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Non-Cocycle-Conjugate E0-Semigroups on Factors

by

Oliver T. Margetts and R. Srinivasan

Abstract

We investigate E0-semigroups on general factors that are not necessarily of type I or
II1. We show that several families on the hyperfinite II∞ factor, which arise as tensor
products, consist of mutually non-cocycle-conjugate E0-semigroups. Using CCR repre-
sentations associated with quasi-free states, we exhibit, for the first time, uncountable
families consisting of mutually non-cocycle-conjugate E0-semigroups on all type IIIλ fac-
tors, for λ ∈ (0, 1]. They are not cocycle conjugate to the E0-semigroups constructed
using CAR representations.
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§1. Introduction

An E0-semigroup is a semigroup of normal unital ∗-endomorphisms on a von Neu-

mann algebra that is also σ-weakly continuous. They arise naturally in the study of

open quantum systems, the theory of interactions, algebraic quantum field theory

and quantum stochastic calculus. The study of E0-semigroups lead to the study of

interesting objects like product systems, super-product systems and C∗-semiflows

as its associated invariants.

For E0-semigroups on type I factors, the subject has grown rapidly since its

inception in [PW]. We refer to the monograph [Arv] for an extensive treatment

regarding the theory of E0-semigroups on type I factors. Arveson showed that E0-

semigroups on type I factors are completely classified, up to an identification called
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cocycle conjugacy, by continuous tensor products of Hilbert spaces called product

systems. This gives a rough division of E0-semigroups into three types, namely I,

II and III. The type I E0-semigroups on type I factors are cocycle conjugate to

the CCR flows ([Arv]), but there are uncountably many E0-semigroups of types II

and III ([PWIII, BhS, Ts1, IS1, IS2, Li]) on type I factors.

There has been relatively little progress regarding the study of E0-semigroups

on type II1 factors since it was initiated in the 1988 paper [PW]. In [Ale], Alevras

introduced an index using Powers’ boundary representation ([PW]), and computed

the index for several important cases. Still, this did not classify even the simplest

examples of E0-semigroups on the hyperfinite II1 factor called Clifford flows, since

it has yet been not proved that the Powers–Alevras index is a cocycle-conjugacy

invariant. The problem of proving non-cocycle-conjugacy for Clifford flows was

solved in [MaS], in an indirect way.

In [MaS], four new cocycle-conjugacy invariants for E0-semigroups on II1 fac-

tors, namely a coupling index, a dimension for the gauge group, a super-product

system and a C∗-semiflow, were introduced and computed for standard examples.

Using the C∗-semiflows and the boundary representation of Powers and Alevras,

it was shown that the families of Clifford flows and even Clifford flows contain

mutually non-cocycle-conjugate E0-semigroups.

On the other hand, there has been almost no work done regarding E0-semi-

groups on type II∞ factors and type III factors. In this paper, for the first time

we produce uncountable families containing mutually non-cocycle-conjugate E0-

semigroups on the hyperfinite type II∞ factor and on all type IIIλ factors for

λ ∈ (0, 1].

This paper is structured as follows. In Section 2 we fix our notation and give

the basic definitions of E0-semigroups and the notions of cocycle conjugacy, units

and the gauge group. We associate a dual E0-semigroup to any E0-semigroup

“acting standardly” and show that it is well defined up to cocycle conjugacy.

Using this we define the notion of multiunits. Finally we recall the definitions of

important families of E0-semigroups, namely CCR flows, generalized CCR flows,

Toeplitz CAR flows on type I factors, and Clifford flows, even Clifford flows on the

hyperfinite II1 factor and some important results regarding these families.

In Section 3, we associate a super-product system to E0-semigroups on general

factors, which was initially defined for E0-semigroups on type II1 factors, and

show that this association is invariant under cocycle conjugacy. Then we define

the coupling index and clarify its relationship to the Powers–Arveson index for

E0-semigroups on type I factors. We also prove that the super-product system

of tensor products of E0-semigroups is the tensor product of the super-product

systems of the corresponding E0-semigroups.
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In Section 4, we produce E0-semigroups on type II∞ factors by tensoring E0-

semigroups on type I factors with E0-semigroups on type II1 factors, and study the

problem of non-cocycle-conjugacy. We prove that the tensor product of a CCR flow

of index m with a Clifford flow (or with an even Clifford flow) of index n is cocycle

conjugate to another such tensor product of a CCR flow of index p with a Clifford

flow (or with an even Clifford flow) of index q if and only if (m,n) = (p, q). Then

we produce uncountable families of non-cocycle-conjugate E0-semigroups on type

II∞ factors by fixing either a Clifford flow or an even Clifford flow on hyperfinite

II1 factors and tensoring with many families containing mutually non-cocycle-

conjugate type III E0-semigroups on type I∞ factors.

In Section 5, we analyze E0-semigroups on type III factors, constructed using

CCR representations associated with a quasi-free state corresponding to a complex

linear positive operator A ≥ 1, such that A − 1 is injective. Since they are given

by a Toeplitz operator, we call them Toeplitz CCR flows on type III factors. We

show that these Toeplitz CCR flows are “equimodular” (as defined in [BISS]) with

respect to the invariant vacuum state if and only if the quasi-free state is given by

an operator of the form A = 1⊗R on L2(0,∞)⊗ k. In this simplest case, we call

these Toeplitz CCR flows just CCR flows on type III factors given by R. We prove

that these CCR flows are canonically extendable (which was defined as extendable

in [BISS]), and they canonically extend to CCR flows (on type I factors) of index

equal to twice the rank of R. From this it follows that CCR flows associated with

operators of the form A = 1 ⊗ R, with R having different ranks, are not cocycle

conjugate.

In Section 6, we further analyze the CCR flows given by positive operators

of fixed rank. We prove that two such CCR flows are cocycle conjugate if and

only if they are unitarily equivalent. This, in consequence, produces uncountably

many mutually non-cocycle-conjugate E0-semigroups on all type IIIλ factors for

λ ∈ (0, 1].

E0-semigroups can also be constructed on type III factors using CAR repre-

sentations. But they are not canonically extendable. Since canonical extendability

is a property invariant under cocycle conjugacy, it follows that none of the CAR

flows are cocycle conjugate to the canonically extendable CCR flows on type III

factors.

§2. Preliminaries

Notation. The set of all natural numbers is denoted by N, and we set N0 = N∪{0}
and N = N∪{∞}. For any real Hilbert space G, we denote the complexification of

G by GC. Throughout this paper, we use the symbol k to denote a separable real
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Hilbert space with dim(k) ∈ N, except in Sections 5 and 6. In Sections 5 and 6, k

is a complex Hilbert space, as mentioned there. For any measurable subset S ⊆ R,

L2(S, k) is the Hilbert space of square integrable functions on S taking values in k.

All our Hilbert spaces are separable. For a complex Hilbert space H, by H we

denote the dual space antiisomorphic to H. The inner product is always conjugate

linear in the first variable and linear in the second variable. For S ⊂ H a subset

of vectors, we shall write [S] for the norm-closed subspace of H spanned by S.

All our von Neumann algebras act on separable Hilbert spaces. For von Neu-

mann algebras M and N, M ∨ N denotes the von Neumann algebra generated by

M and N. For von Neumann algebras M1,M2,N1,N2 the following relations hold:

(M1 ⊗N1) ∨ (M2 ⊗N2) = (M1 ∨M2)⊗ (N1 ∨N2) ,(1)

(M1 ⊗N1) ∩ (M2 ⊗N2) = (M1 ∩M2)⊗ (N1 ∩N2) .(2)

§2.1. E0-semigroups and dual E0-semigroups

Definition 2.1. An E0-semigroup on a von Neumann algebra M is a semigroup

{αt : t ≥ 0} of normal, unital *-endomorphisms of M satisfying

(i) α0 = id;

(ii) αt(M) 6= M for all t > 0;

(iii) t 7→ ρ(αt(x)) is continuous for all x ∈ M, ρ ∈ M∗.

Definition 2.2. A cocycle for an E0-semigroup α on M is a strongly continuous

family of unitaries {Ut : t ≥ 0} ⊆ M satisfying Usαs(Ut) = Us+t for all s, t ≥ 0.

For a cocycle {Ut : t ≥ 0}, we automatically have U0 = 1. Furthermore, the

family of endomorphisms αUt (x) := Utαt(x)U∗t defines an E0-semigroup. This leads

to the following equivalence relations on E0-semigroups.

Definition 2.3. Let α and β be E0-semigroups on von Neumann algebras M

and N. Then

(i) α and β are conjugate if there exists a *-isomorphism θ : M → N such that

βt = θ ◦ αt ◦ θ−1 for all t ≥ 0;

(ii) α and β are cocycle conjugate if there exists a cocycle {Ut : t ≥ 0} for α such

that β is conjugate to αU .

Two E0-semigroups α and β, acting on M ⊆ B(H1) and N ⊆ B(H2) respec-

tively, are said to be spatially conjugate if there exists a unitary U : H1 7→ H2

satisfying

(i) UMU∗ = N;
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(ii) βt(x) = Uαt(U
∗xU)U∗ for all t ≥ 0, x ∈ N.

We say that a von Neumann algebra M is in standard form if M ⊆ B(H) has

a cyclic and separating vector Ω ∈ H. By picking a faithful normal state, it is easy

to verify that every E0-semigroup α is conjugate to an E0-semigroup β on a von

Neumann algebra N in standard form, which is uniquely determined up to spatial

conjugacy. So we assume, without loss of generality, that all our E0-semigroups

are acting on a von Neumann algebra in standard form.

Theorem 2.4 ([Ar3]). Let M be a von Neumann algebra with cyclic and separat-

ing vectors Ω1 and Ω2. If J1 and J2 are the corresponding modular conjugations,

then the *-automorphism AdJ1J2 |M→ M is inner.

Let α be an E0-semigroup on a factor M with cyclic and separating vector

Ω and let JΩ be the modular conjugation associated to the vector Ω by Tomita–

Takesaki theory. Define a complementary E0-semigroup on M′ by setting

α′t(x
′) = JΩαt(JΩx

′JΩ)JΩ (x′ ∈ M′).

The following proposition asserts that the cocycle-conjugacy class of α′ does

not depend on Ω. We call α′, which is determined uniquely up to cocycle conjugacy,

the dual E0-semigroup.

Proposition 2.5. Let M and N be von Neumann algebras acting standardly with

respective cyclic and separating vectors Ω1 ∈ H1 and Ω2 ∈ H2. If the E0-semigroups

α on M and β on N are cocycle conjugate, then α′ and β′, defined with respect to

Ω1 and Ω2, are cocycle conjugate. Moreover, if α and β are conjugate, then α′ and

β′ are spatially conjugate and the implementing unitary can be chosen so that it

also intertwines α and β.

Proof. If α is conjugate to β, let U : H1 → H2 be the unitary implementing the

conjugacy and Ωθ ∈ H1 be a cyclic separating vector satisfying UxΩθ = θ(x)Ω2

for all x ∈ M. It is clear that UJΩθ = JΩ2U and hence

β′t(x) = JΩ2
Uαt(U

∗JΩ2
xJΩ2

U)U∗JΩ2
= UJΩθαt(JΩθU

∗xUJΩθ )JΩθU
∗

for all x ∈ N′. It follows from Theorem 2.4 that the *-isomorphism M′ → M′,

x 7→ JΩθJΩ1
xJΩ1

JΩθ is inner, so let V ∈ M′ be the implementing unitary. Then

the right-hand side becomes

UV JΩ1
αt(JΩ1

V ∗U∗xUV JΩ1
)JΩ1

V ∗U∗ = UV α′t((UV )∗xUV )(UV )∗.

So α′ and β′ are spatially conjugate and, since V ∈ M′, for all x ∈ N we also have

UV αt((UV )∗xUV )(UV )∗ = Uαt(U
∗xU)U∗ = βt(x).
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For cocycle conjugacy we may assume M = N, Ω = Ω1 = Ω2 and {Ut : t ≥ 0}
is an α-cocycle such that βt(·) = Utαt(·)U∗t . For t ≥ 0, let Vt = JΩUtJΩ; then

{Vt : t ≥ 0} forms an α′-cocycle and β′t(m
′) = Vtα

′
t(m

′)V ∗t for all m′ ∈ M′.

Definition 2.6. Let α be an E0-semigroup acting standardly on M ⊆ B(H). A

unit for α is a strongly continuous semigroup T = {Tt : t ≥ 0} of operators in

B(H) such that T0 = 1 and Ttx = αt(x)Tt for all t ≥ 0, x ∈ M. Denote the

collection of units by Uα.

Definition 2.7. Let α be an E0-semigroup on the von Neumann algebra M act-

ing standardly on H. A µnit or multiunit for the E0-semigroup α is a strongly

continuous semigroup of bounded operators (Tt)t≥0 in B(H) satisfying

Ttx =

{
αt(x)Tt if x ∈ M,

α′t(x)Tt if x ∈ M′,

together with T0 = 1. Denote the collection of multiunits for α by Uα,α′ . We say

that α is multispatial if it admits a multiunit.

When 〈αt(m)Ω,Ω〉 = 〈mΩ,Ω〉 for all t ≥ 0, m ∈ M, there exists a unit

St, which is the semigroup of isometries determined by StxΩ := αt(x)Ω. We call

{St : t ≥ 0} the canonical Ω-unit associated to α.

An E0-semigroup α on a II1 factor M is automatically multispatial. Indeed,

the canonical unit with respect to the trace is a multiunit for α. On the other

hand, a type III E0-semigroup on a type I factor is not multispatial, which follows

from Example 2.9. In Section 4, we provide examples of E0-semigroups on type II∞
factors that are not multispatial. The following proposition gives a large number

of multispatial examples, of which E0-semigroups on II1 factors are a special case.

Proposition 2.8. Let α be an E0-semigroup acting standardly on a factor M with

cyclic and separating vector Ω, and ϕ be the faithful normal state associated with

Ω. Then the following are equivalent:

(i) ϕ is an invariant state for (M, α), and the corresponding canonical unit

(St)t≥0 is a multiunit.

(ii) ϕ is an invariant state for (M, α), and for all t ≥ 0, the canonical unit (St)t≥0

and modular conjugation J , with respect to Ω, satisfy St = JStJ .

(iii) For all t ≥ 0, s ∈ R the modular group (σs)s∈R satisfies αt = σΩ
−s ◦ αt ◦ σΩ

s .
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Proof.

(i)⇒(ii). For all m′ ∈ M′, t ≥ 0, we have

Stm
′Ω = α′t(m

′)Ω = Jαt(Jm
′J)Ω = JStJm

′Ω,

so St = JStJ for all t ≥ 0.

(ii)⇒(i). For all m′ ∈ M′, t ≥ 0, we have

Stm
′ = JStJm

′J2 = Jαt(Jm
′J)StJ = α′t(m

′)St.

(ii)⇒(iii). For all t ≥ 0, m ∈ M,

∆1/2StmΩ = ∆1/2αt(m)Ω = Jαt(m
∗)Ω = JStm

∗Ω = StJm
∗Ω = St∆

1/2mΩ,

so ∆1/2St ⊇ St∆
1/2. Thus σΩ

s ◦ αt(m)Ω = ∆isStmΩ = St∆
ismΩ = αt ◦

σΩ
s (m)Ω. (See, e.g., [Cnw, Section X].)

(iii)⇒(ii). From the commutation relation we see that, for all t ≥ 0, the state

ϕ ◦αt satisfies the KMS condition for σΩ. Thus, by uniqueness, ϕ ◦αt = ϕ for

all t ≥ 0. It also follows from the commutation relation that ∆isSt = St∆
is

for all s ∈ R; thus we can infer that ∆1/2St ⊇ ∆1/2St and, by the *-preserving

property of α, JSt = StJ for all t ≥ 0.

Example 2.9. Let M = B(H) and H be the dual space of H, with an antiiso-

morphism ξ 7→ ξ from H 7→ H. Consider the standard representation π : M →
B(H ⊗H), defined by linear extension of π(X)(ξ ⊗ η) = Xξ ⊗ η, with cyclic and

separating vector Ω =
∑∞
n=1

1
nen ⊗ en, where {en}∞n=1 is an orthonormal basis for

H. Then the corresponding modular conjugation is given by

Jξ ⊗ η = η ⊗ ξ.

If X is an operator on H then let X be the operator on the dual space defined by

Xη = Xη, so J(X ⊗ 1)J = 1⊗X. Let α be an E0-semigroup on M and denote by

β the conjugate semigroup π ◦ α ◦ π−1 on π(M). Then we have

β′t(1⊗X) = J(αt(X)⊗ 1)J = 1⊗ αt(X).

Thus the dual E0-semigroup β′ is conjugate to an E0-semigroup α on B(H) given

by αt(X) = αt(X).

Definition 2.10. A gauge cocycle for α is a cocycle {Ut : t ≥ 0} that satisfies

the locality condition Ut ∈ αt(M)′ ∩ M for all t ≥ 0. Under the multiplication

(UV )t := UtVt, the collection of all gauge cocycles forms a group, denoted by
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G(α), called the gauge group of α. The group G(α) is an invariant of α under

cocycle conjugacy.

Lemma 2.11. Let α be an E0-semigroup on a factor M ⊆ B(H) in standard

form. Then there exists a family of isometries {Ui(t) : i ∈ I} ⊆ B(H) satisfying

αt(x) =
∑
i∈I Ui(t)xUi(t)

∗ for all x ∈ M, in σ-weak topology. When M is a factor

of type II∞ or type III, the indexing set I is a singleton, and otherwise I = N.

Proof. Refer to [Arv, Proposition 2.1.1] when M is a type I factor and to [Ale,

Proposition 3.2] when M is type II1 factor. For any factor M, H can be considered

a left module over M with respect to the identity action and also with x·ξ = αt(x)ξ

for ξ ∈ H, and the αt(M)-dimension of L2(M) is∞. But when M is of type II∞ or

type III, the M-dimension of the standard module is also infinite, and the existence

of a unitary Ut ∈ B(H) satisfying αt(x) = UtxU
∗
t is guaranteed.

Proposition 2.12. Let α and β be two E0-semigroups on factors M1 and M2

respectively. Then there exists a unique E0-semigroup α⊗β on M1⊗M2 satisfying

(αt ⊗ βt)(m1 ⊗m2) = αt(m1)⊗ βt(m2) ∀m1 ∈ M1, m2 ∈ M2, t ≥ 0.

Proof. For each t ≥ 0, let {Ui(t) : i ∈ I} and {Vj(t) : j ∈ J } be the isometries in

Lemma 2.11, implementing α and β respectively. Now the endomorphism αt ⊗ βt
is implemented by the family of isometries {Ui(t)⊗ Vj(t) : i ∈ I, j ∈ J }.

§2.2. Generalized CCR flows

For a complex separable Hilbert space K, let Γs(K) :=
⊕∞

n=0K
∨n be the sym-

metric Fock space over K, i.e., the sum of symmetric tensor powers of K, with

K∨0 = C. Define the exponential vectors ε(u) := ⊕∞n=0(u⊗n/
√
n!) for each u ∈ K,

and the vacuum vector is ε(0). The exponential vectors are linearly independent

and total in Γs(K). The well-known isomorphism between Γs(K1) ⊗ Γs(K2) →
Γs(K1 ⊕K2) is given by the extension of ε(u)⊗ ε(v) 7→ ε(u+ v).

Define the Weyl operator by W0(u)ε(v) := e−‖u‖
2/2−〈u,v〉ε(u+v) for u, v ∈ K,

which extends to a unitary operator on Γs(K). Then {W0(u) : u ∈ K} satisfies

the well-known Weyl commutation relations

W0(u)W0(v) = e−i Im〈u,v〉W0(u+ v) ∀u, v ∈ K.

For a unitary operator U between K1 and K2, define the second quantization Γ(U)

by Γ(U)(ε(u)) = ε(Uu) for u ∈ K, which extends to a unitary operator between

Γs(K1) and Γs(K2). We can also define the second quantization for antiunitaries

in the same way, but extending antilinearly.
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Let k be a real Hilbert space. Let K = L2((0,∞), kC) denote square integrable

functions taking values in kC. Throughout this paper we denote by (Tt)t≥0 the right

shift semigroup on L2((0,∞), kC) (or its restriction to L2((0,∞), k)) defined by

(Ttf)(s) =

{
0, s < t,

f(s− t), s ≥ t,

for f ∈ K. The CCR flow of index dim k is the E0-semigroup θ = {θt : t ≥ 0}
acting on B(Γs(L

2((0,∞), kC))) defined by the extension of

θt(W0(f)) := W0(Stf), f ∈ L2((0,∞), kC).

The CCR flow of index n is cocycle conjugate to the CCR flow of index m if and

only if m = n (see [Arv, Corollary 2.6.10]).

Generalized CCR flows are defined in [IS1] as follows. Let {T 1
t } and {T 2

t }
be two C0-semigroups acting on a real Hilbert space G. We say that {T 1

t } is a

perturbation of {T 2
t } if the following conditions are satisfied:

(i) T 1
t
∗
T 2
t = 1.

(ii) T 1
t − T 2

t is a Hilbert Schmidt operator.

Given a perturbation {T 1
t } of {T 2

t }, there exists a unique E0-semigroup θ =

{θt : t ≥ 0} on B(Γs(G
C)) defined and extended by

αt(W0(x+ iy)) = W0(T 1
t x+ iT 2

t y), x, y ∈ G.

Also, θ is called the generalized CCR flow associated with the pair ({T 1
t }, {T 2

t }).

§2.3. Toeplitz CAR flows

Let K be a complex Hilbert space. We denote by A(K) the CAR algebra over K,

which is the universal C∗-algebra generated by {a(x) : x ∈ K}, where x 7→ a(x) is

an antilinear map satisfying the CAR relations

a(x)a(y) + a(y)a(x) = 0,

a(x)a(y)∗ + a(y)∗a(x) = 〈x, y〉1,

for all x, y ∈ K. Since A(K) is known to be simple, any set of operators satisfying

the CAR relations generates a C∗-algebra canonically isomorphic to A(K). The

quasi-free state ωA on A(K), associated with a positive contraction A ∈ B(K), is

the state determined by its 2n-point function as

ωA
(
a(xn) · · · a(x1)a(y1)∗ · · · a(ym)∗

)
= δn,m det(〈xi, Ayj〉),
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where det(·) denotes the determinant of a matrix (see [Arv, Chapter 13]). Given

a positive contraction, it is a fact that such a state always exists and is uniquely

determined by the above relation. We denote by (HA, πA,ΩA) the GNS triple

associated with a quasi-free state ωA on A(K), and set MA := πA(A(K))′′.

Now let K = L2((0,∞), kC). An operator X ∈ B(L2((0,∞), kC)) is said to

be Toeplitz if T ∗t XTt = X for all t ≥ 0. Let A ∈ B(K) be a positive Toeplitz

contraction satisfying Tr(A − A2) < ∞. Then MA is a type I factor and there

exists a unique E0-semigroup θ = {θt : t ≥ 0} on MA, determined by

θt(πA(a(f))) = πA(a(Ttf)) ∀ f ∈ K.

We call θ the Toeplitz CAR flow associated with A (see [Arv, Chapter 13] and

also [IS2]).

§2.4. Clifford flows, even Clifford flows

Next we recall some examples of E0-semigroups on hyperfinite type II1 factors

(see [PW, Ale, MaS] for discussions on these examples). For a real Hilbert space

K, let Γa(KC) :=
⊕∞

n=0 (KC)∧n be the antisymmetric Fock space over KC, i.e.,

the sum of antisymmetric tensor powers of K. For any f ∈ KC, the fermionic

creation operator a∗(f) is the bounded operator defined by the linear extension of

a∗(f)ξ =

{
f if ξ = Ω,

f ∧ ξ if ξ ⊥ Ω,

where Ω is the vacuum vector (1 in the 0-particle space C), and f ∧ ξ is the

antisymmetric tensor product. The annihilation operator is defined by a(f) =

a∗(f)∗. The unital C∗-algebra Cl(K) generated by the self-adjoint elements

{u(f) = (a(f) + a∗(f))/
√

2 : f ∈ K}

is the Clifford algebra over K. The vacuum Ω is cyclic and defines a tracial state

for Cl(K), so the weak completion yields a II1 factor; in fact it is the hyperfinite

II1 factor R.

Now if K = L2((0,∞), k), where k is a separable real Hilbert space with

dimension n ∈ N as mentioned before, then there exists a unique E0-semigroup on

R, defined by the extension of

αnt (u(f1) · · ·u(fk)) = u(Ttf1) · · ·u(Ttfk), f1 · · · fk ∈ K,

called the Clifford flow of rank n. The von Neumann algebra generated by the

even products,

Re = {u(f1)u(f2) · · ·u(f2n) : fi ∈ L2((0,∞), k), n ∈ N},
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is also isomorphic to the hyperfinite II1 factor. The restriction of the Clifford flow

αn of rank n to this subfactor is called the even Clifford flow of rank n.

Let α be an E0-semigroup on a II1 factor. For each t ≥ 0 let Aα(t) := αt(M)′∩
M. These algebras form an increasing filtration. Define the inductive limit C∗-

algebraAα :=
⋃
t≥0Aα(t)

‖·‖
, together with a semigroup of *-endomorphisms α|Aα .

This is called the C∗-semiflow corresponding to α. Since this is a subalgebra of

M, there is a canonical trace on Aα that we denote by τα. Two cocycle-conjugate

E0-semigroups have isomorphic (in the obvious sense of the word) τ -semiflows

(see [MaS, Section 9]). We will be using the following fact in Section 4. See [MaS,

Theorem 9.6] for details of the proof.

Proposition 2.13. Any two Clifford flows (or even Clifford flows) are cocycle

conjugate if and only if they are conjugate if and only if they have isomorphic

τ -semiflows if and only if they have the same rank.

§3. Super-product systems and coupling index

An E0-semigroup α on B(H) is completely determined by the invariant (Arveson)

product system, defined by Eαt = {X ∈ B(H) : XT = αt(T )X ∀T ∈ B(H)}. A

super-product system, of an E0-semigroup on a general factor, is a generalization

of Arveson’s product system. However, for the class of non–type I factors, a super-

product system is not a complete invariant, as shown in Section 5 for the case of

type III factors.

Definition 3.1. A super-product system of Hilbert spaces is a one-parameter

family of separable Hilbert spaces {Ht : t > 0}, together with isometries

Us,t : Hs ⊗Ht 7→ Hs+t for s, t ∈ (0,∞),

satisfying the following two axioms of associativity and measurability:

(i) Associativity. For any s1, s2, s3 ∈ (0,∞),

Us1,s2+s3(1Hs1 ⊗ Us2,s3) = Us1+s2,s3(Us1,s2 ⊗ 1Hs3 ).

(ii) Measurability. The space H = {(t, ξt) : t ∈ (0,∞), ξt ∈ Ht} is equipped with

the structure of a standard Borel space that is compatible with the projection

p : H 7→ (0,∞) given by p((t, ξt) = t, tensor products and the inner products

(see [Arv, Remark 3.1.2]).

A super-product system is an (Arveson) product system if the isometries Us,t
are unitaries and further, the axiom of local triviality is satisfied, i.e., there exists
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a single separable Hilbert space H satisfying H ∼= (0,∞) ×H as measure spaces

(see [Arv, Remark 3.1.2]).

Proposition 3.2. Let M ⊂ B(H) be a factor acting standardly with cyclic and

separating vector Ω and α an E0-semigroup on M. For each t > 0, let

Hα
t = {X ∈ B(H) : ∀m∈MXm = αt(m)X, ∀m′∈M′ Xm

′ = α′t(m
′)X};

then Hα = {Hα
t : t > 0} is a concrete super-product system with respect to the

family of isometries Us,t (X ⊗ Y ) = XY .

Proof. It is routine to verify that X∗Y ∈ (M ∪M′)′ = C1 for any X, Y ∈ Hα
t .

Clearly each Hα
t is closed under the operator norm, and this coincides with the

norm induced by the inner product 〈X,Y 〉1 := X∗Y , hence each Hα
t is a Hilbert

space with respect to this inner product. It is straightforward to check for X ∈ Hα
s ,

Y ∈ Hα
t that XY ∈ Hα

s+t and that the map Us,t(X ⊗ Y ) = XY is an isometry.

The measurability axiom can be proved in an exactly similar manner as in the

case of product systems, as given in [Arv, Theorem 2.4.7, page 37].

Definition 3.3. By an isomorphism between super-product systems (H1
t , U

1
s,t)

and (H2
t , U

2
s,t) we mean an isomorphism of Borel spaces V : H1 7→ H2 whose

restriction to each fiber provides a unitary operator Vt : H1
t 7→ H2

t satisfying

Vs+tU
1
s,t = U2

s,t(Vs ⊗ Vt).

A priori, the super-product system appears to depend upon the chosen state

Ω. The following theorem shows that the isomorphism class does not depend on Ω.

Theorem 3.4. Let α and β be E0-semigroups acting standardly on respective fac-

tors M and N with cyclic and separating vectors Ω1 and Ω2. If α and β are cocycle

conjugate then the associated respective product systems Hα,Ω1 and Hβ,Ω2 are iso-

morphic.

Proof. First we show that for any two cyclic and separating vectors Ω1, Ω2, that

Hα,Ω1 and Hα,Ω2 are isomorphic. By Theorem 2.4 there exists a unitary V ∈
M′ such that JΩ1JΩ2m

′JΩ2JΩ1 = V m′V ∗ for any m′ ∈ M′. We claim the maps

Hα
t 3 X 7→ V XV ∗ give the required isomorphism. Indeed, V XV ∗ is clearly an

intertwiner for α, and

V XV ∗m′ = V X(V ∗m′V )V ∗ = V JΩ1
αt(JΩ1

V ∗m′V JΩ1
)JΩ1

XV ∗

= JΩ2αt(JΩ2m
′JΩ2)JΩ2V XV

∗.

It is a direct verification to check that this also provides an isomorphism of super-

product systems.
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Next, if α and β are conjugate then, letting U be the unitary implementing

the conjugacy, we get an isomorphism AdJΩUJΩU : Hα,Ω
t → Hβ,UΩ

t . Last, if β

is a cocycle perturbation of α by the cocycle (Ut)t≥0, then left multiplication by

JΩUtJΩUt gives the required family of unitaries Hα,Ω
t → Hβ,Ω

t .

We will thus talk freely of the (abstract) super-product system {Hα
t , Us,t} for

α. The multiunits associated with an E0-semigroup α are precisely the units in the

associated super-product system, i.e., measurable sections {ut : ut ∈ Hα
t , t ≥ 0}

satisfying us+t = Us,t(us ⊗ ut). Thus, for a multispatial E0-semigroup α, we can

define a covariance function c : Uα,α′ × Uα,α′ → C by X∗t Yt = ec(X,Y )t1 for all

t ∈ R+. Since the covariance function is conditionally positive definite (see [Arv,

Proposition 2.5.2]) the assignment 〈f, g〉 7→
∑
X,Y ∈Uα,α′

c(X,Y )f(X)g(Y ) defines

a positive semidefinite form on the space of finitely supported functions f : Uα,α′ →
C satisfying

∑
X∈Uα,α′

f(X) = 0. Hence, if this space is nonempty, we may quotient

and complete to obtain a Hilbert space H(Uα,α′).
Let α and β be cocycle-conjugate E0-semigroups on respective factors M and

N acting standardly. Then there is a bijection Uα,α′ → Uβ,β′ that preserves the

covariance function. In particular, if one E0-semigroup is multispatial, then so is

the other, and we have H(Uα,α′) ∼= H(Uβ,β′).

Definition 3.5. For a multispatial E0-semigroup α, define the coupling index

Indc(α) as the cardinal dimH(Uα,α′).

Every pair (Xα, Xβ) ∈ Uα,α′ ×Uβ,β′ gives a multiunit Xα⊗Xβ for α⊗β. As

(Xα
t ⊗X

β
t )∗(Yt

α ⊗ Y βt ) = e(c(Xα,Y α)+c(Xβ ,Y β))t1,

there exists an isometry H(Uϕα,α′)⊕H(Uψβ,β′) ↪→ H(Uϕ⊗ψα⊗β,(α⊗β)′) (see [Arv, Lemma

3.7.5]). So we have Indc(α⊗β) ≥ Indc(α) + Indc(β). We do not know whether the

equality holds.

Remark 3.6. Let α be an E0-semigroup on a factor M ⊆ B(H) in standard form.

If there exists an E0-semigroup σ on B(H) satisfying

σt(x) =

{
αt(x) if x ∈ M,

α′t(x) if x ∈ M′,
∀ t ≥ 0,

then the super-product system of α is the Arveson product system of σ, and

Indc(α) is equal to the Powers–Arveson index of σ. In this case we say α is canoni-

cally extendable. Let β be another E0-semigroup on a factor N ⊆ B(K) in standard

form, which is cocycle conjugate to α. Let U : H 7→ K be unitary and (Ut)t≥0 be
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a unitary cocycle for α satisfying βt = AdUAdUtαtAdU∗ for all t ≥ 0. By Propo-

sition 2.5 there exists a unitary V : H 7→ K implementing the conjugacy of both

(AdUtαt)t≥0 and β as well as the conjugacy of the respective dual E0-semigroups.

Now

θt = AdV AdUtAdJΩUtJΩ
σtAdV ∗

provides the canonical extension for β. So canonical extendability is a property

that is invariant under cocycle conjugacy, and σ is called the canonical extension.

All E0-semigroups on type I factors are canonically extendable; indeed α⊗ᾱ is

the canonical extension for an E0-semigroup α on B(H), as shown in Example 2.9.

The super-product system of α is Eαt ⊗Ēαt . So by [Arv] α is multispatial if and only

if it is spatial in the sense of Powers–Arveson, in which case Indc(α) = Ind(α⊗α) =

2 Ind(α): its coupling index is twice its Powers–Arveson index.

All of our known examples of E0-semigroups on II1 factors (and type II∞
factors) are not canonically extendable (see [MaS]). It is an open problem to con-

struct a canonically extendable E0-semigroup on a II1 factor. On type III factors

we know examples of both extendable (arising from CCR representations) and

nonextendable (arising from CAR representations) type.

The previous example suggests that a better definition for the coupling index

would be half the dimension of Hα,α′ . However, by historical accident, our first

paper on the coupling index considered only E0-semigroups on type II1 factors.

We will not attempt to redact the original definition, since we do not have any

reason to believe that an arbitrary E0-semigroup must have an even coupling index,

though constructing an example with an odd coupling index is an open problem.

Proposition 3.7. Let α and β be E0-semigroups on factors M1 and M2; then the

super-product system for α⊗ β is the tensor product of the super-product systems

for α and β.

Proof. Assume M1 ⊆ B(H1) and M2 ⊆ B(H2) are in standard form with respec-

tive cyclic and separating vectors Ω1 and Ω2. It is clear that Hα
t ⊗H

β
t ⊆ Hα⊗β

t ;

we prove the other inclusion as follows. Let Ω = Ω1⊗Ω2. Notice that any operator

X ∈ Hα⊗β
t is determined by its value on Ω through the relation

X(m1 ⊗m2)Ω = (αt(m1)⊗ βt(m2))XΩ.

Suppose X ∈ Hα⊗β
t such that X ⊥ Hα

t ⊗ H
β
t ; then X∗ is 0 on Hα

t H1 ⊗ Hβ
t H2.

This implies that the projection of XΩ onto Hα
t H1 ⊗Hβ

t H2 is 0. So it remains to

show that the projection of XΩ onto (Hα
t H1 ⊗Hβ

t H2)⊥ is also 0.



E0-semigroups on factors 313

Before proving this remaining assertion, we claim that there does not exist a

vector ξ ∈ H2 such that

0 6= (1⊗ Pξ)XΩ ∈ (Hα
t H1)⊥ ⊗ Cξ,

where Pξ is the projection onto the one-dimensional subspace spanned by ξ. Sup-

pose there exists such a vector ξ; let Eξ : H1 → H1 ⊗ H2 denote the isometry

η 7→ η⊗ξ, and we write Eξ : H1⊗H2 → H1 for its adjoint. Note that EξE
ξ = 1⊗Pξ.

Define T ∈ B(H1) by T = EξXEΩ2
, so that 0 6= TΩ1 = EξXΩ ∈ (Hα

t H1)⊥ (where

EΩ is also defined similarly). Then, for all m1,m2 ∈ M,

Tm1m2Ω1 = EξX(m1m2 ⊗ 1)Ω = Eξ(αt(m1)⊗ 1)X(m2 ⊗ 1)Ω

= αt(m1)EξX(m2 ⊗ 1)Ω = αt(m1)Tm2Ω1,

so that Tm1 = αt(m1)T and, similarly, Tm′1 = α′t(m
′
1)T for all m′ ∈ M′. Thus

T ∈ Hα
t , contradicting TΩ1 ∈ (Hα

t H1)⊥. Hence the claim is proved. Flipping the

same argument, by switching the role of the first and second tensor components,

we also conclude that there does not exist an η ∈ H1 such that

0 6= (Pη ⊗ 1)XΩ ∈ Cη ⊗ (Hβ
t H2)⊥.

Now assume towards a contradiction that 0 6= XΩ ∈ (Hα
t H1 ⊗Hβ

t H2)⊥, i.e.,

0 6= XΩ ∈
(
(Hα

t H1)⊥ ⊗Hβ
t H2

)
⊕
(
(Hα

t H1)⊥ ⊗ (Hβ
t H2)⊥

)
⊕
(
Hα
t H1 ⊗ (Hβ

t H2)⊥
)
.

There exists a vector ξ ∈ H2 such that 0 6= (1⊗Pξ)XΩ and there exists an η ∈ H1

such that 0 6= (Pη⊗1)XΩ. If ξ ∈ Hβ
t H2, then we have (1⊗Pξ)XΩ ∈ (Hα

t H1)⊥⊗Cξ,
and similarly if η ∈ Hα

t H1, then we have (Pη ⊗ 1)XΩ ∈ Cη ⊗ (Hβ
t H2)⊥. Both are

not possible by the claims in the preceding paragraph. By applying a projection if

needed, we also conclude that η and ξ cannot have nonzero components in Hα
t H1

and Hβ
t H2 respectively. Hence XΩ ∈ ((Hα

t H1)⊥ ⊗ (Hβ
t H2)⊥), which is also not

possible by the same claims.

§4. E0-semigroups on II∞ factors

In this section, by considering tensor products of E0-semigroups on type I∞ factors

with E0-semigroups on type II1 factors, we produce several (both countable and

uncountable) families of mutually non-cocycle-conjugate E0-semigroups on II∞
factors. Let R be the hyperfinite II1 factor, and we always assume R ⊆ L2(R)

with respect to the tracial state. Let R∞ = B(H)⊗R; then R∞ is the hyperfinite

II∞ factor.
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Throughout this section, αn denotes either the Clifford flow or the even Clif-

ford flow of rank n, with n ∈ N, and when n is fixed we simply write α. The

super-product systems of αn are computed in [MaS, Corollary 8.13]. Set

He,n
t = [ξ1 ∧ ξ2 ∧ · · · ∧ ξ2m; ξ1, ξ2, . . . , ξ2m ∈ L2((0, t), kC), m ∈ N0]

for all t ≥ 0, and dim(k) = n ∈ N. We may write just He
t in many instances when

n is fixed. The super-product system of the Clifford flow (which is isomorphic

to the super-product system of the even Clifford flow) of rank n is described by

Hαn

t Ω = He,n
t for all t ≥ 0, where Ω ∈ L2(R) is the vacuum vector. The isometries

Us,t : Hαn

s Ω⊗Hαn

t Ω 7→ Hαn

s+tΩ are given by

Us,t((ξ1 ∧ ξ2 ∧ · · · ∧ ξ2m)⊗ (η1 ∧ η2 ∧ · · · ∧ η2m′))

= ξ1 ∧ ξ2 ∧ · · · ∧ ξ2m ∧ Tsη1 ∧ Tsη2 ∧ · · · ∧ Tsη2m′

where ξ1, ξ2, . . . , ξ2m ∈ L2((0, s), kC), η1, η2, . . . , η2m ∈ L2((0, t), kC).

§4.1. Tensoring with CCR flows

Throughout this subsection, let θm = {θmt : t ≥ 0} denote the CCR flow of index

m ∈ N on B(Hm), where Hm = Γs(L
2(R+, k

C)), dim(k) = m. The (Arveson)

product system of Hilbert spaces associated with θm is the well-known exponential

product system {Hm
t : t ≥ 0} of index m, which is described as follows: Hm

t =

Γs(L
2((0, t), kC)) with dim(k) = m and the unitaries Us,t : Hm

s ⊗Hm
t 7→ Hm

s+t are

the extensions of ε(x)⊗ ε(y) 7→ ε(x+ Tsy).

Theorem 4.1. The E0-semigroup θm ⊗ αn is cocycle conjugate to θp ⊗ αq if and

only if (m,n) = (p, q).

Proof. Step 1. Assume θm ⊗ αn is cocycle conjugate to θp ⊗ αq.

Thanks to Proposition 3.7, the super-product system of θm ⊗ αn is given by

(Hm
t ⊗H

m

t )⊗He,n
t . Notice that the super-product system He,n can be embedded

as a super-product subsystem into the product system corresponding to the CAR

flow (on type I factors) of index n. Since any unit in the super-product subsystem

is also a unit for the bigger product system, it follows from [Arv] for product

systems that units in (Hm
t ⊗H

m

t ) ⊗He,n
t are of the form ut ⊗ vt, with ut a unit

for (Hm
t ⊗ H

m

t )t≥0 and vt a unit for (He,n
t )t≥0. But the super-product system

(He,n
t )t≥0 has the canonical unit as the unique unit up to a scalar (see [MaS,

Section 8]). By comparing the coupling index we get m = p.

Step 2. Take θm = θp = θ, Hm
t = Ht and assume θ ⊗ αn is cocycle conjugate

to θ ⊗ αq.
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Set M ∼= B(H). We assume R∞ = M ⊗ R ⊆ B(H ⊗ H) ⊗ B(L2(R)) is in

standard form, by identifying M with B(H) ⊗ 1, and (without loss of generality)

that both the semigroups act on the same algebra. Suppose that there exists a

θ ⊗ αn-cocycle U in R∞ and a unitary V ∈ B(H ⊗H ⊗ L2(R)) such that

θt ⊗ αpt = AdV Ut ◦ (θt ⊗ αnt ) ◦AdV ∗ ∀ t ≥ 0.

Let (Snt )t≥0, (S
p
t )t≥0 be the canonical units in B(L2(R)) for αn and αp respectively.

Notice that θ and its complementary E0-semigroup θ′ extend to θ⊗θ′ on B(H⊗H),

and the super-product system Ht ⊗ Ht is the product system of Hilbert spaces

associated with θ⊗θ′. The multiunits of θ are just the units in the product system

Ht ⊗Ht.

Let ut ⊗ Snt be a unit for Ht ⊗ Ht ⊗ He,n
t , with ut a unit for Ht ⊗ Ht.

Let J = J1 ⊗ J2, with J1, J2 modular conjugations for M and R with respect

to cyclic and separating vectors Ω1 and Ω2 respectively. Let U ′t = JUtJ . Then

(V U ′tUt(ut ⊗ Snt )V ∗)t≥0 is a unit for (Ht ⊗ Ht ⊗ He,p
t )t≥0, which is of the form

(vt⊗Spt )t≥0, for some unit (vt)t≥0 for Ht⊗Ht. Since the (left) action of (U ′tUt)t≥0

and AdV on the units preserves the covariance function, the map u 7→ v also

preserves the covariance function. So there is an induced automorphism of (U , c)
(see [Arv, Definition 3.74 and Section 3.8]), where U is the collection of units

for Ht ⊗ Ht and c is the corresponding covariance function. As proved in [Arv,

Section 3.8], this automorphism is given by a gauge cocycle of θ⊗θ′; so there exists

a gauge cocycle (Wt)t≥0 of θ ⊗ θ′ satisfying

(3) V U ′tUt(ut ⊗ Snt )V ∗ = Wtut ⊗ Spt ∀ut ∈ U .

It is also clear that

(U ′tUt)
∗V ∗(vt ⊗ Spt )V = W ∗t vt ⊗ Snt ∀ vt ∈ U .

For every choice of units ut1 , . . . , utn in Ht ⊗Ht, with t1, . . . , tn ∈ R+ satisfying

t1 + · · ·+ tn = t, we have

V U ′tUt((ut1 · · ·un)⊗Snt )V ∗ = (V U ′t1Ut1(ut1 ⊗Snt1)V ∗) · · · (V U ′tnUtn(utn ⊗Sntn)V ∗)

= (Wt1ut1 ⊗ S
p
t1) · · · (Wtnutn ⊗ S

p
tn)

= Wtut1 · · ·un ⊗ S
p
t ,

where we have used the properties of (Ut)t≥0 and (Wt)t≥0 being cocycles, (ut)t≥0,

(Snt )t≥0 and (Spt )t≥0 being units and equation (3). Since the product system of a

CCR flow is generated by units (and by a similar argument), we get

(4) V U ′tUt(T ⊗ Snt )V ∗ = WtT ⊗ Spt , (U ′tUt)
∗V ∗(R⊗ Spt )V = W ∗t R⊗ Snt

for all T , R ∈ Ht ⊗Ht.
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Now, for any X ∈ θt(M)′ ∩M, T ∈ Ht ⊗Ht, we have

V Ut(X ⊗ 1)U∗t V
∗(T ⊗ Spt ) = V U ′tUt(X ⊗ 1)(U ′tUt)

∗V ∗(T ⊗ Spt )V V ∗

= V U ′tUt(X ⊗ 1)(W ∗t T ⊗ Snt )V ∗

= V U ′tUt(XW
∗
t T ⊗ Snt )V ∗

= WtXW
∗
t T ⊗ S

p
t ,

where we have used equation (4) and the fact that XW ∗t T ∈ Ht ⊗Ht. It follows

that, for any ξ ∈ H ⊗H and m′ ∈ R′ ∩B(L2(R)),

V Ut(X ⊗ 1)U∗t V
∗(Tξ ⊗m′Ω2) = (1⊗m′)V Ut(X ⊗ 1)U∗t V

∗(Tξ ⊗ Spt Ω2)

= (1⊗m′)(WtXW
∗
t Tξ ⊗ S

p
t Ω2)

= (WtXW
∗
t ⊗ 1)(Tξ ⊗m′Ω2).

Since (Ht ⊗Ht)(H ⊗ H̄) = H ⊗ H̄ and Ω2 is cyclic for M′, we have

(5) AdV Ut(X ⊗ 1) = AdWt
(X)⊗ 1 ∀X ∈ θt(M)′ ∩M.

Since Ut ∈ R∞ and AdV is an automorphism of R∞ it follows a fortiori that

AdWt
(X) ∈ M for all X ∈ θt(M)′ ∩ M. Now, from the explicit description of

gauge cocycles given in [Arv, Section 9.8], it follows that Wt is a product of gauge

cocycles of θ and θ′, and we assume, without loss of generality, that (Wt)t≥0 ⊆ M

is a gauge cocycle of θ.

Now we consider the C∗-semiflows associated with these E0-semigroups. For

i = n, p, let

Cit = ((θt ⊗ αit)(R∞))′ ∩R∞, Ait = αit(R)′ ∩R, t ≥ 0,

Ci =
⋃
t≥0

(((θt ⊗ αit)(R∞))′ ∩R∞)
‖·‖
, Ai =

⋃
t≥0

(αit(R)′ ∩R)
‖·‖
.

The inductive limit φ of the maps φt := AdV Ut |Cnt → C
p
t provides an isomorphism

between Cn and Cp intertwining the C∗-semiflows.

By equation (5), we have

Ad(W∗t ⊗1)V Ut(1⊗ Y )(X ⊗ 1) = (W ∗t ⊗ 1)V Ut(1⊗ Y )(X ⊗ 1)U∗t V
∗(Wt ⊗ 1)

= (X ⊗ 1)Ad(W∗t ⊗1)V Ut(1⊗ Y )

for all X ∈ θt(M)′ ∩M and Y ∈ R. Hence, for all Y ∈ Ant ,

Ad(W∗t ⊗1)V Ut(1⊗ Y ) ∈ ((θt(M)′ ∩M)⊗ 1)′ ∩ Cpt = 1⊗Apt ,
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where the latter equality follows from relation (1) in Section 2. It follows that for

each t ≥ 0, φt restricts to a map from 1⊗Ant to 1⊗Apt , and hence φ restricts to

an isomorphism intertwining the C∗-semiflows for αn and αp.

We claim that φ intertwines the tracial states on Ait induced by the canonical

trace on R. Indeed, by [Ale, Proposition 2.9] each Ait is a II1 factor and hence the

maps φt intertwine the induced traces on each of the corresponding subalgebras;

the statement follows by taking inductive limits. In the terminology of [MaS, Sec-

tion 9], αn and αp have isomorphic τ -semiflows, and hence by Proposition 2.13,

n = p.

§4.2. Tensoring with generalized CCR flows

Throughout this subsection, we denote by θ = {θt : t ≥ 0} a generalized CCR flow

associated with a pair
(
{T 1

t }t≥0, {T 2
t }t≥0

)
, where {T 1

t : t ≥ 0} and {T 2
t : t ≥ 0}

are two C0-semigroups that are perturbations of one another (see Section 2.2). In

our examples we assume the semigroup {T 1
t : t ≥ 0} is the right shift on L2(0,∞)

with index 1. Basic facts about spectral densities describing off-white noises can

be found in [Ts2].

In [IS1], local algebras associated with product systems were used to dis-

tinguish generalized CCR flows given by off-white noises with spectral density

converging to 1 at infinity. Here we define and use local algebras associated with

super-product systems to study E0-semigroups on the hyperfinite II∞ factor, given

by tensor products of such generalized CCR flows with α.

A subset O ⊆ [0, a] is an elementary set if O = ∪Nn=1(sn, tn), a finite disjoint

union of open intervals. We assume sn+1 > tn. By Oc we mean the interior of the

complement in [0, a]. For a Borel set E ⊆ R, |E| denotes the Lebesgue measure

of E.

Let H = (Ht, Us,t) be any super-product system. Fix an arbitrary a > 0. The

local algebra AH(I) associated with the super-product system H for any interval

I = (s, t) ⊆ [0, a] is defined by

AH(I) = UaI
(
C1Hs ⊗B(Ht−s)⊗ C1Ha−t

)
(UaI )∗,

where UaI is the canonical isometry UaI : Hs ⊗ Ht−s ⊗ Ha−t 7→ Ha determined

uniquely by the associativity axiom. Here we consider AH(I) as a von Neumann

subalgebra of B(P aI Ha), where P aI = UaI (UaI )∗.

For an elementary open set ON = ∪Nn=1(sn, tn), denote by P aON the projection

UaON (UaON )∗, where

(6) UaON : Hs1−t0 ⊗Ht1−s1 ⊗ · · · ⊗HsN−tN−1
⊗HtN−sN ⊗HsN+1−tN 7→ Ha
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is the canonical isometry uniquely determined by the associativity axiom of the

super-product system. (Here we have set t0 = 0 and sN+1 = a.) We just write

UON for UaON and POn for P aON when a is unambiguously fixed. For 1 ≤ k ≤ N , if

we define Ik = (sk, tk), Ok] = ∪k−1
n=1(sn, tn), O[k = ∪Nn=k+1(sn − tk, tn − tk), then

using the associativity axiom, it is not difficult to verify that

UaON = UaIk

(
UskOk]

⊗ 1Htk−sk ⊗ U
a−tk
O[k

)
.

Using this we see for x ∈ B(Htk−sk),

P aONU
a
Ik

(
1Hsk ⊗ x⊗ 1Ha−tk

)
(UaI )∗ = UaON

(
1Hsk ⊗ x⊗ 1Ha−tk

)
(UaON )∗

= UaIk

(
1Hsk ⊗ x⊗ 1Ha−tk

)
(UaI )∗P aON ,

and hence P aON ∈ A
′
sk,tk

for all 1 ≤ k ≤ N .

For a general open set O ⊆ (0, a) with O = ∪∞n=1In a disjoint union of

intervals, define

PO =

∞∧
n=1

POn ,

where On = ∪nk=1Ik is an increasing sequence of elementary open sets. The projec-

tion PO does not depend on the choice of the intervals or the elementary open sets

{On}∞n=1, since POn ≤ POm if the elementary sets satisfies Om ⊆ On. (Caution:

The relation PO2
≤ PO1

does not hold in general for arbitrary elementary sets

satisfying O1 ⊆ O2, but it does hold for sets in this collection, since the interval

components of the elementary open subset are a subcollection of the interval com-

ponents of the bigger elementary open set.) Every POm commutes with A(In) if

In ⊆ Om. So PO also commutes with A(In). Define

AH(O) =

∞∨
n=1

POAH(In),

the von Neumann algebra generated by {POAH(In)}∞n=1 in B(POHa).

If the family (Vt)t≥0 provides an isomorphism between two super-product

systems (Ht, Us,t) and (H ′t, U
′
s,t), then Ad(Va) provides an isomorphism between

AH(O) and AH′(O). Hence the family of von Neumann algebras {AH(O) : O ⊆
[0, a]} is an invariant for the super-product system (Ht, Us,t), and hence for the

associated E0-semigroup.

Lemma 4.2. Let H be a super-product system and O =
⋃∞
n=1 In ⊆ [0, a] an open

set for mutually disjoint open intervals In = (sn, tn). Then

(1) if H is spatial, then AH(O) has a direct summand that is a type I∞ factor,

and further, if tn < sn+1, then AH(O) is a type I factor;
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(2) if H = He is the super-product system associated with a Clifford flow of any

fixed index, then AH(O) is a type I∞ factor for any open set O ⊆ [0, a].

Proof. (1) Let (St)t>0 be a unit for H. Without loss of generality we assume that

‖St‖ = 1 for all t > 0. Notice POSa = Sa. Let L =
[
AH(O)Sa

]
⊆ POHa and PL

be the projection from POHa onto L, which belongs to AH(O)′. We introduce a

state ω of AH(O) by ω(x) = 〈xSa, Sa〉. We have ω(x) = 〈xSti−si , Sti−si〉 for any

x ∈ POAH(Ii). Now for xi ∈ AH(Ini) i = 1, 2, . . . , N , we have

ω(POx1x2 · · ·xN ) = 〈POPONx1x2 · · ·xNSa, Sa〉
= 〈UON (x1 ⊗ 1⊗ · · · ⊗ xN ⊗ 1)U∗ONSa, Sa〉
= 〈x1Stn1

−sn1
, Stn1

−sn1
〉 · · · 〈xNStnN−snN , StnN−snN 〉

= ω(x1)ω(x2) · · ·ω(xN ),

where HOcN = ⊗Nk=0Hsnk+1
−tnk with tn0

= 0 and snN+1
= a. This shows that ω is

a product pure state of
⊗N

i=1 POA(Ini) ⊂ AH(O) for all N . Therefore AH(O)PL
is a type I∞ factor.

The other statement, when tn < sn+1, follows from Theorem 4.15.

(2) For an interval I, denote by Hk(I) =
[
f1 ∧ f2 ∧ · · · ∧ fk : fi ∈ L2(I, kC)

]
,

the k-particle space of the antisymmetric Fock space of L2(I), and k is the multi-

plicity space of the Clifford flow. Define

HO = [Ω, ξn1 ∧ ξn2 ∧ · · · ∧ ξnN : ξni ∈ H2ki(Ini), ki, ni, N ∈ N] .

It is not difficult to verify that AHe(O) is nothing but B(HO).

We denote by Aγ(O) the local algebra associated with the super-product

system Hγ of an E0-semigroup γ.

Proposition 4.3. Let γ and β be two E0-semigroups and O ⊆ (0, a). Then

Aγ⊗β(O) = Aγ(O)⊗Aβ(O).

Proof. Thanks to Proposition 3.7, the above proposition holds true for intervals.

For elementary sets, it follows from relation (1) in Section 2, and hence for any

open set.

From the above proposition it follows immediately, thanks to Lemma 4.2(2),

that Aθ⊗α(O) is a type I factor if and only if Aθ(O) is a type I factor, for any

open O ⊆ [0, a].

It is shown in [IS1] that there exists a “one-parameter continuous family of off-

white noises, whose spectral density functions converge to 1 at infinity” such that
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the associated family of generalized CCR flows {θλ : λ ∈ (0, 1
2 ]} contains mutually

non-cocycle-conjugate E0-semigroups. This is accomplished by producing an open

set O, for any given λ1, λ2 ∈ (0, 1
2 ] such that Aθλ1

(O) is a type III factor, but

Aθλ2
(O) is a type I factor (see [IS1, Theorem 8.8]). In the following theorem let

α be any one of the αn with fixed n, then from the preceding discussions we have

the following theorem.

Theorem 4.4. The family of E0-semigroups {θλ ⊗ α : λ ∈ (0, 1
2 ]} is mutually

non-cocycle-conjugate.

When the “spectral density” converges to∞ at∞, the local algebras A(O) are

not useful in distinguishing the associated generalized CCR flows. Tsirelson used

the lim inf and lim sup of subspaces of the sum system, associated with elementary

sets, to distinguish those generalized CCR flows (see [Ts1, Section 13]). Tsirelson’s

invariants can be equivalently described by the lim sup of local von Neumann

algebras associated with elementary sets, as shown in [BhS, Section 3] (which was

called the lim inf there, as remarked in the following definition).

Definition 4.5. For a sequence of von Neumann algebras An ⊆ B(H), define

lim supAn =
{
T ∈ B(H) : ∃nk ↑ ∞, Tnk ∈ Ank such that w-lim

k 7→∞
Tnk = T

}′′
,

where w-limk 7→∞ Tnk is the limit in the weak operator topology. (We realized this

should be termed lim sup rather than lim inf as initially defined in [BhS, Section 3].)

Also define

lim inf An =
{
T ∈ B(H) : ∃Tn ∈ An such that s-lim

n→∞
Tn = T, s-lim

n→∞
T ∗n = T ∗

}′′
,

where the limits of the sequences {Tn} and {T ∗n} are in the strong operator topol-

ogy.

Since the local algebras AH(O) for super-product systems are not proper von

Neumann subalgebras of B(Ha), we need to modify the definition slightly. For an

elementary open set O ⊆ [0, 1], define

ÃH(O) = AH(O)′′ ∩B(H1) = AH(O)⊕ C (1− PO) .

For product systems, ÃH(O) = AH(O). Given any sequence of elementary open

sets On ⊆ [0, 1], lim sup ÃH(On) ⊆ B(H1) is an invariant for the super-product

system H = (Ht, Us,t).

Lemma 4.6. For a sequence of von Neumann algebras An ⊆ B(H),

lim supAn ⊆ (lim inf A′n)
′
.
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Proof. Suppose T ∈ lim supAn and S ∈ lim inf A′n, so that there exists a subse-

quence Tnk ∈ Ank such that Tnk → T weakly, and there exists Sn ∈ A′n such that

(Sn, S
∗
n) 7→ (S, S∗) strongly. Then for any ξ, η ∈ H, we have

|〈TSξ, η〉 − 〈TnkSnkξ, η〉| ≤ |〈Sξ, T ∗η〉 − 〈Sξ, T ∗nkη〉|+ ‖Sξ − Snkξ‖‖T
∗
nk
η‖,

|〈STξ, η〉 − 〈SnkTnkξ, η〉| ≤ |〈Tξ, S∗η〉 − 〈Tnkξ, S∗η〉|+ ‖S∗η − S∗nkη‖‖Tnkξ‖.

Since {‖T ∗nkη‖} and {‖Tnkξ‖} are bounded we have

〈TSξ, η〉 = lim
k
〈TnkSnkξ, η〉 = lim

k
〈SnkTnkξ, η〉 = 〈STξ, η〉 ∀ ξ, η ∈ H.

For an open set O ⊆ [0, 1] we denote by Oc the interior of the complement in

[0, 1]. Since we are dealing with L2-spaces with respect to Lebesgue measure, end

points of the intervals do not matter. As before, He denotes the super-product

system associated with Clifford flow of any fixed rank.

Proposition 4.7. Let {On : n ∈ N} be a sequence of elementary sets contained

in [0, 1] such that |On| → 0. Then

lim inf ÃH
e

(On)′ = B(H1) and lim sup ÃH
e

(On) = C.

Proof. Set Γea(L2(O, kC)) = [ξ1 ∧ ξ2 ∧ · · · ∧ ξ2m; ξ1, ξ2, . . . , ξ2m ∈ L2(O, kC), m ∈
N0], and when m = 0 the wedge product is just the vacuum vector Ω. The map

VO((ξ1 ∧ ξ2 ∧ · · · ∧ ξ2m)⊗ (η1 ∧ η2 ∧ · · · ∧ η2m′))

= ξ1 ∧ ξ2 ∧ · · · ∧ ξ2m ∧ η1 ∧ η2 ∧ · · · ∧ η2m′ ,

where ξ1, ξ2, . . . , ξ2m ∈ L2(O, kC), η1, η2, . . . , η2m′ ∈ L2(Oc, kC), extends to an

isometry between Γea(L2(O, kC))⊗ Γea(L2(Oc, kC)) 7→ He
1 . Define

B(O) = VO
(
B(Γea(L2(O, kC)))⊗ 1Γea(L2(Oc,kC))

)
V ∗O and B̃(O) = B(O)

′′
.

Since |On| → 0, for any f ∈ L2((0, 1), kC), we have 1Ocnf → f . Using this it is easy

to verify that lim inf B̃(Ocn) = B(H1).

Notice that for any elementary set O = ∪Ni=1(si, ti),

UO
(
Φs1−t0 ⊗Ht1−s1 ⊗ · · · ⊗ ΦsN−tN−1

⊗HtN−sN ⊗ ΦsN+1−tN
)

⊆ VO
(
Γea(L2(O, kC))⊗ Φ

)
,

where Φsi−ti denote the vacuum vectors in Hs−i−ti and UO is the canonical isom-

etry as in (6). This consequently implies that ÃHe(O) ⊆ B̃(O) for any elementary

open set O ⊆ [0, 1]. Hence we have

B̃(Ocn) ⊆ B̃(On)′ ⊆ ÃH
e

(On)′ ∀n ∈ N.
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So we have lim inf ÃHe(On)′ = B(H1). Now it follows from Lemma 4.6 that

lim sup ÃHe(On) = C.

The Arveson product system of Hilbert spaces associated with generalized

CCR flows is described by sum systems. Since we do not want to recall the defini-

tions and restate the facts, which are used only in the following proposition, we ask

the reader to refer to [BhS, Section 1] and [IS1, Section 3] for the definition of sum

systems and for the construction of product systems from sum systems. Also, for

definitions/facts/notation regarding the lim inf and lim sup of Hilbert subspaces,

which we use in the proof of the following proposition, we ask the reader to refer

to [BhS, Section 3] (they were originally defined and used in [Ts1]). The lim inf

and lim sup of Hilbert subspaces are defined in [BhS, Definition 3.2]. We provide

an exact reference to the facts we use in the following proposition.

For product systems arising from sum systems also, while dealing with local

algebras, end points of intervals do not matter (see [BhS, Corollary 25]).

Proposition 4.8. Let H = (Ht, Us,t) be the product system constructed from a

sum system (Gs,t, St)s,t∈(0,∞). For a sequence of elementary sets On ⊆ [0, 1],

lim inf AH(On) = {W0(x+ iy) : x ∈ lim inf GOn , y ∈ lim inf G⊥Ocn}
′′,

lim supAH(On) = {W0(x+ iy) : x ∈ lim supGOn , y ∈ lim supG⊥Ocn}
′′.

Further,

lim supAH(On) =
(

lim inf
(
AH(On)

′))′
=
(

lim inf AH(Ocn)
)′
.

Proof. For an elementary set O ⊆ [0, 1],

AH(O) = {W0(x+ iy) : x ∈ GOn , y ∈ G⊥Ocn}
′′ and AH(O)

′
= AH(Oc)

(see the discussion just before [BhS, Lemma 3.2]). The strong continuity of the

Weyl representation x 7→W0(x) (see [Par, Proposition 20.1]) implies

{W0(x+ iy) : x ∈ lim inf GOn , y ∈ lim inf G⊥Ocn}
′′ ⊆ lim inf AH(On).

On the other hand,

{W0(x+ iy) : x ∈ lim inf GOn , y ∈ lim inf G⊥Ocn}
′

=
{
W0(x+ iy) : x ∈

(
lim inf G⊥Ocn

)⊥
, y ∈

(
lim inf GOn

)⊥}′′
= {W0(x+ iy) : x ∈ lim supGOcn , y ∈ lim supG⊥On}

′′ (by [BhS, Lemma 3.1])

⊆ lim sup {W0(x+ iy) : x ∈ GOcn , y ∈ G
⊥
On}

′′
(by [BhS, Lemma 3.2(i)])

⊆
(
lim inf {W0(x+ iy) : x ∈ GOcn , y ∈ G

⊥
On}

′)′ (by Lemma 4.6)

=
(
lim inf AH(On)

)′
.
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Hence lim inf AH(On) = {W0(x + iy) : x ∈ lim inf GOn , y ∈ lim inf G⊥Ocn}
′′. The

proof of the corresponding statement for lim supAH(On) is as follows: one inclu-

sion follows from [BhS, Lemma 3.2(i)] and the other inclusion can be proved by

flipping lim inf AH(On) with lim supAH(On) in the above arguments. The remain-

ing statements follow from above and [BhS, Lemma 3.1].

Let ({T 1
t }, {T 2

t }) be a perturbation pair and θ be the associated generalized

CCR flow on B(Γs(G
C)). Let j : GC 7→ GC be the antiunitary x+ iy 7→ y + ix for

x, y ∈ G, and Γ(j) : Γs(G
C) 7→ Γs(G

C) be the second quantization of j defined by

Γ(j)(ε(ξ)) = ε(jξ) and extended antilinearly to Γs(G
C). Then

Γ(j)W (x+ iy)Γ(j) = W (y + ix) ∀x, y ∈ G.

By the discussion in Example 2.9, the dual E0-semigroup of θ on B(Γs(G
C)) is

conjugate to the E0-semigroup θ, given by

θt(W (x+ iy)) = Γ(j)θt(Γ(j)W (x+ iy)Γ(j))Γ(j)

= W (T 2
t x+ iT 1

t y) ∀x, y ∈ G.

So θ is the generalized CCR flow given by the perturbation pair ({T 2
t }, {T 1

t }), and

in particular the associated Arveson product system (Ht, Us,t) is also given by a

sum system, say (Gs,t, St).

Corollary 4.9. Let θ be a generalized CCR flow. Then

lim sup Ãθ(On) =
(

lim inf
(
Ãθ(On)

′))′
.

Proof. Let (Ht, Us,t) be the Arveson product system of θ. By Remark 3.6, the

super-product system of θ is given by (Ht⊗Ht, Us,t⊗Us,t), which arises from the

sum system
(
Gs,t ⊕Gs,t, St ⊕ St

)
. Also, for any two sequences of Hilbert subspaces

{Gn} and {Fn}, it is easy to see that lim inf (Gn ⊕ Fn) = lim inf Gn ⊕ lim inf Fn
and lim sup (Gn ⊕ Fn) = lim supGn ⊕ lim supFn. Now the corollary follows from

the above Proposition 4.8.

Proposition 4.10. Let a sequence of elementary sets {On ⊆ [0, 1] : n ∈ N} be

such that |On| → 0 and let θ be any generalized CCR flow. Then lim sup
(
Aθ(On)⊗

Aα(On)
)

is C1 if and only if lim supAθ(On) = C1.

Proof. Let An, Bn be any two families of von Neumann algebras. It immediately

follows if lim sup (An ⊗ Bn) = C, then both lim supAn = C1 = lim supBn, since

lim supAn ⊗ lim supBn ⊆ lim sup (An ⊗ Bn).

Also, lim inf A′n ⊗ lim inf B′n ⊆ lim inf (A′n ⊗ B′n). So by Lemma 4.6, we have

lim sup (An ⊗ Bn) ⊆ (lim inf (A′n ⊗ B′n))
′ ⊆ (lim inf A′n ⊗ lim inf B′n)

′
.



324 O. T. Margetts and R. Srinivasan

If lim supAθ(On) = C1 and |On| → 0 then, thanks to Corollary 4.9 and Proposi-

tion 4.7, both lim inf
(
Aθ(On)′

)
= B(Hθ

1 ) and lim inf (Aα(On)′) = B(He
1). Hence

lim sup
(
Aθ(On)⊗Aα(On)

)
= C.

For r > 0, let σr be a smooth positive even function with σr(λ) = logr |λ|
for large |λ|. Then σr is the spectral density function of an off-white noise, and

gives rise to a family of generalized CCR flows {θr : r > 0}. In [Ts1], a sequence

of elementary sets (with Lebesgue measure converging to 0) is produced for any

given r1 6= r2, so that lim supAθr1 (On) = C but lim supAθr2 (On) is nontrivial.

(Tsirelson produced invariants through sum systems, but this is equivalent to the

above statement, as explained in [BhS, Section 3].) In the following theorem let α

be any one of the αn with fixed n; then thanks to Proposition 4.10 we have the

following theorem.

Theorem 4.11. The family of E0-semigroups {θr ⊗ α : r > 0} is mutually non-

cocycle-conjugate.

§4.3. Tensoring with Toeplitz CAR flows

To distinguish Toeplitz CAR flows discussed in [IS2], type I factorizations were

used as invariants, as defined by Araki and Woods [AW1]. Here we define these

invariants with respect to super-product systems and use them to distinguish E0-

semigroups on hyperfinite II∞ factors, given by tensor products of Toeplitz CAR

flows with α. Throughout this subsection, every index set (indexing a type I fac-

torization) is assumed to be countable.

Definition 4.12. Let H be a Hilbert space. We say that a family of type I sub-

factors {Mλ}λ∈Λ of B(H) is a type I factorization of B(H) if

(i) Mλ ⊂ M′µ for any λ, µ ∈ Λ with λ 6= µ;

(ii) B(H) =
∨
λ∈Λ Mλ.

We say that a type I factorization {Mλ}λ∈Λ is a complete atomic Boolean algebra

of type I factors (abbreviated as CABATIF) if for any subset Γ ⊂ Λ, the von

Neumann algebra
∨
λ∈Γ Mλ is a type I factor.

Two type I factorizations {Mλ}λ∈Λ of B(H) and {Nµ}µ∈Λ′ of B(H ′) are said

to be unitarily equivalent if there exist a unitary U from H onto H ′ and a bijection

σ : Λ→ Λ′ such that UMλU
∗ = Nσ(λ).

Let A = {an}∞n=0 be a strictly increasing sequence of nonnegative numbers

starting from 0 and converging to a <∞. Define PAN = UNU
∗
N where

UN :

N−1⊗
n=0

Han+1−an ⊗Ha−aN 7→ Ha
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is the canonical isometry uniquely determined by the associativity axiom of the

super-product system. Clearly {PAN : N ∈ N} is a decreasing family of projections

in N . Define PA =
∧∞
n=1 P

A
N . (We write PA,θ to remember the E0-semigroup.)

Lemma 4.13. Let H = (Ht, Us,t) be a super-product system that can be em-

bedded into a product system, and let A = {an}∞n=0 be a strictly increasing se-

quence of nonnegative numbers starting from 0 and converging to a < ∞. Then

{PAAH((an, an+1))}∞n=0 is a type I factorization of B(PAHa).

Proof. Let E = (Et, Vs,t) be a product system where the super-product system H

can be embedded. Then {AE((an, an+1))}∞n=0 is a type I factorization of B(E(a))

because

B(Ea) =
∨

0<t<a

AE((0, t))

holds (see [Arv, Proposition 4.2.1]). Let QA be the orthogonal projection from Ea
onto PAHa. Then QAAE((an, an+1))QA = PAAH((an, an+1)).

The following proposition is immediate, since∨
λ∈Γ

(
M1
λ ⊗M2

λ

)
=

( ∨
λ∈Γ

M1
λ

)
⊗
( ∨
λ∈Γ

M2
λ

)
.

Proposition 4.14. For two type I factorizations {M1
λ}λ∈Λ and {M2

λ}λ∈Λ, {M1
λ⊗

M2
λ}λ∈Λ is a CABATIF if and only if both {M1

λ}λ∈Λ and {M2
λ}λ∈Λ are CABATIFs.

When {Mλ}λ∈Λ is a type I factorization of B(H), we say that a nonzero vector

ξ is factorizable if, for any λ, there exists a minimal projection pλ of Mλ such that

pλξ = ξ. Araki and Woods characterized a CABATIF as a type I factorization with

a decomposable vector. One can find the following theorem in [AW1, Lemma 4.3,

Theorem 4.1].

Theorem 4.15 (Araki–Woods). A type I factorization is a CABATIF if and only

if it has a factorizable vector.

As before, let A={an}∞n=0 be a strictly increasing sequence of nonnegative

numbers starting from 0 and converging to a <∞. When a super-product system

H has a unit {St : t ≥ 0}, then PASa = Sa and further, it gives a factorizable

vector for the type I factorization {PAAH((an, an+1))}∞n=0, which is necessar-

ily a CABATIF thanks to Theorem 4.15. So type I factorization associated with

the super-product system of Clifford flow of any rank is a CABATIF for any se-

quence A = {an}. Now if θ is a Toeplitz CAR flow, then the type I factorization

{PA,θ⊗αAθ⊗α((an, an+1))}∞n=0 is a CABATIF if and only if {PA,θAθ((an, an+1))}∞n=0

is a CABATIF.
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In [IS2], an uncountable family of mutual non-cocycle-conjugate Toeplitz CAR

flows {θν : ν ∈ (0, 1
4 ]} is constructed. This family is distinguished by providing a se-

quence A = {an}∞n=0 for any given ν1, ν2 ∈ (0, 1
4 ], so that {PAAθν1 ((an, an+1))}∞n=0

is a CABATIF but {PAAθν2 ((an, an+1))}∞n=0 is not a CABATIF. From the above

discussions we have the following theorem.

Theorem 4.16. The family of E0-semigroups {θν ⊗ α : ν ∈ (0, 1
4 ]} is mutually

non-cocycle-conjugate.

If a generalized CCR flow (or a Toeplitz CAR flow) is fixed, it is still open

to show that it leads to non-cocycle-conjugate E0-semigroups, when tensored with

Clifford flows of different indices.

§5. CCR flows on hyperfinite type III factors

In this section we investigate a class of E0-semigroups on hyperfinite type III

factors arising from quasi-free representations of the CCR algebra. The structure

of these representations was worked out in the early papers [Ar1, Ar2, DAn, Hol,

ArY, AW2]; in order to make this paper reasonably self-contained we include the

relevant details.

For a complex Hilbert space K, there exists a universal C∗-algebra generated

by unitaries {wv : v ∈ K}, subject to

wuwv = e−i Im〈u,v〉wu+v (u, v ∈ K),

known as the algebra of canonical commutation relations, or the CCR algebra,

denoted by CCR(K) (see, e.g., [Pet]).

From here onwards, in the last two sections of this paper, k will denote a

separable complex Hilbert space, with conjugation j. We denote the conjugation

on K = L2(R+; k) also by j, obtained as (jf)(s) := jf(s) for all s ≥ 0. Let A ≥ 1

be a complex linear operator on K such that T = 1
2 (A− 1) is injective. The state

on CCR(K) determined by

ϕA(wf ) = e−
1
2 〈f,Af〉 = e−

1
2‖
√

1+2Tf‖2

is known as the quasi-free state with symbol A. The corresponding GNS represen-

tation, on Γs(K)⊗ Γs(K), is given by

πA(w(f)) = WA(f) := W0(
√

1 + Tf)⊗W0(j
√
Tf).

It follows from [Ar1] that this representation generates a factor MA = {πA(w(f)) :

f ∈ K}′′, for which the vacuum vector Ω = ε(0)⊗ε(0) in Γs(K)⊗Γs(K) = Γs(K⊕K)
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is cyclic and separating. Under this representation, Ω induces the state ϕA. The

factor is type I if and only if A2 − 1 is trace class, and otherwise it is type III

(see [Hol]).

Lemma 5.1. Let X ∈ B(L2(R+; k)) be a positive, injective Toeplitz operator.

Then the operators
√
XTt
√
X
−1

extend to a family of isometries that is a strongly

continuous semigroup.

Proof. Since
√
X ≥ 0 is injective,

√
X
−1

is closed and densely defined. For any

f ∈ Dom(
√
X
−1

), we have∥∥∥√XTt√X−1
f
∥∥∥2

=
〈√

X
−1
f, T ∗t XTt

√
X
−1
f
〉

=
〈√

X
−1
f
√
Xf
〉

= ‖f‖2,

so that
√
X Tt

√
X
−1

admits a unique isometric extension Yt. For any f ∈
Dom(

√
X
−1

) it is clear that YsYtf = Ys+tf and Ytf → f as t → 0, so the family

(Yt)t≥0 is a strongly continuous semigroup of isometries.

For any Toeplitz operatorX, we denote the isometric extension of
√
XTt
√
X
−1

by TXt . The following proposition ensures the existence of E0-semigroups that we

call Toeplitz CCR flows given by the Toeplitz operator A.

Proposition 5.2. Let A ≥ 1 be a Toeplitz operator on L2(R+; k) such that A− 1

is injective. Then there exists a unique E0-semigroup αA = {αAt : t ≥ 0} on MA

defined by αAt (WA(f)) = WA(Ttf), where (Tt)t≥0 is the semigroup of right shifts

on L2(R+; k). Further, αA1⊕A2 = αA1 ⊗ αA2 .

Proof. Thanks to Lemma 5.1, we have the semigroup of isometries

Y = (Yt)t≥0 =

[
T 1+T
t 0

0 jTTt j

]
on K⊕2. It follows from [Arv, Proposition 2.1.3] that there exists a unique E0-

semigroup σ on B(H) satisfying σt(W0(f)) = W0(Ytf) for all f ∈ K⊕2. Clearly MA

is an invariant subalgebra for σ, and by the density of πA(CCR(K)), the restriction

σt|MA
is the unique E0-semigroup satisfying the conditions of the proposition.

Since A is Toeplitz, ϕA is a faithful, normal invariant state for each of these

E0-semigroups, and thus provides a canonical unit S = (St)t≥0 associated with

Ω. The modular conjugation with respect to Ω is given by JΩ = Γ
[

0 −j
−j 0

]
, and

we have JΩWA(f)JΩ = W ′A(f), where W ′A(f) = W0(
√
Tf)⊗W0(j

√
1 + Tf). The

dual E0-semigroup α′ on M′A is given by α′t(W
′
A(f)) = W ′A(Ttf). The following

proposition characterizes when S is a multiunit.
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Proposition 5.3. If A ≥ 1 is a Toeplitz operator such that A−1 is injective, and

α is the E0-semigroup on MA satisfying αt(WA(f)) = WA(Ttf), then the canonical

unit is a multiunit if and only if A = 1L2(R) ⊗ R for some R ∈ B(k). Moreover,

when this is the case, there exists a CCR flow σ on B(H) extending both α and α′.

Proof. One way is clear. Suppose S is a multiunit; then the modular group (σΩ
s )s∈R

satisfies αt = σΩ
−s ◦αt ◦σΩ

s for all t ≥ 0, s ∈ R (see Proposition 2.8(iii)). Here, σΩ
s is

the Bogoliubov automorphism associated with T is(1 +T )−is. Hence T is(1 +T )−is

commutes with Tt for all t ≥ 0 and so it is of the form 1L2(R+)⊗Us. By considering

the (analytic) generator, we infer that T (1 + T )−1 = 1L2(R)⊗X, for some densely

defined self-adjoint operator X on k. For f ∈ Dom((1 + T )−1) we have

(1 + T )−1f = (1− T (1 + T )−1)f = 1L2(R+) ⊗ (1−X)f.

This implies that (1−X) has a bounded inverse and T=1L2(R+)⊗
(
1− (1−X)−1

)
.

When A = 1L2(R) ⊗ R, then T 1+T
t = Tt = TTt , and the CCR flow given by

Tt ⊕ Tt extends both α and α′.

For the rest of the paper we restrict to this class of E0-semigroups, where

the canonical unit is a multiunit. Since the Toeplitz part of A is trivial, these

E0-semigroups are simply called CCR flows. We denote the CCR flow given by

A = 1⊗R by α(R). Since L2(R+) is infinite-dimensional, Tr(I ⊗ (R2 − 1)) <∞ if

and only if Tr(R2 − 1) = ‖
√
R2 − 1‖HS = 0, i.e., R2 − 1 = 0. Here, ‖·‖HS refers to

the Hilbert–Schmidt norm. By our (A− 1 is injective) assumption, we get R 6= 1,

so MA is a type III factor.

The second half of the above proposition shows that the super-product system

for α, α′ is isomorphic to the completely spatial product system of index 2 dim k;

hence Indc(α) = 2 dim k. If dim k = n, we say that the corresponding E0-semigroup

is a CCR flow on the type III factor MA of rank n. Since R is injective, rank(R) =

dim(k). The following corollary is immediate.

Corollary 5.4. CCR flows on hyperfinite type III factors associated with opera-

tors of the form Ai = 1⊗Ri, i = 1, 2 are not cocycle conjugate if R1 and R2 have

different ranks.

In order to classify these semigroups further, we must determine when the

algebras MA are isomorphic. For this we require the following lemma, whose proof

is easy. Here and elsewhere, σ(X) denotes the spectrum of X.

Lemma 5.5. Let X, Y be closed, densely defined operators of the form X =∑∞
i=1 λiPi, Y =

∑∞
j=1 µjQj, where {Pi}∞i=1 and {Qj}∞j=1 are families of mutually

orthogonal projections. Then σ(X ⊗ Y ) = σ(X)σ(Y ).



E0-semigroups on factors 329

The following theorem may be gleaned from [AW2]; for the reader’s conve-

nience we include the details.

Theorem 5.6. Let A = I ⊗R ≥ 1 be such that T = (A− 1)/2 is injective. Then

there are the following three possibilities:

(i) A has discrete spectrum and there exists λ ∈ σ
(
(1 + T )−1T

)
⊆ (0, 1) such

that the eigenvalues of (1+T )−1T all have the form λi = λdi for some di ∈ N.

(ii) A has discrete spectrum, but is not of the form (i).

(iii) A contains nonempty purely continuous spectrum (see [Kat, X.1.1]).

In case (i), MA is the hyperfinite IIIλ factor, whereas in all other cases, MA is the

hyperfinite III1 factor.

Proof. By definition, A is one of the three types described above, so it remains

to show that the factors are as claimed. In [AW2, Section 12], the following is

observed:

(a) If A has discrete spectrum then MA is an infinite tensor product of factors of

type I (ITPFI), and so hyperfinite.

(b) If A has discrete spectrum and λ is a limit point of σ((1 + T )−1T ), then

λ ∈ r∞(MA), the asymptotic ratio set of MA.

(c) If A has nonempty purely continuous spectrum then MA is isomorphic to an

ITPFI and r∞(MA) = R+.

By [Con, Theorem 3.6.1], r∞(MA) = S(MA) for ITPFI factors, so the third point

is equivalent to MA being hyperfinite type III1. If A has discrete spectrum then, as

A = I ⊗R, all eigenvalues have infinite multiplicity, so all points in the spectrum

are limit points. Thus, if A has discrete spectrum and satisfies (ii), then by (b)

r∞(MA) 6= {0} ∪ {λn : n ∈ Z} for any λ ∈ (0, 1), and clearly r∞(MA) 6= {0, 1}, so

S(MA) = R+ and MA is type III1. If A satisfies (i) then, again by (b), r∞(MA) ⊇
{0} ∪ {λn : n ∈ Z} and we are left to show that the modular spectrum of M

contains nothing further. We simply show σ(∆Ω) ⊇ {0} ∪ {λn : n ∈ Z}. Since

∆Ω is the sum of tensor powers of (1 + T )−1T ⊕ T−1(1 + T ), by Lemma 5.5 its

spectrum is the closure of
⋃∞
n∈Z σ((1 + T )−1T )n, i.e., {0} ∪ {λn : n ∈ Z}.

Remark 5.7. When k is one-dimensional, only (i) can occur. When k has fi-

nite dimension, (ii) occurs if and only if (1 + T )−1T has eigenvalues λi, λj with

log λi/ log λj /∈ Q. In infinite dimensions there are further examples of case (ii)

coming from sequences of rational powers with strictly increasing denominators,

e.g., (λn/(n+1))n∈N. Clearly, case (iii) can occur only if k is infinite-dimensional.
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In particular, thanks to Corollary 5.4, A = 1+λ
1−λIL2(R+;k) gives infinitely many

non-cocycle-conjugate E0-semigroups on each hyperfinite IIIλ factor with 0<λ<1

distinguished by their rank. Distinguishing between two CCR flows of equal rank

is more complicated, and we take up a detailed analysis in the next section.

§6. Characterizing cocycle conjugacy for CCR flows

In this section we show that there are uncountably many non-cocycle-conjugate

E0-semigroups on each hyperfinite IIIλ factor with λ ∈ (0, 1]. The proof relies

upon the precise form of the gauge group and a detailed analysis of its fate under

cocycle perturbations.

Proposition 6.1. Let A = I ⊗R ≥ 1 be such that A− 1 is injective and consider

the corresponding CCR flow α on MA. Then every element of the gauge group

G(α) has the form

Ut = eiλtWA(1(0,t) ⊗ ξ) (t ≥ 0)

for some λ ∈ R, ξ ∈ k. As a topological group, G(α) is isomorphic to the central

extension of (k,+) by the R-valued 2-cocycle ω(ξ, η) = − Im〈ξ, η〉.

Proof. Let θ be the CCR flow on B(H) mentioned in Proposition 5.3, which ex-

tends both α and α′. Since αt(M)′ ∩M ⊆ θt(B(H))′, every gauge cocycle for α is

also a gauge cocycle for θ, and G(α) is the subgroup of G(θ) consisting of cocycles

living in MA. From [Arv, Section 3.8], it follows that G(θ) consists of cocycles of

the form

Ut(λ, ξ, V ) = eiλtW0(1(0,t) ⊗ ξ)(Γ(IL2[0,t] ⊗ V )⊗ Γ(IL2([t,∞);k⊕2))) ∀ t ≥ 0,

where λ ∈ R, ξ ∈ k⊕2 and V ∈ U(k⊕2).

If Ut(λ, ξ, V ) ∈ MA then for any η ∈ k, we have

W ′A(1(0,t) ⊗ η)Ut(λ, ξ, V ) = Ut(λ, ξ, V )W ′A(1(0,t) ⊗ η).

Evaluating on Ω we get

W ′A(1(0,t) ⊗ η)W0(1(0,t) ⊗ ξ)Ω = W0(1(0,t) ⊗ ξ)W0((I ⊗ V )Σ′ι(1(0,t) ⊗ η))Ω,

where Σ′ :=
[√

T 0
0 j
√

1+Tj

]
, ι(f) :=

(
f
jf

)
. Thanks to the linear independence of

exponential vectors, comparing both sides,( √
Rη

j
√

1 +Rη

)
= V

( √
Rη

j
√

1 +Rη

)
,
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Rη

j
√

1 +Rη

)
, ξ

〉
=

〈
ξ, V

( √
Rη

j
√

1 +Rη

)〉
,

for all η ∈ k. The first equation implies that the unitary V is the identity on the real

linear subspace L =
{( √

Rη

j
√

1+Rη

)
: η ∈ k

}
. But the complex Hilbert space spanned

by L is the whole of k ⊕ k (consider
( √

Rη

j
√

1+Rη

)
± i
( √

Riη

j
√

1+Riη

)
and range(R) is

dense). The other equation implies that the imaginary part of the inner product

of ξ with any element in L is 0, which means ξ is of the form
(√

1+Rη′

j
√
Rη′

)
for some

η′ ∈ k.

Definition 6.2. A continuous bijective real linear operator Z : H 7→ H is said to

be a symplectic automorphism if Im〈Zf,Zg〉 = Im〈f, g〉 for all f , g ∈ H.

Proposition 6.3. If R1 6= ZR2Z
∗ for any symplectic automorphism Z, then the

CCR flow corresponding to A1 = I ⊗R1 is not cocycle conjugate to the CCR flow

corresponding to A2 = I ⊗R2.

Proof. Let α1 and α2 be the CCR flows corresponding to R1 and R2 acting stan-

dardly on M1 and M2 respectively. Suppose that there exists a unitary V and an

α1-cocycle (Wt)t≥0 implementing cocycle conjugacy so that AdVWtα
1
tAdV ∗ = α2

t

for all t ≥ 0. Recall the algebras Aαi(t) = αit(Mi)
′ ∩Mi, i = 1, 2 defined at the

end of Section 2. Note that the isomorphism φt = AdVWt
: Aα1(t) → Aα2(t) is

strongly continuous. For i = 1, 2 consider the topological group

Gt(α
i) := {(us)s∈[0,t] : (us)s≥0 ∈ G(αi)},

which is canonically isomorphic to the gauge group. Then the map (us)s∈[0,t] →
(φt(us))s∈[0,t] induces an isomorphismGt(α

1)→ Gt(α
2). Indeed, the only nonobvi-

ous aspect is to check that WtusW
∗
t = WsusW

∗
s for each u ∈ Gt(α1) and s ∈ [0, t],

which follows from the cocycle property and the fact that us ∈ α1
s(M1)′. De-

note c ⊗ 1(0,t) by ct] for any c ∈ k, t ∈ R+. Since φt is linear and strongly

continuous, there exist continuous maps ϕ : k → R and Z : k → k satisfying

φt(WA1
(cs])) = eisϕ(c)WA2

(Z(c)s]) for all c ∈ k. These induce a group homomor-

phism, so we must have

eis(ϕ(c)+ϕ(d)−Im〈Z(c),Z(d)〉)WA2
(Z(c)s] + Z(d)s])

= eis(ϕ(c+d)−Im〈c,d〉)WA2
(Z(c+ d)s]);

hence

ϕ(c) + ϕ(d)− Im〈Z(c), Z(d)〉 = ϕ(c+ d)− Im〈c, d〉
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for all c, d ∈ k. The imaginary parts of the inner products are antisymmetric under

an exchange of c and d, whereas the other terms are clearly symmetric; thus it

follows that Z is a symplectic automorphism and f is a real linear functional.

By the Riesz representation theorem there exists x ∈ k with ϕ(c) = Re〈x, c〉
for all c ∈ k, and we can form a functional Ψ on L2([0, t]; k) by setting Ψ(f) :=

Re〈1[0,t] ⊗ x, f〉. Since WAj (c[r,s]) = WAj (−cr])WAj (cs]) for each j = 1, 2, c ∈
k, 0 ≤ r ≤ s ≤ t, then we have, for any step function f ∈ L2([0, t]; k), that

φt(WA1
(f)) = eiΨ(f)WA2

((I ⊗ Z)f), by the homomorphism property of φt. Thus,

if f ∈ L2([0, t]; k) is the limit of a sequence of step functions (fn)∞n=1 then

φt(WA1
(f)) = s-lim

n→∞
φt(WA1

(fn))

= s-lim
n→∞

eiΨ(fn)WA2((I ⊗ Z)fn)

= eiΨ(f)WA2
((I ⊗ Z)f).

Now using canonical commutation relations we get(
Ad(WA2

(−i(1[0,t] ⊗ x)/2))φt
)

(WA1
(f)) = WA2

((I ⊗ Z)f).

Since φt is normal, this implies that the representations of CCR(L2([0, t]; k)) given

by

wf 7→WA1
(f) and wf 7→WA2

((I ⊗ Z)f) (f ∈ L2([0, t]; k))

are quasi-equivalent. In particular, the restriction of ϕA1 to CCR(L2([0, t]; k)) is

quasi-equivalent to the state

CCR(L2([0, t]; k)) 3 wf 7→ 〈Ω,WA2
((I ⊗ Z)f)Ω〉 = e−

1
2 Re〈f,(I⊗Z∗)A2(I⊗Z)f〉.

Thus, by [ArY] it must be the case that√
IL2([0,t]) ⊗R1 −

√
(IL2([0,t]) ⊗ Z∗)(IL2([0,t]) ⊗R2)(IL2([0,t]) ⊗ Z)

is Hilbert–Schmidt. But L2([0, t]) is infinite-dimensional, so we must have
√
R1 =√

Z∗R2Z, i.e.,

R1 = Z∗R2Z,

as required.

This condition suggests that there should be a large number of distinct CCR

flows on the hyperfinite IIIλ factor, for each rank n ≥ 2. To show this, we need to

analyze the relation R1 = Z∗R2Z in more detail.

As a real Hilbert space, k is isomorphic to a direct sum kR⊕kR and under this

identification, multiplication by i becomes multiplication by
[

0 −1
1 0

]
. Using this we

see that a real linear operator X =
[
X1 X2

X3 X4

]
∈ B(kR ⊕ kR) is complex linear if and



E0-semigroups on factors 333

only if X1 = X4 and X2 = −X3, and it is a positive complex linear operator if

and only if it is of the form X =
[
X1 0
0 X1

]
, for some positive operator X on kR.

In [Par, see Proposition 22.1] it is shown that for a symplectic automorphism Z

there exist unitaries U1, U2 on k and a positive operator Z1 on kR such that

U∗1ZU
∗
2 =

[
Z1 0

0 Z−1
1

]
.

Setting U∗1R2U1 = [X 0
0 X ] and U2R1U

∗
2 = [ Y 0

0 Y ] we obtain[
Y 0

0 Y

]
=

[
Z1 0

0 Z−1
1

][
X 0

0 X

][
Z1 0

0 Z−1
1

]
,

i.e., Y = Z1XZ1 and Y = Z−1
1 XZ−1

1 , which leads to

(7) Z2
1XZ

2
1 = X and Z2

1Y Z
2
1 = Y.

To analyze these conditions we use the following proposition.

Proposition 6.4. Suppose B, R ∈ B(k) are positive invertible operators and

R ≥ 1. If BRB = R then B = 1.

Proof. The assumption implies R1/2BR−1/2 is a unitary and it has the same

spectrum as B, which is positive. Hence R1/2BR−1/2 = 1 and hence B = 1.

Now we are able to give a complete classification of CCR flows when R− 1 is

injective.

Theorem 6.5. Let R1, R2 ≥ 1 be bounded operators with R1 − 1 and R2 − 1

injective. The CCR flows α(R1) and α(R2) are cocycle conjugate if and only if there

exists a unitary U such that R1 = UR2U
∗. When this is true, α(R1) is conjugate

to α(R2).

Proof. If R1 and R2 give cocycle-conjugate E0-semigroups, thanks to Proposi-

tion 6.3, R1 = Z∗R2Z for some symplectic automorphism Z = U1

[
Z1 0

0 Z−1
1

]
U2,

where Z1 is a positive operator on kR. As before, if we set U∗1R2U1 = [X 0
0 X ] and

U2R1U
∗
2 = [ Y 0

0 Y ] then Z2
1XZ

2
1 = X and Z2

1Y Z
2
1 = Y , so by Proposition 6.4,

Z2
1 = 1. Since Z1 is positive it follows Z1 = 1.

Conversely, suppose that there exists a unitary U such that R1 = UR2U
∗

and let Aj = I ⊗ Rj for j = 1, 2. Then the quasi-free states given by A1 and

(I ⊗U∗)A2(I ⊗U) are quasi-equivalent; indeed they are same states. This implies

that the representations of CCR(L2([0, t]; k)) given by

wf 7→WA1(f) and wf 7→WA2((I ⊗ U∗)f) (f ∈ L2([0, t]; k))
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are quasi-equivalent. Let θ : MA1
7→ MA2

be the isomorphism satisfying

θ(WA1
(f)) = WA2

((I ⊗ U∗)f);

then, since (I ⊗ U) commutes with Tt, we have(
θαR1

t θ−1
)

(WA2
(f)) = WA2

((I ⊗ U∗)Tt(I ⊗ U)f)

= WA2
(Ttf) = αR2

t (WA2
(f)).

Remarks 6.6. (1) If 0 < λ < 1 then there exists exactly one rank 1 CCR flow

on the hyperfinite IIIλ factor.

If n ≥ 2 then there exist a countable infinity of non-cocycle-conjugate CCR

flows on the hyperfinite IIIλ factor with rank n. These are given, for instance, by

choosing natural numbers 1 = d1 ≤ · · · ≤ dn and then

T (1 + T )−1 = I ⊗ diag(λd1 , . . . , λdn),

so that the quasi-free representation corresponding to

R = diag

(
1 + λd1

1− λd1
, . . . ,

1 + λdn

1− λdn

)
generates a hyperfine IIIλ factor. Each distinct choice of di gives different eigen-

values for R by injectivity of the map [0, 1)→ R+, x 7→ (1 + x)/(1− x).

Using a similar argument we see that there exist uncountably many CCR

flows of infinite rank on the hyperfinite IIIλ factor, one for each distinct sequence of

integers 1, d1, d2, . . . up to permutations. (To see that this collection is uncountable,

note that every strictly increasing sequence gives a different example.)

(2) The hyperfinite III1 factor admits no CCR flows of rank 1. For any rank

n ≥ 2, the hyperfinite type III1 factor admits uncountably many non-cocycle-

conjugate CCR flows. For n finite this is seen by noting that each distinct sequence

of numbers λ1 ≤ · · · ≤ λn in (0, 1), for which at least one pair (λi, λj) satisfies

log(λi)/ log(λj) /∈ Q,

defines a CCR flow on the hyperfinite III1 factor with

R = diag

(
1 + λ1

1− λ1
, . . . ,

1 + λn
1− λn

)
.

When n =∞ there exist further examples, as indicated by Remark 5.7.
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