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Abstract

In this paper we apply the twisted Alexander polynomial to study fibering and genus
detecting problems for oriented links. In particular we generalize a conjecture of Dunfield,
Friedl and Jackson on the torsion polynomial of hyperbolic knots to hyperbolic links,
and confirm it for an infinite family of hyperbolic 2-bridge links. Moreover, we consider
a similar problem for parabolic representations of 2-bridge link groups.
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§1. Introduction

The twisted Alexander polynomial, a generalization of the classical Alexander

polynomial [2], is defined for a pair consisting of a group and its representation

into a linear group. This invariant was first introduced by Lin [14] for knots in the

3-sphere S3 and by Wada [28] for finitely presentable groups which include the

link groups. In recent years, a theory of twisted Alexander polynomials has been

rapidly developed and has contributed to solving various important problems in

low-dimensional topology, especially in the theory of knots and links. However, it

seems that this invariant still remains to be studied. As for recent developments

on twisted Alexander polynomials and their applications, we refer to the survey

papers [9, 19] and the references therein.

In [6], based on huge experimental calculations, Dunfield, Friedl and Jackson

conjectured that for a hyperbolic knot K in S3, i.e., the complement S3 \K has a
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complete hyperbolic structure of finite volume, the twisted Alexander polynomial

associated to a lift of the holonomy representation detects the genus and fibered-

ness of K. At the present time, the conjecture has been confirmed for all hyperbolic

knots with at most 15 crossings [6], a certain infinite family of hyperbolic 2-bridge

knots (see [18, 20]). Moreover, Agol and Dunfield showed in [1] that the twisted

Alexander polynomial detects the genus for a large class of hyperbolic knots, which

includes many knots whose ordinary Alexander polynomial is trivial.

In this paper we apply the twisted Alexander polynomial to study the fibering

and genus detecting problems for oriented links. In particular, we will generalize

the conjecture of Dunfield, Friedl and Jackson to a hyperbolic link L in S3. In

fact, we conjecture that the twisted Alexander polynomial associated to a lift of

the holonomy representation, say ρ0 : π1(S3 \L)→ SL(2,C), detects the Thurston

norm [26] and fiberedness of an oriented hyperbolic link, and show that the con-

jecture holds true for an infinite family of hyperbolic 2-bridge links. Actually, in

Section 4 we will show the following theorem.

Theorem 1.1 (Theorem 4.12). For the double twist link L as in Figure 2, the

twisted Alexander polynomial ∆L,ρ0(t) associated to ρ0 determines the Thurston

norm. Moreover, L is fibered if and only if ∆L,ρ0(t) is monic.

As is well known, these topological properties of a 2-bridge link are detected

by the reduced Alexander polynomial (see [4, 21, 22, 23]). However, there seems

to be no a priori reason that the same must be true for the twisted Alexander

polynomial.

Since a lift of the holonomy representation of a hyperbolic link L is one of

the parabolic representations (namely, it is a nonabelian SL(2,C)-representation

and the traces of the images of all the meridians of L are 2), it is natural to

consider the following problem: For an oriented hyperbolic link L and its parabolic

representation ρ : π1(S3 \ L) → SL(2,C), does the twisted Alexander polynomial

associated to ρ determine the Thurston norm and fiberedness of L? In Section 5,

we give a partial answer to this question in the case of a 2-bridge link. More

precisely, we show that not all parabolic representations detect the genus (in this

case, the Thurston norm is equivalent to the genus) of a hyperbolic 2-bridge link.

This paper is organized as follows. In Section 2, we briefly review some basic

materials for the SL(2,C)-character variety of a finitely generated group and the

twisted Alexander polynomial of an oriented link associated to a two-dimensional

linear representation. In Section 3 we review a conjecture of Dunfield, Friedl and

Jackson for hyperbolic knots and state its generalization for oriented hyperbolic

links. Section 4 is devoted to the calculation of the loci of the character variety,

which characterize fiberedness and the genus of a wide family of 2-bridge links.
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This result can be regarded as a generalization of [12] and [11], which discussed

the same problem in the case of knots. In the final section, we give an answer to

the question on parabolic representations mentioned above.

§2. Preliminaries

In this section we give several standard definitions, and put a convention on the

links that we will handle throughout the paper.

§2.1. Oriented links

A µ-component link L is the union of µ ordered, oriented and pairwise disjoint

circles Li embedded in the 3-sphere S3. Two links L and L′ are equivalent if and

only if µ = µ′ and there exists an orientation-preserving homeomorphism f of S3

to itself such that f(Li) = L′i and f |Li
is also orientation preserving for any i. A

knot is nothing but a 1-component link.

A Seifert surface of an oriented link L ⊂ S3 is a connected, oriented, compact

surface S embedded in S3 whose boundary is L such that the orientation on L

is just the induced orientation from S. The link L is called fibered if the exterior

EL = S3 \ int(N(L)) has the structure of a surface bundle over the circle such that

a Seifert surface of L represents a fiber. The genus g = g(L) of L is the minimum

of the genera of all its Seifert surfaces. We note that fiberedness and the genus of

a link depend on the choice of orientations of the link.

A link L in S3 is called hyperbolic if the exterior EL has a complete hyperbolic

structure of finite volume.

Let N be a compact, connected, orientable 3-manifold and σ ∈ H1(N ;Z).

The Thurston norm of σ is defined as

‖σ‖T = min{χ−(S) |S ⊂ N properly embedded surface dual to σ},

where for a given surface S with connected components S1 ∪ · · · ∪ Sk, we de-

fine χ−(S) =
∑k
i=1 max{−χ(Si), 0}. Thurston showed in [26] that this defines a

seminorm on H1(N ;Z) and, moreover, on H1(N ;R).

Convention 2.1. In this paper we always consider oriented links. In addition,

we assume throughout this paper that links are nonsplit.

§2.2. Character varieties

Let G be a finitely generated group. The variety of representations R(G) of G

is the set of SL(2,C)-representations, i.e., R(G) = Hom(G,SL(2,C)). Since G is

finitely generated, R(G) can be embedded in a product SL(2,C)× · · · × SL(2,C)
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by mapping each representation to the image of a generating set. In this manner,

R(G) is an affine algebraic set whose defining polynomials are induced by the

relators of a presentation of G. It is known that this structure is independent of

the choice of presentations of G up to isomorphism.

A representation ρ : G → SL(2,C) is said to be abelian if ρ(G) is an abelian

subgroup of SL(2,C). A representation ρ is called reducible if there exists a proper

invariant subspace in C2 under the action of ρ(G). This is equivalent to saying that

ρ can be conjugated to a representation whose image consists of upper triangular

matrices. When ρ is not reducible, it is called irreducible.

Given a representation ρ ∈ R(G), its character is the map χρ : G→ C defined

by χρ(γ) = tr(ρ(γ)) for γ ∈ G. We denote the set of all characters by X(G). For

a given element γ ∈ G, we define the map τγ : X(G) → C by τγ(χ) = χ(γ).

Then it is known that X(G) is an affine algebraic set that embeds in CN with

coordinates (τγ1 , . . . , τγN ) for some γ1, . . . , γN ∈ G. This affine algebraic set is

called the character variety of G. We note that the set {γ1, . . . , γN} can be chosen

to contain a generating set of G. The projection R(G) → X(G) given by ρ 7→ χρ
is surjective.

For a link group G(L) = π1(EL), namely the fundamental group of the exterior

EL of L in S3, we write R(L) = R(G(L)) and X(L) = X(G(L)) for simplicity.

§2.3. Twisted Alexander polynomials

Let L = L1 t · · · t Lµ be a µ-component oriented link in S3. We choose and

fix a Wirtinger presentation of G(L). That is, given a regular projection of the

link L, we assign to each overpass a generator xi, and to each crossing a relator

xixjx
−1
k x−1

j , as in Figure 1 (the orientation of the under crossing arc is irrele-

vant). Thus we obtain a presentation of G(L) with q generators and q relators,

〈x1, . . . , xq | r1, . . . , rq〉. After some reordering of the indices, the relators r1, . . . , rq
satisfy

∏q
i=1 r

±1
i = 1. This means that any one of the relators is a consequence

of the other q − 1 relators. We remove one of the relators and call the resulting

presentation

G(L) = 〈x1, . . . , xq | r1, . . . , rq−1〉

a Wirtinger presentation of G(L).

The abelianization homomorphism

αL : G(L)→ H1(EL;Z) ∼= Z⊕µ = 〈t1〉 ⊕ · · · ⊕ 〈tµ〉

is given by assigning to each generator xi the meridian element tk ∈ H1(EL;Z)

of the corresponding component Lk of L. Here we denote the sum in Z multi-

plicatively. Moreover, we consider the surjective homomorphism p : H1(EL;Z)→
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N

xj

xk xi

Figure 1. A relator xixjx
−1
k x−1

j .

Z = 〈t〉 defined by ti 7→ t and for simplicity denote the composition map p ◦ αL :

G(L)→ Z by α.

In this paper we consider a representation of G(L) into the two-dimensional

special linear group SL(2,C), say ρ : G(L)→ SL(2,C). The maps ρ and α naturally

induce two ring homomorphisms ρ̃ : Z[G(L)]→M(2,C) and α̃ : Z[G(L)]→ Z[t±1],

where Z[G(L)] is the group ring of G(L) and M(2,C) is the matrix algebra of de-

gree 2 over C. Then ρ̃ ⊗ α̃ defines a ring homomorphism Z[G(L)]→M
(
2,C[t±1]

)
.

Let Fq denote the free group on generators x1, . . . , xq and

Φ : Z[Fq]→M
(
2,C[t±1]

)
the composition of the surjection φ̃ : Z[Fq]→ Z[G(L)] induced by the presentation

of G(L) and the map ρ̃⊗ α̃ : Z[G(L)]→M(2,C[t±1]).

Let us consider the (q−1)× q matrix M whose (i, j)-entry is the 2×2 matrix

Φ

(
∂ri
∂xj

)
∈M

(
2,C[t±1]

)
,

where ∂
∂x denotes the free differential. For 1 ≤ j ≤ q, let us denote by Mj the

(q− 1)× (q− 1) matrix obtained from M by removing the jth column. We regard

Mj as a 2(q−1)×2(q−1) matrix with coefficients in C[t±1]. Then Wada’s twisted

Alexander polynomial [28] of a link L associated with a representation ρ : G(L)→
SL(2,C) is defined to be the rational function

∆L,ρ(t) =
detMj

det Φ(1− xj)

and is well defined up to multiplication by t2k (k ∈ Z).

Remark 2.2. By definition, ∆L,ρ(t) is a rational function in the variable t, but

it will be a Laurent polynomial if L is a link with two or more components [28,

Proposition 9], or L is a knot K and ρ is nonabelian [13, Theorem 3.1].
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We note that if ρ, ρ′ ∈ R(L) are conjugate representations, then ∆L,ρ(t) =

∆L,ρ′(t) holds (see [28, Section 3]). If ρ, ρ′ ∈ R(L) are irreducible representations

with χρ = χρ′ , then ρ is conjugate to ρ′ (see [5, Proposition 1.5.2]), and hence

∆L,ρ(t) = ∆L,ρ′(t). Moreover, if ρ, ρ′ ∈ R(L) are reducible representations with

χρ = χρ′ , then ∆L,ρ(t) and ∆L,ρ′(t) are determined by diagonal entries of images

of ρ and ρ′ and hence they are equivalent. Therefore, we can define the twisted

Alexander polynomial associated with χ ∈ X(L) to be ∆L,ρ(t), where χ = χρ, and

we denote it by ∆L,χ(t) if we emphasize that it is a function on X(L).

It is known that we can write the twisted Alexander polynomial ∆L,χ(t)

without any ambiguity as

∆L,χ(t) =

2l∑
j=0

ψj(χ)tj

with C-valued functions ψj on X(L) such that ψk = ψ2l−k (0 ≤ k ≤ l) (see [8,

Theorem 1.5]), where l = ‖α‖T is the Thurston norm of α (see [7, Theorem 1.1]).

For a subvariety X0 of X(L), we say that ψn is the coefficient of the highest-

degree term of ∆L,χ(t) on X0 if ψm ≡ 0 for m > n and ψn 6≡ 0 on X0. Moreover,

we say ∆L,χ(t) (respectively, ∆L,ρ(t)) is monic if the coefficient of the highest-

degree term of ∆L,χ(t) (respectively, ∆L,ρ(t)) is 1. This makes sense because the

twisted Alexander polynomial is well defined up to multiplication by t2k (k ∈ Z).

It is known that the twisted Alexander polynomial of a fibered link is monic for

every nonabelian representation [7, Theorem 1.1] (see [3, 10] for the case of fibered

knots).

§3. Hyperbolic torsion polynomials

§3.1. A conjecture of Dunfield, Friedl and Jackson

Let N be a hyperbolic 3-manifold of finite volume. Then there is a faithful rep-

resentation ρ0 : π1(N) → PSL(2,C) ∼= Isom+(H3), where H3 denotes the up-

per half-space model of the hyperbolic 3-space, with discrete image such that

H3/ Im ρ0
∼= N . The representation ρ0 is called the holonomy representation and

is unique up to conjugation. It is known that a peripheral torus subgroup of

ρ0(π1(N)) ⊂ PSL(2,C) is conjugate to a group of cosets of matrices of the form

( 1 ν
0 1 ), where ν ∈ C. In particular, the traces (defined up to sign) of the elements

of such a subgroup are ±2. Using a result of Thurston, ρ0 may be lifted to a

representation in SL(2,C) that is also faithful and has discrete image.

In [6], Dunfield, Friedl and Jackson studied the twisted Alexander polynomial

∆K,ρ0(t) for N = EK , the exterior of a hyperbolic knot K in S3 and ρ0 : G(K)→
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SL(2,C), a lift of ρ0 such that tr ρ0(µK) = 2 for a meridian µK . They call ∆K,ρ0(t)

the hyperbolic torsion polynomial and denote it by TK(t). Moreover, based on huge

numerical calculations, they conjectured the following.

Conjecture 3.1 (Dunfield–Friedl–Jackson [6, Conjecture 1.4]). For a hyperbolic

knot K in S3, the hyperbolic torsion polynomial TK(t) determines the Thurston

norm x(K) or equivalently the genus of K. Moreover, the knot K is fibered if and

only if TK(t) is monic.

Remark 3.2. Let αK ∈ H1(EK ;Z) = Hom(G(K),Z) be the abelianization, then

we can see ‖αK‖T = 2g(K)− 1 and denote it by x(K).

Conjecture 3.1 has been verified for all hyperbolic knots with at most 15

crossings [6], hyperbolic twist knots [18] and a certain wide class of hyperbolic

2-bridge knots [20]. Recently Agol and Dunfield showed the former part of the

conjecture for a large class of hyperbolic knots in S3 that includes all special

arborescent knots and many knots whose ordinary Alexander polynomial is trivial

(see [1] for details).

§3.2. A generalization

For a µ-component hyperbolic link L there are 2µ possible lifts of the holonomy

representation ρ0 : G(L) → PSL(2,C) to an SL(2,C)-representation. It is known

that there is a canonical one-to-one correspondence between the set of lifts of

the holonomy representation and the set of spin structures of the exterior of a

link (see [17]). Among them we focus on the lift ρ0 : G(L) → SL(2,C) such

that the images of the meridians of L by ρ0 are matrices in SL(2,C) with trace 2.

Similar to the case of knots, in this paper, we call this kind of nonabelian SL(2,C)-

representation (or character) of the link group parabolic. That is, a nonabelian

SL(2,C)-representation ρ : G(L)→ SL(2,C) (or character χρ) is called parabolic if

the images of the meridians of L by ρ are matrices with trace 2. Then we propose

the following conjecture.

Conjecture 3.3. For a µ-component oriented hyperbolic link L in S3, the twisted

Alexander polynomial ∆L,ρ0(t) determines the Thurston norm, namely, we have

deg ∆L,ρ0(t) = 2‖α‖T

for α ∈ H1(EL;Z) given by sending each meridian to 1. Moreover, the link L is

fibered if and only if ∆L,ρ0(t) is monic.

Remark 3.4. For an alternating link L, it is known that the Thurston norm ‖α‖T
coincides with the Alexander norm ‖α‖A for α ∈ H1(EL;Z) as above (see [16]
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for details). The Alexander norm is determined by the (multivariable) Alexander

polynomial of L, so that we have ‖α‖A = deg ∆L(t) − 1, where ∆L(t) denotes

the reduced Alexander polynomial. Hence the equality in Conjecture 3.3 will be

deg ∆L,ρ0(t) = 4g(L) + 2(µ− 2) for a µ-component alternating hyperbolic link L.

In the next section, we show that Conjecture 3.3 holds for a wide family of

2-bridge links that are called the double twist links.

§4. Fibering and genus detecting problems

In this section we discuss the fibering and genus detecting problems for the double

twist links. In particular, for these links, we specify a finite number of loci in the

character variety that characterize fiberedness and the genus of the links. This

result can be regarded as a generalization of [12, Theorems 4.3 and 4.4]. As a

consequence, we will show in Section 4.7 that Conjecture 3.3 holds true for the

double twist links.

We start by reviewing Chebyshev polynomials and their properties.

§4.1. Chebyshev polynomials (1)

Let Sk(q) be the Chebyshev polynomials of the second kind defined by S0(q) = 1,

S1(q) = q and Sk+1(q) = q Sk(q)−Sk−1(q) for all integers k. Similarly, let Tk(q) be

the Chebyshev polynomials of the first kind defined by T0(q) = 2, T1(q) = q and

Tk+1(q) = q Tk(q)− Tk−1(q) for all integers k. Note that Tk(q) = Sk(q)−Sk−2(q).

The following three lemmas are elementary and hence their proofs are omitted.

Lemma 4.1. Write q = v + v−1. Then

Tk(q) = vk + v−k.

We have Sk(2) = k + 1 and Sk(−2) = (−1)k(k + 1). If v 6= ±1 then

Sk(q) =
vk+1 − v−(k+1)

v − v−1
.

In particular, if q = 2 cosβ, where β
π ∈ R \ Z, then Sk(q) = sin(k+1)β

sin β .

Lemma 4.2. We have

S2
k(q) + S2

k−1(q)− qSk(q)Sk−1(q) = 1.



Twisted Alexander Polynomials 403

Lemma 4.3. For any positive integer k we have

Sk(q) =

k∏
j=1

(
q − 2 cos

jπ

k + 1

)
.

In particular, all the roots of Sk(q) are real numbers strictly between −2 and 2.

Lemma 4.4. (1) If k ≥ 1 is even, then

Tk(q)− 2 = (q − 2)(q + 2)

(k/2)−1∏
j=1

(
q − 2 cos

2jπ

k

)2

.

(2) If k ≥ 1 is odd, then

Tk(q)− 2 = (q − 2)

(k−1)/2∏
j=1

(
q − 2 cos

2jπ

k

)2

.

Proof. Write q = v + v−1. By Lemma 4.1, we have Tk(q) = vk + v−k. Then

Tk(q)− 2 = v−k(vk − 1)2

= v−k(v − 1)2
∏

1≤j≤k−1

(
v − e2πij/k

)2

.

Grouping the terms involving j and k − j we have(
v − e2πij/k

)(
v − e2πi(k−j)/k

)
=
(
v − e2πij/k

)(
v − e−2πij/k

)
= v2 + 1− 2v cos

2jπ

k
.

Suppose k is even. Since e2πij/k = −1 if j = k
2 , we have

Tk(q)− 2 = v−k(v − 1)2(v + 1)2
∏

1≤j≤(k/2)−1

(
v2 + 1− 2v cos

2jπ

k

)2

= (q − 2)(q + 2)

(k/2)−1∏
j=1

(
q − 2 cos

2jπ

k

)2

.

The case of odd k is similar.

Lemma 4.5. (1) If k ≥ 1 is odd, then

Tk(q)− q = (q− 2)(q+ 2)

(k−3)/2∏
j=1

(
q − 2 cos

2jπ

k − 1

) (k−1)/2∏
j=1

(
q − 2 cos

2jπ

k + 1

)
.
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(2) If k ≥ 1 is even, then

Tk(q)− q = (q − 2)

(k−2)/2∏
j=1

(
q − 2 cos

2jπ

k − 1

) k/2∏
j=1

(
q − 2 cos

2jπ

k + 1

)
.

Proof. The proof of Lemma 4.5 is similar to that of Lemma 4.4.

The following lemma is known; see, e.g., [27, Proposition 2.4].

Lemma 4.6. Suppose Q=
(
Q11 Q12

Q21 Q22

)
∈ SL(2,C). Let q = trQ. Then for any

positive integer k we have

Qk =

(
Sk(q)−Q22Sk−1(q) Q12Sk−1(q)

Q21Sk−1(q) Sk(q)−Q11Sk−1(q)

)
and

det(I +Q+ · · ·+Qk−1) =
Tk(q)− 2

q − 2
.

§4.2. Double twist links

For integers m and n, consider the double twist link L = J(2m + 1, 2n + 1),

which is the 2-bridge link corresponding to the rational number 2n+1
4mn+2(m+n) (see

Figure 2). By [24, Lemma 3.2] (and [15, Section 2.3] also), the link group of L has

a presentation

G(L) =
〈
a, b |

(
(ab−1)mab(a−1b)m

)n
(ab−1)m = (b−1a)m

(
(ba−1)mba(b−1a)m

)n〉
,

where a and b are meridians of L depicted in Figure 2.

By setting w = (b−1a)m
(
(ba−1)mba(b−1a)m

)n
, we can rewrite the link group

as

G(L) = 〈a, b | awa−1 = w〉.

Let ρ : G(L)→ SL(2,C) be a nonabelian representation and r = awa−1w−1.

We have
∂r

∂b
= a

(
∂w

∂b
− wa−1w−1 ∂w

∂b

)
= a(1− wa−1w−1)

∂w

∂b
.

Hence ∆L,ρ(t) = det Φ
(
∂r
∂b

) /
det Φ(1− a) = det Φ

(
∂w
∂b

)
.

We consider only the case m, n ≥ 1. The other cases are similar. Let u =

(ba−1)mba(b−1a)m. Then w = (b−1a)mun. We have

∂w

∂b
=
(
1 + (b−1a) + · · ·+ (b−1a)m−1

)
(−b−1)

+ (b−1a)m(1 + u+ · · ·+ un−1)
∂u

∂b
,
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Figure 2. The double twist link J(2m+ 1, 2n+ 1) with m, n ≥ 1.

where

∂u

∂b
=
∂
(
b(a−1b)m(ab−1)ma

)
∂b

= 1 + b(1 + (a−1b) + · · ·+ (a−1b)m−1)a−1

− b(a−1b)m(1 + (ab−1) + · · ·+ (ab−1)m−1)ab−1.

For h ∈ G(L) we denote ρ(h) by H. With the orientation of L as in Figure 2,

the genus is given by g(L) = n and L is fibered if and only if m = 1. (These

facts can be proved by computing the reduced Alexander polynomial of L and

then applying [23, Theorem 1.1].) Moreover, Φ(a) = tA and Φ(b) = tB. Then

Φ(u) = t2U . The highest-degree term (in t) of ∆L,ρ(t) is

det Φ
(
−(b−1a)mun−1b(a−1b)m(1 + ab−1 + · · ·+ (ab−1)m−1)ab−1

)
=
(
t2n−1)2 det Φ(1 + ab−1 + · · ·+ (ab−1)m−1

)
= t4n−2 Tm(z)− 2

z − 2
,

where z = trAB−1. Here we apply Lemma 4.6 with Q = AB−1. Similarly, the

lowest-degree term of ∆L,ρ(t) is t−2
(Tm(z)−2

z−2

)
.

By [24, Theorem 1.1], the nonabelian character variety of L = J(2m+1, 2n+1)

is the zero set in C3 of the polynomial

R(x, y, z) = Sm−1(z)Sn(v)− Sm(z)Sn−1(v),
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where x = trA, y = trB and

v = trU =
(
xSm(z)− ySm−1(z)

)(
ySm(z)− xSm−1(z)

)
− z
(
S2
m(z) + S2

m−1(z)
)

+ 4Sm(z)Sm−1(z).

§4.3. Genus

By Lemma 4.4, we have Tm(z)−2
z−2 = 0 if and only if z = 2 cos 2jπ

m for some

1 ≤ j ≤ m
2 .

Suppose z = 2 cos 2jπ
m for some 1 ≤ j < m

2 . Then, by Lemma 4.1,

Sm−1(z) =
sinm 2jπ

m

sin 2jπ
m

= 0 and Sm(z) =
sin(m+ 1) 2jπ

m

sin 2jπ
m

= 1.

Hence R(x, y, z) = −Sn−1(v), where v = xy−z. Then, by Lemma 4.3, R(x, y, z) =

0 if and only if v = 2 cos kπn for some 1 ≤ k ≤ n− 1.

Suppose z = −2 (in this case m must be even). Then Sm−1(z) = (−1)m−1m =

−m and Sm(z) = (−1)m(m+ 1) = m+ 1. Hence

R(x, y, z) = − (mSn(v) + (m+ 1)Sn−1(v)) ,

where v = xy + 2 + (m2 +m)(x+ y)2.

We have shown the following. Let

Yj,k =
{
x, y, z ∈ C

∣∣ z = 2 cos 2jπ
m , xy − z = 2 cos kπn

}
.

Let v1 = xy + 2 + (m2 +m)(x+ y)2 and

Y =
{
x, y, z ∈ C

∣∣ z = −2, mSn(v1) + (m+ 1)Sn−1(v1) = 0
}
.

Proposition 4.7. For the double twist link L = J(2m+ 1, 2n+ 1) with m, n ≥ 1

and orientation as in Figure 2,

(1) if m is odd, then deg ∆L,χ(t) = 4n = 4g(L) on

{R(x, y, z) = 0} \
⋃

1≤j<m/2,
1≤k≤n−1

Yj,k;

(2) if m is even, then deg ∆L,χ(t) = 4n = 4g(L) on

{R(x, y, z) = 0} \ Y \
⋃

1≤j<m/2,
1≤k≤n−1

Yj,k.

§4.4. Fiberedness

Here we consider nonfibered links L. Then we have m > 1.
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Since Tk(q) − q = Tk(q) − 2 − (q − 2), by Lemma 4.5 we have Tm(z)−2
z−2 = 1

if and only if z = 2 cos 2jπ
m−1 for some 1 ≤ j ≤ m−1

2 , or z = 2 cos 2kπ
m+1 for some

1 ≤ k ≤ m+1
2 .

Suppose z = 2 cos 2jπ
m−1 for some 1 ≤ j < m−1

2 . Then, by Lemma 4.1,

Sm−1(z) =
sinm 2jπ

m−1

sin 2jπ
m−1

= 1 and Sm(z) =
sin(m+ 1) 2jπ

m−1

sin 2jπ
m−1

= z.

Hence R(x, y, z) = Sn(v)− zSn−1(v), where v = xy − (x2 + y2 − 3)z + xyz2 − z3.

Suppose z = 2 cos 2jπ
m+1 for some 1 ≤ j < m+1

2 . Then, by Lemma 4.1,

Sm−1(z) =
sinm 2jπ

m+1

sin 2jπ
m+1

= −1 and Sm(z) =
sin(m+ 1) 2jπ

m+1

sin 2jπ
m+1

= 0.

Hence R(x, y, z) = −Sn(v), where v = xy− z. Then, by Lemma 4.3, R(x, y, z) = 0

if and only if v = 2 cos kπ
n+1 for some 1 ≤ k ≤ n.

Suppose z = −2 (in this case m must be odd). Then Sm−1(z) = (−1)m−1m =

m and Sm(z) = (−1)m(m+ 1) = −(m+ 1). Hence

R(x, y, z) = mSm(v) + (m+ 1)Sn−1(v),

where v = xy + 2 + (m2 +m)(x+ y)2.

We have shown the following. Let

Zj,k =
{
x, y, z ∈ C

∣∣ z = 2 cos 2jπ
m+1 , xy − z = 2 cos kπ

n+1

}
.

Let v2 = xy − (x2 + y2 − 3)z + xyz2 − z3 and let

Zl =
{
x, y, z ∈ C

∣∣ z = 2 cos 2lπ
m−1 , Sn(v2)− zSn−1(v2) = 0

}
.

Proposition 4.8. For the (nonfibered) double twist link L = J(2m + 1, 2n + 1)

with m > 1, n ≥ 1 and orientation as in Figure 2,

(1) if m is even, then ∆L,χ(t) is nonmonic on

{R(x, y, z) = 0} \
⋃

1≤j<(m+1)/2,
1≤k≤n

Zj,k \
⋃

1≤l<(m−1)/2 Zl;

(2) if m is odd, then ∆L,χ(t) is nonmonic on

{R(x, y, z) = 0} \ Y \
⋃

1≤j<(m+1)/2,
1≤k≤n

Zj,k \
⋃

1≤l<(m−1)/2 Zl.

We now consider another orientation of L that is obtained from the one in Fig-

ure 2 by changing the orientation of the component corresponding to the meridian

b. With this orientation we have g(L) = m and L is fibered if and only if n = 1.
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Moreover, Φ(a) = tA and Φ(b) = t−1B. Then Φ(u) = U . The highest-degree term

(in t) of ∆L,ρ(t) is

det Φ
(
(b−1a)m(1 + u+ · · ·+ un−1)

)
= (t2m)2 det Φ(1 + u+ · · ·+ un−1)

= t4m
Tn(v)− 2

v − 2
.

Similarly, the lowest-degree term of ∆L,ρ(t) is t0 Tn(v)−2
v−2 .

§4.5. Genus

Recall that

v =
(
xSm(z)− ySm−1(z)

)(
ySm(z)− xSm−1(z)

)
− z
(
S2
m(z) + S2

m−1(z)
)

+ 4Sm(z)Sm−1(z).

A similar argument as in Section 4.3 shows the following. Let

Y ′j,k =
{
x, y, z ∈ C

∣∣ xy − z = 2 cos 2jπ
n , z = 2 cos kπm

}
and

Y ′ =
{
x, y, z ∈ C

∣∣ v = −2, nSm(z) + (n+ 1)Sm−1(z) = 0
}
.

Proposition 4.9. For the double twist link L = J(2m+ 1, 2n+ 1) with m, n ≥ 1

and orientation obtained from that in Figure 2 by changing the orientation of the

component corresponding to the meridian b,

(1) if n is odd, then deg ∆L,χ(t) = 4m = 4g(L) on

{R(x, y, z) = 0} \
⋃

1≤j<n/2,
1≤k≤m−1

Y ′j,k;

(2) if n is even, then deg ∆L,χ(t) = 4m = 4g(L) on

{R(x, y, z) = 0} \ Y ′ \
⋃

1≤j<n/2,
1≤k≤m−1

Y ′j,k.

§4.6. Fiberedness

As for the fiberedness of J(2m+ 1, 2n+ 1) with the same orientation as in Propo-

sition 4.9, we have the following. Let

Z ′j,k =
{
x, y, z ∈ C

∣∣ xy − z = 2 cos 2jπ
n+1 , z = 2 cos kπ

m+1

}
and

Z ′l =
{
x, y, z ∈ C

∣∣ v = 2 cos 2lπ
n−1 , Sm(z)− vSm−1(z) = 0

}
.
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Proposition 4.10. For the nonfibered double twist link L = J(2m + 1, 2n + 1)

with m ≥ 1, n > 1 and orientation obtained from that in Figure 2 by changing the

orientation of the component corresponding to the meridian b,

(1) if n is even, then ∆L,χ(t) is nonmonic on

{R(x, y, z) = 0} \
⋃

1≤j<(n+1)/2,
1≤k≤m

Z ′j,k \
⋃

1≤l<(n−1)/2 Z
′
l ;

(2) if m is odd, then ∆L,χ(t) is nonmonic on

{R(x, y, z) = 0} \ Y ′ \
⋃

1≤j<(n+1)/2,
1≤k≤m

Z ′j,k \
⋃

1≤l<(n−1)/2 Z
′
l .

The remaining two orientations of L are similar. They are just mirror images

of the previous two. In general, there are 2µ ways to orient a µ-component link.

Moreover, up to taking mirror images, there are only 2µ−1 orientations to consider.

Remark 4.11. Similar results to Propositions 4.7–4.10 can be stated for all double

twist links J(2m+ 1, 2n+ 1), where m, n are integers. However, for simplicity, we

choose to present only the case that m, n ≥ 1.

§4.7. Main theorem

Note that L = J(2m+ 1, 2n+ 1) is hyperbolic if and only if m, n 6∈ {−1, 0}. Since

the double twist link L is alternating, the notions of the genus and the Thurston

norm of L are equivalent (see Remark 3.4).

We are now ready to show our main theorem of this paper.

Theorem 4.12. For the (hyperbolic) double twist link L = J(2m + 1, 2n + 1)

with m, n 6∈ {−1, 0} and with any orientation, the twisted Alexander polynomial

∆L,ρ0(t) determines the genus g(L) (or equivalently the Thurston norm). More-

over, L is fibered if and only if ∆L,ρ0(t) is monic.

Note that the character of our lift ρ0 : G(L) → SL(2,C) has the form χρ0 =

(2, 2, z0) for some z0 6∈ R satisfying R(2, 2, z0) = 0.

As mentioned in Remark 4.11, we consider only the case m, n ≥ 1. The other

cases are similar. To prove Theorem 4.12, by Propositions 4.7–4.10, it suffices to

show that neither Y , Y ′, Yj,k, Y ′j,k, Zl, Z
′
l , Zj,k nor Z ′j,k contains characters of the

form (2, 2, z) with z 6∈ R. Except for the cases of Y ′ and Z ′l , the others are clear.

We now show these two cases.

Lemma 4.13. If (x, y, z) ∈ Z ′l then v = 2 cos 2lπ
n−1 ∈ R and

z = −v3 + v2xy − v(x2 + y2 − 3) + xy.

Hence, Z ′l does not contain characters of the form (2, 2, z) with z 6∈ R.
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Proof. Since (x, y, z) ∈ Z ′l , we have Sm(z) = vSm−1(z). Combining this with the

equality S2
m(z) + S2

m−1(z)− zSm(z)Sm−1(z) = 1 in Lemma 4.2, we get

S2
m−1(v) =

1

v2 + 1− zv
.

Hence

v =
(
xSm(z)− ySm−1(z)

)(
ySm(z)− xSm−1(z)

)
− z
(
S2
m(z) + S2

m−1(z)
)

+ 4Sm(z)Sm−1(z)

= (4v − vx2 + xy + v2xy − vy2 − z − v2z)S2
m−1(v)

=
4v − vx2 + xy + v2xy − vy2 − z − v2z

v2 − zv + 1
.

By solving for z (in terms of v, x, y), we obtain the desired formula.

Lemma 4.14. If (x, y, z) ∈ Y ′ then

z = (n2 + n)(x+ y)2 + xy + 2.

Hence, Y ′ does not contain characters of the form (2, 2, z) with z 6∈ R.

Proof. The proof of Lemma 4.14 is similar to that of Lemma 4.13.

In view of Theorem 4.12 and its proof, we may propose the following problem.

Problem 4.15. For an oriented hyperbolic 2-bridge link L and its parabolic rep-

resentation ρ : G(L) → SL(2,C), does the twisted Alexander polynomial ∆L,ρ(t)

determine the genus g(L) and fiberedness of L?

If Problem 4.15 has an affirmative answer, then Conjecture 3.3 holds true for

all hyperbolic 2-bridge links. However, as we will see in the next section, a part of

Problem 4.15 has a negative answer.

§5. Parabolic representations

Let us recall that a nonabelian representation ρ : G(L)→ SL(2,C) is parabolic if

the images of all the meridians of L by ρ are matrices with trace 2.

For positive integers m, n and p, consider the 2-bridge link C(2m, 2n,−2p) in

the Conway notation (see Figure 3), where positive numbers 2m, 2n correspond

to right-handed twists and the negative number −2p corresponds to left-handed

twists. It is the rational link corresponding to the continued fraction

[2m, 2n,−2p] = 2m+
1

2n− 1
2p
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and is the 2-bridge link
(
2m(4np − 1) + 2p, 4np − 1

)
in Schubert notation. Note

that C(2m, 2n,−2p) is a hyperbolic link.

Theorem 5.1. For the 2-bridge link L = C(2m, 2n,−2p), with m, n, p being

odd positive integers and m 6= p, then the twisted Alexander polynomial ∆L,ρ0(t)

detects the genus of L. Moreover,

(1) if gcd(m, p) = 1, then all parabolic representations detect g(L);

(2) if gcd(m, p) ≥ 3, then not all parabolic representations detect g(L).

Remark 5.2. We do not know whether there is a parabolic representation of a

2-bridge knot K that does not detect the genus of K (see [20, Theorem 1.2]).

§5.1. Chebyshev polynomials (2)

In this subsection we prepare two lemmas for the Chebyshev polynomials.

Lemma 5.3. For integers k, l we have

(5.1) Sk(q)Sl−1(q)− Sk−1(q)Sl(q) = Sl−k−1(q).

Proof. It suffices to show (5.1) for q 6= ±2. When q 6= ±2, we write q = v + v−1

for some v 6= ±1. By Lemma 4.1, the LHS of (5.1) is equal to

vk+1 − v−(k+1)

v − v−1
· v

l − v−l

v − v−1
− vk − v−k

v − v−1
· v

l+1 − v−(l+1)

v − v−1

=
−(vk+1−l + vl−(k+1)) + (vk−(l+1) + vl+1−k)

(v − v−1)2

=
vl−k − vk−l

v − v−1
,

which is also equal to the RHS of (5.1).

Lemma 5.4. For integers k, l we have

gcd(Sk−1(q), Sl−1(q)) = Sgcd(k,l)−1(q).

Proof. The lemma follows from the fact that

gcd(vk − v−k, vl − v−l) = vgcd(k,l) − v− gcd(k,l)

and Lemma 4.1.

§5.2. Two bridge links C(2m, 2n,−2p)

In this subsection we prove Theorem 5.1. To this end we first give a presentation

of the link group of C(2m, 2n,−2p).
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Figure 3. The 2-bridge link L = C(2m, 2n,−2p) with m, n, p ≥ 1 and the genera-

tors of G(L).

Proposition 5.5. The link group of L = C(2m, 2n,−2p) has a presentation

G(L) = 〈a, b | aw = wa〉,

where

w = (b−1a)m
[
a−1

(
(a−1b)m(ab−1)m

)−n
b
(
(a−1b)m(ab−1)m

)n]p
and a and b are meridians of L depicted in Figure 3.

Proof. By applying the Wirtinger algorithm to the leftmost twist region in Figure 3

and by induction we have

am = (a−1
0 b0)ma0(b−1

0 a0)m, bm = (a−1
0 b0)mb0(b−1

0 a0)m.

Similarly, the middle and rightmost twist regions give

cn = (d0c
−1
0 )nc0(c0d

−1
0 )n, dn = (d0c

−1
0 )nd0(c0d

−1
0 )n,

ep = (e−1
0 f0)pe0(f−1

0 e0)p, fp = (e−1
0 f0)pf0(f−1

0 e0)p.

We have G(L) = 〈a, b | am = ep〉. Since e0 = a and f0 = dn, the relation am = ep
is equivalent to aw = wa, where

w = (b−1a)m(a−1dn)p.

Finally, since dn = (bb−1
m )nb(bmb

−1)n and bm = (a−1b)mb(b−1a)m we obtain the

desired presentation of G(L).
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Let ρ : G(L)→ SL(2,C) be a representation and r = awa−1w−1. We have

∂r

∂b
= a

(
∂w

∂b
− wa−1w−1 ∂w

∂b

)
= a(1− wa−1w−1)

∂w

∂b
.

Hence ∆L,ρ(t) = det Φ
(
∂r
∂b

) /
det Φ(1− a) = det Φ

(
∂w
∂b

)
.

For k ≥ 0 and h ∈ G(L), let δk(h) = 1+h+ · · ·+hk. Let v = (a−1b)m(ab−1)m

and u = a−1v−nbvn. Then w = (b−1a)mup. We have

∂w

∂b
= δm−1(b−1a)(−b−1) + (b−1a)mδp−1(u)

∂u

∂b
,

∂u

∂b
=
∂(a−1v−nbvn)

∂b

= a−1δn−1(v−1)
∂v−1

∂b
+ a−1v−n

(
1 + bδn−1(v)

∂v

∂b

)
= a−1v−n

(
1 + (b− 1)δn−1(v)

∂v

∂b

)
,

∂v

∂b
=
∂(a−1b)m(ab−1)m

∂b

= δm−1(a−1b)a−1 + (a−1b)mδm−1(ab−1)(−ab−1).

For h ∈ G(L), we denote ρ(h) by the capital letter H for simplicity. With the

orientation of L = C(2m, 2n,−2p) as in Figure 3, the genus is given by g(L) = 1.

(This fact can be proved by applying Seifert’s algorithm to the reduced alternat-

ing diagram of L corresponding to the continued fraction [2m, 2n − 1, 1, 2p − 1].)

Moreover, Φ(a) = tA and Φ(b) = tB. Then Φ(v) = V and Φ(u) = U .

The highest-degree term (in t) of ∆L,ρ(t) is

t0 det ρ
(

(b−1a)mδp−1(u)× a−1v−nbδn−1(v)× (a−1b)mδm−1(ab−1)(−ab−1)
)

= t0
Tp(ū)− 2

ū− 2
· Tn(v̄)− 2

v̄ − 2
· Tm(z)− 2

z − 2

by Lemma 4.6. Similarly, the lowest one is t−4 Tp(ū)−2
ū−2 · Tn(v̄)−2

v̄−2 · Tm(z)−2
z−2 .

Consider a parabolic representation ρ : G(L)→ SL(2,C) given by

A = ρ(a) =

(
1 1

0 1

)
and B = ρ(b) =

(
1 0

2−z 1

)
,

where z satisfies the matrix equation AW = WA. Here W = ρ(w). Note that

z = trAB−1 holds.

Let Wij ∈ C[z] denote the (i, j)-entry of W . Riley showed in [25] that W21 =

(2 − z)W ′21 for some W ′21 ∈ C[z] and that the matrix equation AW = WA is

equivalent to a single equation W ′21 = 0. We call W ′21 the Riley polynomial of L.



414 T. Morifuji and A. T. Tran

We now compute W ′21 for L = C(2m, 2n,−2p). Since

A−1B =

(
z−1 −1

2−z 1

)
and AB−1 =

(
z−1 1

z−2 1

)
,

by Lemma 4.6 we have

V = (A−1B)m(AB−1)m =

(
Sm(z)−Sm−1(z) −Sm−1(z)

(2−z)Sm−1(z) Sm(z)−(z−1)Sm−1(z)

)

×

(
Sm(z)−Sm−1(z) Sm−1(z)

(z−2)Sm−1(z) Sm(z)−(z−1)Sm−1(z)

)

=

(
V11 V12

V21 V22

)
,

where

V11 = S2
m(z)− 2Sm(z)Sm−1(z) + (3− z)S2

m−1(z),

V12 = (z − 2)S2
m−1(z),

V21 = −(z − 2)2S2
m−1(z),

V22 = S2
m(z) + (2− 2z)Sm(z)Sm−1(z) + (3− 3z + z2)S2

m−1(z).

Then

V n =

(
Sn(v̄)−V22Sn−1(v̄) V12Sn−1(v̄)

V21Sn−1(v̄) Sn(v̄)−V11Sn−1(v̄)

)
=

(
α β

γ δ

)
,

where v̄ = trV . Hence

U =

(
U11 U12

U21 U22

)
= A−1V −nBV n

=

(
1 −1

0 1

)(
δ −β
−γ α

)(
1 0

2−z 1

)(
α β

γ δ

)

=

(
1+(z−2)α(α+ β) −1+(z−2)β(α+ β)

−(z−2)α2 1−(z−2)αβ

)
.

Since W = (B−1A)mUp, we have

W =

(
Sm(z)−(z−1)Sm−1(z) Sm−1(z)

(z−2)Sm−1(z) Sm(z)−Sm−1(z)

)

×

(
Sp(ū)−U22Sp−1(ū) U12Sp−1(ū)

U21Sp−1(ū) Sp(ū)−U11Sp−1(ū)

)
,
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where ū = trU . This implies that

W21 = U21 (Sm(z)− Sm−1(z))Sp−1(ū) + (z − 2)Sm−1(z) (Sp(ū)− U22Sp−1(ū)) .

Since U22 = 1− (z − 2)αβ and U21 = −(z − 2)α2 we have

W21 = (2− z)W ′21,

where the Riley polynomial of L is given by

W ′21 = α2
(
Sm(z)− Sm−1(z)

)
Sp−1(ū)

− Sm−1(z)
(
Sp(ū) + ((z − 2)αβ − 1)Sp−1(ū)

)
.

Since the holonomy representation ρ0 : G(L) → SL(2,C) is one of the para-

bolic representations, it has the form

ρ0(a) =

(
1 1

0 1

)
and ρ0(b) =

(
1 0

2−z0 1

)
for some z0 6∈ R satisfying W ′21(z0) = 0.

To prove Theorem 5.1, we determine all complex numbers z satisfying both

W ′21(z) = 0 and
Tp(ū)− 2

ū− 2
· Tn(v̄)− 2

v̄ − 2
· Tm(z)− 2

z − 2
= 0.

We consider the following three cases.

Case 1. Suppose Tm(z)−2
z−2 = 0. Since m is odd, by Lemma 4.4 we have z =

2 cos 2jπ
m for some 1 ≤ j ≤ m−1

2 . Then, by Lemma 4.1,

Sm−1(z) =
sinm 2jπ

m

sin 2jπ
m

= 0 and Sm(z) =
sin(m+ 1) 2jπ

m

sin 2jπ
m

= 1.

It is easy to see that V = I and

U = A−1V −nBV n = A−1B.

This implies that W ′21 = Sp−1(z).

By Lemma 5.4 we have Sgcd(m,p)−1(z) = gcd(Sm−1(z), Sp−1(z)).

If gcd(m, p) = 1, then gcd(Sm−1(z), Sp−1(z)) = 1. Since Sm−1(z) = 0, we

have W ′21 = Sp−1(z) 6= 0.

If gcd(m, p) ≥ 3, we can choose z′ ∈ R such that both Tm(z′)−2
z′−2 and Sp−1(z′)

are zero. Indeed, choose some 1 ≤ j ≤ 1
2 gcd(m, p) and take z′ = 2 cos 2jπ

gcd(m,p) .

Then the parabolic representation ρ′ corresponding to the root z′ of W ′21 does not

detect the genus of L.
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Case 2. Suppose Tn(v̄)−2
v̄−2 = 0. Since n is odd, we have Sn−1(v̄) = 0 and Sn(v̄) =

1. Then

V n =

(
Sn(v̄)−V22Sn−1(v̄) V12Sn−1(v̄)

V21Sn−1(v̄) Sn(v̄)−V11Sn−1(v̄)

)
= I

and U = A−1V −nBV n = A−1B. Hence, by Lemma 4.1 we have

W ′21 =
(
Sm(z)− Sm−1(z)

)
Sp−1(z)− Sm−1(z)

(
Sp(z)− Sp−1(z)

)
= Sp−m−1(z).

If Sp−m−1(z) = 0, then since m 6= p we have z ∈ R (strictly between −2

and 2) by Lemma 4.3. By a direct calculation and Lemma 4.2 we have

v̄ = trV = 2
(
S2
m(z) + S2

m−1(z)− zSm(z)Sm−1(z)
)

+ (z − 2)2S2
m−1(z)

= 2 + (z − 2)2S2
m−1(z),

which is a real number greater than or equal to 2. This contradicts Sn−1(v̄) = 0.

Case 3. Suppose
Tp(ū)−2
ū−2 = 0. Since p is odd, we have Sp−1(ū) = 0 and Sp(ū) =

1. Then W ′21 = −Sm−1(z).

If Sm−1(z) = 0, then S2
m(z) = 1 by Lemma 4.2. It is easy to see that V = I

and

U = A−1V −nBV n = A−1B.

This implies that ū = z. Hence Sp−1(z) = Sp−1(ū) = 0. It cannot occur that both

Sm−1(z) = 0 and Sp−1(z) = 0 if gcd(m, p) = 1.

From the above discussion we have proved Theorem 5.1 for the orientation in

Figure 3.

We now consider another orientation of L that is obtained from the one in

Figure 3 by changing the orientation of the component corresponding to the merid-

ian a. With this orientation we have g(L) = m + p − 1. Moreover, Φ(a) = t−1A

and Φ(b) = tB. Then Φ(v) = V and Φ(u) = t2U .

In this case the highest-degree term (in t) of ∆L,ρ(t) is

t4p−2 det
(
(b−1a)mup−1 × a−1v−nbδn−1(v)× δm−1(a−1b)a−1

)
= t4p−2 Tn−1(v̄)− 2

v̄ − 2

and the lowest one is t2−4m Tn−1(v̄)−2
v̄−2 . A similar argument to Case 2 above shows

that all parabolic representations detect the genus of L.

This completes the proof of Theorem 5.1.
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