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Pull-back of Quasi-Log Structures

by

Osamu Fujino

Abstract

We prove that the pull-back of a quasi-log scheme by a smooth quasi-projective morphism
has a natural quasi-log structure. We treat an application to log Fano pairs. This paper
also contains a proof by Kento Fujita of the simple connectedness of log Fano pairs with
only log canonical singularities.
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§1. Introduction

The following theorem is the main result of this paper; it is natural but missing

from the literature. For a precise statement, see Theorem 3.5 below.

Theorem 1.1 (Pull-back of quasi-log structures). Let [X,ω] be a quasi-log scheme

and let h : X ′ → X be a smooth quasi-projective morphism. Then [X ′, ω′], where

ω′ = h∗ω ⊗ ωX′/X with ωX′/X = det Ω1
X′/X , has a natural quasi-log structure

induced by h.

In particular, if h is a finite étale morphism, then [X ′, ω′], where ω′ = h∗ω,

has a natural quasi-log structure induced by h.

We make an important remark: we do not know whether Theorem 1.1 holds

true or not without assuming that h is quasi-projective. The following corollary is

an easy application of Theorem 1.1.

Corollary 1.2. Let [X,ω] be a projective quasi-log canonical pair such that −ω
is ample. Then the algebraic fundamental group of X is trivial, or equivalently, X

has no nontrivial finite étale covers.
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The following conjecture arises naturally from Corollary 1.2.

Conjecture 1.3. Let [X,ω] be a projective quasi-log canonical pair such that −ω
is ample. Then X is simply connected.

In general, there exists an irreducible projective variety whose algebraic fun-

damental group is trivial and whose topological fundamental group is nontrivial

(Example 5.4). The following conjecture is a special case of Conjecture 1.3.

Conjecture 1.4. Let (X,∆) be a projective semi-log canonical pair such that

−(KX + ∆) is ample. Then X is simply connected.

It is well known that Conjecture 1.4 holds when (X,∆) is Kawamata log

terminal (see [T]). Kento Fujita pointed out that Conjecture 1.4 holds true when

(X,∆) is log canonical.

Theorem 1.5 (Fujita, Theorem 6.1). Let (X,∆) be a projective log canonical pair

such that −(KX + ∆) is ample. Then X is simply connected.

We work over C, the complex number field, throughout this paper. We recom-

mend [F3] for a gentle introduction to the theory of quasi-log structures. Since [F2]

will not be published, we reproduce some of the arguments from it in the current

paper. For basic definitions and properties of semi-log canonical pairs, see [F6].

§2. Preliminaries

Notation 2.1. A pair [X,ω] consists of a scheme X and an R-Cartier divisor (or

R-line bundle) ω on X. In this paper, a scheme means a separated scheme of finite

type over SpecC. A variety is a reduced scheme.

Notation 2.2 (Divisors). Let B1 and B2 be two R-Cartier divisors on a scheme

X. Then B1 is linearly (resp. Q-linearly, or R-linearly) equivalent to B2, denoted

by B1 ∼ B2 (resp. B1 ∼Q B2, or B1 ∼R B2) if B1 = B2 +
∑k
i=1 ri(fi) such that

fi ∈ Γ(X,K∗X) and ri ∈ Z (resp. ri ∈ Q, or ri ∈ R) for every i. Here, KX is the

sheaf of total quotient rings of OX , and K∗X is the sheaf of invertible elements in

the sheaf of rings KX . We note that (fi) is a principal Cartier divisor associated

to fi, that is, the image of fi by Γ(X,K∗X) → Γ(X,K∗X/O∗X), where O∗X is the

sheaf of invertible elements in OX .

Let D be a Q-divisor (resp. an R-divisor) on an equidimensional variety X,

that is, D is a finite formal Q-linear (resp. R-linear) combination D =
∑
i diDi

of irreducible reduced subschemes Di of codimension one. We define the round-up
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dDe =
∑
iddieDi (resp. round-down bDc =

∑
ibdicDi), where for every real num-

ber x, dxe (resp. bxc) is the integer defined by x ≤ dxe < x+1 (resp. x−1 < bxc ≤
x). The fractional part {D} of D denotes D − bDc. We put D<1 =

∑
di<1 diDi,

D≤1 =
∑
di≤1 diDi and D=1 =

∑
di=1Di. We can define D≥1, D>1 and so on

analogously. We call D a boundary (resp. subboundary) R-divisor if 0 ≤ di ≤ 1

(resp. di ≤ 1) for every i.

Notation 2.3 (Singularities of pairs). Let X be a normal variety and let ∆ be an

R-divisor on X such that KX+∆ is R-Cartier. Let f : Y → X be a resolution such

that Exc(f) ∪ f−1∗ ∆, where Exc(f) is the exceptional locus of f and f−1∗ ∆ is the

strict transform of ∆ on Y , has a simple normal crossing support. We can write

KY = f∗(KX + ∆) +
∑
i aiEi. We say that (X,∆) is sub log canonical if ai ≥ −1

for every i. We usually write ai = a(Ei, X,∆) and call it the discrepancy coefficient

of Ei with respect to (X,∆). It is well known that there exists the largest Zariski

open set U of X such that (U,∆|U ) is sub log canonical. If there exist a resolution

f : Y → X and a divisor E on Y such that a(E,X,∆) = −1 and f(E) ∩ U 6= ∅,
then f(E) is called a log canonical center (an lc center, for short) with respect to

(X,∆). If (X,∆) is sub log canonical and ∆ is effective, then (X,∆) is called log

canonical.

We note that we can define a(Ei, X,∆) in more general settings ([K2, Defini-

tion 2.4]).

Let us recall the definition of simple normal crossing pairs.

Definition 2.4 (Simple normal crossing pairs). We say that the pair (X,D) is

simple normal crossing at a point a ∈ X if X has a Zariski open neighborhood U

of a that can be embedded in a smooth variety Y , where Y has regular system of

parameters (x1, . . . , xp, y1, . . . , yr) at a = 0 in which U is defined by a monomial

equation x1 · · ·xp = 0 andD =
∑r
i=1 αi(yi = 0)|U with αi ∈ R. We say that (X,D)

is a simple normal crossing pair if it is simple normal crossing at every point of

X. We say that a simple normal crossing pair (X,D) is embedded if there exists a

closed embedding ι : X →M , where M is a smooth variety of dimX + 1. We call

M the ambient space of (X,D). If (X, 0) is a simple normal crossing pair, then X

is called a simple normal crossing variety. If X is a simple normal crossing variety,

then X has only Gorenstein singularities. Thus, it has an invertible dualizing sheaf

ωX . Therefore, we can define the canonical divisor KX such that ωX ' OX(KX).

It is a Cartier divisor on X and is well defined up to linear equivalence.

Let X be a simple normal crossing variety and let X =
⋃
i∈I Xi be the ir-

reducible decomposition of X. A stratum of X is an irreducible component of

Xi1 ∩ · · · ∩Xik for some {i1, . . . , ik} ⊂ I.
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Let X be a simple normal crossing variety and let D be a Cartier divisor on

X. If (X,D) is a simple normal crossing pair and D is reduced, then D is called a

simple normal crossing divisor on X.

Let (X,D) be a simple normal crossing pair. Let ν : Xν → X be the normal-

ization. We define Θ by the formula KXν + Θ = ν∗(KX + D), that is, Θ is the

sum of the inverse images of D and the singular locus of X. Then a stratum of

(X,D) is an irreducible component of X or the ν-image of a log canonical center of

(Xν ,Θ) (Notation 2.3). When D = 0, this definition is compatible with the above

definition of the strata of X. When D is a boundary R-divisor, W is a stratum of

(X,D) if and only if W is a semi-log canonical stratum (an slc stratum, for short)

of (X,D) ([F6, Definition 2.5]). Note that (X,D) is semi-log canonical if D is a

boundary R-divisor.

Notation 2.5. π1(X) denotes the topological fundamental group of X.

§3. Pull-back of quasi-log structures

In this section, we give a precise statement of Theorem 1.1 (Theorem 3.5). First,

let us recall the definition of globally embedded simple normal crossing pairs in

order to define quasi-log schemes.

Definition 3.1 (Globally embedded simple normal crossing pairs). Let Y be a

simple normal crossing divisor on a smooth variety M and let D be an R-divisor

on M such that Supp(D+Y ) is a simple normal crossing divisor on M and that D

and Y have no common irreducible components. We put BY = D|Y and consider

the pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair

and M the ambient space of (Y,BY ).

It is obvious that a globally embedded simple normal crossing pair is an

embedded simple normal crossing pair in Definition 2.4.

Let us define quasi-log schemes. For Ambro’s original definition in [A], see

Definition A.2 below.

Definition 3.2 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed

with an R-Cartier divisor (or R-line bundle) ω on X, a proper closed subscheme

X−∞ ⊂ X and a finite collection {C} of reduced and irreducible subschemes of X

such that there is a proper morphism f : (Y,BY )→ X from a globally embedded

simple normal crossing pair satisfying the following properties:

(1) f∗ω ∼R KY +BY .
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(2) The natural map OX → f∗OY (d−(B<1
Y )e) induces an isomorphism

IX−∞
'−→ f∗OY (d−(B<1

Y )e − bB>1
Y c),

where IX−∞ is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the images of (Y,BY )-strata

that are not included in X−∞.

We simply write [X,ω] to denote the above data
(
X,ω, f : (Y,BY )→ X

)
if there

is no risk of confusion. Note that a quasi-log scheme X is the union of {C} and

X−∞. We also note that ω is called the quasi-log canonical class of [X,ω], which

is defined up to R-linear equivalence. We sometimes simply say that [X,ω] is a

quasi-log pair. The subvarieties C are called the qlc strata of [X,ω], X−∞ is called

the non-qlc locus of [X,ω] and f : (Y,BY )→ X is called a quasi-log resolution of

[X,ω].

Remark 3.3. Let Div(Y ) be the group of Cartier divisors on Y and let Pic(Y ) be

the Picard group of Y . Let δY : Div(Y )⊗R→ Pic(Y )⊗R be the homomorphism

induced by A 7→ OY (A) where A is a Cartier divisor on Y . When ω is an R-

line bundle in Definition 3.2, f∗ω ∼R KY + BY means f∗ω = δY (KY + BY ) in

Pic(Y ) ⊗ R. Even when ω is an R-line bundle, we use −ω to denote the inverse

of ω in Pic(X)⊗ R if there is no risk of confusion. If ω is an R-Cartier divisor on

X in Theorem 1.1, h∗ω⊗ det Ω1
X′/X means δX′(h

∗ω)⊗ det Ω1
X′/X in Pic(X ′)⊗R,

where δX′ : Div(X ′)⊗ R→ Pic(X ′)⊗ R.

For various applications, the notion of qlc pairs is very useful.

Definition 3.4. Let [X,ω] be a quasi-log pair. We say that [X,ω] has only quasi-

log canonical singularities (qlc singularities, for short) or [X,ω] is a qlc pair if

X−∞ = ∅.

Let us state the main theorem of this paper precisely.

Theorem 3.5 (Main theorem). Let [X,ω] be a quasi-log pair as in Definition 3.2.

Let X ′ be a scheme and let h : X ′ → X be a smooth quasi-projective morphism.

Then [X ′, ω′], where ω′ = h∗ω ⊗ ωX′/X with ωX′/X = det Ω1
X′/X , has a natural

quasi-log structure induced by h. More precisely, we have the following:

(i) (Non-qlc locus). There is a proper closed subscheme X ′−∞ ⊂ X ′.
(ii) (Quasi-log resolution). There exists a proper morphism f ′ : (Y ′, BY ′) → X ′

from a globally embedded simple normal crossing pair (Y ′, BY ′) with f ′∗ω′ ∼R
KY ′ + BY ′ that defines a quasi-log structure on [X ′, ω′] such that IX′−∞ =

h∗IX−∞ .
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(iii) (Qlc strata). There is a finite collection {C ′} of reduced and irreducible sub-

schemes of X ′ such that {C ′} = {f−1(C)} and that the collection of subvari-

eties {C ′} coincides with the images of (Y ′, BY ′)-strata that are not included

in X ′−∞.

For the definition and basic properties of quasi-projective morphisms, see [G,

Chapitre II, §5.3 “Morphismes quasi-projectifs”].

§4. On quasi-log structures

Proposition 4.1 ([F2, Proposition 3.50]). Let f : V → W be a proper birational

morphism between smooth varieties and let BW be an R-divisor on W such that

SuppBW is a simple normal crossing divisor on W . Assume that KV + BV =

f∗(KW +BW ) and that SuppBV is a simple normal crossing divisor on V . Then

we have

f∗OV (d−(B<1
V )e − bB>1

V c) ' OW (d−(B<1
W )e − bB>1

W c).
Furthermore, let S be a simple normal crossing divisor on W such that S ⊂
SuppB=1

W . Let T be the union of the irreducible components of B=1
V that are mapped

into S by f . Assume that Supp f−1∗ BW∪Exc(f) is a simple normal crossing divisor

on V . Then we have

f∗OT (d−(B<1
T )e − bB>1

T c) ' OS(d−(B<1
S )e − bB>1

S c),

where (KV +BV )|T = KT +BT and (KW +BW )|S = KS +BS.

Proof. By KV +BV = f∗(KW +BW ), we obtain

KV = f∗(KW+B=1
W +{BW })+f∗(bB<1

W c+bB
>1
W c)−(bB<1

V c+bB
>1
V c)−B

=1
V −{BV }.

If a(ν,W,B=1
W + {BW }) = −1 for a prime divisor ν over W , then we can check

that a(ν,W,BW ) = −1 by using [KM, Lemma 2.45]. Since

f∗(bB<1
W c+ bB>1

W c)− (bB<1
V c+ bB>1

V c)

is Cartier, we can easily see that

f∗(bB<1
W c+ bB>1

W c) = bB<1
V c+ bB>1

V c+ E,

where E is an effective f -exceptional divisor. Thus, we obtain

f∗OV (d−(B<1
V )e − bB>1

V c) ' OW (d−(B<1
W )e − bB>1

W c).

Next, we consider the short exact sequence

0→ OV (d−(B<1
V )e − bB>1

V c − T )

→ OV (d−(B<1
V )e − bB>1

V c)→ OT (d−(B<1
T )e − bB>1

T c)→ 0.
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Since T = f∗S − F , where F is an effective f -exceptional divisor, we can easily

see that

f∗OV (d−(B<1
V )e − bB>1

V c − T ) ' OW (d−(B<1
W )e − bB>1

W c − S).

We note that

(d−(B<1
V )e − bB>1

V c − T )− (KV + {BV }+B=1
V − T ) = −f∗(KW +BW ).

Therefore, every associated prime of R1f∗OV (d−(B<1
V )e−bB>1

V c−T ) is the generic

point of the f -image of some stratum of (V, {BV } + B=1
V − T ) by [F4, Theorem

6.3(i)].

Claim. No strata of (V, {BV }+B=1
V − T ) are mapped into S by f .

Proof of claim. Assume that there is a stratum C of (V, {BV } + B=1
V − T ) such

that f(C) ⊂ S. Note that Supp f∗S ⊂ Supp f−1∗ BW ∪ Exc(f) and SuppB=1
V ⊂

Supp f−1∗ BW ∪ Exc(f). Since C is also a stratum of (V,B=1
V ) and C ⊂ Supp f∗S,

there exists an irreducible component G of B=1
V such that C ⊂ G ⊂ Supp f∗S.

Therefore, by the definition of T , G is an irreducible component of T because

f(G) ⊂ S and G is an irreducible component of B=1
V . So, C is not a stratum of

(V, {BV }+B=1
V − T ). This is a contradiction.

On the other hand, f(T ) ⊂ S. Therefore, the connecting homomorphism

f∗OT (d−(B<1
T )e − bB>1

T c)→ R1f∗OV (d−(B<1
Z )e − bB>1

Z c − T )

is a zero map by the claim. Thus, we obtain

f∗OT (d−(B<1
T )e − bB>1

T c) ' OS(d−(B<1
S )e − bB>1

S c)

by an easy diagram chasing. We finish the proof.

It is easy to check the following result.

Proposition 4.2. In Proposition 4.1, let C ′ be a log canonical center of (V,BV )

contained in T . Then f(C ′) is a log canonical center of (W,BW ) contained in S

or f(C ′) is contained in SuppB>1
W . Let C be a log canonical center of (W,BW )

contained in S. Then there exists a log canonical center C ′ of (V,BV ) contained

in T such that f(C ′) = C.

Theorem 4.3. In Definition 3.2, we may assume that the ambient space M of

the globally embedded simple normal crossing pair (Y,BY ) is quasi-projective. In

particular, Y is quasi-projective.
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Proof. In Definition 3.2, we may assume that D + Y is an R-divisor on a smooth

variety M such that Supp(D+Y ) is a simple normal crossing divisor on M , D and

Y have no common irreducible components and BY = D|Y as in Definition 3.1. Let

g : M ′ → M be a projective birational morphism from a smooth quasi-projective

variety M ′ with the following properties:

(i) KM ′ +BM ′ = g∗(KM +D + Y ).

(ii) SuppBM ′ is a simple normal crossing divisor on M ′.

(iii) Supp g−1∗ (D + Y ) ∪ Exc(g) is also a simple normal crossing divisor on M ′.

Let Y ′ be the union of the irreducible components of B=1
M ′ that are mapped into

Y by g. We put (KM ′ +BM ′)|Y ′ = KY ′ +BY ′ . Then

g∗OY ′(d−(B<1
Y ′ )e − bB

>1
Y ′ c) ' OY (d−(B<1

Y )e − bB>1
Y c)

by Proposition 4.1. This implies that IX−∞
'−→ f∗g∗OY ′(d−(B<1

Y ′ )e− bB
>1
Y ′ c). By

construction,

KY ′ +BY ′ = g∗(KY +BY ) ∼R g
∗f∗ω.

By Proposition 4.2, the collection of subvarieties {C} in Definition 3.2 coincides

with the images of (Y ′, BY ′)-strata that are not contained in X−∞. Therefore, by

replacing M and (Y,BY ) with M ′ and (Y ′, BY ′), we may assume that the ambient

space M is quasi-projective.

Lemma 4.4. Let (Y,BY ) be a simple normal crossing pair. Let V be a smooth

variety such that Y ⊂ V . Then we can construct a sequence of blow-ups

Vk → Vk−1 → · · · → V0 = V

with the following properties:

(1) σi+1 : Vi+1 → Vi is the blow-up along a smooth irreducible component of

SuppBYi for every i ≥ 0.

(2) We put Y0 = Y and BY0 = BY . Let Yi+1 be the strict transform of Yi for

every i ≥ 0.

(3) We define KYi+1
+BYi+1

= σ∗i+1(KYi +BYi) for every i ≥ 0.

(4) There exists an R-divisor D on Vk such that D|Yk = BYk .

(5) σ∗OYk(d−(B<1
Yk

)e−bB>1
Yk
c) ' OY (d−(B<1

Y )e−bB>1
Y c), where σ : Vk → Vk−1 →

· · · → V0 = V .

Proof. It is sufficient to check (5). All the other properties are obvious by the

construction of the sequence of blow-ups. By an easy calculation of discrepancy
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coefficients similar to the proof of Proposition 4.1, we can check that

σi+1∗OVi+1(d−(B<1
Yi+1

)e − bB>1
Yi+1
c) ' OVi(d−(B<1

Yi
)e − bB>1

Yi
c)

for every i. This implies the desired isomorphism.

The following lemma is easily checked.

Lemma 4.5. In Lemma 4.4, let C ′ be a stratum of (Yk, BYk). Then σ(C ′) is a

stratum of (Y,BY ). Let C be a stratum of (Y,BY ). Then there is a stratum C ′ of

(Yk, BYk) such that σ(C ′) = C.

The following lemma is easy but very useful (cf. [K2, Proposition 10.59]).

Lemma 4.6. Let Y be a simple normal crossing variety. Let V be a smooth quasi-

projective variety such that Y ⊂ V . Let {Pi} be any finite set of closed points

of Y . Then we can find a quasi-projective variety W such that Y ⊂ W ⊂ V ,

dimW = dimY + 1 and W is smooth at Pi for every i.

For the proof, see, for example, the proof of [F6, Theorem 1.2, step 2]. We

note that we cannot always make W smooth in Lemma 4.6.

Example 4.7 ([F2, Example 3.62]). Let V ⊂ P5 be the Segre embedding of P1×
P2. In this case, there are no smooth hypersurfaces of P5 containing V . We can

check it as follows.

If there exists a smooth hypersurface S such that V ⊂ S ⊂ P5, then ρ(V ) =

ρ(S) = ρ(P5) = 1 by the Lefschetz hyperplane theorem. This is a contradiction

because ρ(V ) = 2.

By the above results, we can prove the final lemma in this section.

Lemma 4.8. Let (Y,BY ) be a simple normal crossing pair such that Y is quasi-

projective. Then there exist a globally embedded simple normal crossing pair

(Z,BZ) and a morphism σ : Z → Y such that

KZ +BZ = σ∗(KY +BY )

and

σ∗OZ(d−(B<1
Z )e − bB>1

Z c) ' OY (d−(B<1
Y )e − bB>1

Y c).

Moreover, let C ′ be a stratum of (Z,BZ). Then σ(C ′) is a stratum of (Y,BY ) or

σ(C ′) is contained in SuppB>1
Y . Let C be a stratum of (Y,BY ). Then there exists

a stratum C ′ of (Z,BZ) such that σ(C ′) = C.
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Proof. Let V be a smooth quasi-projective variety such that Y ⊂ V . By Lem-

mas 4.4 and 4.5, we may assume that there exists an R-divisor D on V such that

D|Y = BY . Then we apply Lemma 4.6. We can find a quasi-projective variety W

such that Y ⊂ W ⊂ V , dimW = dimY + 1, and W is smooth at the generic

point of any stratum of (Y, SuppBY ). Of course, we can make W 6⊂ SuppD by

the proof of Lemma 4.6. We apply Hironaka’s resolution to W and use Szabó’s

resolution lemma (see, for example, [F1, 3.5 Resolution lemma]). More precisely,

we take blow-ups outside U , where U is the largest Zariski open set of W such that

(Y,BY )|U is a globally embedded simple normal crossing pair. Then we obtain a

desired globally embedded simple normal crossing pair (Z,BZ). Precisely speak-

ing, we can check that (Z,BZ) has the desired properties by an easy calculation

of discrepancy coefficients similar to the proof of Proposition 4.1.

Theorem 4.9. In Definition 3.2, it is sufficient to assume that (Y,BY ) is a quasi-

projective (not necessarily embedded) simple normal crossing pair.

Proof. We assume only that (Y,BY ) is a simple normal crossing pair in Defini-

tion 3.2. We assume that Y is quasi-projective. Then we apply Lemma 4.8 to

(Y,BY ). Let σ : (Z,BZ) → (Y,BY ) be as in Lemma 4.8. Then
(
X,ω, f ◦ σ :

(Z,BZ)→ X
)

is a quasi-log scheme in the sense of Definition 3.2.

Proposition 4.10 shows that it is not so easy to apply Chow’s lemma directly

to make (Y,BY ) quasi-projective in Definition 3.2.

Proposition 4.10 ([F2, Proposition 3.65]). There exists a complete simple nor-

mal crossing variety Y with the following property: If f : Z → Y is a proper

surjective morphism from a simple normal crossing variety Z such that f is an

isomorphism over the generic point of any stratum of Y , then Z is nonprojective.

Proof. We take a smooth complete nonprojective toric variety X. We put V =

X×P1. Then V is a toric variety. We consider Y = V \T , where T is the big torus

of V . We will see that Y has the desired property. By the above construction,

there is an irreducible component Y ′ of Y that is isomorphic to X. Let Z ′ be

the irreducible component of Z mapped onto Y ′ by f . So, it is sufficient to see

that Z ′ is not projective. On Y ′ ' X, there is a torus-invariant effective one

cycle C such that C is numerically trivial. By construction and the assumption,

g = f |Z′ : Z ′ → Y ′ ' X is birational and an isomorphism over the generic point

of any torus-invariant curve on Y ′ ' X. We note that any torus-invariant curve

on Y ′ ' X is a stratum of Y . We assume that Z ′ is projective; then there is a

very ample effective divisor A on Z ′ such that A does not contain any irreducible

components of the inverse image of C. Then B = f∗A is an effective Cartier divisor
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on Y ′ ' X such that SuppB contains no irreducible components of C. This is a

contradiction because SuppB ∩ C 6= ∅ and C is numerically trivial.

Proposition 4.10 is the main reason why we proved Theorem 4.3 for the proof

of our main theorem (Theorems 1.1 and 3.5). Now the proof of Theorem 1.1 is

almost obvious.

Proof of Theorem 3.5. Let f : (Y,BY )→ X be a quasi-log resolution as in Defini-

tion 3.2. By Theorem 4.3, we may assume that Y is quasi-projective. We consider

the fiber product Y ′ = Y ×X X ′.

Y ′
h′ //

f ′

��

Y

f

��
X ′

h
// X

We put BY ′ = h′∗BY . Then (Y ′, BY ′) is a quasi-projective simple normal crossing

pair because h is a smooth quasi-projective morphism and (Y,BY ) is a quasi-

projective simple normal crossing pair. Since KY +BY ∼R f
∗ω, we have

f ′∗ω′ = f ′h∗ω⊗f ′∗ωX′/X = h′f∗ω⊗ωY ′/Y ∼R h
′∗(KY +BY )⊗ωY ′/Y = KY ′+BY ′ .

Note that ωX′/X is trivial when h is étale. By the flat base change theorem, we

have

h∗IX−∞ = h∗f∗OY (d−(B<1
Y )e − bB>1

Y c)
' f ′∗h′∗OY (d−(B<1

Y )e − bB>1
Y c)

' f ′∗OY ′(d−(B<1
Y ′ )e − bB

>1
Y ′ c).

Finally, by Theorem 4.9, we may assume that (Y ′, BY ′) is a globally embedded

simple normal crossing pair. Therefore,
(
X ′, ω′, f ′ : (Y ′, BY ′) → X ′

)
gives us the

desired quasi-log structure.

§5. An application to quasi-log canonical Fano varieties

Let us recall the vanishing theorem for projective qlc pairs.

Theorem 5.1 (Vanishing theorem for qlc pairs). Let [X,ω] be a projective qlc pair

and let L be a Cartier divisor on X such that L−ω is ample. Then Hi(X,OX(L))

= 0 for every i > 0.

We give a proof of Theorem 5.1 for the readers’ convenience.
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Proof. Let f : (Y,BY ) → X be a quasi-log resolution as in Definition 3.2. Since

[X,ω] is qlc, BY = B≤1Y holds. Then

f∗(L− ω) ∼R f
∗L− (KY +BY ) = f∗L+ d−(B<1

Y )e − (KY + {BY }+B=1
Y )

because BY = B≤1Y . Therefore, we have Hi(X, f∗OY (f∗L + d−(B<1
Y )e)) = 0 for

every i > 0 by [F5, Theorem 1.1(ii)]. Note that

f∗OY (f∗L+ d−(B<1
Y )e) ' OX(L)⊗ f∗OY (d−(B<1

Y )e) ' OX(L)

because X−∞ = ∅. This implies that Hi(X,OX(L)) = 0 for every i > 0.

By combining Theorem 5.1 with Theorem 3.5, we can easily check Corol-

lary 1.2.

Proof of Corollary 1.2. Without loss of generality, we may assume that X is con-

nected. Since −ω is ample, Hi(X,OX) = 0 for every i > 0 by Theorem 5.1. There-

fore, we have χ(X,OX) = 1. Assume there exists a nontrivial finite étale morphism

f : X̃ → X from a connected scheme X̃. By Theorem 3.5, the pair [X̃, ω̃], where

ω̃ = f∗ω, is a qlc pair such that −ω̃ is ample. Thus, Hi(X̃,OX̃) = 0 for every i > 0

by Theorem 5.1 again. This implies χ(X̃,OX̃) = 1. By the Riemann–Roch formula

(see [Ft, Example 18.3.9]), we have χ(X̃,OX̃) = deg f · χ(X,OX). Therefore, we

obtain deg f = 1, a contradiction. This means that X has no nontrivial finite étale

covers, or equivalently, the algebraic fundamental group of X is trivial.

As a direct consequence of Corollary 1.2 and the main theorem of [F6], we

have the following result.

Corollary 5.2. Let (X,∆) be a projective semi-log canonical pair such that −(KX

+ ∆) is ample. Then the algebraic fundamental group of X is trivial.

Proof. By [F6], [X,KX + ∆] has a natural quasi-log structure with only qlc sin-

gularities. Therefore, Corollary 5.2 is a special case of Corollary 1.2.

Note that a union of some slc strata of a log Fano pair with only semi-log

canonical singularities is a quasi-log canonical Fano variety by Example 5.3.

Example 5.3. Let (X,∆) be a connected projective semi-log canonical pair such

that −(KX + ∆) is ample. Let W be the union of some slc strata of (X,∆)

with the reduced scheme structure. Then [W,ω], where ω = (KX + ∆)|W , is

a projective qlc pair such that −ω is ample by adjunction (see [F6, Theorem

1.13]). By [F6, Theorem 1.11], we obtain H1(X, IW ) = 0 where IW is the defining

ideal sheaf of W on X. Therefore, we obtain H0(W,OW ) = C by the surjection

C = H0(X,OX)→ H0(W,OW ). This implies that W is connected.
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The author learned the following example from Tetsushi Ito.

Example 5.4 (Topological versus algebraic). We consider the Higman group G.

It is generated by 4 elements a, b, c, d with the relations

a−1ba = b2, b−1cb = c2, c−1dc = d2, d−1ad = a2.

It is well known that G has no nontrivial finite quotients. By [S, Theorem 12.1],

there is an irreducible projective variety X such that π1(X) ' G. In this case, the

algebraic fundamental group of X, which is the profinite completion of π1(X), is

trivial.

Example 5.4 shows that Conjecture 1.3 does not directly follow from Corol-

lary 1.2. We give a nontrivial example of reducible log Fano pairs with only semi-log

canonical singularities.

Example 5.5. We consider the lattice N = Z3. Let n be an integer with n ≥ 3.

We consider a convex polyhedron P in NR = N ⊗ R ' R3 whose vertices are

v0, v1, . . . , vn ∈ N such that v0 = (0, 0,−1) and that the third coordinates of

v1, . . . , vn are 1. Assume that P contains (0, 0, 0) in its interior. Then the cones

spanned by (0, 0, 0) and faces of P subdivide R3 into n+1 three-dimensional cones.

This subdivision of R3 corresponds to a complete toric threefold X. Then we have

the following properties:

(1) −KX is ample since P is convex.

(2) D0 ∼ D1 + · · · + Dn, and D0 is Q-Cartier, where Di is the torus-invariant

prime divisor on X associated to vi for every i.

(3) Let x ∈ X be the torus-invariant closed point associated to the cone spanned

by v1, v2, . . . , vn. Then X \ x is Q-factorial, but X is not Q-factorial when

n ≥ 4.

(4) We put ∆ = D1 + · · · + Dn. Then (X,∆) is a log canonical Fano threefold.

Note that −(KX + ∆) ∼ D0.

(5) We put W = b∆c = ∆ and KW + ∆W = (KX + ∆)|W . Then (W,∆W ) is a

two-dimensional log Fano pair with only semi-log canonical singularities. Note

that W is Cohen–Macaulay since W is Q-Cartier.

This W shows that the number of irreducible components of log Fano pairs with

only semi-log canonical singularities is not bounded.

We recommend that readers who can read Japanese look at [F7] for some

related topics and open problems on singular Fano varieties.
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§6. Simple connectedness of log canonical log Fano pairs

In this section, we prove that a log Fano pair with only log canonical singularities is

always simply connected. Theorem 6.1 is Fujita’s answer to the author’s question.

Theorem 6.1 (Fujita). Let (X,∆) be a projective log canonical pair such that

−(KX + ∆) is ample. Then X is simply connected.

Proof. First of all, we may assume that X is connected. Without loss of generality,

we may assume that ∆ is a Q-divisor by perturbing ∆ slightly. Then, by [HM,

Corollary 1.3(2)], X is rationally chain connected. Since X is normal and rationally

chain connected, π1(X) is finite (see [K1, Theorem 4.13]). Let f : X̃ → X be the

universal cover of X. Since π1(X) is finite, f is finite and étale. It is obvious that

(X̃, ∆̃) is log canonical and −(KX̃ + ∆̃) is ample, where KX̃ + ∆̃ = f∗(KX + ∆).

By [F4, Theorem 8.1], we have Hi(X,OX) = Hi(X̃,OX̃) = 0 for every i > 0. This

implies χ(X,OX) = χ(X̃,OX̃) = 1. On the other hand, by the Riemann–Roch

formula, χ(X̃,OX̃) = deg f · χ(X,OX) holds (see [Ft, Example 18.3.9]). Thus we

obtain deg f = 1. Therefore, X is simply connected.

Remark 6.2. By [HM, Corollary 1.3(2)], we can easily see that a log Fano pair

with only semi-log canonical singularities is rationally chain connected. How-

ever, [K1, Theorem 4.13] does not always hold for nonnormal rationally chain

connected varieties. Note that a nodal rational curve C is rationally chain con-

nected such that π1(C) is infinite. Therefore, the proof of Theorem 6.1 does not

work for log Fano pairs with only semi-log canonical singularities.

The following well-known example shows some subtleties on log Fano pairs

with only log canonical singularities. Example 6.3 says that Theorem 6.1 does not

always hold when −(KX + ∆) is only nef and big.

Example 6.3. Let C ⊂ P2 be a smooth cubic curve and let X ⊂ P3 be the cone

over C ⊂ P2. Then X is a Gorenstein log canonical surface such that −KX is

ample. It is easy to see that X is rationally chain connected and that π1(X) = {1}
by Theorem 6.1. Let f : Y → X be the blow-up at P , where P is the vertex of

X. Then KY +E = f∗KX . The pair (Y,E) is purely log terminal and −(KY +E)

is big and semiample. Note that the exceptional curve E is isomorphic to C and

that Y is a P1-bundle over C. Therefore, it is easy to see that Y is not rationally

chain connected and π1(Y ) 6= {1}.

Example 6.4 is a nontrivial example of irreducible nonnormal semi-log canon-

ical Fano varieties.
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Example 6.4. We put X = (x2w− zy2 = 0) ⊂ P3. Then X is a Gorenstein Fano

variety with only semi-log canonical singularities. Note that X is irreducible and

nonnormal. By using the van Kampen theorem, we see that π1(X) = {1}.

Appendix A. Ambro’s original definition

In this section, we prove that our definition of quasi-log schemes (Definition 3.2)

is equivalent to Ambro’s original definition in [A].

First, let us recall the definition of normal crossing pairs. We need it for

Ambro’s original definition of quasi-log schemes in [A].

Definition A.1 (Normal crossing pairs). A variety X has normal crossing singu-

larities if, for every closed point x ∈ X,

ÔX,x '
C[[x0, . . . , xN ]]

(x0 · · ·xk)
,

for some 0 ≤ k ≤ N , where N = dimX. Let X be a normal crossing variety. We

say that a reduced divisor D on X is normal crossing if, in the above notation, we

have

ÔD,x '
C[[x0, . . . , xN ]]

(x0 · · ·xk, xi1 · · ·xil)
,

for some {i1, . . . , il} ⊂ {k+1, . . . , N}. A stratum of X is an irreducible component

of X or the ν-image of a log canonical center of (Xν ,Ξ), where ν : Xν → X is

the normalization and KXν + Ξ = ν∗KX , that is, Ξ is the inverse image of the

singular locus of X. A permissible Cartier divisor on X is a Cartier divisor on X

whose support contains no strata of X. A permissible R-Cartier divisor is a finite

R-linear combination of permissible Cartier divisors on X. We say that the pair

(X,B) is a normal crossing pair if the following conditions are satisfied:

(1) X is a normal crossing variety;

(2) B is a permissible R-Cartier divisor whose support is normal crossing on X.

We say that a normal crossing pair (X,B) is embedded if there exists a closed

embedding ι : X →M , where M is a smooth variety of dimension dimX + 1. We

call M the ambient space of (X,B). We put

KXν + Θ = ν∗(KX +B),

where ν : Xν → X is the normalization of X, that is, Θ is the sum of the inverse

images of B and the singular locus of X. A stratum of (X,B) is an irreducible

component of X or the ν-image of some log canonical center of (Xν ,Θ) on X.
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It is obvious that a simple normal crossing pair in Definition 2.4 is a normal

crossing pair in Definition A.1. Note that the differences between normal crossing

varieties and simple normal crossing varieties sometimes cause some subtle trouble.

For the details, see, for example, [F1, 3.6 Whitney umbrella].

Let us recall Ambro’s original definition of quasi-log schemes in [A].

Definition A.2 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed

with an R-Cartier divisor (or R-line bundle) ω, a proper closed subscheme X−∞ ⊂
X and a finite collection {C} of reduced and irreducible subschemes of X such that

there is a proper morphism f : (Y,BY ) → X from an embedded normal crossing

pair satisfying the following properties:

(1) f∗ω ∼R KY +BY .

(2) The natural map OX → f∗OY (d−(B<1
Y )e) induces an isomorphism

IX−∞
'−→ f∗OY (d−(B<1

Y )e − bB>1
Y c),

where IX−∞ is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the images of (Y,BY )-strata

that are not included in X−∞.

In Definition 3.2, we assume that (Y,BY ) is a globally embedded simple normal

crossing pair. On the other hand, in Definition A.2, we assume only that (Y,BY )

is an embedded normal crossing pair.

Remark A.3 (Schemes versus varieties). A quasi-log scheme is called a quasi-log

variety in [A]. However, X is not always reduced when X−∞ 6= ∅. Note that X is

reduced when X−∞ = ∅.

Example A.4 ([A, Examples 4.3.4]). Let X be an effective Cartier divisor on a

smooth variety M such that SuppX is a simple normal crossing divisor. Assume

that Y , the reduced part of X, is nonempty. We put ω = (KM+X)|X . Let X−∞ be

the union of the nonreduced components of X. We put KY +BY = (KM +X)|Y .

Let f : Y → X be the closed embedding. Then
(
X,ω, f : (Y,BY )→ X

)
is a quasi-

log scheme. Note that X has nonreduced irreducible components if X−∞ 6= ∅. We

also note that f is not surjective if X−∞ 6= ∅.

Lemma A.5 is essentially the same as Ambro’s embedded log transformations

in [A].

Lemma A.5. Let (Y,BY ) be an embedded normal crossing pair and let M be

the ambient space of (Y,BY ). Then there are a projective surjective morphism
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σ : M ′ → M from a smooth variety M ′ such that σ is a composition of blow-ups

and a simple normal crossing pair (Z,BZ) embedded into M ′ with the following

properties:

(i) σ : Z → Y is surjective and KZ +BZ = σ∗(KY +BY ).

(ii) σ∗OZ(d−(B<1
Z )e − bB>1

Z c) ' OY (d−(B<1
Y )e − bB>1

Y c).
(iii) Let C ′ be a stratum of (Z,BZ). Then σ(C ′) is a stratum of (Y,BY ) or is con-

tained in SuppB>1
Y . Let C be a stratum of (Y,BY ). Then there is a stratum

C ′ of (Z,BZ) such that σ(C ′) = C.

Proof. First, we can construct a sequence of blow-ups Mk →Mk−1 → · · · →M0 =

M with the following properties:

(a) σi+1 : Mi+1 →Mi is the blow-up along a smooth stratum of Yi for every i.

(b) We put Y0 = Y , BY0
= BY and Yi+1 = σ−1i+1(Yi) with the reduced scheme

structure.

(c) Yk is a simple normal crossing divisor on Mk.

We can check that KYi+1
= σ∗i+1KYi for every i by construction. We can directly

check that R1σi+1∗OMi+1
(−Yi+1) = 0 and σi+1∗OMi+1

(−Yi+1) ' OMi
(−Yi) for

every i. Therefore, by the diagram

0 // OMi(−Yi) //

'
��

OMi
//

'
��

OYi

��

// 0

0 // σi+1∗OMi+1
(−Yi+1) // σi+1∗OMi+1

// σi+1∗OYi+1
// 0,

we obtain σi+1∗OYi+1 ' OYi for every i. We put BYi+1 = σ∗i+1BYi for every i.

Then, by replacing (Y,BY ) and M with (Yk, BYk) and Mk, we may assume that

Y is a simple normal crossing divisor on M .

Next, we can construct a sequence of blow-ups Mk →Mk−1 → · · · →M0 = M

with the following properties:

(1) σi+1 : Mi+1 → Mi is the blow-up along a smooth stratum of (Yi,SuppBYi)

contained in SuppBYi for every i.

(2) We put Y0 = Y and BY0
= BY . Let Yi+1 be the strict transform of Yi on Mi+1

for every i.

(3) We put KYi+1
+BYi+1

= σ∗i+1(KYi +BYi) for every i.

(4) SuppBYk is a simple normal crossing divisor on Yk.

Finally, by construction, we can check the properties (i), (ii) and (iii) for

σ : Mk → M and (Yk, BYk) by an easy calculation of discrepancy coefficients

similar to the proof of Proposition 4.1.
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Proposition A.6. Assume that (Y,BY ) is an embedded simple normal crossing

pair in Definition A.2. Let M be the ambient space of (Y,BY ). Then, by taking

some sequence of blow-ups of M , we may further assume that (Y,BY ) is a globally

embedded simple normal crossing pair in Definition A.2.

Proof. It is sufficient to apply Lemmas 4.4 and 4.5 by putting V = M . If BY =

B≤1Y , then this proposition is nothing but [F6, Lemma 3.3].

Therefore, by Lemma A.5 and Proposition A.6, Definition 3.2 is equivalent to

Ambro’s original definition of quasi-log schemes: Definition A.2.

Theorem A.7. Definition 3.2 is equivalent to Definition A.2.
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