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A Weak Converse Theorem for Degree 2
L-Functions with Conductor 1

by

Jerzy Kaczorowski and Alberto Perelli

Abstract

We show that every normalized function of degree 2 and conductor 1 in the extended Sel-
berg class has real coefficients, and certain invariants agree with those of the L-functions
of cusp forms for the full modular group. The result may therefore be regarded as a weak
converse theorem in such a general setting.
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§1. Introduction

We briefly recall some well-known properties of the cusp forms of level 1 (i.e.,

associated with the full modular group Γ) and of their L-functions. Let Sw(Γ) be

the complex vector space of holomorphic cusp forms of integral weight w and let

an denote their Fourier coefficients. Then w is an even integer ≥12, and Sw(Γ)

has a unique basis B of normalized (i.e., with a1 = 1) eigenfunctions of the Hecke

operators; moreover such eigenforms have an ∈ R. For f ∈ B, the associated Hecke

L-function Lf (s) is entire, has functional equation and Euler product and satisfies

the Ramanujan conjecture. Precisely, writing in normalized form

a(n) =
an

n(w−1)/2
, Lf (s) =

∞∑
n=1

a(n)

ns
and Λf (s) =

(
1

2π

)s
Γ

(
s+

w − 1

2

)
Lf (s),
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we have

(1) Λf (s) = iwΛf (1− s) and Lf (s) =
∏
p

(
1− αp

ps

)−1

,

(
1− αp

ps

)−1

,

with |αp| = 1; see Serre [17, Chapter VII]. Results of a similar nature hold for the

Maass cusp forms; in general, in this case only the weights 0 and 1 matter from the

L-functions viewpoint, and there are no forms of odd weight in level 1. In partic-

ular, the L-function Lf (s), formed directly with the Fourier–Bessel coefficients an
of a normalized cusp form f (i.e., a1 = 1 and a(n) = an) of weight 0 and level 1,

is entire and satisfies the functional equation

(2) Λf (s) = (−1)εΛf (1− s),

where

Λf (s) =

(
1

π

)s
Γ

(
s

2
+
ε+ iν

2

)
Γ

(
s

2
+
ε− iν

2

)
Lf (s),

ε = 0 (resp. ε = 1) if f is even (resp. odd) and 1/4 + ν2, with ν ∈ R, is the

associated eigenvalue of the Laplacian. Moreover, an ∈ R if f is an eigenfunction

of the Hecke operators. See Duke–Friedlander–Iwaniec [3, Section 8] for a useful

explicit account of the analytic side of the Maass forms theory; see also Bump [1,

Proposition 1.9.1] for the level 1 case. Since all the above forms are of level 1, their

L-functions have degree 2 and conductor 1 (see below for definitions).

In [11] we characterized the functions of degree 2 in the Selberg class S with

conductor 1 and a pole at s = 1, showing that F (s) = ζ(s)2 is the only such

function. We recall that, roughly, the extended Selberg class S] is the class of

Dirichlet series satisfying a Riemann-type functional equation, while S is the sub-

class of the F ∈ S] satisfying the Ramanujan conjecture and having a general

Euler product; again, see below for definitions. In this paper we deal with the

general case of functions F ∈ S] with degree 2 and conductor 1, showing that

these have some common features with the above L-functions of cusp forms. In

particular, we prove that after a natural normalization, the coefficients of such

F (s) are real, and certain invariants, including the root number, agree with those

coming from (1) and (2). Therefore, our result may be regarded as a weak converse

theorem in such a general framework. Moreover, these similarities shed some light

on the rather mysterious content of the subclass of the degree 2 functions in S],
and support the standard conjectures about the degree 2 functions in S.

Now we recall several definitions; we refer to our survey papers [6, 4, 14, 15, 16]

for the basic theory of the Selberg classes S and S]. Every F ∈ S] is an absolutely

convergent Dirichlet series for σ > 1 whose coefficients are denoted by a(n) and
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(s − 1)mF (s) has continuation to C as an entire function of finite order for some

integer m ≥ 0; moreover, writing f(s) = f(s), a functional equation of type

(3) Φ(s) = ωΦ(1− s)

holds, where |ω| = 1 and

(4) Φ(s) = Qs
r∏
j=1

Γ(λjs+ µj)F (s),

with Q > 0, r ≥ 0, λj > 0, <µj ≥ 0. In addition, the functions in the Selberg class

S satisfy the Ramanujan conjecture a(n)� nε and have a general Euler product

F (s) =
∏
p

Fp(s) with logFp(s) =

∞∑
m=1

b(pm)

pms

and b(pm) � pϑm for some ϑ < 1/2. The degree dF , conductor qF , root number

ω∗F and the first H-invariant HF (1) (also called the ξ-invariant ξF in our previous

papers and in the next section) are defined as

dF = 2

r∑
j=1

λj , qF = (2π)dFQ2
r∏
j=1

λ
2λj

j ,

ω∗F = ω

r∏
j=1

λ
−2i=µj

j and HF (1) = 2

r∑
j=1

(µj − 1/2) = <HF (1) + idF θF ,

say; θF is called the internal shift of F (s). All these quantities are invariants of

F (s), i.e., they do not depend on the shape (4) of the functional equation (3),

which can be modified by means of some formulae of the Γ function. We say that

F ∈ S] is normalized if θF = 0 and its first nonvanishing Dirichlet coefficient

equals 1.

Remark. When dealing with F ∈ S] with dF = 2 and qF = 1 we may restrict

ourselves, without loss of generality, to normalized functions. Indeed, in such a

situation a polar F (s) has θF = 0 (see [11, Lemma 4.1]), while an entire F (s) can

always be shifted to get θF = 0. The second requirement is met by simply dividing

by the first nonvanishing coefficient.

Finally, for a normalized F ∈ S] with dF = 2 and qF = 1, we write HF (1) as

(5) HF (1) = dF (kF − 1).

The meaning of the invariant kF , which a priori can take any real value, will be

discussed later on.
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Note that the presence of the conjugate in (3) implies some differences in the

structure of the solutions of functional equations (1) (or (2)) and (3). In particular,

the solutions in S] of (3) form a real vector space, while the L-functions of cusp

forms form a complex vector space. Therefore, not every Lf (s) as above belongs

to S], although the similarities between the two structures are definitely strong;

see e.g., Carletti–Monti Bragadin–Perelli [2]. Moreover, such differences vanish if

we consider only functions in S and the Lf (s) associated with eigenforms, since

their coefficients are real. Actually, it has been conjectured that the primitive

functions of degree 2 in S coincide with the normalized L-functions associated with

holomorphic and nonholomorphic newforms. As a small step in this direction, we

prove the following result.

Theorem. Let F ∈ S] with degree 2 and conductor 1 be normalized. Then

(i) the Dirichlet coefficients a(n) are real;

(ii) kF ∈ Z and ω∗F = (−1)kF .

Note that, a priori, the invariant kF could be a negative integer. However, we

believe that this is never the case, and actually a standard conjecture in Selberg

class theory implies that kF ≥ 0. Indeed, the strong λ-conjecture, asserting that

every F ∈ S] has a functional equation where all the λj in (4) are equal to 1/2

as in the case of classical L-functions (see [7]), immediately implies that 0 ≤
<HF (1) + dF = dF kF .

We conclude with a brief discussion of the meaning of the invariant kF in the

framework of the L-functions Lf (s) discussed above. In the case of holomorphic

modular forms, in view of functional equation (1) the first H-invariant equals

2(w/2− 1), hence kF is related to the weight of f :

(6) kF =
w

2
.

For Maass cusp forms the weight is 0, and from (2) we have that the first H-

invariant equals 2(ε− 1); hence kF is related to the parity of f :

kF = ε.

Therefore, the data of the functions F (s) in the theorem agree with the corre-

sponding data of the cusp forms of level 1; thus our theorem may be regarded as a

weak converse theorem for functions of degree 2 and conductor 1 in the extended

Selberg class S]. Note in particular that the property kF ∈ Z, obtained here by

purely analytic means, implies, thanks to (6), the well-known algebraic fact that

there are no cusp forms of level 1 and odd weight.
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We finally remark that, writing HF (1) as in (5) also for the degree 1 func-

tions in S] with θF = 0, we have again that kF coincides with the parity ε since

HF (1) = ε− 1. Indeed, for such functions the allowed Γ-factors are only those of

the Dirichlet L-functions associated with even and odd primitive characters (mod

q); see [5, Theorem 2]. However, if q > 1 the root number is not given by (ii) of our

theorem. This agrees with the general expectation that the situation becomes more

complicated as soon as we consider L-functions with conductor >1. For instance,

in that case there is a wide variety of admissible values for the root numbers of

cusp forms of level >1.

§2. Proof of the theorem

The following transformation formula is the basis of the proof of the theorem; we

use the standard notation e(x) = e2πix.

Lemma. Let F ∈ S] with dF = 2 be normalized, α0 > 0 and α1 ∈ R. Then

∞∑
n=1

a(n)

ns
e
(
−α0n− α1

√
n
)

= −ω∗F e−i(π/2)ξF e

(
α2

1

4α0

)
(α0
√
qF )2s−1

×
∞∑
n=1

a(n)

ns
e

(
n

α0qF
− α1

√
n

α0
√
qF

)
+ h(s),

(7)

where h(s) is holomorphic for σ > 1/2.

The meaning of (7) is that the difference of the two series, which are absolutely

convergent for σ > 1, is holomorphic for σ > 1/2. Actually, general results of this

type are known (see [10, Theorem 1.1] and [13, Theorem 1]), but in this paper we

need a version with explicit constants. We state the lemma under the hypothesis

that F (s) is normalized, but in fact we prove it assuming the slightly milder

condition θF = 0.

Proof of the lemma. We follow closely the proofs of [10, Theorem 1.1] and [13,

Theorem 1] since, essentially, we need to compute explicitly only the constants ap-

pearing in the main term in these theorems. Since the proof of such a Theorem 1.1

is definitely more detailed, but requires F (s) to be entire, at the beginning we

follow the proof of the above-quoted Theorem 1, which holds in full generality but

is less detailed, and we shift to Theorem 1.1 as soon as the hypothesis that F (s)

is regular at s = 1 is no longer relevant for our purposes. We shall only briefly

describe the required changes; we use the notation in [10].

As already mentioned, we start by following the proof of [13, Theorem 1], till

equation (2.10) there, in the special case with N = 1, κ0 = 1 and ω1 = 1/2 (see [10,
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eq. (1.4)]). In view of [13, Lemma 2.1], the sum
∑
∅6=A⊂{0,1} IX(s,A) contains what

in the end will be the main term of the transformation formula, namely the series

on the right-hand side of (7). Moreover, the expressions of the terms IX(s,A)

in [13, eq. (2.10)] and in [10, eq. (2.3)], obtained using the functional equation of

F (s), are identical, and the integrals contained in such expressions do not depend

on the polar structure of F (s) at s = 1. Since the rest of the proof of the lemma is

devoted to the explicit computation of the constants appearing in the main term

arising from such integrals, we may now shift to [10, eq. (2.3)] and follow the proof

of [10, Theorem 1.1] up to the end.

The first change concerns equation (2.4). Computing explicitly the constant

c0 arising in equation (2.4) after the use of Stirling’s formula as in [8, Lemma 2.1],

we obtain

(8) c0 = πr−1/22r−3/2β1/2
r∏
j=1

λ
−2i=µj

j ;

see [10, p. 1409] for the definition of β. Moreover, the explicit value of the constant

c1 in [10, eq. (2.6)] is

c1 = 2−re−i(π/2)ξF .

Note that the constants c1 in equations (2.4) and (2.6) are not equal; this is allowed

by the notation used in [10, see p. 1407]. Such a situation will be encountered later

on as well, and in each case we shall warn the reader. As a consequence, with the

notation in [10], the first of the three terms corresponding to ` = 0 in equation (2.8)

in our case equals

1

2
√

2π
ω∗F e

−i(π/2)ξF β1/2Q1−2s
∞∑
n=1

a(n)

n1−s
1

(2πi)|A|

×
∫
L|A

Γ

(
3

2
− 2x|A

)(
− 4

β

)x|A

G(w|A)

(
n

Q2

)w|A

dw|A

=
1

2
√

2π
ω∗F e

−i(π/2)ξF β1/2Q1−2s
∞∑
n=1

a(n)

n1−s IX(s,A, n, 0).

(9)

All the remaining terms in equation (2.8), corresponding to ` ≥ 1 and to the

quantities JX(s,A, n, `) and hX(s,A, n, `), do not contribute to the main term of

the transformation formula, so we forget about them.

Now we follow the Mellin transform argument in [10, Section 2.2], applied to

the integral IX(s,A, n, 0) in (9). A simple computation shows that the value of

the constant c0 in equation (2.14) (which is different from c0 in (8)) is

c0 =
1

2
e−i(3π/4).
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Therefore, recalling (9), the relevant part of
∑
∅6=A⊂{0,1} IX(s,A) equals (compare

with equation (2.17))

(10)
e−i(3π/4)

2
√

2π
ω∗F e

−i(π/2)ξF

(
Q2β

4

)1/2−s ∞∑
n=1

a(n)

n1−s IX(s, n, 0),

where, in our case,

IX(s, n, 0) =

∫ ∞
0

ei
√
x
(
e−ΨX(x,n)e

(
−f
(qx
n
,α
))
− 1
)
x−1/4−s dx,

with

ΨX(x, n) =
1

X

(
qx

n
+
(qx
n

)1/2
)
, q = qF (4π)−2 and f(ξ,α) = α0ξ + α1

√
ξ.

Next we follow the saddle point argument in [10, Section 2.3], applied to the

integral IX(s, n, 0) in (10). We recall that in our case,

Φ(z, n,α) = z1/2 − 2πf
(qz
n
,α
)
,

and let x0 = x0(n,α) be the zero of ∂
∂zΦ(z, n,α) in [10, Lemma 2.3], i.e., the

critical point of IX(s, n, 0); we recall that x0 > 0. Hence by [10, Lemma 2.4 and

eq. (2.29)] the relevant part of the integral IX(s, n, 0) is

(11) γx
3/4−s
0

∫ r

−r
e−ΨX(w,n)+iΦ(w,n,α)(1 + γλ)−1/4−s dλ,

where

(12)

γ =
√

2e−iπ/4, w = x0(1 + γλ), r =
log n√
|R|

and R = x2
0

∂2

∂z2
Φ(z, n,α)|z=x0

.

Finally we proceed as in [10, Section 2.4] to perform the limit as X →∞. In

view of [10, eqs. (2.38) and (2.39)], for our present purposes such a procedure sim-

ply leads to the vanishing of the function ΨX(z, n) inside (11). As a consequence,

from (10) and (11) we obtain that the main term of the transformation formula is

contained inside the quantity

− 1

2
√
π
ω∗F e

−i(π/2)ξF

(
Q2β

4

)1/2−s

×
∞∑

n=n0

a(n)

n1−s

(
x

3/4−s
0

∫ r

−r
e

(
1

2π
Φ(z, n,α)

)
(1 + γλ)−1/4−s dλ

)

=
−1

2γ
√
π
ω∗F e

−i(π/2)ξF

(
Q2β

4

)1/2−s ∞∑
n=n0

a(n)

n1−sK(s, n),
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with the notation of the above-quoted equation (2.38), where n0 ≥ 1 is sufficiently

large. Moreover, by [10, Lemma 2.7] the relevant part of such a quantity is

−1

2
ω∗F e

−i(π/2)ξF

(
Q2β

4

)1/2−s ∞∑
n=n0

a(n)

n1−s

(
x

3/4−s
0√
|R|

e

(
1

2π
Φ(x0, n,α)

))

= −1

2
ω∗F e

−i(π/2)ξF

(
Q2β

4

)1/2−s ∞∑
n=n0

a(n)

n1−sM(s, n),

(13)

say.

The final step in the proof of the lemma is the explicit computation of the

terms M(s, n) in (13). We have

Φ(z, n,α) =
√
z − 2π

(
α0
qz

n
+ α1

√
qz

n

)
=

(
1− α1

2

√
qF
n

)√
z − α0qF

8πn
z;

hence the zero x0 > 0 of the first z-derivative of Φ(z, n,α) satisfies

√
x0 =

4πn

α0qF

(
1− α1

2

√
qF
n

)
.

Consequently, in view of (12) we have

Φ(x0, n,α) =
2πn

α0qF

(
1− α1

2

√
qF
n

)2

= 2π

(
n

α0qF
− α1

√
n

α0
√
qF

)
+ 2π

α2
1

4α0

and

|R| = 1

4

√
x0

(
1− α1

2

√
qF
n

)
,

1√
|R|

= 2x
−1/4
0

(
1 +O

(
1√
n

))
.

Therefore the main term of M(s, n) in (13) is

2e

(
α2

1

4α0

)
(
√
x0)1−2se

(
n

α0qF
− α1

√
n

α0
√
qF

)

= 2e

(
α2

1

4α0

)(
4π

α0qF

)1−2s e
(

n
α0qF

− α1
√
n

α0
√
qF

)
n2s−1

(
1 +O

(
1√
n

))
.

(14)

From (13) and (14) we finally obtain that the main term of the transformation

formula is

−ω∗F e−i(π/2)ξF e

(
α2

1

4α0

)
(α0
√
qF )2s−1

∞∑
n=n0

a(n)

ns
e

(
n

α0qF
− α1

√
n

α0
√
qF

)
,

as required. Moreover, all the terms we neglected in the course of the proof, as

well as the missing terms with n = 1, . . . , n0 − 1 in the above series, contribute to
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form a function that certainly is holomorphic for σ > 1/2. The lemma is therefore

proved.

Now we are ready for the proof of the theorem.

Proof of the theorem. For simplicity we write

(15) ΩF = −ω∗F ei(π/2)ξF ;

we recall that the standard twist of F ∈ S] with degree 2 is

(16) F (s, α) =

∞∑
n=1

a(n)

ns
e(−α

√
n)

and we refer to [9] and [12] for the properties of F (s, α). Due to the periodicity of

the complex exponential we have

F (s, α) =

∞∑
n=1

a(n)

ns
e(−n− α

√
n);

hence, recalling that qF = 1, from the lemma with the choice α0 = 1 and α1 =

α > 0 we get

(17) F (s, α) = ΩF e

(
α2

4

)
F (s, α) + h(s),

where h(s) is holomorphic for σ > 1/2 and F (s, α) denotes the right-hand side

of (16) with a(n) replaced by a(n), i.e., the standard twist of the conjugate F ∈ S]

of F (s).

Next we recall some properties of the standard twist in our special case where

dF = 2, qF = 1 and θF = 0. From [9, Theorems 1 and 2] (see also [12, Theorem 1]),

we have

(18) ress=3/4F (s, α) = c0(F )
a(nα)

n
1/4
α

,

with c0(F ) 6= 0 and nα = α2/4. Now let n̄ be the least n with a(n) 6= 0, and

recall that a(n̄) = 1 since F (s) is normalized. Choosing α = 2
√
n̄ and comparing

residues at s = 3/4 of both sides of (17), and recalling that F (s) has degree 2,

conductor 1 and θF = 0, from (18) we obtain

c0(F )

n̄1/4
=

ΩF c0(F )

n̄1/4

since e
(
α2

4

)
= e(n̄) = 1. As a consequence,

(19) c0(F ) = ΩF c0(F )
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and hence choosing α = 2
√
n for arbitrary n ≥ n̄ and again comparing residues

in (17), we have

a(n)

n1/4
=
a(n)

n1/4
.

The first assertion of the theorem then follows.

To prove the other assertions we note that from (19) and the first assertion

we obtain

(20) ΩF = 1.

Since in general ω∗
F

= ω∗F and |ω∗F | = 1, in our case we have ω∗F = ω∗F and hence

ω∗F = ±1.

Therefore from (15) and (20) we have ei(π/2)ξF = ±1; hence ξF is an even integer

that we write as

ξF = 2(k − 1)

for some integer k. Moreover, again from (15) and (20), we obtain

ω∗F = −e−iπ(k−1) = (−1)k,

which completes the proof of the theorem.
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