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On Calderón’s Problem for a System of Elliptic
Equations

by

Oleg Imanuvilov and Masahiro Yamamoto

Abstract

We consider Calderón’s problem in the case of a partial Dirichlet-to-Neumann map for
systems of elliptic equations in a bounded two-dimensional domain. The main result of
the paper is as follows: If two systems of elliptic equations generate the same partial
Dirichlet-to-Neumann map on some subboundary, then the coefficients can be uniquely
determined up to gauge equivalence.
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§1. Introduction

Let Ω be a bounded domain in R2 with smooth boundary, let N be an arbitrarily

chosen natural number, let Γ̃ be a relatively open set on ∂Ω and Γ0 = Int(∂Ω \ Γ̃).

Consider the following boundary value problem:

L(x,D)u = ∆u+ 2A∂zu+ 2B∂z̄u+Qu = 0 in Ω,

u|Γ0 = 0, u|Γ̃ = f.
(1.1)

Here u = (u1, . . . , uN ) is an unknown vector-valued function and A, B, Q are

N×N matrices. Consider the following partial Dirichlet-to-Neumann map limited

on Γ̃:

ΛA,B,Qf = ∂~νu|Γ̃, where L(x,D)u = 0 in Ω,

u|Γ0 = 0, u|Γ̃ = f,
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where ~ν is the outward unit normal to ∂Ω. The inverse problem of determining A,

B, Q is a generalization of the so-called Calderón problem (see [2]), which itself is

the mathematical realization of Electrical Impedance Tomography (EIT).

The uniqueness of the Dirichlet-to-Neumann map on an arbitrarily chosen

subboundary for single conductivity equations and the Schrödinger equations was

first proved by [6]; see [9] as a related survey paper.

The goal of this paper is to extend the result obtained in [3], which consid-

ers elliptic equations in a convex domain in Rd with d ≥ 3 and proves that the

coefficients of two systems of elliptic equations producing the same Dirichlet-to-

Neumann map can be determined up to gauge equivalence. However [3] discusses

only the case of Γ̃ = ∂Ω, which means the Dirichlet-to-Neumann map on the whole

boundary.

In this paper, for a Dirichlet-to-Neumann map limited to an arbitrarily small

subboundary in two dimensions, we prove a necessary and sufficient condition

for operators producing the same Dirichlet-to-Neumann map. Our main result is

stated as follows.

Theorem 1.1. Let Aj, Bj ∈ C5+α(Ω̄), Qj ∈ C4+α(Ω̄) with j = 1, 2 and some

α ∈ (0, 1), and the operators Lj(x,D) are of the form (1.1) with coefficients Aj,

Bj, Qj and the adjoint operators L∗j (x,D), j = 1, 2 to these operators do not have

a zero eigenvalue.

Then ΛA1,B1,Q1
= ΛA2,B2,Q2

if and only if

(1.2) A1 = A2 and B1 = B2 on Γ̃,

and there exists an invertible matrix Q ∈ C6+α(Ω̄) such that

Q|Γ̃ = I, ∂~νQ|Γ̃ = 0,(1.3)

A2 = 2Q−1∂z̄Q + Q−1A1Q in Ω,(1.4)

B2 = 2Q−1∂zQ + Q−1B1Q in Ω(1.5)

and

(1.6) Q2 = Q−1Q1Q + Q−1∆Q + 2Q−1A1∂zQ + 2Q−1B1∂z̄Q in Ω.

For a related result, see [4].

The paper is organized as follows. In Section 3 we construct the complex geo-

metric optics solutions for the boundary value problem (1.1). In Section 4 we prove

some asymptotics for integrals involving the complex geometric optics solutions for

the operators L1(x,D) and L2(x,D)∗. In Section 5, from the asymptotics relations

obtained in Section 4, it is proved that there exists a gauge transformation Q that
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preserves the Dirichlet-to-Neumann map and transforms the coefficient A1 → A2.

After that, for the operators Q−1L1(x,D)Q and L2(x,D), we obtain some system

of integral-differential equations, and we study this system of integral-differential

equations and show that the operators Q−1L1(x,D)Q and L2(x,D) are the same.

Notation. Let i =
√
−1 and z be the complex conjugate of z ∈ C. We set

∂z = 1
2 (∂x1 − i∂x2), ∂z = 1

2 (∂x1 + i∂x2) and

∂−1
z g = − 1

π

∫
Ω

g(ξ1, ξ2)

ζ − z
dξ1 dξ2, ∂−1

z g = − 1

π

∫
Ω

g(ξ1, ξ2)

ζ − z
dξ1 dξ2

(see, e.g., [11]).

Let ~ej , j = 1, . . . , N be the standard basis in RN . For a holomorphic function

Φ, we set Φ′ = ∂zΦ and Φ̄′ = ∂z̄Φ̄, Φ′′ = ∂2
zΦ, Φ̄′′ = ∂2

z̄ Φ̄. Let ~τ = (ν2,−ν1) be

the tangential vector to ∂Ω, and let us set ∂~ν = ∂x1ν1 + ∂x2ν2 and ∂~τ = ∂x1ν2 −
∂x2

ν1. Let W 1,τ
2 (Ω) be the Sobolev space W 1

2 (Ω) with the norm ‖u‖W 1,τ
2 (Ω) =

‖∇u‖L2(Ω) + |τ |‖u‖L2(Ω). Moreover, for a normed space X with norm ‖ · ‖X , by

limη→∞
‖f(η)‖X

η = 0 and ‖f(η)‖X ≤ Cη as η → ∞ with some C > 0, we define

f(η) = oX(η) and f(η) = OX(η) as η →∞. Let β = (β1, β2), βj ∈ N+ := N \ {0},
|β| = β1 + β2 and I be the identity matrix. By A∗ we denote the adjoint matrix

to a matrix A in the space RN . By (·, ·)L2(Ω) we denote the L2(Ω)-scalar product

over R, while (·, ·) is the scalar product in R2 if there is no fear of confusion.

§2. Construction of the operators PB and TB

Let A, B be N × N matrices with the elements from C5+α(Ω) with α ∈ (0, 1).

Consider the boundary value problem:

K(x,D)(U0, T0) = (2∂zU0 +AU0, 2∂zT0 +BT0) = 0 in Ω,

U0 + T0 = 0 on Γ0.
(2.1)

Without loss of generality we assume that Γ̃ is an arc with the endpoints x±.

We have

Proposition 2.1. Let A, B ∈ C5+α(Ω̄) for some α ∈ (0, 1), Ψ ∈ C∞(∂Ω),

~r0,k, . . . , ~r5,k ∈ CN be arbitrarily given and x1, . . . , xk̂ be mutually distinct arbi-

trary points from the domain Ω. For any positive ε there exists a solution (U0, T0) ∈
C6+α(Ω) to problem (2.1) such that

(2.2) ∂jzU0(x`) = ~rj,`, ∀ j ∈ {0, . . . , 5} and ∀ ` ∈ {1, . . . , k̂},

and

(2.3) ‖U0 −Ψ‖C5+α(Γ̄0) ≤ ε.
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Before the proof of Proposition 2.1, we prove slightly stronger versions of [7,

Proposition 6.1 and Corollary 6.1].

Proposition 2.2. Let x1, . . . , xk̂ be mutually distinct arbitrary points from the do-

main Ω and r0,k, . . . , r5,k ∈ C be arbitrarily given and Ψ ∈ C∞(∂Ω) be a real-valued

function. For any positive ε, there exists a holomorphic function a(z) depending

on ε such that

(2.4) ∂jza(x`) = rj,`, ∀ j ∈ {0, . . . , 5} and ∀ ` ∈ {1, . . . , k̂},

and

(2.5) ‖a−Ψ‖C5+α(Γ̄0) ≤ ε, Im a|Γ0
= 0,

where α ∈ (0, 1).

Proof. Since by [7, Corollary 6.1], for each positive ε1 there exists a holomorphic

function b such that

‖b−Ψ‖C5+α(Γ̄0) ≤ ε1, Im b|Γ0
= 0,

it suffices to prove the proposition for the case Ψ = 0.

We introduce the operator R(xj) : C5(Ω̄) → C6 by formula R(xj)v =

(v(xj), . . . , ∂
5
zv(xj)). Let us fix some j ∈ {1, . . . , k̂} and let j1 6= j, j1 ∈ {1, . . . , k̂}.

By [7, Corollary 6.1], for each positive ε1 and each p ∈ {1, . . . , 4}, there exists a

holomorphic function vp(z) with the following properties:

Im vp|Γ0
= 0, ‖vp‖C5+α(Γ̄0) ≤ ε1,

|v1(xj1)− 1| ≤ ε1, |v2(xj1)−
√
−1| ≤ ε1,

|v3(xj1)− 1/2| ≤ ε1, |v4(xj1)− 2
√
−1| ≤ ε1,

|R(xj)v1 − ~e1|+
4∑
p=2

|R(xj)vp| ≤ ε1,

where ~e1 = (1, 0, . . . , 0) ∈ R6. We set ṽ`(z) = v1+2`(z) −
Im v1+2`(xj1 )

Im v2+2`(xj1 )v2+2`(z),

` ∈ {0, 1}. Then ṽ`(xj) is a real number and there exists a constant C independent

of ε1 such that

|ṽ0(xj1)− 1|+ |ṽ1(xj1)−
√
−1| ≤ Cε1,

Im ṽ`|Γ0 = 0, ‖ṽ`‖C5+α(Γ̄0) ≤ Cε1, ` = 1, 2,

|R(xj)ṽ1 − ~e1|+ |R(xj)ṽ1| ≤ Cε1,

for all sufficiently small ε1. Taking vj1,2(z) = ṽ0(z)− ṽ0(xj1 )

ṽ1(xj1 ) ṽ1(z), we obtain that

vj1,2(xj1) = 0, Im vj1,2|Γ0 = 0, ‖vj1,2‖C5+α(Γ̄0) ≤ Cε, |R(xj)vj1,2 − ~e1| ≤ Cε. Let
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v be a holomorphic function satisfying ‖v‖C5+α(Γ̄0) ≤ ε and |R(xj)v − ~r| ≤ ε,

where ~r is an arbitrary fixed vector from R6. The holomorphic function v̂j =

vΠk̂
j1=1,j1 6=jv

6
j1,2

satisfies

R(xk)v̂j = 0, ∀ k ∈ {1, . . . , j − 1, j + 1, . . . , k̂}; |R(xj)v̂j − ~r| ≤ ε,(2.6)

Im v̂j |Γ0 = 0, ‖v̂j‖C5+α(Γ̄0) ≤ ε.(2.7)

Using the functions v̂j and the argument used in the construction of these

functions, for any j ∈ {1, . . . , k̂} we construct a holomorphic function cj such that

Im cj |Γ0
= 0 and

R(xk)cj = 0, ∀ k ∈ {1, . . . , j − 1, j + 1, . . . , k̂}; cj(xj) = 0,

∂zcj(xj) = 1, ‖cj‖C5+α(Γ̄0) ≤ ε.

Indeed let ṽj satisfy (2.6), (2.7) where ~r and ε are replaced by (
√
−1, 0, . . . , 0) and

ε/2, and v̂j satisfy (2.6), (2.7) where ε is replaced by ε/2 and the first coordinate

of ~r is real. Consider the function ŵj = v̂j − Im v̂j(xj)
Im ṽj(xj)

ṽj . The function ŵj satisfies

(2.6), (2.7) and ŵj(xj) is a real number.

Next, observe that if the first coordinate of ~r is zero, then one can take ŵj
satisfying (2.6), (2.7) and ŵj(xj) = 0. We take a function ŵj = v̂j − v̂j(xj)

ṽj(xj)
ṽj ,

where ṽj satisfies (2.6), (2.7) where ~r and ε are replaced by (
√
−1, 0, . . . , 0) and

ε/2, and v̂j satisfies (2.6), (2.7) with ε/2 instead of ε. Moreover, ṽj(xj), v̂j(xj) are

real numbers.

Let ṽj satisfy (2.6), (2.7) where ~r and ε are replaced by (0,
√
−1, 0, . . . , 0)

and ε/2, and v̂j satisfy (2.6), (2.7) where ~r and ε are replaced by (0, 1, 0, . . . , 0)

and ε/2. Moreover, ṽj(xj) = v̂j(xj) = 0. Let ŵj = v̂j − Im ∂z v̂j(xj)
Im ∂z ṽj(xj)

ṽj . Then, since

∂zŵj(xj) 6= 0 for all sufficiently small ε, we set cj(z) = ŵj(z)/∂zŵj(xj). Since

∂zŵj(xj) is a real number, we have Im cj |Γ0
= 0. The construction of functions cj

is complete.

We set ãj,`(z) = 1
`!c

`
j(z) and aj,5(z) = ãj,5(z) = 1

5!c
5
j (z),

aj,`(z) = ãj,`(z)−
5∑

k=`+1

∂`zãj,`(xj)aj,`(z), ` ∈ {0, . . . , 4}.

Then Im aj,`|Γ0
= 0 and

∂`zaj,`(xj) = 1; ∂mz aj,`(xk) = 0, ∀ (m, k) ∈ {0, . . . , 5} × {1, . . . , k̂} \ {(`, j)},
‖aj,`‖C5+α(Γ̄0) ≤ ε2.



146 O. Yu. Imanuvilov and M. Yamamoto

For an arbitrary ε2 > 0, we similarly construct holomorphic functions bj,`(z) such

that Im bj,`|Γ0
= 0 and

∂`zbj,`(xj) =
√
−1; ∂mz bj,`(xk) = 0, ∀ (m, k) ∈ {0, . . . , 5} × {1, . . . , k̂} \ {(`, j)};

‖bj,`‖C5+α(Γ̄0) ≤ ε2.

The holomorphic function

a(z) =

k̂∑
`=1

5∑
j=0

(Re rj,`aj,`(z) + Im rj,`bj,`(z))

satisfies (2.4) and (2.5) with Cε.

Corollary 2.3. Let x1, . . . , xk̂ be mutually distinct arbitrary points from the do-

main Ω, α ∈ (0, 1) and r0,k, . . . , r5,k ∈ C be arbitrary and Ψ ∈ C∞(∂Ω). For any

positive ε, there exists a holomorphic function a(z) in general depending on ε such

that

(2.8) ∂jza(x`) = rj,`, ∀ j ∈ {0, . . . , 5} and ∀ ` ∈ {1, . . . , k̂},

and

(2.9) ‖a−Ψ‖C5+α(Γ̄0) ≤ ε.

In order to prove Proposition 2.1, we prove the following proposition.

Proposition 2.4. Let ε be a positive number, A ∈ C5+α(Ω̄) for some α ∈ (0, 1),

Ψ ∈ C∞(Γ̄0), ~r0,k, . . . , ~r5,k ∈ CN be arbitrary vectors and x1, . . . , xk̂ be mutually

distinct arbitrary points from the domain Ω. There exists a solution U0 ∈ C6+α(Ω)

to the problem

(2.10) 2∂zU0 +AU0 = 0 in Ω

such that

(2.11) ∂mz U0(x`) = ~rm,`, ∀m ∈ {0, . . . , 5} and ∀ ` ∈ {1, . . . , k̂},

and

(2.12) ‖U0 −Ψ‖C5+α(Γ̄0) ≤ ε.

Proof of Proposition 2.1. We fix some positive ε1. By Proposition 2.4, there exists

a solution Ũ0 ∈ C6+α(Ω) to problem (2.10) that satisfies (2.11) and

(2.13) ‖Ũ0 −Ψ‖C5+α(Γ̄0) ≤ ε1/4.
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Let T̃0 be a solution to the boundary value problem

(2.14) 2∂zT̃0 +BT̃0 = 0 in Ω

such that

(2.15) ‖T̃0 + Ψ‖C5+α(Γ̄0) ≤ ε1/4.

Then (2.13) and (2.15) yield

(2.16) ‖Ũ0 + T̃0‖C5+α(Γ̄0) ≤ ε1/2.

Consider the boundary value problem

(2.17) K(x,D)(U, T ) = 0 in Ω, U + T = g on Γ0.

For any g ∈ C6+α(Γ̄0), problem (2.17) admits a solution (U, T ) ∈ C6+α(Ω̄) ×
C6+α(Ω̄). It is shown in [12] that problem (2.17) has a solution that satisfies an

estimate

‖(U, T )‖C5+α(Ω̄) ≤ C‖g‖C5+α(Γ̄0).

In particular for g = −Ũ0 − T̃0, we have

‖(U, T )‖C5+α(Ω̄) ≤ C‖Ũ0 + T̃0‖C5+α(Γ̄0) ≤ Cε1/2.

For any ` ∈ {1, . . . , N} we construct solutions (U0(`), T0(`)) to problem (2.17)

with g = 0 depending on ε0 > 0 such that

(2.18) |U0(`)(xk)− ~e`| < ε0, ∀ ` ∈ {1, . . . , k̂}

and

(2.19) ‖U0(`)− ~e`‖C5+α(Γ̄0) ≤ ε0, ∀ ` ∈ {1, . . . , k̂}.

Let U(ε, x) = [U(1), . . . , U(N)] and T(ε, x) = [T (1), . . . , T (N)] be N×N matrices.

Let U be a matrix such that U = [U0(1), . . . , U0(k)]. The matrix U is invertible on

Γ̄0 ∪{x0, . . . , xk̂} and U−1 ∈ C6+α(Γ̄0). Then solution (U0, T0) to problem (2.1) is

given by formula

(2.20) (U0, T0) = (Ua,Tā),

where a(z) = (a1(z), . . . , aN (z)) ∈ C6(Ω̄) is a holomorphic vector-valued function

such that Ima|Γ0
= 0. Take the holomorphic function a(z) such that a(xk) =

U−1(xk)U(xk) for all k ∈ {1, . . . , k̂} and any m ∈ {1, . . . , 5},

∂mz a(xk) = U−1(xk)

(
∂mz U(xk)−

m−1∑
p=0

(
m

p

)
∂m−pz U(xk)∂pza(xk)

)
, ∀ k ∈ {1, . . . , k̂}
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and

‖a‖C5+α(Γ̄0) ≤ ε, Ima|Γ0
= 0,

provided that ε1 > 0 is sufficiently small. We note that the existence of the function

a(z) has already been proved in Proposition 2.2. Then the pair (Ũ0 +U−Ua, T̃0 +

T − Ta) satisfies (2.2) and (2.12). The proof of Proposition 2.1 is complete.

Henceforth B`4(∂Ω) denotes a Besov space (see, e.g., [10]).

Furthermore we show

Proposition 2.5. Let ε be a positive number, A ∈ C5+α(Ω̄) for some α ∈ (0, 1),

Ψ ∈ C∞(Γ0), ~r1, . . . , ~rk̂ ∈ CN be arbitrary vectors and x1, . . . , xk̂ be mutually

distinct arbitrary points from the domain Ω. Then there exists a solution U0 ∈
C6+α(Ω) to the problem

(2.21) 2∂zU0 +AU0 = 0 in Ω

such that

(2.22) U0(x`) = ~r`, ∀ ` ∈ {1, . . . , k̂},

and

(2.23) ‖U0 −Ψ‖C0(Γ̄0) ≤ ε.

Proof. Consider the following extremal problem:

(2.24) Jε(U) = ‖U −Ψ‖4
B

23/4
4 (Γ0)

+ ε‖U‖4
B

23/4
4 (∂Ω)

+

k̂∑
j=1

|U(xj)− cj |2 → inf,

(2.25) 2∂z̄U +AU = 0 in Ω.

Here ε is a positive parameter. We claim that for each ε > 0 there exists a unique

solution to (2.24) and (2.25), which we denote as Ûε. This fact can be proved by

standard arguments. Denote by Uad the set of admissible elements of the problem

(2.24) and (2.25), namely

Uad = {U ∈W 1
4 (Ω); 2∂z̄U +AU = 0 in Ω}.

Clearly 0 ∈ Uad and the set of admissible elements is not empty. Set Ĵε =

infU∈Uad
Jε(U). Therefore there exists a minimizing sequence {Uk}∞k=1 ⊂ W 1

4 (Ω)

such that

Ĵε = lim
k→+∞

Jε(Uk).
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The Lp estimates for the ∂z-operator and the uniform boundedness of the trace of

Uk in B
23/4
4 (∂Ω) imply the boundedness of the sequence {Uk} in W 1

4 (Ω). Without

loss of generality, we can assume that

Uk → Ûε weakly in W 1
4 (Ω) and Uk → Ûε weakly in B

23/4
4 (∂Ω).

Then, since the norm in the space B
23/4
4 (∂Ω) is lower semicontinuous with respect

to the weak convergence, we obtain that

Jε(Ûε) ≤ lim
k→+∞

Jε(Uk) = Ĵε.

Thus the function Ûε is a solution to the extremal problem (2.24) and (2.25). Since

the set of admissible elements is convex and the functional Jε is strictly convex,

this solution is unique.

By the Lagrange principle (see, e.g., [1]) there exists a multiplier p ∈ L4/3(Ω)

such that

J ′ε(Ûε)[δ̃] + Re
(
pε, 2∂z̄ δ̃ +Aδ̃

)
L2(Ω)

= 0, ∀ δ̃ ∈W 1
4 (Ω).

This equality can be written in the form

I ′Γ0,23/4(Ûε −Ψ)[δ̃] + εI ′∂Ω,23/4(Ûε)[δ̃] + Re
(
pε, 2∂z̄ δ̃ +Aδ̃

)
L2(Ω)

(2.26)

+ 2 Re

k̂∑
j=1

(Ûε(xj)− cj)δ̃(xj) = 0, ∀ δ̃ ∈W 1
4 (Ω),

where I ′Γ∗,κ(ŵ) denotes the derivative of the functional w → ‖w‖4Bκ4 (Γ∗) at ŵ.

Observe that Jε(Ûε) ≤ Jε(0) = ‖Ψ‖4
B

23/4
4 (Γ0)

+
∑k̂
j=1 |cj |2. This implies that the

sequence {Ûε} is bounded in B
23/4
4 (Γ0), the sequences {Ûε(xj)− cj} are bounded

in C, the sequence εI ′∂Ω,23/4(Ûε)[δ̃] converges to zero for any δ̃ from B
23/4
4 (∂Ω).

Then (2.26) implies that the sequence {pε}ε∈(0,1) is bounded in L4/3(Ω). Passing

to the limit in (2.26) we obtain

I ′Γ0,23/4(Û −Ψ)[δ̃] + Re
(
p, 2∂z̄ δ̃ +Aδ̃

)
L2(Ω)

(2.27)

+ 2 Re

k̂∑
j=1

(Û(xj)− cj)δ̃(xj) = 0, ∀ δ̃ ∈W 1
4 (Ω).

From (2.27), we obtain

(2.28) 2∂z̄p+A∗p =

k̂∑
j=1

(Û(xj)− cj)δ(x− xj) in Ω, p|∂Ω\Γ0
= 0.
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By p ∈ L4/3(Ω) and (2.28), the function p belongs to L2(Ω \ O), where O is any

open set containing Γ0∪{x1, . . . , xk̂}. Then the uniqueness of the Cauchy problem

for the ∂z-operator yields p ≡ 0 on Ω \ ∪k̂j=1{xj}. This fact and (2.28) imply that

U(xj)− cj = 0.

Let us fix an arbitrary ĵ ∈ {1, . . . , k̂}. We proved that for any positive ε there

exists a solution U(`) ∈ C6+α(Ω̄), depending on ε, to the problem

2∂z̄U(`) +AU(`) = 0 in Ω

such that

(2.29) ‖U(`)− ~e`‖C0(Γ̄0) ≤ ε,
k̂∑
k=1

|U(`)(xk)− ~e`| ≤ ε.

Let U(ε, x) = [U(1), . . . , U(N)] be an N ×N matrix. By (2.29) the matrix U(ε, x)

is invertible on Γ̄0 and ‖U−1‖C5+α(Γ̄0) ≤ C for all sufficiently small ε. By Corollary

2.3, for each positive ε1, there exists a holomorphic vector-valued function a(z)

such that

‖a− U−1Ψ‖C0(Γ̄0) ≤ ε1, a(xk) = U−1(xk)~rk, ∀ k ∈ {1, . . . , k̂}.

Then function Ua satisfies (2.22) and (2.23).

Proof of Proposition 2.4. Let us fix some ε0 > 0. First, for any ` ∈ {1, . . . , N} we

construct solutions U0(`) to problem (2.21) depending on ε0 > 0 such that

(2.30) U0(`)(xk) = ~e`, ∀ ` ∈ {1, . . . , k̂}

and

(2.31) ‖U0(`)− ~e`‖C0(Γ̄0) ≤ ε0, ∀ ` ∈ {1, . . . , k̂}.

We set U = [U0(1), . . . , U0(k)]. The matrix U is invertible on Γ̄0 and U−1 ∈
C6+α(Γ̄0). Then the solution U0 to problem (2.21) is given by the formula

(2.32) U0 = Ua,

where a(z) = (a1(z), . . . , aN (z)) ∈ C6(Ω̄) is a holomorphic vector-valued function.

Take the holomorphic function a(z) such that

a(xk) = ~r0,k,

∂mz a(xk) = U−1(xk)

(
~rm,k −

m−1∑
p=0

(
m

p

)
∂m−pz U(xk)∂pza(xk)

)
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for each k ∈ {1, . . . , k̂} and m ∈ {1, . . . , 5}, and

‖a− U−1Ψ‖C5+α(Γ̄0) ≤ ε.

The existence of such a function a(z) is already proved in Corollary 2.3. Hence

(2.11) and (2.12) hold true. The proof of the proposition is complete.

We construct matrices C and P satisfying

(2.33) C = (T0(1), . . . , T0(N)), P = (U0(1), . . . , U0(N)) ∈ C6+α(Ω̄)

and for any j ∈ {1, . . . , N},

(2.34) K(x,D)(U0(j), T0(j)) = 0 in Ω, U0(j) + T0(j) = 0 on Γ0.

Let x̂ be some point from Ω. By Proposition 2.1 for equation (2.34), we can con-

struct solutions (U0(j), T0(j)) such that

U0(j)(x̂) = ~ej , ∀ j ∈ {1, . . . , N}.

By Z we denote the set of zeros of the function q on Ω : Z = {z ∈ Ω; q(z) = 0}.
Obviously cardZ < ∞. By κ we denote the highest order of the zeros of the

function q on Ω.

By Proposition 2.1 we construct solutions (U
(j)
0 , T

(j)
0 ) to problem (2.34) such

that

(2.35) U
(j)
0 (x) = ~ej , ∀ j ∈ {1, . . . , N} and ∀x ∈ Z.

Set P̃(x) = (U
(1)
0 (x), . . . , U

(N)
0 (x)) and C̃(x) = (T

(1)
0 (x), . . . , T

(N)
0 (x)). Then there

exists a holomorphic function q̃ such that det P̃ = q̃(z)e−(1/2)∂−1
z̄ trA in Ω. Let

Z̃ = {z ∈ Ω; q̃(z) = 0} and κ̃ the highest order of the zeros of the function q̃.

By (2.35) we see that Z̃∩Z = ∅. Therefore there exists a holomorphic function

r(z) such that r|Z = 0 and (1− r)|Z̃ = 0 and the orders of zeros of the function r

on Z and the function 1− r on Z̃ are greater than or equal to max{κ, κ̃}.
We set

(2.36) PAf = 1
2P∂

−1
z (P−1rf) + 1

2 P̃∂
−1
z (P̃−1(1− r)f).

Then

P ∗Af = − 1
2r(P

−1)∗∂−1
z (P∗f)− 1

2 (1− r)(P̃−1)∗∂−1
z (P̃∗f).

For any matrix A ∈ C5+α(Ω) with α ∈ (0, 1), the linear operators PA, P ∗A ∈
L(L2(Ω),W 1

2 (Ω)) solve the differential equations

(−2∂z +A∗)P ∗Ag = g in Ω and (2∂z +A)PAg = g in Ω.
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In a similar way, using matrices C, C̃ and some antiholomorphic function r1,

we construct the operators

SBf = 1
2C∂

−1
z (C−1r1f) + 1

2 C̃∂
−1
z (C̃−1(1− r1)f)

and

(2.37) S∗Bf = − 1
2r1(C−1)∗∂−1

z (C∗f)− 1
2 (1− r1)(C̃−1)∗∂−1

z (C̃∗f).

For any matrix B ∈ C5+α(Ω) with α ∈ (0, 1), the linear operators SB and S∗B
solve the differential equations

(2∂z +B)SBg = g in Ω and (−2∂z +B∗)S∗Bg = g in Ω.

Finally we introduce two operators:

R̃τ,Bg = eτ(Φ−Φ)SB(eτ(Φ−Φ)g) and Rτ,Bg = eτ(Φ−Φ)PB(eτ(Φ−Φ)g).

Here, Φ is given later.

§3. Step 1: Construction of complex geometric optics solutions

For j = 1, 2, let Lj(x,D) be operators of the form (1.1) with the coefficients Aj ,

Bj , Qj . In this step, we will construct two complex geometric optics solutions u1

and v respectively for the operators L1(x,D) and L2(x,D)∗. Here and henceforth

L2(x,D)∗ denotes the formal adjoint operator to L2(x,D).

As the phase function for such a solution, we consider a holomorphic function

Φ(z) such that Φ(z) = ϕ(x1, x2) + iψ(x1, x2) with real-valued functions ϕ and ψ.

For some α ∈ (0, 1) the function Φ belongs to C6+α(Ω). Moreover,

(3.1) ∂z̄Φ = 0 in Ω, Im Φ|Γ0
= 0.

Denote byH the set of all the critical points of the function Φ:H = {z ∈ Ω; Φ′(z) =

0}. Assume that Φ has no critical points on Γ̃ and that all the critical points are

nondegenerate:

(3.2) Φ′′(z) 6= 0, ∀ z ∈ H, cardH <∞.

Let ∂Ω = ∪Nj=1γj . The following proposition was proved in [7].

Proposition 3.1. Let x̃ be an arbitrary point in domain Ω. There exists a se-

quence of functions {Φε}ε∈(0,1) ∈ C6(Ω̄) satisfying (3.1), (3.2) and there exists a

sequence {x̃ε}, ε ∈ (0, 1) such that

(3.3) x̃ε ∈ Hε = {z ∈ Ω; Φ′ε(z) = 0}, x̃ε → x̃ as ε→ +0.
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Moreover, for any j from {1, . . . ,N} we have

Hε ∩ γj = ∅ if γj ∩ Γ̃ 6= ∅,

Hε ∩ γj ⊂ Γ0 if γj ∩ Γ̃ = ∅,
Im Φε(x̃ε) /∈

{
Im Φε(x); x ∈ Hε \ {x̃ε}

}
and Im Φε(x̃ε) 6= 0.(3.4)

Let the function Φ satisfy (3.1), (3.2) and x̃ be some point from H. Denote

Q1(1) = −2∂zA1 −B1A1 +Q1, Q2(1) = −2∂zB1 −A1B1 +Q1.

Let (U0, T0) ∈ C6+α(Ω) be a solution to the boundary value problem

K(x,D)(U0, T0) = (2∂zU0 +A1U0, 2∂zT0 +B1T0) = 0 in Ω,

U0 + T0 = 0 on Γ0.
(3.5)

The complex geometric optics solutions are constructed in [6] and [7]. We

recall the main steps of the construction. Let the pair (U0, T0) be defined in the

following way. Let

(3.6) U0 = P1a, T0 = C1a,

where a(z) = (a1(z), . . . , aN (z)) ∈ C5+α(Ω̄) is a holomorphic vector-valued func-

tion such that Ima|Γ0
= 0, or

(3.7) U0 = P1a, T0 = −C1a,

where a(z) = (a1(z), . . . , aN (z)) ∈ C5+α(Ω̄) is a holomorphic vector-valued func-

tion such that Rea|Γ0
= 0, and matrices C1 and P1 are constructed by

(3.8) C1 = (T0(1), . . . , T0(N)), P1 = (U0(1), . . . , U0(N)) ∈ C6+α(Ω̄)

and for any k ∈ {1, . . . , N} the functions (U0(k), T0(k)) solve the boundary value

problems

(3.9) K(x,D)(U0(k), T0(k)) = 0 in Ω, U0(k) + T0(k) = 0 on Γ0.

In order to make a choice of C1 and P1, let us fix a small positive number ε. By

Proposition 2.1 there exist solutions (U0(k), T0(k)) to problem (3.9) such that

(3.10) ‖U0(k)− ~ek‖C5+α(Γ̄0) ≤ ε, ∀ k ∈ {1, . . . , N}.

This inequality and the boundary conditions in (3.9) on Γ0 imply

(3.11) ‖T0(k) + ~ek‖C5+α(Γ̄0) ≤ ε, ∀ k ∈ {1, . . . , N}.
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Let e1, e2 be smooth functions such that

(3.12) e1 + e2 = 1 on Ω,

and let e1 vanish in a neighborhood of ∂Ω and e2 vanish in a neighborhood of the

set H ∩ Ω.

For any positive ε, set Gε = {x ∈ Ω; dist(supp e1, x) > ε}. The following

proposition was proved in [8]:

Proposition 3.2. Let B, q ∈ C5+α(Ω) for some α ∈ (0, 1), the function Φ satisfy

(3.1), (3.2) and q̃ ∈ W 1
p (Ω) for some p > 2. Suppose that q|H = q̃|H = 0. Then

the following asymptotic formulae hold true:

R̃τ,B (e1 (q + q̃/τ)) |Gε = eτ(Φ−Φ)
∑
ỹ∈H

(
m+,ỹe

2iτψ(ỹ)

τ2
+ oC2(Gε)

( 1

τ2

))
(3.13)

as |τ | → +∞,

Rτ,B (e1 (q + q̃/τ)) |Gε = eτ(Φ−Φ)
∑
ỹ∈H

(
m−,ỹe

−2iτψ(ỹ)

τ2
+ oC2(Gε)

( 1

τ2

))(3.14)

as |τ | → +∞.

Let x̃ ∈ H \ ∂Ω. Denote

q1 = PA1(Q1(1)U0)−M1, q2 = SB1(Q2(1)T0)−M2 ∈ C5+α(Ω̄),

where the functions M1 ∈ Ker(2∂z +A1) and M2 ∈ Ker(2∂z +B1) are taken such

that

(3.15) q1(x̃) = q2(x̃) = ∂βx q1(x) = ∂βx q2(x) = 0, ∀x ∈ H \ {x̃} and ∀ |β| ≤ 5.

Moreover, we can assume that

(3.16) lim
x→x±

|T0(x)|+ |U0(x)|
|x− x±|98

= 0.

Indeed, in order to obtain (3.15) and (3.16) for the function q1, let us take the

pair (U∗, V∗) as a nontrivial solution to problem (3.5) such that for some vectors

~u and ~v either U∗(x̃) = ~u or V∗(x̃) = ~v, and let a(z) be a holomorphic function

in Ω such that a|H\{x̃}∪{x±} = 0, Im a|Γ0
= 0 and a(x̃) = 1. Set (U0, V0) =

(a100U∗, ā
100V∗) and take the functions M1(z̄) and M2(z) as polynomials such that

(PA1
(Q1(1)U0) −M1)|H = (SB1

(Q2(1)T0) −M2)|H = 0 and ∂jz̄(PA1
(Q1(1)U0) −

M1)|H\{x̃} = ∂jz(SB1(Q2(1)T0) −M2)|H\{x̃} = 0 for all j from {1, . . . , 5}. Then
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we obviously have qk|H = 0 and ∂jzqk|H\{x̃} = ∂jz̄qk|H\{x̃} = 0 for k = 1, 2 and

j ∈ {1, . . . , 5}. Finally, in order to prove the last two equalities in (3.15), we need

to consider the case

∂β1
z ∂β2

z̄ q1(x) = ∂β1
z ∂β2

z̄ q2(x) = 0,(3.17)

∀ |β| ≤ 5 and β1 6= 0, β2 6= 0, ∀x ∈ H \ {x̃}.

Let us prove the equality for the function q1. The proof for the function q2 is the

same. We argue by induction. First we observe that

∂β1
z ∂β2

z̄ q1(x) =
1

2
∂β1−1
z ∂β2

z̄ (A1q1 + (Q1(1)a100U∗))(x)(3.18)

=
1

2
∂β1−1
z ∂β2

z̄ (A1q1)(x), ∀x ∈ H \ {x̃}.

From this equality, by the assumption in the induction, we have

∂z∂z̄q1(x) =
1

2
∂z̄(A1q1)(x) = 0, ∀x ∈ H \ {x̃}.

If (3.17) is proved for all |β| ≤ k − 1, then from equality (3.18) the conclusion

holds for all |β| ≤ k.

Next we introduce the functions (U−1, T−1) ∈ C5+α(Ω̄)×C5+α(Ω̄) as solutions

to the following boundary value problem:

(3.19) K(x,D)(U−1, T−1) = 0 in Ω, (U−1 + T−1)|Γ0
=

q1

2Φ′
+

q2

2Φ̄′
.

In order to fix the choice of the operators PB1 and TA1 in formulae (2.36) and

(2), we take C = C1, P = P1 and C̃ = C̃1, P̃ = P̃1 for appropriately constructed C̃2
and P̃2. We set p1 = −Q2(1)( e1q12Φ′ − U−1) + L1(x,D)( e2q12Φ′ ), p2 = −Q1(1)( e1q2

2Φ̄′
−

T−1) +L1(x,D)( e2q2
2Φ̄′

), q̃2 = SB1p2 − M̃2 and q̃1 = PA1p1 − M̃1 ∈ C5+α(Ω̄), where

M̃1 ∈ Ker(2∂z +A1) and M̃2 ∈ Ker(2∂z +B1) are taken such that

(3.20) ∂βx q̃1(x) = ∂βx q̃2(x) = 0, ∀x ∈ H and ∀ |β| ≤ 5.

By Proposition 3.2, there exist functions m±,x̃ ∈ C2+α(Gε) such that

R̃τ,B1
(e1 (q1 + q̃1/τ)) |Gε = eτ(Φ−Φ)

(
m+,x̃e

2iτψ(x̃)

τ2
+ oC2(Gε)

( 1

τ2

))
(3.21)

as |τ | → +∞

and

Rτ,A1
(e1 (q2 + q̃2/τ)) |Gε = eτ(Φ−Φ)

(
m−,x̃e

−2iτψ(x̃)

τ2
+ oC2(Gε)

( 1

τ2

))
(3.22)

as |τ | → +∞.
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The functions m±,y with y 6= x̃ are identically equal to zero, thanks to (3.20).

For any x̃ ∈ H, we introduce the functions a±,x̃, b±,x̃ ∈ C2+α(Ω) as solutions to

the boundary value problem

(3.23) K(x,D)(a±,x̃, b±,x̃) = 0 in Ω, (a±,x̃ + b±,x̃)|Γ0 = m±,x̃.

We introduce the functions a±,x̃, b±,x̃ in the form

(3.24) (a±,x̃, b±,x̃) = (P1(x)a±,x̃(z), C1(x)b±,x̃(z̄)),

where a±,x̃(z) is some holomorphic function and b±,x̃(z̄) is some antiholomorphic

function. Let (U−2, T−2) ∈ C5+α(Ω) × C5+α(Ω) be a solution to the boundary

value problem

K(x,D)(U−2, T−2) = 0 in Ω, (U−2 + T−2)|Γ0 =
q̃1

2Φ′
+

q̃2

2Φ̄′
.

We introduce the functions U0,τ , T0,τ ∈ C2+α(Ω) by

U0,τ = U0 +
U−1 − e2q1/2Φ′

τ
(3.25)

+
1

τ2

(
e2iτψ(x̃)a+,x̃ + e−2iτψ(x̃)a−,x̃ + U−2 −

q̃1e2

2Φ′

)
and

T0,τ = T0 +
T−1 − e2q2/2Φ̄′

τ
(3.26)

+
1

τ2

(
e2iτψ(x̃)b+,x̃ + e−2iτψ(x̃)b−,x̃ + T−2 −

q̃2e2

2Φ
′

)
.

We set Oε = {x ∈ Ω; dist(x, ∂Ω) ≤ ε}.
In [7] and [8], it is shown that there exists a function u−1 in the complex

geometric optics solution satisfying the estimate√
|τ |‖u−1‖L2(Ω) +

1√
|τ |
‖∇u−1‖L2(Ω) + ‖u−1‖W 1,τ

2 (Oε) = o
(1

τ

)
as |τ | → +∞

(3.27)

and the function

u1(x) = U0,τe
τΦ + T0,τe

τΦ − eτΦR̃τ,B1
(e1(q1 + q̃1/τ))(3.28)

− eτΦRτ,A1(e1(q2 + q̃2/τ)) + eτϕu−1

solves the boundary value problem

(3.29) L1(x,D)u1 = 0 in Ω, u1|Γ0 = 0.
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Similarly, we construct the complex geometric optics solutions for the operator

L2(x,D)∗. Let (V0,W0) ∈ C6+α(Ω) × C6+α(Ω) be a solution to the following

boundary value problem:

M(x,D)(V0,W0) = ((2∂z −B∗2)V0, (2∂z −A∗2)W0) = 0 in Ω,

(V0 +W0)|Γ0
= 0,

(3.30)

which satisfies V0(x̃) = r for some r ∈ RN and

(3.31) lim
x→x±

|V0(x)|
|x− x±|98

= lim
x→x±

|W0(x)|
|x− x±|98

= 0.

Such a pair (V0,W0) exists by Propositions 2.1 and 2.2. More specifically let

(3.32) V0 = C2b, W0 = P2b,

where b(z) = (b1(z), . . . , bN (z)) ∈ C5+α(Ω̄) is a holomorphic vector-valued func-

tion such that Im b|Γ0 = 0, or

(3.33) V0 = C2b, W0 = −P2b,

where b(z) = (b1(z), . . . , bN (z)) ∈ C5+α(Ω̄) is a holomorphic vector-valued func-

tion such that Re b|Γ0
= 0, and the matrices C2 and P2 are constructed by

(3.34) C2 = (V0(1), . . . , V0(N)), P2 = (W0(1), . . . ,W0(N)),

and for any k ∈ {1, . . . , N},

(3.35) M(x,D)(V0(k),W0(k)) = 0 in Ω, (V0(k) +W0(k))|Γ0
= 0.

Moreover, by Proposition 2.1, there exist solutions (V0(k),W0(k)) to problem

(3.30) such that

(3.36) ‖W0(k)− ~ek‖C5+α(Γ̄0) ≤ ε, ∀ k ∈ {1, . . . , N}.

This inequality and the boundary conditions in (3.30) on Γ0 imply

(3.37) ‖V0(k) + ~ek‖C5+α(Γ̄0) ≤ ε, ∀ k ∈ {1, . . . , N}.

In order to fix the choice of the operators P−B∗2 and T−A∗2 , we take C =

C2, P = P2 and C̃ = C̃2, P̃ = P̃2 for appropriately constructed C̃2, P̃2. We set

q3 = P−A∗2 (Q1(2)W0) −M3 and q4 = S−B∗2 (Q2(2)V0) −M4 ∈ C5+α(Ω̄), where

Q1(2) = Q∗2−2∂z̄B
∗
2 −B∗2A∗2, Q2(2) = Q∗2−2∂zA

∗
2−A∗2B∗2 , M3 ∈ Ker(2∂z−A∗2)

and M4 ∈ Ker(2∂z − B∗2) are chosen such that for all x ∈ H \ {x̃} and for all

|β| ≤ 5,

(3.38) q3(x̃) = q4(x̃) = ∂βx q3(x) = ∂βx q4(x) = 0.
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We note that in order to have (3.38), the pair (V0,W0) should have zeros of suffi-

ciently large orders on H\{x̃}. The latter can be achieved by choosing the function

b such that it has zeros of sufficiently large orders on H \ {x̃}.
By (3.2) the functions q3

2Φ′ ,
q4

2Φ
′ belong to the space C5+α(Γ0). Therefore we

can introduce the functions V−1, W−1 ∈ C5+α(Ω) as a solution to the following

boundary value problem:

(3.39) M(x,D)(V−1,W−1) = 0 in Ω, (V−1 +W−1)|Γ0 = −
( q3

2Φ′
+

q4

2Φ̄′

)
.

Let p3 = Q1(2)( e1q32Φ′ + W−1) + L2(x,D)∗( q3e22Φ′ ), p4 = Q2(2)( e1q4
2Φ
′ + V−1) +

L2(x,D)∗( q4e2
2Φ
′ ) and q̃4 = (S−B∗2 p4 − M̃3), q̃3 = (P−A∗2p3 − M̃4) ∈ C5+α(Ω),

where M̃3 ∈ Ker(2∂z̄ −B∗2) and M̃4 ∈ Ker(2∂z −A∗2), and (q̃3, q̃4) are chosen such

that

(3.40) ∂βx q̃3(x) = ∂βx q̃4(x) = 0, ∀x ∈ H and ∀ |β| ≤ 5.

By Proposition 3.2, there exist smooth functions m̃±,x̃ ∈ C2+α(Gε), x̃ ∈ H,

independent of τ such that

R̃−τ,−B∗2 (e1(q3 + q̃3/τ))|Ḡε =
m̃+,x̃e

2iτ(ψ−ψ(x̃))

τ2
+ e2iτψoC2(Gε)

( 1

τ2

)
(3.41)

as |τ | → +∞

and

R−τ,−A∗2 (e1(q4 + q̃4/τ))|Ḡε =
m̃−,x̃e

−2iτ(ψ−ψ(x̃))

τ2
+ e−2iτψoC2(Gε)

( 1

τ2

)
(3.42)

as |τ | → +∞.

Using the functions m̃±,x̃, we introduce functions ã±,x̃, b̃±,x̃ ∈ C2+α(Ω) that

solve the boundary value problem

(3.43) M(x,D)(ã±,x̃, b̃±,x̃) = 0 in Ω, (ã±,x̃ + b̃±,x̃)|Γ0 = m̃±,x̃.

We choose ã±,x̃, b̃±,x̃ in the form

(3.44) (ã±,x̃, b̃±,x̃) = (C2(x)ã±,x̃(z̄),P2(x)b̃±,x̃(z)),

where a±,x̃(z̄) is some antiholomorphic function and b±,x̃(z) is some holomorphic

function. By (3.2) the functions q̃3
2Φ′ ,

q̃4
2Φ
′ belong to the space C5+α(Γ0). Therefore

there exists a pair (V−2,W−2) ∈ C5+α(Ω̄) × C5+α(Ω̄) that solves the boundary

value problem

(3.45) M(x,D)(V−2,W−2) = 0 in Ω, (V−2 +W−2)|Γ0 = −
( q̃3

2Φ′
+

q̃4

2Φ
′

)
.
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We introduce functions V0,τ , W0,τ ∈ C2+α(Ω̄) by

W0,τ = W0 +
W−1 + e2q3/2Φ′

τ
(3.46)

+
1

τ2

(
e2iτψ(x̃)b̃+,x̃ + e−2iτψ(x̃)b̃−,x̃ +W−2 +

e2q̃3

2Φ′

)
and

V0,τ = V0 +
V−1 + e2q4/2Φ

′

τ
(3.47)

+
1

τ2

(
e2iτψ(x̃)ã+,x̃ + e−2iτψ(x̃)ã−,x̃ + V−2 +

e2q̃4

2Φ̄′

)
.

The last term v−1 in the complex geometric optics solution satisfies the esti-

mate

(3.48)√
|τ |‖v−1‖L2(Ω) +

1√
|τ |
‖∇v−1‖L2(Ω) + ‖v−1‖W 1,τ

2 (Oε) = o
(1

τ

)
as |τ | → +∞

and the function

v = V0,τe
−τΦ̄ +W0,τe

−τΦ − e−τΦR̃−τ,−B∗2 (e1 (q3 + q̃3/τ))(3.49)

− e−τΦR−τ,−A∗2 (e1 (q4 + q̃4/τ)) + v−1e
−τϕ

solves the boundary value problem

(3.50) L2(x,D)∗v = 0 in Ω, v|Γ0 = 0.

We close this section with one technical proposition that can be proved simi-

larly to [7, Propositions 5.3 and 5.4]:

Proposition 3.3. Suppose that the matrices Cj, Pj ∈ C6+α(Ω̄), j = 1, 2 with

some α ∈ (0, 1) are given by (3.8)–(3.10), (3.34)–(3.36) and satisfy

(3.51)

∫
∂Ω

{
(ν1 + iν2)Φ′(P1a,P2b) + (ν1 − iν2)Φ̄′(C1ā, C2b̄)

}
dσ = 0

for all the holomorphic vector-valued functions a, b such that Ima|Γ0 = Im b|Γ0 =

0. Then there exist a holomorphic function Θ ∈W 1/2
2 (Ω) and an antiholomorphic

function Θ̃ ∈W 1/2
2 (Ω) such that

(3.52) Θ̃|Γ̃ = C∗2C1, Θ|Γ̃ = P∗2P1

and

(3.53) Θ = Θ̃ on Γ0.
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Proof. First we show that for arbitrary holomorphic vector-valued functions a, b

satisfying Ima|Γ0
= Im b|Γ0

= 0, there exist a holomorphic function Ψ̃ and an

antiholomorphic function Ψ such that

(Φ̄′(C1ā, C2b̄)−Ψ)|Γ0
= (Φ′(P1a,P2b)− Ψ̃)|Γ0

= 0

and ((ν1 − iν2)Ψ + (ν1 + iν2)Ψ̃)|Γ0 = 0.
(3.54)

Observe that equality (3.51) implies

(3.55) I =

∫
∂Ω

{(ν1 + iν2)Φ′(P1a,P2b) + (ν1 − iν2)Φ̄′(C1(−ā), C2b̄)} dσ = 0,

for arbitrary holomorphic vector-valued functions a, b satisfying Rea|Γ0
= Im b|Γ0

= 0. Indeed,

I =
1

i

∫
∂Ω

{(ν1 + iν2)Φ′(P1ia,P2b) + (ν1 − iν2)Φ̄′(C1(−iā), C2b̄)} dσ

=
1

i

∫
∂Ω

{(ν1 + iν2)Φ′(P1ia,P2b) + (ν1 − iν2)Φ̄′(C1(ia), C2b)} dσ = 0.

Here, in order to obtain the last equality, we used (3.51). In order to prove equalities

(3.54), consider the extremal problem

(3.56) J(Ψ, Ψ̃) = ‖Φ̄′(C1ā, C2b̄)−Ψ‖2
L2(Γ̃)

+ ‖Φ′(P1a,P2b)− Ψ̃‖2
L2(Γ̃)

→ inf,

where

(3.57)
∂Ψ

∂z
= 0 in Ω,

∂Ψ̃

∂z
= 0 in Ω, ((ν1−iν2)Ψ+(ν1 +iν2)Ψ̃)|Γ0

= 0.

Denote a unique solution to this extremal problem (3.56) and (3.57) by

(Ψ̂,
̂̃
Ψ) ∈W 1/2

2 (Ω)×W 1/2
2 (Ω). Applying the Fermat theorem, we obtain

(3.58) Re(Φ′(P1a,P2b)− ̂̃Ψ, δ)L2(Γ̃) + Re(Φ̄′(C1ā, C2b̄)− Ψ̂, δ̃)L2(Γ̃) = 0

for any δ, δ̃ from W
1/2
2 (Ω) such that

(3.59)
∂δ

∂z̄
= 0 in Ω,

∂δ̃

∂z
= 0 in Ω, ((ν1 + iν2)δ + (ν1 − iν2)δ̃)|Γ0

= 0,

and there exist two functions P , P̃ ∈W 1/2
2 (Ω) such that

∂P

∂z
= 0 in Ω,

∂P̃

∂z
= 0 in Ω,(3.60)

(ν1 + iν2)P = Φ′(P1a,P2b)− ̂̃Ψ on Γ̃,

(ν1 − iν2)P̃ = Φ̄′(C1ā, C2b̄)− Ψ̂ on Γ̃

(3.61)
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and

(3.62) (P − P̃ )|Γ0 = 0.

Denote Ψ0(z) = 1
2i (P (z) − P̃ (z)) and Φ0(z) = 1

2 (P (z) + P̃ (z)). Equality (3.62)

yields

(3.63) Im Ψ0|Γ0 = Im Φ0|Γ0 = 0.

Hence

(3.64) P = (Φ0 + iΨ0), P̃ = (Φ0 − iΨ0).

From (3.58), taking δ̃ = Ψ̂ and δ =
̂̃
Ψ, we have

(3.65) Re

∫
Γ̃

((Φ̄′(C1ā, C2b̄)− Ψ̂)Ψ̂ + (Φ′(P1a,P2b)− ̂̃Ψ)
̂̃
Ψ) dσ = 0.

By (3.60), (3.61) and (3.64), we have

H = Re

∫
Γ̃

((Φ′(P1a,P2b)− ̂̃Ψ)Φ′(P1a,P2b) + (Φ̄′(C1ā, C2b̄)− Ψ̂)Φ̄′(C1ā, C2b̄)) dσ

= Re

∫
Γ̃

((ν1 + iν2)PΦ′(P1a,P2b) + (ν1 − iν2)P̃ Φ̄′(C1ā, C2b̄)) dσ

= Re

∫
Γ̃

((ν1 + iν2)(Φ0 + iΨ0)Φ′(P1a,P2b)

+ (ν1 − iν2)(Φ̄0 − iΨ0)Φ̄′(C1ā, C2b̄)) dσ.

By (3.51) and (3.63), we have

(3.66) Re

∫
Γ̃

{((ν1+iν2)Φ′(P1(Φ0a),P2b))+((ν1−iν2)Φ̄′(C1(Φ0a), C2b̄))} dσ = 0.

By (3.55) and (3.63), we obtain

Re

∫
Γ̃

{((ν1 + iν2)Φ′(P1(iΨ0a),P2b))(3.67)

+ Re((ν1 − iν2)Φ̄′(C1(−iΨ0a), C2b̄))} dσ = 0.

Then by (3.66), (3.67) and (3.65), we see that H = 0. Taking (3.65) into account,

we obtain that J(Ψ̂,
̂̃
Ψ) = 0. Hence

(P1a,P2b)(x) = (
ˆ̃
Ψ/Φ′)(z) =: Ξ̃(z),

(C1ā, C2b̄)(x) = (Ψ̂/Φ̄′)(z̄) =: Ξ(z̄) on Γ̃ \ H.
(3.68)
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In general, the function Φ may have a finite number of zeros on Ω̄. At these zeros

the functions Ξ, Ξ̃ may have singularities. On the other hand, observe that Ξ, Ξ̃ are

independent of a particular choice of the function Φ. Making small perturbations

of these functions, we can shift the position of the zeros of the function Φ′. Hence

there are no poles for the functions Ξ and Ξ̃. By (3.57), we have ((ν1−iν2)Ψ̂+(ν1+

iν2)
ˆ̃
Ψ)|Γ0

= 0. Next, using the assumption Im Φ|Γ0
= 0, by direct computations,

we have ((ν1 + iν2)Φ′ + (ν1 − iν2)Φ̄′)|Γ0
= 0 . Therefore

(3.69) Ξ̃(z) = Ξ(z̄) on Γ0.

Consider N holomorphic vector-valued functions bj = (bj,1, . . . , bj,N ) such that

Im bj |Γ0
= 0 and the determinant of the square matrix [b1, . . . , bN ] is not equal to

zero at least at one point of domain Ω. The equality (3.68) can be written as

(P∗2P1a, bj) = Ξ̃j(z) and (C∗2C1ā, b̄j) = Ξj(z̄) on Γ̃.

Then

P∗2P1a = B−1~̃Ξ and C∗2C1ā = B̄−1~Ξ on Γ̃.

Here B is the matrix such that the jth row equals btj and
~̃
Ξ(z)=(Ξ̃1(z), . . . , Ξ̃N (z)),

~Ξ = (Ξ1(z̄), . . . ,ΞN (z̄)). Consider N holomorphic vector-valued functions aj such

that Imaj |Γ0
= 0. Then

P∗2P1aj = B−1~̃Ξj and C∗2C1āj = B̄−1~Ξj on Γ̃.

From this equality, we have

P∗2P1 = B−1Π̃A−1 and C∗2C1 = B̄−1ΠĀ−1 on Γ̃.

Here A, Π̃, Π are the matrices such that the jth rows equal aj , ~Ξj and
~̃
Ξj respec-

tively. We set

Θ = B−1ΠA−1 and Θ̃ = B̄−1Π̃Ā−1.

These formulae define the functions Θ, Θ̃ correctly except at the points where

determinants of the matrices A and B are equal to zero. On the other hand,

it is obvious that the functions Θ, Θ̃ are independent of choices of the matrices

A, B. Hence, if we assume that there exists a point of singularity of, say, the

function Θ by Proposition 2.1, then we can make a choice of the matrices A, B

such that the determinants of these matrices are not equal to zero at this point

and reach a contradiction. The equality (3.53) follows from (3.69) and the fact

that ImB|Γ0
= ImA|Γ0

= 0. Indeed,

P∗2P1 = B−1ΠA−1 = B̄−1ΠĀ−1 = B̄−1Π̃Ā−1 = C∗2C1 on Γ0.
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The proof of the proposition is complete.

Let u1 be the complex geometric optics solution given by (3.28) constructed

for the operator L1(x,D). Since the Dirichlet-to-Neumann maps for the opera-

tors L1(x,D) and L2(x,D) are equal, there exists a solution u2 to the following

boundary value problem:

L2(x,D)u2 = 0 in Ω, (u1 − u2)|∂Ω = 0, ∂~ν(u1 − u2) = 0 on Γ̃.

Setting u = u1 − u2, A = A1 −A2, B = B1 −B2 and Q = Q1 −Q2, we have

(3.70) L2(x,D)u+ 2A∂zu1 + 2B∂zu1 +Qu1 = 0 in Ω

and

(3.71) u|∂Ω = 0, ∂~νu|Γ̃ = 0.

Let v be the function given by (3.49). Taking the scalar product of (3.70) with v

in L2(Ω) and using (3.50) and (3.71), we obtain

(3.72) 0 =

∫
Ω

(2A∂zu1 + 2B∂zu1 +Qu1, v) dx.

Denote

V = V0,τe
−τΦ̄ +W0,τe

−τΦ − e−τΦR̃−τ,−B∗2 (e1(q3 + q̃3/τ))(3.73)

− e−τΦR−τ,−A∗2 (e1(q4 + q̃4/τ))

and

U = U0,τe
τΦ + T0,τe

τΦ − eτΦR̃τ,B1
(e1(q1 + q̃1/τ))(3.74)

− eτΦRτ,A1(e1(q2 + q̃2/τ)).

We have

Proposition 3.4. Let u1 be given by (3.28) and v be given by (3.49). Then the

following asymptotics holds true:∫
Ω

(2A∂zu1 + 2B∂zu1 +Qu1, v) dx =

∫
Ω

(2A∂zU + 2B∂zU +QU, V ) dx+ o
(1

τ

)
as τ → +∞,

where the functions U , V are determined by (3.74) and (3.73).

The proof of Proposition 3.4 is exactly the same as the proof of [6, Proposi-

tion 5.1].
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Conditions (3.15), (3.16) and (3.38) may impose some restrictions on the pairs

(U0, V0) and (T0,W0) and this will be inconvenient for us, since in the next section

we shall try to establish the identity (3.51). However we can argue as follows. We

set

(3.75) u1 = U0e
τΦ + V0e

τΦ̄ + ucore
τϕ, v = T0e

−τΦ +W0e
−τΦ̄ + vcore

−τϕ,

where

(3.76) ‖ucor‖W 1,τ
2 (Ω) + ‖vcor‖W 1,τ

2 (Ω) ≤ C.

From (3.75) and (3.76), we have∫
Ω

(2A∂zu1 + 2B∂zu1 +Qu1, v) dx

=

∫
Ω

((2A∂z + 2B∂z +Q)(U0e
τΦ + V0e

τΦ̄), T0e
−τΦ +W0e

−τΦ̄) dx+ o(τ)

as τ → +∞.

This equality and short computations immediately imply (3.51).

§4. Step 2: Asymptotics

We introduce the functionals

Fτ,x̃u =
π

2|detψ′′(x̃)|1/2

×
(
u(x̃)

τ
− ∂2

zzu(x̃)

2Φ′′(x̃)τ2
+

∂2
zzu(x̃)

2Φ̄′′(x̃)τ2
+
∂zu(x̃)Φ′′′(x̃)

2(Φ′′(x̃))2τ2
− ∂z̄u(x̃)Φ̄′′′(x̃)

2(Φ̄′′(x̃))2τ2

)
and

Iτu =

∫
∂Ω

u
ν1 − iν2

2τΦ′
eτ(Φ−Φ) dσ −

∫
∂Ω

ν1 − iν2

Φ′
∂z

( u

2τ2Φ′

)
eτ(Φ−Φ) dσ.

Using this notation and the fact that Φ is a harmonic function, we rewrite the

classical result of [5, Theorem 7.7.5] as

Proposition 4.1. Let Φ(z) satisfy (3.1), (3.2) and u ∈ C5+α(Ω̄), α ∈ (0, 1) be

some function that has zeros of order 5 on the set H ∩ ∂Ω. Then the following

asymptotic formula is true:

(4.1)

∫
Ω

ueτ(Φ−Φ) dx =
∑
ỹ∈H

e2iτψ(ỹ)Fτ,ỹu+ Jτu+ o
( 1

τ2

)
as τ → +∞.
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Denote

H(x, ∂z, ∂z) = 2A∂z + 2B∂z̄ +Q and Jτ =

∫
Ω

(H(x, ∂z, ∂z)U, V ) dx,

where U and V are given by (3.74) and (3.73) respectively. We have

Proposition 4.2. The following asymptotic formula holds true:

0 =

1∑
k=−1

τkJk +
1

τ

(
(J+ + I+,Φ +K+)(x̃)e2τiψ(x̃)(4.2)

+ (J− + I−,Φ +K−)(x̃)e−2τiψ(x̃)
)

+

∫
Γ̃

((ν1 − iν2)(AU0e
τΦ, V0e

−τΦ̄) + (ν1 + iν2)(BT0e
τΦ̄,W0e

−τΦ)) dσ

+ o
(1

τ

)
as τ → +∞,

where J−1 and J0 are independent of τ , and

J1 =

∫
∂Ω

((ν1 − iν2)Φ̄′(T0, V0) + (ν1 + iν2)Φ′(U0,W0)) dσ,(4.3)

J+(x̃) =
π

2|detψ′′(x̃)|1/2
(
− (2∂zAU0, V0)− (AU0, A

∗
2V0)(4.4)

− (BA1U0, V0) + (QU0, V0)
)
(x̃),

J−(x̃) =
π

2|detψ′′(x̃)|1/2
(
− (AB1T0,W0)− (2∂z̄BT0,W0)(4.5)

− (BT0, B
∗
2W0) + (QT0,W0)

)
(x̃),

I±,Φ(x̃) = −
∫
∂Ω

{
(ν1 − iν2)((2b±,x̃Φ̄′, V0) + (2Φ̄′T0, ã±,x̃))(4.6)

+ (ν1 + iν2)((2a±,x̃Φ′,W0) + (2Φ′U0, b̃±,x̃))
}
dσ,

K+ = τFτ,x̃(q1, T
∗
B1

(B∗1A∗V0)−A∗V0 + 2T ∗B1
(∂zB∗V0)(4.7)

+ T ∗B1
(B∗(A∗2V0 − 2τ Φ̄′V0)))

− 2τFτ,x̃(P ∗−A∗2 (A(∂zU0 + τΦ′U0) + B∂z̄U0), q4),

K− = τF−τ,x̃(q2, P
∗
A1

(2∂z(A∗W0)− 2τΦ′A∗W0)− B∗W0(4.8)

+ P ∗A1
(A∗1B∗W0))

− 2τF−τ,x̃(q3, T
∗
−B∗2 (A∂zT0 + B(∂z̄T0 + τ Φ̄′T0))).

Proof. By Proposition 3.4, the following asymptotic formula holds true:

Jτ =

∫
Ω

(H(x, ∂z, ∂z)U, V ) dx = o
(1

τ

)
as τ → +∞.
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Integrating by parts and using Proposition 4.1, we obtain

M1 =

∫
Ω

(2A∂z(U0,τe
τΦ) + 2B∂z̄(U0,τe

τΦ), V0,τe
−τΦ̄) dx(4.9)

=

∫
Ω

(
(−2∂zAU0,τe

τΦ, V0,τe
−τΦ̄)− (2AU0,τe

τΦ, ∂zV0,τe
−τΦ̄)

+ (2B∂z̄U0,τe
τΦ, V0,τe

−τΦ̄)
)
dx

+

∫
∂Ω

(ν1 − iν2)(AU0,τe
τΦ, V0,τe

−τΦ̄) dσ

= e2iτψ(x̃)Fτ,x̃(−(2∂zAU0, V0)− (2AU0, ∂zV0) + (2B∂z̄U0, V0))

+ Iτ (−(2∂zAU0,τ , V0,τ )− (2AU0,τ , ∂zV0,τ ) + (2B∂z̄U0,τ , V0,τ ))

+

∫
Γ̃

(ν1 − iν2)(AU0, V0)eτ(Φ−Φ̄) dσ + κ0,0 +
κ0,−1

τ
+ o
(1

τ

)
,

where κ0,j are some constants independent of τ .

Integrating by parts, we obtain that there exist constants κ1,j , independent

of τ , such that∫
Ω

(2A∂z(T0,τe
τΦ̄) + 2B∂z̄(T0,τe

τΦ̄), V0,τe
−τΦ̄) dx(4.10)

= (2A∂zT0,τ , V0,τ )L2(Ω) + (2B(∂zT0,τ + τ Φ̄′T0,τ ), V0,τ )L2(Ω)

= τκ1,1 + κ1,0 +
κ1,−1

τ

+
1

τ
(e2iτψ(x̃)(2Bb+,x̃Φ̄′, V0)L2(Ω) + e−2iτψ(x̃)(2Bb−,x̃Φ̄′, V0)L2(Ω))

+
1

τ
(e2iτψ(x̃)(2BΦ̄′T0, ã+,x̃)L2(Ω) + e−2iτψ(x̃)(2BΦ̄′T0, ã−,x̃)L2(Ω))

+ o
(1

τ

)
.

Since by (3.5), (3.23), (3.30) and (3.43), we have

(2BΦ̄′T0, ã±,x̃) = −4∂z(Φ̄
′T0, ã±,x̃),

and (2Bb±,x̃Φ̄′, V0) = −4∂z(b±,x̃Φ̄′, V0) in Ω,

from (4.10) we obtain

M2 =

∫
Ω

(2A∂z(T0,τe
τΦ̄) + 2B∂z̄(T0,τe

τΦ̄), V0,τe
−τΦ̄) dx(4.11)

= τκ1,1 + κ1,0 +
κ1,−1

τ

−
∫
∂Ω

ν1 − iν2

τ
(e2iτψ(x̃)(2Bb+,x̃Φ̄′, V0)+e−2iτψ(x̃)(2Bb−,x̃Φ̄′, V0)) dσ
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−
∫
∂Ω

ν1 − iν2

τ
(e2iτψ(x̃)(2Φ̄′T0, ã+,x̃) + e−2iτψ(x̃)(2Φ̄′T0, ã−,x̃)) dσ

+ o
(1

τ

)
.

Integrating by parts, we obtain that there exist constants κ2,j , independent of τ ,

such that

M3 =

∫
Ω

(2A∂z(U0,τe
τΦ) + 2B∂z̄(U0,τe

τΦ),W0,τe
−τΦ) dx(4.12)

= (2A(∂zU0,τ + τΦ′U0,τ ) + 2B∂z̄U0,τ ,W0,τ )L2(Ω)

= τκ2,1 + κ1,0 +
κ2,−1

τ

+
2

τ
(e2iτψ(x̃)(Aa+,x̃Φ′,W0)L2(Ω) + e−2iτψ(x̃)(Aa−,x̃Φ′,W0)L2(Ω))

+
2

τ
(e2iτψ(x̃)(AΦ′T0, b̃+,x̃)L2(Ω) + e−2iτψ(x̃)(AΦ′W0, b̃−,x̃)L2(Ω))

+ o
(1

τ

)
.

Since by (3.5), (3.23), (3.30) and (3.43) we have

(Aa±,x̃Φ′,W0) = −2∂z̄(a±,x̃Φ′,W0)

and (AΦ′T0, b̃±,x̃) = −2∂z̄(Φ
′T0, b̃±,x̃) in Ω,

we obtain from (4.12),

M3 =

∫
Ω

(2A∂z(U0,τe
τΦ) + 2B∂z̄(U0,τe

τΦ),W0,τe
−τΦ) dx(4.13)

= τκ2,1 + κ1,0 +
κ2,−1

τ

−
∫
∂Ω

(ν1 + iν2)
2

τ
(e2iτψ(x̃)(a+,x̃Φ′,W0)+e−2iτψ(x̃)(a−,x̃Φ′,W0)) dσ

−
∫
∂Ω

(ν1 + iν2)
2

τ
(e2iτψ(x̃)(Φ′T0, b̃+,x̃) + e−2iτψ(x̃)(Φ′T0, b̃−,x̃)) dσ

+ o
(1

τ

)
.

Integrating by parts, using (3.5) and Proposition 4.1, we obtain that there exist

some constants κ3,j , independent of τ , such that

M4 =

∫
Ω

(2A∂z(T0,τe
τΦ̄) + 2B∂z̄(T0,τe

τΦ̄),W0,τe
−τΦ) dx(4.14)

=

∫
Ω

((2A∂zT0,τe
τΦ̄,W0,τe

−τΦ)− (2∂z̄BT0,τe
τΦ̄,W0,τe

−τΦ)
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− (2BT0,τe
τΦ̄, ∂z̄W0,τe

−τΦ)) dx

+

∫
∂Ω

(ν1 + iν2)(BT0,τe
τΦ̄,W0,τe

−τΦ) dσ

= e−2iτψ(x̃)F−τ,x̃((2A∂zT0,W0)− (2∂z̄BT0,W0)− (2BT0, ∂z̄W0))

+ I−τ ((2A∂zT0,τ ,W0,τ )− (2∂z̄BT0,τ ,W0,τ )− (2BT0,τ , ∂z̄W0,τ ))

+

∫
Γ̃

(ν1 + iν2)(BT0e
τΦ̄,W0e

−τΦ) dσ + κ3,1 +
κ3,−1

τ
+ o
(1

τ

)
.

Integrating by parts and using Proposition 4.1, we obtain

M5 = −
∫

Ω

(2A∂z(R̃τ,B1
(e1(q1 + q̃1/τ))eτΦ)(4.15)

+ 2B∂z̄(R̃τ,B1
(e1(q1 + q̃1/τ))eτΦ), V0,τe

−τΦ̄) dx

=

∫
Ω

(A(B1R̃τ,B1(e1(q1 + q̃1/τ))− e1q1)eτΦ

+ 2∂z̄B(R̃τ,B1(e1(q1 + q̃1/τ))eτΦ), V0,τe
−τΦ̄) dx

−
∫
∂Ω

(ν1 + iν2)(BR̃τ,B1
(e1(q1 + q̃1/τ)), V0,τ )eτ(Φ−Φ̄) dσ

+ (2BR̃τ,B1
(e1(q1 + q̃1/τ)), ∂z̄(V0,τe

τ(Φ−Φ̄)))L2(Ω) + o
(1

τ

)
=

∫
Ω

(
(A(B1SB1(eτ(Φ−Φ̄)e1q1)− e1q1)eτ(Φ−Φ̄), V0,τ )

+ (2∂zB(SB1
(eτ(Φ−Φ̄)e1q1)), V0,τ )

)
dx

+ (BSB1(eτ(Φ−Φ̄)e1q1), ∂z̄V0,τ − 2τ Φ̄′V0,τ )L2(Ω)

−
∫
∂Ω

(ν1 + iν2)(BR̃τ,B1
(e1(q1 + q̃1/τ)), V0,τ )eτ(Φ−Φ̄) dσ + o

(1

τ

)
= e2iτψ(x̃)Fτ,x̃(q1, S

∗
B1

(B∗1A∗V0)−A∗V0

+ 2S∗B1
(∂zB∗V0) + S∗B1

(B∗(A∗2V0 − 2τ Φ̄′V0)))

−
∫
∂Ω

(ν1 + iν2)(BR̃τ,B1(e1(q1 + q̃1/τ)), V0,τ )eτ(Φ−Φ̄) dσ + o
(1

τ

)
as τ → +∞.

After integration by parts, we have

M6 = −
∫

Ω

(2A∂z(R̃τ,B1
(e1(q1 + q̃1/τ))eτΦ)

+ 2B∂z̄(R̃τ,B1(e1(q1 + q̃1/τ))eτΦ),W0,τe
−τΦ) dx

=

∫
Ω

(A(B1R̃τ,B1
(e1(q1 + q̃1/τ))− e1q1)
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+ 2∂z̄BR̃τ,B1
(e1(q1 + q̃1/τ)),W0,τ ) dx+ o

(1

τ

)
− (2BR̃τ,B1

(e1(q1 + q̃1/τ)), ∂z̄W0,τ )L2(Ω)

−
∫
∂Ω

(ν1 + iν2)(BR̃τ,B1
(e1(q1 + q̃1/τ)),W0,τ ) dσ.

Using (3.21), (3.22) and [7, Proposition 8], we obtain that

(4.16) M6 = −
∫

Ω

(Aq1,W0,τ ) dx+ o
(1

τ

)
as τ → +∞.

Integrating by parts and using Proposition 4.1, we have

M7

(4.17)

= −
∫

Ω

(2A∂z(U0,τe
τΦ) + 2B∂z̄(U0,τe

τΦ),R−τ,−A∗2 (e1(q4 + q̃4/τ))e−τΦ̄) dx

= −2

∫
Ω

(A(∂zU0,τ + τΦ′U0,τ )eτΦ + B∂z̄U0,τe
τΦ,

R−τ,−A∗2 (e1(q4 + q̃4/τ))e−τΦ̄) dx

= −2

∫
Ω

(P ∗−A∗2 (A(∂zU0 + τΦ′U0) + B∂z̄U0,τ ), e1q4e
τ(Φ−Φ̄)) dx+ o

(1

τ

)
= −2e2iτψ(x̃)Fτ,x̃(P ∗−A∗2 (A(∂zU0 + τΦ′U0) + B∂z̄U0), q4) + o

(1

τ

)
as τ → +∞.

Integrating by parts and using [6, Proposition 8], we have

M8

(4.18)

= −
∫

Ω

(2A∂z(U0,τe
τΦ) + 2B∂z̄(U0,τe

τΦ), R̃−τ,−B∗2 (e1(q3 + q̃3/τ))e−τΦ) dx

=

∫
Ω

(−(−2∂zAU0 + B∂z̄U0, R̃−τ,−B∗2 (e1(q3 + q̃3/τ)))

− (AU0,τ , B
∗
2R̃−τ,−B∗2 (e1(q3 + q̃3/τ))− e1q3)) dx+ o

(1

τ

)
−
∫
∂Ω

(ν1 − iν2)(AU0, R̃−τ,−B∗2 (e1(q3 + q̃3/τ))) dσ

= −
∫

Ω

(AU0,τ , q3) dx+ o
(1

τ

)
as τ → +∞
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and

M9 = −
∫

Ω

(2A∂z(Rτ,A1
(e1(q2 + q̃2/τ))eτΦ̄)(4.19)

+ 2B∂z̄(Rτ,A1
(e1(q2 + q̃2/τ))eτΦ̄), V0,τe

−τΦ̄) dx

=

∫
Ω

(
(Rτ,A1(e1(q2 + q̃2/τ)), ∂z(2A∗V0,τ ))

+ (B(A1Rτ,A1
(e1(q2 + q̃2/τ))− e1q2), V0,τ )

)
dx+ o

(1

τ

)
−
∫
∂Ω

(ν1 − iν2)(ARτ,A1
(e1(q2 + q̃2/τ)), V0) dσ

= −
∫

Ω

(Bq2, V0,τ ) dx+ o
(1

τ

)
as τ → +∞.

Integrating by parts and using Proposition 4.1, we obtain

M10 = −
∫

Ω

(2A∂z(Rτ,A1
(e1(q2 + q̃2/τ))eτΦ̄)(4.20)

+ 2B∂z̄(Rτ,A1
(e1(q2 + q̃2/τ))eτΦ̄), W0,τe

−τΦ) dx

=

∫
Ω

((−Rτ,A1(e1(q2 + q̃2/τ)), −∂z(2A∗W0,τ ) + 2τΦ′A∗W0,τ )

+ (B(A1Rτ,A1(e1(q2 + q̃2/τ))− e1q2), W0,τ )eτ(Φ̄−Φ)) dx

−
∫
∂Ω

(ν1 − iν2)(ARτ,A1
(e1(q2 + q̃2/τ)), W0,τ )eτ(Φ̄−Φ) dσ + o

(1

τ

)
=

∫
Ω

(e1q2, P
∗
A1

(2∂z(A∗W0,τ )− 2τΦ′A∗W0)− B∗W0

+ P ∗A1
(A∗1B∗W0))eτ(Φ̄−Φ) dx

−
∫
∂Ω

(ν1 − iν2)(ARτ,A1
(e1(q2 + q̃2/τ)),W0)eτ(Φ̄−Φ) dσ + o

(1

τ

)
= e−2iτψ(x̃)F−τ,x̃(q2, P

∗
A1

(2∂z(A∗W0,τ )− 2τΦ′A∗W0)

− B∗W0 + P ∗A1
(A∗1B∗W0))

−
∫
∂Ω

(ν1 − iν2)(ARτ,A1(e1(q2 + q̃2/τ)),W0)eτ(Φ̄−Φ) dσ + o
(1

τ

)
as τ → +∞.

By (3.15) and Proposition 4.1, we obtain

M11

(4.21)

= −
∫

Ω

(2A∂z(T0,τe
τΦ̄) + 2B∂z̄(T0,τe

τΦ̄), R̃−τ,−B∗2 (e1(q3 + q̃3/τ))e−τΦ) dx
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= −
∫

Ω

(2A∂zT0,τ + 2B(∂z̄T0,τ + τ Φ̄′T0,τ ), R̃−τ,−B∗2 (e1(q3 + q̃3/τ)))eτ(Φ̄−Φ) dx

= −
∫

Ω

(e1q3, T
∗
−B∗2 (2A∂zT0,τ + 2B(∂z̄T0,τ + τ Φ̄′T0,τ )))eτ(Φ̄−Φ) dx+ o

(1

τ

)
= −e−2iτψ(x̃)F−τ,x̃(q3, S

∗
−B∗2 (2A∂zT0 + 2B(∂z̄T0 + τ Φ̄′T0))) + o

(1

τ

)
as τ → +∞.

By Proposition 4.1, there exist constants κ4,j , independent of τ , such that

M12 =

∫
Ω

(Q(U0,τe
τΦ̄ + T0,τe

τΦ), V0,τe
−τΦ̄ +W0,τe

−τΦ) dx(4.22)

= κ4,0 + κ4,−1/τ +
π

2τ |detψ′′(x̃)|1/2

× ((QU0, V0)(x̃)e2iτψ(x̃) + (QT0,W0)(x̃)e−2iτψ(x̃))

+ o
(1

τ

)
as τ → +∞.

Since Jτ =
∑12
k=1Mk, the proof of Proposition 4.2 is complete.

We have

Proposition 4.3. The matrices Aj and Bj on Γ̃ satisfy

(4.23) A1 −A2 = B1 −B2 = 0 on Γ̃.

For any matrices Cj, Pj ∈ C5+α(Ω̄) satisfying (3.8)–(3.10) and (3.34)–(3.36) with

sufficiently small positive ε and some α ∈ (0, 1), there exists a holomorphic matrix

Θ ∈ C6+α(Ω̄) such that the matrix Q = P1Θ−1P∗2 verifies

(4.24) 2∂z̄Q +A1Q−QA2 = 0 in Ω \ X , Q|Γ̃ = I, ∂~νQ|Γ̃ = 0,

where X = {x ∈ Ω̄; det Θ(x) = 0} and

(4.25) Q ∈ C6+α(Ω \ X ), detQ 6= 0 in Ω̄ \ X .

Proof. From (4.2), we have J0 = J1 = 0. All remaining terms on the right-hand side

of (4.2) except for
∫

Γ̃
((ν1−iν2)(AU0e

τΦ, V0e
−τΦ̄)+(ν1+iν2)(BT0e

τΦ̄,W0e
−τΦ)) dσ

are of order o( 1√
τ

). Let the phase function Φ = ϕ+ iψ be given by [7, Proposition

2.2]. Let x̃ be an arbitrary point from Γ̃ and µ ∈ C5
0 (Γ̃) be equal to 1 in some

neighborhood of x̃. Thanks to (3.16) and (3.31), the functions U0, V0, T0, W0 can

be chosen such that

lim
x→x̂±

|U0(x)|+ |T0(x)|
|x− x̂±|98

= lim
x→x̂±

|V0(x)|+ |W0(x)|
|x− x̂±|98

= 0
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and (
∂

∂~τ + 0

)6

Im Φ(x̂−) 6= 0,

(
∂

∂~τ − 0

)6

Im Φ(x̂+) 6= 0.

Here ∂
∂~τ+0 and ∂

∂~τ−0 mean the limit from the right and the limit from the left,

respectively. Hence we have

Z =

∫
Γ̃

((ν1 − iν2)(AU0e
τΦ, V0e

−τΦ̄) + (ν1 + iν2)(BT0e
τΦ̄,W0e

−τΦ)) dσ

=

∫
Γ̃

µ((ν1 − iν2)(AU0e
τΦ, V0e

−τΦ̄) + (ν1 + iν2)(BT0e
τΦ̄,W0e

−τΦ)) dσ

+ o
( 1√
τ

)
.

For the restriction of the function ψ on suppµ, the set of the critical points G is fi-

nite and all the points are nondegenerate. Applying the stationary phase argument

to the last integral, we obtain

Z =
∑
x∈G

κ(x)√
τ

(
(ν1 − iν2)(x)(AU0, V0)(x)eiτψ(x)(4.26)

+ (ν1 + iν2)(x)(BT0,W0)(x)e−iτψ(x)
)

+ o
( 1√
τ

)
.

Here κ is some function not vanishing for any x ∈ G. Since ψ(x̃) 6= −ψ(x̃) + 2πk

and ψ(x̃) − ψ(x) 6= 0 modulo 2πk for all x from G \ {x̃}, by (4.26) and (4.2), we

have (4.23).

From Proposition 4.2, for any function Φ satisfying (3.1) and (3.2), we have

(4.27)

∫
∂Ω

((ν1 + iν2)Φ′(T0, V0) + (ν1 − iν2)Φ̄′(U0,W0)) dσ = 0.

If a(z) = (a1(z), . . . , aN (z)) and b(z) = (b1(z), . . . , bN (z)) are holomorphic

functions such that Ima|Γ0
= Im b|Γ0

= 0, then the pairs (P1a, C1a) and (P2b, C2b)

solve boundary value problems (3.5) and (3.30) respectively. Therefore we can

rewrite (4.27) as

(4.28)

∫
∂Ω

{(ν1 + iν2)Φ′(P1a,P2b) + (ν1 − iν2)Φ̄′(C1ā, C2b̄)} dσ = 0.

Thanks to (4.28), all the assumptions of Proposition 3.3 hold true. By Proposition

3.3 there exist a holomorphic matrix Θ(z) and an antiholomorphic matrix Θ̃(z̄)

on Ω such that

(4.29) Θ = P∗2P1 on Γ̃ and Θ̃ = C∗2C1 on Γ̃ and Θ, Θ̃ ∈ L2(Ω)
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and

(4.30) Θ− Θ̃ = 0 on Γ0.

From (4.29) and (4.30), we have

Θ− Θ̃ =

{
P∗2P1 − C∗2C1 if x ∈ Γ̃,

0 if x ∈ Γ0.

By (3.8), (3.9), (3.34) and (3.35), we have

(4.31) Θ− Θ̃ = P∗2P1 − C∗2C1 on ∂Ω.

From (4.31) and the classical regularity theory of systems of elliptic equations

(see, e.g., [12]), we see that Θ, Θ̃ ∈ C6+α(Ω̄). Without loss of generality, we can

assume that

(4.32) detP∗2 6= 0 and detP1 6= 0 on Γ̃.

Moreover (3.10) and (3.36) yield

detP∗2 6= 0 and detP1 6= 0 on Γ0.

Observe that

(4.33) I = P1Θ−1P∗2 on Γ̃

by (4.29).

Since

2∂z̄P1 +A1P1 = 0 in Ω and 2∂z̄P∗2 − P∗2A2 = 0 in Ω

by the construction of the matrices Pj , and the matrix Θ is holomorphic, we have

2∂z̄(P1Θ−1) +A1(P1Θ−1) = 0 in Ω \ X

and

(4.34) 2∂z̄(P1Θ−1P∗2 ) +A1(P1Θ−1P∗2 )− (P1Θ−1P∗2 )A2 = 0 in Ω \ X .

Thus the first equation in (4.24) holds true. By (4.33) the second equation in (4.24)

is proved.

By (4.23) and (4.33), we have

(4.35) − 2∂z̄Q = A1P1Θ−1P∗2 − P1Θ−1P∗2A2 = A1I − IA2 = A1 −A2 = 0.

In order to prove the third equation in (4.24), we observe that there exists a

matrix Υ(x) with real-valued entries such that det Υ(x) 6= 0 and∇ = Υ(x)(∂~ν , ∂~τ ).
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Therefore ∂z̄ = 1
2 ((Υ11 + iΥ21)∂~ν + (Υ12 + iΥ22)∂~τ ). By (4.35) on Γ̃ the following

equation holds:

∂z̄Q =
1

2
((Υ11 + iΥ21)∂~νQ + (Υ12 + iΥ22)∂~τQ)

=
1

2
((Υ11 + iΥ21)∂~νQ + (Υ12 + iΥ22)∂~τI)

=
1

2
(Υ11 + iΥ21)∂~νQ = 0.

Since the determinant of the matrix Υ is not equal to zero, we have (Υ11 +iΥ21) 6=
0. Hence from the above equation, we have ∂~νQ = 0.

If detQ(x0) = 0, then detP1(x0) detP2(x0) = 0. Let matrices P̂j be con-

structed as Pj but with a different choice of the pairs (U0(k), T0(k)), (V0(k),W0(k))

that are solutions to problems (3.5) and (3.30) respectively, and satisfy (3.10) and

(3.37). In such a way, we obtain other matrices Pj , Θ, Q that satisfy (4.24) with

a possibly different set X . We denote such matrices Pj , Θ, Q by P̂j , Θ̂, Q̂. By the

uniqueness of the Cauchy problem for the ∂z-operator, we have

Q = Q̂ on Ω \ X ∪ X̂ where X̂ = {x ∈ Ω̄; det Θ̂(x) = 0}.

Consequently Q̂(x0) = 0. On the other hand, one can choose the matrices P̂j
such that det P̂j(x0) 6= 0. Therefore we reach a contradiction. The proof of the

proposition is complete.

Our next goal is to show that the matrix Q is regular on Ω̄.

Now we prove that if the operators Lj(x,D) generate the same Dirichlet-

to-Neumann map, then the operators Lj(x,D)∗ generate the same Dirichlet-to-

Neumann map.

Proposition 4.4. Let Aj, Bj, Qj ∈ C5+α(Ω̄), j = 1, 2 with some α ∈ (0, 1). If

ΛA1,B1,Q1 = ΛA2,B2,Q2 , then Λ−A∗1 ,−B∗1 ,R1 = Λ−A∗2 ,−B∗2 ,R2 , where Rj = −∂zA∗j −
∂z̄B

∗
j +Q∗j for j ∈ {1, 2}.

Proof. Let vj solve

Lj(x,D)∗vj = 0 in Ω, vj |Γ0 = 0, vj |Γ̃ = g

and ũj solve

Lj(x,D)ũj = 0 in Ω, ũj |Γ0 = 0, ũj |Γ̃ = f.
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By our assumption and the Fredholm alternative for both problems, solutions exist

and are unique for any f, g ∈ C∞0 (Γ̃). By the Green formula, we have

(Lj(x,D)∗vj , ũj)L2(Ω) − (vj , Lj(x,D)ũj)L2(Ω)

= (∂~νvj , ũj)L2(Γ̃) − (vj , ∂~ν ũj)L2(Γ̃)

− (Aj(ν1 − iν2)g, f)L2(Γ̃) − (Bj(ν1 + iν2)g, f)L2(Γ̃), j = 1, 2.

Subtracting the above formulae for different j, using (4.23) and taking into account

that ΛA1,B1,Q1
= ΛA2,B2,Q2

, we have

(∂~νv1 − ∂~νv2, f)L2(Γ̃) = 0.

Since the function f ∈ C∞0 (Γ̃) can be arbitrarily chosen, the proof of the proposi-

tion is complete.

By Proposition 2.1, there exist solutions (U0(k),T0(k)) to the problem

(2∂zU0(k)−A∗1U0(k), 2∂zT0(k)−B∗1T0(k)) = 0 in Ω,

U0(k) + T0(k) = 0 on Γ0

(4.36)

and solutions (V0(k),W0(k)) to

(2∂zV0(k) +A2V0(k), 2∂zW0(k) +B2W0(k)) = 0 in Ω,

V0(k) + W0(k) = 0 on Γ0

(4.37)

for k ∈ {1, . . . , N} such that

(4.38) ‖U0(k)− ~ek‖C5+α(Γ̄0) + ‖W0(k)− ~ek‖C5+α(Γ̄0) ≤ ε, ∀ k ∈ {1, . . . , N}.

This inequality and the boundary conditions in (4.36) and (4.37) imply

(4.39) ‖T0(k)− ~ek‖C5+α(Γ̄0) + ‖V0(k)− ~ek‖C5+α(Γ̄0) ≤ ε, ∀ k ∈ {1, . . . , N}.

We define matrices M1, M2, R1, R2 by

M1 = (T0(1), . . . ,T0(N)), R1 = (U0(1), . . . ,U0(N)),

M2 = (V0(1), . . . ,V0(N)), R2 = (W0(1), . . . ,W0(N)).
(4.40)

By Proposition 3.3, there exists a holomorphic matrix Y such that the matrix

function G =M1Y−1M∗2 solves

2∂z̄G + GA∗2 −A∗1G = 0 in Ω \ {x ∈ Ω̄; detY(x) = 0},
G|Γ̃ = I, ∂~ν G|Γ̃ = 0.

(4.41)



176 O. Yu. Imanuvilov and M. Yamamoto

Observe that the matrix Q∗−1 solves

2∂z̄Q
∗−1 + Q∗−1A∗2 −A∗1Q∗

−1 = 0

in Ω \ {x ∈ Ω̄; detP1(x) detP2(x) = 0}
(4.42)

and

(4.43) Q∗−1|Γ̃ = I, ∂~ν Q
∗−1|Γ̃ = 0.

Here the matrix Q is constructed in Proposition 4.3 and we recall that Q∗ is the

adjoint matrix in L2(Ω) over R.

Let matrices P̂j be constructed as Pj but with a different choice of the pairs

(U0(k), T0(k)), (V0(k),W0(k)) that are solutions to problems (3.5) and (3.30) re-

spectively, and satisfy (3.10) and (3.37). In such a way, we obtain another matrix

Q that satisfies (4.24) with a possibly different set X . We denote such a matrix Q

by Q̂. By the uniqueness of the Cauchy problem for the ∂z-operator, we have

(4.44) Q = Q̂ on Ω \ {x ∈ Ω̄; det(P1P2P̂1P̂2)(x) = 0}.

Let x∗ ∈ Ω̄ be a point such that det(P1P2)(x∗) = 0. We choose the matrices

P̂j such that the determinants of these matrices are not equal to zero in some

neighborhood of the point x∗. Then by (4.44) the matrix Q∗−1 can be extended

in a neighborhood of x∗ as a C6+α-matrix. Hence

(4.45) 2∂z̄Q
∗−1 + Q∗−1A∗2 −A∗1Q∗

−1 = 0 in Ω.

By (4.41) and the uniqueness of the Cauchy problem for the ∂z-operator, we

obtain

G = Q∗−1 in Ω \ {x ∈ Ω̄; detY(x) = 0}.

Repeating the above argument, we obtain that the matrix G−1 ∈ C6+α(Ω) can be

defined. Therefore the matrix Q belongs to the space C6+α(Ω̄) and solves equation

(4.24) in Ω.

The operator L̃1(x,D) = Q−1L1(x,D)Q has the form

L̃1(x,D) = ∆ + 2A2∂z + 2B̃1∂z̄ + Q̃1,

where

B̃1 = Q−1(B1Q + 2∂z̄Q), Q̃1 = Q−1(Q1Q + ∆Q + 2A1∂zQ + 2B1∂z̄Q).

The Dirichlet-to-Neumann maps of the operators L1(x,D) and L̃1(x,D) are the

same. Let ũ1 be the complex geometric optics solution for L̃1(x,D) constructed

in the same way as the solution for the operator L1(x,D). In fact, we can set
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ũ1 = Qu1 where u1 is the complex geometric optics solution given by (3.28)

constructed for the operator L1(x,D). For the elements of the complex geometric

optics solution ũ1 such as U0,τ , T0,τ , we use the same notation as in the construction

of the function u1. Since the Dirichlet-to-Neumann maps for the operators L̃1(x,D)

and L2(x,D) are equal, there exists a solution u2 to

L2(x,D)u2 = 0 in Ω, (ũ1 − u2)|∂Ω = 0, ∂~ν(ũ1 − u2) = 0 on Γ̃.

Setting ũ = ũ1 − u2, B̃ = B̃1 −B2 and Q̃ = Q̃1 −Q2, we have

(4.46) L2(x,D)ũ+ 2B̃∂zũ1 + Q̃ũ1 = 0 in Ω

and

(4.47) ũ|∂Ω = 0, ∂~ν ũ|Γ̃ = 0.

Let v be the function given by (3.49). Taking the scalar product of (4.46) with

v in L2(Ω) over real numbers and using (3.50) and (4.47), we obtain

(4.48)

∫
Ω

(2B̃∂zũ1 + Q̃ũ1, v) dx =

∫
Ω

(2B̃∂zU + Q̃U, V ) dx+ o
(1

τ

)
= 0,

where the function V is given by (3.73) and

(4.49) U = U0,τe
τΦ+T0,τe

τΦ−eτΦR̃τ,B̃1
(e1(q1+q̃1/τ))−eτΦRτ,A2(e1(q2+q̃2/τ)).

We have

Proposition 4.5. The following equalities are true:

(4.50) S∗
B̃1

(B̃∗V0) = S∗
B̃1

(Φ̄′B̃∗V0) = S∗−B∗2 (B̃T0) = S∗−B∗2 (Φ̄′B̃T0) = 0 on Γ̃

and

(4.51) I±,Φ(x̃) = 0.

Proof. Since the matrix P1 satisfies the equality 2∂z̄P1 + A2P1 = 0, the matrix

P∗2P1 is holomorphic in the domain Ω. Indeed,

(4.52) 2∂z̄(P∗2P1) = 2(∂z̄P∗2P1 + P∗2∂z̄P1) = P∗2A2P1 − P∗2A2P1 = 0.

In order to obtain the last equality, we used 2∂z̄P∗2 = A∗2P∗2 . Equality (4.52) implies

(4.53)

∫
∂Ω

(ν1 + iν2)Φ′(P1a,P2b) dσ = 0.

By (4.48) the conclusion of Proposition 4.2 holds true, if the operator L1(x,D)

is replaced by the operator L̃1(x,D).
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From (4.53) and (3.51), we obtain

(4.54)

∫
∂Ω

(ν1 − iν2)Φ̄′(C1ā, C2b̄) dσ = 0.

By Proposition 4.2, there exists an antiholomorphic function Θ̃ in Ω such that

C∗2C1 = Θ̃(z̄) on Γ̃. Hence∫
Γ̃

(ν1 − iν2)Φ̄′(C∗2C1ā, b̄) dσ =

∫
Γ̃

(ν1 − iν2)Φ̄′(Θ̃ā, b̄) dσ

= −
∫

Γ0

(ν1 − iν2)Φ̄′(Θ̃ā, b̄) dσ.

We write (4.54) as

(4.55)

∫
Γ0

(ν1 − iν2)Φ̄′((C∗2C1 − Θ̃)ā, b̄) dσ = 0.

Therefore, by [7, Corollary 7.1], from (4.55) we obtain

(4.56) C∗2C1 = Θ̃ on ∂Ω.

We observe that for the construction of the function U0, instead of the matrix

C1, we can also use the matrix C̃1. In that case the equality (4.56) has the form

(4.57) C∗2 C̃1 = Θ̃∗ on ∂Ω,

where Θ̃∗ is some antiholomorphic function in Ω. We define S∗
B̃1

(Φ̄′B̃∗V0) on R2\Ω̄
by formula (2.37). Now let y = (y1, y2) ∈ Γ̃ be an arbitrary point and z = y1 + iy2.

Then, thanks to (4.23), for any sequence {yj}∞j=1 ⊂ R2 \ Ω̄ such that yj → y, we

have

(4.58) S∗
B̃1

(Φ̄′B̃∗V0)(yj)→ S∗
B̃1

(Φ̄′B̃∗V0)(y) as j → +∞.

Indeed, by (2.37) and (4.23), there exists a constant C such that

(4.59) |S∗
B̃1

(Φ̄′B̃∗V0)(yj)− S∗B̃1
(Φ̄′B̃∗V0)(y)| ≤ C

∫
Ω

‖B̃∗(ξ)‖
∣∣∣∣ 1

zj − ζ
− 1

z − ζ

∣∣∣∣ dξ,
where zj = yj,1 + iyj,2. Since B̃∗(ξ) = 0, ξ ∈ Γ̃ by (4.23), the sequence{

‖B̃∗(ξ)‖
∣∣∣∣ 1

zj − ζ
− 1

z − ζ

∣∣∣∣}∞
j=1

is bounded in L∞(Ω). Moreover for any positive δ the above sequence converges

to zero in L∞(Ω \ B(y, δ)). Thus, from these facts and (4.59), we obtain (4.58)

immediately.
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By (4.56) and (4.57), we have

S∗
B̃1

(Φ̄′B̃∗V0)(yj) =
1

2
(C−1

1 r0,1)(yj)∂
−1
z (C∗1 Φ̄′B̃∗V0)(yj)(4.60)

+
1

2
(C̃−1

1 (1− r0,1))(yj)∂
−1
z (C̃1

∗
Φ̄′B̃∗V0)(yj)

= − 1

2π
r0,1(zj)(C−1

1 )∗(yj)

∫
Ω

∂z(Φ̄
′C∗1C2)b̄

z̄j − ζ̄
dξ

− (1− r0,1(zj))(C̃−1
1 )∗(yj)

1

2π

∫
Ω

∂z(Φ̄
′C̃∗1C2)b̄

z̄j − ζ̄
dξ

= − 1

4π
r0,1(zj)(C−1

1 )∗(yj)

∫
∂Ω

(ν1 − iν2)Θ̃∗Φ̄′b̄

z̄j − ζ̄
dσ

− (1− r0,1(zj))(C̃−1
1 )∗(yj)

1

4π

∫
∂Ω

(ν1 − iν2)Θ̃∗∗Φ̄
′b̄

z̄j − ζ̄
dσ

= 0.

Here, in order to obtain the last equality, we used the fact that zj /∈ Ω and therefore

the functions
Θ̃∗∗Φ̄

′¯b
z̄j−ζ̄

, Θ̃∗Φ̄′
¯b

z̄j−ζ̄
are antiholomorphic in Ω. From (4.58) and (4.60), we

have S∗
B̃1

(Φ̄′B̃∗V0)|Γ̃ = 0. The proof of the remaining equalities in (4.50) is the

same. Next we show that I±,Φ(x̃) = 0. By (3.24) and (3.44), we have

I±,Φ(x̃) =

∫
∂Ω

{
(ν1 − iν2)((2C∗2C1b±,x̃Φ̄′, b̃) + (2Φ̄′C∗2C1a, ã±,x̃))(4.61)

+(ν1 + iν2)((2P∗2P1a±,x̃Φ′, b̃) + (2Φ′P∗2P1a, b̃±,x̃))
}
dσ.

Since by (4.56) the restriction of the function C∗2C1 on ∂Ω coincides with the

restriction of some antiholomorphic function in Ω and by (4.52) the function P∗2P1

is holomorphic in Ω, the equality (4.61) implies (4.51). The proof of the proposition

is complete.

We use the above proposition to prove

Proposition 4.6. The following equalities hold true:

Φ̄′S∗
B̃1

(B̃∗V0) = S∗
B̃1

(Φ̄′B̃∗V0),(4.62)

Φ̄′S∗−B∗2 (B̃T0) = S∗−B∗2 (Φ̄′B̃T0).(4.63)

Proof. Denote r = Φ̄′S∗
B̃1

(B̃∗V0)− S∗
B̃1

(Φ̄′B̃∗V0). Then this function satisfies

2∂z̄r − B̃∗1r = 0 in Ω.
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Proposition 4.5 yields

r|Γ̃ = 0.

By the uniqueness of the Cauchy problem for the ∂z̄-operator, we obtain r ≡ 0.

The proof of (4.63) is the same.

We use Proposition 4.6 to prove

Proposition 4.7. Under the conditions of Proposition 4.2, we have

−(B̃A2U0, V0)− (Q̃1(1)U0, S
∗
B̃1

(B̃∗V0)) + (Q̃U0, V0) = 0 in Ω(4.64)

and

2(∂z̄B̃T0,W0) + (B̃T0, B
∗
2W0)− (Q̃T0,W0)

− (Q1(2)W0, S
∗
−B∗2 (B̃T0)) = 0 in Ω.

(4.65)

Proof. We recall that Φ satisfies (3.1), (3.2) and

(4.66) Im Φ(x̃) /∈ {Im Φ(x); x ∈ H \ {x̃}}.

By Proposition 4.2, equality (4.2) holds true. Thanks to (4.66), (4.23) and Propo-

sition 4.6, we can write (4.2) as

(J± +K±)(x̃) + I±,Φ(x̃) = 0.

This equality and Proposition 4.5 imply

(4.67) (J± +K±)(x̃) = 0.

By Propositions 4.1 and 4.6, we obtain

Fτ,x̃(q1, S
∗
B̃1

(B̃∗1Ã∗V0)− Ã∗V0 + 2S∗
B̃1

(∂zB̃∗V0)(4.68)

+ S∗
B̃1

(B̃∗(A∗2V0 − 2τ Φ̄′V0)))

= −2τFτ,x̃(q1, S
∗
B̃1

(B̃∗Φ̄′V0)) + o
(1

τ

)
= −2τFτ,x̃(q1, Φ̄

′S∗
B̃1

(B̃∗V0)) + o
(1

τ

)
= − π

2|detψ′′(x̃)|1/2
(2∂z̄q1, S

∗
B̃1

(B̃∗V0))(x̃) + o
(1

τ

)
= − π

2|detψ′′(x̃)|1/2
(Q̃1(1)U0, S

∗
B̃1

(B̃∗V0))(x̃) + o
(1

τ

)
as τ → +∞
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and

− 2Fτ,x̃(P ∗−A∗2 (Ã(∂zU0 + τΦ′U0)) + B̃∂z̄U0,τ , q4)(4.69)

= −2Fτ (P ∗−A∗2 (ÃτΦ′U0), q4) + o
(1

τ

)
= o
(1

τ

)
as τ → +∞.

By (4.68) and (4.69), we have

K+(x̃) = − π

2|detψ′′(x̃)|1/2
(Q̃1(1)U0, S

∗
B̃1

(B̃∗V0))(x̃) + o
(1

τ

)
as τ → +∞.

(4.70)

In a similar way, we compute K−(x̃):

F−τ,x̃(q2, P
∗
A2

(2∂z(Ã∗W0)− 2τΦ′Ã∗W0)− B̃∗W0 + P ∗A2
(A∗2B̃∗W0))(4.71)

= −2τF−τ,x̃(q2, P
∗
A2

(Φ′Ã∗W0)) + o
(1

τ

)
= o
(1

τ

)
as τ → +∞

and

− 2F−τ,x̃(q3, S
∗
−B∗2 (2Ã∂zT0 + 2B̃(∂z̄T0 + τ Φ̄′T0)))(4.72)

= −2F−τ,x̃(q3, S
∗
−B∗2 (τ B̃Φ̄′T0)) + o

(1

τ

)
=

π

2|detψ′′(x̃)|1/2
(Q1(2)W0, S

∗
−B∗2 (B̃T0)) + o

(1

τ

)
as τ → +∞.

By (4.71) and (4.72), we have

(4.73) K−(x̃) =
π

2|detψ′′(x̃)|1/2
(Q1(2)W0, S

∗
−B∗2 (B̃T0)) + o

(1

τ

)
as τ → +∞.

Substituting the right-hand side of formulae (4.70) and (4.73) into (4.67), we obtain

(4.64) and (4.65).

Since by (3.4) for any x ∈ Ω, there exists a sequence {xε}ε∈(0,1) converging to

x, we rewrite equations (4.64) and (4.65) as

−(B̃A1U0, V0)− (Q̃1(1)U0, S
∗
B̃1

(B̃∗V0)) + (Q̃U0, V0) = 0 in Ω(4.74)

and

−2(∂z̄B̃Ũ0,W0)− (B̃Ũ0, B
∗
2W0) + (Q̃Ũ0,W0) + (Q1(2)W0, S

∗
−B∗2 (B̃T0)) = 0 in Ω.

The proof of the proposition is complete.
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§5. Step 3: End of the proof

End of the proof. Let γ̃ be a curve that does not intersect itself and passes through

the point x̂ and a couple of points x1, x2 ∈ Γ̃ such that the set γ̃ ∩ ∂Ω \ {x1, x2}
is empty. Denote by Ω1 the domain bounded by γ̃ and the part of ∂Ω located

between the points x1 and x2. Then we set Ω1,ε = {x ∈ Ω; dist(Ω1, x) < ε}. By

Proposition 2.1, for each point x̂ from Ω1,ε one can construct pairs of functions

(U
(k)
0 , T

(k)
0 ), (V

(`)
0 ,W

(`)
0 ) satisfying (3.5), (3.30) and

T
(k)
0 (x̂) = ~ek, W

(`)
0 (x̂) = ~e`, ∀ k, ` ∈ {1, . . . , N}.

Then for each x̂ there exists a positive δ(x̂) such that the matrices {T (j)
0,i } and

{W (j)
0,i } are invertible for any x ∈ B(x̂, δ(x̂)). From the covering of Ω̄1,ε by such

balls, we take a finite subcovering Ω̄1,ε ⊂ ∪Ñk=1B(xk, δ(xk)). Then from (4.65) we

have a differential inequality:

|∂z̄B̃ij | ≤ C1(ε)

( N∑
k=1

|S∗−B∗2 (B̃∗T (k)
0 )|+ |B̃|+ |Q̃|

)
(5.1)

in Ω1,ε, ∀ i, j ∈ {1, . . . , N}.

Let φ0 ∈ C2(Ω̄) satisfy

(5.2) ∇φ0(x) 6= 0 in Ω1, ∂ν̃φ0|γ̃ ≤ α′ < 0, φ0|γ̃ = 0,

where α′ is some constant and ν̃ is the outward normal vector to Ω1,ε and χε
satisfies

χε ∈ C2(Ω1,ε), χε = 1 in Ω1,

and χε ≡ 0 in some neighborhood of the curve ∂Ω1,ε \ Γ̃. From (5.1), (4.23) and

(4.50), we have

|∂z̄(χεB̃ij)| ≤ C2(ε)

( N∑
k=1

|χεS∗−B∗2 (B̃∗T (k)
0 )|+ |χεB̃|+ |[χε, ∂z̄]B̃ij |+ |χεQ̃|

)
(5.3)

in Ω1,ε, ∀ i, j ∈ {1, . . . , N},

χεB̃|∂Ω1,ε = ∂ν̃(χεB̃)|∂Ω1,ε = 0.(5.4)

Here we recall that [·, ·] is the commutator.

Set ψ0 = eλφ0 with sufficiently large positive λ. Applying the Carleman es-

timate to the boundary value problem (5.3) and (5.4), we see that there exist
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constants C3 and τ0, both independent of τ , such that∫
Ω1,ε

e2τψ0

(
1

τ
|∇χεB̃|2 + τ |χεB̃|2

)
dx(5.5)

≤ C3

∫
Ω1,ε

( N∑
k=1

|χεS∗−B∗2 (B̃∗T (k)
0 )|2 + χ2

ε(|B̃|2 + |Q̃|2)

+ |[χε, ∂z̄]B̃|2
)
e2τψ0 dx, ∀ τ ≥ τ0.

By the Carleman estimate for the operator ∂z and (4.50), there exist constants

C4 and τ0, independent of τ , such that∫
Ω1,ε

|χεS∗−B∗2 (B̃∗T (k)
0 )|2e2τψ0 dx(5.6)

≤ C4

∫
Ω1,ε

(
|[χε, ∂z]S∗−B∗2 (B̃∗T (k)

0 )|2 + |χεB̃∗T (k)
0 |2

)
e2τψ0 dx

and ∫
Ω1,ε

|χεS∗B̃1
(B̃∗V (k)

0 )|2e2τψ0 dx(5.7)

≤ C4

∫
Ω1,ε

(
|[χε, ∂z]S∗B̃1

(B̃∗V (k)
0 )|2 + |χεB̃∗V (k)

0 |2
)
e2τψ0 dx

for all τ ≥ τ0.

Combining estimates (5.5) and (5.6), we obtain that there exists a constant

C5, independent of τ , such that∫
Ω1,ε

e2τψ0

(1

τ
|∇(χεB̃)|2 + τ |χεB̃|2

)
dx(5.8)

≤ C5

∫
Ω1,ε

(
χ2
ε(|B̃|2 + |Q̃|2) +

N∑
k=1

|[χε, ∂z]S∗−B∗2 (B̃∗T (k)
0 )|2

+ |[χε, ∂z̄]B̃|2
)
e2τψ0 dx, ∀ τ ≥ τ0.

For all sufficiently large τ , the term
∫

Ω1,ε
|χεB̃|2e2τψ0 dx can be absorbed into

the left-hand side of the inequality (5.8). Moreover, thanks to the choice of the

function χε, the supports of the coefficients of the commutator operator [χε, ∂z̄]

are located in the domain Ω1,ε \Ω1,ε/2. Hence one can write the estimate (5.8) as∫
Ω1,ε

e2τψ0

(1

τ
|∇(χεB̃)|2 + τ |χεB̃|2

)
dx(5.9)
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≤ C6

(∫
Ω1,ε

χ2
ε |Q̃|2e2τψ0 dx+

∫
Ω1,ε\Ω1,ε/2

( N∑
k=1

|[χε, ∂z]S∗−B∗2 (B̃∗T (k)
0 )|2

+ |[χε, ∂z̄]B̃|2
)
e2τψ0 dx

)
, ∀ τ ≥ τ1.

By Proposition 2.1, for each point x̂ ∈ Ω, one can construct pairs of functions

(U
(k)
0 , T

(k)
0 ), (V

(`)
0 ,W

(`)
0 ) satisfying (3.5), (3.30) and

U
(k)
0 (x̂) = ~ek, V

(`)
0 (x̂) = ~e`, ∀ k, ` ∈ {1, . . . , N}.

Then for each x̂ ∈ Ω̄1,ε there exists positive δ(x̂) such that the matrices {U (j)
0,i }

and {V (j)
0,i } are invertible for any x ∈ B(x̂, δ(x̂)). From the covering of Ω1,ε by such

balls, we take a finite subcovering Ω̄ ⊂ ∪Ñ+N∗

k=Ñ
B(xk, δ(xk)). Then there exists

C7(ε) > 0 such that

(5.10) |Q̃| ≤ C7(ε)

(
|B̃|+

Ñ+N∗∑
k=Ñ+1

|S∗
B̃1

(B̃∗V (k)
0 )|

)
in Ω1,ε.

Combining (5.7), (5.9) and (5.10), we obtain that there exists a constant C8,

independent of τ , such that∫
Ω1,ε

e2τψ0

(1

τ
|∇(χεB̃)|2 + τ |χεB̃|2

)
dx(5.11)

≤ C8

∫
Ω1,ε\Ω1,ε/2

( N∑
k=1

|[χε, ∂z]S∗−B∗2 (B∗T (k)
0 )|2

+

Ñ+N∗∑
k=Ñ+1

|[χε, ∂z]S∗B̃1
(B̃∗V (k)

0 )|2 + |[χε, ∂z̄]B̃|2
)
e2τψ0 dx, ∀ τ ≥ τ1.

By (5.2), for all sufficiently small positive ε, there exists a positive constant θ < 1

such that

(5.12) ψ0(x) < θ on Ω1,ε \ Ω1,ε/2.

Since x̂ ∈ supp B̃ ∩ γ̃ and ∂ν̃φ0|γ̃ ≤ θ′ < 0 with some constant θ′, there exists a

constant κ > 0 such that

(5.13) κe2τ ≤
∫

Ω1,ε

e2τψ0 |χεB̃|2e2τψ0 dx, ∀ τ ≥ τ1.
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By (5.12), we can estimate the right-hand side of inequality (5.9) as

C9

∫
Ω1,ε\Ω1,ε/2

( N∑
k=1

|[χε, ∂z]S∗−B∗2 (B̃∗T (k)
0 )|2 +

Ñ+N∗∑
k=Ñ+1

|[χε, ∂z]S∗B̃1
(B̃∗V (k)

0 )|2(5.14)

+ |[χε, ∂z̄]B̃|2
)
e2τψ0 dx ≤ C10e

2θτ , ∀ τ ≥ τ1,

where constants C9, C10 > 0 are independent of τ . Using (5.13) and (5.14) in (5.9),

we obtain that there exists a constant C11, independent of τ , such that

κe2τ ≤ C11e
2θτ , ∀ τ ≥ τ1.

Since θ < 1, we reach a contradiction. Hence

B̃ = Q̃ = 0 on Ω.

The proof of the theorem is complete.
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[5] L. Hörmander, The analysis of linear partial differential operators I, Springer, Berlin, 1980.
Zbl 1028.35001 MR 1996773

[6] O. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data
in two dimensions, J. Amer. Math. Soc. 23 (2010), 655–691. Zbl 1201.35183 MR 2629983

[7] , Partial Cauchy data for general second order elliptic operators in two dimensions,
Publ. Research Institute Math. Sci. 48 (2012), 971–1055. Zbl 1260.35253 MR 2999548

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0689.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0924574
http://www.ams.org/mathscinet-getitem?mr=0590275
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0999.35066&format=complete
http://www.ams.org/mathscinet-getitem?mr=1888087
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1209.35150&format=complete
http://www.ams.org/mathscinet-getitem?mr=2088194
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1028.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1996773
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1201.35183&format=complete
http://www.ams.org/mathscinet-getitem?mr=2629983
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1260.35253&format=complete
http://www.ams.org/mathscinet-getitem?mr=2999548


186 O. Yu. Imanuvilov and M. Yamamoto

[8] O. Imanuvilov and M. Yamamoto, Inverse problem by Cauchy data on an arbitrary
sub-boundary for systems of elliptic equations, Inverse Problems 28 (2012), 095015.
Zbl 1250.35184 MR 2972464

[9] , Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on
subboundaries, Milan J. Math. 81 (2013), 187–258. Zbl 1291.35443 MR 3129784

[10] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and
nonlinear partial differential equations, Walter de Gruyter, Berlin, 1996. Zbl 0873.35001
MR 1419319

[11] I. Vekua, Generalized analytic functions, Pergamon Press, Oxford, 1962. Zbl 0100.07603
MR 0150320

[12] W. Wendland, Elliptic systems in the plane, Pitman, London, 1979. Zbl 0396.35001
MR 0518816

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1250.35184&format=complete
http://www.ams.org/mathscinet-getitem?mr=2972464
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1291.35443&format=complete
http://www.ams.org/mathscinet-getitem?mr=3129784
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0873.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1419319
http://www.ams.org/mathscinet-getitem?mr=0150320
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0396.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0518816

	Introduction
	Construction of the operators PB and TB
	Step 1: Construction of complex geometric optics solutions
	Step 2: Asymptotics
	Step 3: End of the proof
	References

