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Infinite-Dimensional Manifolds as Ringed Spaces

by

Michel Egeileh and Tilmann Wurzbacher

Abstract

We analyze the possibility of defining infinite-dimensional manifolds as ringed spaces.
More precisely, we consider three definitions of manifolds modeled on locally convex
spaces: in terms of charts and atlases, in terms of ringed spaces and in terms of func-
tored spaces, as introduced by Douady in his thesis. It is shown that for large classes of
locally convex model spaces (containing Fréchet spaces and duals of Fréchet–Schwartz
spaces), the three definitions are actually equivalent. The equivalence of the definition
via charts with the definition via ringed spaces is based on the fact that for the classes of
model spaces under consideration, smoothness of maps turns out to be equivalent to their
scalarwise smoothness (i.e., the smoothness of their composition with smooth real-valued
functions).
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§1. Introduction

Finite-dimensional manifolds, whether smooth, real- or complex-analytic, are com-

monly defined via charts and atlases. The other standard way of defining them

relies on a dual point of view, focusing on the functions rather than on the points

themselves, and this is achieved via a sheaf-theoretical approach. More precisely,

a smooth n-dimensional manifold M is then defined as a locally ringed space

(M0,OM ) that is locally isomorphic to the locally ringed space (Rn, C∞Rn). The

sheaf-theoretical approach is hardly avoidable when one wants to deal with singu-

lar generalizations of manifolds (varieties or schemes for instance), or with “nonre-

duced situations”, such as supermanifolds, where the rings of “functions” have
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nilpotents. In this last example, a section of the structural sheaf is not determined

by its values on the points of the underlying topological space, which makes the

sheaf-theoretical approach particularly relevant in defining supermanifolds.

In finite dimensions, the two definitions of manifolds (via atlases and as certain

locally ringed spaces) are well known to be equivalent. In infinite dimensions, the

situation is quite different. Infinite-dimensional manifolds, whether locally modeled

on Banach spaces, Fréchet spaces or general locally convex spaces, have almost

always been defined in terms of charts and atlases. One reason for that is the belief,

following the thesis of Douady [Dou], that the sheaf of scalar-valued functions does

not give sufficient information to define the morphisms (contrary to the finite-

dimensional case, where defining the smooth functions valued in R suffices to

determine the morphisms valued in Rk for every natural number k). In [Maz],

Mazet defines a category of infinite-dimensional analytic spaces, precisely in terms

of ringed spaces. However, his category leads to pathologies (such as the sum of two

analytic maps not necessarily being analytic). Douady avoids these pathologies by

introducing a third approach for capturing the notion of space, which he uses to

define his category of Banach analytic spaces. Namely, given a category C, Douady

defines a C-functored space X to be a pair (X0,OCX) whereX0 is a topological space,

and OCX is a covariant functor from C to the category of sheaves of sets on X0. In

this way, for every object F in C (thought of as a possible target), one associates

a sheaf of sets OCX(F ) (thought of as the sheaf of F -valued morphisms on X0).

Compared to a ringed space, a functored space encodes already in its “structural

functor” the definition of the morphisms valued in any target space (from a certain

category).

The functored space approach obviously adds a supplementary “technical

layer”, which can be felt already when defining the local models for Banach ana-

lytic spaces (as functored spaces). Thus, unless the recourse to functored spaces

is absolutely necessary, it is preferable to deal with the more traditional setting

of ringed spaces, i.e., to associate only a single structure sheaf instead of a sheaf-

valued functor to each space. We are thus lead to the question of whether the in-

sufficiency of the sheaf of scalar-valued functions pointed out by Douady (and the

related pathologies) appears also in the nonsingular setting of infinite-dimensional

smooth manifolds.

In this paper, we address this question by observing that the obstruction to

defining infinite-dimensional manifolds as ringed spaces boils down to the fail-

ure of a scalarwise smooth map between open sets of locally convex spaces to

be smooth. More precisely, given two locally convex spaces E and F , and given

an open subset U of E, we use a standard notion of smoothness for maps

Φ : U → F (cf. Definition 3.1), going back at least to Bastiani and adopted notably
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by Hamilton, Milnor and Neeb. Then, a map Φ is said to be scalarwise smooth if

the function f ◦ Φ : U → R is smooth for every smooth function f : F → R. The

chain rule implies clearly that smooth maps are scalarwise smooth. The converse

is easily seen to be true in finite dimensions (just take the linear forms e∗i dual

to a basis {ei ; 1 ≤ i ≤ dimF}). In infinite dimensions, the converse is nontrivial.

Our first main result is to prove it for large classes of locally convex spaces (cf.

Theorem 3.14 in the body of the article.)

Theorem A. Let E and F be locally convex space spaces, and U an open subset

of E. Assume that for every n ≥ 1, the c∞-topology on En is the same as the

product topology for the given topology on E and that F is Mackey-complete. Let

Φ : U → F be a continuous map. Then the following are equivalent:

(i) The map Φ is smooth.

(ii) For every open subset V of F containing Φ(U) and every f ∈ C∞(V,R), we

have f ◦ Φ ∈ C∞(U,R).

(iii) For every f ∈ C∞(F,R), we have f ◦ Φ ∈ C∞(U,R) (i.e., Φ is scalarwise

smooth).

(iv) For every ` ∈ F ′, we have ` ◦ Φ ∈ C∞(U,R) (i.e., Φ is weakly smooth).

Note that the assumption on E is satisfied, e.g., by Fréchet spaces and duals of

Fréchet–Schwartz spaces, and that every complete locally convex space is Mackey-

complete. Note furthermore that the c∞-topology put forward by Kriegl and Mi-

chor in the fundamental work [KM] is also called the Mackey-closure topology.

As underlined by the preceding result, in infinite dimensions one often has

to single out a class E of locally convex model spaces. A Hausdorff space M0,

together with a smooth atlas A of charts taking values in spaces of this class,

will be called a smooth E-manifold, whereas a structure sheaf-smooth E-manifold

is a locally ringed space (M0,OM ) that is locally isomorphic as such to open

sets of spaces in the model class (together with their natural sheaves of smooth

scalar-valued functions). In this language our next main result reads as follows (cf.

Theorem 4.12 and Corollary 4.13).

Theorem B. Let E be the class of Mackey-complete locally convex spaces E such

that for every n ≥ 1, the c∞-topology on En is the same as the product topology

for the given topology on E, and let M be the class of Mackey-complete locally

convex spaces. Then we have the following properties.

(i) If M = (M0,A) is a smooth E-manifold, N = (N0,B) a smooth M-manifold

and Φ : M0 → N0 a continuous map, then Φ is smooth if and only if Φ :

(M0, C∞M )→ (N0, C∞N ) is a morphism of locally ringed spaces.



190 M. Egeileh and T. Wurzbacher

(ii) For every structure sheaf-smooth E-manifold (M0,OM ), there is a canonical

maximal atlas A on M0 such that M = (M0,A) is a smooth E-manifold ful-

filling C∞M = OM . Furthermore, the maximal atlas A is uniquely determined

by the condition C∞M = OM .

We complete our comparison of the various definitions of infinite-dimensional

manifolds by showing that the definition via charts and atlases is equivalent to the

one based on functored spaces.

Furthermore, we prove that for certain infinite-dimensional manifolds, the

smoothness of a continuous map is characterized in terms of pulling back globally

defined smooth functions to globally defined smooth functions (cf. Theorem 5.2).

Theorem C. Let E be the class of locally convex spaces E such that for every

n ≥ 1, the c∞-topology on En is the same as the product topology for the given

topology on E. Also, let M = (M0,A) be a smooth E-manifold, and N = (N0,B)

a smooth regular manifold modeled on a nuclear Fréchet space E. Finally, let

Φ : M0 → N0 be a continuous map. Then the following are equivalent:

(i) The map Φ is smooth.

(ii) For every f ∈ C∞N (N0), we have f ◦ Φ ∈ C∞M (M0).

We conclude by ascertaining that this notably holds true if the target manifold

N is the space of smooth maps between finite-dimensional manifolds (with compact

source manifold) and the manifold M is modeled on Fréchet spaces. (In this article,

all “compact manifolds” are closed.)

Our paper is organized as follows. In Section 2, we present a proof of the

special case of Theorem 3.14, when the domain is R. More precisely, we show that

for a Mackey-complete locally convex space E, a curve c : R → E is smooth if

and only if it is scalarwise smooth. While this result and its idea of proof are not

new (cf. [KM]), they are crucial to our proof of Theorem 3.14: we recall them in a

concise but self-contained way for the convenience of the reader, which gives us also

the opportunity to introduce our notation for the rest of the paper. In Section 3,

we recall the definition of smooth maps that we will be using, and prepare and

prove Theorem 3.14, using as an intermediate step the calculus of convenient

smoothness studied by Kriegl and Michor. In Section 4, we present in detail the

three definitions of infinite-dimensional manifolds under investigation here, and

prove the comparison results (Theorem 4.12 and Corollary 4.13) mentioned above.

In Section 5, we prove the global characterization of smoothness mentioned above,

and discuss the important example class of mapping spaces with compact source.
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§2. Smoothness of curves

The goal of this section is to recall the proof of the following result: if c is a

map from R to a complete real (Hausdorff) locally convex space E, and E′ is

the continuous dual of E, then smoothness of ` ◦ c for every ` ∈ E′ implies the

smoothness of c (Theorem 2.11). While this is obvious if E is finite-dimensional

(it is enough to take the projections e∗i : E → R where {ei ; 1 ≤ i ≤ dimE} is

an arbitrary basis of E), proving that it remains true in the general case requires

more work. The strategy (essentially taken from [KM]) is the following.

In any locally convex space, there is a natural notion of bounded set. The

collection of these bounded sets (the “von Neumann bornology”) is not very sen-

sitive to the locally convex topology: a classical theorem of Mackey in functional

analysis shows that if one varies the topology while keeping the same dual space,

the bounded sets remain the same. As a consequence, one can view the bounded

sets from the perspective of the weak topology instead of the given topology. In

the weak topology, it is natural and immediate that a subset of E whose image by

every linear functional is bounded must be itself bounded.

On the other hand, for curves, being C∞ is ultimately a bornological concept:

the C∞ curves remain the same if one changes the locally convex topology, while

keeping the same underlying bornology. This follows from the fact that a C1 curve

is locally Lipschitz (by the mean value theorem), and the Lipschitz condition

(which is essentially bornological) implies continuity. Translating smoothness in

terms of Lipschitz conditions (involving bounded sets), it becomes possible to use

the dual characterization of boundedness given by Mackey’s theorem, to obtain a

dual characterization of smoothness.

In what follows, we recall, for the convenience of the reader and for later

reference, the details of the above arguments, starting with Mackey’s theorem, the

cornerstone in proving Theorem 2.11 as well as other results in this paper. For a

proof of the former theorem, see, e.g., [Tre, Theorem 36.2] or [Jar, Theorem 8.3.4].

Theorem 2.1 (Mackey’s theorem). Let E be a locally convex space, and B a sub-

set of E. If `(B) is bounded for every ` ∈ E′, then B is bounded.

Definition 2.2. Let E be a locally convex space, and c : R→ E a curve.

(1) If J is an open subset of R, we say that c is Lipschitz on J if the set{ c(t2)−c(t1)
t2−t1 ; t1, t2 ∈ J and t1 6= t2

}
is bounded in E.

(2) We say that c is locally Lipschitz if every point in R has a neighborhood on

which c is Lipschitz.
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Definition 2.3. Let E be a locally convex space, and c : R → E a curve. For

k ∈ N, we say that c is of class Lipk if all the derivatives of c up to order k exist,

and c(k) : R→ E is locally Lipschitz.

If A is any subset of E, we will denote by 〈A〉 the absolute convex hull of the

closure of A. We will need the following version of the mean value theorem, for

curves in a locally convex space.

Theorem 2.4 (Mean value theorem). Let E be a locally convex space, and c :

[a, b]→ E a curve that is continuous on [a, b], and differentiable on ]a, b[. Then

(2.1)
c(b)− c(a)

b− a
∈ 〈{c′(t) ; a < t < b}〉.

Proof. Compare [KM, I.1.4].

Corollary 2.5. Let E be a locally convex space, and c : R → E a curve that is

differentiable on an open interval J ⊂ R. If c′ is bounded on J , then c is Lipschitz

on J .

Proof. Let t1, t2 ∈ J with t1 6= t2. By the mean value theorem,

(2.2)
c(t2)− c(t1)

t2 − t1
∈ 〈{c′(t) ; t ∈ J}〉.

So
{ c(t2)−c(t1)

t2−t1 ; t1, t2 ∈ J and t1 6= t2
}
⊂ 〈{c′(t) ; t ∈ J}〉, and this last set is

bounded since the absolute convex hull of any bounded set is bounded.

Proposition 2.6. Let E be a locally convex space, and c : R→ E a curve.

(1) If c is of class Ck, then c is of class Lipk−1.

(2) If c is of class Lipk−1, then c is of class Ck−1.

Proof.

(1) If c is Ck, then c(k−1) is C1. This implies (via the preceding corollary) that

c(k−1) is locally Lipschitz. Thus, c is Lipk−1.

(2) If c is Lipk−1, then c(k−1) is locally Lipschitz. This implies that c(k−1) is

continuous. Thus, c is Ck−1.

Corollary 2.7. Let E be a locally convex space, and c : R → E a curve. Then c

is of class C∞ if and only if c is of class Lipk for all k ∈ N.
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Proof. If c is smooth, then c is Ck for every k. The first part of Proposition 2.6

implies then that c is Lipk−1 for every k. Conversely, if c is Lipk for every k, then

the second part of Proposition 2.6 implies that c is Ck for every k, and so c is

smooth.

Definition 2.8. Let E be a locally convex space. A curve c : R→ E is said to be

weakly smooth if ` ◦ c is smooth for every ` ∈ E′.

Definition 2.9. Let E be a locally convex space.

(1) A sequence (xn) in E is said to be Mackey-convergent to a point x ∈ E if

there exists an absolutely convex bounded set B ⊂ E, and a sequence (µn) of

real numbers converging to 0, such that xn − x ∈ µnB for all n.

(2) A sequence (xn) in E is said to be Mackey–Cauchy if there exists an absolutely

convex bounded set B ⊂ E, and a double sequence (µn,m) of real numbers

converging to 0, such that xn − xm ∈ µn,mB for all n, m.

We also have the same notions for nets (just replace “sequence” by “net” every-

where in the preceding definition).

(3) The space E is called Mackey-complete if every Mackey–Cauchy net in E

converges.

Remark 2.10. In fact, E is Mackey-complete if and only if every Mackey–Cauchy

sequence in E converges; cf. [KM, I.2.2]. Note that every complete locally con-

vex space is sequentially complete, and in turn, sequential completeness implies

Mackey-completeness. For metrizable locally convex spaces the three notions of

completeness coincide. Given a locally convex space E, the completion Ê yields

a complete (and thus Mackey-complete) locally convex space together with a

continuous linear embedding j : E ↪→ Ê having dense image. (See, e.g., [Tre,

Theorem 5.2].) A continuous curve c : R → E yields then a continuous curve

ĉ = j ◦ c : R→ Ê, and c is weakly smooth if and only if ĉ is weakly smooth.

Theorem 2.11. Let E be a Mackey-complete locally convex space and c : R→ E

a curve. Then c is smooth if and only if it is weakly smooth.

Proof. If c is smooth, then it is clear by the chain rule that `◦c is smooth for every

` ∈ E′. To prove the converse, suppose that for every ` ∈ E′, the function ` ◦ c
is smooth. We first prove that c is differentiable. Let t0 ∈ R, and J be a compact

interval about t0. Set q(t) := c(t)−c(t0)
t−t0 for all t ∈ J − {t0}. We need to show that

q has a limit as t → t0. Let B :=
{ q(t)−q(t′)

t−t′ ; t, t′ ∈ J − {t0} and t 6= t′
}

. Then

`(B) =
{ (`◦q)(t)−(`◦q)(t′)

t−t′ ; t, t′ ∈ J−{t0} and t 6= t′
}

. Now for each t ∈ J−{t0}, we
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have (` ◦ q)(t) = (`◦c)(t)−(`◦c)(t0)
t−t0 . Since ` ◦ c is smooth, the same must be true for

` ◦ q. In particular, the mean value theorem implies the existence of τ ∈ ]0, 1[ such

that (` ◦ q)(t)− (` ◦ q)(t′) = (t− t′) (` ◦ q)′(t′+ τ(t− t′)). Now t′+ s(t− t′) ∈ J for

every s ∈ ]0, 1[ (by convexity of J). Since (`◦q)′ is continuous and J is compact, we

deduce that there is M > 0 such that |(` ◦ q)′(t′ + s(t− t′))| ≤M for all s ∈ ]0, 1[.

But then, |(` ◦ q)(t) − (` ◦ q)(t′)| ≤ M |t − t′|. Thus, `(B) is bounded. Since `

was arbitrary, we deduce by Mackey’s theorem that B is bounded as well, i.e., q

is Lipschitz on J − {t0}. Otherwise stated, the net (qt)t∈J−{t0} with qt := q(t)

is Mackey–Cauchy. Mackey-completeness of E implies that q has a continuous

extension to J , which allows us to define c′(t0) as q(t0). Thus, c is differentiable,

and for every ` ∈ E′, we have (` ◦ c)′ = ` ◦ c′ (by the chain rule and linearity of `).

Second, we prove that c′ is locally Lipschitz. Let t0 ∈ R, and J be a compact

interval about t0. Then for every ` ∈ E′, the function (`◦c)′ is Lipschitz on J (since

(`◦ c)′′, being continuous, is bounded on J). Let B1 =
{ c′(t2)−c′(t1)

t2−t1 ; t1, t2 ∈ J and

t1 6= t2
}

. Then, since `◦c′ = (`◦c)′, we have `(B1) =
{ (`◦c)′(t2)−(`◦c)′(t1)

t2−t1 ; t1, t2 ∈ J
and t1 6= t2

}
. Since (`◦ c)′ is Lipschitz on J , we have that `(B1) is bounded. But `

is arbitrary. Using Mackey’s theorem again, we deduce that B1 is bounded, hence

c′ is Lipschitz on J , and so c′ is locally Lipschitz, i.e., c is Lip1.

Replacing c by c′ in the above chain of arguments, we arrive at the conclusion

that c′ is Lip1 as well, i.e., c is Lip2. By induction, we conclude that c is Lipk for

all k, i.e., c is smooth.

§3. Smoothness of maps

In this section, we start by recalling the notion of a smooth map from an open sub-

set U of a locally convex space E into a locally convex space F . Among the various

existing notions of (differentiable and) smooth maps, we choose what is called C∞c
in the book by Keller ([Kel]), going back at least to Bastiani (cf. [Bas, Definitions

II.3.1 and II.2.2]). This definition of smoothness turns out to be appropriate for

the construction of an applicable theory of infinite-dimensional manifolds and Lie

groups; cf. notably [Ham, Mil, Ne1, Ne2]. The goal of this section is to generalize

Theorem 2.11 to maps having an infinite-dimensional source. Namely, we want to

show that if E is, e.g., a Fréchet space or the continuous dual of a Fréchet–Schwartz

space (see below for details), a map Φ : E ⊃ U → F is smooth if and only if it

is scalarwise smooth. By scalarwise smooth, we mean that f ◦ Φ ∈ C∞(U,R) for

every f ∈ C∞(F,R).

As a matter of fact, this result is very easy to prove if we replace Bastiani et

al.’s notion of smoothness by another one: the “convenient smoothness” considered

by Frölicher, Kriegl and Michor (cf. notably [KM]). A map Φ : U → F is said to be
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conveniently smooth if it sends smooth curves to smooth curves. Since the notion

of convenient smoothness relies on curves, Theorem 2.11 immediately yields the

equivalence between convenient smoothness and scalarwise convenient smoothness

of maps.

For applications, it is thus highly desirable to establish that convenient

smoothness coincides with smoothness in the sense of Bastiani–Hamilton–Milnor–

Neeb, for relevant classes of locally convex spaces (“generalized Boman theorem”).

That this is indeed the case has already been observed in [Ne2] in the case where

the source E is a Fréchet space. Below we will first prove a more general result

of this type, before giving our crucial characterizations of smoothness in terms of

weak and scalarwise smoothness.

Let E and F be locally convex spaces, and U an open subset of E. For a

continuous map Φ : U → F , the Gâteaux derivative of Φ at a point x ∈ U in the

direction of a vector v ∈ E is defined by

(3.1) dΦ|x(v) = lim
t→0

Φ(x+ tv)− Φ(x)

t
,

provided the limit exists.

Definition 3.1. The map Φ is said to be of class C1 if dΦ : U ×E → F , (x, v) 7→
(dΦ)(x, v) := dΦ|x(v) exists and is continuous. We define inductively a map Φ to

be of class Ck+1 if it is of class C1 and dΦ is of class Ck. Furthermore, a map is

said to be of class C∞ or smooth if it is Ck for all k ∈ N.

Remark 3.2. If E and F are Banach spaces, being C1 in the above sense is weaker

than the usual notion of C1 in the sense of Fréchet differentiability, which requires

the map x 7→ dΦ|x to be continuous as a map from U to L(E,F ), equipped with

the operator norm topology. However, C2 in the above sense implies C1 in the usual

Fréchet differentiability sense (cf. [Kel, Proposition 2.7.1] or [Ne1, Theorem I.7]),

so that in Banach spaces, the two definitions lead to the same smooth maps.

Next we turn to the notion of convenient smoothness. Before we recall its

definition and main properties, let us already note that in general, it is possible

to find conveniently smooth maps that are not even continuous! This hints at the

fact that there should be a different topology that is more adapted to convenient

smoothness, and for which conveniently smooth maps are automatically continu-

ous. Since the definition of convenient smoothness relies on smooth curves, it is

natural to use smooth curves to define this topology.

Definition 3.3. Let E be a locally convex space. The c∞-topology (also called

the Mackey-closure topology) is the finest topology on E making all the smooth
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curves c : R → E continuous. Subsets of E open in this topology will be called

c∞-open.

Remark 3.4. The c∞-topology on E is clearly finer than the given locally convex

topology. Note that if E is a Fréchet space or the dual of a Fréchet–Schwartz space,

then the two topologies coincide ([KM, Theorem I.4.11]).

Note also that there are locally convex spaces such that the c∞-topology

is not even a vector space topology and thus a fortiori does not equal the ini-

tially given topology. Examples of this phenomenon are strict inductive limits of

strictly increasing sequences of infinite-dimensional Fréchet spaces such as, e.g.,

D(M), the space of compactly supported smooth functions on a noncompact finite-

dimensional smooth manifold. (Compare [KM, Proposition I.4.26].)

Let us now recall the precise definition and some of the properties of conve-

niently smooth maps. (Compare notably [KM].)

Definition 3.5. Let E and F be locally convex spaces, U a c∞-open subset of E,

and Φ : U → F a map. We say that Φ is conveniently smooth if for every smooth

curve c : R→ U , the curve Φ ◦ c : R→ F is smooth.

Remark 3.6. It is easy to see that the composition of two conveniently smooth

maps is conveniently smooth.

Proposition 3.7. Let E and F be locally convex spaces, and U an open subset

of E. Any conveniently smooth map Φ : U → F is continuous when E is equipped

with the c∞-topology.

Proof. Let V be an open subset of F . To show that Φ−1(V ) is c∞-open in U ,

we need to show that c−1(Φ−1(V )) is open in R for every c ∈ C∞(R, U). But

c−1(Φ−1(V )) = (Φ ◦ c)−1(V ), which is clearly open in R since the curve Φ ◦ c is

smooth, and therefore continuous.

We denote by C∞conv(U,F ) the set of conveniently smooth maps from U to F .

The equivalence between smoothness and convenient smoothness, when it

holds, is not trivial to establish, even for functions from Rd to R. In this case, it

was first proved by Boman in 1967 [Bom].

Theorem 3.8 (Boman’s theorem).

(3.2) C∞conv(R2,R) = C∞(R2,R).

Proof. See [Bom] or [KM, I.3.4].

Now we concentrate on the structure of C∞conv(U,F ).
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Proposition 3.9. Let E and F be locally convex spaces, and U a c∞-open subset

of E. Then C∞conv(U,F ) is a locally convex space for the coarsest topology making

the maps c∗ : C∞conv(U,F ) → C∞(R, F ), Φ 7→ c∗Φ = Φ ◦ c for all c ∈ C∞(R, U)

continuous.

Proof. It is not difficult to check that this topology on C∞conv(U,F ) is defined by the

family of seminorms P = {pK,α,q,c ;K compact in R, α ∈ N, q cont. seminorm on

F , c ∈ C∞(R, U)}, where we set pK,α,q,c(Φ) := supt∈K q((Φ ◦ c)(α)(t)) for Φ ∈
C∞conv(U,F ). Moreover, if Φ ∈ C∞conv(U,F )− {0}, let x ∈ U be such that Φ(x) 6= 0,

and c := kx : R→ U the constant curve at x. There exists a continuous seminorm

q on F such that q(Φ(x)) 6= 0. Take α = 0 and K = {0}. Then pK,α,q,c(Φ) =

supt∈{0} q((Φ ◦ c)(t)) = q((Φ ◦ c)(0)) = q(Φ(x)) 6= 0. Thus, P is separating.

One of the major benefits of working with conveniently smooth maps is the

fact that they give rise to a Cartesian closed category, as the next theorem will

show.

Theorem 3.10. Let E1, E2 and F be locally convex spaces, and U1 and U2 c∞-

open subsets of E1 and E2 respectively. Then, as sets,

(3.3) C∞conv(U1 × U2, F ) ∼= C∞conv(U1, C∞conv(U2, F )).

Proof. See [KM, Theorem I.3.12].

A first consequence of Cartesian closedness is the following generalization of

Boman’s theorem.

Corollary 3.11. Let E be a locally convex space. Then,

(3.4) C∞conv(Rn, E) = C∞(Rn, E).

Proof. Let Φ ∈ C∞conv(Rn, E).

By Theorem 3.10, we have C∞conv(Rn, E) ∼= C∞conv(Rn−1, C∞(R, E)). In particu-

lar, for every x1, . . . , xi−1, xi+1, . . . , xn ∈ R, the partial map Φ(x1, . . . , •, . . . , xn),

y 7→ Φ(x1, . . . , xi−1, y, xi+1, . . . , xn) lies in C∞(R, E). Then

∂Φ

∂xi
(x1, . . . , xi, . . . , xn)

= lim
t→0

Φ(x1, . . . , xi + t, . . . , xn)− Φ(x1, . . . , xi, . . . , xn)

t

= lim
t→0

Φ(x1, . . . , •, . . . , xn)(xi + t)− Φ(x1, . . . , •, . . . , xn)(xi)

t

= Φ(x1, . . . , •, . . . , xn)′(xi).
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Thus, all first-order partial derivatives of Φ exist. Inductively, one obtains the exis-

tence of all higher-order partial derivatives of Φ. This proves that Φ ∈ C∞(Rn, E).

Conversely, if Φ ∈ C∞(Rn, E), then Φ ∈ C∞conv(Rn, E) by the chain rule.

Another consequence of Cartesian closedness is the convenient smoothness of

the differential.

Proposition 3.12. Let E and F be locally convex spaces, U a c∞-open sub-

set of E, and Φ ∈ C∞conv(U,F ). For every x ∈ U and v ∈ E, set dΦ|x(v) :=

limt→0
Φ(x+tv)−Φ(x)

t . Then dΦ ∈ C∞conv(U × E,F ).

Proof. We claim that the map δ : C∞conv(U,F )× U × E → F defined by

(3.5) δ(Φ, x, v) := dΦ|x(v) = lim
s→0

Φ(x+ sv)− Φ(x)

s

is conveniently smooth. Indeed, let c = (Φ̃, x̃, ṽ) : R → C∞conv(U,F ) × U × E be

a smooth curve, and set h(t, s) := Φ̃(t)(x̃(t) + sṽ(t)). Then (δ ◦ c)(t) = δ(c(t))

= δ(Φ̃(t), x̃(t), ṽ(t)) = lims→0
Φ̃(t)(x̃(t)+sṽ(t))− Φ̃(t)(x̃(t))

s = lims→0
h(t,s)−h(t,0)

s =
∂h
∂s (t, 0). Since h is clearly conveniently smooth (and smooth by Corollary 3.11),

we deduce that the curve δ ◦c is smooth. Thus, δ ∈ C∞conv(C∞conv(U,F )×U ×E ; F ),

and therefore d := δ̂ ∈ C∞conv(C∞conv(U,F ) ; C∞conv(U × E,F )). In particular, dΦ ∈
C∞conv(U × E,F ).

An immediate consequence of the above proposition, already observed in [Ne2]

for Fréchet spaces, is a further generalization of Boman’s theorem, stating that for

a reasonable class of locally convex spaces, convenient smoothness coincides with

smoothness (in the sense of the above definition).

Proposition 3.13. Let E and F be locally convex spaces, and U an open subset

of E. Assume that for every n ≥ 1, the c∞-topology on En is the same as the

product topology for the given topology on E. Then

(3.6) C∞conv(U,F ) = C∞(U,F ).

Proof. By the chain rule, smoothness implies convenient smoothness. For the non-

trivial direction, suppose Φ : U → F is conveniently smooth. By the preceding

proposition, dΦ : U × E → F is conveniently smooth as well. Proposition 3.7

implies then that dΦ is continuous for the c∞-topology, and therefore continuous

by our assumption on E. Thus, Φ is C1, and by induction, one obtains that Φ is

smooth.

We are ready to state and prove the main result of this section.
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Theorem 3.14. Let E and F be locally convex spaces, and U an open subset of

E. Assume that for every n ≥ 1, the c∞-topology on En is the same as the product

topology for the given topology on E and that F is Mackey-complete. Let Φ : U → F

be a continuous map. Then the following are equivalent:

(i) The map Φ is smooth.

(ii) For every open subset V of F containing Φ(U) and every f ∈ C∞(V,R), we

have f ◦ Φ ∈ C∞(U,R).

(iii) For every f ∈ C∞(F,R), we have f ◦ Φ ∈ C∞(U,R) (i.e., Φ is scalarwise

smooth).

(iv) For every ` ∈ F ′, we have ` ◦ Φ ∈ C∞(U,R) (i.e., Φ is weakly smooth).

Proof. (i) ⇒ (ii) is evident by the chain rule, and (ii) ⇒ (iii) follows upon taking

V = F . (iii) ⇒ (iv) follows from the fact that every continuous linear map is

smooth. It remains to show (iv) ⇒ (i). Suppose that for every ` ∈ F ′, we have

` ◦ Φ ∈ C∞(U,R). For every smooth curve c : R → U , the function ` ◦ (Φ ◦ c) is

smooth since ` ◦ (Φ ◦ c) = (` ◦ Φ) ◦ c. By Theorem 2.11, the curve Φ ◦ c : R → F

is smooth. This means that the map Φ : U → F is conveniently smooth. By the

above proposition, we conclude that Φ must be smooth.

§4. Infinite-dimensional manifolds

Definition 4.1. A class of l.c. model spaces or l.c. models is a subclass E of the

class of real (Hausdorff) locally convex spaces such that E contains the numerical

spaces Rn for all n ∈ N.

Typical examples are the class of numerical spaces Rn for all n ∈ N, the class

of finite-dimensional vector spaces, the class of Banach spaces, the class of Fréchet

spaces and the class of all locally convex spaces.

Definition 4.2. Let E be a class of l.c. model spaces, and M0 a Hausdorff topo-

logical space.

(1) A smooth E-atlas on M0 is a family of pairs A = {(Uα, ϕα) ; α ∈ A} such that

{Uα ; α ∈ A} is an open cover of M0 and for every α ∈ A, there exists a space

Eα from the class E and a homeomorphism ϕα : Uα → ϕα(Uα) ⊂ Eα such

that the following compatibility condition is satisfied: for every α, β ∈ A such

that Uαβ = Uα ∩Uβ 6= ∅, the transition map ϕαβ = ϕα ◦ϕ−1
β : ϕβ(Uα ∩Uβ)→

ϕα(Uα ∩ Uβ) is smooth (in the sense of Definition 3.1).

(2) Given a smooth E-atlas A on M0, a (compatible) chart on M0 is a pair (U,ϕ)

where U is an open subset of M0 and ϕ is a homeomorphism from U onto an
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open subset ϕ(U) of some space from the class E such that the transition map

between (U,ϕ) and every (Uα, ϕα) ∈ A is smooth.

(3) A smooth E-atlas A is said to be maximal if any chart (U,ϕ) compatible with

A already belongs to A. A maximal atlas is also called a smooth structure, the

class E being understood.

Definition 4.3. Let E be a class of l.c. model spaces. A smooth E-manifold is a

pair M = (M0,A) where M0 is a Hausdorff topological space and A is a maximal

smooth E-atlas on M0.

Remark 4.4.

(1) Especially in finite dimensions, M0 is often required to be second countable.

However, as we are mainly interested in the generalization to infinite dimen-

sions, we do not insist on this condition here. Let us remark that we cannot

insist on first countability either, since a nonmetrizable locally convex space

is not first countable (see, e.g., [MV, Proposition 25.1]).

(2) Given a smooth E-atlas A, there is always a unique maximal smooth E-atlas

containing A, obtained by adjoining to A all the charts that are compatible

with A.

(3) If E and E ′ are classes of l.c. models such that E ⊂ E ′, then a smooth E-manifold

is obviously a smooth E ′-manifold. Denoting the class of all locally convex

spaces by LCS, every smooth E-manifold is then a smooth LCS-manifold.

Definition 4.5. Given classes E and F of l.c. models, let M = (M0,A) (resp.

N = (N0,B)) be a smooth E- (resp. F-) manifold, and Φ : M0 → N0 a continuous

map. We say that Φ is smooth if the following condition is fulfilled: for every

(U,ϕ) ∈ A and every (V, ψ) ∈ B such that Φ(U) ⊂ V , the following map (between

open sets in locally convex spaces) is smooth:

(4.1) ψ ◦ Φ|U ◦ ϕ−1 : ϕ(U)→ ψ(V ).

Remark 4.6.

(1) If A′ ⊂ A (resp. B′ ⊂ B) is a smooth atlas (not necessarily maximal) of M

(resp. N), the above condition is equivalent to the following: for every point

p ∈M , there exists a chart (U,ϕ) containing p and compatible with A′ and a

chart (V, ψ) compatible with B′ such that Φ(U) ⊂ V and such that the map

ψ ◦ Φ|U ◦ ϕ−1 : ϕ(U)→ ψ(V ) is smooth.

(2) We notably obtain the notion of a smooth function f on M , namely a function

f : M0 → R such that for every chart (U,ϕ) ∈ A′ (atlas contained in A),
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f ◦ ϕ−1 : ϕ(U)→ R is a smooth function on the open set ϕ(U) (contained in

some space from the class E).

(3) Since an open subset U ⊂M0 inherits obviously a smooth structure upon re-

stricting the smooth structure to U , we have a notion of smooth map/function

defined on U .

Definition 4.7. Given a class of l.c. model spaces E , letM = (M0,A) be a smooth

E-manifold. The sheaf C∞M of smooth functions on M is the subsheaf of the sheaf

C0
M0

of continuous (real-valued) functions on the topological space M0, defined as

the contravariant functor

(4.2) C∞M : Open(M0)→ RAlgcom,

assigning to every open subset U of M0 the commutative R-algebra C∞M (U) of

smooth functions on U . Here, Open(M0) is the category of open subsets of M0

with inclusions as morphisms, and RAlgcom is the category of unital commutative

associative R-algebras with unital R-algebra homomorphisms as morphisms.

Remark 4.8. Obviously, (M0, C∞M ) is a ringed space, with the stalks (C∞M )p (for

p ∈ M0) being local unital R-algebras with maximal ideals mp = {fp ∈ (C∞M )p |
f(p) = 0}. In short, (M0, C∞M ) is a locally ringed space. Furthermore, (M0, C∞M ) is,

as a locally ringed space, locally isomorphic to models (D0, (C∞E )|D0
), where E is a

space from the class E , and D0 is an open subset of E. The atlas {(D0, jD0)}, where

jD0
: D0 ↪→ E is the canonical inclusion, is obviously smooth and thus contained

in a maximal atlas AD0
. Calling D the smooth manifold given by (D0,AD0

), we

obviously have (C∞E )|D0
= C∞D .

Recall that if (X0,OX) and (Y0,OY ) are locally ringed spaces, a morphism of

locally ringed spaces between them is a pair Φ = (Φ0,Φ
]), where Φ0 : X0 → Y0 is

a continuous map and Φ] : Φ−1
0 OY → OX is a morphism of sheaves of unital R-

algebras such that for every x ∈ X0, the induced unital R-algebra homomorphism

Φ]x : (OY )Φ0(x) → (OX)x is local, i.e., the image by Φ]x of the maximal ideal of

(OY )Φ0(x) is contained in the maximal ideal of (OX)x. Let us also recall that Φ]

can be equivalently viewed as a sheaf morphism OY → (Φ0)∗OX . In the sequel,

we apply both formulations without further comment.

A locally ringed space (X0,OX) is here said to be reduced if OX is a subsheaf

of the sheaf of continuous functions C0
X0

. If Φ = (Φ0,Φ
]) : (X0,OX) → (Y0,OY )

is a morphism between reduced locally ringed spaces, then Φ] is given by Φ∗0, the

pullback by Φ0 (and so the morphism Φ is completely determined by the underlying

continuous map Φ0). Consequently, we often write Φ instead of Φ0 when the spaces



202 M. Egeileh and T. Wurzbacher

are reduced. Of course, we never do so in the nonreduced case, since Φ] is then

part of the data.

Definition 4.9. Let E be a class of l.c. models. A structure sheaf-smooth E-

manifold is a reduced locally ringed space whose underlying topological space

is Hausdorff, and which, as a locally ringed space, is locally isomorphic to models

(D0, C∞D ), where D0 is an open subset of a space from the class E .

Remark 4.10. By Remark 4.8, every smooth E-manifold is, in a natural way, a

structure sheaf-smooth E-manifold. The converse is nontrivial. Using the preceding

section, we can nevertheless show the following results.

Notation 4.11. The class of l.c. models made of all the Mackey-complete locally

convex spaces will be denoted by M.

Theorem 4.12. Let E be the class of locally convex spaces E such that for every

n ≥ 1, the c∞-topology on En is the same as the product topology for the given

topology on E. If M = (M0,A) is a smooth E-manifold, N = (N0,B) a smooth

M-manifold and Φ : M0 → N0 a continuous map, then Φ is smooth if and only if

Φ : (M0, C∞M )→ (N0, C∞N ) is a morphism of locally ringed spaces.

Proof. By the chain rule, smooth maps are morphisms of locally ringed spaces.

Assume now that Φ is a morphism of locally ringed spaces. Let (U,ϕ) and (V, ψ) be

charts of M (resp. N) with values in E ∈ E (resp. F ∈ M) such that Φ(U) ⊂ V .

The continuous map Φ̃ := ψ ◦ Φ|U ◦ ϕ−1 : E ⊃ ϕ(U) → ψ(V ) ⊂ F is then a

morphism of locally ringed spaces as well (with respect to the natural structure

sheaves). Thus, Φ̃ satisfies condition (ii) of Theorem 3.14, which in turn implies

that Φ̃ is smooth. It follows that Φ itself is smooth.

The above theorem has the following very important consequence.

Corollary 4.13. Let E be the class of Mackey-complete locally convex spaces E

such that for every n ≥ 1, the c∞-topology on En is the same as the product

topology for the given topology on E. For every smooth E-manifold in the structure-

sheaf sense (M0,OM ), there is a canonical maximal atlas A on M0 such that

(M0,A) is a smooth E-manifold fulfilling C∞M = OM . Furthermore, the maximal

atlas A is uniquely determined by the condition C∞M = OM .

Proof. Let A′ = {(Uα, ϕα) ; α ∈ A} be a family of pairs such that {Uα ; α ∈ A} is

a covering of M0 and for all α ∈ A, ϕα : (Uα, (OM )|Uα)→ (ϕα(Uα), (C∞Eα)|ϕα(Uα))

(with Eα ∈ E and ϕα(Uα) ⊂ Eα) is an isomorphism of locally ringed spaces.

Furthermore, the continuous transition map ϕαβ : ϕβ(Uαβ) → ϕα(Uαβ) is an
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isomorphism of the locally ringed spaces (ϕβ(Uαβ), (C∞Eβ )|ϕβ(Uαβ)) and (ϕα(Uαβ),

(C∞Eα)|ϕα(Uαβ)). By the preceding theorem, the map ϕαβ is then already smooth.

It follows that A′ is a smooth atlas on M0. We observe that the unique maximal

atlas A containing A′ is canonically associated to the given locally ringed space.

Moreover, the corresponding sheaf of smooth functions C∞M is equal to the structure

sheaf OM . Now assume that M̃ = (M0,B) is a smooth E-manifold such that

C∞
M̃

= OM . Then (idM0
, id∗M0

) : (M0, C∞M )→ (M0, C∞M̃ ) is an isomorphism of locally

ringed spaces. Using the preceding theorem again, we obtain that idM0 is a smooth

diffeomorphism between (M0,A) and (M0,B). This, of course, implies that A and

B are smoothly compatible atlases, and by maximality ofA and B, thatA = B.

Remark 4.14. The preceding theorem and its corollary show that for important

classes of l.c. model spaces such as, e.g., the class of Fréchet spaces, we can encode

smoothness completely in sheaf-theoretic language. This approach simplifies the

verification and application of smoothness in infinite dimensions, and allows gen-

eralizations to the nonreduced case such as, e.g., for “Fréchet supermanifolds”. In

general, i.e., for arbitrary classes of l.c. model spaces (resp. for our (regular) local

models replaced by more general local models such as, e.g., complex-analytic sets

in open subsets of complex locally convex spaces), this encoding might not be pos-

sible anymore. In order to circumvent this problem, Douady introduced in [Dou]

the notions of the next definition.

Remark 4.15. Let C be a category, and denote, for a topological space Z0, the

category of sheaves (of sets) on Z0 by ShZ0
. If Φ0 : X0 → Y0 is a continuous map of

topological spaces and G : C → ShY0
is a covariant functor, then Φ−1

0 G : C → ShX0

defined by (Φ−1
0 G)(A) = Φ−1

0 (G(A)) is a covariant functor, called the inverse image

of G by Φ0.

Definition 4.16. Let C be a category.

(1) A C-functored space is a pair (X0,OCX) where X0 is a topological space, and

OCX : C → ShX0
is a covariant functor from C to the category of sheaves on

X0. We say that OCX is the structure functor of (X0,OCX).

(2) If (X0,OCX) and (Y0,OCY ) are C-functored spaces, a morphism of C-functored

spaces between them is a pair Φ = (Φ0,Φ
]) where Φ0 : X0 → Y0 is a continuous

map and Φ] : (Φ0)−1OCY → OCX is a natural transformation between the two

functors Φ−1
0 OCY : C → ShX0 and OCX : C → ShX0 .

Remark 4.17. Given a class F of l.c. models, we continue to use the symbol

F , by a slight abuse of notation, to denote the category whose objects are open

subsets of spaces from the class F , and whose morphisms are the smooth maps
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between them (in the sense of Definition 3.1). Such a category F will be referred

to as a “category of l.c. models”.

Definition 4.18. Given a category of l.c. models F , an F-functored space

(X0,OFX) is said to be reduced if for every V ∈ Ob(F) and every open set U ⊂ X0,

we have OFX(V )(U) ⊂ C0(U, V ), and OX := OFX(R) is a sheaf having local unital

R-algebras as stalks.

Remark 4.19. If (X0,OFX) is a reduced F-functored space, then (X0,OX) is a

reduced locally ringed space.

Definition 4.20. Given a class of l.c. models E , let M = (M0,A) be a smooth

E-manifold. For any category of l.c. models F , consider the functor (C∞)FM : F →
ShM0 defined as follows: for every V ∈ Ob(F) and every open set U ⊂ M0,

let (C∞)FM (V )(U) := C∞(U, V ). Then (M0, (C∞)FM ) is called the canonical F-

functored space associated with M .

Remark 4.21. Obviously, for any smooth E-manifold M , (M0, (C∞)FM ) is a re-

duced F-functored space. Furthermore, (M0, (C∞)FM ) is, as an F-functored space,

locally isomorphic to model F-functored spaces (D0, (C∞)FD), where D0 is an open

subset of a space from the class E .

Definition 4.22. Let E be a class of l.c. models. A structure functor-smooth E-

manifold is a reduced LCS-functored space (M0,OLCS
M ) whose underlying topo-

logical space M0 is Hausdorff, and which, as an LCS-functored space, is locally

isomorphic to model functored spaces (D0, (C∞)LCS
D ), where D0 is an open subset

of a space from the class E .

Remark 4.23. By Remark 4.21, for F = LCS, every smooth E-manifold is, in a

natural way, a structure functor-smooth E-manifold.

Theorem 4.24. Let E be a class of l.c. models. If M = (M0,A) and N = (N0,B)

are smooth E-manifolds, and Φ : M0 → N0 a continuous map, then Φ is smooth if

and only if Φ : (M0, (C∞)LCS
M )→ (N0, (C∞)LCS

N ) is a morphism of LCS-functored

spaces.

Proof. Note that a morphism (Φ0,Φ
]) between reduced functored spaces is com-

pletely determined by the underlying continuous map Φ0, the information con-

tained in the natural transformation Φ] being that of all possible pullbacks by Φ0.

Consequently, as in the case of reduced locally ringed spaces, we write Φ instead

of (Φ0,Φ
]). Suppose now that Φ : M → N is smooth. Then, for any open subset

V of a locally convex space F and for any open subset W of N0, the pullback
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Φ∗ : C∞(W,V ) → C∞(Φ−1(W ), V ) is well defined by the chain rule. We claim

that Φ] : Φ−1(C∞)LCS
N → (C∞)LCS

M , which assigns to every V the sheaf map

Φ](V ) : (C∞)LCS
N (V ) → Φ∗((C∞)LCS

M (V )) given by the pullbacks Φ∗, is a natural

transformation. Indeed, we have to show that given V ′ (resp. V ′′), an open subset

of a locally convex space F ′ (resp. F ′′), and given a smooth map χ : V ′ → V ′′, we

have

(4.3) (C∞)LCS
M (χ)(Φ−1(W )) ◦ Φ](V ′)(W ) = Φ](V ′′)(W ) ◦ (C∞)LCS

N (χ)(W )

for every open set W in N0. But this is true since both LHS and RHS, when

evaluated at an element Ψ ∈ (C∞)LCS
N (V ′)(W ) = C∞(W,V ′), are equal to χ◦Ψ◦Φ.

Thus, Φ is a morphism of LCS-functored spaces. Now we prove the converse of

the theorem. Assume that Φ induces, via the pullbacks Φ∗, a morphism of LCS-

functored spaces. This means that for a germ of a smooth map defined on N0

having values in an open subset of an arbitrary locally convex space, the pullback

is the germ of a smooth map on M0. Since this property as well as the condition of

smoothness are local, we replace w.l.o.g. M0 and N0 by open subsets U (resp. U ′) in

locally convex spaces E, E′ in E . Now taking Ψ = idU ′ , the pullback Φ∗(Ψ) = Ψ◦Φ
equals Φ and thus Φ is smooth.

The above theorem has the following important consequence.

Corollary 4.25. Let E be a class of l.c. models. For every structure functor-

smooth E-manifold (M0,OLCS
M ), there is a canonical maximal atlas A on M0 such

that M = (M0,A) is a smooth E-manifold fulfilling OLCS
M = (C∞)LCS

M . Fur-

thermore, the E-manifold M is uniquely determined by the condition OLCS
M =

(C∞)LCS
M .

Proof. Mutatis mutandis the proof of Corollary 4.13 shows this corollary as well.

One could also take E to be the class of all complex locally convex spaces.

The notion of a smooth E-manifold is then replaced by that of a complex-analytic

locally convex manifold. To such a manifold M = (M0,A), one can then associate

a complex-analytic locally convex manifold in the structure-sheaf sense (M0, CωM ),

where CωM is the sheaf of complex-analytic functions on M . One has then the

following result.

Theorem 4.26. Let M = (M0,A) and N = (N0,B) be complex-analytic locally

convex manifolds, and Φ : M0 → N0 a continuous map. Then Φ is complex-analytic

if and only if Φ : (M0, CωM )→ (N0, CωN ) is a morphism of locally ringed spaces.
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Proof. By the chain rule, analytic maps are morphisms of locally ringed spaces.

Assume now that Φ is a morphism of locally ringed spaces. Since the condition of

analyticity is local, we can proceed as in the proof of Theorem 4.12, which amounts

to replacing M0 and N0 by open subsets DE and DF of complex locally convex

spaces E and F respectively. This gives a map Φ̃ : DE → DF that is scalarwise

analytic. In particular, viewed as a map from DE to F , Φ̃ is weakly analytic.

By [Maz, Part II, Proposition 1.6], we deduce that Φ̃ is analytic. It follows that Φ

itself is analytic.

Remark 4.27. If, instead of complex-analytic locally convex manifolds, one con-

siders more generally complex-analytic subsets of locally convex spaces (and an-

alytic spaces modeled on such analytic sets), then pathologies appear. There are

examples of reduced analytic sets (in the ringed space sense) with continuous maps

into some complex Banach space that are weakly analytic but not analytic (see,

e.g., [Maz, pp. 73–80]). This phenomenon is avoided in [Dou] by defining analytic

sets and spaces as functored spaces.

§5. Global characterization of smoothness

In this section, we apply Theorem 4.12 to prove an infinite-dimensional gener-

alization of the classical result, which states that a continuous map Φ between

finite-dimensional manifolds M and N is smooth if and only if the pullback by Φ

of every (globally defined) smooth function on N is smooth (see, e.g., [NS, Lemma

2.2]). Our generalization will apply in particular to the case where the target man-

ifold N is the Fréchet manifold of smooth maps from a finite-dimensional compact

manifold X to a finite-dimensional manifold Y .

As in the finite-dimensional case, the result depends crucially on the existence

of smooth bump functions (and hence is false in the analytic category). As shown

in [Tho] (but cf. also [KM, Theorem 16.10]), smooth bump functions do exist on

nuclear Fréchet spaces, and this continues to hold true for manifolds modeled on

nuclear Fréchet spaces, provided the manifolds under consideration are regular as

topological spaces. More precisely, one has the following proposition.

Proposition 5.1. Let N = (N0,B) be a smooth regular manifold modeled on a

nuclear Fréchet space. For every point q0 ∈ N0 and for every neighborhood U of

q0 in N0, there exists a function χ ∈ C∞N (N0) such that

• χ(N0) ⊂ [0, 1];

• there exists a neighborhood V of q0 in U such that χ|V = 1;

• χ|N0−U = 0.
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Proof. Compare [Tho, p. 278].

With the notation of the preceding section, we have the following result.

Theorem 5.2. Let M = (M0,A) be a smooth E-manifold, and N = (N0,B) a

smooth regular manifold modeled on a nuclear Fréchet space E (so N is notably

a smooth M-manifold, since E is Mackey-complete). Let Φ : M0 → N0 be a

continuous map. The following statements are equivalent:

(i) Φ is smooth.

(ii) For every f ∈ C∞N (N0), we have f ◦ Φ ∈ C∞M (M0).

Proof. Statement (i) immediately implies (ii) by the chain rule, so we only have

to show that (ii) implies (i). By Theorem 4.12, this will be true if for any open

subset U of N0, and for every g ∈ C∞N (U), we have g ◦ Φ|Φ−1(U) ∈ C∞M (Φ−1(U)).

Let p0 be an arbitrary point in Φ−1(U). Let us show that g ◦ Φ|Φ−1(U) is smooth

at p0. By regularity of N , there exists a neighborhood U0 of Φ(p0) such that

Φ(p0) ∈ U0 ⊂ Ū0 ⊂ U . By the preceding proposition, there exists a function

χ ∈ C∞N (N0) such that

• χ(N0) ⊂ [0, 1];

• there exists a neighborhood V of Φ(p0) in U0 such that χ|V = 1;

• χ|N0−U0
= 0.

Define the function f : N0 → R by f(q) := χ(q) g(q) for every q ∈ U and f(q) = 0

for every q ∈ N0 − U . Then f ∈ C∞N (N0), and f|V = g|V . This implies that

(f ◦Φ)|Φ−1(V ) = (g ◦Φ|Φ−1(U))|Φ−1(V ). Now Φ−1(V ) is a neighborhood of p0 (since

Φ(p0) ∈ V ). Smoothness of f ◦ Φ at p0 now implies smoothness of g ◦ Φ|Φ−1(U)

at p0.

Finally, we claim that the above theorem applies in particular for N :=

C∞(X,Y ), where X and Y are finite-dimensional manifolds, X being compact.

Indeed, recall that C∞(X,Y ) is naturally equipped with the initial topology cor-

responding to the injection ι : C∞(X,Y ) →
∏∞
k=0 C(TkX,TkY ). (If πk is the

canonical projection of the preceding product onto C(TkX,TkY ), which has the

compact-open topology, and if Tk : C∞(X,Y )→ C(TkX,TkY ) is the map sending

each smooth function f : X → Y to its kth-order tangent map Tkf : TkX → TkY ,

then ι is the unique map such that πk ◦ ι = Tk for all k.) Since TkY is metriz-

able, it is a fortiori regular. It follows that C(TkX,TkY ) is also regular (in the

compact-open topology). But then
∏∞
k=0 C(TkX,TkY ) is regular as well, which in

turn implies that C∞(X,Y ) is regular, since ι is injective. On the other hand, local

models for the manifold C∞(X,Y ) are Fréchet spaces of the form ΓC∞(X, f∗TY ),
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for f ∈ C∞(X,Y ) (see, e.g., [Ham, Examples 4.1.2 and 4.1.3]). But spaces of

smooth sections of vector bundles over a compact manifold are nuclear (cf. the

remark below). This establishes our claim.

Remark 5.3. Since we could not find a reference for the—certainly folkloristic—

fact that the space of smooth sections of a vector bundle E over a compact manifold

without boundary X is nuclear, we would like to sketch briefly two possible proofs

of this fact. One can proceed geometrically by embedding X in a torus TN (for N

sufficiently large). Then, for K = R or C, the space C∞(X,K) becomes the quo-

tient of the nuclear space C∞(TN ,K) by a closed subspace, hence is nuclear (see,

e.g., [Tre]). But any vector bundle E over X can be embedded in a trivial vector

bundle, and then ΓC∞(X,E) becomes a subspace of C∞(X,K) ⊗ Kr for some r,

which implies the nuclearity of ΓC∞(X,E) (again, see [Tre]). It could be interesting

however to note that a direct analytic approach is possible, in which one generalizes

to ΓC∞(X,E) the standard argument that shows that the space of smooth func-

tions on a torus is nuclear. More precisely, choosing a Riemannian metric g onX, as

well as a bundle metric and a connection on E, let ∆ : ΓC∞(X,E) → ΓC∞(X,E)

be the corresponding Bochner Laplacian. Then ΓC∞(X,E) is contained in the

Hilbert space ΓL2(X,E), and 〈∆kψ,ψ〉L2 < ∞ for all ψ ∈ ΓC∞(X,E) and for all

k ∈ N. If (λn)n∈N is the increasing sequence of eigenvalues of ∆, and (ψn)n∈N an

orthonormal basis of ΓL2(X,E) made of smooth eigensections of ∆, this gives

(5.1)

∞∑
n=0

(λn)k |〈ψ,ψn〉L2 |2 <∞ ∀ k ∈ N.

Now given α ∈ N, choose k ∈ N such that k > αd
2 , where d := dimRX. Weyl’s

asymptotic formula for generalized Laplacians acting on sections of vector bundles,

as given, e.g., in [BGV, Corollary 2.43], is equivalent to

(5.2) λn ∼
4π2

[rank(E) vol(BRd) volg(X)]2/d
n2/d as n→∞.

Accordingly, we have (λn)k ∼ Cn2k/d for some constant C. It follows easily that

nα � (λn)k as n→∞, and so

(5.3)

∞∑
n=0

nα |〈ψ,ψn〉L2 |2 <∞ ∀α ∈ N.

Thus, the generalized Fourier transform ψ 7→ (〈ψ,ψn〉L2)n∈N defines an injective

continuous linear map from ΓC∞(X,E) to the space s(N) of rapidly decreasing

sequences, which is the prototype of nuclear spaces. This map is easily seen to be

surjective as well, and by the open mapping theorem for Fréchet spaces, it follows
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that it is a linear homeomorphism. Using [Tre, Theorem 51.5] this implies the

nuclearity of ΓC∞(X,E).
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