing x.

We now define the class of pairs of weights (v, u) such that M is bounded

from Lp(v) to Lp(u).

Definition 2.2. Let 1 < p <∞. For any nonnegative locally integrable functions

u, v, we write (v, u) ∈Mp if the Hardy–Littlewood maximal operator M is bounded

from Lp(v) to Lp(u).
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For instance, for any 1 < p <∞ and any weight u, in view of [14, Chapter II,

Theorem 2.12], we have (Mu, u) ∈Mp.

For any 1 < p < ∞, (u, u) ∈ Mp is equivalent to u ∈ Ap, where Ap is the

Muckenhoupt class of weight functions [44, Chapter V, Section 1]. The reader is

referred to [21] for the proof of this result.

We have a precise characterization of the condition (v, u) ∈Mp by Sawyer [40].

Theorem 2.3. Let 1 < p < ∞. For any nonnegative locally integrable functions

u, v, (v, u) ∈ Mp if and only if there exists a constant C > 0 such that for any

cube Q,

(2.3)

∫
Q

(M(v1−p
′
χQ)(x))pu(x) dx ≤ C

∫
Q

v(x)1−p
′
dx <∞.

Notice that whenever (v, u) satisfies (2.3), v1−p
′

= v−p
′/p is locally integrable.

We now obtain some estimates for the norm of the characteristic function of

B ∈ B on weighted Lebesgue spaces whenever (v, u) ∈ Mp. These estimates are

crucial for the establishment of two-weight norm inequalities for singular integral

operators.

Lemma 2.4. Let 1 < p <∞ and v, u be nonnegative locally integrable functions.

If (v, u) ∈ Mp, then there exists a constant C > 0 such that for any B ∈ B, we

have

(2.4) ‖χB‖Lp′ (v
−p′/p)‖χB‖Lp(u) ≤ C|B|.

Proof. For any B ∈ B, we consider the projection

(PBg)(y) =

(
1

|B|

∫
B

|g(x)| dx
)
χB(y).

There exists a constant C > 0 such that for any B ∈ B, PB(f) ≤ CM(f). Hence,

supB ‖PB‖Lp(v)→Lp(u) ≤ C‖M‖Lp(v)→Lp(u).

Furthermore, as (v, u) ∈Mp, that is, (v, u) satisfies (2.3), we find that v1−p
′

=

v−1/(p−1) = v−p
′/p is locally integrable. Therefore, for any B ∈ B, ‖χB‖Lp′ (v

−p′/p)

is well defined.

Consequently, (2.2) ensures that

‖χB‖Lp′ (v
−p′/p)‖χB‖Lp(u) = sup

{∫
B

|g(x)| dx‖χB‖Lp(u) : ‖g‖Lp(v) ≤ 1

}
= sup

{
1

|B|

∫
B

|g(x)| dx‖χB‖Lp(u) : ‖g‖Lp(v) ≤ 1

}
|B|
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≤ C sup

{
‖PB(g)‖Lp(u) : ‖g‖Lp(v) ≤ 1

}
|B|

≤ C sup

{
‖M(g)‖Lp(u) : ‖g‖Lp(v) ≤ 1

}
|B| ≤ C|B|.

We now give the definition of weighted Morrey spaces that is used in this

paper.

Definition 2.5. Let 1 < p < ∞, ω : B → (0,∞) and u be a nonnegative lo-

cally integrable function. The generalized Morrey space Mp
ω(u) consists of those

Lebesgue-measurable functions f satisfying

‖f‖Mp
ω(u) = sup

B∈B

1

ω(B)
‖fχB‖Lp(u) <∞.

We call ω the Morrey weight for Mp
ω(u).

When u ≡ 1,Mp
ω(u) is the generalized Morrey space introduced by Nakai [28].

Furthermore, whenever u ≡ 1 and ω(B) = |B|(1/p)−(1/q) for some q ≥ p, Mp
ω(u)

becomes the classical Morrey space in [25].

§3. Singular integral operator

We obtain two-weight norm inequalities for singular integral operators on Morrey

spaces in this section. We first present the conditions imposed on the Morrey

weight ω.

Definition 3.1. Let 1 < p < ∞ and u be a nonnegative locally integrable func-

tion. For any ω : B → (0,∞), we write ω ∈ Wp,u if there exists a constant C > 0

such that for any x ∈ Rn and r > 0,

ω(B(x, 2r)) ≤ Cω(B(x, r)),(3.1)
∞∑
j=0

‖χB(x,r)‖Lp(u)

‖χB(x,2j+1)‖Lp(u)
ω(B(x, 2j+1r)) ≤ Cω(B(x, r)).(3.2)

For any a ∈ R, whenever u(x) = |x|a, we write Wp,u as Wp,a.

Notice that (3.2) is connected to [30, (1.3)]. Moreover, some similar conditions

have been used in [16, 17, 18, 19, 20] for studies of vector-valued maximal inequali-

ties, fractional integral operators and singular integral operators on Morrey spaces

with variable exponents.
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Let λ < 1/p. When u ≡ 1 and ω(B) satisfies the condition

ω(B(x, 2r)) ≤ 2λω(B(x, r))

for all x ∈ Rn and r > 0, then ω ∈ Wp,u.

We now present one of the main results for this paper: two-weight norm

inequalities for singular integral operators on Morrey spaces.

Theorem 3.2. Let 1 < p <∞ and ω ∈ Wp,u and (v, u) ∈Mp. Let

Tf(x) =

∫
Rn

K(x, y)f(y) dy,

where

(3.3) |K(x, y)| ≤ C 1

|x− y|n
, x 6= y

for some C > 0. If T : Lp(v)→ Lp(u) is bounded, then T can be extended to be a

bounded linear operator from Mp
ω(v) to Mp

ω(u)

Proof. Let f ∈ Mp
ω(v). For any z ∈ Rn and r > 0, write f(x) = f0(x) +∑∞

j=1 fj(x), where f0 = χB(z,2r)f and fj = χB(z,2j+1r)\B(z,2jr)f , j ∈ N\{0}.
Since T : Lp(v)→ Lp(u) is a bounded linear operator, we find that ‖Tf0‖Lp(u)

≤ C‖f0‖Lp(v). Consequently, (3.1) ensures that

1

ω(B(z, r))
‖χB(z,r)(Tf0)‖Lp(u) ≤ C

1

ω(B(z, 2r))
‖χB(z,2r)f‖Lp(v)(3.4)

≤ C sup
y∈Rn

R>0

1

ω(B(y,R))
‖χB(y,R)f‖Lp(v).

According to (3.3), there exists a constant C > 0 such that for any r > 0,

x ∈ Rn and Lebesgue-measurable function f with supp f ⊆ Rn\B(x, r),

(3.5) |Tf(x)| ≤ C 1

rn

∫
Rn

|f(y)| dy.

Then, (3.5) guarantees that there is a constant C > 0 such that, for any j ≥ 1,

(3.6) χB(z,r)(x)|(Tfj)(x)| ≤ C2−jnr−nχB(z,r)(x)

∫
B(z,2j+1r)

|f(y)| dy.

The Hölder inequality ensures that∫
B(z,2j+1r)

|f(y)| dy ≤ C
∥∥χB(z,2j+1r)f

∥∥
Lp(v)

‖χB(z,2j+1r)‖Lp′ (v
−p′/p)

for some C > 0.
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Subsequently, applying the norm ‖ · ‖Lp(u) on both sides of (3.6), we have

‖χB(z,r)(Tfj)‖Lp(u) ≤ C2−jnr−n‖χB(z,r)‖Lp(u)

∥∥χB(z,2j+1r)f
∥∥
Lp(v)

× ‖χB(z,2j+1r)‖Lp′ (v
−p′/p).(3.7)

Applying (2.4) with B = B(z, 2j+1r), we have

‖χB(z,2j+1r)‖Lp′ (v
−p′/p) ≤ C

2(j+1)nrn

‖χB(z,2j+1r)‖Lp(u)
.

Using the above inequality on (3.7), we obtain

‖χB(z,r)(Tfj)‖Lp(u) ≤ C2−jnr−n
‖χB(z,r)‖Lp(u)

∥∥χB(z,2j+1r)f
∥∥
Lp(v)

2(j+1)nrn

‖χB(z,2j+1r)‖Lp(u)

≤ C
‖χB(z,r)‖Lp(u)

‖χB(z,2j+1r)‖Lp(u)

∥∥χB(z,2j+1r)f
∥∥
Lp(v)

.

Thus,

‖χB(z,r)(Tfj)‖Lp(u)

(3.8)

≤ C
‖χB(x,r)‖Lp(u)

‖χB(x,2j+1r)‖Lp(u)

ω(B(z, 2j+1r))

ω(B(z, 2j+1r))
‖χB(z,2j+1r)f‖Lp(v)

≤ C
‖χB(x,r)‖Lp(u)

‖χB(x,2j+1r)‖Lp(u)
ω(B(z, 2j+1r)) sup

y∈Rn

R>0

1

ω(B(y,R))
‖χB(y,R)f‖Lp(v).

As ω ∈ Wp,u, (3.4) and (3.8) yield

1

ω(B(z, r))
‖χB(z,r)(Tf)‖Lp(u) ≤

1

ω(B(z, r))

∞∑
j=0

‖χB(z,r)(Tfj)‖Lp(u)

≤ C sup
y∈Rn

R>0

1

ω(B(y,R))
‖χB(y,R)f‖Lp(v),

where the constant C > 0 is independent of r and z. Taking the supremum over

z ∈ Rn and r > 0 gives the boundedness of T from Mp
ω(u) to Mp

ω(v).

Some similar results are obtained in [19] for vector-valued operators with

singular kernels on Morrey spaces built on Banach function spaces. Notice that

Lp(u) is not necessarily a Banach function space, therefore, the results in [19] do

not apply to Mp
ω(u).
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Even though we present the result in Theorem 3.2 for singular integral op-

erators, the proof of Theorem 3.2 also applies to the Hardy–Littlewood maximal

operator. Therefore, we have the following two-weight norm inequalities for the

Hardy–Littlewood maximal operator on Morrey spaces. For brevity, we skip the

proof of the following corollary.

Corollary 3.3. Let 1 < p < ∞, (v, u) ∈ Mp and ω ∈ Wp,u. Then, there exists a

constant C > 0 such that for any f ∈Mp
ω(v), we have

(3.9) ‖Mf‖Mp
ω(u) ≤ C‖f‖Mp

ω(v).

When v = u, the above corollary is connected with the work in [30]. Notice

that for the Hardy–Littlewood maximal operator, condition (3.2) can be further

relaxed; see [35, 46]. In fact, the above result is a special case of [46, Theorem 3.1].

A detailed description of the two-weight norm inequality for the Hardy–Littlewood

maximal operator on Morrey spaces is given in [46]. In addition, our concentration

is on two-weight norm inequalities for singular integral operators and fractional

integral operators. Therefore, we refer the reader to [46] for the details of two-

weight norm inequalities for the Hardy–Littlewood maximal operator on Morrey

spaces. We just remark that the characterizations given in [46] use the pre-dual of

Morrey spaces [39, 46].

We now apply Theorem 3.2 to Calderón–Zygmund operators. For complete-

ness, we first recall the definition of a Calderón–Zygmund operator.

We say that T is a Calderón–Zygmund operator if T is a bounded linear

operator on L2 and there exists a δ > 0 such that for any x, y ∈ Rn with

x 6= y and any z with |x − z| ≤ 1
2 |x − y|, the Schwartz kernel of T , K(x, y),

satisfies

|K(x, y)| ≤ C|x− y|−n,

|K(x, y)−K(z, y)| ≤ C|x− z|δ|x− y|−n−δ,

|K(x, z)−K(x, y)| ≤ C|y − z|δ|x− y|−n−δ.

We are now ready to apply Theorem 3.2 to Calderón–Zygmund operators.

Theorem 3.4. Let 1 < p < ∞ and u be a nonnegative integrable function. Sup-

pose that ω ∈ Wp,M [p]+1u, where M [p]+1 is the ([p] + 1)-iterate of the Hardy–

Littlewood maximal operator M and [p] is the integer part of p.

If T is a Calderón–Zygmund operator, then, for any nonnegative locally inte-

grable function u, we have

‖Tf‖Mp
ω(u) ≤ C‖f‖Mp

ω(M [p]+1u).
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Proof. In view of [32, Theorem 3.1], we find that T : Lp(M [p]+1u) → Lp(u) is

bounded. Moreover, according to [14, Chapter II, Theorem 2.12], we find that∫
Rn

(Mf(x))pu(x) dx ≤ C
∫
Rn

|f(x)|pMu(x) dx ≤
∫
Rn

|f(x)|pM [p]+1u(x) dx

for some C > 0. Therefore, (M [p]+1u, u) ∈ Mp. Finally, Theorem 3.2 ensures the

boundedness of T from Mp
ω(M [p]+1u) to Mp

ω(u).

In particular, Theorem 3.4 also extends the result of the two-weight norm

inequality for singular integral operators in [5] to Morrey spaces. Specifically, for

any nonnegative locally integrable function u, and any 1 < r <∞,

u ≤ (M(ur)1/r).

According to [44, Chapter V, Proposition 8], (M(ur))1/r ∈ A1, where A1 is the

class of Muckenhoupt weight functions. The characterization of A1 [44, Chapter V,

Section 5.2] guarantees that

M [p]+1u ≤M [p]+1(M(ur)1/r) ≤ CM(ur)1/r.

As a special case of Theorem 3.4, we have an extension of the Córdoba–

Fefferman inequalities on Morrey spaces.

Corollary 3.5. Let 1 < r < ∞, 1 < p < ∞, u be a nonnegative integrable

function and ω ∈ Wp,M [p]+1u. If T is a Calderón–Zygmund operator, then, for any

nonnegative locally integrable function u, we have

‖Tf‖Mp
ω(u) ≤ C‖f‖Mp

ω((M(ur))1/r).

For some more conditions for which the two-weight norm inequalities for sin-

gular integral operators are valid on Lebesgue space and some other related re-

sults such as sharp bounds for two-weight norm inequalities, the reader is referred

to [5, 8, 7, 10, 13, 27, 32, 34, 48].

Furthermore, one-weight norm inequalities for Calderón–Zygmund operators

and their commutators on Morrey spaces with weight ω belonging to Ap, 1 <

p < ∞ are obtained in [23, Theorems 3.3 and 3.4]. Note that Corollary 3.5 gives

two-weight norm inequalities for which the weight (M(ur))1/r belongs to A1.

§4. Fractional integral operators

In this section, we establish two-weight norm inequalities for fractional integral

operators on Morrey spaces.
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We first recall the definition of fractional integral operators. For any 0 < α <

n, the fractional integral operator Iα is defined by

(Iαf)(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

The fractional integral operator Iα is also called the Riesz potential. The corre-

sponding fractional maximal operator is defined by

(Mαf)(x) = sup
B3x

1

|B|1−α/n

∫
B

|f(y)| dy,

where the supremum is taken over all balls B ∈ B containing x.

For the mapping properties of fractional integral operators on function spaces,

the reader is referred to [1, 29]. Studies of fractional integral operators have been

extended to generalized fractional integral operators. The reader may consult [36,

37, 38].

Similar to Definition 2.2, the following class consists of those pairs of weights

such that the fractional integral operator is bounded from Lp(v) to Lp(u).

Definition 4.1. Let 1 < p, q < ∞ and 0 < α < n. For any nonnegative locally

integrable functions v, u, we write (v, u) ∈ Fp,q,α if v−p
′/p is locally integrable and

(4.1) ‖Iαf‖Lq(u) ≤ C‖f‖Lp(v)

for some C > 0.

We see that in the above definition, we require that v−p
′/p is locally integrable;

this condition is crucial for our study since it guarantees that for any B ∈ B,

‖χB‖Lp′ (v
−p′/p) is well defined.

According to [42], for 1 < p < ∞ and v, u1−p
′ ∈ A∞, where A∞ is the

Muckenhoupt class of weight functions, (v, u) satisfies (4.1) if and only if

(4.2) sup
B∈B

1

|B|1−α/n

∫
B

u(y) dy

(
1

|B|

∫
B

v1−p
′
(y) dy

)p−1
<∞.

Notice that (4.2) also guarantees that v1−p
′

= v−p
′/p is locally integrable. Thus,

for any (v, u) satisfying (4.2), (v, u) ∈ Fp,q,α.

Additionally, in view of [26, 47], for any 1 < p < n
α , 1

q = 1
p −

α
n and any weight

v, we have (vp, vq) ∈ Fp,q,α if and only if

(4.3) sup
B∈B

(
1

|B|

∫
B

vq(x) dx

)1/q (
1

|B|

∫
B

v−p
′
(x) dx

)1/p′

<∞.
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Also notice that whenever v satisfies the above condition, (vp)−p
′/p = v−p

′
is

locally integrable.

For some more conditions that guarantee (v, u) ∈ Fp,q,α and some related

results such as sharp weighted bounds for fractional integral operators, the reader

is referred to [24, 33].

The following proposition gives a crucial estimate on the norm of the charac-

teristic functions of B ∈ B whenever (v, u) ∈ Fp,q,α.

Proposition 4.2. Let 1 < p, q <∞ and 0 < α < n. If (v, u) ∈ Fp,q,α, then there

exists a constant C > 0 such that for any B ∈ B,

(4.4) ‖χB‖Lp′ (v
−p′/p)‖χB‖Lq(u) ≤ C|B|

1−α/n.

Proof. We consider the operator PB,α(g), B = B(x0, r), x0 ∈ Rn and r > 0,

defined by

(PB,αg)(y) =

(
1

|B|1−α/n

∫
B

|g(x)| dx
)
χB(y).

The operator PB,α is uniformly dominated by the fractional maximal operator

Mα.

In addition, there exists a constant C > 0 such that for any nonnegative

locally integrable function f , we have

Mαf ≤ CIαf.

Consequently, there exists a constant C > 0 such that for any B = B(x0, r),

PB,α(g) ≤ Iα(g). Hence, supB ‖PB,α‖Lp(v)→Lq(u) < C‖Iα‖Lp(v)→Lq(u).

As (v, u) ∈ Fp,q,α, v−p
′/p is locally integrable. Therefore, ‖χB‖Lp′ (v

−p′/p) is

well defined and we are allowed to use (2.2). The uniform boundedness of PB,α
and of (2.2) guarantee that

‖χB‖Lp′ (v
−p′/p)‖χB‖Lq(u)

= sup

{∣∣∣ ∫
B

g(x) dx
∣∣∣‖χB‖Lq(u) : g ∈ Lp(v), ‖g‖Lp(v) ≤ 1

}
= sup

{
1

|B|1−α/n
∣∣∣ ∫
B

g(x) dx
∣∣∣‖χB‖Lq(u) : g ∈ Lp(v), ‖g‖Lp(v) ≤ 1

}
|B|1−α/n

≤ C sup
{
‖PB,α(g)‖Lq(u) : g ∈ Lp(v), ‖g‖Lp(v) ≤ 1

}
|B|1−α/n

≤ C sup
{
‖Iα(g)‖Lq(u) : g ∈ Lp(v), ‖g‖Lp(v) ≤ 1

}
|B|1−α/n

≤ C|B|1−α/n,

for some C > 0.
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We are now ready to establish the main result of this section.

Theorem 4.3. Let 1 < p, q < ∞, 0 < α < n and (v, u) ∈ Fp,q,α. If ω ∈ Wq,u,

then there exists a constant C > 0 such that for any f ∈Mp
ω(v)

‖Iαf‖Mq
ω(u) ≤ C‖f‖Mp

ω(v).

Proof. For any f ∈ Mp
ω(v), z ∈ Rn and r > 0, write f(x) = f0(x) +

∑∞
j=1 fj(x),

where f0 = χB(z,2r)f and fj = χB(z,2j+1r)\B(z,2jr)f , j ∈ N\{0}.
As Iα : Lp(v) → Lq(u) is bounded, we obtain ‖Iαf0‖Lq(u) ≤ C‖f0‖Lp(v). In

view of (3.1), we find that

1

ω(B(z, r))
‖χB(z,r)(Iαf0)‖Lq(u) ≤ C

1

ω(B(z, 2r))
‖χB(z,2r)f‖Lp(v)(4.5)

≤ C sup
y∈Rn

r>0

1

ω(B(y, r))
‖χB(y,r)f‖Lp(v).

The definition of the fractional integral operator yields a constant C > 0 such

that, for any j ≥ 1,

(4.6) χB(z,r)(x)|(Iαfj)(x)| ≤ C2−j(n−α)r−n+αχB(z,r)(x)

∫
B(z,2j+1r)

|f(y)| dy.

By using the Hölder inequality, we have∫
B(z,2j+1r)

|f(y)| dy ≤ C
∥∥χB(z,2j+1r)f

∥∥
Lp(v)

‖χB(z,2j+1r)‖Lp′ (v
−p′/p)

for some C > 0.

By applying the norm ‖ · ‖Lq(u) on both sides of (4.6), we find that

‖χB(z,r)(Iαfj)‖Lq(u) ≤ C2−j(n−α)r−n+α‖χB(z,r)‖Lq(u)

∥∥χB(z,2j+1r)f
∥∥
Lp(v)

× ‖χB(z,2j+1r)‖Lp′ (v
−p′/p).(4.7)

According to (4.4), for any z ∈ Rn, j ∈ N and r > 0, we have

‖χB(z,2j+1r)‖Lp′ (v
−p′/p) ≤ C

2(j+1)(n−α)rn−α

‖χB(z,2j+1r)‖Lq(u)
.

Therefore, the above inequality and (4.7) give

‖χB(z,r)(Iαfj)‖Lq(u)

≤ C2−j(n−α)r−n+α
‖χB(z,r)‖Lq(u)

∥∥χB(z,2j+1r)f
∥∥
Lp(v)

2(j+1)(n−α)rn−α

‖χB(z,2j+1r)‖Lq(u)

≤ C
‖χB(z,r)‖Lq(u)

‖χB(z,2j+1r)‖Lq(u)

∥∥χB(z,2j+1r)f
∥∥
Lp(v)

.
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Thus,

‖χB(z,r)(Iαfj)‖Lq(u)(4.8)

≤ C
‖χB(x,r)‖Lq(u)

‖χB(x,2j+1r)‖Lq(u)

ω(B(z, 2j+1r))

ω(B(z, 2j+1r))
‖χB(z,2j+1r)f‖Lp(v)

≤ C
‖χB(x,r)‖Lq(u)

‖χB(x,2j+1r)‖Lq(u)
ω(B(z, 2j+1r)) sup

y∈Rn

R>0

1

ω(B(y,R))
‖χB(y,R)f‖Lp(v).

In view of ω ∈ Wq,u, (4.5) and (4.8) we assert that

1

ω(B(z, r))
‖χB(z,r)(Iαf)‖Lq(u) ≤

1

ω(B(z, r))

∞∑
j=0

‖χB(z,r)(Iαfj)‖Lq(u)

≤ C sup
y∈Rn

R>0

1

ω(B(y,R))
‖χB(y,R)f‖Lp(v),

where the constant C > 0 is independent of r and z. Taking the supremum over

z ∈ Rn and r > 0 ensures the boundedness of T from Mq
ω(u) to Mp

ω(v).

It is well known that Iα : Lp → Lq is bounded whenever 1
p = 1

q + α
n . Therefore,

by applying Theorem 4.3 with u ≡ 1, v ≡ 1 and ω(B) = |B|(1/p)−(1/r), r ≥
p, we recapture Spanne’s result on the mapping properties of fractional integral

operators on Morrey spaces [31].

Furthermore, for any 0 < α < n, 1 < p < n
α , 1

q = 1
p −

α
n , ω ∈ Wq,vq and v

satisfying (4.3), we have

sup
B∈B

1

ω(B)

(∫
B

|Iαf(x)v(x)|q dx
)1/q

≤ C sup
B∈B

1

ω(B)

(∫
B

|f(x)v(x)|p dx
)1/p

for some C > 0. This is a generalization of the result in [26] to Morrey spaces.

The reader is referred to [19] for the mapping properties of fractional integral

operators on Morrey spaces built on Banach function spaces. Similarly to the

discussion at the end of Section 3, as the weighted Lebesgue space Lp(u) is not

necessarily a Banach function space, the results in [19] do not apply to Mp
ω(u).

In the next section, we use the results from Theorem 4.3 to establish the

two-weight Poincaré and Sobolev inequalities on Morrey spaces.

§5. Poincaré and Sobolev inequalities

In this section, we give some applications of Theorem 4.3 on Poincaré and Sobolev

inequalities on Morrey spaces. At the end of this section, as an example of the main
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results of this section, we present the two-weight Sobolev inequality on Morrey

spaces with a Newtonian potential.

The Poincaré and Sobolev inequalities are two fundamental inequalities for

partial differential equations.

The Poincaré and Sobolev inequalities are consequences of the mapping prop-

erties of fractional integral operators. Therefore, whenever we have the mapping

properties of Iα from Mp
ω(v) to Mp

ω(u), we can obtain the two-weight Poincaré

and Sobolev inequalities on Morrey spaces.

We first present the Poincaré inequality when n > 1. Since for any D ∈ B,

whenever
∫
D
f(x) dx = 0 or supp f ⊂ D, we have

(5.1) |f(x)| ≤ CI1(χD|∇f |) = C

∫
D

|∇f(y)|
|x− y|n−1

dy, ∀x ∈ D;

see [9, (4.34) and (4.35)].

Thus, Theorem 4.3 yields the weighted Poincaré inequality on Morrey spaces.

Theorem 5.1 (Poincaré inequality). Let n > 1, 1 < p, q <∞, (v, u) ∈ Fp,q,1 and

ω ∈ Wq,u. For any D ∈ B and for any once continuously differentiable function f ,

if either
∫
D
f(x) dx = 0 or supp f ⊂ D, we have

sup
B∈B

1

ω(B)

(∫
D∩B

|f(x)|qu(x) dx
)1/q

≤ C sup
B∈B

1

ω(B)

(∫
B

|∇f(x)|pv(x) dx
)1/p

for some C > 0.

The previous result gives the two-weight Poincaré inequality on Morrey spaces

with the assumption that (v, u) ∈ Fp,q,1. We also have another version of the two-

weight Poincaré inequality on Morrey spaces where (v, u) ∈Mp.

Theorem 5.2 (Poincaré inequality). Let n > 1, 1 < p <∞, (v, u) ∈Mp and ω ∈
Wp,u. For any once continuously differentiable function f , if either

∫
B(x0,r)

f(x) dx

= 0 or supp f ⊂ B(x0, r), we have

(5.2)

sup
B∈B

1

ω(B)

(∫
B(x0,r)∩B

|f(x)|pu(x) dx
)1/p

≤ Cr sup
B∈B

1

ω(B)

(∫
B

|∇f(x)|pv(x) dx
)1/p

,

for some C > 0.

Proof. According to the Hedberg inequality [15] and [9, Lemma 4.3.19], for any

x ∈ B(x0, r), ∫
B(x0,r)

|f(y)|
|x− y|n−1

dy ≤ CrM(f)(x).
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Therefore, (5.1) gives

|f(x)| ≤ C
∫
B(x0,r)

|∇f(y)|
|x− y|n−1

dy ≤ CrM(∇f)(x), ∀x ∈ B(x0, r).

As (v, u) ∈Mp and ω ∈ Wp,u, (3.9) yields (5.2).

Let 1 < p < ∞, u be a weight and ω ∈ Wp,u. Theorem 4.3 ensures that for

any once continuously differentiable function f , if either
∫
B(x0,r)

f(x) dx = 0 or

supp f ⊂ B(x0, r), we have

sup
B∈B

1

ω(B)

(∫
B(x0,r)∩B

|f(x)|pu(x) dx
)1/p

≤ Cr sup
B∈B

1

ω(B)

(∫
B

|∇f(x)|pMu(x) dx
)1/p

because (Mu, u) ∈Mp.

The above theorem can be further generalized by using the results from [46].

For brevity, we leave the details to the reader.

For the case where supp f ⊂ D, the Poincaré inequality is also called the

Friedrich inequality. Therefore, the above results are generalizations of the Fried-

rich inequality on Morrey spaces.

The two-weight Poincaré inequality is related to Harnack inequalities and the

regularity of the degenerate second-order elliptic differential operator ∇A∇ when

A(x) is a nonnegative matrix with least and greatest eigenvalues v(x) and u(x),

respectively; see [4, 12].

For studies of the Poincaré inequalities on Banach function spaces, the reader

is referred to [9, Chapter 4].

Next, we present the Sobolev inequality when n > 2. Let ∆ denote the Lapla-

cian. Since f = I2(∆f), Theorem 4.3 gives the weighted Sobolev inequality on

Morrey spaces.

Theorem 5.3 (Sobolev inequality). Let n > 2, 1 < p, q < ∞, (v, u) ∈ Fp,q,2 and

ω ∈ Wq,u. For any D ∈ B and for any twice continuously differentiable function f

with supp f ⊆ D, we have

sup
B∈B

1

ω(B)

(∫
B∩D

|f(x)|qu(x) dx
)1/q

≤ C sup
B∈B

1

ω(B)

(∫
B

|∆f(x)|pv(x) dx
)1/p

for some C > 0.

The two-weight Sobolev inequalities are related to the absence of positive

eigenvalues for Schrödinger operator −∆ + v and the unique continuation for the

differential inequality |∆f | ≤ u|f |; see [22, 3], respectively.
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We now present an example for the two-weight Sobolev inequality on Morrey

spaces.

Corollary 5.4. Let n > 2, v ∈ A∞ and ω ∈ W2,v. Suppose that there exists a

constant C > 0 such that for any B ∈ B,

(5.3)
1

|B|1−1/n

∫
B

v(y) dy < C.

Then, for any twice continuously differentiable function f with supp f ⊆ D, we

have

(5.4)

sup
B∈B

1

ω(B)

(∫
B∩D

|f(x)|2v(x) dx
)1/2

≤ C sup
B∈B

1

ω(B)

(∫
B

|∆f(x)|2 1

v(x)
dx
)1/2

for some C > 0.

Proof. Since

1

|B|1−2/n

∫
B

v(y) dy

(
1

|B|

∫
B

( 1

v(y)

)−1
(y) dy

)
=

(
1

|B|2−2/n

∫
B

v(y) dy

)2

,

(5.3) ensures that the pair ( 1
v , v) fulfills (4.2). That is, ( 1

v , v) ∈ F2,2,2. Therefore,

Theorem 5.3 yields (5.4).

Condition (5.3) is equivalent to the condition v ∈ M1
ω0

, where ω0(B) =

|B|1−1/n. In addition, compared to [36, 37], our result requires only that f is

locally in L2(v) and that v is locally integrable.

In particular, it is well known that the Newtonian potential in R3, v0(y) =

|y|−1 satisfies (5.3). In fact, the monotonicity of Morrey spaces in the local param-

eter and [11, Lemma 2.4] guarantee that v0 ∈M1
ω0

.

Since v0 ∈ A∞, we obtain the following weighted Sobolev inequality with

Newtonian potential on Morrey spaces.

Let ω ∈ W2,−1. For any twice continuously differentiable function f with

supp f ⊆ D, we have

sup
B∈B

1

ω(B)

(∫
B∩D

|f(x)|2 1

|x|
dx
)1/2

≤ C sup
B∈B

1

ω(B)

(∫
B

|∆f(x)|2|x| dx
)1/2

for some C > 0.

In the next section, we extend the above inequality to some different power-

weight functions by using the Stein–Weiss inequality on Morrey spaces.
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§6. Stein–Weiss inequalities

In this section, we extend Stein–Weiss inequalities for fractional integral operators

to Morrey spaces. As special cases of Stein–Weiss inequalities, we obtain Hardy

inequalities and Rellich inequalities on Morrey spaces.

The celebrated Stein–Weiss inequalities [45, Theorem B*] give the mapping

properties of fractional integral operators on power-weighted Lebesgue spaces.

Theorem 6.1. Let a, b ∈ R and 1 < p ≤ q <∞. If

a <
np

p′
, b < n, 0 ≤ a

p
+
b

q
,(6.1)

α =
a

p
+
b

q
+ n

(
1

p
− 1

q

)
> 0,(6.2)

then

(6.3)

(∫
Rn

|Iαf(x)|q|x|−b dx
)1/q

≤ C
(∫

Rn

|f(x)|p|x|a dx
)1/p

,

for some C > 0.

We see that condition (6.2) follows from the scaling condition of the mapping

properties of fractional integral operators. More precisely, for any t > 0, write

Dtf(x) = f(tx). We find that

Iα(Dtf)(x) = t−αIα(tx).

Additionally,(∫
Rn

|Iα(Dtf)(x)|q|x|−b dx
)1/q

= t−α+(b−n)/q
(∫

Rn

|Iαf(x)|q|x|−b dx
)1/q

and (∫
Rn

|(Dtf)(x)|p|x|a dx
)1/p

= t−(a+n)/p
(∫

Rn

|f(x)|p|x|a dx
)1/p

.

Therefore, the validity of (6.3) requires that

t−α+(b−n)/q = t−(a+n)/p, ∀t > 0.

Consequently, (6.2) is necessary for the validity of (6.3).

According to Theorem 4.3, we obtain Stein–Weiss inequalities on Morrey

spaces.
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Theorem 6.2 (Stein–Weiss inequality for Morrey spaces). Let a, b ∈ R and 1 <

p ≤ q < ∞. If ω ∈ Wq,−b and a, b, α satisfy (6.1) and (6.2), then there exists a

constant C > 0 such that

sup
B∈B

1

ω(B)

(∫
B

|Iαf(x)|q|x|−b dx
)1/q

≤ C sup
B∈B

1

ω(B)

(∫
B

|f(x)|p|x|a dx
)1/p

.(6.4)

Proof. Since u(x) = |x|θ is locally integrable if and only if θ > −n, according

to (6.1), we find that |x|a(−p′/p) and |x|−b are locally integrable. Moreover, since

a, b, α satisfy (6.1) and (6.2), we find that

α =
a

p
+
b

q
+ n

(
1

p
− 1

q

)
<
n

p′
+
n

q
+
n

p
− n

q
= n.

Therefore, Theorem 6.1 ensures that (|x|a, |x|−b) ∈ Fp,q,α. We are allowed to apply

Theorem 4.3 and obtain (6.4).

In view of (5.1), we obtain the power-weighted Poincaré inequality on Morrey

spaces.

Corollary 6.3. Let n > 1, a, b ∈ R and 1 < p ≤ q <∞. Suppose that ω ∈ Wq,−b

and a, b, α satisfy (6.1) and

(6.5) 1 =
a

p
+
b

q
+ n

(
1

p
− 1

q

)
.

For any D ∈ B and for any once continuously differentiable function f , if either∫
D
f(x) dx = 0 or supp f ⊂ D, we have

sup
B∈B

1

ω(B)

(∫
D∩B

|f(x)|q|x|−b dx
)1/q

≤ C sup
B∈B

1

ω(B)

(∫
B

|∇f(x)|p|x|a dx
)1/p

,

for some C > 0.

In particular, when a = 0, b = 2 and p = q = 2, we have the generalization of

the Hardy inequality [43, (6.2.2)] to Morrey spaces.

Corollary 6.4. Let n > 2 and ω ∈ W2,−2. For any D ∈ B and for any once

continuously differentiable function f , if either
∫
D
f dx = 0 or supp f ⊂ D, we

have

sup
B∈B

1

ω(B)

(∫
D∩B

|f(x)|2|x|−2 dx
)1/2

≤ C sup
B∈B

1

ω(B)

(∫
B

|∇f(x)|2 dx
)1/2

,

for some C > 0.

Similarly, the identity f = I2(∆f) and Theorem 6.2 yield the power-weighted

Sobolev inequalities on Morrey spaces.
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Corollary 6.5. Let n > 2, a, b ∈ R and 1 < p ≤ q <∞. Suppose that ω ∈ Wq,−b

and a, b, α satisfy (6.1) and

(6.6) 2 =
a

p
+
b

q
+ n

(
1

p
− 1

q

)
.

For any D ∈ B and for any twice continuously differentiable function f with

supp f ⊆ D, we have

sup
B∈B

1

ω(B)

(∫
B∩D

|f(x)|q|x|−b dx
)1/q

≤ C sup
B∈B

1

ω(B)

(∫
B

|∆f(x)|p|x|a dx
)1/p

,

for some C > 0.

In particular, when a = 0, b = 4 and p = q = 2, the above corollary gives the

Rellich inequality [43, (6.2.8)] on Morrey spaces.

Corollary 6.6. Let n ≥ 5 and ω ∈ W2,−4. For any D ∈ B and for any twice

continuously differentiable function f with supp f ⊆ D, we have

sup
B∈B

1

ω(B)

(∫
D∩B

|f(x)|2|x|−4 dx
)1/2

≤ C sup
B∈B

1

ω(B)

(∫
B

|∆f(x)|2 dx
)1/2

for some C > 0.

Notice that (6.5) and (6.6) are inherited from (6.3). Hence they follow from

the scaling condition of the mapping properties of fractional integral operators.

Acknowledgements

The author would like to thank the reviewer for his/her valuable suggestions and

information which have improved the content of this paper.

References

[1] D. Adams, A note on Reisz potentials, Duke Math. J. 42 (1975), 765–778.
Zbl 0336.46038 MR 0458158

[2] C. Bennett and R. Sharpley, Interpolation of operators, Pure and Applied Mathematics 129,
Academic Press, Boston, MA, 1988. Zbl 0647.46057 MR 0928802

[3] S. Chanillo and E. Sawyer, Unique continuation for ∆ + v and the C. Fefferman–Phong
class, Trans. Amer. Math .Soc. 318 (1990), 275–300. Zbl 0702.35034 MR 0958886

[4] S. Chanillo and R. Wheeden, Harnack’s inequality and mean-value inequalities for solutions
of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986), 1111–1134.
Zbl 0634.35035 MR 0847996
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[24] M. Lacey, K. Moen, C. Pérez and R. Torres, Sharp weighted bounds for fractional integral
operators, J. Funct. Anal. 259 (2010), 1073–1097. Zbl 1196.42014 MR 2652182

[25] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans.
Amer. Math. Soc. 43 (1938), 126–166. Zbl 0018.40501 MR 1501936

[26] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans.
Amer. Math. Soc. 192 (1974), 261–274. Zbl 0289.26010 MR 0340523

[27] , Two weight function norm inequalities for the Hardy-Littlewood maximal function
and the Hilbert transform, Studia Math. 60 (1976), 279–294. Zbl 0336.44006 MR 0417671

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1129.42007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2351373
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0961.42013&format=complete
http://www.ams.org/mathscinet-getitem?mr=1713140
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1099.46002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2091115
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0839.47022&format=complete
http://www.ams.org/mathscinet-getitem?mr=1347301
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1298.42018&format=complete
http://www.ams.org/mathscinet-getitem?mr=3235045
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0498.35042&format=complete
http://www.ams.org/mathscinet-getitem?mr=0643158
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0732.42012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1115188
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0578.46046&format=complete
http://www.ams.org/mathscinet-getitem?mr=0807149
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0283.26003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0312232
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1261.42016&format=complete
http://www.ams.org/mathscinet-getitem?mr=2987074
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1260.42009&format=complete
http://www.ams.org/mathscinet-getitem?mr=3059976
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1347.42039&format=complete
http://www.ams.org/mathscinet-getitem?mr=3310072
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06571488&format=complete
http://www.ams.org/mathscinet-getitem?mr=3479319
http://www.ams.org/mathscinet-getitem?mr=0730066
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0593.35119&format=complete
http://www.ams.org/mathscinet-getitem?mr=0794370
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.42008&format=complete
http://www.ams.org/mathscinet-getitem?mr=2493512
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1196.42014&format=complete
http://www.ams.org/mathscinet-getitem?mr=2652182
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0018.40501&format=complete
http://www.ams.org/mathscinet-getitem?mr=1501936
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0289.26010&format=complete
http://www.ams.org/mathscinet-getitem?mr=0340523
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0336.44006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0417671


Two-weight norm inequalities 139

[28] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz
potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95–104. Zbl 0837.42008
MR 1273325

[29] , Recent topics of fractional integrals, Sugaku Expositions 20 (2007), 215–235.
MR 2385181

[30] S. Nakamura, Generalized weighted Morrey spaces and classical operators, Math. Nachr.
289 (2016), 2235–2262. https://doi.org/10.1002/mana.201500260 Zbl 06670925

[31] J. Peetre, On the theory of Lp,λ spaces, J. Funct. Anal. 4 (1969), 71–87. Zbl 0175.42602
MR 0241965

[32] C. Pérez, Weighted norm inequalities for singular integral operators, J. Lond. Math. Soc.
49 (1994), 296–308. Zbl 0797.42010 MR 1260114

[33] , Two weighted inequalities for potential and fractional type maximal operators,
Indiana Univ. Math. J. 43 (1994), 663–683. Zbl 0809.42007 MR 1291534

[34] Y. Rakotondratsimba, Two-weight norm inequality for Calderón-Zygmund operators, Acta
Math. Hungar. 80 (1998), 39–54. Zbl 0914.47007 MR 1624522

[35] Y. Sawano, Generalized Morrey spaces for non-doubling measures, Nonlinear Differential
Equations Appl. 15 (2008), 413–425. Zbl 1173.42317 MR 2465971

[36] Y. Sawano, S. Sugano and H. Tanaka, A note on generalized fractional integral operators
on generalized Morrey spaces, Bound. Value Probl. (2009). Zbl 1202.47056 MR 2587354

[37] , Generalized fractional integral operators and fractional maximal operators in
the framework of Morrey spaces, Trans. Amer. Math. Soc. 363 (2011), 6481–6503.
Zbl 1229.42024 MR 2833565

[38] Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (2012), 517–556.
Zbl 1242.42017 MR 2904632

[39] Y. Sawano and H. Tanaka, The Fatou property of block spaces, J. Math. Sci. Univ. Tokyo
22 (2015), 663–683. Zbl 1334.42051 MR 3408071

[40] E. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia
Math. 75 (1982), 1–11. Zbl 0508.42023 MR 0676801

[41] , Norm inequalities relating singular integrals and the maximal function, Studia
Math. 75 (1983), 253–263. Zbl 0528.44002 MR 0722250

[42] E. Sawyer and R. Wheeden, Weighted inequalities for fractional integrals on Euclidean and
homogeneous spaces, Amer. J. Math. 114 (1992), 813–874. Zbl 0783.42011 MR 1175693

[43] B. Simon, Harmonic analysis. A comprehensive course in analysis. Part 3, Amer. Math.
Soc., Providence, RI, 2015. Zbl 1334.00002 MR 3410783

[44] E. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory inte-
grals, Princeton Mathematical Series 43, Princeton University Press, 1993. Zbl 0821.42001
MR 1232192

[45] E. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math.
Mech. 7 (1958), 503–514. Zbl 0082.27201 MR 0098285

[46] H. Tanaka, Two-weight norm inequalities on Morrey spaces, Ann. Acad. Sci. Fenn. Math.
40 (2015), 773–791. Zbl 1331.42023 MR 3409703

[47] G. Welland, Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51
(1975), 143–148. Zbl 0306.26007 MR 0369641

[48] J. Wilson, Weighted norm inequalities for the continuous square function, Trans. Amer.
Math. Soc. 314 (1989), 661–692. Zbl 0689.42016 MR 0972707

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0837.42008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1273325
http://www.ams.org/mathscinet-getitem?mr=2385181
https://doi.org/10.1002/mana.201500260
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06670925&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0175.42602&format=complete
http://www.ams.org/mathscinet-getitem?mr=0241965
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0797.42010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1260114
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0809.42007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1291534
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0914.47007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1624522
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1173.42317&format=complete
http://www.ams.org/mathscinet-getitem?mr=2465971
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1202.47056&format=complete
http://www.ams.org/mathscinet-getitem?mr=2587354
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1229.42024&format=complete
http://www.ams.org/mathscinet-getitem?mr=2833565
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1242.42017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2904632
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1334.42051&format=complete
http://www.ams.org/mathscinet-getitem?mr=3408071
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0508.42023&format=complete
http://www.ams.org/mathscinet-getitem?mr=0676801
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0528.44002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0722250
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0783.42011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1175693
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1334.00002&format=complete
http://www.ams.org/mathscinet-getitem?mr=3410783
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0821.42001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1232192
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0082.27201&format=complete
http://www.ams.org/mathscinet-getitem?mr=0098285
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1331.42023&format=complete
http://www.ams.org/mathscinet-getitem?mr=3409703
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0306.26007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0369641
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0689.42016&format=complete
http://www.ams.org/mathscinet-getitem?mr=0972707

	Introduction
	Preliminaries
	Singular integral operator
	Fractional integral operators
	Poincaré and Sobolev inequalities
	Stein–Weiss inequalities
	References

