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Smoothing Properties and Scattering for the
Magnetic Schrödinger and Klein–Gordon
Equations in an Exterior Domain with

Time-Dependent Perturbations

by

Kiyoshi Mochizuki and Sojiro Murai

Abstract

This paper deals with the existence, smoothing properties and scattering of solutions to
the magnetic Schrödinger and Klein–Gordon equations in an exterior domain with time-
dependent small perturbations. Smoothing properties based on the resolvent estimates
will reinforce the abstract scattering theory developed in [8] (K. Mochizuki, in Proc. 6th
ISAAC, World Scientific Publishing, River Edge, NJ, 2009, 476–485), and our concrete
problems are treated in this framework.
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§1. Introduction and results

Let n ≥ 2 and let Ω be an exterior domain in Rn with smooth boundary ∂Ω that

is star shaped with respect to the origin 0 (the case Ω = Rn is not excluded when

n ≥ 3). We consider in Ω the Schrödinger evolution equation

(1) i ∂tu = −∆bu+ c(x, t)u

and the Klein–Gordon equation

(2) ∂2
tw −∆bw +m2w + b0(x, t) ∂tw + c(x, t)w = 0,
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where i =
√
−1, ∂t = ∂/∂t, ∆b is the magnetic Laplacian

∆b = ∇b · ∇b =

n∑
j=1

(∂j + ibj(x))2

with ∂j = ∂/∂xj , m is a positive constant, bj(x) (j = 1, . . . , n) are real-valued

smooth functions of x ∈ Rn and c(x, t), b0(x, t) are complex-valued continuous

functions of (x, t) ∈ Rn ×R. For solutions u = u(x, t) and w = w(x, t) we require

the zero Dirichlet conditions

(3) u(x, t)|∂Ω = 0 and w(x, t)|∂Ω = 0

on the boundary ∂Ω. The function b(x) = (b1(x), · · · , bn(x)) represents a magnetic

potential. Thus, the magnetic field is defined by its rotation ∇×b(x) = {∂jbk(x)−
∂kbj(x)}j<k. We require

|∇ × b(x)| ≤ ε0(1 + [r])−2, r = |x|.(A1)

Here ε0 is a small positive constant and

[r] =

{
r when n ≥ 3,

r(1 + log r/r0) when n = 2,

for a fixed r0 > 0 satisfying ∂Ω ⊂ {x; |x| > r0}. As for the coefficients of the

perturbation terms, we require the following:

|b0(x, t)|, |c(x, t)| ≤ η(t) + ε1(1 + [r])−2,(A2)

where η(t) is a positive L1-function of t ∈ R and ε1 is a small positive constant.

Equation (1) is considered in the Hilbert space L2 = L2(Ω) with inner product

and norm

(f, g) =

∫
Ω

f(x)g(x) dx and ‖f‖ =
√

(f, f).

The operator −∆b with domain C∞0 (Ω) is essentially self-adjoint in L2, and de-

termines the self-adjoint operator L with domain

(4) D(L) =
{
u(x) ∈ L2 ∩H2

loc(Ω); −∆bu ∈ L2 and u|∂Ω = 0
}
.

Here Hk = Hk(Ω) is the usual Sobolev space with norm

‖f‖2Hk =

∫
Ω

∑
|α|≤k

|∇αf(x)|2 dx,

α = (α1, . . . , αn) is a multiindex with |α| =
∑n
j=1 |αj |, and H2

loc(Ω) is the H2-space

on each compact set of Ω.
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Then (1) with boundary condition (3) is represented as

(5) i ∂tu = Lu+ V (t)u in L2,

where V (t)u = c(x, t)u. Moreover, by use of the unitary group of operators

{e−itL; t ∈ R}, (5) with initial data u(0) = f ∈ L2 reduces to the integral

equation

(6) u(t) = e−itLf − i
∫ t

0

e−i(t−τ)LV (τ)u(τ) dτ.

Equation (2) is rewritten in the system with the pair {w,wt} (where wt =

∂tw):

∂t

(
w

wt

)
=

(
0 1

∆b−m2 0

)(
w

wt

)
−

(
0 0

c(x, t) b0(x, t)

)(
w

wt

)
.

It is considered in the energy space HE = H1
b,0 × L2, where H1

b,0 = H1
b,0(Ω) is the

completion of C∞0 (Ω) with norm

‖f‖2H1
b,0

=

∫
Ω

{|∇bf(x)|2 + |f(x)|2} dx.

Thus, the inner product and norm of HE are given for f = (f1, f2), g = (g1, g2) ∈
HE by

(7) (f, g)HE
=

1

2

∫
Ω

{
∇bf1(x)∇bg1(x) +m2f1(x)g1(x) + f2(x)g2(x)

}
dx

and ‖f‖HE
=
√

(f, f)HE
, respectively. We define the operator M in HE by

M =

(
0 i

i(∆b−m2) 0

)
,

with domain

(8) D(M) =
{
f = {f1, f2} ∈ [H2

loc ∩H1
b,0]×H1

b,0; ∆bf1 ∈ L2
}
.

Then it forms a self-adjoint operator in HE , and (2) with boundary condition (3)

is represented as

(9) i∂tu = Mu+ V (t)u in HE ,

where u = {w,wt} and

V (t)u =

(
0 0

−ic(x, t) −ib0(x, t)

)(
w1

w2

)
.



374 K. Mochizuki and S. Murai

Moreover, by use of the unitary group of operators {e−itM ; t ∈ R} in HE , (9) with

initial data u = {w(0), wt(0)} = {f1, f2} ∈ HE reduces to the integral equation

(10) u(t) = e−itMf − i
∫ t

0

e−i(t−τ)MV (τ)u(τ) dτ.

In this paper we are concerned with some scattering problems of these equa-

tions. They are time-dependent perturbations of the unitary groups {e−itL}t∈R
in L2 and {e−itM}t∈R in HE . The problems have been studied in Mochizuki–

Motai [11] in the Schrödinger case and Murai [13] in the Klein–Gordon case, when

b = 0 and Ω = Rn with n ≥ 3. In each case, the proof is based on the Strichartz

estimates. In this paper, a decaying condition is not required on the magnetic po-

tential b(x) itself. So, there are no effective Strichartz estimates on our operators

L and M .

The purpose of this paper is to settle our approach in the L2-framework of

applying smoothing properties. Necessary resolvent estimates for L were obtained

in Mochizuki [9, 10] when n ≥ 3 and in Mochizuki–Nakazawa [12] when n = 2. As

will be seen, it is possible to use them to obtain similar estimates for M in the

energy space, and this becomes one of our main results. Note that corresponding

estimates have not been established so far for the acoustic wave equation (the case

m = 0). As studied in Mochizuki [7] (see also [8]), space-time weighted energy

methods are effective in this case if n ≥ 3. On the other hand, weighted energy

methods give rise to a difficulty with the Klein–Gordon equation.

We treat the two equations (6) and (10) in a bundle as an integral equation

(11) u(t) = e−itΛf − i
∫ t

0

e−i(t−τ)ΛV (τ)u(τ) dτ

in a Hilbert space H. Here H = L2, Λ = L and V (t) = c(x, t) in the case of (6),

and H = HE , Λ = M and V (t) =
(

0 0
−ic(x,t) −ib0(x,t)

)
in the case of (10). Moreover,

let X stand for the weighted spaces

(12) X0 =
{
f(x); ‖f‖2X0

=
∫

Ω
(1 + [r])−2|f(x)|2 dx <∞

}
in the Schrödinger case (6) and

XE =
{
f(x) = {f1(x), f2(x)};(13)

‖f‖2XE
= 1

2

∫
Ω

(1 + [r])−2{|∇bf1|2 +m2|f1|2 + |f2|2} dx <∞
}

in the Klein–Gordon case (10).
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For an interval I ⊂ R and a Banach space W , we denote by L2(I;W ), the

space of all W -valued functions h(t) satisfying

‖h‖L2(I;W ) =

(∫
I

‖h(t)‖2W dt

)1/2

<∞.

Similarly, C(I;W ) denotes the space of all W -valued continuous functions of t ∈ I.

Further, we denote by B(W ) the space of bounded operators on W .

Now, the main results of this paper are summarized in the following theorems.

Theorem 1. For ζ ∈ C\R put R(ζ) = (Λ − ζ)−1. If ε0 in (A1) is chosen small

enough, then there exists C0 > 0 such that

sup
ζ∈C\R

‖R(ζ)f‖X ≤ C0‖f‖X′

for each f ∈ X ′, where X ′ is the dual space of X with respect to H.

Theorem 2. Assume (A1) and (A2) with small ε0 and ε1. Then for each f ∈ H
there exists a unique solution u(t) ∈ C(R;H) to the integral equation (11). Let

U(t, s), s, t ∈ R± be the evolution operator that maps u(s) to u(t) = U(t, s)u(s).

Then there exists C1 > 0 such that

(14) ‖U(·, s)g‖2L2
t (R±;X) ≤ C1‖g‖2H

for each s ∈ R+ = (0,∞) (or ∈ R− = (−∞, 0)) and g ∈ H.

Theorem 3. Under the same conditions as above, we have

(i) {U(t, s)}t,s∈R is a family of uniformly bounded operators in H:

sup
t,s∈R

‖U(t, s)‖B(H) = CU <∞;

(ii) for every s ∈ R±, there exists the strong limit

Z±(s) = s-lim
t→±∞

e−i(−t+s)ΛU(t, s);

(iii) the operator Z± = Z±(0) satisfies

w-lim
s→±∞

Z±U(0, s)e−isΛ = I (weak limit);

(iv) if ε1 is chosen smaller so that it satisfies εV
√

2C0C1 < 1, where εV = ε1
(Schrödinger) or εV = max{1,m−1}ε1 (Klein–Gordon), then Z± : H −→ H
is a bijection on H. Thus, the scattering operator S = Z+(Z−)−1 is well

defined and also gives a bijection on H.



376 K. Mochizuki and S. Murai

There are several works that investigate time-dependent perturbations. See,

e.g., Yafaev [17], Howland [2], Yajima [18], Kitada–Yajima [6] and Jensen [3] for the

Schrödinger equations, and Cooper–Menzala–Strauss [1], Petkov [14] and Wirth

[16] for wave equations. Except for [16], these works treat time-dependent real

potentials. So, for each fixed t, the operator −∆ + c(x, t) becomes self-adjoint,

and this fact plays an important role in the theory. Ref. [16] studies perturba-

tions depending only on t. As for the case of non-self-adjoint perturbations, there

is Kato’s classical paper [4] (cf. also Kato–Yajima [5]), where time-independent

potentials are treated. In the current paper, we partly extend results from [4] to

time-dependent potentials in magnetic fields.

This paper is organized as follows. In the next section we discuss the resolvent

estimates for the Schrödinger operator L. Two propositions are given with briefly

summarized proofs. Proposition 1 attains Theorem 1 for L and both propositions

are used in Section 3 to show Theorem 1 for the Klein–Gordon system. After

summarizing smoothing properties for e−itΛ, Theorem 2 is proven in Section 4 by

use of successive approximation. Finally, in Section 5 we apply these results to

show Theorem 3.

§2. Uniform resolvent estimates for the magnetic Laplacian

In this section we treat uniform resolvent estimates for the magnetic Laplacian

L = −∆b in an exterior domain.

For κ ∈ C+ = {κ ∈ C; Imκ > 0} we put R(κ2) = (L− κ2)−1. Assume (A1)

with sufficiently small ε0 > 0. Then the following two propositions hold.

Proposition 1. There exists C2 > 0 independent of κ such that∫
Ω

Imκr + 1

[r]2
∣∣R(κ2)f(x)

∣∣2 dx ≤ C2

∫
Ω

[r]2|f(x)|2 dx.

Proposition 2. There exists C3 > 0 independent of κ such that∫
Ω

µ
{∣∣∇bR(κ2)f

∣∣2 +
∣∣κR(κ2)f

∣∣2} dx ≤ C3

∫
Ω

max
{
µ−1, [r]2

}
|f |2 dx,

where µ = µ(r) is a positive, smooth, decreasing function of r > 0 such that

µ(r) = o(r−1), µ(r) ≥ (1 + [r])−2 and ‖µ‖L1 =

∫ ∞
0

µ(r) dr <∞.
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Remark 1. As will be seen below in the proofs of the propositions, ε0 is concretely

given as

0 ≤ ε0 <


1

4
√

21
(n = 2),

1
4
√

2
(n = 3),

√
2(n−1)(n−3)

4 (n ≥ 4).

The constants C2 and C3 depend on ε0 and ‖µ‖L1 .

Proposition 1 attains Theorem 1 for Λ = L. Moreover, in the next section

these two propositions will play a fundamental role in proving Theorem 1 for

Λ = M . In this section we briefly summarize the proof, which is separately given

in [9, Theorem 1], [10, Theorem 4] when n ≥ 3 and in [12, Theorem 1] when n = 2.

Lemma 1. Let u = R(κ2)f . Then we have

1

2

∫
Ω

{(
µ Imκ

n− 1

r
− µ′n− 1

2r

)
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx

+ Imκ

∫ ∞
r0

µ(t) dt

∫
Ωt

{
|∇bu|2 + |u|2

}
dx

=
1

2

∫
Ω

µ

{
|θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx− Re

∫ ∞
r0

µ(t) dt

∫
Ωt

fiκu dx,

where Ωt = {x ∈ Ω; |x| < t} and θ = ∇bu+ x̃
(
n−1
2r − iκ

)
u.

Lemma 2. Let ϕ = ϕ(r) be a positive increasing function of r > 0 satisfying

(15)
ϕ′(r)

ϕ(r)
≤ 1

r
.

Then we have for u = R(κ2)f ,

−
∫
∂Ω

ϕ

{
(ν · ∇u)(x̃ · ∇u)− 1

2
(ν · x̃)|∇u|2

}
dS +

∫
Ω

ϕ

[
−
(

1

r
− ϕ′

ϕ

)
|x̃ · θ|2

+

(
Imκ+

1

r
− ϕ′

2ϕ

){
|θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}

+ Re{−(∇× ib)u · (x̃× θ)}
]
dx

= Re

∫
Ω

ϕfx̃ · θ dx,

where ν = ν(x) is the outer unit normal to the boundary ∂Ω and x̃× θ = {x̃jθk −
x̃kθj}j<k.
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We omit the proof of these identities, but note the following: u = R(κ2)f

satisfies the equation

(16) −∆bu− κ2u = f(x) in Ω with u|∂Ω = 0.

We multiply by −iκu on both sides of (16) and integrate the real part over Ωt.

Then Lemma 1 results from this equation multiplied by µ(t) and integrated over

(r0,∞). Next, we rewrite (16) as an equation in θ:

(17) −∇bθ +

(
n− 1

2r
− iκ

)
x̃ · θ +

(n− 1)(n− 3)

4r2
u = f.

Multiply by ϕx̃ · θ and then integration by parts of the real part over Ω leads us

to Lemma 2.

The third identity is the following.

Lemma 3. Let η = η(r) and ξ = ξ(r) be smooth, positive functions of r > 0 and

let t be chosen large. Then the following identity holds for each u ∈ H1
b0:∫

Ωt

ξ

{
|x̃ · θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx

=

∫
Ωt

ξ|x̃ · ∇bu− iκu− ηu|2 dx

+

∫
St

ξ

(
n− 1

2r
+ η

)
|u|2 dS −

∫
Ωt

ξ′
(
n− 1

2r
+ η

)
|u|2 dx

+

∫
Ωt

ξ

{
2 Imκ

(
n− 1

2r
+ η

)
|u|2 −

(
n− 1

r
η + η′ + η2

)
|u|2
}
dx,

where St = {x ∈ Ω; |x| = t}.

Proof. Note the identity

|x̃ · θ|2 =

∣∣∣∣x̃ · ∇bu+
n− 1

2r
u− iκu− ηu+ ηu

∣∣∣∣2
= |x̃ · ∇bu− iκu− ηu|2 +∇ ·

{
x̃

(
n− 1

2r
+ η

)
|u|2
}

+ 2 Imκ

(
n− 1

2r
+ η

)
|u|2 − (n− 1)(n− 3)

4r2
|u|2 −

(
1

r
η + η′ + η2

)
|u|2.

Multiply by ξ(r) on both sides and integrate over Ωt. Then since u|∂Ω = 0, the

desired identity follows.
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Now we have ∇u = (ν · ∇u)ν on ∂Ω in Lemma 2. The star-shapedness of ∂Ω

then shows that∫
∂Ω

ϕ

{
− (ν · ∇u)(x̃ · ∇u) +

1

2
(ν · x̃)|∇u|2

}
dS = −1

2

∫
∂Ω

ϕ(ν · x̃)|ν · ∇u|2 dS

≥ 0.

Moreover, we have (
1

r
− ϕ′

ϕ

)
{|θ|2 − |x̃ · θ|2} ≥ 0,

| − (∇× ib)u x̃× θ| ≤ |∇ × b| |u| |θ|.

Thus the following inequality is obtained from Lemma 2:∫
Ω

{(
Imκϕ+

ϕ′

2

)
|θ|2 +

(
Imκϕ+

ϕ

r
− ϕ′

2

)
(n− 1)(n− 3)

4r2
|u|2
}
dx(18)

≤
∫

Ω

ϕ{|f |+ |∇ × b| |u|}|θ| dx.

We choose here ϕ = r and use the Schwarz inequality. Then∫
Ω

(
Imκr +

1

2

){
|θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx

≤
∫

Ω

{
[r]2

4ε
|f |2 +

ε20
4ε[r]2

|u|2
}
dx+

∫
2ε

r2

[r]2
|θ|2 dx

and we conclude that for any ε > 0,∫
Ω

(
Imκr +

1

2
− 2ε

r2

[r]2

){
|θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx(19)

≤ 1

4ε

∫
Ω

[r]2|f |2 dx+

(
ε20
ε
− 2ε(n− 1)(n− 3)

)∫
Ω

1

4[r]2
|u|2 dx.

Lemma 4. (i) If n ≥ 3, then for any u ∈ H1
b,0(Ω),∫

Ω

Imκr + 1

4r2
|u|2 dx ≤

∫
Ω

|x̃ · θ|2 dx.

(ii) If n = 2, then for any u ∈ H1
b,0(Ω) and ε > 0,∫

Ω

(
Imκr +

1

2
− 18ε− 8ε2

)
1

4[r]2
|u|2 dx

≤
∫

Ω

(
Imκr +

1

2
− 2ε

r2

[r]2

){
|x̃ · θ|2 − 1

4r2
|u|2
}
dx.
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Proof.

(i) We choose ξ ≡ 1 and η = −n−2
2r in Lemma 3. Then since

(20)
n− 1

2r
+ η =

1

2r
,

n− 1

r
η + η′ + η2 = − (n− 2)2

4r2
,

letting t→∞, we have the assertion.

(ii) We choose

ξ = Imκr +
1

2
− 2ε

r2

[r]2
and η =

1

2[r]

in Lemma 3. Then by assumption, ξ(r) > 0 and also

lim inf
t→∞

∫
St

ξ

(
1

2r
+ η

)
|u|2 dS = 0.

Moreover, since

(21)
1

r
η + η′ + η2 =

−1

4[r]2
=

−1

4r2(1 + log r/r0)2
,

it follows that∫
Ω

(
Imκr +

1

2
− 2ε

r2

[r]2

){
|x̃ · θ|2 − 1

4r2
|u|2
}
dx

≥ −
∫

Ω

(
Imκ− 2ε

(
r2

[r]2

)′)(
1

2r
+ η

)
|u|2 dx

+

∫
Ω

(
Imκr +

1

2
− 2ε

r2

[r]2

){
2 Imκ

(
1

2r
+ η

)
|u|2 +

1

4[r]2
|u|2
}
dx.

Thus the inequalities

2(Imκ)2r − 4ε Imκ
r2

[r]2
≥ −2ε2

r

r4

[r]4

and {
− 2ε2

r

r4

[r]4
+ 2ε

(
r2

[r]2

)′}(
1

2r
+ η

)
≥ −8(ε2 + 2ε)

4[r]2

lead us to the desired conclusion.

Proof of Proposition 1.

The case n ≥ 3. We choose ε < 1
4 in (19) and apply Lemma 4(i). Then∫

Ω

(
Imκr +

1

2
− 2ε

)
1

4r2
|u|2 dx+

∫
Ω

(n− 1)(n− 3)

8r2
|u|2 dx

≤ 1

4ε

∫
Ω

r2|f |2 dx+
ε20
ε

∫
Ω

1

4r2
|u|2 dx,
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and hence∫
Ω

{
Imκr +

(n− 2)2ε− 4ε2 − 2ε20
4ε

}
1

r2
|u|2 dx ≤ 1

4ε

∫
Ω

r2|f |2 dx.

Since

sup
ε<1/4

{(n− 2)2ε− 4ε2} =

{
(n−1)(n−3)

4 (n ≥ 4),
1
16 (n = 3),

the desired inequality holds if ε20 <
(n−1)(n−3)

8 (when n ≥ 4) and ε20 <
1
32 (when

n = 3).

The case n = 2. We combine (19) and Lemma 4(ii) to obtain∫
Ω

(
Imκr +

1

2
− 18ε− 8ε2

)
1

4[r]2
|u|2 dx

≤ 1

4ε

∫
Ω

[r]2|f |2 dx+

(
ε20
ε

+ 2ε

)∫
Ω

1

4[r]2
|u|2 dx

for any ε < 1
4 , which implies∫

Ω

{
Imκr +

ε− 40ε2 − 16ε3 − 2ε20
2ε

}
1

4[r]2
|u|2 dx ≤ 1

4ε

∫
Ω

[r]2|f |2 dx.

The desired inequality then holds if ε20 is less than

1

2
sup
ε<1/4

{ε− 40ε2 − 16ε3}.

As is easily seen, this number is between 1
336 and 1

320 .

To proceed to the proof of Proposition 2 we return to (18). The Schwarz

inequality then implies∫
Ω

{(
Imκϕ+

ϕ′

2
− 2εϕ′

)
|θ|2(22)

+

(
Imκϕ+

ϕ

r
− ϕ′

2

)
(n− 1)(n− 3)

4r2
|u|2
}
dx

≤
∫

Ω

ϕ2

4εϕ′
{|f |2 + |∇ × b|2|u|2} dx

for any ε > 0. In the following we fix ε < 1
8 .

Lemma 5. Assume (A1). Then∫
Ω

µ

{
|θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx ≤ C

∫
Ω

max{[r]2, µ−1}|f |2 dx

holds for some C = C(ε0, ‖µ‖1) > 0.
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Proof. In the case n ≥ 3 we choose ϕ(r) =
∫ r

0
µ(τ) dτ in (22). Since rµ ≤ ϕ ≤

‖µ‖L1 , by use of (A1) we have∫
Ω

{
1− 4ε

2
µ|θ|2 +

1

2
µ

(n− 1)(n− 3)

4r2
|u|2
}
dx

≤ ‖µ‖2L1

{∫
Ω

µ−1

4ε
|f |2 dx+

∫
Ω

ε20[r]−4µ−1

4ε
|u|2 dx

}
.

Hence, the use of Proposition 1 leads to the assertion.

In the case n = 2 we choose ϕ = r
(4+log r/r0)2 in (22). Then since

ϕ′ =
1

(4 + log r/r0)2
− 2

(4 + log r/r0)3
≥ 1

2(4 + log r/r0)2
,

ϕ

r
− ϕ′

2
≤ 3

4(4 + log r/r0)2
,

ϕ2

ϕ′
≤ 2r2

(4 + log r/r0)2
,

it follows that∫
Ω

1− 4ε

4(4 + log r/r0)2
|θ|2 dx−

∫ {
Imκr +

1

4

}
3

4r2(4 + log r/r0)2
|u|2 dx

≤
∫

Ω

r2

2ε(4 + log r/r0)2
|f |2 dx+

∫
Ω

ε20r
2

2ε[r]4(4 + log r/r0)2
|u|2 dx.

Hence we have∫
Ω

1− 4ε

4(4 + log r/r0)2
|θ|2 dx ≤ 1

32ε

∫
Ω

[r]2|f |2 dx+

∫
Ω

{
Imκr +

3

4
+
ε20
8ε

}
|u|2

4[r]2
dx.

The use of Proposition 1 leads to the assertion if we note that

µ ≤ o(1)

(4 + log r/r0)2
and

(n− 1)(n− 3)

4r2
≤ 0

in this case.

Proof of Proposition 2. We start from the identity of Lemma 1. Since Imκ > 0, it

follows that

1

2

∫
Ω

{(
µ Imκ

n− 1

r
− µ′n− 1

2r

)
|u|2 + µ(|∇bu|2 + |κu|2)

}
dx(23)

≤ 1

2

∫
Ω

µ

{
|θ|2 +

(n− 1)(n− 3)

4r2
|u|2
}
dx

+

∫ ∞
r0

µ(t) dt

∫
Ωt

|f(x)| |iκu| dx.

Here µ′ ≤ 0 by assumption and we have from the Schwarz inequality,

‖µ‖L1

∫
Ω

|f | |iκu| dx ≤ ‖µ‖2L1

∫
Ω

µ−1|f |2 dx+
1

4

∫
Ω

µ|κu|2 dx.



Smoothing Properties and Scattering 383

Applying these inequalities and Lemma 5 in (23), we conclude with the desired

inequality.

§3. Proof of Theorem 1 for the Klein–Gordon equation

Proposition 1 attains Theorem 1 for L. To show the theorem for the Klein–Gordon

operator M , we need some more estimates concerning the resolvent Rm(κ2) of the

operator L + m2. To this aim we put ξ(r) = (1 + [r]2)−1/2 and choose µ(r) in

Proposition 2 to satisfy ξ(r) ≤
√
µ(r).

Lemma 6. There exists C > 0 such that

(1 + |κ|)‖ξRm(κ2)f‖+ ‖ξ∇b(Rm(κ2)f)‖ ≤ C‖ξ−1f‖,(24)

‖ξ∆b(Rm(κ2)f)‖ ≤ C{‖ξ−1∇bf‖+ ‖ξ−1f‖},(25)

|κ| ‖ξ∇b(Rm(κ2)f)‖ ≤ C{‖ξ−1∇bf‖+ ‖ξ−1f‖},(26)

for each κ ∈ C+ and f ∈ X ′0 also satisfying ∇bf ∈ X ′0.

Proof. Note that

|κ|2‖ξRm(k2)f‖2 ≤ m2‖ξRm(κ2)f‖2 + |−m2+κ2| ‖ξRm(κ2)f‖2.

Then (24) follows directly from Propositions 1 and 2.

To show (25) we start from the equation

ξ∆b(Rm(κ2)g) = ∆b(ξRm(κ2)g)− 2∇b · {(∇ξ)Rm(κ2)g}+ (∆ξ)Rm(κ2)g.

Put ~f = (∇ξ)Rm(κ2)g. Then since ~f |∂Ω = ~0, we have

|(∇b · ~f, h)| = |(~f,−∇bh)| ≤ ‖~f‖ ‖h‖Ḣ1
b
,

where Ḣ1
b is the completion of C∞0 (Ω) with respect to the norm ‖∇bh‖. Let Ḣ−1

b

denote the dual space of Ḣ1
b . Then we have ‖∇b · ~f‖Ḣ−1

b
≤ ‖~f‖, and hence

‖ξ∆b(Rm(κ2)g)‖Ḣ−1
b

≤ ‖∆b(ξRm(κ2)g)‖Ḣ−1
b

+ 2‖(∇ξ)Rm(κ2)g‖+ ‖(∆ξ)Rm(κ2)g‖Ḣ−1
b

Here, since

∆b(ξRm(κ2)g) = ∇b · {(∇ξ)Rm(κ2)g + ξ∇b(Rm(κ2)g)}

and |∇ξ| ≤ C|ξ|, it follows from (24) that

‖∆b(ξRm(κ2)g)‖Ḣ−1
b
≤ ‖(∇ξ)Rm(κ2)g‖+ ‖ξ∇b(Rm(κ2)g)‖ ≤ C‖ξ−1g‖.
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Moreover, noting that |∆ξ| ≤ C[r]−1ξ, we can use the Hardy inequality (see [9,

Lemma 3] when n ≥ 3 and [12, Lemma 4] when n = 2)

(27)

∫
Ω

[n− 2]

4[r]2
|f(x)|2 dx ≤

∫
Ω

|∇bf(x)|2 dx

with [n− 2] = 1 (when n = 2) and [n− 2] = n− 2 (when n ≥ 3) to obtain

‖(∆ξ)Rm(κ2)g‖Ḣ−1
b
≤ C‖ξRm(κ2)g‖ ≤ C‖ξ−1g‖.

These lead us to the inequality

‖ξ∆b(Rm(κ2)g)‖Ḣ−1
b
≤ C‖ξ−1g‖.

Equation (25) then follows from the equality

(∆b(Rm(κ2)f, g)) = (Rm(κ2)∆bf, g) = (ξ−1f, ξ∆b(Rm(κ2)g))

since we have

‖ξ−1f‖Ḣ1
b
≤ ‖ξ−1∇bf‖+ ‖∇(ξ−1)f‖

and |∇ξ−1| ≤ Cξ−1.

Next note that

κ2Rm(κ2)f = −f − (∆b −m2)Rm(κ2)f.

Then the use of (24) and (25) shows

‖ξ(∆b −m2)Rm(κ2)f‖ ≤ C{‖ξ−1∇bf‖+ ‖ξ−1f‖}.

Since ‖ξf‖ ≤ ‖ξ−1f‖, this proves

(28) |κ|2‖ξRm(κ2)f‖ ≤ C{‖ξ−1∇bf‖+ ‖ξ−1f‖}.

By use of (28), (24) and (25) we have

|κ|2‖ξ∇b(Rm(κ2)f)‖2

= −|κ|2({ξ∆b(Rm(κ2)f) + 2∇ξ · ∇b(Rm(κ2)f)}, ξRm(κ2)f)

≤ {‖ξ∆b(Rm(κ2)f)‖+ 2‖∇ξ · ∇b(Rm(κ2)f)‖}|κ|2‖ξRm(κ2)f‖
≤ C{‖ξ−1∇bf‖+ ‖ξ−1f‖}{‖ξ−1∇bf‖+ ‖ξ−1f‖},

which proves (26).

With this lemma we can prove the following proposition, which attains The-

orem 1 for M .
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Proposition 3. Assume (A1) with small ε0. For κ ∈ C\R put R(κ) = (M−κ)−1.

Then there exists C4 > 0 independent of κ and f ∈ XE such that

(29) ‖R(κ)f‖XE
≤ C4‖f‖X′E ,

where XE is the weighted energy space defined by (13).

Proof. Note that

|(R(κ)f, g)HE
|

= 1
2

[ ∣∣ (∇b {κRm(κ2)f1 + iRm(κ2)f2

}
,∇bg1

)
+
(
(c+m2)

{
κRm(κ2)f1 + iRm(κ2)f2

}
, g1

)
+
({
i(∆b −m2)Rm(κ2)f1 + κRm(κ2)f2

}
, g2

) ∣∣ ]
≤ 1

2

[ {
|κ| ‖ξ∇b(Rm(κ2)f1)‖+ ‖ξ∇bRm(κ2)f2‖

}
‖ξ−1∇bg1‖

+m2
{
|κ| ‖ξRm(κ2)f1‖+ ‖ξRm(κ2)f2‖

}
‖ξ−1g1‖

+
{
‖ξ∆b(Rm(κ2)f1)‖+m2‖ξRm(κ2)f1‖+ |κ| ‖ξRm(κ2)f2‖

}
× ‖ξ−1g2‖

]
.

(30)

Then applying the inequalities of Lemma 6 to each component on the right and

noting that m > 0, we see that (29) holds.

§4. Proof of Theorem 2

The resolvent estimates of Theorem 1 lead us to the smoothing properties sum-

marized in the following proposition.

Proposition 4. Assume (A1) with small ε0. Then for each h(t) ∈ L2(R±;X ′)

and f ∈ H, we have∥∥∥∥∫ t

0

e−i(t−τ)Λh(τ) dτ

∥∥∥∥2

L2(R±;X)

≤ C2
0‖h‖2L2(R±;X′),(31)

sup
t∈R±

∥∥∥∥∫ t

0

eiτΛh(τ) dτ

∥∥∥∥2

H
≤ 2C0‖h‖2L2(R±;X′),(32)

‖e−itΛf‖2L2(R±;X) ≤ 2C0‖f‖2H,(33)

where R+ = (0,∞) and R− = (−∞, 0).

Proof (Cf. Reed–Simon [15]). By the standard approximation procedure, we can

assume h(t) ∈ C∞0 (I;X ′) for some interval I ⊂ R±.
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For t ∈ R± we put v(t) =
∫ t

0
e−i(t−τ)Λh(τ) dτ , where h(t) is regarded as 0

outside I, and consider its Laplace transform

ṽ(ζ) = ±
∫ ±∞

0

eiζtv(t) dt, ± Im ζ > 0,

Then since ṽ(ζ) = −iR(ζ)h̃(ζ), it follows from the Plancherel theorem and Theo-

rem 1 that∣∣∣∣ ∫
I

e∓2εt(v(t), g(t))H dt

∣∣∣∣ =

∣∣∣∣(2π)−1

∫ ∞
−∞

(ṽ(λ± iε), g̃(λ± iε))H dλ
∣∣∣∣

≤
∫ ∞
−∞
‖R(λ± iε)h̃(λ± iε)‖X‖g̃(λ± iε)‖X′ dλ

≤ C0

∫
I

e∓2εt‖h(t)‖X′‖g(t)‖X′ dt

for any g(t) ∈ C∞0 (I;X ′). Letting ε ↓ 0, we obtain inequality (31).

Next, note that the Fubini theorem implies∥∥∥∥∫ t

0

eisΛh(s) ds

∥∥∥∥2

H
=

∫ t

0

(∫ σ

0

e−i(σ−s)Λh(s) ds, h(σ)

)
H
dσ

+

∫ t

0

(
h(s),

∫ s

0

e−i(s−σ)Λh(σ) dσ

)
H
ds,

where (·, ·)H is extended to the duality between X and X ′. This and (31) show

that (32) holds.

Equation (33) is obvious from (32).

Lemma 7. Under (A2) we have

|(V (t)u, v)H| ≤ η̃(t)‖u‖H‖v‖H + εV ‖u‖X‖v‖X ,

where η̃(t) = η(t), εV = ε1 for the Schrödinger case and η̃(t) = max{1,m−1}η(t),

εV = max{1,m−1}ε1 for the Klein–Gordon case.

Proof. The lemma is obvious for the Schrödinger case since we have

|(V (t)u, v)| ≤
∫

Ω

(η(t) + ε1(1 + [r]2)−1)|u(x)| |v(x)| dx.

On the other hand, for the Klein–Gordon case we have

|(V (t)u, v)HE
| = 1

2

∣∣∣∣ ∫
Ω

{c(x, t)u1 + b0(x, t)u2}v2 dx

∣∣∣∣
≤ 1

2

∫
Ω

(η(t) + ε1(1 + [r]2)−1){|u1|+ |u2|}|v2| dx

≤ max{1,m−1}{η(t)‖u‖HE
‖v‖HE

+ ε1‖u‖XE
‖v‖XE

}.
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Thus, the lemma also holds in this case.

For 0 ≤ ±s ≤ ±T ≤ ∞ let I+,s = [s, T ] or I−,s = [T, s]. We do not exclude

T = ±∞ and write I+,s = R+,s = [s,∞) or I−,s = R−,s = (−∞, s].
With this notation let Y (I±,s) be the space of functions v(t) ∈ BC(I±,s;H)∩

L2(I±,s;X) (where BC means the space of bounded continuous functions) such

that

(34) ‖v‖Y (I±,s) = sup
t∈I±,s

‖v(t)‖H + ‖v‖L2(I±,s;X) <∞.

Lemma 8. We put

Φ±,sv(t) =

∫ t

s

e−i(t−τ)ΛV (τ)v(τ) dτ, v(t) ∈ Y (I±,s).

Then Φ±,s ∈ B(Y (I±,s)) and we have

sup
t∈I±,s

‖Φ±,sv(t)‖H ≤ ‖η̃‖L1(I±,s) sup
t∈I±,s

‖v(t)‖H + εV
√

2C0‖v‖L2(I±,s;X),(35)

‖Φ±,sv‖L2(I±,s;X) ≤ 2
√

2C0‖η̃‖L1(I±,s) sup
t∈I±,s

‖v(t)‖H + 3εV C0‖v‖L2(I±,s;X).(36)

Proof. Let g ∈ H. Then it follows from Lemma 7 that

|(Φ±,sv(t), g)H| =
∣∣∣∣ ∫ t

s

(
V (τ)v(τ), e−i(τ−t)Λg

)
H
dτ

∣∣∣∣(37)

≤
∣∣∣∣ ∫ t

s

η̃(τ)‖v(τ)‖H‖g‖H dτ
∣∣∣∣

+ εV

∣∣∣∣ ∫ t

s

‖v(τ)‖X‖e−i(τ−t)Λg‖X dτ
∣∣∣∣.

So, by use of (33) and the unitarity of e−itΛ we obtain

|(Φ±,sv(t), g)H| ≤ ‖η̃‖L1(I±,s) sup
τ∈I±,s

‖v(τ)‖H‖g‖H + εV ‖v‖L2(I±,s;X)

√
2C0‖g‖H,

which implies (35).

Next, let g(t) ∈ L2(I±,s;X
′). Then it similarly follows that∣∣∣∣ ∫ T

s

(Φ±,sv(t), g(t))H dt

∣∣∣∣ =

∣∣∣∣ ∫ T

s

∫ t

s

(
V (τ)v(τ), e−i(τ−t)Λg(t)

)
H
dτ dt

∣∣∣∣
≤ ‖η̃‖L1(I±,s) sup

τ∈I±,s

(
‖v(τ)‖H

∥∥∥∥ ∫ T

τ

eitΛg(t) dt

∥∥∥∥
H

)
+ εV ‖v‖L2(I±,s;X)

∥∥∥∥∫ T

τ

e−i(τ−t)Λg(t) dt

∥∥∥∥
L2(I±,s;X)

,
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where∥∥∥∥∫ T

τ

e−i(τ−t)Λg(t) dt

∥∥∥∥
L2(I±,s;X)

≤
∥∥∥∥ ∫ τ

0

e−i(τ−t)Λg(t) dt

∥∥∥∥
L2(I±,s;X)

+

∥∥∥∥e−iτΛ

∫ T

0

eitΛg(t) dt

∥∥∥∥
L2(I±,s;X)

.

Thus, applying inequalities (31), (32) and (33), we obtain∣∣∣∣ ∫ T

s

(Φ±,sv(t), g(t))H dt

∣∣∣∣ ≤ ‖η̃‖L1(I±,s) sup
τ∈I±,s

‖v(τ)‖H2
√

2C0‖g‖L2(I±,s;X′)

+ εV ‖v‖L2(I±,s;X)3C0‖g‖L2(I±,s;X′),

which implies (36).

Now, since η̃(t) ∈ L1(R±), we can choose 0 < δ ≤ 1 and ±σ > 0 to satisfy

(38) (1 + 2
√

2C0)‖η̃‖L1(I±,s) < 1

if |I±,s| = |T − s| ≤ δ or I±,s = R±,s with ±s ≥ ±σ. So, if ε1 is chosen small

enough to satisfy εV (2
√

2C0 + 3C0) < 1, then it follows from (34), (35) and (36)

that

‖Φ±,sv‖Y (I±,s)(39)

≤ max
{(

1 + 2
√

2C0

)
‖η̃‖L1(I±,s), εV

(
2
√

2C0 + 3C0

)}
‖v‖Y (I±,s)

< ‖v‖Y (I±,s).

Lemma 9. For each fixed I±,s satisfying (38), the integral equation

(40) u(t) = e−i(t−s)Λf − i
∫ t

s

e−i(t−τ)ΛV (τ)u(τ) dτ

has a solution u(t) ∈ Y (I±,s) and it satisfies

(41) ‖u‖Y (I±,s) = sup
t∈I±,s

‖u(t)‖H + ‖u‖L2(I±,s;X) ≤ Cδ,σ‖f‖H

for some Cδ,σ > 0 independent of f .

Proof. We define {uk(t)} successively as follows:

u0(t) = e−i(t−s)Λf, uk(t) = u0(t)− iΦ±,suk−1(t).

Note that the unitarity of e−itΛ and (33) show

(42) ‖u0‖Y (I±,s) = ‖u0(t)‖H + ‖u0‖L2(I±,s;X) ≤ (1 +
√

2C0)‖f‖H.
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Thus, u0(t) ∈ Y (I±,s) and also each uk(t) ∈ Y (I±,s). Since

(43) ‖uk − uk−1‖Y (I±,s) ≤
(
‖Φ±,s‖B(Y (I±,s))

)k ‖u0‖Y (I±,s),

we see from (39) that

un(t) = u0(t) +

n∑
k=1

{uk(t)− uk−1(t)}

converges in YI±,s
as n→∞. The limit u(t) obviously solves the integral equation

(40). Inequality (41) with

Cδ,σ =
1 +
√

2C0

1− ‖Φ±,s‖B(Y (I±,s))

is a result of (42) and (43).

Proof of Theorem 2. For δ and ±σ given in (38) we choose integer N to satisfy

Nδ ≥ ±σ, and divide R± into N + 1 subintervals

I+,sj = [sj , sj+1] or I−,sj = [sj+1, sj ] (j = 0, 1, . . . , N − 1),

and I±,sN = R±,sN ,

where sj = ±jδ (j = 0, 1, . . . , N). Then by Lemma 9 the solution of (40) with

f = u(sj) is constructed in each interval I±,sj , and by putting them together, a

global solution of (11) is obtained. Moreover, the above argument and (41) imply

that (14) holds with C1 = (N + 1)CNδ,σ.

To show the uniqueness of solutions in C(R;H), note that the inequality

‖Φ±,0v(t)‖H ≤ ±
∫ t

0

‖V (τ)v(τ)‖H dτ ≤ ±
∫ t

0

{η̃(τ) + εV }‖v(τ)‖H dτ

holds for each t ∈ R±. If v(t) satisfies (11) with f = 0, then this inequality implies

d

dt

[
e∓

∫ t
0
{η̃(τ)+εV } dτ

∫ t

0

{η̃(τ) + εV }‖v(τ)‖H dτ
]
≤ 0.

Integrating both sides, we conclude that ‖v(t)‖H = 0 in R±.

§5. Proof of Theorem 3

The proof of Theorem 3 will be based on Lemma 7 and the inequalities of Propo-

sition 4 and Theorem 2.

We put u(t, s) = U(t, s)f , u0(t− s) = e−i(t−s)Λf0. Then we have from (11),

(u(t, s), u0(t− s))H = (f, f0)H − i
∫ t

s

(V (τ)u(τ, s), u0(τ − s))H dτ.
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On the right-hand side we apply the inequality of Lemma 7. It then follows from

(33) and (14) that for any σ, t ∈ R±,

|(u(t, s), u0(t− s))H − (u(σ, s), u0(σ − s))H|(44)

≤
∣∣∣∣ ∫ t

σ

η̃(τ)‖u(τ, s)‖H‖u0(τ − s)‖H dτ
∣∣∣∣

+ εV

∣∣∣∣ ∫ t

σ

‖u(τ, s)‖2X dτ
∣∣∣∣1/2∣∣∣∣ ∫ t

σ

‖u0(τ − s))‖2X dτ
∣∣∣∣1/2.

All the assertions of the theorem are verified from this inequality.

Proof of Theorem 3.

(i) We put σ = s in (44). Then by (33) and (14),

|(u(t, s), u0(t− s))H − (f, f0)H| ≤
∣∣∣∣ ∫ t

s

η̃(τ)‖u(τ, s)‖H‖u0(τ − s)‖H dτ
∣∣∣∣

+ εV
√

2C0C1‖f‖H‖f0‖H.

Since e−i(t−s)Λ is unitary, it follows that

‖u(t, s)‖H ≤ (1 + εV
√

2C0C1)‖f‖H +

∫ t

s

η̃(τ)‖u(τ, s)‖H dτ.

The requirement η(t) ∈ L1(R) and the Gronwall inequality show the asser-

tion with

CU = (1 + εV
√

2C0C1)e‖η̃‖L1 .

(ii) Noting (i), we have from (44), (33) and (14),

|(u(t, s), u0(t− s))H − (u(σ, s), u0(σ − s))H|

≤
{
CU‖f‖H

∣∣∣∣ ∫ t

σ

η̃(τ) dτ

∣∣∣∣+ εV

∣∣∣∣ ∫ t

σ

‖u(τ, s)‖2X dτ
∣∣∣∣1/2√2C0

}
‖f0‖H.

Here, for any fixed s ∈ R±,
{
· · ·
}
→ 0 as σ, t→ ±∞. Thus, e−i(s−t)ΛU(t, s)

converges strongly in H as t→ ±∞.

(iii) Let σ = s and t→ ±∞ in (44). Then noting (i) and (14), we have

|(Z±(s)f, f0)H − (f, f0)H| ≤ ‖f‖H
{
CU

∣∣∣∣ ∫ ±∞
s

η̃(τ) dτ

∣∣∣∣ ‖f0‖H(45)

+ εV
√
C1

∣∣∣∣ ∫ ±∞
s

‖u0(τ − s)‖2X dτ
∣∣∣∣1/2}.
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Choose here f = e−isΛg and f0 = e−isΛg0. Then

|({eisΛZ±(s)e−isΛ − I}g, g0)H| ≤ ‖e−isΛg‖H
{
CU

∣∣∣∣ ∫ ±∞
s

η̃(τ) dτ

∣∣∣∣ ‖e−isΛg0‖H+

+ εV
√

2C0

∣∣∣∣ ∫ ±∞
s

‖e−iτΛg0‖2X dτ
∣∣∣∣1/2}.

With g and g0 being arbitrary, this implies that as s→ ±∞,

Z±U(0, s)e−isΛ = eisΛZ±(s)e−isΛ → I weakly in H.

(iv) Note that (45) and (33) imply

|({Z±(s)− I}f, f0)H| ≤
{∣∣∣∣ ∫ ±∞

s

η̃(τ) dτ

∣∣∣∣CU + εV
√

2C0C1

}
‖f‖H‖f0‖H.

Since εV
√

2C1C0 < 1, we can choose ±s > 0 sufficiently large to satisfy∣∣∣∣ ∫ ±∞
s

η̃(τ) dτ

∣∣∣∣CU + εV
√

2C0C1 < 1.

Thus, ‖Z±(s) − I‖B(H) < 1 and Z±(s) gives a bijection on H. The same

property of Z± then easily follows.

§6. Final remarks

In the case Ω = Rn (n ≥ 3) and b(x) = 0, similar results have been obtained in

[11] and [13], for complex potentials satisfying

c(x, t) ∈ Lν(R;Lp) ∩BC(Rn+1)

with

0 ≤ 1

p
≤ 2

n
and

1

ν
= 1− n

2p
.

The smallness condition

‖c‖L∞(R±;Ln/2) � 1

is also required when ν =∞.

The arguments employed in this work are based on the Fourier transformation,

and are not directly applicable to problems in an exterior domain. Moreover, note

that the function

(46) c(x, t) = c0(1 + r)−α(1 + |t|)−β
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with α, β ≥ 0 satisfies (A2) and also the above conditions if α/2+β > 1. However,

the function

c(x, t) = c0 sin t(1 + r)−2 with small |c0| > 0

satisfies (A2) but slips out of the above conditions.

The potential (46) has been considered in Yafaev [17] when c is real and β > 0.

For the Schrödinger equation (1) in Rn (n ≥ 3) with b = 0, his results include the

following. The wave operator

W± = s-lim
t→±∞

U(0, t)eitL

exists if α + β > 1. It is in general incomplete, but becomes complete, i.e., the

range of W± coincides with the whole space L2(Rn), if the stronger condition
α
2 + β > 1 is required.

In the case m = 0 and n ≥ 3, weighted energy methods developed in [7]

can be applied to our equation (2) in the magnetic fields without any essential

modification. The requirements on the perturbation are

|∇ × b(x)| ≤ εn− 2

2r
µ(r),(A1′)

max

{
|b0(x, t)|, 2r

n− 2
|c(x, t)|

}
≤ η(t) + εµ(r),(A2′)

where ε > 0 is a small constant and µ(r) is a positive, decreasing L1-function of

r > 0.
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