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Exponents of Some One-Dimensional
Gauss–Manin Systems

by

Alberto Castaño Doḿınguez

Abstract

In this paper we provide a purely algebraic characterization of the exponents of one-
dimensional direct images of a structure sheaf by a rational function, related to the
vanishing of the cohomologies of a certain Koszul complex associated with such a mor-
phism. This can be extended to a more general family of Gauss–Manin systems. As an
application, we calculate a set of possible exponents of the Gauss–Manin cohomology
of some arrangements of hyperplanes with multiplicities, relevant to Dwork families and
mirror symmetry.
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§1. Introduction

Let k be an algebraically closed field of characteristic zero. An algebraic variety,

or just variety, will mean for us an equidimensional quasi-projective separated

finite-type scheme over k, reducible or not. For any smooth variety X , Db(DX )

will denote the category of bounded complexes of DX -modules.

For an open subvariety of the affine line, the exponents of a D-module over it

are strongly related to the monodromy of its solutions. This notion is topological

in nature when k = C, but we can manage to work in an algebraic way with a

similar concept, and because of that, we will usually use both names, monodromy

and exponents, to denote the phenomenon and the object of study. Although this

theory can be constructed in any dimension thanks to the formalism of the V -

filtration, the Bernstein–Sato polynomial and the vanishing cycles of Malgrange

and Kashiwara (cf. [Ma1, Kas, MM] or the appendix by Mebkhout and Sabbah in
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[Me, Ch. III, §4]), it is defined in a much more simple way in dimension 1. In fact,

we will follow the approach of [Ka1, §2.11].

The main aim of this paper is to prove the following result:

Theorem 1.1. Let n be a fixed positive integer and let g ∈ k[x1, . . . , xn] be a

nonzero polynomial. Now let R = k((t))[x1, . . . , xn, g
−1], f ∈ k[x1, . . . , xn, g

−1],

and denote by f ′i the partial derivatives of f with respect to the variables xi, i =

1, . . . , n, and by G the closed subvariety {g(x) = 0} ⊆ An. Let α ∈ k and let ϕα
be the endomorphism of k((t)) given by ∂t−αt−1. Denote also by f the associated

morphism An −G → A1. Then, α mod Z is not an exponent at the origin of any

of the DA1-modules Hif+OAn−G if and only if the morphism

Φ : Rn+1 −→ R,

(a, b1, . . . , bn) 7−→ (f − t)a+ (∂1 + f ′1ϕα)b1 + · · ·+ (∂n + f ′nϕα)bn

is surjective. If it is not surjective, the number of Jordan blocks associated with α

of the zeroth cohomology is the dimension of the cokernel of Φ as a k-vector space.

As the reader can check, the statement and its proof are completely inde-

pendent of the choice of k, providing a purely algebraic way of dealing with the

exponents of a morphism for any such field, apart from their definition itself.

As we indicated in the abstract, we will apply this result to a more general

context, regarding Gauss–Manin systems over an open subset of the affine line.

However, the notion of exponent is really local in nature, so that an open subvariety

actually plays an irrelevant role and in the following we will consider everything

over the whole affine line.

In the final section we provide two examples illustrating the usefulness of the

result. More concretely, we start with a well-known fact about quasi-homogeneous

singularities and then we give a result about the exponents of a Gauss–Manin

system associated to a special family of arrangements of hyperplanes, which is our

second main result:

Theorem 1.2. Let (w0, . . . , wn) ∈ Zn+1
>0 be an (n + 1)-tuple of positive integers,

and let λ = xw1
1 · . . . · xwnn (1 − x1 − · · · − xn)w0 . Then α ∈ k is an exponent

at the origin of some cohomology of λ+OAn only if wiα is an integer for some

i = 0, . . . , n. Moreover, the multiplicity of every exponent of the form j/wi is

the same, without counting coincidences among some j/wi for different values of

i = 0, . . . , n and j = 1, . . . , wi.

This calculation does not belong only to the realm of hyperplane arrange-

ments, but appears in other interesting contexts. Namely, it can appear when we
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study the Gauss–Manin cohomology of a generalized Dwork family (cf. [Ca, §3]

and[Ka2] to know more, respectively, about that relation or about Dwork families

in general). That was in fact the main motivation for overcoming this problem.

In addition, in [Ca, §3] we explain how the Gauss–Manin system associated with

the morphism λ is strongly related to the restriction of a linear form to a torus

in An+1 (in fact the latter is just an inverse image by an étale covering of the

former), a setting already treated in [DS], for instance, and of importance in mir-

ror symmetry, for it gives a description of the quantum cohomology of a weighted

projective space.

§2. Preliminaries

In this section we will recall the basic concepts from D-module theory that we will

need in the following.

Definition 2.1. Let f : X → Y be a morphism of smooth varieties. The direct

image of complexes of DX -modules is the functor f+ : Db(DX) → Db(DY ) given

by

f+M := Rf∗
(
DY←X ⊗L

DX M
)
,

where DY←X is the
(
f−1DY ,DX

)
-bimodule

DY←X := ωX ⊗f−1OY f
−1 HomOY (ωY ,DY ) .

The inverse image of complexes of DY -modules is the functor f+ : Db(DY ) →
Db(DX) given by

f+M := DX→Y ⊗L
f−1DY f

−1M,

where DX→Y is the
(
DX , f−1DY

)
-bimodule

DX→Y := OX ⊗f−1OY f
−1DY .

Remark 2.2. When f : X = Y ×Z → Z is a projection, DZ←X ⊗L
DXM is nothing

but a shifting by dimY places to the left of the relative de Rham complex of M,

DRf (M) := 0 −→M −→M⊗OX Ω1
X/Z −→ · · · −→M⊗OX ΩnX/Z −→ 0,

so we will have f+
∼= Rf∗DRf (•)[dimY ] ([Me, Ch. I, Lem. 5.2.2]).

We will be interested in the case in which X is an open subvariety of the affine

line. From now on, we will denote by Dx the product x∂x, omitting the variable

as long as it is clear from the context.

Definition 2.3. A Kummer D-module is the quotient Kα = DGm/(D − α) for

any α ∈ k.
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Remark 2.4. Note that any two Kummer D-modules Kα and Kβ are isomorphic if

and only if α− β is an integer. Then Kα ∼= OGm for any α ∈ Z.

Proposition 2.5. Let M be a holonomic DX-module, let p be a point of X and

fix a formal parameter x at p such that ÔX,p ∼= k[[x]]. The tensor product M⊗OX
k((x)) can be decomposed as the direct sum of its regular and purely irregular parts.

Now assume that M⊗OX k((x)) ∼= k((x))[D]/(L), where

L =
∑
i

xiAi(D) ∈ k[[x]][D],

with degD L = g ≥ g0 = degD A0 (so that A0 6= 0). As a consequence, the rank of

(M⊗OX k((x)))reg is g0, and if this last degree is positive and A0(t) = γ
∏
i(t −

αi)
ni , its composition factors are Kαi,p with multiplicity ni, where Kβ,p is the

tensor product k((x))⊗k[x±] Kβ ∼= k((x))[D]/(D − β).

Moreover, if the roots of A0(t) are not congruent modulo Z, then

(M⊗OX k((x)))reg
∼= k((x))[D]/(A0(D)) ∼=

⊕
i

k((x))[D]/(D − αi)ni .

Proof. The decomposition into regular and purely irregular parts of the tensor

productM⊗OX k((x)) is a well-known fact of the theory of integrable connections

(cf. [Ma2, Ch. III, Thm. 1.5, Cor. 1.7]).

The rest is analogous to [Ka1, Cor. 2.11.7]. Although that result and those on

which it depends in [Ka1, §2.11] are stated over C, their proofs are purely algebraic

and, in fact, can be generalized for any algebraically closed field of characteristic 0.

Proposition 2.6 (Formal Jordan decomposition lemma). Let M, p and x be as

before, and suppose that M is regular at p. Then,

(i) M⊗OX k((x)) is the direct sum of regular indecomposable k((x))[D]-modules;

(ii) writing

Loc(α, nα) := k((x))[D]/(D − α)nα ,

then, for any two k((x))[D]-modules Loc(α, nα) and Loc(β, nβ), and i = 0, 1,

the vector space ExtiDX (Loc(α, nα),Loc(β, nβ)) has dimension min(nα, nβ)

if α− β ∈ Z, and 0 otherwise;

(iii) any regular indecomposable k((x))[D]-module is isomorphic to Loc(α, nα),

where α is unique modulo the integers;

(iv) given α ∈ k, the number of indecomposables of type Loc(α,m) in the decom-

position of M⊗OX k((x)) is dimk HomDX (M,Loc(α, 1)).
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Proof. When k = C, there is a topological proof as in [Ka1, Lem. 2.11.8]. However,

we can give a purely (linear) algebraic one.

Since M is holonomic, it is a finitely generated torsion DX -module, and so

will M⊗ k((x)) be over k((x))[D]. This ring is a noncommutative principal ideal

domain, so by the structure theorem for finitely generated modules over such a

ring (cf. [Ja, Ch. 3, Thm. 19]) we obtain that M⊗ k((x)) is the direct sum of

indecomposable k((x))[D]-modules. They must be regular since M is, and that

proves point (i).

Now let Loc(α, nα) and Loc(β, nβ) be as in point (ii). We can suppose that

both α and β belong to the same fundamental domain (exhaustive set of repre-

sentatives without repetitions) of k/Z, up to isomorphism. Since Loc(α, nα) is a

flat k((x))-module, we can assume that α = 0. Now note that the vector spaces

ExtiDX (Loc(α, nα),Loc(β, nβ)) are just the kernel and the cokernel of Dnα over

Loc(β, nβ). In general, each Loc(γ,m), for any γ ∈ k/Z and any m > 0, is a

successive extension of Loc(γ, 1). Thus if β 6= 0, since the operator D is clearly

bijective on them, both Ext spaces vanish. If β = 0, then the statement is easy to

check.

Let us go now for point (iii). Thanks to the discussion of the first point, we

can affirm that

M⊗ k((x)) ∼=
r⊕
i=1

k((x))[D]/(Ai(x,D)),

where Ai(x,D) =
∑
j≥0 x

jAij(D). By Proposition 2.5, k((x))[D]/(Ai(x,D)) is

isomorphic to a successive extension of the Loc(αi, 1), the αi being the roots of

each Ai0. Now we just need to invoke the previous point; such an extension must

be a direct sum of some Loc(β, nβ), with, possibly, some nβ > 1 if the roots of Ai0
were congruent modulo the integers.

Point (iv) is just an easy consequence of the two preceding ones.

These two propositions show that the equivalence classes modulo Z of the

numbers α appearing in the decomposition of the tensor product of a holonomic

DX -module with k((x)), and their associated nα, are intrinsic to the DX -module

and it is quite important, actually, to know its behavior at a point, so that moti-

vates the following definition.

Definition 2.7. Let M, p and x be as in Proposition 2.5. The exponents of M
at p are the values αi ∈ k such that

(M⊗OX k((x)))reg
∼=
⊕
i

Loc(αi, ni),

seen as elements of k/Z. For each exponent αi we define its multiplicity as ni.
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Remark 2.8. For the sake of simplicity, we will usually denote both an exponent

and some of its representatives in k in the same way.

Exponents are considered unordered and possibly repeated. Note that, when

k = C, this notion of multiplicity of an exponent α is related to the size of the

Jordan blocks of the local monodromy associated with the eigenvalue e2πiα, and

not to its multiplicity as a root of the characteristic polynomial of the monodromy.

However, these two notions are the same under some special conditions (cf. [Ka1,

Cor. 3.2.2, Lem. 3.7.2]). Nevertheless, in our algebraic setting, whenever we men-

tion “Jordan block” we will mean a regular indecomposable Loc(α, nα), in analogy

with the complex analytic case.

Although, as we have seen, the exponents at the origin of a DA1-module can

be defined even if it has an irregular singularity there, in the following we will deal

with complexes of regular holonomic DA1 -modules, since direct image preserves

regularity (cf. [Me, Ch. II, Thm. 9.3.1]).

§3. Gauss–Manin systems, main result and Laurent series

Let us recall now the basic setting of one-dimensional Gauss–Manin systems, seen

from the point of view of D-module theory.

Fix a positive integer n, some variables x1, . . . , xn and a special one called

λ. Consider an open set U ⊆ An = Spec (k[x1, . . . , xn]) and a smooth variety

X ⊂ U × A1 = U × Spec(k[λ]), together with the second projection π2 : X → A1.

In terms of D-modules, the Gauss–Manin cohomology, or system, of X is just the

direct image of the structure sheaf π2,+OX . It is a complex of DA1-modules, so

we could be interested in knowing its behavior at the origin, and in particular its

exponents. In this paper we will focus on the case where X is a hypersurface.

Going back to Theorem 1.1, the direct image f+OAn−G can be seen as the

Gauss–Manin cohomology of the graph of f in (An −G)×A1. However, that is a

rather concrete and simple example of a family of hypersurfaces. We will explain,

after proving our main result, how to relate this setting to a broader family of

Gauss–Manin systems.

Proof of Theorem 1.1. Let us first deal with the zeroth cohomology of f+OAn−G.

After finishing with it we will justify the extension of the statement to all of them.

Let K = f+OAn−G. By Proposition 2.6 we can claim that

H0(K)⊗OA1
k((t)) ∼=

r⊕
i=1

k((t))[D]/(D − βi)mi .
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From the second paragraph of the same proposition we can deduce that α will not

be an exponent of H0(K) if and only if the endomorphism

D − α· : H0(K)⊗OA1
k((t)) −→ H0(K)⊗OA1

k((t))

is bijective, or even surjective, for the

Extik((t))[D]

(
k((t))[D]/(D − α),k((t))[D]/(D − β)k

)
do not vanish or do vanish at the same time, whenever α is or is not congruent to

β modulo Z, respectively, for i = 0, 1 and any k.

Now let us decompose the morphism f as the closed immersion into its graph

iΓ followed by the projection π on the first coordinates. By Kashiwara’s equivalence

and the properties of local cohomology(cf. [HTT,Thm. 1.6.1, Prop. 1.7.1]), the com-

plex iΓ,+OAn−G is concentrated in degree 0 and, furthermore, is O(An−G)×A1(∗Γ)

/O(An−G)×A1 , for the graph of f is smooth in An+1. Therefore, the fact that α is

not an exponent of H0(K) is equivalent to the surjectivity of D − α on

π+O(An−G)×A1(∗Γ)/O(An−G)×A1 ⊗OA1
k((t)).

Note that we will always deal with affine morphisms and quasi-coherent

O(An−G)×A1-modules and we will take tensor products with k((t)), so it suffices

(cf., for example, [HTT, Prop. 1.4.4]) to work from now on with the global sections

of the objects involved in the proof.

Write M = k[x, g−1, t]
[
(t− f)−1

]
/k[x, g−1, t]. Recall that we are interested

in the top cohomology of DRx(M). Since k((t)) is flat over k[t], tensor products

with the former over the latter commute with cohomology, and thus we are going

to deal with

Mloc := k((t))[x, g−1]
[
(t− f)−1

]
/k((t))[x, g−1],

which is a module over R = k((t))[x1, . . . , xn, g
−1] and D̂ := R〈∂t, ∂1, . . . , ∂n〉.

Let us introduce just a bit more notation that we are going to use. We will

write

Dt := k((t))〈∂t〉, Dx := k[x, g−1]〈∂1, . . . , ∂n〉

and D̂x := k((t))[x, g−1]〈∂1, . . . , ∂n〉.

Summing everything up, α mod Z is not an exponent of the DA1-module H0K

at the origin if and only if

R1 HomDt

(
Dt/(D − α),Rn HomD̂x (R,Mloc)

)
= 0.

Note that

R ∼= k((t))⊗k k[x, g−1] ∼= k((t))⊗k Dx ⊗Dx k[x, g−1] ∼= D̂x ⊗Dx k[x, g−1],
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so by extension of scalars,

Rn HomD̂x (R,Mloc) ∼= Rn HomDx
(
k[x, g−1],Mloc

)
.

Now applying the derived tensor-hom adjunction,

R1 HomDt
(
Dt/(D − α),Rn HomDx

(
k[x, g−1],Mloc

))
∼= Rn+1 HomDx

(
Dt/(D − α) � k[x, g−1],Mloc

)
∼= Rn+1 HomD̂

(
D̂/(D − α, ∂1, . . . , ∂n),Mloc

)
,

the last isomorphism being by extension of scalars again. (Note that the first

isomorphism is of k-vector spaces.)

Now Mloc is a self-dual D̂-module, being the direct image by a closed immer-

sion of the self-dual object k[x, g−1] (cf. [Me, Ch. I, Cor. 5.3.13]), so by duality α

is not an exponent of the DA1 -module H0K at the origin if and only if

Rn+1 HomD̂

(
Mloc, D̂/(D + 1 + α, ∂1, . . . , ∂n)

)
= 0.

The second D̂-module above is nothing but R · t−1−α, where t−1−α should be

understood as a symbol. The actions of the partial derivatives are the usual ones

in R of ∂1, . . . , ∂n, and regarding ∂t,

∂t
(
a · t−1−α) = ∂t(a) · t−1−α + (−1− α)t−1a · t−1−α.

In order to finish all this construction, we take into account that the annihilator

of the class of (t − f)−1 in Mloc is the left ideal (f − t, ∂1 + f ′1∂t, . . . , ∂n + f ′n∂t);

indeed, each of its generators make it vanish and the ideal is maximal. Therefore,

Mloc can be presented as

Mloc
∼= D̂/(f − t, ∂1 + f ′1∂t, . . . , ∂n + f ′n∂t).

Recall that the exponents are equivalence classes in k/Z, so we could replace α by

α− 1 in this whole procedure, taking another representative of the same exponent

without affecting the validity of the proof. Then we can claim that α is not an

exponent of the DA1 -module H0f+OAn at the origin if and only if the k-linear

homomorphism Φ : Rn+1 −→ R given by

Φ = (f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα)

is surjective.

The statement on the dimension of the cokernel follows easily by reversing

the isomorphisms and equivalences and applying point (ii) of Proposition 2.6.



Exponents of Some Gauss–Manin Systems 439

Note that the operators f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα commute pairwise,

so the Koszul complex K•(R; f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα) is well defined.

Moreover, thanks to the same choice of the representative of α mod Z as two

paragraphs above we can see that its cohomologies are just the vector spaces

Rk HomD̂

(
Mloc, D̂/(D + 1 + α, ∂1, . . . , ∂n)

)
,

whose duals are in turn an extension of the

(1) Ri HomDt

(
Dt/(D − α),Rj HomD̂x (R,Mloc)

)
with j = k and j = k − 1.

Now we claim that the surjectivity of Φ is equivalent to the vanishing of all the

cohomologies of such a Koszul complex. One implication is trivial; the other is [Bo,

§9, Cor. 1]. Then, Φ is surjective if and only if all of the vector spaces (1) vanish,

which, following an argument analogous to the case of the zeroth cohomologyH0K,

is equivalent to the fact that α is not an exponent of any of the cohomologies of

f+OAn−G. This ends the proof of the theorem.

We might have that some α is an exponent at the origin of some cohomologies

of f+OAn−G. In that case, reviewing the final argument of the proof, one can still

have a partial result when dealing with the vanishing of the cohomologies of the

whole Koszul complex. More concretely, we have the following:

Corollary 3.1. Under the same conditions as before, were the Koszul complex

K•(R; f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα) acyclic in degrees d0 to d1 (possibly equal

to 0 or n+ 1, respectively), then α mod Z is not an exponent at the origin of any

of the cohomologies Hkf+OAn−G for d0 − 1 ≤ k + n ≤ d1.

Proof. As we noted at the end of the proof of the theorem, if K•(R; f − t, ∂1 +

f ′1ϕα, . . . , ∂n + f ′nϕα) is acyclic in degree k, then

Rk HomD̂

(
Mloc, D̂/(D + 1 + α, ∂1, . . . , ∂n)

)
= 0,

whose dual is the extension of the

Ri HomDt

(
Dt/(D − α),Rj HomD̂x (R,Mloc)

)
with j = k and j = k−1. As a consequence, for every i and j with d0−1 ≤ j ≤ d1

such an object must vanish, and in conclusion, the endomorphism

D − α : Hj(K)⊗ k((t)) −→ Hj(K)⊗ k((t))

is surjective for d0 − 1 ≤ j + n ≤ d1, so α mod Z is not an exponent at the origin

of any of the cohomologies Hjf+OAn−G for such values of j.
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The following corollary, despite being an easy consequence of both the theorem

and the previous corollary, seems to us interesting enough to be written explicitly:

Corollary 3.2. Using the same notation as in the theorem, if α mod Z is an

exponent at the origin of some cohomology Hif+OAn−G with i < 0, then it is also

an exponent of H0f+OAn−G.

Proof. If α mod Z were not an exponent of H0f+OAn−G, then its associated mor-

phism Φ as in the theorem would be surjective, so as in the end of the proof of

our main result, by [Bo, §9, Cor. 1] we could claim that every cohomology of the

Koszul complex K•(R; f − t, ∂1 +f ′1ϕα, . . . , ∂n+f ′nϕα) would vanish. Then by the

corollary above, α mod Z would not be an exponent at the origin of any of the

other cohomologies of f+OAn−G.

We return now to the context of Gauss–Manin systems in the form of the

following statement:

Proposition 3.3. Keep the notation as at the beginning of this section. Let r(x) be

a polynomial of k[x], and let U be the basic open set {r(x) 6= 0}. Assume there exist

two regular functions on U , p(x) and q(x), such that X is defined by the equation

p(x)−λdq(x) = 0, for certain d > 0. Write f = p/q, q = q̃/rm and G = {rq̃ = 0}.
Then, the noninteger exponents and the integer ones with multiplicity greater than

one of the Gauss–Manin system π2,+OX are d times those of f+OAn−G.

Proof. Let us show how to reduce ourselves to consider d = 1. Indeed, form the

Cartesian diagram

X

�π2

��

id×[d]
// X̃

π2

��

A1
[d]
// A1,

where [d] just means taking the dth power of the argument. It is easy to check that

if X is smooth, so is X̃. Therefore, by the base change formula [HTT, Thm. 1.7.3],

π2,+OX ∼= [d]+π2,+OX̃ , so as written above, we could find the exponents of the

Gauss–Manin cohomology of X by finding those of X̃; the former will just be d

times the latter.

Rename, for the sake of clarity, X̃ as X, assuming that d = 1 throughout the

rest of the proof. Write both p and q as fractions with the same denominator, p̄/rN

and q̄/rN , respectively. Then X is the vanishing locus of p̄(x)− λq̄(x) in U × A1.

Let Z be the hypersurface of X with equation q̄(x) = 0. Then Z is contained in X

and is defined by {p̄ = q̄ = 0} in the whole of U , so it is the product of a subvariety

Z ′ ⊂ U with A1.
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Now we can form the excision triangle (cf. [Me, Ch. I, §6.1])

RΓ[Z]OX −→ OX −→ OX(∗Z).

Let us see what happens when we apply π2,+ to the triangle. Let i be the closed

immersion X → U × A1. Thanks to [Me, Ch. I, Prop. 6.4.1], we can affirm that

i+RΓ[Z]OX ∼= RΓ[Z](i+OX) ∼= RΓ[Z]RΓ[X]OU×A1 [1], for X smooth in U . But

RΓ[Z]RΓ[X]OU×A1 ∼= RΓ[Z]OU×A1 because Z is contained in X (cf. [Me, Ch. I,

Prop. 6.2.4] and beware the typo there). Now the latter local cohomology module

is nothing but π+
1 RΓ[Z′]OU , where π1 is the first projection U ×A1 → U , by [Me,

Ch. I, Prop. 6.3.1]. This is a small abuse of notation, so that π2 represents two

different projections onto A1,

π2,+RΓ[Z]OX ∼= π2,+π
+
1 RΓ[Z′]OU .

And now it is easy to see that this complex has only copies of OA1 among its

cohomologies; it is simply a consequence of applying the base change formula to

the Cartesian square

U × A1

�π1

��

π2 // A1

πA1

��

U
πU // {∗},

where πU and πA1 are the projections from the variety in the subscript to a point.

In conclusion, we can claim that π2,+RΓ[Z]OX is just a bunch of copies of the

structure sheaf OA1 .

Then apart from the purely constant part, the information about the expo-

nents of π2,+OX can be found within π2,+OX(∗Z). But X −Z can be seen as the

graph of p̄/q̄ = p/q in U ×A1, so now this complex can be realized in the form of

our Theorem 1.1 simply by taking g = rq̄ and f = p̄/q̄.

Remark 3.4. We have provided in the end a way of computing the noninteger

exponents of π2,+OX . In fact, we could have thought of a slightly broader family

of Gauss–Manin systems, namely, those associated with a family of the form X =

{p(x)−γ(λ)q(x) = 0} ⊂ U×A1, for some polynomial γ ∈ k[λ]. The reduction of the

beginning of the proof by base change would still be possible, but the calculation

of γ+π2,+OX̃ would not be as direct as with γ(λ) = λd.

We finish this section by providing several results or notions regarding the field

of formal Laurent series that will be of interest later when we tackle a particular

example.
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Lemma 3.5. Let ϕ : k((t)) −→ k((t)) be a k-linear automorphism of k((t)) such

that ϕ(k[[t]]·tk) = k[[t]]·tk for every k ∈ Z. Then, for any k-linear endomorphism ψ

of k((t)) such that ψ(k[[t]]·tk) ⊆ k[[t]]·tk+1, the sum ϕ+ψ is another automorphism

of k((t)).

Proof. Multiplying by ϕ−1 we can assume that ϕ = id. We will write the elements

of k((t)) as a =
∑
k akt

k.

Then let b be a fixed formal Laurent series and let us see if there exists an

a ∈ k((t)) such that (id +ψ)(a) = b. Evidently, the exponents of the least powers

of t (which are called the orders) of both of a and b will be the same, so let us

write

a =
∑
k≥m

akt
k, ψ(a) =

∑
k≥m+1

a′kt
k and b =

∑
k≥m

bkt
k.

From the equation (id +ψ)(a) = b we deduce that am = bm. Now call a1 = a−amtm

and b1 = b− (id +ψ)(amt
m); both of them have order m+ 1. We have

(id +ψ)a1 = (id +ψ)a− (id +ψ)(amt
m) = b1.

Thus we can start the same process over again with a1 and b1. Since this can be

continued for every power of t, we can deduce the surjectivity of id +ψ. Moreover,

if we take bk = 0 for every k ∈ Z, it follows that every ak vanishes too, so id +ψ

is also injective.

Definition 3.6. Let r be an element of k. Then we can define the operators

Dt,r = t∂t + r and analogously Di,r = xi∂i + r for i = 1, . . . , n. We will write

ϕr = ∂t + rt−1 = t−1Dt,r (note the sign change with respect to the previous

notation). They are k-linear endomorphisms of k((t)), so we can also consider

them to be operating within any k((t))-algebra by extension of scalars.

Remark 3.7. It is easy to see that Dt,r (and so ϕr) is an automorphism of k((t))

for every r not an integer and only for them, for Dt,r sends a power tk of t to

(k + r)tk. In this case we can define another family of operators that will play a

fairly main role in the next section:

Definition 3.8. Fix an element α of k, and let r and s be two other elements of k
such that α+s is not an integer. Then we can define the operator Ar,s = t+rϕ−1

α+s.

Let Rn = k((t))[x1, . . . , xn] and β ∈ k. We can also define the k-linear endo-

morphisms of Rn given by AβDi,r,s = t+ βDi,rϕ
−1
α+s, where i = 1, . . . , n.

In the following, for the sake of simplicity, we will denote by Ar, AβDi,r and

Dr the operators Ar,0, AβDi,r,0 and Dt,r, respectively.
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Remark 3.9. As before, Ar,s is not always an automorphism of k((t)), as AβDi,r,s
is of Rn. Since Ar,sϕα+s = Dt,α+r+s, the former is bijective whenever α + r + s

is not an integer. Analogously, AβDi,r,sϕα+s = βDi,r + Dt,α+s. It sends tkxu to

(β(ui + r) +α+ k+ s)tkxu, so AβDi,r,s is bijective if and only if, for every integer

l, we have that β(l + r) + α+ s is not an integer.

Now we could wonder about the commutativity of those operators that we

have just defined. We will use the following lemma, whose proof is easy and left to

the reader (for each relation, use some of the ones proved before and the Leibniz

rule):

Lemma 3.10. Let α and β be two elements of k, and r, r′, s and s′ four other

elements of k such that neither α+ s nor α+ s′ are integers. Then, the following

relations hold:

(1) tϕα = ϕα−1t, ϕαϕβ = ϕβ+1ϕα−1.

(2) Ar,st = tAr,s+1, AβDi,r,sxi = xiAβDi,r+1,s, Ar,sAr′,s′ = Ar′,s′−1Ar,s+1.

§4. Two examples

As we mentioned in the introduction, we will conclude this note by giving an

example of an application of Theorem 1.1, focusing on the case in which our

morphism f is defined by an arrangement of n + 1 hyperplanes of An in general

position with multiplicities, in the end proving Theorem 1.2. But first, let us treat

another case as a warm up. We will indeed give an alternative proof of a well-known

fact regarding quasi-homogeneous singularities:

Proposition 4.1. Let f ∈ k[x1, . . . , xn] be a quasi-homogeneous polynomial of

degree d with respect to a system of integer weights v = (v1, . . . , vn) such that

gcd(v1, . . . , vn) = 1. Then, α ∈ k is an exponent of some cohomology of f+OAn at

the origin only if dα ∈ Z.

Proof. By virtue of Theorem 1.1, we will prove the equivalent statement that for

any α such that dα is not an integer, the k-linear homomorphism Φ : Rn+1 −→ R

given by Φ = (f − t, ∂1 + f ′1ϕα, . . . , ∂n + f ′nϕα) is surjective. Note that in this

case, g(x) = 1 and then R = k((t))[x].

Let us pick an element c of R, and let us say that there exist a, and n

polynomials bi for every i = 1, . . . , n, so that Φ(a, b1, . . . , bn) = c. To prove that,

we can assume without loss of generality that a, each of the bi and c are quasi-

homogeneous (say of v-degrees m,m+ 1, . . . ,m+ 1,m for m ≥ 0), allowing them
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to vanish. We will have

(2)


fa+

n∑
i=1

f ′iϕαb
i = 0,

−ta+

n∑
i=1

∂ib
i = c.

Here, f is a quasi-homogeneous polynomial, so the Euler formula df =
∑
i vif

′
i

holds. That can be thought of as a syzygy of the Jacobian ideal (f, f ′1, . . . , f
′
n),

whose first term −d is of v-degree 0. Then we can assume that any other syzygy

of that ideal deals only with the partial derivatives of f . As a consequence, we

know from the first equation that there exist quasi-homogeneous polynomials F ,

gi,j ∈ R for i running in some finite set of indexes I and j = 1, . . . , n, such that

a = −dF,

ϕαb
j = vjxjF +

∑
i∈I

si,jgi,j , j = 1, . . . , n,(3)

the si,j being components of the syzygy si of (f ′1, . . . , f
′
n).

In fact, we do not need so much generality to achieve our goal. Namely, we will

assume in the following that all gi,j are 0, greatly simplifying expression (3). That

assumption will not affect the validity of the statement, as we will see. Substituting

the new values of f and its partial derivatives in (3) we get

t dF +

n∑
i=1

∂iϕ
−1
α vixiF = t dF + ϕ−1

α

(
n∑
i=1

(vixi∂i + vi)F

)
= dAm+|v|

d
F = c;

the first equality is just commuting xi and ∂i and a consequence of the fact that ϕα
commutes with anything independent of t, whereas the second uses the notation

introduced in Definition 3.8 and the Euler formula for F . Note that if the system

of weights (v1, . . . , vn) were not reduced, the common factors of m + |v| would

have canceled themselves with the respective ones of d, and the final operator

A := Am+|v|
d

would be exactly the same.

Now if dα is not an integer, A is invertible, and so the morphism Φ is surjec-

tive; note that if we had not assumed that the g(i,j) vanish, the argument could

have been the same. Thus α cannot be an exponent at the origin of any of the

cohomologies of f+OAn , as we wanted to prove.

Let us continue now towards the proof of Theorem 1.2 and set some notation

of use from now on. Recall that (w0, . . . , wn) ∈ Zn+1
>0 is some (n + 1)-tuple of

positive integers. Under a suitable linear change of variables, we are able to work
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with the polynomial λ = xw1
1 · . . . · xwnn (1 − x1 − · · · − xn)w0 . The order of the

exponents w0, . . . , wn is irrelevant; we could just reorder the variables or change

one of them by 1− x1 − · · · − xn. We have already indicated that this case turns

out to be interesting when we study the Gauss–Manin cohomology of a generalized

Dwork family and related to some problems arising in mirror symmetry. For a

bigger number of hyperplanes, the computations seem quite complex, and we think

that the particular case of having n + 1 of them is interesting enough to see the

applicability of the main result to other problems.

On the other hand, working with fewer hyperplanes is quite easy: assume

that for some r ≥ 0 and every i = 0, . . . , r we have wi = 0. Abusing some of the

notation, we can call our morphism the same as the polynomial, that is, such that

λ = x
wr+1

r+1 · . . . · xwnn . The notion of exponent is deeply local, so we could work

with the image of λ outside the origin, that is, restrict it from Ar ×Gn−rm to Gm,

without altering the set of exponents. Therefore under those assumptions, we have

by the Künneth formula (cf. [HTT, Prop. 1.5.30]) that

λ+OAr×Gn−rm

∼=

wr+1⊕
i1=1

· · ·
wn⊕

in−r=1

Ki1/wr+1
∗ · · · ∗ Kin−r/wn


⊗

(
0⊕

i=−r
O( r−i)

Gm [−i]

)
,

where the operation ∗ is the multiplicative convolution of DGm-modules defined as

in [Ka1, 5.1.7.1].

Note that for any α and β in k,

Kα ∗ Kβ ∼=

{
Kα[1]⊕Kα[0] if α ≡ β mod Z,
0 otherwise,

by virtue of [Ka1, Lems. 5.2.1, 6.3.4]. Then by repeatedly applying the claim we

can affirm that

λ+OAn ∼=

(⊕
α∈A
Kα

)
⊗

(
0⊕

i=−n+1

O(n−1
−i )

Gm [−i]

)
,

where A is the set of rational numbers α ∈ (0, 1] for which there exist i1, . . . , in−r
such that α = ij/wr+j for every j. Note that, by the following lemma, A = {1} if

and only if gcd(wr+1, . . . , wn) = 1.

Lemma 4.2. Let n > 1 be an integer, and let (w1, . . . , wn) be an n-tuple of posi-

tive integers. The following conditions are equivalent:
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(1) There exists another n-tuple (a1, . . . , an) of positive integers such that ai < wi
for every i = 1, . . . , n, and the quotients ai/wi are all equal.

(2) gcd(w1, . . . , wn) > 1.

Proof. The upwards part of the equivalence is easy; the other implication can

be proved by contradiction. Indeed, assume that gcd(w1, . . . , wn) = 1 and apply

Bézout’s identity to obtain some integers c1, . . . , cn such that 1 =
∑
i ciwi. But

then, calling q = ai/wi for any i = 1, . . . , n, 1 > q =
∑
i ciqwi =

∑
i ciai, which

cannot (as it should) be a positive integer. Thus gcd(w1, . . . , wn) > 1 and we are

done.

Let us deal then with the case of n+1 hyperplanes. However, note that we will

not calculate the exponents of λ+OAn , but stay with just a finite set of rational

numbers as candidates (see Remark 4.3).

Proof of Theorem 1.2. As with the previous proposition, we will prove the equiva-

lent statement that for any α such that wiα is not an integer for any i = 0, . . . , n,

the k-linear homomorphism Φ : Rn+1 −→ R given by

Φ = (λ− t, ∂1 + λ′1ϕα, . . . , ∂n + λ′nϕα)

is surjective. Note that again in this case, g(x) = 1 and R = k((t))[x].

Let us assume that n ≥ 2, but we will comment throughout the proof on the

changes needed to treat the case n = 1.

For the sake of simplicity, let us denote by σ and d, respectively, the sums

x1 + · · · + xn and
∑
wi. In the following, li will mean wiσ + w0xi for each i =

1, . . . , n. Therefore, λ′i = xw−ei(1− σ)w0−1(wi − li) for every i.

Exactly as we did in the previous proposition, let us pick an element c of

R that we can assume as before without loss of generality to be homogeneous of

degree m ≥ 0, and let us say that there exist a, and n polynomials bi for every

i = 1, . . . , n, so that Φ(a, b1, . . . , bn) = c, and see which conditions we have to

impose on them. We will express the unknown polynomials a and the bi in terms

of some others and deduce some conditions on the new ones, although here those

conditions will not be as simple as in the previous example. Then we will give a

system of equations such that the existence of solutions to it implies the existence

of a and the bi. In the end we will show how to find a solution of such a system

using that none of w0α,. . . ,wnα is an integer.

So let us return to our a, bi and c, such that Φ(a, b1, . . . , bn) = c. For every

r ≥ 0, we will have in general that

(4)
∑
j+k=r

λjak − tar +

n∑
i=1

∑
j+k=r

(λ′i)jϕαb
i
k +

n∑
i=1

∂ib
i
r+1 = cr.
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We will also assume that a has only nonvanishing kth homogeneous components

for k = m, . . . ,m + d − 1, and each of the bi for k = m + 1, . . . ,m + d. Thus our

general formula (4) will be useful for us only for r = m, . . . ,m + 2d − 1. We will

also assume α to be noninteger in order to be able to invert ϕα in the following.

Let us focus first on the expression

(5) λa+
∑
i

λ′iϕαb
i = 0

that holds for degrees between m+d and m+2d−1. From this fact we will obtain

some additional, useful information about a and the bi.

If we take the factors common to every summand of formula (5), we get

(6) (1− σ)w0−1

(
axw(1− σ) +

n∑
i=1

ϕαb
ixw−ei(wi − li)

)
= 0,

so (a(1 − σ), ϕαb
1(w1 − l1), . . . , ϕαb

n(wn − ln)) is a syzygy of the sequence con-

sisting of the monomial xw and its n partial derivatives. Therefore, since it forms

a monomial ideal, xi divides ϕαb
i for every i. Let us write ϕαb

i = xib̄
i, so that we

can divide by xw in formula (6) to obtain

(7) a(1− σ) +
∑
i

b̄i(wi − li) = 0,

which, recall, will be valid only for degrees from m+ 1 to m+ d.

Let us start then with formula (7) by degree m+ d. We have

am+d−1σ +

n∑
i=1

lib̄
i
m+d−1 =

n∑
i=1

(
am+d−1 +

n∑
j=1

wj b̄
j
m+d−1 + w0b̄

i
m+d−1

)
xi = 0.

We could argue that the x1, . . . , xn form a regular sequence in order to obtain an

expression for their “coefficients” in terms of other polynomials. Nevertheless, as

we did in the proof of the previous proposition, we will make some assumptions

to simplify our calculations. Namely, we will assume that every sum am+d−1 +∑
j wj b̄

j
m+d−1 +w0b̄

i
m+d−1 vanishes. Moreover, we will also assume that all of the

b̄im+d−1 are equal. However, as we will explain and see alongside the proof, all these

suppositions and subsequent ones will not prevent us from proving the theorem.

Let us now rename b̄im+d−1 = f0 for every i; f0 is a homogeneous polynomial

of degree m+ d− 1. In the end we can also write that am+d−1 = −df0.

Let us go on by taking r = m+ d− 1. Our equation (7) turns into

am+d−2σ − am+d−1 +

n∑
i=1

lib̄
i
m+d−2 −

n∑
i=1

wib̄
i
m+d−1 = 0.
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We can replace am+d−1 and the b̄im+d−1 by their values in terms of f0, and get

(8) am+d−2σ +

n∑
i=1

lib̄
i
m+d−2 + w0f

0 = 0.

Note that, since f0 is homogeneous of degree m+d−1 > 0, there exist n homoge-

neous polynomials f0
(1), . . . , f

0
(n) ∈ R of degree m+ d− 2 such that f0 =

∑
i xif

0
(i).

Replace f0 by that sum in the formula above. In addition, as before assume that

every factor of xi in formula (8) is 0 for i = 1, . . . , n and that all of the sums

b̄im+d−2 + f0
(i) are equal to some new homogeneous polynomial in R, named f1, of

degree m+ d− 2 (note that if n = w0 = w1 = 1 and m = 0, it would be constant,

stopping this process here). Finally we have

am+d−2 = −df1 +

n∑
j=1

wjf
0
(j),

b̄im+d−2 = f1 − f0
(i), i = 1, . . . , n.

Let us move on and see what happens with formula (7) when the degree is m+d−2.

Our favorite formula reads

am+d−3σ − am+d−2 +

n∑
i=1

lib̄
i
m+d−3 −

n∑
i=1

wib̄
i
m+d−2 = 0.

Writing am+d−2 and the b̄im+d−2 as with higher degrees and proceeding like with

degree m+d−1 yields that the terms in the f0
(i) vanish, so we can proceed exactly

as in the previous step.

More concretely, taking lower and lower degrees in (7) as long as it is possible,

and renaming the subsequent fk(j) that appear, we finally get

a =

n∑
i=1

(−dxi + wi)F(i) − dF̃ ,

ϕαb
i = xi

( n∑
j=1

xjF(j) − F(i) + F̃

)
, i = 1, . . . , n,

(9)

where the F(i) are polynomials of R that have only nonvanishing kth homogeneous

components for k = m, . . . ,m+d−2, and F̃ is a homogeneous polynomial of degree

m. In other words, each of the fk(j) is now the homogeneous component of degree

m+ d− 2− k of F(j) for j = 1, . . . , n and k = 0, . . . , d− 2, and F̃ is just fd−1.

Summing up, we have been able to express our first unknowns, the polynomials

a and bi, in terms of many other polynomials, and we do not know anything about

them but their degrees. However, recall that we still have another d equations left
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arising from our general formula (4) in degrees m to m+d− 1. These are the ones

that will give us some information about our new unknowns, and are, in reverse

order of degree (note that λ lies in degrees d− w0 to d),

(10)



∑
j+k=r λjak +

∑n
i=1

∑
j+k=r(λ

′
i)jϕαb

i
k

−tar +
∑n
i=1 ∂ib

i
r+1 = 0, r = m+ d− w0, . . . ,m+ d− 1,

−tar +
∑n
i=1 ∂ib

i
r+1 = 0, r = m+ 1, . . . ,m+ d− w0 − 1,

−tam +
∑n
i=1 ∂ib

i
m+1 = cm.

Let us find an expression for the system above. Recall the new expressions for a

and b in (9) and take into account those of λ and its partial derivatives:

λd−w0+j =

(
w0

j

)
(−1)jxwσj ,

λ′d−w0+j−1,i =

wixw−ei , j = 0,

(−1)jxw−ei
((
w0

j

)
σjwi +

(
w0−1
j−1

)
w0σ

j−1xi

)
, j = 1, . . . , w0.

Now, if we put all that into the remaining equations in (10), we obtain the system

(11)



∑n
i=1 dxiAm+d+n−1

d
F(i),m+d−2 + (−1)w0w0x

wσw0−1F̃ = 0,

...∑n
i=1 dxiAm+d+n−r

d
F(i),m+d−r−1 −

∑n
i=1 wiADi,1

wi

F(i),m+d−r

+(−1)w0−r+1w0

(
w0−1
w0−r

)
xwσw0−rF̃ = 0, r = 2, . . . , w0 − 1,

...∑n
i=1 dxiAm+d+n−w0

d
F(i),m+d−w0−1 −

∑n
i=1 wiADi,1

wi

F(i),m+d−w0

−w0x
wF̃ = 0,

...∑n
i=1 dxiAm+n+r

d
F(i),m+r−1 −

∑n
i=1 wiADi,1

wi

F(i),m+r = 0,

r = 1, . . . , d− w0 − 1,
...

dAm+n
d
F̃ −

∑n
i=1 wiADi,1

wi

F(i),m = cm.

Note that, as in the proof of Proposition 4.1, the operators Aβ and ADi,1

wi

are ob-

tained from the summand −tar in every homogeneous equation of (10), together

with ϕ−1
α

∑
i ∂ixi of some homogeneous polynomial. Applying Euler’s formula al-
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lows us to get rid of the sum of the derivatives. Let us try now to prove that this

system has a solution, and then, that Φ is surjective.

Let us denote by Sk the set {u ∈ Nn : |u| = k}. We will say that the support of

a homogeneous polynomial P of degree k is maximal if it is the whole of Sk. Write

F̄ for
∑
i xiF(i). Note that this polynomial comes from the fk obtained in the first

part of the proof. For each k = 1, . . . ,m+d−1 we obviously cannot have a priori

that supp(F̄m+k) 6= Sm+k. Then we could choose the support of all the F(i),m+k,

up to a reordering on the set of monomials that appear in each one. For instance,

suppose n=2 and m+k=2. Then F̄2=F20x
2+F11xy+F02y

2, and we could take

either F(1),1=F20x+F11y and F(2),1=F22y, or F(1),1=F20x and F(2),1=F11x+F22y.

As a consequence, without loss of generality, we can, and will, assume the

maximality of the supports of the polynomials

F(1),m+k for k = 0, . . . , w1 − 1,

and for every i = 2, . . . , n,

F(i),m+k for k = w1 + · · ·+ wi−1, . . . , w1 + · · ·+ wi − 1.

(Obviously this definition of maximality and the assumptions on the F(i),m+k are

useless when n = 1.) Thanks to the choice of α and Remark 3.9, we know that

each ADi,1
wi

is invertible, so we can solve any F(i),m+r of maximal support in terms

of F(i),m+r−1 and F̃ , for r = 0, . . . , d−w0 − 1, over all the possible support of the

corresponding equation.

Now is when the choice of the supports of the F(i),m+k makes sense. Start at

the last equation of (11) by solving F(1),m and replace its value in the preceding

equation, and do this with the polynomial F(i),m+k having a maximal support,

until we reach the w0th equation. Assume that every unused polynomial F(i),m+k

vanishes (again this assumption does not endanger the generality of the proof). As

a consequence of all that, we reduce ourselves to dealing with a newer system of

only w0 equations, consisting of the first w0− 1 equations of the preceding system

and a new w0th equation, namely,

xw
(

ΥAm+n
d
− w0

)
F̃ −

n∑
i=1

wiADi,1
wi

F(i),m+d−w0
= xwΥcm,

where, by Lemma 3.10,

Υ = dd
n∏
i=1

w−wii Am+d+n−1
d

A−1
Dn,wn
wn

· . . . ·Am+d+n−wn
d

A−1
Dn,1
wn

· . . . ·Am+n+1
d

A−1
D1,1
w1

=

d−1∏
k=1

Am+d+n−k
d ,k−1

( n∏
i=1

wi∏
j=1

ADi,j
wi

,j+w1+...+wi−1−1

)−1

.
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Let us simplify the system once more; as before, although we lose some gen-

erality, this new assumption will not only preserve enough of it, but leave the

equations in a more manageable form. More concretely, assume that, for every

r = 2, . . . , w0, the polynomials F(i),m+d−r coincide for every i = 1, . . . , n and are

divisible by xwσw0−r. Write F(i),m+d−r = xwσw0−rFm+d−r for all those values of

i and r (note that every polynomial Fm+d−r is homogeneous of degree m). Thanks

to that hypothesis, we can divide each corresponding equation by xwσw0−r+1 to

get the simpler system of homogeneous polynomials of degree m:

(12)



dAm+d+n−1
d

Fm+d−2 + (−1)w0w0F̃ = 0,

...

dAm+d+n−r
d

Fm+d−r−1 − (d− w0)Am+d+n−r
d−w0

Fm+d−r

+(−1)w0−r+1w0

(
w0−1
w0−r

)
F̃ = 0, r = 2, . . . , w0 − 1,

...(
ΥAm+n

d
− w0

)
F̃ − (d− w0)Am+d+n−w0

d−w0

Fm+d−w0
= Υcm.

This system is the one that we will prove to have a solution, so that we finally

show that Φ is surjective.

The Aβ do not commute pairwise, so in principle we cannot deal with the

determinant of the matrix of the system. However, under an easy change of vari-

ables, we can see the Aβ as elements of a commutative subring of the ring of

endomorphisms of R. By our assumption on α, the endomorphism Dα of k((t)) is

invertible, so we can define a new operator Bβ as Aβαt
−1 = α(1 + βD−1

α ), which

is an element of k[D−1
α ], a commutative ring whose action on k((t)) is defined by

D−1
α tl = (l + α)−1tl. Now αt−1 is an isomorphism of R, so we can rename the Fk

to mean tα−1Fk, for each k = m+ d− w0, . . . ,m+ d− 2.

Now every coefficient of system (12) is of the form of some Bβ and thus

lives in k[D−1
α ], except for ΥBm+n

d
in the final equation, which has degree 1 in t.

Nevertheless, note that this operator goes together with −w0, so by Lemma 3.5 its

sum is an automorphism of R. Moreover, regarding just the existence of solutions

to the system and not their actual form, we can restrict ourselves to working only

with −w0.

If w0 = 1, then we have only a single equation, from which we can solve F̃

and thus the system, showing the existence of solutions. In the following we will

assume that w0 ≥ 2.

We have finally arrived at a point where we have a matrix of coefficients in

k[D−1
α ], so we just need to show that its determinant is an invertible endomorphism

of k((t)). If we manage to do so, we will have proved that system (12) has a solution,
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but that implies the existence of a solution to system (11) and this, in turn, implies

the existence of a preimage to our c.

Expanding it along the last column, the determinant is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dBm+d+n−1
d

0 · · · 0 (−1)w0w0

−(d−w0)Bm+d+n−2
d−w0

dBm+d+n−2
d

· · · 0 (−1)w0−1w0(w0−1)

0 −(d−w0)Bm+d+n−3
d−w0

. . .
...

...

...
...

. . . dBm+d+n−w0+1
d

w0(w0−1)

0 0 · · · −(d−w0)Bm+d+n−w0
d−w0

−w0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −w0

w0∑
r=1

(
w0−1

w0−r

)
(−1)w0−r

r−1∏
k=1

dr−1Bm+d+n−k
d

×
w0−1∏
k=r

(d− w0)w0−rBm+d+n−k−1
d−w0

.

Call the determinant above −w0∆α. Recall that, up to now, we have used

that wiα is not an integer for any i = 1, . . . , n. Now is when we will use that

w0α is not an integer either. Since every operator Bβ preserves powers of t up to

a coefficient in k, so does ∆α; say ∆α

(
tl
)

= dα,lt
l. But then there will be some

power of t in its kernel if and only if ∆α is not bijective. Therefore, we need to

show just that, for the values of α under consideration, dα,l does not vanish for

every l ∈ Z. It is easy to see that dα,l is

w0∑
r=1

(
w0−1

w0−r

)
(−1)w0−r

r−1∏
k=1

(
dα+ α

m+ d+ n− k
l + α

)

×
w0−1∏
k=r

(
(d− w0)α+ α

m+ d+ n− k − 1

l + α

)

= qw0−1
α,l

w0∑
r=1

(
w0−1

w0−r

)
(−1)w0−r

r−1∏
k=1

(d(α+ l) +m+ d+ n− k)

×
w0−1∏
k=r

((d− w0)(α+ l) +m+ d+ n− k − 1),

where qα,l is the quotient α/(l+ α). Up to the factor qw0−1
α,l , the expression above

is a polynomial in α of degree w0 − 1, so there will be at most w0 − 1 values of α,

so that it vanishes. In fact, for a fixed l, they are −l− a/w0, for a = 1, . . . , w0− 1.
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Indeed, let a be as above. Then q
−(w0−1)
−l−a/w0,l

d−l−a/w0,l can be written as

w0−a∏
k=1

(
− d

w0
a+m+ d+ n− k

) w0∑
r=1

(
w0−1

w0−r

)
(−1)w0−r

×
a−1∏
j=1

(
− d

w0
a+m+ n+ d− r + j

)

= Ca

w0∑
r=1

(
w0−1

w0−r

)
(−1)w0−rpa(r),

where Ca and pa are, respectively, a constant and a polynomial of degree a− 1 ≤
w0 − 2. Now, thanks to the following lemma, we can deduce the vanishing of the

determinant, so we have finally found that for every α such that wiα is not an

integer, the original system has a solution.

All of this process could be made independently of the choice of m, n, all of

the wi and cm, so it finally proves the surjectivity of Φ.

The claim about the multiplicity of the exponents follows from two facts: the

order of the wi does not play any role in the complex λ+OAn as we commented in

the introduction to the context of the proposition, and within each set of possible

exponents {1/wi, . . . , (wi − 1)/wi}, the proof shows that whichever we use, the

outcome is the same because of the different possible values of m.

Remark 4.3. Note that we already knew before the proposition that by the mon-

odromy theorem, the exponents would be rational. What this result provides, with

respect to that fact, is a much shorter set of possible exponents.

The converse of the last proposition holds in a stronger way: every cohomology

of λ+OAn is constant, except the last one, H0λ+OAn , whose exponents are exactly

those of the form j/wi, for j = 1, . . . , wi and i = 0, . . . , n. However, it needs much

more preparatory work; it can be found in [Ca, §5].

Lemma 4.4. Let m, n be two integers such that 0 ≤ m < n− 1. Then,

n∑
k=1

(
n−1

n−k

)
(−1)n−kkm = 0.

Proof. First of all rewrite the formula above as

n−1∑
k=0

(
n−1

k

)
(−1)k(n− k)m,
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which is obviously true if n = 2, so assume n > 2. We will be done as long as we

can show that
∑n−1
k=1

(
n−1
k

)
(−1)kkm = 0 for every n and m < n − 1. Let us do it

by induction on n and m. If n = 3 or m = 0 it is also very easy to prove it.

Let us go therefore for a general n, take some n− 1 > m > 0 and assume the

validity of
∑a−1
k=1

(
a−1
k

)
(−1)kkb = 0 for every a < n and b < min(m, a − 1). Now

note that

n−1∑
k=1

(
n−1

k

)
(−1)kkm = (−1)n−1(n− 1)m +

n−2∑
k=1

((
n−2

k−1

)
+

(
n−2

k

))
(−1)kkm

=

n−2∑
k=1

(
n−2

k

)
(−1)k (km − (k + 1)m) .

Since km − (k + 1)m is a polynomial of degree m − 1 in k, we just need to apply

the induction hypothesis to finish.
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FQM-2696), Ministerio de Economı́a y Competitividad (MTM2013-46231-P), Eu-

ropean Regional Development Fund, Agence Nationale de la Recherche (13-IS01-

0001-01/02) and Deutsche Forschungsgemeinschaft (HE 2287/4-1 and SE 1114/5-

1).

References
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