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Paradoxical Partition of Unity for Hypergroups

by

Akram Yousofzadeh

Abstract

The paradoxical partition of unity of a discrete hypergroup is defined. It is shown that a
discrete hypergroup is amenable if and only if it admits no paradoxical partition of unity.
We introduce the Tarski number for discrete hypergroups and present a constructive way
to compute an upper bound for this number.
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§1. Introduction

Beginning in the last century, many studies have been carried out on the amenabil-

ity of discrete and nondiscrete groups; see for example [G] , [Pa] and [Pi]. We would

like to point out the Tarski alternative. This alternative specifies that an arbitrary

group is either amenable or paradoxical [C]. There are also other theorems that

characterize the amenability of groups. Among them is a theorem proved by Rosen-

blatt and Willis in 2001 [RW]. In that paper, the authors defined the configuration

equations of groups and showed that a group G is amenable if and only if every

system of configuration equations associated to G has normalized solutions.

Locally compact hypergroups as generalizations of locally compact topological

groups were introduced in 1973 by Dunkl [D] and then studied by Jewett [J] and

Spector [Sp]. This concept has been of interest to many authors ever since (see

[A], [BH], [HK] and [V]). The amenability of hypergroups is an interesting area of

research as well (see [Sk] and [W]). In this paper introducing paradoxical partitions

of unity, we state and prove an analogy of the Tarski alternative for hypergroups.

§2. Preliminaries

We start this section with a few definitions and some known theorems.
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Definition 2.1. Consider a nonempty subset C of Rn. Then C is a cone in Rn if

for any vector y ∈ C and any k > 0 we have ky ∈ C. The cone C is called pointed

if C ∩ (−C) = {0}.

In what follows, C∗ will denote the polar cone of an arbitrary cone C in Rn;

that is,

C∗ = {y∗ ∈ Rn; y∗y ≥ 0 for all y ∈ C}.
Then the interior of C∗ is given by

intC∗ = {y ∈ C∗ : 0 6= x ∈ C ⇒ xy > 0}.

The following theorem is the well-known Gordan theorem, described over cone

domains.

Theorem 2.2. Let M be a nonzero m × n matrix and let C be a cone in Rn

such that it is closed, convex and pointed. Then one and only one of the following

statements is consistent, where M ′ stands for the transpose of the matrix M :

(1) Mx = 0 for some x ∈ C, x 6= 0;

(2) M ′y ∈ int(−C∗) for some y ∈ Rm.

Proof. See [SS, Lemma 2].

The concept of configuration is defined in [RW]. In that paper, the authors

use this notion to give an equivalence condition for the amenability of groups. A

conclusion of that paper is to construct a paradoxical decomposition for nona-

menable discrete groups (see [Y]). The definition of configuration and the related

topics for hypergroups was given in 2014 in [W]. We recall some definitions and

basic theorem directly from [W] on an arbitrary locally compact hypergroup, but

we shall not be involved with nondiscrete hypergroups throughout this paper.

Definition 2.3 ([BH]). A hypergroup is a locally compact space H with the fol-

lowing conditions:

(1) There exists an associative binary operation ∗ called convolution on M(H)

under which M(H) is an algebra. Moreover, for every x, y in H, δx ∗ δy is a

probability measure with compact support.

(2) The mapping (x, y) 7→ δx ∗ δy is a continuous map from H × H into M(H)

equipped with the weak* topology.

(3) The mapping (x, y) 7→ supp(δx ∗ δy) is a continuous mapping from H×H into

the compact subsets of H equipped with the Michael topology.

(4) There exists a unique element e in H such that δe ∗ δx = δx ∗ δe = δx for all x

in H.
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(5) There exists a homeomorphism x 7→ x̌ of H called involution satisfying ˇ̌x = x

for all x ∈ H and (δx ∗ δy )̌ = δy̌ ∗ δx̌ for all x, y ∈ H, where µ̌(A) = µ(Ǎ), for

any Borel subset A.

(6) The element e belongs to supp(δx ∗ δy) if and only if y = x̌.

Let f be a Borel function on H and µ ∈ M(H). The left translation µ ∗ f is

defined by µ∗f(x) = (µ̌∗δx)(f). We say that H is amenable if there exists a positive

linear functional of norm 1 on Cb(H) that is invariant under left translation. For

each f ∈ Cb(H) and x, y ∈ H, we have δx ∗ f(y) = δx̌ ∗ δy(f). A Borel measure

λ on H is called a (left) Haar measure if λ(δx ∗ f) = λ(f) for all f ∈ Cb(H) and

x ∈ H.

Definition 2.4. Let H be a hypergroup with left Haar measure λ. Let E = {E1,

. . . , Em} be a finite measurable partition of H and choose an n-tuple of elements

of H, h = {h1, . . . , hn}. A configuration is an (n + 1)-tuple C = (C0, C1, . . . , Cn)

where each Cj ∈ {1, . . . ,m}.

For a fixed configuration C, we define ξ0(C) to be the real-valued function on

H given by

ξ0(C)(x) :=

n∏
j=0

δhj
∗ δx(ECj

)

using the convention that h0 = e. An alternative expression for ξ0(C) is

ξ0(C) =

n∏
j=0

δȟj
∗ χECj

.

From this we see that ξ0(C) is the pointwise product of finitely many nonnegative

measurable functions bounded by 1 and so is itself in L∞(H)+ and has norm

bounded by 1.

Definition 2.5. Fix E and h as before. Let {zC : C ∈ Con(h, E)} be variables

corresponding to the mn+1 configurations. Consider the m×n configuration equa-

tions ∑
C∈Con(h,E),

C0=i

zC =
∑

C∈Con(h,E),
Cj=i

zC

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We say that a solution to these configu-

ration equations is positive if, for each C ∈ Con(h, E), we have zC ≥ 0; normalized

if
∑

C∈Con(h,E) zC = 1; and inequality preserving if for every choice of mn+1 real

numbers {αC : C ∈ Con(h, E)},

0 ≤
∑

C∈Con(h,E)

αCξ0(C) a.e. ⇒ 0 ≤
∑

C∈Con(h,E)

αC zC .
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It is clear that if a system of configuration equations admits a nonnega-

tive nonzero inequality-preserving solution, then it admits a positive normalized

inequality-preserving solution as well.

Remark 2.6. It is shown in [W] that∑
C∈Con(h,E),

C0=i

ξ0(C) = χEi
and

∑
C∈Con(h,E),

Cj=i

ξ0(C) = δȟj
∗ χEi

.

Theorem 2.7 ([W]). Let H be a hypergroup with left Haar measure λ. Then H

is amenable if and only if for all choices of m,n, h and E the m× n configuration

equations have a positive normalized inequality-preserving solution.

Definition 2.8. A group G is paradoxical if it admits a paradoxical decomposi-

tion, that is, if there exist disjoint subsets P1, P2, . . . , Pm, Q1, Q2, . . . , Qn of G and

elements g1, g2, . . . , gm, h1, h2, . . . , hn of G such that

G =

m⋃
i=1

giPi =

n⋃
j=1

hjQj .

The minimal value of m + n for possible paradoxical decompositions of G is

called the Tarski number of G. For the case where we replace the group G with an

arbitrary hypergroup H, this definition does not exactly work. Note that in the

group case, one can interpret the paradoxical decomposition as

1 =

m∑
i=1

χPi
+

m∑
j=1

χQj
,

1 =

m∑
i=1

δg−1
i
∗ χPi

,

1 =

n∑
j=1

δh−1
j
∗ χQj

,

where χE denotes the characteristic function of the set E and δx−1 ∗ χE = χxE is

the left translation of function χE by the element x ∈ G. But in the hypergroup

case, δx̌ ∗ χE is not equal to χxE . Indeed, δx̌ ∗ χE has values in [0, 1] instead of

{0, 1}. So a new definition seems to be needed. The terminology used in this paper

focuses more on the sentence 1 =
∑m

i=1 χPi
+
∑m

j=1 χQj
and then we call it a

paradoxical partition of unity.
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§3. Paradoxical partition of unity

As described in the introduction, paradoxical decompositions for hypergroups can-

not be easily defined. We define the concept of a paradoxical partition of unity,

which is, to some extent, a suitable substitute.

Definition 3.1. Suppose that H is a discrete hypergroup. Let

F = {f1, . . . , fn, g0}

be a finite family of nonnegative real-valued bounded functions on H and h =

{h1, . . . , hn, h
′
1, . . . , h

′
n} be a subset of H. We say that (F , h) is a paradoxical

partition of unity of H if

(1)
∑n

i=1 fi = 1;

(2)
∑n

i=1 δhi
∗ fi = g0 +

∑n
i=1 δh′i ∗ fi;

(3) M(g0) > 0 for every nonzero bounded positive linear functional M on C(H).

Definition 3.2. The number n in the definition of a paradoxical partition of unity

of a hypergroup is called the h-Tarski number of that decomposition. The least

such number is called the h-Tarski number of the hypergroup H and is denoted

by θ(H).

By the first two conditions of Definition 3.1 it is clear that the h-Tarski number

of hypergroups is at least 2.

Theorem 3.3. The hypergroup H is amenable if and only if H admits no para-

doxical partition of unity.

Proof. If M is a left-invariant mean on C(H), and the above definition satisfied,

then

M
( n∑

i=1

δhi
∗ fi
)

=M
( n∑

i=1

δh′i ∗ fi + g0

)
.

So

M
( n∑

i=1

fi

)
=M

( n∑
i=1

fi

)
+M(g0),

thus M(g0) = 0, which is impossible.

Now let H be not amenable. Then by Theorem 2.7 there exists a system of

configuration equations with no nonnegative nonzero inequality-preserving solu-

tion. Write this system as AX = 0, where the rows of A are the coefficient vectors

of equations
∑

C0=i zC =
∑

Cj=i zC , 1 ≤ i ≤ m, 1 ≤ j ≤ n and X is the vector of

variables. Let P be the set

P = {(zC)C∈Con(h,E); zC ≥ 0 and (zC) is inequality preserving}.
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It is easily seen that P is a pointed closed convex cone in Rmn+1

. By assumption,

the homogenous system AX = 0 has no nonzero solution in P. Now by Theorem 2.2

there exists a vector y1 ∈ Rmn such that A′y1 ∈ int(−P∗) or equivalently, there

exists (a nonzero vector) y ∈ Rmn such that for each nonzero (zC)C ∈ P, we have

(y′A).(zC)C > 0. Obviously for every x ∈ H, we have 0 6=
(
ξ0(C)(x)

)
C
∈ P. Define

g := y′
[
A
(
ξ0(C)

)
C

]
.

Then

g(x) > 0 (x ∈ H).

Also, for each nonzero positive linear functional M on C(H),

0 6=
(
M(ξ0(C))

)
C
∈ P.

Therefore

M(g) =M
(
y′A
(
ξ0(C)

)
C

)
= y′

[
A
(
M(ξ0(C))

)
C

]
> 0.

Let y = (yij)
m,n
i,j=1. It is easily seen that each yij can be chosen as an integer.

By the definition of A and Remark 2.6,

y′
[
A
(
ξ0(C)(x)

)
C

]
=
∑
i,j

yij

( ∑
Cj=i

ξ0(C)−
∑
C0=i

ξ0(C)

)
=
∑
i,j

yij(δȟj
∗ χEi

− χEi
).

Hence ∑
i,j

yij(δȟj
∗ χEi

) = g +
∑
i,j

yijχEi
.

We use the following notation to achieve the paradoxical partition of unity

fij =
|yij |∑m,n

s,t=1 |yst|
χEi

(1 ≤ i ≤ m, 1 ≤ j ≤ n),

fi =

(∑m,n
s,t=1 |yst| −

∑n
j=1 |yij |∑m,n

s,t=1 |yst|

)
χEi

(1 ≤ i ≤ m),

g0 =
g∑m,n

s,t=1 |yst|
,

xij =

{
hj , yij > 0,

e, yij < 0,
and x′ij =

{
e, yij > 0,

hj , yij < 0.
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Note that for every 1 ≤ i ≤ m,
∑n

j=1 fij + fi = χEi
. Finally we have

m,n∑
i,j=1

fij +

m∑
i

fi = 1,

m,n∑
i,j=1

δxij
∗ fij +

m∑
i=1

δe ∗ fi = g0 +

m,n∑
i,j=1

δx′ij ∗ fij +

m∑
i=1

δe ∗ fi,

and clearlyM(g0) > 0 for every nonzero positive linear functionalM on C(H).

Corollary 3.4. Let m and n be as in the proof of Theorem 3.3. Then θ(H) ≤
m(n+ 1).

Example 3.5. Let K = H ∨ F2 be the hypergroup join of H and F2, where F2 is

the free group on two generators a and b and H is an arbitrary finite hypergroup

(see [BH, p. 59]). Suppose that g = (a, b) and E = {E1, E2, E3, E4}, where

E1 = {x, x is a reduced word starting with a},
E2 = {x, x is a reduced word starting with b},
E3 = {x, x is a reduced word starting with a−1 or b−1},
E4 = H.

Then Con(h, E)(g, E) consists of 64 configurations, say, C1, C2, . . . , C64. Without

loss of generality, let C1 = (1, 1, 2), C2 = (2, 1, 2), C3 = (3, 3, 2), C4 = (3, 4, 2),

C5 = (3, 1, 1), C6 = (3, 1, 3), C7 = (3, 1, 4), C8 = (4, 1, 2) and C9 = (3, 2, 2). By

the construction of this hypergroup join, it is easy to see that

ξ0(C1) = χE1
, ξ0(C2) = χE2

,

ξ0(C3) = χa−1E3
,

ξ0(C4) = χ{a−1},

ξ0(C5) = χ{x, x is a reduced word starting with b−1a},

ξ0(C6) = χb−1E3,,

ξ0(C7) = χ{b−1},

ξ0(C8) = χH ,

ξ0(C9) = χ{x, x is a reduced word starting with a−1b},

and for the other configurations, ξ0(C) = 0. Set D := {C1, . . . , C9}. Let M be the

coefficient matrix of the system of configuration equations corresponding to (g, E).
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Then M is the blocked matrix

M =

(
AB

C L

)
,

where A is the coefficient matrix of the system∑
C∈D,
c0=i

ZC =
∑
C∈D,
cj=i

ZC (1 ≤ i ≤ m, 1 ≤ j ≤ n).

In other words, A is the coefficient matrix of

ZC1 = ZC1 + ZC2 + ZC5 + ZC6 + ZC7 + ZC8 ,

ZC1
= ZC5

,

ZC2
= ZC9

,

ZC2 = ZC1 + ZC2 + ZC3 + ZC4 + ZC8 + ZC9 ,

ZC3
+ ZC4

+ ZC5
+ ZC6

+ ZC7
+ ZC9

= ZC3
,

ZC3
+ ZC4

+ ZC5
+ ZC6

+ ZC7
+ ZC9

= ZC6
,

ZC8 = ZC4 ,

ZC8
= ZC7

.

This new system has no nonzero nonnegative solution. In fact,

A =



0 1 0 0 1 1 1 1 0

−1 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 0 0 1

1 0 1 1 0 0 0 1 1

0 0 0 −1−1−1−1 0 −1

0 0 −1−1−1 0 −1 0 −1

0 0 0 1 0 0 0 −1 0

0 0 0 0 0 0 1 −1 0


.

Putting y′ = (1, 0, 0, 1, . . . , 0), we have, for some α10, . . . , α64,

y′M = (1, 1, 1, 1, 1, 1, 1, 2, 1, α10, . . . , α64).

Let

g0 := y′M(ξ0(C))C .

Then

g0 =

[ 9∑
i=1

ξ0(Ci)

]
+ ξ0(C8) ≥

∑
C∈D

ξC = 1
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and clearly for each meanM on C(K), one hasM(g0) > 0. On the other hand, if

f1 = χE1
, f2 = χE2

and f3 = χE3∪E4,, then

f1 + f2 + f3 = 1

and

(δǎ ∗ f1 + δb̌ ∗ f2 + δe ∗ f3)− (δe ∗ f1 + δe ∗ f2 + δe ∗ f3) = g0

(see the proof of Theorem 3.3). Therefore

{f1, f2, f3, g0}

is a paradoxical partition of unity for K and K is nonamenable. Note that in this

example, θ(K) ≤ 3.

The reader may compare the process of the construction of a paradoxical

decomposition in [Y] and the construction of a paradoxical partition of unity in

the above theorem. The second one is much easier! In the following theorem we

give a relation between τ(G) and θ(G) for a group G.

Theorem 3.6. Let G be a nonamenable group. Then θ(G) is at most the Tarski

number of G.

Proof. First method. Let the Tarski number of G be n+m and

E1, . . . , En, En+1, . . . , En+m, h
−1
1 , . . . , h−1

n , h−1
n+1, . . . , h

−1
n+m

be the paradoxical decomposition of G and set h = (h1, . . . , hn+m) and E =

{E1, . . . , En+m}. Since

(3.1) G =

n⊔
i=1

h−1
i Ei =

n+m⊔
j=n+1

h−1
j Ej ,

for each configuration C = (C0, C1, . . . , Cn+m) ∈ Con(h, E), there are unique i ∈
{1, . . . , n} and j ∈ {n + 1, . . . , n + m} such that Ci = i and Cj = j (see [ARW,

§2]). Thus ∑
C∈Con(h,E)

zC =
∑

C∈Con(h,E),
Ci=i

zC (1 ≤ i ≤ n)

and ∑
C∈Con(h,E)

zC =
∑

C∈Con(h,E),
Cj=j

zC (1 ≤ j ≤ m).



428 A. Yousofzadeh

So by the definition of configuration equations, for 1 ≤ i ≤ n and 1 ≤ j ≤ m we

have ∑
C∈Con(h,E)

zC =
∑

C∈Con(h,E),
C0=i

zC =
∑

C∈Con(h,E),
C0=j

zC .

On the other hand, we know that

n∑
j=1

∑
Cj=j

χx0(C) =

n∑
j=1

∑
C0=j

δȟj
∗ χx0(C)

and
n+m∑
j=n+1

∑
Cj=j

χx0(C) =

n+m∑
j=n+1

∑
C0=j

δȟj
∗ χx0(C).

Since 1 =
∑

C∈Con(h,E) χx0(C), there exist αC > 0, C ∈ Con(h, E) such that

(3.2)

n+m∑
j=1

∑
Cj=j

χx0(C) −
n+m∑
j=1

∑
C0=j

δȟj
∗ χx0(C) =

∑
C∈Con(h,E)

αCχx0(C).

Setting g0 =
∑

C∈Con(h,E) αCχx0(C) for each positive linear functional M on Cb(G),

we have M(g0) > 0.

Equation (3.2) implies that

(3.3)

n+m∑
j=1

∑
C0=j

δȟj
∗ χx0(C) −

n+m∑
j=1

∑
C0=j

δe ∗ χx0(C) = g0.

It is clear that
∑n+m

j=1

∑
C0=j χx0(C) = 1. So (3.3) is a paradoxical partition of

unity for G and we have θ(G) ≤ m+ n. Therefore θ(G) ≤ τ(G).

Second method. By (3.1), ∑
χEi +

∑
χFj = 1,∑

δgi ∗ χEi
+
∑

δhj
∗ χFj

= 2 = 1 +
∑

χEi
+
∑

χFj
.

Now it is enough to put g0 = 1. Therefore θ(G) ≤ τ(G).

Example 3.7. Let F2 be the free group on two generators a and b. Put H = {e}
in Example 3.5. It is seen that θ(F2) ≤ 3 < 4 = τ(F2) (see [C]).

Question 3.8. Let G be a group. Is there an exact relation between θ(G) and

τ(G)?
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