
Publ. RIMS Kyoto Univ. 53 (2017), 287–298
DOI 10.4171/PRIMS/53-2-3

Homogeneous Spaces of Nonreductive Type That
Do Not Model Any Compact Manifold

by

Yosuke Morita

Abstract

We give necessary conditions for the existence of a compact manifold locally modeled
on a given homogeneous space, which generalize some earlier results, in terms of relative
Lie algebra cohomology. Applications include both reductive and nonreductive cases. For
example, we prove that there does not exist a compact manifold locally modeled on a
positive-dimensional coadjoint orbit of a real linear solvable algebraic group.
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§1. Introduction

Let G/H be a homogeneous space. A manifold is called locally modeled on G/H

if it is covered by open sets that are diffeomorphic to open sets of G/H and their

coordinate changes are given by left translations by elements of G. A typical ex-

ample is a double coset space Γ\G/H, where Γ is a discrete subgroup of G acting

properly and freely on G/H. In this case, Γ is called a discontinuous group for

G/H and Γ\G/H is called a Clifford–Klein form. A manifold locally modeled on

a homogeneous space is a fundamental object of the study of “geometry” in the

sense of Klein’s Erlangen program. Thus, one of the central issues in geometry is

to understand topological features of manifolds locally modeled on a given homo-

geneous space.

Communicated by K. Ono. Received August 20, 2015.

Y. Morita: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba,
Meguro-ku, Tokyo 153-8914, Japan;
e-mail: ymorita@ms.u-tokyo.ac.jp

c© 2017 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



288 Y. Morita

In this paper, we study the following problem proposed by T. Kobayashi:

Problem 1.1 ([7]). When does a homogeneous space model some compact mani-

fold? When does a homogeneous space admit a compact Clifford–Klein form?

Various methods have been applied to study this problem (see the surveys [10,

15, 13, 4] and references therein). One is a cohomological method, i.e., it inves-

tigates “locally invariant” differential forms on a manifold locally modeled on a

homogeneous space and their cohomology classes. This method was initiated by

Kobayashi–Ono [12] and was used and extended in [2] and [18]. In this paper,

we find that this method is useful even when G is not reductive. Note that for a

nonreductive Lie group G, less is known about Problem 1.1, in particular because

we cannot use the properness criterion of Benoist [1] and Kobayashi [11] anymore.

In this paper, we use lowercase German letters for the Lie algebras of Lie

groups denoted by uppercase Roman letters. For example, the Lie algebras of G,

KH and Stab(X) are g, kH and stab(X), respectively. Then, our main result is

stated as follows:

Theorem 1.2. Let G be a Lie group, H its closed subgroup with finitely many

connected components and N the codimension of H in G.

(1) If (ΛN (g/h)∗)h 6= 0 and HN (g, h;R) = 0, then there is no compact manifold

locally modeled on G/H.

(2) Take a maximal compact subgroup KH of H. Let

i : HN (g, h;R)→ HN (g, kH ;R)

be the homomorphism induced by the inclusion of Lie algebras kH ⊂ h. If i is

not injective, then there is no compact manifold locally modeled on G/H.

Some applications of this theorem are given in Sections 6 and 7.

The idea of Theorem 1.2(1) is already implicit in [2]. We shall give its proof for

the sake of completeness. Theorem 1.2(2) is proved in [18] under the assumptions

that G is reductive and H is reductive in G. Our improvement is to separate the

Poincaré duality argument from the other parts of the proof (cf. Proposition 5.1).

This enables us to prove the theorem in general situations.

Theorem 1.2 generalizes some earlier results in [12, 7, 2, 18] (see Section 5).

§2. Preliminaries

In this section, we review the definition of a homomorphism η : Hp(g, H;R) →
Hp(M ;R), which plays a foundational role in the cohomological study of Prob-

lem 1.1.
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Let X be a real analytic manifold with the action of a Lie group G. Recall that

a (G,X)-structure on a manifold M is a collection of (Ui)i∈I , (φi)i∈I , (gij)i,j∈I ,

where (Ui)i∈I is an open covering of M , φi is a diffeomorphism from Ui to some

open set of X, and gij : Ui ∩ Uj → G is a locally constant map satisfying

gij(p)φj(p) = φi(p) (p ∈ Ui ∩ Uj).

We assume the cocycle condition for the transition functions (gij)i,j∈I :

gii(p) = 1 (p ∈ Ui), gij(p)gjk(p)gki(p) = 1 (p ∈ Ui ∩ Uj ∩ Uk).

It is automatically satisfied if X is connected and G acts on X effectively. We

mainly consider the case when G acts transitively on X, namely, X = G/H for

some closed subgroup H of G. A manifold equipped with a (G,G/H)-structure is

also called a manifold locally modeled on G/H.

Let M be a manifold equipped with a (G,X)-structure (Ui)i∈I , (φi)i∈I ,

(gij)i,j∈I . Let π : E → X be a G-equivariant fiber bundle on X with typical

fiber F . Patching (φ∗iE)i∈I by (gij)i,j∈I , we get a fiber bundle πM : EM → M

with the same typical fiber F . We call it the locally G-equivariant bundle over M

corresponding to E. By definition, EM naturally equips a (G,E)-structure. We

can define

η : Γ(X;E)G → Γ(M ;EM )

also by patching construction. In particular, if X = G/H and E = ΛpT ∗X, this is

written as

η : (Λp(g/h)∗)H → Ωp(M).

Here, we have naturally identified Ωp(G/H)G with (Λp(g/h)∗)H . Taking cohomol-

ogy, we get a homomorphism

η : Hp(g, H;R)→ Hp(M ;R)

(see e.g., [5, §1.3], [17, §2.2] for the definition of relative Lie algebra cohomology

Hp(g, H;R)). Such a homomorphism η appears explicitly or implicitly in many

branches of geometry and representation theory, e.g., the Matsushima–Murakami

formula [16], characteristic classes of foliations [3], a generalization of Hirzebruch’s

proportionality principle [12] and the existence problem of a compact manifold

locally modeled on homogeneous spaces [12, 2, 18].

§3. Proof of Theorem 1.2

Lemma 3.1. Let G be a Lie group and H its closed subgroup with finitely many

connected components. We write H0 for the identity component of H. If there is

no compact manifold locally modeled on G/H0, neither is there one on G/H.
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Proof. This is well known at least for Clifford–Klein forms. Suppose there is a

compact manifold M locally modeled on G/H. Consider the locally G-equivariant

fiber bundle πM : M0 → M corresponding to π : G/H0 → G/H. Then the total

space M0 is locally modeled on G/H0 and is compact.

Thus we may assume H to be connected without loss of generality. Now, it is

enough to see the following result.

Proposition 3.2. Let G be a Lie group, H its closed subgroup and N the codi-

mension of H in G.

(1) If (ΛN (g/h)∗)H 6= 0 and HN (g, H;R) = 0, then there is no compact manifold

locally modeled on G/H.

(2) Suppose that H has finitely many connected components. Take a maximal com-

pact subgroup KH of H. If the homomorphism

i : HN (g, H;R)→ HN (g,KH ;R)

is not injective, then there is no compact manifold locally modeled on G/H.

Remark 3.3. Proposition 3.2(1) holds true even if H has infinitely many con-

nected components.

Proof of Proposition 3.2.

(1) Suppose, on the contrary, that there is a compact manifold M locally modeled

on G/H. Take a nonzero element Φ of (ΛN (g/h)∗)H ; it is identified with a

G-invariant volume form on G/H. Hence η(Φ) ∈ ΩN (M) is a volume form on

M by construction of η, and [η(Φ)] 6= 0 in HN (M ;R) by compactness of M .

On the other hand, [Φ] = 0 in HN (g, H;R) by assumption, and [η(Φ)] = 0 in

HN (M ;R). This is a contradiction.

(2) Let M be a compact manifold locally modeled on G/H. Let πM : EM → M

be the locally G-equivariant fiber bundle on M corresponding to π : G/KH →
G/H. Consider the following commutative diagram:

HN (g, H;R)
i−−−−→ HN (g,KH ;R)

η

y η

y
HN (M ;R)

π∗
M−−−−→ HN (EM ;R).

We saw in the proof of (1) that the homomorphism η : HN (g, H;R) →
HN (M ;R) is injective. The typical fiber H/KH of the fiber bundle πM :

EM → M is contractible by the Cartan–Malcev–Iwasawa–Mostow theorem
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(cf. [6, Chap. XV, Thm. 3.1]), thus π∗M : HN (M ;R) → HN (EM ;R) is an

isomorphism. These yield the injectivity of i : HN (g, H;R)→ HN (g,KH ;R).

§4. Equivalent form of Theorem 1.2(1)

It is sometimes useful to rewrite Theorem 1.2(1) as follows.

Proposition 4.1. Let G be a Lie group and H its closed subgroup with finitely

many connected components. Let ng(h) denote the normalizer of h in g. If the

h-action on g/h is trace-free (i.e., tr(adg/h(X)) = 0 for all X ∈ h) and the ng(h)-

action on g/h is not trace-free, then there is no compact manifold locally modeled

on G/H.

Proof. This is a direct consequence of Theorem 1.2(1) and the lemma below.

Lemma 4.2. Let g be a Lie algebra, h its subalgebra and N the codimension of h

in g.

(1) The h-action on g/h is trace-free if and only if (ΛN (g/h)∗)h 6= 0.

(2) The ng(h)-action on g/h is trace-free if and only if HN (g, h;R) 6= 0.

Proof.

(1) This follows immediately from the definition of an h-action on ΛN (g/h)∗.

(2) Let ι denote the interior product and L the g-action on Λg∗. Assume that

(ΛN (g/h)∗)h 6= 0 and fix a nonzero element Φ of (ΛN (g/h)∗)h. We wish to

determine when

d : (ΛN−1(g/h)∗)h → (ΛN (g/h)∗)h

is a zero map. Every element of ΛN−1(g/h)∗ is written in the form ι(Y )Φ

(Y ∈ g) and the choice of such a Y is unique up to h. For X ∈ h,

L(X)ι(Y )Φ = ι(Y )L(X)Φ− ι([X,Y ])Φ = ι([X,Y ])Φ.

It is equal to zero if and only if [X,Y ] ∈ h. Thus ι(Y )Φ is h-invariant if and

only if Y ∈ ng(h). Now,

dι(Y )Φ = L(Y )Φ− ι(Y )dΦ = L(Y )Φ = − tr(adg/h(Y ))Φ.

Hence d = 0 on (ΛN−1(g/h)∗)h if and only if the ng(h)-action on g/h is trace-

free.
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§5. Relation with earlier results

Kobayashi and Ono established necessary conditions for the existence of compact

Clifford–Klein forms ([12, Cor. 5], [7, Prop. 4.10]) using a cohomological method.

We gave a generalization [18, Thm. 1.3] of their necessary conditions. The following

proposition shows that Theorem 1.2(2) further generalizes [18, Thm. 1.3].

Proposition 5.1. Let G be a unimodular Lie group, H its closed subgroup such

that h is reductive in g and N the codimension of H in G. If i : Hp(g, h;R) →
Hp(g, kH ;R) is injective for p = N , it is also injective for 0 6 p 6 N − 1.

Remark 5.2. In this paper, we say that a Lie group G is unimodular if the adjoint

action of g on itself is trace-free. If G is connected, it is equivalent to the existence

of bi-invariant Haar measure on G.

Proof of Proposition 5.1. This follows from the standard Poincaré duality argu-

ment. Take any nonzero cohomology class α ∈ Hp(g, h;R). By Poincaré duality [14,

Thm. 12.1], we can pick β ∈ HN−p(g, h;R) such that α ∧ β 6= 0 in HN (g, h;R).

Then η(α ∧ β) 6= 0 by assumption, which yields η(α) 6= 0.

We can also recover a result of Benoist–Labourie [2] from Theorem 1.2, though

our proof relies on the crucial parts of [2].

Proposition 5.3 ([2, Thm. 1]). Let G be a connected semisimple Lie group and

H its unimodular subgroup with finitely many connected components. If the center

z(h) of h contains a nonzero hyperbolic element, then there is no compact manifold

locally modeled on G/H.

Proof. We may assume H to be connected by Lemma 3.1. We identify g with g∗

via the Killing form. In [2], it is shown that our assumptions yield the existence

of X ∈ g such that

• X is a nonzero hyperbolic element;

• H ⊂ Stab(X);

• with ω = dX and with N and 2m being the codimensions of H and Stab(X)

in G, respectively, if we take µ ∈ (ΛN−2m(g/h)∗)h so that µ ∧ ωm 6= 0, then

d(µ ∧ ωm−1) = 0.

Here, Stab(X) ⊂ G is the stabilizer of X in G. Note that ω = dX is an ele-

ment of (Λ2(g/stab(X))∗)Stab(X) (⊂ (Λ2(g/h)∗)h) and satisfies ωm 6= 0 (2m =

dim(G/Stab(X))).

If [µ ∧ ωm]g,h = 0 in HN (g, h;R), then the proposition follows from Theo-

rem 1.2(1). Thus we assume [µ ∧ ωm]g,h 6= 0. Since every element of kH com-
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mutes with X and is elliptic, then X ∈ ((g/kH)∗)kH . Hence [µ ∧ ωm]g,kH =

[d(X ∧ µ ∧ ωm−1)]g,kH = 0 in HN (g, kH ;R). Apply Theorem 1.2(2).

§6. Examples (1): Nonreductive Lie groups

In the rest of this paper, we shall give some applications of Theorem 1.2. In this

section, we study the case that G is nonreductive.

Example 6.1. Let G be a simply connected nonunimodular Lie group and

G = S nR (S: semisimple, R: solvable)

be its Levi decomposition. Take any closed unimodular subgroup H of S with finitely

many connected components. Then there is no compact manifold locally modeled

on G/H.

In fact, we can show a slightly more general result:

Example 6.2. Let G be a nonunimodular Lie group. Let G′ be a closed subgroup

of G such that g′ is reductive in g and the adjoint action of z(g′) on g is trace-free.

Here z(g′) denotes the center of g′. Let H be any closed unimodular subgroup of

G′ with finitely many connected components. Then there is no compact manifold

locally modeled on G/H.

Proof of Example 6.2. By Proposition 4.1, it suffices to check that

(i) the h-action on g/h is trace-free;

(ii) the ng(h)-action on g/h is not trace-free.

We will show the stronger results

(i′) the g′-action on g is trace-free;

(ii′) the zg(g′)-action on g is not trace-free.

Here zg(g′) denotes the centralizer of g′ in g.

Let us prove (i′). Since g′ is reductive, we have a direct sum decomposition

g′ = z(g′) ⊕ [g′, g′]. By our assumption, z(g′) acts trace-freely on g. Also, [g′, g′]

acts trace-freely on g since it is a semisimple Lie algebra.

Now let us prove (ii′). Let

g1 = {X ∈ g : tr(adg(X)) = 0}.

Since g′ is reductive in g, we can pick a g′-invariant subspace g2 complementary

to g1 in g. Note that g2 6= {0} and tr(adg(X)) 6= 0 for any nonzero element X
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of g2. We have [g′, g2] ⊂ [g, g] ⊂ g1, while [g′, g2] ⊂ g2 by g′-invariance of g2. This

means g2 ⊂ zg(g′). From these, (ii′) follows.

Next we consider coadjoint orbits. Let G be a Lie group and F ∈ g∗. The

coadjoint orbit G.F ⊂ g∗ of F is G-diffeomorphic to G/Stab(F ), where Stab(F ) =

{g ∈ G : g.F = F} is the stabilizer of F in G. Let ω = dF ; in other words,

ω(X,Y ) = −〈F, [X,Y ]〉 (X,Y ∈ g).

Then ω is an element of (Λ2(g/stab(F ))∗)Stab(F ) satisfying dω = 0 and ωm 6=
0 (2m = dim(G/Stab(F ))). Under the identification (Λ2(g/stab(F ))∗)Stab(F ) '
Ω2(G/Stab(F ))G, ω corresponds to the Kirillov–Kostant–Souriau symplectic form.

Applying Theorem 1.2 to this setting, we obtain the following example.

Example 6.3. Let G be a Lie group and F ∈ g∗. Assume that dim(G/Stab(F )) >

0 and Stab(F ) has finitely many connected components. If F |kStab(F )∩[g,g] = 0, then

there is no compact manifold locally modeled on G/Stab(F ).

Remark 6.4. The condition dim(G/Stab(F )) > 0 holds if and only if F |[g,g] 6= 0.

Remark 6.5. If G is a real linear algebraic group, the number of connected com-

ponents of Stab(F ) (in the Euclidean topology) is always finite by Whitney’s

theorem [19, Thm. 3]. For a nonalgebraic Lie group G, it may be infinite. An easy

example is

G = (universal covering of SL(2, R)), F =

(
0 0

1 0

)
∈ g ' g∗.

Here we have identified g with g∗ via the Killing form.

Proof of Example 6.3. Put 2m = dim(G/Stab(F )). Recall that ωm is a nonzero

element of (Λ2m(g/stab(F ))∗)stab(F ). By Theorem 1.2(1), we need to consider only

the case that [ωm]g,stab(F ) 6= 0. Thus, by Theorem 1.2(2), it suffices to prove that

[ωm]g,kStab(F )
= 0. Since

ker(d : g∗ → Λ2g∗) = (g∗)g = (g/[g, g])∗,

our assumption F |kStab(F )∩[g,g] = 0 may be rewritten as

F + F ′ ∈ ((g/kStab(F ))
∗)kStab(F ) for some F ′ ∈ ker(d : g∗ → Λ2g∗).

We obtain

[ωm]g,kStab(F )
= [d((F + F ′) ∧ ωm−1)]g,kStab(F )

= 0 in H2m(g, kStab(F );R),

as required.
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When G is a linear solvable Lie group, Example 6.3 gives the following result:

Example 6.6. Let G be a linear solvable Lie group and F ∈ g∗. Assume that

dim(G/Stab(F )) > 0 and Stab(F ) has finitely many connected components. Then

there is no compact manifold locally modeled on G/Stab(F ).

Remark 6.7. In Example 6.6, if G is simply connected, then G/Stab(F ) admits

an infinite discontinuous group ([9, Thm. 2.2]).

Remark 6.8. In Example 6.6, the linearity of G is crucial. Consider the nonlinear

nilpotent Lie group

G :=


1 a c

1 b

1

 : a, b, c ∈ R

 /


1 0 n

1 0

1

 : n ∈ Z

 .

Its two-dimensional coadjoint orbits have connected stabilizers, but admit compact

Clifford–Klein forms.

Proof of Example 6.6. Let G0 be the identity component of G and [G0, G0] be

its commutator subgroup. Then [G0, G0] is closed in G and it does not contain a

compact subgroup other than {1}; see [6, Chap. XVIII, Thm. 3.2]. In particular

KStab(F ) ∩ [G0, G0] = {1} and hence kStab(F ) ∩ [g, g] = 0. Thus, we can apply

Example 6.3.

§7. Examples (2): Reductive Lie groups

In this section, we study the case that G is reductive and H is not reductive in

G. Note that, when G is reductive and H is reductive in G, Theorem 1.2(1) is

not applicable and, as we saw in Section 5, Theorem 1.2(2) is identical to [18,

Thm. 1.3].

Example 7.1. Let G be a reductive Lie group and P = MAN be a proper

parabolic subgroup of G. Then there is no compact manifold locally modeled on

G/N .

Proof. Since g and n are unimodular, the n-action on g/n is trace-free. On the

other hand, a normalizes n and contains an element X such that trn(X) 6= 0.

Since g is unimodular, such an X also satisfies trg/n(X) 6= 0. Thus, we can apply

Proposition 4.1.

Example 7.2. Let G be a real linear semisimple algebraic group and X ∈ g. Let

Stab(X) ⊂ G be the stabilizer of X in G. Let X = Xe +Xh +Xn be the decompo-

sition of X into elliptic, hyperbolic and nilpotent parts. If X is not a semisimple
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element (i.e., Xn 6= 0), then there is no compact manifold locally modeled on

G/Stab(X).

Remark 7.3. The study of Problem 1.1 for G/Stab(X), where G and X are as

in Example 7.2, was started by [8], and then extended by [2]. We list their results

here:

• Assume that X is a semisimple element (i.e., Xn = 0). If Stab(X) 6= Stab(Xe),

namely, if G/Stab(X) does not carry a G-invariant complex structure, then

G/Stab(X) does not admit a compact Clifford–Klein form ([8, Thm. 1.3]).

• If X is a nilpotent element (i.e., X = Xn), then there is no compact manifold

locally modeled on G/Stab(X) ([2, Cor. 4]).

• If Xh 6= 0, then there is no compact manifold locally modeled on G/Stab(X)

([2, Cor. 5]).

Combining [2, Cor. 5] and Example 7.2, we conclude that, if X is not an elliptic

element (i.e., if X 6= Xe), then there is no compact manifold locally modeled on

G/Stab(X).

Proof of Example 7.2. We identify g with g∗ via the Killing form. Let ω = dX.

Then ω is an element of (Λ2(g/stab(X))∗)Stab(X) satisfying dω = 0 and ωm 6= 0

(2m = dim(G/Stab(X))). By Theorem 1.2(1), we may assume [ωm]g,stab(X) = 0.

Then, by Theorem 1.2(2), it is enough to prove that [ωm]g,kStab(X)
= 0.

Put Xss = Xe + Xh. Let ωss = dXss and ωn = dXn. They are elements

of (Λ2(g/stab(X))∗)stab(X) because Y ∈ g commutes with X if and only if it

commutes with Xss and Xn. Since every element of kStab(X) commutes with Xn and

is elliptic, Xn is perpendicular to kStab(X). Therefore, Xn ∈ ((g/kStab(X))
∗)kStab(X) .

We have

[ωm]g,kStab(X)
=

[
m∑
k=0

m!

k!(m− k)!
ωm−kss ∧ ωkn

]
g,kStab(X)

=

[
ωmss + d(Xn ∧

m∑
k=1

m!

k!(m− k)!
ωm−kss ∧ ωk−1n )

]
g,kStab(X)

= [ωmss ]g,kStab(X)
in H2m(g, kStab(X);R).

Let us prove that ωmss = 0. To see this, it suffices to show that stab(X) ( stab(Xss).

Let us assume the contrary: stab(X) = stab(Xss). Take a Cartan subalgebra j of

g⊗ C containing Xss. Then we have

j ⊂ stab(Xss)⊗ C = stab(X)⊗ C ⊂ stab(Xn)⊗ C.
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Since j is a maximal abelian subalgebra of g⊗C, we have Xn ∈ j. This is impossible

because j consists of semisimple elements.
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(1996), 315–347. Zbl 0868.22013 MR 1418901

[2] Y. Benoist and F. Labourie, Sur les espaces homogènes modèles de variétés compactes, Inst.
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