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Effective Basepoint-Free Theorem for Semi-Log
Canonical Surfaces

by

Osamu Fujino

Abstract

This paper proposes a Fujita-type freeness conjecture for semi-log canonical pairs. We
prove it for curves and surfaces by using the theory of quasi-log schemes and give some
effective very ampleness results for stable surfaces and semi-log canonical Fano surfaces.
We also prove an effective freeness for log surfaces.
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§1. Introduction

We will work over C, the complex number field, throughout this paper. Note that,

by the Lefschetz principle, all the results in this paper hold over any algebraically

closed field k of characteristic 0.

This paper proposes the following Fujita-type freeness conjecture for projec-

tive semi-log canonical pairs.

Conjecture 1.1 (Fujita-type freeness conjecture for semi-log canonical pairs).

Let (X,∆) be an n-dimensional projective semi-log canonical pair and let D be a

Cartier divisor on X. We put A = D − (KX + ∆). Assume that

(1) (An ·Xi) > nn for every irreducible component Xi of X, and

(2) (Ad · W ) ≥ nd for every d-dimensional irreducible subvariety W of X for

1 ≤ d ≤ n− 1.

Then the complete linear system |D| is basepoint-free.
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By [Liu, Corollary 3.5], the complete linear system |D| is basepoint-free if

An >
(

1
2n(n+ 1)

)n
and (Ad · W ) >

(
1
2n(n+ 1)

)d
hold true in Conjecture 1.1,

which is obviously a generalization of Angehrn–Siu’s effective freeness (see [AS]

and [Fuj1]).

Of course, the above conjecture is a naive generalization of Fujita’s celebrated

conjecture:

Conjecture 1.2 (Fujita’s freeness conjecture). Let X be a smooth projective va-

riety with dimX = n and let H be an ample Cartier divisor on X. Then the

complete linear system |KX + (n+ 1)H| is basepoint-free.

Now we have the main theorem of this paper:

Theorem 1.3 (Main theorem; see Theorems 2.1 and 5.1). Conjecture 1.1 holds

true in dimensions 1 and 2.

We have a corollary of Theorem 1.3:

Corollary 1.4 (Cf. [LR, Theorem 24]). Let (X,∆) be a stable surface such that

KX + ∆ is Q-Cartier. Let I be the smallest positive integer such that I(KX + ∆)

is Cartier. Then |mI(KX + ∆)| is basepoint-free and 3mI(KX + ∆) is very ample

for every m ≥ 4. If I ≥ 2, then |mI(KX + ∆)| is basepoint-free and 3mI(KX + ∆)

is very ample for every m ≥ 3. In particular, 12I(KX + ∆) is always very ample

and 9I(KX + ∆) is very ample if I ≥ 2.

Note that a stable pair (X,∆) is a projective semi-log canonical pair (X,∆)

such that KX + ∆ is ample. A stable surface is a two-dimensional stable pair. We

have a further corollary:

Corollary 1.5 (Semi-log canonical Fano surfaces). Let (X,∆) be a projective

semi-log canonical surface such that −(KX + ∆) is an ample Q-divisor. Let I be

the smallest positive integer such that I(KX+∆) is Cartier. Then |−mI(KX+∆)|
is basepoint-free and −3mI(KX +∆) is very ample for every m ≥ 2. In particular,

−6I(KX + ∆) is very ample.

For log surfaces (see [Fuj3]), the following theorem is a reasonable formulation

of the Reider-type freeness theorem. For a related topic, see [Kaw].

Theorem 1.6 (Effective freeness for log surfaces). Let (X,∆) be a complete irre-

ducible log surface and let D be a Cartier divisor on X. We put A = D−(KX+∆).

Assume that A is nef, A2 > 4 and A · C ≥ 2 for every curve C on X such that

x ∈ C. Then OX(D) has a global section not vanishing at x.
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We know that the theory of log surfaces initiated in [Fuj3] now holds in

characteristic p > 0 (see [FT], [Tan1] and [Tan2]). Therefore, it is natural to

propose the following conjecture:

Conjecture 1.7. Theorem 1.6 holds in characteristic p > 0.

Note that the original form of Fujita’s freeness conjecture (see Conjecture 1.2)

is still open for surfaces in characteristic p > 0.

The standard approach to the Fujita-type freeness conjectures is based on the

Kawamata–Viehweg vanishing theorem (see [EL]). However, we cannot directly ap-

ply the Kawamata–Viehweg vanishing theorem to log canonical pairs and semi-log

canonical pairs. Therefore, we will use the theory of quasi-log schemes (see [Fuj4],

[Fuj5], [Fuj8], and so on).

We summarize the contents of this paper. In Section 2, we prove Conjecture 1.1

for semi-log canonical curves using the vanishing theorem obtained in [Fuj4]. This

section may help the reader to understand more complicated arguments in the

subsequent sections. In Section 3, we collect some basic definitions. In Section 4,

we quickly recall the theory of quasi-log schemes. Section 5 is the main part of

this paper. In this section, we prove Conjecture 1.1 for semi-log canonical surfaces.

Section 6 is devoted to the proof of Theorem 1.6, which is an effective freeness for

log surfaces. In Section 7, which is independent of the other sections, we prove an

effective very ampleness lemma.

For the standard notation and conventions of the minimal model program,

see [Fuj2] and [Fuj8]. For the details of semi-log canonical pairs, see [Fuj4]. In this

paper, a scheme means a separated scheme of finite type over C and a variety

means a reduced scheme.

§2. Semi-log canonical curves

In this section, we prove Conjecture 1.1 in dimension 1 based on [Fuj4]. This

section will help the reader to understand the subsequent sections.

Theorem 2.1. Let (X,∆) be a projective semi-log canonical curve and let D be

a Cartier divisor on X. We put A = D − (KX + ∆). Assume that (A · Xi) > 1

for every irreducible component Xi of X. Then the complete linear system |D| is

basepoint-free.

If (X,∆) is log canonical (that is, X is normal) in Theorem 2.1, then the

statement is obvious. However, Theorem 2.1 seems to be nontrivial when X is not

normal.
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Proof of Theorem 2.1. We will see that the restriction map

(2.1) H0(X,OX(D))→ OX(D)⊗ C(P )

is surjective for every P ∈ X. Of course, it is sufficient to prove that H1(X, IP ⊗
OX(D)) = 0, where IP is the defining ideal sheaf of P on X. If P is a zero-

dimensional semi-log canonical center of (X,∆), then we know that H1(X, IP ⊗
OX(D)) = 0 by [Fuj4, Theorem 1.11]. Therefore, we may assume that P is not

a zero-dimensional semi-log canonical center of (X,∆). Thus, we see that X is

normal, that is, smooth, at P (see, for example, [Fuj4, Corollary 3.5]). We put

(2.2) c = 1−multP ∆.

Then we have 0 < c ≤ 1. We consider (X,∆ + cP ). Then (X,∆ + cP ) is semi-log

canonical and P is a zero-dimensional semi-log canonical center of (X,∆ + cP ).

Since

(2.3) ((D − (KX + ∆ + cP )) ·Xi) > 0

for every irreducible component Xi of X by the assumption that (A ·Xi) > 1 and

the fact that c ≤ 1, we obtain that H1(X, IP ⊗OX(D)) = 0 (see [Fuj4, Theorem

1.11]). Therefore, we see that H1(X, IP ⊗OX(D)) = 0 for every P ∈ X. Thus, we

have the desired surjection (2.1).

The above proof of Theorem 2.1 heavily depends on the vanishing theorem for

semi-log canonical pairs (see [Fuj4, Theorem 1.11]), which follows from the theory

of quasi-log schemes based on the theory of mixed Hodge structures on cohomology

with compact support. For the details, see [Fuj4] and [Fuj8]. In dimension 2, we

will directly use the framework of quasi-log schemes. Therefore, it is much more

difficult than the proof of Theorem 2.1.

§3. Preliminaries

In this section, we collect some basic definitions.

Definition 3.1 (Operations for R-divisors). Let D be an R-divisor on an equidi-

mensional variety X, that is, D is a finite formal R-linear combination

(3.1) D =
∑
i

diDi

of irreducible reduced subschemes Di of codimension 1, where Di 6= Dj for i 6= j.

We define the round-up dDe =
∑
iddieDi (resp. round-down bDc =

∑
ibdicDi),
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where for every real number x, dxe (resp. bxc) is the integer defined by x ≤ dxe <
x+ 1 (resp. x− 1 < bxc ≤ x). We put

(3.2) D<1 =
∑
di<1

diDi and D>1 =
∑
di>1

diDi.

We call D a boundary (resp. subboundary) R-divisor if 0 ≤ di ≤ 1 (resp. di ≤ 1)

for every i.

Definition 3.2 (Singularities of pairs). Let X be a normal variety and let ∆ be

an R-divisor on X such that KX + ∆ is R-Cartier. Let f : Y → X be a resolution

such that Exc(f) ∪ f−1
∗ ∆, where Exc(f) is the exceptional locus of f and f−1

∗ ∆

is the strict transform of ∆ on Y , has a simple normal crossing support. We can

write

(3.3) KY = f∗(KX + ∆) +
∑
i

aiEi.

We say that (X,∆) is sub log canonical (sub lc, for short) if ai ≥ −1 for every i.

We usually write ai = a(Ei, X,∆) and call it the discrepancy coefficient of Ei with

respect to (X,∆). Note that we can define a(E,X,∆) for every prime divisor E

over X. If (X,∆) is sub log canonical and ∆ is effective, then (X,∆) is called log

canonical (lc, for short).

It is well known that there is a largest Zariski open subset U of X such that

(U,∆|U ) is sub log canonical (see, for example, [Fuj8, Lemma 2.3.10]). If there

exist a resolution f : Y → X and a divisor E on Y such that a(E,X,∆) = −1 and

f(E) ∩ U 6= ∅, then f(E) is called a log canonical center (an lc center, for short)

with respect to (X,∆). A closed subset C of X is called a log canonical stratum

(an lc stratum, for short) of (X,∆) if and only if C is a log canonical center of

(X,∆) or C is an irreducible component of X. We note that the non-lc locus of

(X,∆), which is denoted by Nlc(X,∆), is X \ U .

Let X be a normal variety and let ∆ be an effective R-divisor on X such

that KX + ∆ is R-Cartier. If a(E,X,∆) > −1 for every divisor E over X, then

(X,∆) is called klt. If a(E,X,∆) > −1 for every exceptional divisor E over X,

then (X,∆) is called plt.

Let us recall the definitions around semi-log canonical pairs.

Definition 3.3 (Semi-log canonical pairs). Let X be an equidimensional variety

that satisfies Serre’s S2 condition and is normal crossing in codimension 1. Let ∆ be

an effective R-divisor whose support does not contain any irreducible components

of the conductor of X. The pair (X,∆) is called a semi-log canonical pair (an slc

pair, for short) if
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(1) KX + ∆ is R-Cartier, and

(2) (Xν ,Θ) is log canonical, where ν : Xν → X is the normalization and KXν +

Θ = ν∗(KX + ∆), that is, Θ is the sum of the inverse images of ∆ and the

conductor of X.

Let (X,∆) be a semi-log canonical pair and let ν : Xν → X be the normal-

ization. We set

(3.4) KXν + Θ = ν∗(KX + ∆)

as above. A closed subvariety W of X is called a semi-log canonical center (an slc

center, for short) with respect to (X,∆) if there exist a resolution of singularities

f : Y → Xν and a prime divisor E on Y such that the discrepancy coefficient

a(E,Xν ,Θ) = −1 and ν ◦ f(E) = W . A closed subvariety W of X is called a

semi-log canonical stratum (slc stratum, for short) of the pair (X,∆) if W is a

semi-log canonical center with respect to (X,∆) or W is an irreducible component

of X.

We close this section with the notion of log surfaces (see [Fuj3]).

Definition 3.4 (Log surfaces). Let X be a normal surface and let ∆ be a bound-

ary R-divisor on X. Assume that KX + ∆ is R-Cartier. Then the pair (X,∆) is

called a log surface. A log surface (X,∆) is not always assumed to be log canonical.

In [Fuj3], we establish the minimal model program for log surfaces in full

generality under the assumption that X is Q-factorial or (X,∆) has only log

canonical singularities. For the theory of log surfaces in characteristic p > 0,

see [FT], [Tan1] and [Tan2].

§4. On quasi-log structures

Let us quickly recall the definitions of globally embedded simple normal crossing

pairs and quasi-log schemes for the reader’s convenience. For the details, see, for

example, [Fuj7] and [Fuj8, Chapters 5 and 6].

Definition 4.1 (Globally embedded simple normal crossing pairs). Let Y be a

simple normal crossing divisor on a smooth variety M and let D be an R-divisor

on M such that Supp(D+Y ) is a simple normal crossing divisor on M and that D

and Y have no common irreducible components. We put BY = D|Y and consider

the pair (Y,BY ). We call (Y,BY ) a globally embedded simple normal crossing pair

and M the ambient space of (Y,BY ). A stratum of (Y,BY ) is the ν-image of a

log canonical stratum of (Y ν ,Θ), where ν : Y ν → Y is the normalization and
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KY ν + Θ = ν∗(KY + BY ), that is, Θ is the sum of the inverse images of BY and

the singular locus of Y .

In this paper, we adopt the following definition of quasi-log schemes.

Definition 4.2 (Quasi-log schemes). A quasi-log scheme is a scheme X endowed

with an R-Cartier divisor (or R-line bundle) ω on X, a proper closed subscheme

X−∞ ⊂ X and a finite collection {C} of reduced and irreducible subschemes of X

such that there is a proper morphism f : (Y,BY )→ X from a globally embedded

simple normal crossing pair satisfying the following properties:

(1) f∗ω ∼R KY +BY .

(2) The natural map OX → f∗OY (d−(B<1
Y )e) induces an isomorphism

IX−∞
'−→ f∗OY (d−(B<1

Y )e − bB>1
Y c),

where IX−∞ is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the image of (Y,BY )-strata

that are not included in X−∞.

We simply write [X,ω] to denote the above data(
X,ω, f : (Y,BY )→ X

)
if there is no risk of confusion. Note that a quasi-log scheme X is the union of {C}
andX−∞. We also note that ω is called the quasi-log canonical class of [X,ω], which

is defined up to R-linear equivalence. We sometimes simply say that [X,ω] is a

quasi-log pair. The subvarieties C are called the qlc strata of [X,ω], X−∞ is called

the non-qlc locus of [X,ω] and f : (Y,BY ) → X is called a quasi-log resolution

of [X,ω]. We sometimes use Nqlc(X,ω) to denote X−∞. A closed subvariety C

of X is called a qlc center of [X,ω] if C is a qlc stratum of [X,ω] that is not an

irreducible component of X.

Let [X,ω] be a quasi-log scheme. Assume that X−∞ = ∅. Then we sometimes

simply say that [X,ω] is a qlc pair or [X,ω] is a quasi-log scheme with only quasi-log

canonical singularities.

Definition 4.3 (Nef and log big divisors for quasi-log schemes). Let L be an R-

Cartier divisor (or R-line bundle) on a quasi-log pair [X,ω] and let π : X → S be

a proper morphism between schemes. Then L is nef and log big over S with respect

to [X,ω] if L is π-nef and L|C is π-big for every qlc stratum C of [X,ω].

The following theorem is a key result for the theory of quasi-log schemes.
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Theorem 4.4 (Adjunction and a vanishing theorem for quasi-log schemes). Let

[X, ω] be a quasi-log scheme and let X ′ be the union of X−∞ with a (possibly

empty) union of some qlc strata of [X,ω]. Then we have the following properties.

(i) Assume that X ′ 6= X−∞. Then X ′ is a quasi-log scheme with ω′ = ω|X′ and

X ′−∞ = X−∞. Moreover, the qlc strata of [X ′, ω′] are exactly the qlc strata

of [X,ω] that are included in X ′.

(ii) Assume that π : X → S is a proper morphism between schemes. Let L be a

Cartier divisor on X such that L − ω is nef and log big over S with respect

to [X,ω]. Then Riπ∗(IX′ ⊗ OX(L)) = 0 for every i > 0, where IX′ is the

defining ideal sheaf of X ′ on X.

For the proof of Theorem 4.4, see, for example, [Fuj5, Theorem 3.8] and [Fuj8,

Section 6.3]. We can slightly generalize Theorem 4.4(ii) as follows.

Theorem 4.5. Let [X,ω], X ′ and π : X → S be as in Theorem 4.4. Let L be

a Cartier divisor on X such that L − ω is nef over S and that (L − ω)|W is

big over S for any qlc stratum W of [X,ω] that is not contained in X ′. Then

Riπ∗(IX′ ⊗ OX(L)) = 0 for every i > 0, where IX′ is the defining ideal sheaf of

X ′ on X.

Theorem 4.5 is obvious by the proof of Theorem 4.4. For a related topic,

see [Fuj4, Remark 5.2]. Theorem 4.5 will play a crucial role in the proof of Theo-

rem 1.6 in Section 6.

Finally, we prepare a useful lemma, which is new, for the proof of Theorem 1.3.

Lemma 4.6. Let [X,ω] be a qlc pair such that X is irreducible. Let E be an

effective R-Cartier divisor on X. This means that

E =

k∑
i=1

eiEi,

where Ei is an effective Cartier divisor on X and ei is a positive real number for

every i. Then we can give a quasi-log structure to [X,ω + E], that coincides with

the original quasi-log structure of [X,ω] outside SuppE.

For the details of the quasi-log structure of [X,ω + E], see the construction

in the proof below.

Proof. Let f : (Z,∆Z) → [X,ω] be a quasi-log resolution, where (Z,∆Z) is a

globally embedded simple normal crossing pair. By taking some suitable blow-ups,

we may assume that the union of all strata of (Z,∆Z) mapped to SuppE, which
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is denoted by Z ′′, is the union of some irreducible components of Z (see [Fuj7,

Proposition 4.1] and [Fuj8, Section 6.3]). We put Z ′ = Z − Z ′′ and KZ′ + ∆Z′ =

(KZ+∆Z)|Z′ . We may further assume that (Z ′,∆Z′+f
′∗E) is a globally embedded

simple normal crossing pair, where f ′ = f |Z′ : Z ′ → X. By construction, we have

a natural inclusion

(4.1) OZ′(d−(∆Z′ + f ′
∗
E)<1e − b(∆Z′ + f ′

∗
E)>1c) ⊂ OZ(d−∆<1

Z e).

This is because

(4.2) − b(∆Z′ + f ′∗E)>1c ≤ −Z ′′|Z′

and

(4.3) OZ′(−Z ′′|Z′) ⊂ OZ .

Thus, we have

(4.4) f ′∗OZ′(d−(∆Z′ + f ′
∗
E)<1e − b(∆Z′ + f ′

∗
E)>1c) ⊂ f∗OZ(d−∆<1

Z e) ' OX .

By putting

(4.5) IX−∞ = f ′∗OZ′(d−(∆Z′ + f ′
∗
E)<1e − b(∆Z′ + f ′

∗
E)>1c),

f ′: (Z ′,∆Z′+f
′∗E)→ [X,ω+E] gives a quasi-log structure to [X,ω+E]. By con-

struction, it coincides with the original quasi-log structure of [X,ω] outside SuppE.

§5. Semi-log canonical surfaces

In this section, we prove Conjecture 1.1 for surfaces.

Theorem 5.1. Let (X,∆) be a projective semi-log canonical surface and let D be

a Cartier divisor on X. We put A = D − (KX + ∆). Assume that (A2 ·Xi) > 4

for every irreducible component Xi of X and that A ·C ≥ 2 for every curve C on

X. Then the complete linear system |D| is basepoint-free.

Remark 5.2. By assumption and Nakai’s ampleness criterion for R-divisors (see

[CP]), A is ample in Theorem 5.1. However, we do not use the ampleness of A in

the proof of Theorem 5.1.

Our proof of Theorem 5.1 uses the theory of quasi-log schemes.

Proof. We will prove that the restriction map

H0(X,OX(D))→ OX(D)⊗ C(P )

is surjective for every P ∈ X.
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Step 1 (Quasi-log structure). By [Fuj4, Theorem 1.2], we can take a quasi-log res-

olution f : (Z,∆Z) → [X,KX + ∆]. Precisely speaking, (Z,∆Z) is a globally

embedded simple normal crossing pair such that ∆Z is a subboundary R-divisor

on Z with the following properties:

(i) KZ + ∆Z ∼R f
∗(KX + ∆).

(ii) The natural map OX → f∗OZ(d−∆<1
Z e) is an isomorphism.

(iii) dimZ = 2.

(iv) W is a semi-log canonical stratum of (X,∆) if and only if W = f(S) for

some stratum S of (Z,∆Z).

It is worth mentioning that f : Z → X is not necessarily birational. This step is

nothing but [Fuj4, Theorem 1.2].

Step 2. Assume that P is a zero-dimensional semi-log canonical center of (X,∆).

Then Hi(X, IP ⊗OX(D)) = 0 for every i > 0, where IP is the defining ideal sheaf

of P on X (see [Fuj4, Theorem 1.11] and Theorem 4.4). Therefore, the restriction

map

H0(X,OX(D))→ OX(D)⊗ C(P )

is surjective.

From now on, we may assume that P is not a zero-dimensional semi-log canon-

ical center of (X,∆).

Step 3. Assume that there exists a one-dimensional semi-log canonical center W

of (X,∆) such that P ∈ W . Since P is not a zero-dimensional semi-log canonical

center of (X,∆), W is normal, that is, smooth, at P by [Fuj4, Corollary 3.5]. By

adjunction (see Theorem 4.4), [W, (KX+∆)|W ] has a quasi-log structure with only

quasi-log canonical singularities induced by the quasi-log structure f : (Z,∆Z)→
[X,KX + ∆] constructed in Step 1. Let g : (Z ′,∆Z′) → [W, (KX + ∆)|W ] be the

induced quasi-log resolution. We put

(5.1) c = sup
t≥0

{
t

∣∣∣∣∣the normalization of (Z ′,∆Z′ + tg∗P ) is

sub log canonical

}
.

Then, by [Fuj5, Lemma 3.16], we obtain that 0 < c < 2. Note that P is a Cartier

divisor on W . Let us consider g : (Z ′,∆Z′ + cg∗P ) → [W, (KX + ∆)|W + cP ],

which defines a quasi-log structure. Then, by construction, P is a qlc center of

[W, (KX + ∆)|W + cP ]. Moreover, we see that

(5.2) (D|W − ((KX + ∆)|W + cP )) = (A ·W )− c > 0
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by assumption. Therefore, we obtain that

(5.3) Hi(W, IP ⊗OW (D)) = 0

for every i > 0 by Theorem 4.4, where IP is the defining ideal sheaf of P on W .

Thus, the restriction map

(5.4) H0(W,OW (D))→ OW (D)⊗ C(P )

is surjective. On the other hand, by Theorem 4.4 again, we have

(5.5) Hi(X, IW ⊗OX(D)) = 0

for every i > 0, where IW is the defining ideal sheaf of W on X. This implies that

the restriction map

(5.6) H0(X,OX(D))→ H0(W,OW (D))

is surjective. By combining (5.4) with (5.6), the desired restriction map

(5.7) H0(X,OX(D))→ OX(D)⊗ C(P )

is surjective.

Therefore, from now on, we may assume that no one-dimensional semi-log

canonical centers of (X,∆) contain P .

Step 4. In this step, we assume that P is a smooth point of X. Let X0 be the

unique irreducible component of X containing P . By adjunction (see Theorem 4.4),

[X0, (KX + ∆)|X0
] has a quasi-log structure with only quasi-log canonical singu-

larities induced by the quasi-log structure f : (Z,∆Z)→ [X,KX + ∆] constructed

in Step 1. By Theorem 4.4,

(5.8) Hi(X, IX0 ⊗OX(D)) = 0

for every i > 0, where IX0
is the defining ideal sheaf of X0 on X. Therefore, the

restriction map

(5.9) H0(X,OX(D))→ H0(X0,OX0
(D))

is surjective. Thus, it is sufficient to prove that the natural restriction map

(5.10) H0(X0,OX0(D))→ OX0(D)⊗ C(P )

is surjective. We put A0 = A|X0
. Since A2

0 > 4, we can find an effective R-

Cartier divisor B on X0 such that multP B > 2 and that B ∼R A0. We put
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U = X0 \ SingX0 and define

(5.11) c = max{t ≥ 0 | (U,∆|U + tB|U ) is log canonical at P}.

Then we obtain that 0 < c < 1 since multP B > 2. By Lemma 4.6, we have a quasi-

log structure on [X0, (KX+∆)|X0
+cB]. By construction, there is a qlc center W of

[X0, (KX+∆)|X0
+cB] passing through P . Let X ′ be the union of the non-qlc locus

of [X0, (KX+∆)|X0
+cB] and the minimal qlc center W0 of [X0, (KX+∆)|X0

+cB]

passing through P . Note that D|X0
− ((KX + ∆)|X0

+ cB) ∼R (1 − c)A0. Then,

by Theorem 4.4,

(5.12) Hi(X0, IX′ ⊗OX0
(D)) = 0

for every i > 0, where IX′ is the defining ideal sheaf of X ′ on X0.

Case 1. If dimW0 = 0, then P is isolated in SuppOX0/IX′ . Therefore, the re-

striction map

(5.13) H0(X0,OX0(D))→ OX0(D)⊗ C(P )

is surjective.

Case 2. If dimW0 = 1, then let us consider the quasi-log structure of [X ′, ((KX +

∆)|X0 + cB)|X′ ] induced by the quasi-log structure of [X0, (KX + ∆)|X0 + cB]

constructed above by Lemma 4.6 (see Theorem 4.4(i)). From now on, we will see

that we can take 0 < c′ ≤ 1 such that P is a zero-dimensional qlc center of

[X ′, ((KX + ∆)|X0
+ cB)|X′ + c′P ] as in Step 3. By assumption, (U,∆|U + cB|U )

is plt in a neighborhood of P . We put multP B = 2 + a with a > 0. We write

∆ + cB = L + ∆′ on U , where L = W0 and L|U is the unique one-dimensional

log canonical center of (U,∆|U + cB|U ) passing through P . Note that we put

∆′ = ∆ + cB − L on U . We put multP (∆ + cB) = 1 + δ with δ ≥ 0, equivalently,

δ = multP ∆′ ≥ 0. Note that

(5.14) 1 + δ = multP (∆ + cB) = multP ∆ + c(2 + a).

Therefore, we have

(5.15) c =
1 + δ − α

2 + a
,

where α = multP ∆ ≥ 0. We also note that

(5.16) δ ≤ multP (∆′|L) < 1.

Then, we can choose c′ = 1−multP (∆′|L). This is because (U,∆|U + cB|U + c′H)

is log canonical in a neighborhood of P but is not plt at P , where H is a general

smooth curve passing through P .
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In this situation, we have

deg(D|L − (KX + ∆ + cB)|L − c′P )

≥
(

1− 1 + δ − α
2 + a

)
· 2− (1− δ)

=
1

2 + a
((2 + a− 1− δ + α) · 2− (2 + a)(1− δ))

=
1

2 + a
(a+ 2α+ aδ)

≥ a

2 + a
> 0.

(5.17)

Thus, by Theorem 4.4,

(5.18) Hi(X ′, IX′′ ⊗OX′(D)) = 0

for every i > 0, where X ′′ is the union of the non-qlc locus of [X ′, ((KX + ∆)|X0
+

cB)|X′ + c′P ] and P , and IX′′ is the defining ideal sheaf of X ′′ on X ′. Thus, we

have

(5.19) H0(X ′,OX′(D))→ OX′(D)⊗OX′/IX′′

is surjective. Note that P is isolated in SuppOX′/IX′′ . Therefore, we obtain sur-

jections

H0(X,OX(D)) � H0(X0,OX0
(D))

� H0(X ′,OX′(D)) � OX′(D)⊗ C(P )
(5.20)

by (5.9), (5.12) and (5.19). This is the desired surjection.

Finally, we further assume that P is a singular point of X.

Step 5. Note that (X,∆) is klt in a neighborhood of P by assumption. We will

reduce the problem to the situation as in Step 4. Let π : Y → X be the minimal

resolution of P . We put KY +∆Y = π∗(KX+∆). Since Bs |π∗D| = π−1 Bs |D|, it is

sufficient to prove that Q 6∈ Bs |π∗D| for some Q ∈ π−1(P ). Since π : Y → X is the

minimal resolution of P , then f : (Z,∆Z)→ [X,KX+∆] factors through [Y,KY +

∆Y ], and (Z,∆Z)→ [Y,KY +∆Y ] induces a natural quasi-log structure compatible

with the original semi-log canonical structure of (Y,∆Y ) (see Step 1 and [Fuj4,

Theorem 1.2]). We put Y0 = π−1(X0), where P ∈ X0 as in Step 4. We can take

an effective R-Cartier divisor B′ on Y0 such that B′ ∼R (π|Y0
)∗A0, multQB

′ > 2

for some Q ∈ π−1(P ), and B′ = (π|Y0)∗B for some effective R-Cartier divisor B
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on X0. We put U ′ = Y0 \ Sing Y0. We set

(5.21) c = sup
t≥0

{
t

∣∣∣∣∣(U ′, (∆Y )|U ′ + tB′|U ′) is log canonical

at any point of π−1(P )

}
.

Then we have 0 < c < 1. By adjunction (see Theorem 4.4) and Lemma 4.6,

we can consider a quasi-log structure of [Y0, (KY + ∆Y )|Y0
+ cB′]. If there is a

one-dimensional qlc center C of [Y0, (KY + ∆Y )|Y0 + cB′] such that

(5.22) (π∗D − ((KY + ∆Y )|Y0
+ cB′)) · C = (1− c)(π|Y0

)∗A0 · C = 0,

then we obtain that C ⊂ π−1(P ). This means that P is a qlc center of [X0, (KX +

∆)|X0
+ cB]. In this case, we obtain surjections

(5.23) H0(X,OX(D)) � H0(X0,OX0(D)) � OX0(D)⊗ C(P )

as in Case 1 in Step 4 (see (5.9) and (5.13)). Therefore, we may assume that

(5.24) (π∗D − ((KY + ∆Y )|Y0 + cB′)) · C > 0

for every one-dimensional qlc center C of [Y0, (KY + ∆Y )|Y0
+ cB′]. Note that

(5.25) (π∗D − (KY + ∆Y )) · C = (D − (KX + ∆)) · π∗C = A · π∗C ≥ 2

when π∗C 6= 0; equivalently, C is not a component of π−1(P ). Then we can apply

the arguments in Step 4 to [Y0, (KY + ∆Y )|Y0 + cB′] and π∗D. Thus, we obtain

that Q 6∈ Bs |π∗D| for some Q ∈ π−1(P ). This means that P 6∈ Bs |D|.

Anyway, we obtain that P 6∈ Bs |D|.

By Theorem 5.1, we can quickly prove Corollary 1.4 as follows.

Proof of Corollary 1.4. We put D = mI(KX + ∆) and A = D − (KX + ∆) =

(m− 1/I)I(KX + ∆). Then we obtain that A ·C ≥ m− 1/I for every curve C on

X and that (A2 ·Xi) ≥ (m− 1/I)2 for every irreducible component Xi of X. By

Theorem 5.1, we obtain the desired freeness of |mI(KX +∆)|. The very ampleness

part follows from Lemma 7.1 below.

Remark 5.3. In Corollary 1.4, ∆ is not necessarily reduced. If ∆ is reduced,

then Corollary 1.4 is a special case of [LR, Theorem 24]. We note that ∆ is always

assumed to be reduced in [LR].

As a special case of Corollary 1.4, we can recover Kodaira’s celebrated result

(see [Kod]). We state it explicitly for the reader’s convenience.
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Corollary 5.4 (Kodaira). Let X be a smooth projective surface such that KX is

nef and big. Then |mKX | is basepoint-free for every m ≥ 4.

Proof of Corollary 5.4. Apply Corollary 1.4 to the canonical model of X. Then

we obtain the desired freeness.

We close this section with the proof of Corollary 1.5.

Proof of Corollary 1.5. We put D = −mI(KX + ∆) and A = D − (KX + ∆) =

−(m + 1/I)I(KX + ∆). Then we obtain that A · C ≥ m + 1/I for every curve

C on X and that (A2 · Xi) ≥ (m + 1/I)2 for every irreducible component Xi of

X. By Theorem 5.1, we obtain the desired freeness of | −mI(KX + ∆)|. The very

ampleness part follows from Lemma 7.1 below.

§6. Log surfaces

In this section, we prove Theorem 1.6.

Proof of Theorem 1.6. The proof is essentially the same as that of Theorem 5.1.

However, there are some technical differences. We will have to use Theorem 4.5

instead of Theorem 4.4(ii). So, we describe it for the reader’s convenience.

Step 1. We take a resolution of singularities f : Z → X such that Supp f−1
∗ ∆ ∪

Exc(f) is a simple normal crossing divisor on Z, where Exc(f) is the exceptional

locus of f . We put KZ+∆Z = f∗(KX+∆). Then, (Z,∆Z) gives a natural quasi-log

structure on [X,KX + ∆].

Step 2. Assume that (X,∆) is not log canonical at x. We put

(6.1) X ′ = Nlc(X,∆) ∪
⋃
W,

where W runs over the one-dimensional log canonical centers of (X,∆) such that

A ·W = 0. Then, by Theorem 4.5, we obtain

(6.2) Hi(X, IX′ ⊗OX(D)) = 0

for every i > 0, where IX′ is the defining ideal sheaf of X ′. Note that x is isolated

in SuppOX/IX′ . Therefore, the restriction map

(6.3) H0(X,OX(D))→ OX(D)⊗ C(x)

is surjective. Thus, we obtain x 6∈ Bs |D|.

From now on, we may assume that (X,∆) is log canonical at x.
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Step 3. Assume that x is a zero-dimensional log canonical center of (X,∆). We

put

(6.4) X ′ = Nlc(X,∆) ∪
⋃
W ∪ {x},

where W runs over the one-dimensional log canonical centers of (X,∆) such that

A ·W = 0. Then, by Theorem 4.5, we obtain

(6.5) Hi(X, IX′ ⊗OX(D)) = 0

for every i > 0. Note that x is isolated in SuppOX/IX′ . Therefore, we obtain

x 6∈ Bs |D| as in Step 2.

From now on, we may assume that (X,∆) is plt at x.

Step 4. Assume that (X,∆) is plt but is not klt at x. Let L be the unique one-

dimensional log canonical center of (X,∆) passing through x. We put

(6.6) X ′ = Nlc(X,∆) ∪
⋃
W ∪ L,

where W runs over the one-dimensional log canonical centers of (X,∆) such that

A ·W = 0. By Theorem 4.5, we obtain that

(6.7) Hi(X, IX′ ⊗OX(D)) = 0

for every i > 0, as usual. Therefore, the restriction map

(6.8) H0(X,OX(D))→ H0(X ′,OX′(D))

is surjective. By adjunction (see Theorem 4.4), [X ′, (KX + ∆)|X′ ] has a quasi-

log structure induced by the quasi-log structure f : (Z,∆Z) → [X,KX + ∆]

constructed in Step 1. Let g : (Z ′,∆Z′) → [X ′, (KX + ∆)|X′ ] be the induced

quasi-log resolution. We put

(6.9) c = sup
t≥0

{
t

∣∣∣∣∣the normalization of (Z ′,∆Z′ + tg∗x) is sub

log canonical over X ′ \Nqlc((KX + ∆)|X′)

}
.

Then, by [Fuj5, Lemma 3.16], we obtain that 0 < c < 2. Note that x is a Cartier

divisor on X ′. Let us consider g : (Z ′,∆Z′ + cg∗x) → [X ′, (KX + ∆)|X′ + cx],

which defines a quasi-log structure. Then, by construction, x is a qlc center of

[X ′, (KX + ∆)|X′ + cx]. Moreover, we see that

(6.10) deg(D|L − (KX + ∆)|L − cx) = (A · L)− c > 0

by assumption. We put

(6.11) X ′′ = Nqlc(X ′, (KX + ∆)|X′ + cx) ∪
⋃
W ∪ {x},
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where W runs over the one-dimensional qlc centers of [X ′, (KX + ∆)|X′ + cx] such

that W 6= L. Then, by Theorem 4.5, we obtain

(6.12) Hi(X ′, IX′′ ⊗OX′(D)) = 0

for every i > 0. Note that x is isolated in SuppOX′/IX′′ . Therefore, the restriction

map

(6.13) H0(X ′,OX′(D))→ OX′(D)⊗ C(x)

is surjective. By combining (6.8) with (6.13), the desired restriction map

(6.14) H0(X,OX(D))→ OX(D)⊗ C(x)

is surjective. This means that x 6∈ Bs |D|.

Thus, from now on, we may assume that (X,∆) is klt at x.

Step 5. In this step, we assume that x is a smooth point of X. Since A2 > 4, we

can find an effective R-Cartier divisor B on X such that multxB > 2 and that

B ∼R A. We put

(6.15) c = max{t ≥ 0 | (X,∆ + tB) is log canonical at x}.

Then we obtain that 0 < c < 1 since multxB > 2. We have a natural quasi-log

structure on [X,KX+∆+cB] as in Step 1. By construction, there is a log canonical

center of [X,KX + ∆ + cB] passing through x. We put

(6.16) X ′ = Nlc(X,∆ + cB) ∪
⋃
W ∪W0,

where W0 is the minimal log canonical center of (X,∆+cB) passing through x, and

W runs over the one-dimensional log canonical centers of (X,∆ + cB) such that

A ·W = 0. We note that D− (KX + ∆ + cB) ∼R (1− c)A. Then, by Theorem 4.5,

(6.17) Hi(X, IX′ ⊗OX(D)) = 0

for every i > 0, where IX′ is the defining ideal sheaf of X ′ on X.

Case 1. If dimxX
′ = 0, then x is isolated in SuppOX/IX′ . Therefore, the restric-

tion map

(6.18) H0(X,OX(D))→ OX(D)⊗ C(x)

is surjective. Thus, we obtain that x 6∈ Bs |D|.



366 O. Fujino

Case 2. If dimxX
′ = 1, then (X,∆ + cB) is plt at x. We write ∆ + cB = L+ ∆′,

where L = W0 is the unique one-dimensional log canonical center of (X,∆) passing

through x and ∆′ = ∆ + cB − L. We put

(6.19) c′ = 1−multx(∆′|L).

Then [X ′, (KX + ∆ + cB)|X′ + c′x] has a quasi-log structure such that x is a qlc

center of this quasi-log structure as in the proof of Theorem 5.1, Step 4, Case 2.

We put

(6.20) X ′′ = Nqlc(X ′, (KX + ∆ + cB)|X′ + c′x) ∪
⋃
W ∪ {x},

where W runs over the one-dimensional qlc centers of [X ′, (KX +∆+cB)|X′+c′x]

such that W 6= L. By (5.17) in the proof of Theorem 5.1, we obtain that

(6.21) deg(D|L − (KX + ∆ + cB)|L − c′x) > 0.

Then, by (6.21) and Theorem 4.5,

(6.22) Hi(X ′, IX′′ ⊗OX′(D)) = 0

for every i > 0, where IX′′ is the defining ideal sheaf of X ′′ on X ′. Thus, we have

(6.23) H0(X ′,OX′(D))→ OX′(D)⊗OX′/IX′′

is surjective. Note that x is isolated in SuppOX′/IX′′ . Therefore, we obtain sur-

jections

H0(X,OX(D)) � H0(X ′,OX′(D)) � OX′(D)⊗ C(x)(6.24)

by (6.17) and (6.23). This is the desired surjection.

Finally, we further assume that x is a singular point of X.

Step 6. Let π : Y → X be the minimal resolution of x. We put KY + ∆Y =

π∗(KX+∆). Since Bs |π∗D| = π−1 Bs |D|, it is sufficient to prove that y 6∈ Bs |π∗D|
for some y ∈ π−1(x). Since π : Y → X is the minimal resolution of x, f : (Z,∆Z)→
[X,KX + ∆] factors through [Y,KY + ∆Y ] and (Z,∆Z)→ [Y,KY + ∆Y ] induces

a natural quasi-log structure on [Y,KY + ∆Y ]. We can take an effective R-Cartier

divisor B′ on Y such that B′ ∼R π∗A, multy B
′ > 2 for some y ∈ π−1(x) and

B′ = π∗B for some effective R-Cartier divisor B on X. We set

(6.25) c = sup
t≥0

{
t

∣∣∣∣∣(Y,∆Y + tB′) is log canonical

at any point of π−1(x)

}
.
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Then we have 0 < c < 1. As in Step 1, we can consider a natural quasi-log

structure of [Y,KY + ∆Y + cB′]. If there is a one-dimensional qlc center C of

[Y,KY + ∆Y + cB′] such that C ∩ π−1(x) 6= ∅ and that

(6.26) (π∗D − (KY + ∆Y + cB′)) · C = (1− c)π∗A · C = 0.

Then we obtain that C ⊂ π−1(x). This means that x is a qlc center of [X,KX +

∆ + cB]. In this case, we have

(6.27) H0(X,OX(D))→ OX(D)⊗ C(x)

is surjective as in Step 5, Case 1. Therefore, we may assume that

(6.28) (π∗D − (KY + ∆Y + cB′)) · C > 0

for every one-dimensional qlc center C of [Y,KY +∆Y +cB′] with C∩π−1(x) 6= ∅.
We note that

(6.29) (π∗D − (KY + ∆Y )) · C = (D − (KX + ∆)) · π∗C = A · π∗C ≥ 2.

Then we can apply the arguments in Step 5 to [Y,KY +∆Y +cB′] and π∗D. Thus,

we obtain that y 6∈ Bs |π∗D| for some y ∈ π−1(x). This means that x 6∈ Bs |D|.

Anyway, we obtain that x 6∈ Bs |D|.

§7. Effective very ampleness lemma

In this section, we prove an effective very ampleness lemma. This section is inde-

pendent of the other sections.

The statement and the proof of [Kol, Lemma 1.2] do not seem to be true as

stated. János Kollár and the author think that we need some modifications. So,

we prove the following lemma.

Lemma 7.1. Let (X,∆) be a projective semi-log canonical pair with dimX = n.

Let D be an ample Cartier divisor on X such that |D| is basepoint-free. Assume

that L = D− (KX + ∆) is nef and log big with respect to (X,∆), that is, L is nef

and L|W is big for every slc stratum W of (X,∆). Then (n+ 1)D is very ample.

We give a detailed proof of Lemma 7.1 for the reader’s convenience.

Proof. By the vanishing theorem (see [Fuj4, Theorem 1.10]), we obtain that

(7.1) Hi(X,OX((n+ 1− i)D)) = 0
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for every i > 0. Then, by Castelnuovo–Mumford regularity, we see that

(7.2) H0(X,OX(D))⊗H0(X,OX(mD))→ H0(X,OX((m+ 1)D))

is surjective for every m ≥ n+1 (see, for example, [Kle, Chapter II, Proposition 1]).

Therefore, we obtain that

(7.3) SymkH0(X,OX((n+ 1)D))→ H0(X,OX(k(n+ 1)D))

is surjective for every k ≥ 1. We put A = (n+1)D and consider f = Φ|A| : X → Y .

Then there is a very ample Cartier divisor H on Y such that A ∼ f∗H. By

construction and the surjection (7.3), we have the commutative diagram

(7.4) SymkH0(Y,OY (H)) // //

��

SymkH0(X,OX(A))

����
H0(Y,OY (kH)) �

� // H0(X,OX(kA))

for every k ≥ 1. This implies that H0(Y,OY (kH)) ' H0(X,OX(kA)) for every

k ≥ 1. Note that OY ' f∗OX by

(7.5) 0→ OY → f∗OX → δ → 0

and

0→ H0(Y,OY (kH))→ H0(X,OX(kA))

→ H0(Y, δ ⊗OY (kH))→ H1(Y,OY (kH))→ · · ·
(7.6)

for k � 0. By the commutative diagram

(7.7) X
f //� p

Φ|kA| !!

Y � _

Φ|kH|
��

PN ,

where k is a sufficiently large positive integer such that kA and kH are very

ample, we obtain that f is an isomorphism. This means that A = (n+ 1)D is very

ample.

We close this section with a remark on very ampleness for n-dimensional

stable pairs and semi-log canonical Fano varieties (see [Fuj6]).

Remark 7.2. Let (X,∆) be a projective semi-log canonical pair with dimX = n.

Assume that I(KX + ∆) is an ample Cartier divisor for some positive in-

teger I. Then we put D = I(KX + ∆), a = 2, and apply [Fuj6, Remark 1.3
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and Corollary 1.4]. We obtain that NI(KX + ∆) is very ample, where N =

(n+ 1)2n+1(n+ 1)!(2 + n) = 2n+1(n+ 2)!(n+ 1).

Assume that −I(KX+∆) is an ample Cartier divisor for some positive integer

I. Then we put D = −I(KX + ∆), a = 1, and apply [Fuj6, Remark 1.3 and

Corollary 1.4]. We obtain that −NI(KX + ∆) is very ample, where N = (n +

1)2n+1(n+ 1)!(1 + n) = 2n+1(n+ 1)3n!.

Our results for surfaces in this paper are much sharper than the above esti-

mates for n = 2.
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